
Optimization-based Methods for Satellite

Control

Jacob Willis

CMU-RI-TR-23-84

December 05, 2023

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Zachary Manchester, chair

Brandon Lucia,
Guanya Shi,
Kevin Tracy

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright © 2023 Jacob Willis. All rights reserved.

To those in the future whose lives and work are impacted by mine. To those in the
past whose lives and work impact mine. We are all connected.

iv

Abstract

Since 2012, the number of satellites launched into orbit has grown from
a maximum of 168 per year to over 2000 per year. Over that same
timeframe, incredible advances have been made in control systems for
terrestrial robotics and autonomy. Despite the increased quantity of satel-
lites in orbit and the advances made in terrestrial control systems, satellite
control systems have not followed the same growth trajectory. This thesis
aims to close that gap. We take advantage of computational tools to
develop modern approaches to several common satellite control problems.
We develop a linear relative motion model for satellites that has higher
accuracy than the state of the art. This linear relative motion model
allows for convex optimization of low-thrust relative orbital maneuvers,
greatly reducing their computational burden. We develop a differential
drag satellite formation flying algorithm that computes maneuvers to
separate satellites in both the along-track and cross-track directions. The
algorithm is a convex optimization that can be solved to optimality within
the computational constraints onboard a satellite. The final algorithm
we develop is an improved method for detumbling a satellite using elec-
tromagnetic torque coils. This algorithm reduces the detumbling time
to 50% of conventional methods. In addition to algorithm development,
this thesis also describes hardware and flight software development for
the PyCubed-mini and Py4 satellite projects. The first PyCubed-mini
satellite was launched in November 2023 and the Py4 satellites will be
launched in spring 2024.

v

vi

Acknowledgments

The work I have done for this thesis has been supported by an incredible
number of people.

Katie, my wife, deserves acknowledgement first. For all of the changes
we have experienced together, for the hundreds of hours of conversations,
and for the endless encouragement, thank you. You have truely been a
partner, I hope I have been the same.

I wouldn’t have made it to Carnegie Mellon without the mentorship of
Professors Randy Beard, Cammy Peterson, Tim McClain, and Doran
Wilde at BYU. In addition, I would never have gotten to work on satellites
without the continued mentorship and friendship of Patrick Walton and
the whole PICs team.

My research wouldn’t be nearly as interesting or impactful without the
continuous support of my advisor, Zac Manchester. Writing this thesis
was an amazing reminder of how much I have learned from Zac over the
past two years.

One of my greatest joys has been building relationships with the incredible
members of my research lab. Thanks (in an attempt at chronological
order) to Brian, JJ, Kevin (who taught me orbit dynamics), Benj, Fausto,
Paulo, Alex, Chiyen, Brandon, Ben, Swami, Mitch, Giusy, Arun, John,
Sofia, Sam, Khai, Aaron, Anoushka, Ibrahima, Will, Ashley. You have
made my life better.

A portion of my time has been dedicated to working on a Pocketqube
satellite with a team of undergraduate and Master’s students. Losha,
Karissa, Yashika, Guarav, Krrish, Thomas, and Neil: it was a pleasure to
work with and learn from you.

This thesis marks a turning point for me. Earlier this year I made the
challenging decision to leave behind the incredible work and people I’ve
gotten to know at CMU and to join another remarkable organization,
Albedo. To the people there who took a chance bringing me on as an
intern and who have given me the chance to stay for longer: Ankur, Brian,
Tom, Brandon, Warren, Topher, AyJay, and Winston. Let’s build!

vii

viii

Funding

This work was supported by the United States Department of Defense
National Defense Science and Engineering Graduate Fellowship (NDSEG).

ix

x

Contents

1 Introduction 1

2 Background 5
2.1 Orbital Dynamics . 5

2.1.1 Two-Body Dynamics . 5
2.1.2 Orbit Perturbations . 9

2.2 Attitude Dynamics . 10
2.2.1 Rotation Matrices . 11
2.2.2 Unit Quaternions . 13
2.2.3 Angular Rate Dynamics . 15

2.3 Rigid Body Dynamics . 15

3 Relative Kustaanheimo-Stiefel Dynamics 17
3.1 Introduction . 17
3.2 Related Work . 19
3.3 Background . 20

3.3.1 Cartesian Orbit Dynamics . 20
3.3.2 The Kustaanheimo-Stiefel Transform 21

3.4 Transforming from Cartesian to KS space 25
3.5 Relative KS Dynamics . 27
3.6 Comparison of relative-orbit models 28
3.7 Relative Orbital Maneuvers via Convex Optimization 31

3.7.1 Low-Thrust Rendezvous Maneuver 31
3.8 Conclusions . 33

4 Drag-Based Formation Control 35
4.1 Introduction . 35
4.2 Related Work . 37
4.3 Background . 39

4.3.1 Keplerian Motion . 39
4.3.2 Atmospheric Drag . 40

xi

4.3.3 Nodal Precession and The Method of Averaging 40
4.4 Formation Flying . 41

4.4.1 Linearized Dynamics . 41
4.4.2 Constraints on the Final Conditions of Drag-Based Formation

Control . 43
4.4.3 Optimization-Based Drag Maneuver Planning 43

4.5 Simulation Experiments . 44
4.5.1 Trajectory Optimization . 45
4.5.2 Closed-Loop Simulation Results 45

4.6 Conclusions . 51

5 Magnetorquer Detumbling 53
5.1 Introduction . 53
5.2 Related Work . 54
5.3 Background . 55

5.3.1 Attitude Dynamics . 55
5.3.2 Detumbling Control . 56

5.4 Non-monotonic Control Derivation 59
5.4.1 Non-Monotonic Detumbling 60
5.4.2 Causal Implementation . 65
5.4.3 Complete Controller . 66

5.5 Simulation Experiments . 67
5.6 Conclusion . 70

6 Satellite Flight Hardware and Software 73
6.1 PyCubed-mini . 74

6.1.1 Flight Hardware . 74
6.1.2 Flight Software . 76
6.1.3 Software States . 78
6.1.4 Software Tasks . 78

6.2 Py4 . 82
6.2.1 Guidance and Control Software 83
6.2.2 Detumbling . 86

7 Conclusions 87

Bibliography 89

When this thesis is viewed as a PDF, the page header is a link to this Table of Contents.

xii

List of Figures

2.1 Notation used to describe a spacecraft orbital state. 9
2.2 Visualization of coordinate frames for rotation matrix kinematics

derivation. 12

3.1 Cartesian to KS transformation of a unit orbit 27
3.2 RMS position error along a single orbit 30
3.3 Position and velocity error, thrust control inputs, and radial-tangential-

normal (RTN) trajectories for a low-thrust rendezvous maneuver. . . 33

4.1 High- and low-drag configurations for a satellite with attitude-controlled
drag modulation. 36

4.2 Circular orbit notation . 39
4.3 Optimized trajectory for a two-satellite formation 46
4.4 Ground tracks of desired final formation configuration scenarios . . . 47
4.5 Scenario 1 control and altitude trajectories 48
4.6 Scenario 1 RAAN and AoL trajectories 49
4.7 Scenario 2 control and altitude trajectories 50
4.8 Scenario 2 RAAN and AoL trajectories 51

5.1 B-cross controller simulation showing it getting stuck in uncontrollable
subspace . 59

5.2 Detumbling controller gain sweep study 67
5.3 Detumbling Monte-Carlo momentum versus time 68
5.4 Detumbling Monte-Carlo detumble time distribution 69
5.5 Detumbling Monte-Carlo final momentum histograms 70

6.1 PyCubed-mini and Py4 satellites. 73
6.2 PyCubed-mini pocketcube with cutaway showing the coil traces em-

bedded in a solar panel face. 76
6.3 PyCubed-mini flight software architecture 77
6.4 PyGNC software architecture . 83

xiii

xiv

List of Tables

3.1 Comparison of Relative-Orbit Models 29
3.2 Reference Orbit Initial Conditions for RMS Trajectory Error Plots in

Figure 3.2 . 29
3.3 Initial Conditions for Low-Thrust Rendezvous in Figure 3.3 32

4.1 Results for Scenario 1 . 49
4.2 Results for Scenario 2 . 50

5.1 Simulated spacecraft properties . 71
5.2 Monte-Carlo Initial Condition Distribution 71
5.3 Controller Parameters . 72

6.1 PyCubed-mini software commands 79

xv

xvi

Chapter 1

Introduction

Over the past two decades the number of satellites launched into Earth orbit has

increased from 100 per year to over 2000 per year [66]. While the growth is remarkable

when measured in quantity, the growth in satellite autonomy has remained more

modest; satellite capability is more limited than satellite quantity. There are a variety

of factors at play here, but two of the dominant factors are limited computational

resources and conservatism in control system design. As the quantity of satellites

continues to grow, satellite hardware and control systems will need to become more

capable.

This thesis presents three research problems that extend the state-of-the-art in

satellite control. The first two problems focus on orbital dynamics and relative

motion between multiple satellites, applying transformations and approximations to

make challenging formation flying problems solvable as convex optimizations. The

final problem was motivated by noticing the poor performance the classic B-cross

detumbling control law experiences and using recent results in discrete-time Lyapunov

analysis to improve its performance. The final technical chapter of the thesis is

devoted to describing software development for two different satellite experiments: a

tiny 5 cm Pocketqube satellite, and the larger 1.5U Py4 cube satellites.

More detail on each chapter follows:

1

1. Introduction

Chapter 2: Background

In this chapter we introduce background concepts that are relevant for spacecraft

control system development and that are used in the remaining chapters. Concepts

covered include orbital mechanics, attitude dynamics, and rigid body dynamics. Each

is approached from a first-principles perspective to help the reader gain understanding

and intuition in these challenging topics.

Chapter 3: Convex Optimization of Relative Orbit

Maneuvers Using the Kustaanheimo-Stiefel Transformation

As small-satellite constellations continue to grow in size and complexity, there is an in-

creasing need for autonomous relative navigation and control capabilities. Many small

satellites utilize non-impulsive low thrust propulsion or manipulation of perturbation

forces such as differential drag for orbit control. These low-acceleration control tech-

nologies result in long time horizons over which the control actions must be planned

and executed. Currently no dynamics model satisfies the computation, accuracy,

and generalizability required for autonomous long-time-horizon control. This chapter

presents a relative-dynamics model based on the Kustaanheimo-Stiefel transformation.

We demonstrate that it achieves equivalent or better accuracy compared to existing

relative-orbit models in the literature. In addition, our Kustaanheimo-Stiefel model

requires a small number of timesteps per orbit and easily incorporates low-acceleration

control inputs. These features make it easily adaptable to convex trajectory opti-

mization methods; we demonstrate this by solving a low-thrust orbital rendezvous

problem over a time horizon of 75 orbits with a maximum 20µm/s2 thrust constraint.

This work was presented at the 2023 IEEE Aerospace Conference [75].

Chapter 4: Propulsion-Free Cross-Track Control of a LEO

Small-Satellite Constellation with Differential Drag

In this work, we achieve propellantless control of both cross-track and along-track

separation of a satellite formation by manipulating atmospheric drag. Increasing the

atmospheric drag of one satellite with respect to another directly introduces along-

track separation, while cross-track separation can be achieved by taking advantage of

2

1. Introduction

higher-order terms in the Earth’s gravitational field that are functions of altitude.

We present an algorithm for solving a multi-satellite formation flying problem based

on linear programming. We demonstrate this algorithm in a receding-horizon control

scheme in the presence of disturbances and modeling errors in a high-fidelity closed-

loop orbital-dynamics simulation. Results show that separation distances of hundreds

of kilometers can be achieved by a small-satellite formation in low-Earth orbit over a

few months.

This work was performed in collaboration with Giusy Falcone and has been

accepted to the 2023 Conference on Decision and Control [20].

Chapter 5: Building a Better B-Dot: Fast Detumbling with

Non-Monotonic Lyapunov Functions

Spacecraft detumbling with magnetic torque is an inherently underactuated control

problem. Contemporary and classical magnetorquer detumbling methods do not

adequately consider this underactuation and suffer from poor performance as a result.

These controllers can get stuck on an uncontrollable manifold, resulting in long

detumbling times and high power consumption. This work presents a novel detumble

controller based on a non-monotonic Lyapunov function that predicts the future

magnetic field along the satellite’s orbit and avoids uncontrollable configurations,

resulting in detumble times that are less than half those of other controllers in the

literature, while also converging to lower overall angular rates. We provide a derivation

and proof of convergence for our controller, as well as Monte-Carlo simulation results

demonstrating its performance in representative use cases.

This work was performed in collaboration with Paulo Fisch and Aleksei Seletskiy

and has been accepted to the 2024 IEEE Aerospace Conference [76].

Chapter 6: Satellite Flight Hardware and Software

While development of novel control algorithms is academically interesting, it is only

the first step in making them a contribution to the state of the art. To demonstrate

the algorithms described in this thesis as well as other modern satellite control

methods, we have developed flight hardware and software that falls under two unique

3

1. Introduction

projects. Both projects are derived from the open-source PyCubed avionics [30]. The

first is the PyCubed-mini project at Carnegie Mellon University. In this project

we are developing a 5× 5× 5 cm 1p Pocketqube satellite with powerful computing

capabilities including a camera and dedicated embedded computer vision processor

for low-cost demonstration of vision-in-the-loop satellite control. The second project

is the Py4 project that is a collaboration between Carnegie Mellon University and

NASA Ames. This project consists of four 1.5U cube satellites developed at NASA

Ames. The satellites will be launched together and perform relative state estimation

and maneuvering.

4

Chapter 2

Background

This chapter provides an introduction to the dynamics of spacecraft. Rather than

provide a brief overview, verbose derivations and explanations are made to aid the

reader’s understanding. We begin by studying orbital dynamics, then proceed to

attitude dynamics before combining the formulations into the full state dynamics for

a rigid body satellite.

2.1 Orbital Dynamics

2.1.1 Two-Body Dynamics

For two point masses M and m where M ≫ m, we define the position of m with

respect to M as r ∈ R3, and the velocity of m with respect to M as v ∈ R3. We let

the magnitude of the position and velocities be r = ∥r∥ and v = ∥v∥ respectively.

The gravitational potential of m is

V (r) = −µ

r
(2.1)

where µ = GM is the standard gravitational parameter, with G the gravitational

constant. The acceleration of m due to the gravitational potential field is the negative

5

2. Background

gradient of V with respect to r,

r̈ = −∇rV = − µ

r3
r. (2.2)

This is the two-body equation and when M = MEarth it governs the dynamics of a

satellite in orbit around Earth [72].

The specific angular momentum of m is

h = r× v. (2.3)

Taking the time derivative

d

dt
h = v × v + r× r̈ (2.4)

= v × v − µ

r3
r× r = 0, (2.5)

so the specific angular momentum of a two-body orbit is conserved. This also indicates

that the angular momentum vector is constant for all r and v, so the two-body orbital

motion of a satellite is planar [53].

Defining the specific potential energy

εp = −µ

r
(2.6)

and the specific kinetic energy

εk =
1

2
v2 (2.7)

the specific orbital energy is

ε = εk + εp =
1

2
v2 − µ

r
. (2.8)

Using the fact that

rṙ = (rT r)1/2
d

dt
(rT r)1/2 = (rT r)1/2

1

2
(rT r)−1/2(2rTv) = rTv (2.9)

6

2. Background

and taking the time derivative of ε,

d

dt
ε = vv̇ +

µ

r2
ṙ (2.10)

= vT r̈+
µ

r2
rTv

r
(2.11)

= vT
(
r̈+

µ

r3
r
)

(2.12)

= vT (r̈− r̈) = 0 (2.13)

we see that specific orbital energy is also conserved.

We will now derive the elliptical form of an orbit by finding a third conserved

quantity, known as the Laplace-Runge-Lenz (LRL) vector. Taking the time derivative

d

dt
(h× v) = ḣ× v + h× r̈ (2.14)

= h× r̈ (2.15)

= − µ

r3
h× r (2.16)

= − µ

r3
r× v × r. (2.17)

Now, recalling the vector triple product a×b×c = b(aT c)−c(aT b) and that rṙ = rTv,

d

dt
(h× v) = − µ

r3
(
v(rT r)− r(rTv)

)
(2.18)

= − µ

r3
(
r2v − rṙr

)
(2.19)

= −µ

(
v

r
− ṙr

r2

)
(2.20)

= −µ
d

dt

(r
r

)
(2.21)

where in the last line we made the substitution

d

dt

(r
r

)
=

v

r
− ṙr

r2
. (2.22)

7

2. Background

We’ve now shown that

d

dt

(
h× v + µ

r

r

)
= 0 (2.23)

so we have another conserved quantity,

A = −h× v − µ
r

r
. (2.24)

This is the LRL vector; it has magnitude A = ∥A∥. We define the true anomaly, θ,

to be the angle between A and r, so their dot product is

Ar cos(θ) = AT r (2.25a)

= −(h× v)T r− µ
rT r

r
(2.25b)

= (r× v)Th− µ
r2

r
(2.25c)

= h2 − µr. (2.25d)

Solving for r, we find that

r =
h2

µ+ A cos(θ)
=

p

1 + e cos(θ)
(2.26)

where we define the semi-latus rectum p = h2/µ and the eccentricity e = A/µ.

Equation (2.26) is the equation for a conic section. With 0 ≤ e < 1 it defines the

radius of an ellipse, with e = 1 a parabola, and with e > 1 a hyperbola. When

0 ≤ e < 1, we define the size of an orbit by the average of its minimum and maximum

radii, these occur at θ = 0 and θ = π respectively. We refer to this quantity as the

semi-major axis (SMA),

a =
1

2
(rmin + rmax) =

p

1− e2
. (2.27)

Since rmin occurs at θ = 0 and A is parallel to rmin, A is a vector pointing at periapsis,

the minimum radius point of an orbit.

The true anomaly θ, semi-major axis a, and eccentricity e are three of the six

8

2. Background

Figure 2.1: Notation used to describe a spacecraft orbital state.

orbital elements. The true anomaly specifies a spacecraft’s position on the orbit

ellipse, and the semi-major axis and eccentricity define the shape of the orbit ellipse.

The three additional orbital elements specify the orientation of the orbit ellipse and

require an external reference frame to be defined. For the Earth, this reference

frame is the Earth-centered inertial (ECI) frame, with its x-axis aligned with the

mean vernal equinox (which is fixed with respect to the stars), z-axis aligned with

the Earth’s rotation axis, and y-axis defined to complete a right-handed coordinate

system. The right angle of the ascending node (RAAN), Ω, defines the angle from

the ECI x-axis to the ascending node — the point where the orbit crosses up through

the Earth’s equatorial plane. The inclination i defines the angle between h and the

ECI z-axis. And the argument of periapsis ω defines the angle from the ascending

node to the orbit’s periapsis. For circular orbits, the most common for Earth-orbiting

satellites, the true anomaly and argument of periapsis are undefined, so the argument

of latitude is used. We use θ to refer to both the argument of latitude and the true

anomaly. A diagram of the orbital elements is shown in fig. 2.1.

2.1.2 Orbit Perturbations

The previous discussion applies to two point masses existing in a vacuum. In reality

there are many perturbations that spacecraft experience. In low-Earth orbit, the

perturbations are dominated by atmospheric drag and the non-spherical shape of the

Earth.

The drag force experienced by a spacecraft is highly variable, depending on space

weather as well as the attitude and surface finish of the spacecraft. For this reason, it

9

2. Background

is difficult to produce an exact model. However an approximate model for acceleration

due to atmospheric drag is given by

aD = −1

2
ρSCDvava (2.28)

where ρ is the atmospheric density, CD is the spacecraft’s coefficient of drag, and va is

the velocity of the satellite with respect to the atmosphere. The atmospheric density

can vary by up to two orders of magnitude, but in general decreases exponentially

with increased altitude.

The dominant non-spherical gravitational effects can be captured by including

the J2 acceleration [50],

aJ2 = −3

2

J2µR
2
E

r5

(
1− 5

(
x3

r

)2)
rx(

1− 5
(
x3

r

)2)
ry(

3− 5
(
x3

r

)2)
rz

 , (2.29)

where J2 is the normalized J2 spherical-harmonic coefficient for the Earth’s gravi-

tational field, RE is the radius of the Earth, and rx, ry, rz are the components of r

along the axes of the Earth-centered inertial (ECI) coordinate frame. Equation (2.29)

captures the oblateness of the Earth, however the Earth has many additional grav-

itational deviations that it does not capture. These require a higher order gravity

model based on a spherical harmonic expansion [53].

In addition to drag and non-spherical gravity, Earth-orbiting satellites experience

perturbations from the Sun and Moon’s gravity, and from the Sun’s radiation pressure.

In low-Earth orbit, these perturbations are orders of magnitude less than non-spherical

gravity and drag [53].

2.2 Attitude Dynamics

The previous section described the position and velocity dynamics of an Earth-orbiting

satellite. In this section we present the attitude dynamics. To do so, we must first

define several reference frames and the notation used to represent quantities expressed

in each frame. We let B denote the satellite’s body-fixed frame, and N denote an

10

2. Background

inertial frame - typically the Earth-centered inertial (ECI) frame.

2.2.1 Rotation Matrices

For a vector position N r ∈ R3 expressed in the inertial frame, the expression in the

body frame can be found with a rotation matrix BQN ∈ SO(3)

Br = BQNN r. (2.30)

Rotation matrices are orthogonal and have a unitary determinant, so

I = (BQN)−1BQN = (BQN)T BQN = NQBBQN . (2.31)

One way to view the rotation matrix NQB is that its rows are the N frame unit

vectors expressed in the body frame, or equivalently its columns are the B frame unit

vectors expressed in the N frame:

NQB =

BnT

1

BnT
2

BnT
3

 =

N bT1
N bT2

N bT3

 (2.32)

With this in mind, multiplying a vector by a rotation matrix is taking the dot product

of the vector with each frame direction in the frame the vector is being transformed

into.

Rotation Matrix Kinematics

In this section we derive the kinematic relationship between a rotation matrix and

the angular velocity of a reference frame. A visualization of the quantities described

is shown in fig. 2.2. The N frame represents an inertially-fixed frame, the B frame

represents a body-fixed frame that is rotating with some angular velocity Bω, BtN

is the (potentially time varying) translation from the inertial frame to the body-

fixed frame, and the vector Bx represents a body-frame vector that has the inertial

11

2. Background

representation

Nx = BtN + NQBBx. (2.33)

N

BBtN

Bx

Nx

Bω

Figure 2.2: Visualization of coordinate frames for rotation matrix kinematics deriva-
tion.

By the transport theorem, if the B frame is rotating with angular velocity Bω, a

body vector Bx with body-referenced velocity Bẋ has inertial velocity

N ẋ = BṫN + NQB (Bẋ+ Bω × Bx
)

(2.34a)

= NQBBẋ+ NQBBω × Bx. (2.34b)

Now, by the chain rule, we also have

N ẋ =
d

dt

(Nx
)
=

d

dt

(BtN + NQBBx
)
= BṫN + N Q̇BBx+ NQBBẋ. (2.35)

Equating eqs. (2.34) and (2.35) and eliminating terms,

BṫN + N Q̇BBx+ NQBBẋ = BṫN + NQBBẋ+ NQBBω × Bx (2.36a)

N Q̇BBx = NQBBω × Bx (2.36b)

N Q̇BBx = NQBBω̂Bx (2.36c)

12

2. Background

where we defined

ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (2.37)

Since in eq. (2.36c) Bx is an arbitrary vector the terms multiplying it define the

rotation matrix derivative,

N Q̇B = NQBBω̂. (2.38)

2.2.2 Unit Quaternions

While rotation matrices are easy to work with for hand calculations, unit quater-

nions (simply referred to as quaternions from now on) are the preferred attitude

representation because they require fewer parameters and are easier to renormalize.

Like rotation matrices, quaternions are a singularity-free attitude representation. A

quaternion q ∈ S3 ∈ R4 is a four-parameter vector with unit norm. Often quaternions

are written as the concatenation of a scalar part s ∈ R and a vector part v ∈ R3. We

use the Hamiltonian convention of placing the scalar part first:

q =

[
s

v

]
. (2.39)

For a rotation θ ∈ R around an axis a ∈ R3, the quaternion representing this rotation

is

q =

[
s

v

]
=

[
cos(θ/2)

a sin(θ/2)

]
. (2.40)

13

2. Background

For two quaternions q1 and q2, quaternion multiplication is defined as

q1 ∗ q2 =
[
s1

v1

]
∗
[
s2

v2

]
(2.41a)

=

[
s1s2 − vT

1 v2

s1v2 + s2v1 + v1 × v2

]
(2.41b)

=

[
s1 −vT

1

v1 s1I + v̂1

][
s2

v2

]
≜ L(q1)q2 (2.41c)

=

[
s2 −vT

2

v2 s2I − v̂2

][
s1

v1

]
≜ R(q2)q1. (2.41d)

With quaternion multiplication defined we can see that the multiplicative identity

quaternion is

q =

[
1

0

]
(2.42)

and the mulitplicative conjugate is

q† =

[
s

−v

]
=

[
1 0

0 −I

][
s

v

]
≜ Tq. (2.43a)

Note that the conjugate is equivalent to transposing L(q) and R(q):

q ∗ q† = R(q†)q = R(q)T q. (2.43b)

For a body-to-inertial quaternion N qB, the rotation of a body-frame vector Bx is[
0

Nx

]
= N qB ∗

[
0
Bx

]
∗
(N qB

)†
(2.44a)

= L
(N qB

)
R
(N qB

)T [
0
Bx

]
(2.44b)

= R
(N qB

)T
L
(N qB

) [0
Bx

]
(2.44c)

14

2. Background

Defining the matrix

H =

[
0

I

]
(2.45)

we have

Nx = HTL
(N qB

)
R
(N qB

)T
HBx (2.46)

so the conversion from quaternion to rotation matrix is

NQB = HTL
(N qB

)
R
(N qB

)T
H. (2.47)

And the quaternion kinematics are

N q̇B =
1

2
N qB ∗

[
0

Bω

]
=

1

2
L(N qB)HBω. (2.48)

2.2.3 Angular Rate Dynamics

With a body-frame torque Bτ , and inertia matrix J , the body-frame angular rate

dynamics of a rigid body obey Euler’s equation:

Bω̇ = J−1
(Bτ − Bω × JBω

)
. (2.49)

2.3 Rigid Body Dynamics

With the terms defined above, the rigid-body dynamics for a satellite are

ẋ =

ṙ

v̇
N q̇B

Bω̇

 =

v

− µ
r3
r+ a

1
2
L(N qB)HBω

J−1
(Bτ − Bω × JBω

)

 (2.50)

15

2. Background

where a is any arbitrary perturbation in the inertial frame, and Bτ is any arbitrary

torque in the body frame.

16

Chapter 3

Relative Kustaanheimo-Stiefel

Dynamics

3.1 Introduction

Small-satellite constellations promise increased ground coverage, higher re-visit rates,

and improved sensing resolution. However, a key enabling technology for these

constellations is effective, autonomous, relative navigation and control. Because

of the size, weight, and power constraints of small satellites, non-impulsive control

methods using low-thrust propulsion systems [40] and manipulation of perturbation

forces through techniques such as differential drag [21] and solar-sails [22] are gaining

traction. A large number of models for the relative motion between spacecraft

exist; however, these models aren’t well-equipped for the constant low acceleration

produced by non-impulsive control systems. In particular, the low accelerations result

in long time horizons over which the control action must be planned and executed.

When formulated using Earth-centered inertial coordinates, the resulting trajectory

optimization problems require tens to hundreds of thousands of timesteps—much

too large to perform autonomously on an embedded flight computer. In contrast,

orbital-element-based models are not generalizable as they must be developed to

handle the specific control inputs and perturbations a spacecraft encounters.

Recently, the size of nonlinear trajectory optimization problems for long-horizon

17

3. Relative Kustaanheimo-Stiefel Dynamics

orbital maneuvers has been reduced by transforming the orbital dynamics using the

Kustaanheimo-Stiefel (KS) transformation [69]. The KS transformation lifts the three

inertial position coordinates of the spacecraft into a four-dimensional representation

in which the unperturbed Keplerian dynamics become linear and time invariant (LTI).

We refer to the four-dimensional KS-lifted position coordinates as the “KS space.”

In this chapter, we apply the KS transformation to relative orbital maneuvers

between spacecraft in low-Earth orbit. We modify the KS-transformed dynamics

to include perturbation forces due to non-spherical gravity and low-thrust control

inputs. These modifications result in nonlinear dynamics; however, since only the

perturbation terms are nonlinear, the KS dynamics are better approximated by

linearization than other relative dynamics formulations. This “near linearity” allows

for significantly longer step sizes during numerical integration. We solve the relative

orbital maneuver problem by linearizing the perturbed KS dynamics with respect to

a reference orbit in KS space.

Our contributions include:

• A novel optimization-based method for smoothly transforming Cartesian states

into lifted KS states

• A KS formulation of relative orbital dynamics that includes J2 perturbations

and low-thrust control inputs

• Accuracy comparisons between the KS-based relative dynamics and several

existing state-of-the-art relative orbital dynamics models

• A convex-optimization formulation of the orbital rendezvous problem using our

KS-based relative-orbit dynamics

• An example computation of an optimal rendezvous trajectory for a small

spacecraft in low-Earth orbit with very low thrust capability

This chapter proceeds as follows: We describe related work on relative-orbit models

and previous applications of the KS transform to orbital maneuvers in section 3.2. In

section 3.3 we provide a description of Cartesian and KS transformed orbit dynamics.

Section 3.4 describes our method for transforming smooth trajectories from Cartesian

to KS coordinates. In section 3.5 we derive a relative orbital dynamics model using

the KS transform, and in section 3.6 we compare this model with other relative-orbit

models found in the literature by computing the trajectory prediction error versus a

18

3. Relative Kustaanheimo-Stiefel Dynamics

numerically integrated ground truth. In section 3.7 we incorporate the KS relative-

orbit model into a convex trajectory optimization formulation, and solve a low-thrust

orbital rendezvous problem. We conclude in section 3.8 by summarizing our results

and suggesting future research directions.

3.2 Related Work

There is an extensive literature on relative-orbit models. Sullivan, Grimberg, and

D’Amico [65] provide a survey of these models and perform extensive comparisons

between them. In section 3.6, we compare our KS relative-orbital model with the

Clohessy-Wiltshire (CW) [12]; Yamanaka-Ankersen (YA) [78]; and Koenig, Guffanti,

and D’Amico (KGD) [36] relative-orbit models. These models are developed by

linearizing and integrating either the nonlinear Cartesian equations of motion or the

Gauss Variational Equations for the orbital elements.

The CW relative-orbit model has been used extensively since the 1960s. It assumes

a Keplerian circular reference orbit, is linear-time-invariant, and is parameterized by

time. The CW model has been developed for both Cartesian and curvilinear relative

coordinate frames [14]; in our comparisons we use the Cartesian coordinates.

The YA relative-orbit model extends the CW model to Keplerian eccentric orbits.

It is parameterized by the true anomaly and uses a normalized Cartesian relative

state representation. It is considered the state of the art Cartesian relative state

representation for arbitrary Keplerian orbits [65]. In the circular case, the YA model

reduces to the CW model.

The KGD model uses relative orbital elements and reflects the state of the art

in state transition matrices for perturbed elliptical orbits. It provides a significant

increase in accuracy over the CW and YA models and has similar or better accuracy

to other models in the literature [25, 65].

The Kustaanheimo-Stiefel transformation was originally introduced as a method

for regularizing the numerical integration of perturbed two-body motion [38]. It

extends the planar Levi-Civita transformation [43] to three dimensions, and provides

exact linear-time-invariant equations of motion for unperturbed Keplerian orbits in

three dimensions. To our knowledge, the first work applying the KS transform to the

relative motion between spacecraft is by Eldin, who studied the KS transform in the

19

3. Relative Kustaanheimo-Stiefel Dynamics

context of unconstrained planar rendezvous maneuvers [18]. Thorne and Hall [67]

use the planar KS transform to develop analytic expressions for minimum-time

continuous-thrust orbit transfers. Hernandez and Akella [28] use the Levi-Civita

transformation to find a Lyapunov control policy for finite-thrust orbital rendezvous

from arbitrary orbital positions, illustrating the power of working in the Levi-Civita

or (more generally) the KS coordinates. Perturbation forces were not considered in

these previous works.

Recently, Tracy and Manchester [69] used the KS dynamics and nonlinear tra-

jectory optimization to perform low-thrust transfers from a geostationary transfer

orbit (GTO) to a geostationary orbit (GEO). The difference between the approach

we present here and the approach in [69] is that we linearize the relative KS dynam-

ics in the presence of perturbations, and perform convex optimization to compute

rendezvous maneuvers between multiple spacecraft. Liu and Lu [44] approach the

satellite-rendezvous problem using successive convexification methods to approximate

the nonlinear relative dynamics and to satisfy safety constraints. In contrast, the

linear KS dynamics allow us to solve a single convex optimization problem.

3.3 Background

3.3.1 Cartesian Orbit Dynamics

As discussed in chapter 2, in inertial Cartesian coordinates the unperturbed Keplerian

dynamics of a satellite orbiting a massive body are

ẍ = − µ

r3
x, (3.1)

where we’ve changed notation to let x ∈ R3 be the position vector relative to an

inertial frame centered on the massive body. The scalars r = ∥x∥2, and µ are as

defined before. In low-Earth orbit, the perturbation of these dynamics is dominated

by atmospheric drag and the non-spherical shape of the Earth. We capture the

dominant non-spherical gravitational effects by including the J2 acceleration from

20

3. Relative Kustaanheimo-Stiefel Dynamics

eq. (2.29). The J2 perturbed Cartesian dynamics are then

ẍ = − µ

r3
x+ aJ2 . (3.2)

In this work, we focus on the effects of eccentricity and the J2 perturbation, so we

neglect atmospheric drag. However, the model we present can be readily extended to

include drag forces.

3.3.2 The Kustaanheimo-Stiefel Transform

We now consider the transformation of eq. (3.2) into the four-dimensional KS space [64].

The transformation is not unique when transforming from Cartesian (R3) to KS space

(R4), so we first define the transform from KS space to Cartesian.

Let y ∈ R4 be the KS variable corresponding to the Cartesian position x ∈ R3,

and define the matrix

L(y) =

y1 −y2 −y3 y4

y2 y1 −y4 −y3

y3 y4 y1 y2

y4 −y3 y2 −y1

 . (3.3)

The KS transformation from y to x is then[
x

0

]
= L(y)y. (3.4)

The fourth row of L(y)y is always zero. The matrix L(y) has some useful properties.

In particular,

LT (y)L(y) = L(y)LT (y) = (yTy)I (3.5)

where I is the identity matrix. It follows that

r2 = xTx = (L(y)y)T L(y)y

= yTLT (y)L(y)y =
(
yTy

)2
.

(3.6)

21

3. Relative Kustaanheimo-Stiefel Dynamics

The KS transformation also introduces a scaled fictitious time s that relates to

real time by the inverse of the radius,

dt = rds. (3.7)

We denote variables differentiated with respect to real time with a dot, ẋ = dx/dt, and

variables differentiated with respect to the fictitious time with a prime, y′ = dy/ds.

Kustaanheimo-Stiefel Dynamics from Euler-Lagrange

For a system with configuration q, kinetic energy T (q, q̇), and potential energy V (q),

we define the Lagrangian L(q, q̇) = T (q, q̇)− V (q). The dynamics of the system must

obey the Euler-Lagrange equation (ELE),

d

dt

(
∂L
∂q̇

)
− ∂L

∂q
= 0. (3.8)

One way to derive the equations of motion for a system is to find its Lagrangian and

then compute its ELE.

Using the KS state y, we can use the ELE to derive the KS orbital dynamics.

To do so, we compute the ELE in real time and then transform to fictitious time

when it is convenient. We begin by writing the kinetic and potential energy in the

KS coordinates. So the Kinetic energy is

T =
1

2
mẋT ẋ =

1

2
m (2L(y)ẏ)T (2L(y)ẏ) = 2yTyẏT ẏ. (3.9)

and the potential energy is

V = − µm√
xTx

= −µm

yTy
. (3.10)

The Lagrangian is then

L = 2m(yTy)(ẏT ẏ) +
µm

yTy
. (3.11)

22

3. Relative Kustaanheimo-Stiefel Dynamics

Differentiating with respect to y, we have

∂L
∂y

= 4m(ẏT ẏ)yT − 2µm

(yTy)2
yT , (3.12)

and differentiating with respect to ẏ, we have

∂L
∂ẏ

= 4m(yTy)ẏT , (3.13)

which, differentiated with respect to t is

d

dt

(
∂L
∂ẏ

)
= 4m(yTy)ÿT + 8m(yT ẏ)ẏT . (3.14)

Transposing and combining the above, the Euler-Lagrange equation is

4m(ẏT ẏ)y − 2µm

(yTy)2
y − 4m(yTy)ÿ − 8m(yT ẏ)ẏ = 0. (3.15)

Eliminating 2m and collecting terms, we have[
2(ẏT ẏ)− µ

(yTy)2

]
y − 2(yTy)ÿ − 4(yT ẏ)ẏ = 0. (3.16)

Rearranging the term multiplying y,[
2(ẏT ẏ)

yTy

yTy
− µ

(yTy)2

]
y − 2(yTy)ÿ − 4(yT ẏ)ẏ (3.17a)

= −
[
−2(yTy)(ẏT ẏ) +

µ

(yTy)

]
y

yTy
− 2(yTy)ÿ − 4(yT ẏ)ẏ = 0. (3.17b)

The term in brackets in eq. (3.17b) is the negative specific orbital energy

h = −T + V

m
= −2(yTy)(ẏT ẏ) +

µ

yTy
. (3.18)

This is constant for an unperturbed orbit. Substituting,

− 1

yTy
hy − 2(yTy)ÿ − 4(yT ẏ)ẏ = 0, (3.19)

23

3. Relative Kustaanheimo-Stiefel Dynamics

and, solving for ÿ, we have

ÿ = − 1

2(yTy)2
hy − 2

yT ẏ

yTy
ẏ. (3.20)

We now solve for y′′ in terms of ÿ using the transform from real time to fictitious

time,

ẏ =
d

dt
y =

1

r

d

ds
y =

1

yTy
y′, (3.21a)

ÿ =
1

r

d

ds

(
y′

yTy

)
=

y′′

(yTy)2
− 2

yTy′

(yTy)3
y′ (3.21b)

=⇒ y′′ = (yTy)2ÿ + 2
yTy′

yTy
y′. (3.21c)

Substituting in ÿ from eq. (3.20),

y′′ = (yTy)2
(
− 1

2(yTy)2
hy − 2

yT ẏ

yTy
ẏ

)
+ 2

yTy′

yTy
y′ (3.22a)

= (yTy)2
(
− 1

2(yTy)2
hy − 2

yTy′

(yTy)3
y′
)
+ 2

yTy′

yTy
y′ (3.22b)

= −h

2
y − 2

yTy′

yTy
y′ + 2

yTy′

yTy
y′ (3.22c)

= −h

2
y. (3.22d)

Under the KS transformation, the Keplerian two-body dynamics in eq. (3.1) become

y′′ = −h

2
y, (3.23)

where

h =
µ

r
− ẋT ẋ

2
=

µ− 2y′Ty′

yTy
(3.24)

is the negative specific energy of the orbit. Because h is constant for unperturbed

orbits, eq. (3.23) is a four-dimensional simple-harmonic oscillator.

24

3. Relative Kustaanheimo-Stiefel Dynamics

Disturbances and Control Inputs

In the KS space, the dynamics of any Keplerian orbit are linear and time invariant.

Arbitrary Cartesian disturbance accelerations d(x, ẋ) ∈ R3 and control accelerations

u ∈ R3, can be transformed to the KS dynamics. Under perturbation, eq. (3.23)

becomes

y′′ = −h

2
y +

yTy

2
LT (y)

[
u+ d

0

]
. (3.25)

With acceleration inputs, the energy h is no longer constant:

h′ = −2y′TLT (y)

[
u+ d

0

]
. (3.26)

To account for the energy dynamics, we define an augmented state:

z =

y

y′

h

 ∈ R9, (3.27)

and write the perturbed dynamics

z′ = f(z, u). (3.28)

The disturbances d(x, ẋ) can be written as a function of y and y′ as follows:

d(x, ẋ) = d(L(y)y,
2

yTy
L(y)y′) ≜ d(y, y′). (3.29)

For the remainder of this chapter, we let d be the J2 acceleration in eq. (2.29).

3.4 Transforming from Cartesian to KS space

For each Cartesian position, x ∈ R3, there is a one-dimensional submanifold of R4

such that any point y on that manifold satisfies the KS transform in eq. (3.4). For

this reason, the inverse of eq. (3.4), transforming from Cartesian to KS space, is not

25

3. Relative Kustaanheimo-Stiefel Dynamics

unique. A single solution y can be found by algebraically inverting eq. (3.4) and

arbitrarily choosing the value of one of the elements of y [64, 69]. Unfortunately, while

the transformation between the Cartesian and KS spaces is smooth, this method

exhibits singularities in the KS space and the transformation of a smooth trajectory

into the KS space will not necessarily be smooth. Additionally, when computing the

relative position between two KS states, this non-uniqueness leads to two degrees of

freedom in the relative position and there may be a relative KS position with smaller

norm.

To ensure that transformed trajectories are smooth, and to compute a relative

position of minimum norm, we formulate the inverse KS transform as an optimization

problem,

minimize
y

(y − ȳ)T (y − ȳ)

subject to

[
x

0

]
= L(y)y, (3.30)

where x is the Cartesian position we wish to convert and ȳ is the KS position we

desire y to be close to. The solution, y∗, of this optimization problem is the KS

position closest to ȳ that satisfies the KS transform. To convert points along a

trajectory, we let ȳ be the transform of the previous point. If there is no logical ȳ, we

let ȳ = [1, 0, 0, 0]T . We solve (3.30) efficiently using Newton’s method.

Figure 3.1 shows the difference between our proposed nearest state method and

the common method. The lines shown are the trajectory of an orbit with unit

amplitude and period. The trajectory was originally computed in Cartesian space

and has been transformed to the KS space using the common method of fixing an

arbitrary element of the state vector and our nearest-state method. The plot shows

the transformed KS coordinates of the trajectory. In this case, the common method

arbitrarily assigns y4 = 0 to invert eq. (3.4). This results in the discontinuity at

t = 0.5. Our nearest-state method produces a smooth trajectory because it minimizes

the difference between each point and the previous one.

26

3. Relative Kustaanheimo-Stiefel Dynamics

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

Time (nondimensional)

K
S

Po
sit

io
n

Common
Nearest

Figure 3.1: Cartesian to KS transformation of a unit orbit, comparing the non-smooth
common method and our nearest state method.

3.5 Relative KS Dynamics

To define the relative KS dynamics, we let z and u be the state and control of the

deputy satellite, and we define the chief state z̄ and control ū. The relative state is

δz = z − z̄, the relative control is δu = u− ū, and the relative dynamics are:

δz′ = z′ − z̄′ = f(z, u)− f(z̄, ū)

= f(z̄ + δz, ū+ δu)− f(z̄, ū)

=
∂f

∂z
(z̄, ū)δz +

∂f

∂u
(z̄, ū)δu+O(∥δz∥2).

(3.31)

Since the Keplerian dynamics for y′′ are already linear, the higher-order terms in

eq. (3.31) are due to the control inputs, perturbations, and the difference in energy

between the deputy and chief orbits. The effect of these are orders of magnitude

smaller than the Keplerian dynamics, so it is a very good approximation to drop the

27

3. Relative Kustaanheimo-Stiefel Dynamics

higher-order terms. This yields the linear-time-varying relative dynamics

δz′ =
∂f

∂z
(z̄, ū)δz +

∂f

∂u
(z̄, ū)δu. (3.32)

To find the discrete-time linear-time-varying relative dynamics, we numerically inte-

grate the controlled state-transition matrix dynamics,

Φ′ =

[
∂f
∂z
(z̄, ū) ∂f

∂u
(z̄, ū)

03×9 03×3

]
Φ, (3.33)

along a given trajectory z̄, ū. We then define the discrete-time linear-time-varying

state-space system

δzk+1 = Akδzk +Bkδuk (3.34)

where Ak ∈ R9×9 contains the first nine rows and columns of Φ(sk+1, sk) and Bk ∈ R9×3

contains the first 9 rows and last 3 columns of Φ(sk+1, sk). Since Φ is computed

with the Jacobian of the J2-perturbed KS dynamics, the LTV dynamics include both

periodic and secular effects of the J2 perturbation.

3.6 Comparison of relative-orbit models

We now compare our linearized KS relative-orbit state transition matrix (eq. (3.33))

with the CW, YA, and KGD linear relative-orbit state transition matrices. Table 3.1

summarizes the differences between these models. The linearization procedure of

section 3.5 is not unique to the KS dynamics, so we also use it to linearize the nonlinear

Cartesian dynamics in eq. (3.2). We refer to the resulting linearized Cartesian model

as the “LIN” model. The difference between the LIN model and the KS model shows

the performance gained by using KS dynamics, eliminating any difference caused by

computation methods used for the CW and YA models. In [36], the KGD model

is developed for three different relative orbital element (ROE) states, the singular

ROEs, quasi-nonsingualar ROEs, and the nonsingular ROEs; the nonsingular ROEs

are the most general of the ROE states, so we use them for our comparisons.

Figure 3.2 shows the root-mean-square (RMS) position error measured along

28

3. Relative Kustaanheimo-Stiefel Dynamics

trajectories propagated for one orbital period. The ground-truth orbits are a numerical

integration of the J2-perturbed nonlinear equations of motion in eq. (3.2) using a

high-accuracy adaptive Runge-Kutta method[58, 70]. The deputy initial conditions

are perturbed with a range of offsets in mean anomaly, inclination, eccentricity, and

semi-major axis while the other orbital parameters are held constant. We use the

same reference orbit as in scenario 1 of Sullivan, et al. [65] for comparison with

the relative-orbit models they present. Table 3.2 shows the reference orbit initial

conditions used for the mean anomaly, inclination, and semi-major axis variation

experiments.

As in [65], to compare performance on eccentric reference orbits, both the reference

and deputy orbits are initialized with the same variation of eccentricity. All other

initial orbital elements for the reference orbit match Table 3.2. The deputy orbit is

offset from the reference orbit by 0.001 degrees in both mean anomaly and inclination.

This corresponds to a distance of approximately 125 meters.

Table 3.1: Comparison of Relative-Orbit Models

Linear Independent Variable Reference Orbit J2 State Representation

Clohessy-Wiltshire (CW) ✓ Real time Circular ✗ Cartesian

Yamanaka-Ankersen (YA) ✓ True anomaly Elliptical ✗ Normalized Cartesian

Numerically Linearized Cartesian (LIN) ✓ Real time Elliptical ✓ Cartesian

Koenig, Guffanti, and D’Amico (KGD) ✓ Real time Elliptical ✓ Orbital Elements

Kustaanheimo-Stiefel (KS) ✓ Fictitious time Elliptical ✓ Augmented Quaternion

Table 3.2: Reference Orbit Initial Conditions for RMS Trajectory Error Plots in
Figure 3.2

a e i Ω ω M
750 + 6378 km 0.0 98.2◦ 0◦ 0◦ 0◦

Figure 3.2 shows that our KS model exhibits significantly less propagation error

than any of the other relative-orbit models. Since the reference orbit is circular for the

mean anomaly, inclination, and semi-major axis plots, the CW, YA, and LIN models

perform identically. On the eccentricity plot, the CW model exhibits higher error

than the YA model, which again matches the LIN model. On the mean anomaly and

inclination models, the KGD model exhibits higher error than the KS model within

the small angles shown on the plot. The astute reader will notice that extrapolating

the KS and KGD mean anomaly and inclination plots, the KS error does grow faster

29

3. Relative Kustaanheimo-Stiefel Dynamics

−10 −5 0 5 10

10−10

100

∆ Mean Anomaly (deg)

R
M

S
Po

sit
io

n
er

ro
r

(k
m

)

−6 −4 −2 0 2 4 6

10−5

100

∆ Inclination (deg)

R
M

S
Po

sit
io

n
er

ro
r

(k
m

)

10−4 10−3 10−2 10−1 100
10−10

10−5

100

∆ Eccentricity

R
M

S
Po

sit
io

n
er

ro
r

(k
m

)

−20 −10 0 10 20
10−11

10−4

103

∆ Semi-Major Axis (km)

R
M

S
Po

sit
io

n
er

ro
r

(k
m

)

CW
YA
LIN

KGD
KS

Figure 3.2: RMS position error along a single orbit with a range of initial variations in
mean anomaly, inclination, eccentricity, and semi-major axis while the other orbital
parameters are held constant. Lines correspond to the Clohessy-Wiltshire (CW),
Yamanaka-Ankersen (YA), J2-perturbed linear-time-varying Kustaanheimo-Stiefel
(KS) and the Koenig, Guffanti, and D’Amico (KGD) linear relative-orbit models.
The ground truth is a numerical integration of eq. (3.2).

than the KGD error. While not shown, the difference between the KS and KGD error

at large mean anomaly and inclination separation angles remains within an order

of magnitude of each other. This should not detract from the excellent small-angle

performance of the KS model, since relative-orbit models are most commonly used at

deviations of less than 10 degrees in mean anomaly or inclination. For the semi-major

axis variations, the KGD model exhibits higher error than any of the other models.

As an additional note, the extensive use of orbital elements in the YA and KGD

models leads to numerous degeneracies and singularities, significantly complicating

their practical use. In contrast, the Cartesian and KS dynamics are globally smooth

and well behaved.

30

3. Relative Kustaanheimo-Stiefel Dynamics

3.7 Relative Orbital Maneuvers via Convex

Optimization

The LTV relative dynamics given by eq. (3.33) allow us to construct a convex trajectory

optimization formulation of the orbital rendezvous problem. With the discretized

dynamics in eq. (3.34), trajectories of length N can be computed by solving a convex

optimization problem over δz1:N , and δu1:N−1:

minimize
δz1:N , δu1:N−1

J(δz1:N , δu1:N−1)

subject to δzk+1 = Akδzk +Bkδuk, (3.35)

δuk ∈ Uk,

δzk ∈ Zk,

where J(δz1:N , δu1:N−1) is a convex cost function, and Zk and Uk are convex sets.

The time steps in eq. (3.35) are scaled fictitious KS times. Once the optimal

trajectory is found, the real times at which δu∗
1:N−1 should be applied are found by

integrating eq. (3.7) along the chaser states,

tk =
k∑

i=1

∥z̄k + δz∗k∥2ds. (3.36)

3.7.1 Low-Thrust Rendezvous Maneuver

We demonstrate the convex trajectory optimization with KS dynamics by solving

a low-thrust rendezvous maneuver. The orbits and relative states for this scenario

are similar to the International Space Station final approach performed by Soyuz

and SpaceX Dragon spacecraft. The target and chaser initial orbital elements, as

well as the initial RTN state of the chaser with respect to the target, are given in

Table 3.3. To formulate this problem in the context of eq. (3.35), we assume the

target spacecraft is not producing thrust, but is experiencing perturbations, and

integrate the target states with eq. (3.28) to compute Ak and Bk. We additionally

right-multiply Bk by a rotation matrix which maps vectors in the target spacecraft

31

3. Relative Kustaanheimo-Stiefel Dynamics

RTN frame to Earth-centered inertial vectors. This allows us to compute the controls

in the target RTN frame, which is a typical choice for formation flying problems [2].

The quadratic cost is,

J(δz1:N , δu1:N−1) = δzTNQNδzN

+
N−1∑
k=1

δzTk Qkδzk + δuT
kRkδuk,

(3.37)

where Q∗ ≻ 0, R∗ ≻ 0. To demonstrate the long optimization horizon possible with

KS dynamics, we use a maximum thrust acceleration constraint of 20µm/s2. This

maximum thrust falls in the range of low-thrust, high specific impulse propulsion

systems currently available for small satellites [40]. The optimization uses 20 timesteps

per orbit and a 100 orbit horizon, resulting in 2000 knot points. A solution is computed

once per orbit, and the controls from that solution are applied to the J2-perturbed

nonlinear dynamics over the following orbit in a receeding-horizon fashion. We solve

these trajectory optimization problems using the convex quadratic program solver

OSQP [62]. It takes approximately 6 seconds to integrate the discrete dynamics, set

up, and solve this trajectory optimization on a MacBook Pro with an Apple M1 Pro

processor.

The results of this maneuver are shown in fig. 3.3. The top-left plot shows that

the position and velocity errors do not converge monotonically, but do converge to

zero over time. The top-right plot shows the thrust control inputs over time. The

thrust constraints are active for much of the first 50 orbits. The bottom two plots

show the chaser trajectories on the radial-tangential plane and radial-normal plane.

Table 3.3: Initial Conditions for Low-Thrust Rendezvous in Figure 3.3

Orbital Elements a e i Ω ω M

Target 417 + 6378 km 0.0003 51.64◦ 0◦ 300◦ 0◦

Chaser 415 + 6378 km 0.0004 51.65◦ 0◦ 300◦ −0.1◦

RTN State xR xT xN ẋR ẋT ẋN

-2.7 km -11.9 km -1.0 km 0.0033 m/s 4.9 m/s 0.67 m/s

32

3. Relative Kustaanheimo-Stiefel Dynamics

0 20 40 60 80 100

0

50

100

Time (orbits)

Er
ro

r
Position Error (km)
Velocity Error (m/s)

0 20 40 60 80 100

−20

0

20

Time (orbits)

T
hr

us
t

(µ
m
/s

2
) δuR

δuT

δuN

−60 −40 −20 0 20 40 60 80

−2

0

2

Tangential (km)

R
ad

ia
l(

km
)

−1 −0.5 0 0.5 1

−2

0

2

Normal (km)

R
ad

ia
l(

km
)

Figure 3.3: Position and velocity error, thrust control inputs, and radial-tangential-
normal (RTN) trajectories for a low-thrust rendezvous maneuver.

3.8 Conclusions

We have shown that a relative-orbit-dynamics model based on the Kustaanheimo-

Stiefel transformation that includes linearized J2 perturbations and control inputs

is highly accurate and achieves higher accuracy than other state-of-the-art models

in the literature. The KS relative dynamics model provides a linear-time-varying

dynamics formulation that can be incorporated into standard estimation and control

tools. Because the KS relative dynamics are very accurate, long-horizon prediction

and trajectory-planning problems can be solved.

Our rendezvous demonstration provides one application of the KS relative dynam-

ics. Many other scenarios are possible, including complex maneuvers with differential

drag and solar sails. Additionally, safety constraints are an essential consideration in

rendezvous or proximity operations problems that we will investigate in future work.

The code used to produce the results in this chapter is available at https:

//github.com/RoboticExplorationLab/KSRelativeOrbits.

33

https://github.com/RoboticExplorationLab/KSRelativeOrbits
https://github.com/RoboticExplorationLab/KSRelativeOrbits

3. Relative Kustaanheimo-Stiefel Dynamics

34

Chapter 4

Drag-Based Formation Control

4.1 Introduction

Formations of multiple satellites are frequently used to perform tasks that a single

satellite cannot accomplish alone. Examples include satellite navigation systems, like

the global positioning system (GPS), and communications constellations like Iridium

and Starlink. The ability to maneuver and control the relative positions of such

satellites is key to establishing and maintaining a formation. However, satellites often

rely on propulsion systems to maintain these formations, which may be prohibitively

large or expensive, especially on smaller spacecraft. Instead, satellites can utilize

external perturbation forces to adjust their orbits. In low-Earth orbit (LEO), there

are primarily two such forces.

The first perturbation force is atmospheric drag [50], which influences a satellite’s

altitude and, consequently, its orbital velocity and position. As depicted in fig. 4.1, the

drag area of a spacecraft can be changed by controlling the attitude of the spacecraft.

By placing some spacecraft in a high-drag state and others in a low-drag state, a

differential drag between satellites can be introduced and the relative along-track

positions of satellites can be changed. This method has been used on orbit to establish

and control the along-track positions for constellations of up to 100 satellites [21].

A second perturbation force on LEO satellites is nodal precession [50]. Nodal

precession is due to Earth’s non-spherical gravity field, and causes orbits to precess,

or rotate, around the Earth’s polar axis. This effect introduces a small cross-track

35

4. Drag-Based Formation Control

Figure 4.1: High- and low-drag configurations for a satellite with attitude-controlled
drag modulation.

acceleration on a satellite that varies with altitude. By establishing a large differential

altitude between spacecraft, the nodal precession of those spacecraft will occur at

different rates, and cross-track orbital changes can be made.

Most differential-drag formation-flying methods ignore the cross-track influence of

nodal precession because it is small compared to the along-track drift, requiring large

altitude differences and long time horizons to have a significant effect. This chapter

introduces a method to leverage nodal precession for long-term differential-drag

maneuvers, simultaneously controlling both along-track and cross-track formation

shifts. Our contributions include:

• A novel first-order analytical relationship between along-track and cross-track

separation changes. This defines a fundamental limit on what along-track and

cross-track separations are simultaneously achievable.

• A convex trajectory optimization formulation to compute differential-drag

sequences that achieve desired formation configurations.

• A receding-horizon control strategy that re-plans maneuvers every few orbits to

compensate for disturbances and modeling errors.

• Simulation results demonstrating our receding-horizon controller performing

several different maneuvers in a high-fidelity orbital-dynamics simulation.

Throughout the chapter we assume the spacecraft is capable of controlling its attitude;

this can be performed using a variety of methods including reaction wheels [50] and

magnetorquers [24].

36

4. Drag-Based Formation Control

The chapter proceeds as follows: In section 4.2 we review previous research

and on-orbit demonstrations of drag-based formation flying. Section 4.3 introduces

background concepts that are used in section 4.4 to develop the along-track and cross-

track formation flying linear trajectory optimization. The results of a single convex

trajectory optimization and closed loop simulations with the trajectory optimization

as a feedback controller are shown and discussed in section 4.5. We conclude in

section 4.6.

4.2 Related Work

Many studies have explored drag-modulation techniques to enable formation control

without propulsion systems. Leonard, et al. first proposed this technique for main-

taining the relative separation of spacecraft already in formation [41]. Mathews, et al.

[51] investigated a drag-propulsion combination to maintain a cyclical altitude and

phase relationship between a spacecraft and a space station. Additional methods have

been proposed since then for along-track formation keeping using drag [31, 37, 61, 73].

Differential drag control for along-track rendezvous has also been studied. Bevilac-

qua, et al. include J2 perturbations in their model, which they solve with a two-step

analytic method. They do not include cross-track separation in their relative state [6].

Harris and Açıkmeşe [27] propose an optimization approach to differential-drag ren-

dezvous — they use a constrained linear program with minimum-time cost. Most

differential-drag methods assume binary drag states where a satellite is in either a low-

or high-drag configuration; Harris et al. investigate a continuous drag-modulation

scheme based on the coupling of spacecraft attitude and drag [26]. We use a simi-

lar continuous-drag formulation, but with a one-norm cost to encourage binary or

“bang-bang“ drag states.

There have been multiple successful demonstrations of differential-drag control

on orbit. The ORBCOMM communications constellation, launched in 1997-1999,

used differential drag modulation, along with occasional propulsive maneuvers, to

maintain the along-track separation for their network of thirty spacecraft [46]. A

limited demonstration of differential drag modulation using deployable panels was

performed on-orbit by the AeroCube-4 CubeSat mission in 2012 [23]. Perhaps the

most complete on-orbit demonstration of differential drag was for the Planet Earth-

37

4. Drag-Based Formation Control

imaging constellation [21]. After deployment and initial contact, the slot-allocation

and phasing problem was solved by a ground-control system using a genetic algorithm.

The CYGNSS constellation also included differential-drag modulation in its mission

design [10], and Millenium Space Systems recently demonstrated drag-based station

keeping between two satellites on orbit [54].

The Planet differential drag system [21] spawned several derivative works. A

continuous optimization of the Planet slot allocation and phasing problem was

formulated by Blatner [8]. Repeated updates to handle perturbations, and continuous

controls were presented by Sin et al. [60].

All the previously discussed works do not consider cross-track motion of the

satellites, and all solutions were computed on the ground. In contrast, our work

considers both along-track and cross-track motion, and our control formulation is

amenable to autonomous on-orbit implementation.

Two works [39, 42] combine differential drag and nodal precession to modify

the cross-track separation of satellites. These works are the most similar to ours.

Leppinen [42] performs a feasibility study to demonstrate that differential drag can

produce a sufficient altitude separation for nodal precession to change the RAAN of

a satellite. No control methods are presented. Lee and Bang [39] present a method

for modifying the ground-tracks of satellites in a constellation using differential drag

and nodal precession. Synchronization of the along-track and cross-track state of the

satellites is not investigated in either of these prior works; this is a key contribution

of our work.

We formulate the differential-drag control problem as a convex trajectory opti-

mization problem with a linear cost and linear constraints. Tillerson, et al. solved

spacecraft formation flying problems with convex trajectory optimization over twenty

years ago [68]. Since that time, convex trajectory optimization has gained popular-

ity for solving many aerospace problems including orbital maneuvering, rocket soft

landing, and planetary aerocapture [45, 48].

38

4. Drag-Based Formation Control

4.3 Background

4.3.1 Keplerian Motion

A satellite orbiting a perfectly spherical planet with no additional perturbations has

dynamics given by the two-body equation:

r̈ = − µ

r3
r (4.1)

where r is the position vector of the spacecraft in the planet-centered inertial frame,

r = ∥r∥, r̈ is the acceleration vector, and µ is the planet’s standard gravitational

parameter.

Figure 4.2: Notation used to describe the orbital state of a satellite in a circular orbit
with the Earth’s equatorial plane shown in blue and Ω referenced to an inertially
fixed direction.

The orbital state of a satellite is commonly described using the six orbital el-

ements [13]: a, the semi-major axis; e, the eccentricity of the orbit ellipse; i, the

inclination; Ω, the right ascension of the ascending node (RAAN); ω, the argument of

periapsis; and ν, the true anomaly. In this work, we consider circular orbits, so e = 0,

and ω and ν are undefined. Instead of ω and ν, we use θ, the argument of latitude

(AoL), which measures along-track orbital position from the equatorial plane. In the

remainder of this work our focus will be on the dynamics of a, Ω, and θ shown in

Figure 4.2.

39

4. Drag-Based Formation Control

A real spacecraft experiences a large number of secondary perturbation forces.

The resulting dynamics are

r̈ = − µ

r3
r+ p, (4.2)

where p is the perturbative acceleration vector. The largest perturbation forces

on a satellite in LEO are due to atmospheric drag and the Earth’s non-spherical

gravitational field.

4.3.2 Atmospheric Drag

In LEO, atmospheric drag is modeled by

D = − 1

2m
ρACDv(v − vatm) (4.3)

where D is the drag acceleration, ρ is the atmospheric density, A is the satellite’s

incident cross-sectional area, CD is the drag coefficient, m is the satellite mass, v is

the inertial velocity vector of the satellite, vatm is the velocity of the atmosphere,

and v = ∥v − vatm∥ is the relative velocity vector magnitude [11, 57]. According to

eq. (4.3), adjusting A through either deployable panels or by changing the spacecraft

attitude can modulate drag [19, 21].

Drag always acts in the direction opposing velocity, and can only directly affect

the motion of a spacecraft within the orbital plane, decreasing its eccentricity and

semi-major axis [74]; since we are assuming circular orbits, we do not consider the

eccentricity dynamics due to drag here. This is not a very limiting assumption since

drag tends to naturally circularize orbits [9]. The semi-major axis dynamics due to

drag are

ȧ = 2

√
a3

µ
D (4.4)

where D = ∥D∥ is the magnitude of the drag vector.

4.3.3 Nodal Precession and The Method of Averaging

Models of the Earth’s gravitational field are typically expressed by a spherical harmonic

expansion with coefficients Jn [11, 13]. The first non-spherical term, J2, is several

40

4. Drag-Based Formation Control

orders of magnitude larger than all subsequent terms and captures the dominant

effect of the Earth’s oblateness. Since the J2 acceleration is rotationally symmetric,

it only depends on an orbit’s inclination.

On short timescales, the J2 perturbation impacts all of the orbital elements.

However, many of these effects are periodic and average out over an orbit, and

only variations on Ω persist over longer time scales. These long-term orbit-averaged

dynamics with J2 can be described by,

˙̄Ω = −
[
3

2

J2
√
µR2

E

a7/2

]
cos i (4.5)

˙̄θ =
√

µ/a3 (4.6)

where RE is the Earth’s equatorial radius.

4.4 Formation Flying

The nodal precession rate and the AoL rate, derived from eqs. (4.5) and (4.6),

demonstrate a dependence on the semi-major axis. Modulating the semi-major

axis using drag variation, as shown in eq. (4.3), facilitates the manipulation of a

satellite’s AoL and RAAN, enabling the establishment of satellite formations with both

along-track and cross-track separations. This section details the linearized dynamics

governing the separations between satellites in a formation, and the trajectory

optimization approach employed for drag-based formation flying.

4.4.1 Linearized Dynamics

We linearize eqs. (4.5) and (4.6) around a reference semi-major axis a. Similarly,

eq. (4.4) is linearized around a reference drag D, where the satellite’s altitude, and

thus its atmospheric density and velocity, have been fixed (see Eq. eq. (4.3)). The

41

4. Drag-Based Formation Control

resulting linearized equations are:

∆ ˙̄θ = −3

2

√
µ

a5
∆a ≜ k1∆a, (4.7a)

∆ȧ = 2

√
a3

µ
D∆D ≜ k3∆D, (4.7b)

∆ ˙̄Ω =
21

4
J2

√
µ

a9
R2

E cos i∆a ≜ k2∆a, (4.7c)

where ∆θ̄, ∆Ω̄, ∆a, and ∆D represent the differences in AoL, RAAN, semi-major

axis, and drag force between two satellites, respectively. Notably, from eq. (4.7a) and

eq. (4.7c), it’s evident that the rates of ∆θ̄ and ∆Ω̄ are both influenced by ∆a, which

implies they cannot be changed independently. Assuming ∆θ̄ = ∆Ω̄ = 0 initially, all

achievable ∆θ̄ must satisfy

∆Ω̄ =
k2
k1

∆θ̄ ≜ k4∆θ̄ (4.8)

where k4 = k2/k1 is a dimensionless constant that depends only on the reference

orbit.

The linear equations eqs. (4.7a) to (4.7c) can be put in the standard form of a

linear dynamical system,

ẋ = Ax+Bu, (4.9)

where

x =

[
∆θ̄

∆a

]
, A =

[
0 k1

0 0

]
, B =

[
0

k3

]
, (4.10)

and u = ∆D. We omit ∆Ω̄ from the state since eq. (4.8) establishes a relationship

between ∆Ω̄ and ∆θ̄. The control action, ∆D, is a result of altering the satellite’s cross-

sectional area exposed to the oncoming atmosphere. In this work, it represents the

difference in two spacecraft’s attitude between their high- and low-drag configurations,

as shown in fig. 4.1. When ∆D assumes maximum or minimum values, the two

spacecraft have opposite attitude configurations. Conversely, when ∆D is null, it

indicates that both satellites maintain identical configurations.

To extend this method to the case of n > 2 satellites, one satellite is arbitrarily

chosen as the “chief” satellite, and all other satellite’s ∆ states are referenced to this

42

4. Drag-Based Formation Control

chief. We concatenate n− 1 copies of eq. (4.10) to rewrite (4.9) as a 2(n− 1) state

system. When referring to the relative state between the chief and another satellite,

we use the notation ∆a1−p and ∆θ̄1−p, where p is the index of the satellite.

4.4.2 Constraints on the Final Conditions of Drag-Based

Formation Control

Given a pair of satellites deployed at the same initial orbit (i.e. x0 = 0), our goal

is to manipulate the differential drag ∆D over time to achieve a final formation

configuration xf at some future time tf . The control strategy involves lowering the

orbital altitude of one satellite such that its nodal precession rate is larger than the

other satellite. The satellites then remain in this configuration, with ∆D = 0 until

a desired ∆θ̄, and therefore a desired ∆Ω̄, is achieved. The higher satellite then

lowers its altitude to match the first satellite. To maintain a fixed final formation

configuration, we must have ẋf = 0. To satisfy this, eqs. (4.7a) to (4.7c) show that

∆af and ∆Df must be zero — the satellites must be at the same final altitude and

in the same drag configuration.

Modifying (4.8) to account for the fact that ∆θ̄ is an angular quantity, the possible

∆Ω̄ for a desired final ∆θ̄f are given by

∆Ω̄f = k4(∆θ̄f + 2πℓ) (4.11)

where ℓ is any integer. To first order, eq. (4.11) defines the AoL and RAAN separations

achievable using drag modulation. For differential-drag formation control to be feasible,

eq. (4.11) is a fundamental limit that must be obeyed when selecting the final ∆θ̄

and ∆Ω̄ of a formation.

4.4.3 Optimization-Based Drag Maneuver Planning

Given n satellites deployed in the same orbit (i.e., x0 = 0), we seek to maneuver these

satellites into a formation configuration at a final time tf . To do so with differential

drag, we must choose the final state xf by choosing the desired value for either ∆Ωf

or ∆θf and selecting the other in accordance to eq. (4.11). The final altitude or final

time are then a result of this choice. It remains to find the necessary control inputs

43

4. Drag-Based Formation Control

to achieve this formation.

A full trajectory of drag modulation inputs that drives the satellite formation

from x0 to xf can be planned by solving the convex optimization problem

minimize
x1:N ,u1:N−1

gf (xN) +
N−1∑
i=1

g(xi,ui)

subject to xi+1 = Axi +Bui, (4.12)[
∆a1−2

N , ...,∆a1−n
N

]
= 0,

∆amin ≤
[
∆a1−2

i , ...,∆a1−n
i

]
≤ ∆amax,

umin ≤ ui ≤ umax

where g(x, u) is a convex stage cost function, and gf(x) is a convex terminal cost

function. The first constraint enforces the discrete form of the linear dynamics from

eq. (4.9), the second constraint ensures the satellites end at the same final altitude,

the third constraint restricts the minimum and maximum altitude differences for each

pair of satellites to be within ∆amin and ∆amax, and the final constraint enforces umin

and umax as lower and upper bounds on the drag achievable by each satellite. In this

work, meeting the ∆θ final conditions is not treated as a constraint but included in

the cost function; this relaxes the problem and avoids infeasibility.

The cost functions g and gf can be chosen to shape the overall system behavior. To

produce minimum-time bang-bang control commands, one-norm costs are used [79]:

gf (xN) =
∥∥∆θ̄1−2

N −∆θ̄1−2
f

∥∥
1
+ ...+

∥∥∆θ̄1−n
N −∆θ̄1−n

f

∥∥
1

g(x,u) =
∥∥∆θ̄1−2 −∆θ̄1−2

f

∥∥
1
+ ...+

∥∥∆θ̄1−n −∆θ̄1−n
f

∥∥
1

+ ∥u1∥1 + ∥u2∥1 + ...+ ∥un∥1 .
(4.13)

Other convex cost functions, such as a quadratic costs, are also possible.

4.5 Simulation Experiments

In our simulation experiments, the linear program in eq. (4.12) uses eq. (4.13) as

the cost function. Various solvers such as ECOS [17], GLPK [47], or MOSEK [4]

can solve it. This work implements eq. (4.12) and eq. (4.13) using Julia’s Convex.jl

44

4. Drag-Based Formation Control

modeling toolbox [71] and the MOSEK solver.

The satellite constellation considered consists of identical 1.5kg CubeSats with

a 15cm× 10cm× 10cm chassis and equipped with two deployable solar panels each

with dimension 20cm× 15cm× 0.3cm. The satellite’s achievable drag ratio is 7.5:1,

defined by the equation:

Dratio =
Dmax

Dmin

=
Amax

Amin

. (4.14)

This ratio quantifies the ability of the satellite to modify drag by adjusting its attitude.

Consequently, the input constraints for eq. (4.12), namely umin and umax, are set to

values of 1/7.5 ≈ 0.13 and 1, respectively.

4.5.1 Trajectory Optimization

In this experiment we solve eq. (4.12) once for a pair of satellites deployed at 440 km

altitude and with an inclination of 51.5◦ — conditions that approximate deployment

from the International Space Station (ISS). The final conditions are set to ∆θ̄f = 0

and ℓ = 2. From eq. (4.11), this results in ∆Ω̄f = 1.4◦, for a maximum cross-track

distance of 165 km. In this scenario, the altitude limits, ∆amax and ∆amin, are set to

±10km.

The optimization solution for a 1500 orbit time horizon, is in fig. 4.3. The top

plot shows the drag control trajectory. The bottom three plots show the change in

∆a, ∆θ̄, and ∆Ω̄ respectively. To increase the relative AoL and RAAN, the orbital

altitude of the second satellite is decreased first. The relative AoL increases by 720◦,

or two full orbits, and at the end the first satellite lowers its altitude to exactly reach

∆θ̄f = 0. The 10km altitude constraint was also satisfied. This optimization took

0.8s to solve on a MacBook Pro with an Apple M1 Pro processor.

4.5.2 Closed-Loop Simulation Results

This experiment explores the impacts of realistic modeling errors and disturbances

on spacecraft through closed-loop simulations. These simulations integrate additional

perturbations not included in (4.9), including the effects of Earth’s rotation on drag,

the influence of the first five zonal harmonics (J1-J6) for gravity, and an initial orbit

eccentricity of e = 0.005.

45

4. Drag-Based Formation Control

0 500 1000 1500

0.2

0.4

0.6

0.8

1.0

D
ra

g
R

a
ti

o

Sat. 1 Sat. 2

0 500 1000 1500
−10.0

−7.5

−5.0

−2.5

0.0
∆
a

(k
m

) Sat. 1-2

0 500 1000 1500
0

90

180

270

360

∆
θ̄

(d
eg

)

0 500 1000 1500
−1.5

−1.0

−0.5

0.0

Orbit Number

∆
Ω̄

(d
eg

)

1
Figure 4.3: Optimized trajectory for a two-satellite formation. Top: the drag ratios.
Second: the relative altitude. Third: the AoL between the two satellites. Bottom: the
RAAN between the two satellites. The satellites end at the same altitude, resulting
in a constant final AoL and RAAN.

To address the challenges posed by modeling errors and disturbances, a model-

predictive control (MPC) methodology was employed. This method operates as

a receding-horizon loop where, during each iteration, the optimization problem is

re-solved using the spacecraft’s current measured state. The updated control inputs

are then applied until the next iteration. The update frequency of this control loop

is once per orbital period. The terminal cost and terminal constraints in eq. (4.12)

ensure the stability of this MPC approach [52].

The receding-horizon control algorithm was applied in two scenarios, depicted in

figs. 4.4a and 4.4b and detailed in section 4.5.2. The initial state for these scenarios

46

4. Drag-Based Formation Control

was chosen to emulate common orbits CubeSats are deployed in; due to the ISS and

SpaceX Transporter deployments. A constant assumption across these scenarios is

that all satellites maintain the same drag ratio and start from a uniform state.

-150 -120 -90 -60 -30 0 30 60 90 120 150 180

Longitude (degrees)

-90

-60

-30

0

30

60
L

a
ti

tu
d

e
 (

d
e
g

re
e
s
)

Sat. 1

Sat. 2

Sat. 3

Sat. 4

(a)

-150 -120 -90 -60 -30 0 30 60 90 120 150 180

Longitude (degrees)

-90

-60

-30

0

30

60

L
a
ti

tu
d

e
 (

d
e
g

re
e
s
)

Sat. 1

Sat. 2

Sat. 3

Sat. 4

(b)

Figure 4.4: Ground tracks of desired final formation configuration scenarios. (a)
Scenario 1: formation of four satellites in a line with equally distributed RAAN. (b)
Scenario 2: formation of four satellites distributed in AoL and RAAN to form the
vertices of a square.

Scenario 1 — Line Formation

Scenario 1 assumes that four satellites are deployed from the ISS, with an altitude

of 440 km, e = 0.005, and i = 51.5◦. The goal is to maneuver the satellites to be

equally distributed in the cross-track direction with zero change in AoL, so they pass

47

4. Drag-Based Formation Control

0 250 500 750 1000 1250

0.2

0.4

0.6

0.8

1.0

D
ra
g
R
a
ti
o

Sat. 1 Sat. 2 Sat. 3 Sat. 4

0 250 500 750 1000 1250
390

400

410

420

430

Orbit Number

A
lt
it
u
d
e
(k
m
)

1
Figure 4.5: Scenario 1. Top: The control trajectories for the four satellites. Bottom:
The altitude variation of the four satellites. Unlike in fig. 4.3, the control trajectories
are not piecewise constant due to the on-line correction of disturbances.

over the equator in a line, as depicted in fig. 4.4a. This corresponds to ∆θ̄f = 0 and

∆Ω̄f = k42πℓ with ℓ = 1, 2, 3. In this scenario, the receding-horizon control policy is

re-solved once per orbit over a time horizon of 1400 orbits and the altitude limits

∆amax and ∆amin were set to ±100 km.

The results of the first scenario are presented in figs. 4.5 and 4.6 and table 4.1.

The final orbit has an altitude of 389.73 km, e = 0.003, and i = 51.477◦. The

top plot of fig. 4.5 shows the control trajectories for the four satellites. The fourth

satellite, the satellite that aims to reach the largest ∆Ω̄, drives the overall differential

drag required for the formation. The bottom plot shows the altitude variation for

the four satellites; when the altitude rate is steeper, the satellite is in a high drag

configuration. Contrarily, where the altitude rate is shallower, the satellite is in a

low drag configuration. Figure 4.6 shows the AoL and RAAN difference for the three

satellite pairs. The difference is calculated with respect to the chief satellite.

Table 4.1 reports the overall maneuver time, the final difference in the AoL and the

RAAN, and the spherical distance between the chief satellite and the other satellite.

It takes three months to reach the final configuration, and the maximum final distance

between two satellites is 268.3 km.

On average, each optimization took 0.88s to solve on a MacBook Pro with an

48

4. Drag-Based Formation Control

0 250 500 750 1000 1250
0.0

0.5

1.0

1.5

2.0

∆
Ω

(d
eg

)

Sat. 1-2 Sat. 1-3 Sat. 1-4

0 250 500 750 1000 1250
−180

−90

0

90

180

Orbit Number

∆
θ

(d
eg

)

1
Figure 4.6: Scenario 1. Top: RAAN difference with respect to the chief satellite.
Bottom: AoL difference with respect to the chief satellite. All the satellite reach the
same final AoL.

Apple M1 Pro processor.

Pair tf , months ∆θf , deg ∆Ωf , deg
Spherical
Distance, km

Sat. 1 - 2
3

-0.007 -0.75 89.28
Sat. 1 - 3 0.005 -1.5 178.7
Sat. 1 - 4 -0.05 -2.25 268.3

Table 4.1: Results for Scenario 1

Scenario 2 — Square Formation

The second scenario assumes that four satellites are deployed from an approximately

sun-synchronous SpaceX Transporter launch, corresponding to an altitude of 550 km,

an e = 0.005, and i = 98◦. The goal is to maneuver the satellites to be distributed

in AoL and RAAN to form the vertices of a square, as depicted in fig. 4.4b. For

this scenario, the ℓ values are 0, 4, and 4, while the ∆θ̄f are 0.03, 0, and 0.03. The

receding-horizon control policy is re-solved every orbit over a time horizon of 4100

orbits.

49

4. Drag-Based Formation Control

0 1000 2000 3000 4000

0.2

0.4

0.6

0.8

1.0

D
ra
g
R
a
ti
o

Sat. 1 Sat. 2 Sat. 3 Sat. 4

0 1000 2000 3000 4000

527.5
530.0
532.5
535.0
537.5
540.0
542.5

Orbit Number

A
lt
it
u
d
e
(k
m
)

1
Figure 4.7: Scenario 2. Top: The control trajectories for the four satellites. Bottom:
The altitude variation of the four satellites. Notice that unlike in fig. 4.5, the satellites
here change altitude in pairs, with only slight deviations to adjust for the desired
AoL difference.

Pair tf , months ∆θf , deg ∆Ωf , deg
Spherical
Distance, km

Sat. 1 - 2
8.6

10.74 -0.006 1299
Sat. 1 - 3 0.005 -0.63 76
Sat. 1 - 4 10.84 -0.64 1313.5

Table 4.2: Results for Scenario 2

The results of scenario 2 are presented in fig. 4.7, fig. 4.8, and table 4.2. The

final orbit has a 514.1km altitude, e of 0.0043, and i of 98◦. The top plot of fig. 4.7

shows the control input, and the bottom plot shows the altitude change for the

four satellites. The plots in fig. 4.8 report the AoL and RAAN difference for the

three pairs. As before, the difference is evaluated with respect to the chief satellite.

Table 4.2 reports the overall maneuver time, the AoL and RAAN final differences,

and the spherical distance between the chief satellite and every other satellite. This

scenario takes longer than the first scenario; however, the results show that in less

advantageous initial conditions a spacecraft formation with both along-track and

cross-track separations can be established using our presented drag-based method.

Furthermore, the algorithm is able to define the control trajectory in the presence of

50

4. Drag-Based Formation Control

0 1000 2000 3000 4000

−0.6
−0.5
−0.4
−0.3
−0.2
−0.1
0.0

∆
Ω

(d
eg

)

Sat. 1-2 Sat. 1-3 Sat. 1-4

0 1000 2000 3000 4000
−180

−90

0

90

180

Orbit Number

∆
θ

(d
eg

)

1
Figure 4.8: Scenario 2. Top: RAAN difference with respect to the chief satellite.
Bottom: AoL difference with respect to the chief satellite. Satellites 1-2 and satellites
3-4 reach the same RAAN, while satellites 1-4 and satellites 2-3 reach a comparable
AoL.

disturbances and modeling errors. The optimizations took an average of 4.2s each to

solve on an Apple M1 Pro MacBook Pro. This took longer than the first scenario

due to the extended time horizon.

The two scenarios have interesting differences from a mission-design viewpoint.

Lower orbits, like the ISS orbit, result in faster natural orbital decay due to drag,

reducing the possible altitude change. However, the lower inclination for the ISS

results in a larger k4 and faster ∆Ω̄ rate of 0.745◦ per 2π revolution of∆θ̄. Contrarily,

deployment from the SpaceX Transporter allows a larger available overall altitude

change but a smaller ∆Ω̄ rate of 0.16◦ per 2π revolution of ∆θ̄. This is why scenario

2 takes longer to complete than scenario 1.

4.6 Conclusions

We have presented a novel control scheme that is able to maneuver a low-Earth orbit

satellite formation in both along-track and cross-track directions without expending

propellant. The drag-based formation control is formulated as a linear program, with

solution times of less than one second. This allows it to be used in a receding-horizon

51

4. Drag-Based Formation Control

manner, updating the control inputs and trajectory for a satellite once per orbit.

Simulation results confirm the robustness of the proposed method to disturbances and

viability for autonomous on-orbit implementation. While the scheme assumes known

atmospheric density, the actual atmospheric density in low-Earth orbit is widely

varying. Future extensions will focus on accurate atmospheric drag estimation, which

can be integrated into the trajectory optimization, ensuring robust performance. The

proposed approach has the capability to significantly reduce the cost and complexity

of deploying multi-plane satellite formations by eliminating the need for propulsion

systems onboard.

52

Chapter 5

Magnetorquer Detumbling

5.1 Introduction

After a spacecraft is deployed on orbit, a common first phase of operation is detumbling.

In this phase, the angular velocity of the satellite is reduced from tens of degrees

per second to rates that are tolerated by the satellite mission or managed by other

onboard control systems. To perform detumbling, the spacecraft must reduce its total

angular momentum by one to two orders of magnitude. This is only accomplished by

generating external torques, either through expending propellant, or, in low-Earth

orbit, with magnetic torque coils (magnetorquers) that exchange momentum with

the Earth’s magnetic field.

Magnetorquers are appealing because they do not require expending propellant.

However, at any instant in time, they only generate torque in a two-dimensional sub-

space perpendicular to the Earth’s local magnetic-field vector. To prove convergence,

most common magnetorquer detumbling controllers, including the classic B-dot and

B-cross controllers [49, 50], condition their convergence guarantee on the motion of

the satellite through the Earth’s magnetic field. For all but equatorial orbits, this

makes the magnetic field time varying in the orbit frame. Over the spacecraft’s full

orbit complete control authority is achieved. In this work, we demonstrate that these

classic controllers, and their modern variants, can take many hours to detumble a

spacecraft, despite it being possible to detumble much faster and with much less total

control effort. These controllers are, therefore, very inefficient and waste precious

53

5. Magnetorquer Detumbling

energy and time during the early stages of satellite operation.

To mitigate the inefficiencies of the classic magnetic detumbling controllers, we

present a novel controller that uses a prediction of the future magnetic field vector

to dramatically improve convergence time. The magnetic field prediction is done

using only gyroscope and magnetometer sensor measurements; no inertial attitude or

position reference is required. The controller is based on a discrete-time non-monotonic

Lyapunov function [1], which is able to temporarily increase the angular momentum

of the spacecraft, allowing the system to move away from control singularities. We

demonstrate detumble times less than half those of other controllers in the literature

across 100 Monte-Carlo simulation runs with randomly sampled initial conditions.

Our contributions include:

• A survey and unified presentation of the numerous magnetorquer detumbling

controllers that exist in the literature

• A derivation and analytic proof of convergence of our predictive detumbling

controller based on a discrete-time non-monotonic Lyapunov function

• Monte-Carlo simulation experiments showing the performance of our predictive

controller in comparison to five other controllers from the literature

The chapter proceeds as follows: In section 5.2 we discuss prior work on magnetor-

quer detumbling. Then, in section 5.3 we present the attitude dynamics of a spacecraft

and provide a unified derivation of five detumbling controllers from the literature that

we compare ours to. We also provide a brief introduction to non-monotonic Lyapunov

functions. Section 5.4 derives our discrete non-monotonic detumbling controller, and

section 5.5 presents our Monte-Carlo simulation results. Finally, we summarize our

conclusions and directions for future work in section 5.6.

5.2 Related Work

Magnetorquer detumbling has a long history dating back to the earliest days of space

exploration [49, 63]. In general, magnetorquer detumbling controllers come in two

categories with many variants: B-dot and B-cross. B-dot controllers assume only

magnetometer measurements are available. B-cross [5, 50] controllers assume both

magnetometer and gyroscope measurements are available onboard the spacecraft. As

54

5. Magnetorquer Detumbling

we will show in section 5.3.2, these two categories are related by a simple approxi-

mation, and the many variations in the literature reduce to a selection of gains and

saturation methods for handling control limits [15, 16, 33].

In addition to the magnetic detumbling methods discussed here, there has been sig-

nificant work on full magnetic attitude control, including the work by Wisniewski [77]

which models the magnetic field as a periodic system, and more recent work that

utilizes numerical optimal control to perform three-axis magnetorquer attitude con-

trol [24, 59]. Ovchinnikov presents a recent survey of both magnetorquer detumbling

and attitude control [56].

5.3 Background

5.3.1 Attitude Dynamics

Let h ∈ R3 be the angular momentum of a spacecraft, B ∈ R3 be the Earth’s local

geomagnetic field vector at the spacecraft’s location, and µ ∈ R3 be the dipole moment

produced by the magnetorquers.

With a magnetic dipole moment as input, a spacecraft’s angular momentum

dynamics expressed in an inertial reference frame are,

ḣ = τ = −B × µ = −B̂µ, (5.1)

where τ ∈ R3 is the torque on the spacecraft and B̂ is the skew-symmetric cross

product matrix,

B̂ =

 0 −Bz By

Bz 0 −Bx

−By Bx 0

 . (5.2)

With inertia matrix J ∈ R3×3, the angular momentum relates to the angular

velocity as

h = Jω. (5.3)

55

5. Magnetorquer Detumbling

We make use of the time derivative of the geomagnetic field vector with respect to

the body frame, ḂB, and with respect to the inertial frame, ḂN . Both are expressed

in body-fixed coordinates. The relationship between these quantities is

ḂN = ω̂B + ḂB. (5.4)

5.3.2 Detumbling Control

Many of the detumbling control laws found in the literature are variations of a single

control law that is derived from the Lyapunov function

V =
1

2
hTh. (5.5)

Taking the time derivative,

V̇ = hT ḣ = −hT B̂µ. (5.6)

We desire to find µ that minimizes V̇ at every instant in time. To do so, we formulate

this as an optimization problem with bound constraints that limit the maximum

dipole moment the satellite can produce:

minimize
µ

V̇ = −hT B̂µ

subject to −µmax ≤ µ̄ ≤µmax. (5.7)

This optimization problem in eq. (5.7) is a linear program with a closed-form solution

in the form of a bang-bang control law:

µ = sign(ĥB)µmax, (5.8)

where the sign function is interpreted element-wise. Bang-bang controllers like eq. (5.8)

are prone to chattering in the presence of noise, so we replace the sign hard saturation

with a soft saturation,

µ = tanh(kĥB)µmax, (5.9)

56

5. Magnetorquer Detumbling

where the tanh function is, again, interpreted element-wise and k is a tuning parameter.

We refer to this control law as the Lyapunov momentum control law.

The control law in eq. (5.8) is closely related to the classical B-dot and B-cross

control laws [50]. The B-cross law replaces h with ω and relaxes the bang-bang

saturation to a linear feedback law with gain k,

µ = kω̂B. (5.10)

Avanzini and Giulietti [5] propose selecting the B-cross controller gain

k = 2
1√

a3/GM
(1 + sin(ξm))λmin (5.11)

where a is the orbit semi-major axis, GM is the Earth’s gravitational parameter,

ξm is the orbit’s geomagnetic inclination and λmin is the minimum eigenvalue of the

spacecraft’s inertia matrix J .

The B-dot law [49, 63] modifies eq. (5.10) by making the assumption that

ω̂B ≈ −ḂB, (5.12)

resulting in

µ = −kḂB. (5.13)

The B-dot law has the advantage that ḂB is readily estimated from a magnetometer

only, so no gyroscope measurements are required for its implementation. However,

as ω → 0, the approximation in eq. (5.12) becomes less accurate and the B-dot law

suffers from long convergence times.

Desouky [15, 16] presented two control laws: Their “time-optimal” control law is

equivalent to eq. (5.8) and their “B-dot Variant” control law inverts eq. (5.12) with a

regularizing term to solve for ω and substitutes the result into eq. (5.10) to obtain

the control law,

µ = −kB̂(ϵI + B̂)−1ḂB (5.14)

57

5. Magnetorquer Detumbling

where 0 < ϵ ≪ 1, and ϵ = 1× 10−6 in practice.

Invernizzi and Lovera [33] use a projection-based method to compute a time-

varying gain for an unsaturated version of eq. (5.8),

k = −k1 exp

(
−k2

BTJh

∥B∥(∥h∥+ ϵ)

)
µ = kĥB.

(5.15)

All of the previously discussed methods are essentially the same and suffer from

the same fundamental limitation: when h (or ω) and B are aligned, their cross

product is zero, and the commanded control input goes to zero. The controllers are

convergent on long time scales because B is time varying in the orbital frame, so

eventually ĥB will no longer be zero. However, they are prone to getting stuck in

this uncontrollable subspace, resulting in long convergence times.

Consider the B-cross controller in eq. (5.10). If we decompose ω = ω∥+ω⊥, where

ω∥ and ω⊥ are the components of ω parallel and perpendicular to B,

µ = k(ω∥ + ω⊥)×B = kω̂⊥B (5.16)

and

ḣ = −B̂µ = −kB̂(ω̂⊥B) = −λω⊥ (5.17)

for some λ > 0. So, h is only reduced in the ω⊥ direction with no change in the

ω∥ direction. Figure 5.1 shows this effect in two simulation runs of the B-cross

controller with the same initial conditions and two different gains. At the beginning,

the smaller-gain controller decreases ∥h∥ at a slower rate, but ultimately converges

sooner because the larger gain causes the controller to get stuck on the uncontrollable

subspace where ω and B are parallel. The smaller gain was chosen based on eq. (5.11)

and the larger gain is a factor of 100 larger. The gain sweep results in fig. 5.2 show a

similar phenomena occurring with the other controllers. While this can be partially

avoided with appropriate tuning, this does not guarantee the controller will converge

without getting stuck.

To address this issue, we relax a fundamental constraint on the controllers presented

58

5. Magnetorquer Detumbling

0 1 2 3 4 5

0

2

4

·10−3

k = 4.00e-06
k = 4.00e-04

Time (hours)

‖h
‖

(N
m

s)

Figure 5.1: Two simulation runs of the B-cross controller in eq. (5.10) with different
gains. As the gain increases, the controller convergence gets worse because it gets
stuck in the uncontrollable subspace where ω and B are parallel.

so far: we derive a controller that does not decrease the angular momentum of the

spacecraft monotonically, but still maintains a Lyapunov convergence guarantee. This

allows the controller to trade off decreasing the angular momentum while moving

towards the uncontrollable subspace or increasing the angular momentum while

making the angular momentum more controllable in the future.

5.4 Non-monotonic Control Derivation

We begin by introducing discrete-time monotonic Lyapunov analysis, then extend it

to non-monotonic Lyapunov analysis. The discrete-time dynamical system

xk+1 = f(xk) (5.18)

with x ∈ Rn has a globally asymptotically stable (GAS) equilibrium at x = 0 if there

exists a Lyapunov function V (x) : Rn → R such that

V (x) > 0 ∀x ̸= 0 (5.19a)

V (0) = 0 (5.19b)

Vk+1 < Vk ∀k (5.19c)

59

5. Magnetorquer Detumbling

where we use the notation Vk = V (xk). It is well known that in general there is no

guaranteed method of finding a Lyapunov function that satisfies eq. (5.19), even if the

system is GAS. Ahmadi and Parrilo suggest that the monotonic decrease condition in

eq. (5.19c) may be too restrictive, and present several alternative stability theorems

that only require V to decrease on average [1]. We rely on Theorem 2.1 from their

work. It modifies the conditions in eq. (5.19) so that eq. (5.18) is GAS at x = 0 if

there exists a scalar α ≥ 0 and a Lyapunov function V : Rn → R such that

V (x) > 0 ∀x ̸= 0 (5.20a)

V (0) = 0 (5.20b)

α(Vk+2 − Vk) + (Vk+1 − Vk) < 0 ∀k. (5.20c)

The condition in eq. (5.20c) relaxes eq. (5.19c) to allow Vk to decrease on average

between two timesteps.

5.4.1 Non-Monotonic Detumbling

Now, to derive the non-monotonic detumbling controller, we begin with the discrete-

time Lyapunov function

Vk =
1

2
hT
k hk. (5.21)

This trivially satisfies eqs. (5.20a) and (5.20b), so it remains to design the control

input µ such that the non-monotonic Lyapunov condition

∆V = α(Vk+2 − Vk) + (Vk+1 − Vk) < 0 (5.22)

from eq. (5.20c) is satisfied for α ≥ 0.

Through the rest of this section we drop the subscript k and use [·]0 = [·]k,
[·]1 = [·]k+1, [·]2 = [·]k+2 for clarity.

We approximate the discrete time dynamics in eq. (5.1) using Euler integration,

60

5. Magnetorquer Detumbling

so that

h1 ≈ h0 +∆tḣ0 (5.23a)

= h0 +∆tτ0 (5.23b)

= h0 +∆t(µ0 ×B0) (5.23c)

and

h2 ≈ h1 +∆tḣ1 (5.24a)

= h0 +∆tτ0 +∆tτ1 (5.24b)

= h0 +∆t(µ0 ×B0) + ∆t(µ1 ×B1). (5.24c)

Substituting,

V1 =
1

2
hT
1 h1 (5.25a)

=
1

2
(h0 +∆tτ0)

T (h0 +∆tτ0) (5.25b)

=
1

2

(
hT
0 h0 +∆thT

0 τ0 +∆tτT0 h0 +∆t2τT0 τ0
)

(5.25c)

=
1

2

(
hT
0 h0 + 2∆thT

0 τ0 +∆t2τT0 τ0
)

(5.25d)

and

V2 =
1

2
hT
2 h2 (5.26a)

=
1

2
(h0 +∆tτ0 +∆tτ1)

T (h0 +∆tτ0 +∆tτ1) (5.26b)

=
1

2

(
hT
0 h0 +∆thT

0 τ0 +∆thT
0 τ1

+∆tτT0 h0 +∆t2τT0 τ0 +∆t2τT0 τ1

+∆tτT1 h0 +∆t2τT1 τ0 +∆t2τT1 τ1
) (5.26c)

=
1

2

(
hT
0 h0 + 2∆thT

0 τ0 + 2∆thT
0 τ1 +∆t2τT0 τ0

+ 2∆t2τT0 τ1 +∆t2τT1 τ1
) (5.26d)

61

5. Magnetorquer Detumbling

so

V1 − V0 =
1

2

(
hT
0 h0 + 2∆thT

0 τ0 +∆t2τT0 τ0
)

− 1

2
hT
0 h0

(5.27a)

= ∆thT
0 τ0 +

1

2
∆t2τT0 τ0 (5.27b)

= −∆thT
0 B̂0µ0 +

1

2
∆t2µT

0 B̂
T
0 B̂0µ0 (5.27c)

and

V2 − V0 =
1

2

(
hT
0 h0 + 2∆thT

0 τ0 + 2∆thT
0 τ1

+∆t2τT0 τ0 + 2∆t2τT0 τ1 +∆t2τT1 τ1
)
− 1

2
hT
0 h0

(5.28a)

= ∆thT
0 τ0 +∆thT

0 τ1 +
1

2
∆t2τT0 τ0 +∆t2τT0 τ1 +

1

2
∆t2τT1 τ1 (5.28b)

= −∆thT
0 B̂0µ0 −∆thT

0 B̂1µ1 +
1

2
∆t2µT

0 B̂
T
0 B̂0µ0

+∆t2µT
0 B̂

T
0 B̂1µ1 +

1

2
∆t2µT

1 B̂
T
1 B̂1µ1

(5.28c)

(5.28d)

where we used the identities

τ = µ×B = −B × µ = −B̂µ (5.29a)

τT τ = (µ×B)T (µ×B) = (−B × µ)T (−B × µ)

= (−B̂µ)T (−B̂µ) = µT B̂T B̂µ.
(5.29b)

62

5. Magnetorquer Detumbling

Bringing these terms together, we have

∆V ≜ α(V2 − V0) + (V1 − V0) (5.30a)

= α
(
−∆thT

0 B̂0µ0 −∆thT
0 B̂1µ1 +

1

2
∆t2µT

0 B̂
T
0 B̂0µ0

+∆t2µT
0 B̂

T
0 B̂1µ1 +

1

2
∆t2µT

1 B̂
T
1 B̂1µ1

)
−∆thT

0 B̂0µ0 +
1

2
∆t2µT

0 B̂
T
0 B̂0µ0

(5.30b)

= −(α + 1)∆thT
0 B̂0µ0 − α∆thT

0 B̂1µ1 + (α + 1)∆t2µT
0 B̂

T
0 B̂0µ0

+ α∆t2µT
0 B̂

T
0 B̂1µ1 + α

1

2
∆t2µT

1 B̂
T
1 B̂1µ1

(5.30c)

=
1

2
α∆t2

[
µT
0 µT

1

] [B̂T
0 B̂0 B̂T

0 B̂1

B̂T
1 B̂0 B̂T

1 B̂1

][
µ0

µ1

]

−∆thT
0

[
B̂T

0 B̂T
1

] [µ0

µ1

]

+
1

2
∆t2

[
µT
0 µT

1

] [B̂T
0 B̂0 0

0 0

][
µ0

µ1

]

−∆thT
0

[
B̂0 0

] [µ0

µ1

]
(5.30d)

= α
1

2
∆t2µ̄T B̄B̄T µ̄− α∆thT

0 B̄
T µ̄+

1

2
∆t2µ̄TZB̄B̄TZµ̄−∆thT

0 B̄
TZµ̄ (5.30e)

=
1

2
µ̄TQ1µ̄+

1

2
αµ̄TQ2µ̄− qT1 µ̄− αqT2 µ̄ (5.30f)

=
1

2
µ̄T (Q1 + αQ2)µ̄− (q1 + αq2)

T µ̄ (5.30g)

63

5. Magnetorquer Detumbling

where we defined

µ̄ =

[
µ0

µ1

]
∈ R6, (5.31a)

B̄ =

[
B̂T

0

B̂T
1

]
∈ R6×3 (5.31b)

Z =

[
I 0

0 0

]
∈ R3×3 (5.31c)

Q1 = ∆t2ZB̄B̄TZ (5.31d)

Q2 = α∆t2B̄B̄T (5.31e)

q1 = ∆t(hT
0 B̄

TZ)T (5.31f)

q2 = α∆t(hT
0 B̄

T)T . (5.31g)

Since B̄B̄T is symmetric and rank(B̄B̄T) = rank(B̄) ≤ 3 < 6, Q1 and Q2 are

symmetric and positive semi-definite.

This means that ∆V is convex, and, as we will see in the following, its minimum is

less than zero. So, it is possible to find µ̄ such that ∆V < 0, and the non-monotonic

Lyapunov conditions of eq. (5.20c) are satisfied.

We wish to find a control law for µ̄ such that ∆V is minimized:

minimize
µ̄

∆V =
1

2
µ̄T (Q1 + αQ2)µ̄− (q1 + αq2)

T µ̄

subject to −µmax ≤ µ̄ ≤µmax. (5.32)

Since Q1, and Q2 are positive semi-definite, ∆V is not strictly convex and eq. (5.32)

has multiple minima. We add βµTµ/2 with 1 ≫ β > 0 as a regularizing term to

make the objective strictly convex. The result is a convex quadratic program that is

reliably and quickly solved with a numerical solver. Alternatively, we can make the

same simplification as in eq. (5.9) and solve the unconstrained minimization problem,

enforcing a soft saturation constraint on the result. The optimization is then

minimize
µ̄

F =
1

2
βµ̄T µ̄+

1

2
µ̄T (Q1 + αQ2)µ̄

− (q1 + αq2)
T µ̄

. (5.33)

64

5. Magnetorquer Detumbling

We find the analytic solution by taking the gradient of F with respect to µ̄ and

setting it to zero. The gradient of F is

∇F = βµ̄+ (Q1 + αQ2)µ̄− (q1 + αq2). (5.34)

Setting to zero and solving for µ̄,

µ̄∗ = (βI +Q1 + αQ2)
−1(q1 + αq2). (5.35)

Plugging µ̄∗ into F and recalling that (I +Q1 +Q2) is symmetric, we have

F ∗ =
1

2
(q1 + αq2)

T (βI +Q1 + αQ2)
−1(βI +Q1 + αQ2)(βI +Q1 + αQ2)

−1(q1 + αq2)

− (q1 + αq2)
T (βI +Q1 + αQ2)

−1(q1 + αQ2)

(5.36a)

=
1

2
(q1 + αq2)

T (βI +Q1 + αQ2)
−1(q1 + αq2)

− (q1 + αq2)
T (βI +Q1 + αQ2)

−1(q1 + αq2)
(5.36b)

F ∗ = −1

2
(q1 + αq2)

T (βI +Q1 + αQ2)
−1(q1 + αq2). (5.36c)

Since βI +Q1 + αQ2 is positive definite, (βI +Q1 + αQ2)
−1 is also positive definite,

and F ∗ < 0 for all α, β > 0. The regularizing term in F is always positive in µ̄, so we

can conclude that ∆V < 0, which satisfies eq. (5.20c).

5.4.2 Causal Implementation

Examining eq. (5.31b), we see that the controller formulation in section 5.4 relies

on knowledge of Bk+1. This is not causal. However, Bk+1 can be predicted using

knowledge of the satellite’s orbit and a model of the geomagnetic field. Detumbling

is often executed during early operations of a satellite, so orbit knowledge and

a computationally expensive geomagnetic field model may not be available. An

alternative is to approximate Bk+1 as

Bk+1 ≈ Bk +∆tḂN
k . (5.37)

65

5. Magnetorquer Detumbling

We cannot directly measure ḂN ; however using eq. (5.4) it can be estimated from

magnetometer and gyro measurements. To do so, a high-quality estimate of ḂB can

be made using multiple measurements of B. For ease of implementation, we currently

use a derivative of the magnetic field model computed using automatic differentiation

to get ḂB.

5.4.3 Complete Controller

Bringing together the development from the last two sections, the discrete non-

monotonic controller is given by algorithm 1. The input Bk+1 is computed using

the approximation in eq. (5.37). On lines 1 and 2 we normalize the values of B∗ to

avoid numerical issues and ensure consistency of performance across the wide range

of geomagnetic field magnitudes a spacecraft will experience. Lines 3 to 9 set up the

problem components and follow from eq. (5.31). We solve for µ̄ on line 10, where \
indicates numerically solving the linear system. Finally, on line 11 we perform a soft

saturation of the computed control output and rescale it to satisfy the limits of the

satellite’s magnetorquers.

Algorithm 1: Discrete Non-monotonic controller

Data: Given Bk, Bk+1, J , ω, k, α, β
Result: µ

1 b1 = Bk/∥Bk∥
2 b2 = Bk+1/∥Bk+1∥
3 b̄ =

[
b̂1 b̂2

]
4 Z = β

[
I 0
0 0

]
5 Q1 = Zb̄b̄TZ
6 Q2 = αb̄b̄T

7 h = Jω
8 q1 = Zb̄h
9 q2 = αb̄h

10 µ̄ = (I +Q1 +Q2)\(q1 + q2)
11 µ = tanh(kµ̄[1 :3]) ∗ µmax

66

5. Magnetorquer Detumbling

5.5 Simulation Experiments

0 1 2 3 4
0

1

2

3

4

0 1 2 3 4
0

1

2

3

4

0 1 2 3 4
0

1

2

3

4

0 1 2 3 4
0

1

2

3

4

0 1 2 3 4
0

1

2

3

4

0 1 2 3 4
0

1

2

3

4

·10−3

Time (hours)

‖h
‖

(N
m

s)

Lyapunov Momentum
·10−3

Time (hours)

‖h
‖

(N
m

s)

B-dot Variant ·10−3

Time (hours)

‖h
‖

(N
m

s)

Discrete Non-monotonic

·10−3

Time (hours)

‖h
‖

(N
m

s)

B-dot ·10−3

Time (hours)

‖h
‖

(N
m

s)
Projection-based

·10−3

Time (hours)

‖h
‖

(N
m

s)

B-cross

k = 2.00e+01
k = 2.00e+02
k = 2.00e+03
k = 2.00e+04
k = 2.00e+05
k = 2.00e+06

k = 4.00e-03
k = 4.00e-02
k = 4.00e-01
k = 4.00e+00
k = 4.00e+01
k = 4.00e+02

k = 3.00e+01
k = 3.00e+02
k = 3.00e+03
k = 3.00e+04
k = 3.00e+05
k = 3.00e+06

k = 1.00e-02
k = 1.00e-01
k = 1.00e+00
k = 1.00e+01
k = 1.00e+02
k = 1.00e+03

k1 = 5.00e-04
k1 = 5.00e-03
k1 = 5.00e-02
k1 = 5.00e-01
k1 = 5.00e+00
k1 = 5.00e+01

k = 4.00e-07
k = 4.00e-06
k = 4.00e-05
k = 4.00e-04
k = 4.00e-03
k = 4.00e-02

Figure 5.2: Gain sweep study showing the effect each controller’s gain has on its
detumbling performance for a single initial condition. The solid green line is the gain
that was used for the Monte-Carlo simulation experiment shown in figs. 5.3 to 5.5.
The other lines are for gains varying from two orders of magnitude lower to three
orders of magnitude higher than the chosen gain.

All simulations are performed in a 12 degree-of-freedom orbital and attitude dy-

namics simulation environment that we developed and is available as an open-source

repository1. The simulation environment relies on the open-source SatelliteDynam-

ics.jl2 orbital dynamics package and includes perturbations due to J2 and atmospheric

drag. The attitude dynamics include orbit-coupled drag torques, and to accurately

model the geomagnetic field, a differentiable implementation of the International

Geomagnetic Reference Field (IGRF) [3]. The spacecraft properties used for the

simulations are given in table 5.1, and reflect the properties for a 1.5U CubeSat with

printed circuit board magnetorquers embedded in the solar panels. Noisy sensor

measurements and a randomly initialized constant gyro bias are also included in the

simulation; the noise parameters are representative of low-cost micro-electromechanical

(MEMS) IMU and magnetometer hardware.

1github.com/RoboticExplorationLab/non-monotonic-detumbling
2sisl.github.io/SatelliteDynamics.jl

67

https://github.com/RoboticExplorationLab/non-monotonic-detumbling/
https://sisl.github.io/SatelliteDynamics.jl/latest/

5. Magnetorquer Detumbling

0 0.5 1 1.5 2
0

1

2

·10−3

Time (hours)

‖h
‖

(N
m

s)

Lyapunov Momentum

Average

0 0.5 1 1.5 2
0

1

2

·10−3

Time (hours)

‖h
‖

(N
m

s)

B-dot Variant

Average

0 0.5 1 1.5 2
0

1

2

·10−3

Time (hours)

‖h
‖

(N
m

s)

Discrete Non-monotonic

Average

0 0.5 1 1.5 2
0

1

2

·10−3

Time (hours)

‖h
‖

(N
m

s)

B-dot

Average

0 0.5 1 1.5 2
0

1

2

·10−3

Time (hours)
‖h

‖
(N

m
s)

Projection-based

Average

0 0.5 1 1.5 2
0

1

2

·10−3

Time (hours)

‖h
‖

(N
m

s)

B-cross

Average

Figure 5.3: Momentum magnitude versus time plot for each of the controllers dis-
cussed in this chapter. The Discrete Non-monotonic controller differs from the other
controllers in that the system momentum increases before decreasing and converging
to zero. This is the key distinction of this controller and allows it to have faster
convergence times than other detumbling controllers.

Each of the controllers is sensitive to its tuning parameter, k. To have meaningful

comparison between controllers, each controller needs to be tuned to perform in

the best possible manner. To do so, we simulate the performance impact of each

controller’s gain, sweeping it over several orders of magnitude. The results of this

study are shown in fig. 5.2. The solid green line is the gain that was used for the

Monte-Carlo simulation experiment shown in figs. 5.3 to 5.5; this gain was chosen as a

tradeoff between fast convergence and avoiding high gains that lead to the controller

getting stuck in their uncontrollable subspace.

The Monte-Carlo results are simulations of the satellite dynamics starting from

100 randomly sampled initial states for each of the six controllers discussed in this

chapter. The random initial states are the same for each controller for fair comparison.

The ranges and values of the Monte-Carlo initial conditions are sampled uniformly

across the ranges given in table 5.2. They represent random circular orbits at a

fixed altitude and random vehicle axis of rotation with a fixed initial angular velocity

magnitude. Since most satellites in low Earth orbit operate at high inclinations, and

to avoid the lack of controllability all magnetorquer control systems experience at near

equatorial inclinations [7], we restricted the orbital inclinations to [20◦, 160◦). The

68

5. Magnetorquer Detumbling

[0, 0.5) [0.5, 1) [1, 1.5) [1.5, 2)
0%

20%

40%

60%

80%

100%

50% completed

1.22 hours

90% completed

2.00 hours

Time (hours)

Lyapunov Momentum

[0, 0.5) [0.5, 1) [1, 1.5) [1.5, 2)
0%

20%

40%

60%

80%

100%

50% completed

1.22 hours

92% completed

2.00 hours

Time (hours)

B-dot Variant

[0, 0.5) [0.5, 1) [1, 1.5) [1.5, 2)
0%

20%

40%

60%

80%

100%

50% completed

0.60 hours

100% completed

1.82 hours

Time (hours)

Discrete Non-monotonic

[0, 0.5) [0.5, 1) [1, 1.5) [1.5, 2)
0%

20%

40%

60%

80%

100%

50% completed

1.54 hours

73% completed

2.00 hours

Time (hours)

B-dot

[0, 0.5) [0.5, 1) [1, 1.5) [1.5, 2)
0%

20%

40%

60%

80%

100%

5% completed

2.00 hours

Time (hours)

Projection-based

[0, 0.5) [0.5, 1) [1, 1.5) [1.5, 2)
0%

20%

40%

60%

80%

100%

50% completed

1.78 hours

55% completed

2.00 hours

Time (hours)

B-cross

Figure 5.4: Cumulative distribution of detumble times for each of the controllers
discussed in this chapter. Detumble times are defined as the time when the satellite
first reaches 1% of its initial angular momentum. The simulation ended at two hours,
so only detumble times less than two hours are counted. Our Discrete Non-monotonic
controller has the lowest average detumble time. It is also the only controller to
detumble for all simulation runs.

controller parameters and corresponding equation reference are shown in table 5.3.

In developing this comparison we attempted to tune all controllers to achieve their

best performance.

The simulation results are shown in figs. 5.3 to 5.5. Figure 5.4 shows a histogram

of the time it takes for the spaceraft momentum to be reduced to 1% of its initial

value. As can be seen, many of the common control methods do not converge to

this threshold within two hours. However, our discrete non-monotonic controller

converges within the two hour simulation period for all initial conditions tested and

the majority of the initial conditions converge within one hour. The reason for this

can be seen in fig. 5.3; it shows the time history of the momentum magnitude for

the 100 Monte-Carlo simulation runs, as well as an average time history of these

runs. The discrete non-monotonic controller exhibits significantly different behavior

than the five other controllers, increasing in momentum one or more times before

finally converging to zero. By relaxing the monotonic decrease requirement for the

controller, we have developed a controller that reduces detumble times by up to 50%.

Figure 5.5 shows the final angular momentum magnitudes. The discrete non-

69

5. Magnetorquer Detumbling

[0, 0.4) [0.4, 0.79) [0.79, 1.19) [1.19, 1.58)

·10−3

0

20

40

60

80

100

Average: 2.50e-05 Nms

‖h‖ (Nms)

C
ou

nt

Lyapunov Momentum

[0, 0.4) [0.4, 0.79) [0.79, 1.19) [1.19, 1.58)

·10−3

0

20

40

60

80

100

Average: 2.91e-05 Nms

‖h‖ (Nms)

C
ou

nt

B-dot Variant

[0, 0.4) [0.4, 0.79) [0.79, 1.19) [1.19, 1.58)

·10−3

0

20

40

60

80

100

Average: 3.72e-07 Nms

‖h‖ (Nms)

C
ou

nt

Discrete Non-monotonic

[0, 0.4) [0.4, 0.79) [0.79, 1.19) [1.19, 1.58)

·10−3

0

20

40

60

80

100

Average: 4.76e-05 Nms

‖h‖ (Nms)

C
ou

nt

B-dot

[0, 0.4) [0.4, 0.79) [0.79, 1.19) [1.19, 1.58)

·10−3

0

20

40

60

80

100

Average: 9.90e-05 Nms

‖h‖ (Nms)
C

ou
nt

Projection-based

[0, 0.4) [0.4, 0.79) [0.79, 1.19) [1.19, 1.58)

·10−3

0

20

40

60

80

100

Average: 6.55e-05 Nms

‖h‖ (Nms)

C
ou

nt

B-cross

Figure 5.5: Histogram of final momentum magnitudes for each of the controllers
discussed in this chapter. Our Discrete Non-monotonic controller is the only controller
to have all of its simulation runs in the leftmost bin, with an average angular
momentum two orders of magnitude lower than the other controllers.

monotonic controller has converged to a lower angular momentum than the other

controllers in all cases. The projection-based controller is particularly susceptible

to getting stuck in the uncontrollable subspace and has the worst performance of

all of the controllers. The Lyapunov momentum, B-cross, B-dot variant, and B-dot

controllers all perform similarly at the beginning of their simulation runs, but the

B-cross controller converges significantly slower than the other controllers.

5.6 Conclusion

The many variants of B-dot and B-cross controllers in the literature differ primarily

in how the gains and saturation are selected. Their performance is similar, with

each having the potential to get stuck in the uncontrollable subspace where B

and h are aligned. Even recent magnetorquer detumbling controllers, such as the

projection-based controller [33] suffer from this failure point. The novel non-monotonic

Lyapunov magnetorquer detumbling control law we have presented is a more significant

departure from the classical B-dot and B-cross control laws: our control law implicitly

predicts the future controllability of the system and avoids putting the satellite in

70

5. Magnetorquer Detumbling

Table 5.1: Simulated spacecraft properties

Name Value

Inertia Jxx 4.5× 10−3 kgm2

Jxy -3.2× 10−4 kgm2

Jxz 0.0 kgm2

Jyy 5.1× 10−3 kgm2

Jyz 0.0 kgm2

Jzz 3.7× 10−3 kgm2

Mass 1.6 kg
Dimensions 75 cm × 10 cm × 15 cm
Drag Coefficient 2.2
µmax

[
0.070 0.053 0.070

]
Am2

Magnetometer noise 15 nT

Gyro noise 0.005°/s/
√
Hz

Gyro bias 1 ◦ s−1

Table 5.2: Monte-Carlo Initial Condition Distribution

Satellite State Value

Altitude 400 km
Eccentricity 0
Inclination [20◦, 160◦)
RAAN [0◦, 360◦)
Arg. of Latitude [0◦, 360◦)
∥ω∥ 30◦ s−1

an uncontrollable state. In our Monte-Carlo simulation, it results in detumbling

times that are more than twice as fast as the other controllers while operating with

representative sensor noise and gyro bias. In addition, the tuning of our control law

is straightforward and less sensitive to tuning errors than other control laws.

To put this control law into practical use a high-quality estimate of the geomagnetic

field time derivative is needed. Future work will focus on generating this estimate

and analyzing the full closed-loop performance of the magnetic field estimator and

control law in combination.

71

5. Magnetorquer Detumbling

Table 5.3: Controller Parameters

Controller Parameters

Lyapunonv Momentum eq. (5.9) k = 2.0× 103

B-cross eq. (5.10) k = 4.0× 10−6

Discrete Non-monotonic k = 3.0× 103, α = 100,
(algorithm 1) β = 1, ∆t = 10min

B-dot Variant eq. (5.14) k = 0.4, ϵ = 1× 10−6

Projection-based eq. (5.15) k1 = 10.0, k2 = 10.0,
ϵ = 1× 10−6

B-dot eq. (5.13) k = 1.0

72

Chapter 6

Satellite Flight Hardware and

Software

(a) Three PyCubed-mini satellites. (b) Four Py4 satellites.

Figure 6.1: PyCubed-mini and Py4 satellites.

While the previous two chapters focused on theoretical work, this chapter discusses

practical hardware and software development for two different satellite platforms. The

first is a 5× 5× 5 cm 1p pocketqube, referred to as “PyCubed-mini” and shown in

fig. 6.1a; the second is a set of four 10×10×15 cm 1.5U cubesats, referred to as “Py4”

and shown in fig. 6.1b. Both satellite platforms are derivatives of the open-source

PyCubed flight computer [30]. PyCubed relies on the CircuitPython language that

enables Python code to run on an embedded microcontroller. This enables rapid

development as well as access to the many open-source CircuitPython libraries. The

Py4 satellites also incorporate a Raspberry Pi Zero W as a secondary processor for

73

6. Satellite Flight Hardware and Software

high-computation tasks. The following sections provide an overview of the hardware

and describe the flight software for the PyCubed-mini and Py4 projects.

6.1 PyCubed-mini

The overall goal of the PyCubed-mini project is to develop a low-cost and full-

functioning satellite in the 1p (5× 5× 5 cm and 250 g) pocketqube form factor [55].

The development began with a Stanford capstone project in 2019-2020 and has

continued by a team of graduate and undergraduate students at Carnegie Mellon

University. While the project is a derivative of the PyCubed project, it involved

many hardware and software design modifications to create an easy to use system and

to meet the volume requirements of the 1p form factor. In the end every hardware

component and the full flight software system has been redesigned.

6.1.1 Flight Hardware

The PyCubed-mini platform includes the typical satellite subsystems: power, com-

munications, computation, guidance and control, and a configurable payload. An

extensive description of the PyCubed-mini hardware design can be found in Neil

Khera’s thesis [35]. A summary of each subsystem is given here to provide context.

Power

The power subsystem consists of solar cells, solar charging circuits, lithium-ion

batteries, and power regulators. The solar cells are located on each face of the

satellite, with a total of 42 cells overall. A distributed solar charging system is used,

with each face having its own solar charging circuit so solar charging can happen at

maximum efficiency regardless of the satellite’s orientation with respect to the sun.

The lithium-ion batteries provide 1700 mAh of charge capacity and a bus voltage of

3.6− 4.2 V.

74

6. Satellite Flight Hardware and Software

Communications

The communications subsystem relies on the HopeRF RFM98W 433 MHz long range

(LoRa) radio transceiver. This transceiver is capable of transmitting at up to 1

W of output power. The transceiver output is connected to a dipole tape-spring

antenna tuned to 50 Ω at 433 Mhz. With the LoRa spread-spectrum protocol this

compact and low power radio is sufficient to close the link between the satellite and a

groundstation.

Computation

The computation subsystem consists of a single ATSAMD51 microcontroller with

an ARM Cortex-M4 core. Relevant peripheral hardware it connects to include a

watchdog timer, a real time clock, and an SD card that acts as the primary data

storage device.

Guidance and Control

One of the primary objectives for the PyCubed-mini is to accomplish three-axis

attitude control in a pocketqube. To do so in such a small volume requires novel

control methods. We developed printed-circuit-board magnetic coils and embedded

them in each of the six solar panel faces. A depiction of the coils embedded in a

solar panel is shown in fig. 6.2. The coils in parallel faces of the satellite are tied

together in pairs and are connected to full H-bridge motor drivers that provide

pulse-width-modulated voltage control. When driven by a nonlinear optimal control

algorithm these coils can provide full three-axis attitude control. Simulation results

show they can complete 180 degree slews over 10-15 minute time horizons [24].

For attitude estimation, the PyCubed-mini includes a nine degree of freedom

inertial measurement unit; it measures acceleration, angular velocity, and magnetic

field in three axes. In addition, a single digital light sensor is placed on each solar

panel face to provide coarse sun vector measurements. All of the sensors are connected

to the primary microcontroller.

75

6. Satellite Flight Hardware and Software

Figure 6.2: PyCubed-mini pocketcube with cutaway showing the coil traces embedded
in a solar panel face.

Payload

As pointed out in fig. 6.2, PyCubed-mini also includes a camera payload. The camera

is a 5 MP OV5640 and includes a secondary processor that is designed specifically

for image processing and is supported by the OpenMV open-source machine vision

software. This allows for real time processing of camera data to use it as an additional

sensor for orbit estimation and orbit determination. The payload is a standalone PCB,

allowing it to easily be swapped for a sensor that measures a different wavelength of

light, such as infrared, or an entirely different payload such as a hardware radiation

experiment.

6.1.2 Flight Software

All of the flight software for PyCubed-mini1 is written in CircuitPython and runs

on the ATSAMD51 primary microcontroller. The PyCubed-mini flight software

is responsible for managing the full operational state of the satellite. These tasks

include interfacing with each of the subsystem components, recording telemetry,

performing communication operations including packetizing and depacketizing data,

and performing real-time state estimation and control.

1Available at www.github.com/pycubed-mini/flight_software

76

www.github.com/pycubed-mini/flight_software

6. Satellite Flight Hardware and Software

Figure 6.3: PyCubed-mini flight software architecture. The three boxes at the top are
the software states: Deployment, Safe, and Normal. Transitions between the software
states occur when power or thermal thresholds are crossed, and when communication
with a groundstation occurs. The boxes within each state are the individual tasks
that state executes. All tasks communicate through a common satellite object that
provides an abstraction of the component drivers and hardware.

Figure 6.3 shows the architecture used for the PyCubed-mini flight software. At

the highest level, the flight software consists of a three-state state machine. The three

states reflect the three major modes it operates in: Deployment, Safe, and Normal.

The boxes within each state are the individual tasks executed by that state. While

many of the tasks have internal state, it was determined to keep the high-level state

of the satellite simple. These tasks operate in a round-robin fashion, with each task

yielding its execution regularly so other tasks can complete. There are a total of

nine distinct tasks in the PyCubed-mini flight software: Deployment Manager, Radio,

Heartbeat, Hardware Monitor, Safety, Time, Guidance and Control, Imaging (or

Payload), and Telemetry. The states and the behavior of tasks that operate in each

state are discussed subsequently.

The tasks all interface with a common abstraction layer that we refer to as the

77

6. Satellite Flight Hardware and Software

“Satellite Object.” The Satellite Object provides easy access to all of the system

data a task would need without the task directly accessing the component device

drivers. This also allows for an emulated satellite to be used for software-in-the-loop

simulation and unit testing of the tasks.

6.1.3 Software States

Deployment

The deployment state represents the early operation of the satellite and is the first

state that it enters. The primary objective in the deployment state is to run a timer

and activate the antenna burn wires when the timer completes. The satellite remains

in the deployment state after the burn wires are activated until a radio packet is

received by the satellite. If a packet is not received after a long duration, it is assumed

that the antennas failed to deploy and the satellite activates the burn wires again.

When a packet is received the satellite transitions to the normal state.

Safe

The safe state is entered when the satellite either experiences a low battery or high

temperature. In this state all non-essential components are shut down. In particular

we shut down the highest power-draw components: the magnetic torque coils, the

payload, and the radio. The satellite then waits for nominal conditions to return and

transitions to the previous state it was in (deployment or normal).

Normal

The normal state encompasses the majority of satellite operations. All tasks except

for the deployment manager operate in the normal state.

6.1.4 Software Tasks

Deployment Manager Task

The deployment manager is responsible for executing the logic of the deployment

state described in section 6.1.3. It also replaces the safety task. During burn wire

78

6. Satellite Flight Hardware and Software

activation the battery voltage can drop below the safe state transition threshold, so

this transition is suspended until burn wire activation ends. Otherwise the battery

and temperature monitoring are the same as in the safety task.

Safety Task

This task is responsible for regularly checking the battery state of charge and system

temperature. If either are off-nominal the task initiates a transition to the safe state.

Radio Task

The radio task is one of the more complex tasks. It is responsible for sending data in

the transmission queue, and it monitors the radio’s status, waiting for it to indicate

that an incoming message has been received. Messages can be one of three types:

memory buffered, disk buffered, and command. Memory buffered messages are multi-

packet messages that are relatively short, so they are buffered in RAM. Disk buffered

messages are multi-packet messages that are buffered on the disk. Commands are

messages that cause the satellite to execute some action. The commands the satellite

can execute are given in table 6.1.

Table 6.1: PyCubed-mini software commands

Command Argument Action

NO OP N No operation, used for testing
HARD RESET N Perform a hard reset of the flight computer
RELOAD N Restart the flight software
QUERY Y Execute the argument with Python, result returned
EXEC PY Y Execute the argument with Python, result not returned
REQUEST FILE Y Place a file on the transmission queue
LIST DIR Y Transmit the contents of a directory
TQ SIZE N Transmit the length of the transmission queue
CLEAR TX QUEUE N Clear the contents of the transmission queue
MOVE FILE Y Move a file from one location to another
COPY FILE Y Copy a file in one location to another
DELETE FILE Y Remove a file from the filesystem
REQUEST BEACON N Transmit the most recent beacon data
GET RTC N Transmit the RTC time as a tuple of YMDHMS
GET RTC UTIME N Transmit the RTC time as a Unix timestamp
SET RTC Y Set the RTC with a tuple of YMDHMS
SET RTC UTIME Y Set the RTC with a Unix timestamp

79

6. Satellite Flight Hardware and Software

The transmission queue is a priority queue that packetizes and transmits data

when it is loaded onto the queue. The most recent mission requirements for PyCubed-

mini stipulated that transmission could only occur over Germany. Because of this, the

transmission queue only transmits after it receives a command and stops transmitting

5 minutes after the last received command.

Heartbeat Task

The heartbeat task is for convenient debugging of the satellite when it is on the bench.

It blinks an LED at a customizable rate and color depending on the state the satellite

is in. It is the lowest priority task, so if it is blinking regularly it is a good indication

that all tasks are completing on time.

Hardware Monitor Task

The hardware monitor keeps track of hardware peripherals and logs an error when

hardware becomes unavailable.

Time

The time task is simply responsible for logging the time since boot at a regular

interval to give a baseline time if nothing else makes log entries. It also performs

garbage collection each time it is executed.

Guidance and Control

The guidance and control task is not yet complete, so the purpose of the task is

described here. It uses time information and a previous orbit location to approximately

compute its orbital position. It then uses the magnetometer, gyro, and sun sensor

data to compute an estimate of the vehicle attitude with respect to the Earth-centered

inertial frame. This attitude estimate is then tracked by an attitude controller. In

future software versions this task may also operate in a reduced manner to perform

detumbling in the deployment state.

80

6. Satellite Flight Hardware and Software

Imaging Task

This task controls the operation of the camera payload and sends image capture

commands. The camera payload operates asynchronously from the main flight

controller and has its own data storage. However it does not have a direct connection

with the radio, so the imaging task is responsible for transferring image data from

the camera payload to the main flight controller data storage.

Telemetry Task

A large number of measurements are made by the satellite as it is operating. The

telemetry task is responsible for regularly capturing and saving these measurements

to make them easy to recover. The following telemetry items are logged:

• System time

• State machine state

• System flags:

RTC time valid

Groundstation contact has occurred

Burn wires have been activated

• Software error count

• Boot count

• Battery voltage

• CPU temperature

• IMU temperature

• 3-axis gyro measurement

• 3-axis magnetometer measurement

• Most recent received signal strength indicator (RSSI) for the radio

• Most recent frequency error for the radio

• Sun sensor measurements from all six faces

81

6. Satellite Flight Hardware and Software

6.2 Py4

The Py4 system consists of four 1.5U CubeSats (shown in fig. 6.1b) that use the

PyCubed satellite avionics and that were constructed at NASA Ames. It is a follow-on

to the VR3X project with the goal of demonstrating “spacecraft-to-spacecraft ranging,

on-orbit relative navigation, and coordinated simultaneous multi-point radiation

measurements” [32]. The four 1.5U CubeSats will all be launched simultaneously

and will immediately begin performing range measurements between the spacecraft.

In addition, once the primary ranging experiments are completed, the satellites will

become research platforms allowing for individual satellite and formation estimation

and control experiments.

Each Py4 satellite is equipped with a LoRa radio module that allows for networked

communication between satellites and for time-of-flight range measurements between

the satellites. These radio modules work at a range of up to approximately 20 km.

The satellites are also equipped with global positioning system (GPS) units that

allow for precise global localization of the satellites. By including both time-of-flight

ranging and GPS, formation estimation experiments using the ranging measurements

can be performed and compared to the GPS data to verify their performance. The

GNC sensors and actuators are similar to those on the PyCubed-mini. For attitude

estimation, each Py4 satellite includes sun sensors on each face, as well as an inertial

measurement unit containing a gyro and magnetometer. For attitude control, each

face of the Py4 satellite incorporates PCB magnetic torque coils.

All of the sensors and the coil drivers are connected to the PyCubed avionics

microcontroller. However the Py4 hardware also includes a secondary Raspberry

Pi Zero 2 W that allows for higher performance computation onboard the satellite.

The Raspberry Pi is connected to the PyCubed microcontroller via UART; all of

the sensor data and control commands are communicated through this interface.

This allows for the development of the more computationally expensive guidance and

control software on the Raspberry Pi.

82

6. Satellite Flight Hardware and Software

6.2.1 Guidance and Control Software

Since hardware development is performed by NASA Ames, the primary contribution

of CMU (and this thesis) is the guidance and control flight software. In keeping with

the spirit of PyCubed, and for ease of development, the guidance and control software

is developed in Python. We refer to the guidance and control software as PyGNC2. A

block diagram outlining the various PyGNC software components is shown in fig. 6.4.

We have already discussed the PyCubed microcontroller and other satellite hardware;

in the subsequent sections we will discuss the remaining blocks.

Figure 6.4: PyGNC software architecture. The Raspberry Pi runs the PyGNC
algorithms that start by performing batch state estimation updates and then proceed
to incremental state estimation and control updates. The PyGNC software includes
the PyCubed emulator and scenario generator: a software-in-the-loop emulator that
simulates orbit and attitude dynamics, computes realistic sensor measurements,
and packetizes the data into the same format as the PyCubed flight software. This
allows for straightforward software-in-the-loop simulation without modifying the flight
software on the Raspberry Pi. Tasks with a lighter colored background (Attitude
Planner, Attitude Tracker, Telemetry Logger and Telemetry Database) are yet to be
implemented.

2www.github.com/pygnc/pygnc

83

www.github.com/pygnc/pygnc

6. Satellite Flight Hardware and Software

PyCubed Emulator and Scenario Generator

All of the PyGNC software operates on the Raspberry Pi. Not only is this a

straightforward decoupling of responsibilities, it also makes it easy to operate the

Raspberry Pi in a realistic software-in-the-loop simulation with a personal computer

acting in place of the PyCubed microcontroller. This functionality is captured by the

PyCubed emulator and scenario generator blocks of fig. 6.4. The scenario generator

simulates orbit and attitude dynamics, computes realistic sensor measurements, and

packetizes the data into the same format as the PyCubed flight software. The

emulator interfaces with the Raspberry Pi via a UART connection, transfers batch

data files, and then starts the PyGNC main task. It also provides sequential update

data when prompted by the PyGNC main task.

Batch Data Files and Sequential Updates

To reduce the power impact of running the Raspberry Pi all the time, the PyCubed

microcontroller gathers a batch of sensor data and passes it to the Raspberry Pi

before starting PyGNC. PyGNC then uses this data to perform batch orbital and

attitude state estimates. Starting with a batch update allows PyGNC to converge

on an up-to-date state estimate within a few seconds of the Raspberry Pi booting,

rather than requiring minutes or more of data. After the batch update completes,

PyGNC continues to operate with sequential measurement updates from the PyCubed

microcontroller.

PyGNC Main and Message Passing

PyGNC Main is the entry point to the PyGNC software. It is a Python process that is

responsible for starting and monitoring the other PyGNC tasks. It is also responsible

for sending controller updates to the PyCubed microcontroller and for receiver sensor

data updates. To allow for true parallelism of tasks, PyGNC Main uses the Python

multiprocessing library to start each task as a standalone Python process. For this

reason, a reentrant and thread-safe message passing system is needed for tasks to

communicate. We use ZeroMQ3 for message passing and MsgPack4 for serializing the

3www.zeromq.org
4www.msgpack.org

84

www.zeromq.org
www.msgpack.org

6. Satellite Flight Hardware and Software

messages.

State Estimation

Three state estimation problems need to be solved for Py4: orbit estimation, attitude

estimation, and formation estimation.

The orbit estimator uses an extended Kalman filter to compute an estimate of the

satellite’s position and velocity in the Earth-centered inertial frame. Its measurement

inputs are GPS position and velocity measurements. It estimates the position and

velocity of the satellite as well as three acceleration perturbation parameters that

capture drag and other unmodelled accelerations. During the batch estimation phase

the GPS measurements occur at a 25 second time interval; once the sequential

estimation phase begins, GPS measurements occur at a 1 second time interval.

The attitude estimator uses a multiplicative extended Kalman filter to compute an

estimate of the satellite’s orientation with respect to the Earth-centered inertial frame.

Its measurement inputs are sun sensor, gyro, and magnetometer measurements. It

also relies on the orbital estimate to determine the expected sun vector and Earth

magnetic field vector. In addition to an attitude estimate, it also estimates several

sensor bias parameters [34].

In our present design, the formation estimation problem is not solved onboard the

satellite. This is due to two factors: the computational cost of solving a large batch

least squares problem, and limitations on the ranging measurement topology. Each

satellite only gets range measurements in a hub-and-spoke or star pattern, so it lacks

ranges between the other pairs of satellites. In addition, each satellite pair has an

unknown offset and scale factor in their range measurements [29]. By collecting data

on the ground, these offsets and scale factors can be calibrated before the formation

estimation problem is solved.

Attitude Planner and Tracker

The attitude planner and tracker will follow [24] to perform 3-axis magnetorquer-only

attitude control. The attitude planner is based on an iterative linear quadratic

regulator (iLQR) nonlinear trajectory optimization algorithm. It outputs the optimal

attitude trajectory for the satellite to follow. These trajectories have an approximately

85

6. Satellite Flight Hardware and Software

15 minute time horizon. The trajectory is then passed to the attitude tracker that

uses feedback control to compute the magnetorquer control inputs needed to track

the trajectory. Prototypes of these algorithms exist, but they are not yet part of

PyGNC.

Telemetry Logger and Database

All of the tasks produce data that needs to be logged over time. This includes the raw

sensor measurements coming from PyGNC main, as well as the state estimates and

control commands computed by the other tasks. These are all available on separate

ZeroMQ message channels. The telemetry logger subscribes to all of the messages

and saves each one in the telemetry database.

6.2.2 Detumbling

In addition to the previously discussed PyGNC software, the Py4 satellites also include

a detumbling controller that operates natively on the PyCubed microcontroller. This

allows the detumbling controller to operate at a faster update rate of 10-20 Hz. The

detumbling controller is computationally inexpensive in comparison to the PyGNC

algorithms, so there is not a concern with it operating on the resource-constrained

PyCubed microcontroller.

86

Chapter 7

Conclusions

In all of the research results published here, we exceeded the current state-of-the-

art. The Kustaanheimo-Stiefel linear relative-orbital-dynamics model developed in

chapter 3 achieves higher accuracy than other models in the literature while also

representing the relative orbital state in a singularity-free space. It enables convex

trajectory optimization of low-thrust relative orbital maneuvers. The drag-based

formation control scheme in chapter 4 relies on a novel first-principles relationship be-

tween along-track and cross-track position to find out-of-plane orbital maneuvers with

drag modulation as the only control input. The non-monotonic Lyapunov detumbling

controller derived in chapter 5 results in a 50% reduction in detumbling time and

drives the momentum of the system to a lower overall angular momentum than exist-

ing detumbling controllers. The flight hardware and software development discussed

in chapter 6 will enable these and other advanced spacecraft control algorithms to be

validated on orbit.

At the conclusion of any research project, there are more questions than answers.

This research is the same. Each chapter includes a discussion of the future work

related to that project. For any of them to operate successfully on orbit there are

many more details to be worked out than can be enumerated here. Rather than

discussing those details, the following are some high-level ideas that could drive future

research directions:

• All of the algorithms discussed rely on large amounts of computation. Efficient

implementation many not be enough to get the algorithms running reliably on

87

7. Conclusions

hardware. When computational bottlenecks are reached, spacecraft avionics

designers turn to FPGAs. One future research direction would be to implement

core components of these algorithms, such as a linear system solver or matrix

factorizaton on FPGAs.

• Utilization of low-cost imaging sensors. CMOS imaging sensors like those found

in cell phone cameras are inexpensive and ubiquitous. Many of the challenging

aspects of satellite attitude determination could be solved by replacing low-

information sensors such as sun-sensors and Earth-horizon sensors with high-

information CMOS imaging sensors. The challenge then becomes developing

image processing algorithms that provide useful information on a computation-

constrained satellite. The PyCubed-mini satellite would be an ideal platform

for developing these capabilities.

• Distributed state estimation and control. For higher performance satellites

radiation tolerance is of utmost importance. The proliferation of low-cost small

satellites has pushed back on the need for radiation tolerant systems at a

constellation level. What if we took that approach at a satellite level, placing

many low-cost attitude determination and control modules on a single satellite

and letting them work together? Fault tolerance would then be a result of

extreme redundancy, allowing a much more gradual performance degradation

than the loss of a single centralized system.

88

Bibliography

[1] Amir Ali Ahmadi and Pablo A Parrilo. Non-monotonic Lyapunov functions for
stability of discrete time nonlinear and switched systems. In 2008 47th IEEE
conference on decision and control, pages 614–621. IEEE, 2008. 5.1, 5.4

[2] Kyle T Alfriend, Srinivas R Vadali, Pini Gurfil, Jonathan P How, and Louis
Breger. Spacecraft formation flying: Dynamics, control and navigation, volume 2.
Elsevier, 2009. 3.7.1

[3] Patrick Alken, Erwan Thébault, Ciarán D Beggan, Hagay Amit, J Aubert,
J Baerenzung, TN Bondar, WJ Brown, S Califf, A Chambodut, et al. Interna-
tional geomagnetic reference field: the thirteenth generation. Earth, Planets and
Space, 73(1):1–25, 2021. 5.5

[4] ApS MOSEK. The MOSEK optimization software. https://github.com/

MOSEK/Mosek.jl, 2021. 4.5

[5] Giulio Avanzini and Fabrizio Giulietti. Magnetic detumbling of a rigid spacecraft.
Journal of guidance, control, and dynamics, 35(4):1326–1334, 2012. 5.2, 5.3.2

[6] Riccardo Bevilacqua and Marcello Romano. Rendezvous maneuvers of multiple
spacecraft using differential drag under J2 perturbation. Journal of Guidance,
Control, and Dynamics, 31(6):1595–1607, November 2008. ISSN 0731-5090,
1533-3884. doi: 10.2514/1.36362. URL https://arc.aiaa.org/doi/10.2514/

1.36362. 4.2

[7] Sanjay P. Bhat. Controllability of nonlinear time-varying systems: applications
to spacecraft attitude control using magnetic actuation. IEEE Transactions on
Automatic Control, 50(11):1725–1735, 2005. 5.5

[8] Andrew Blatner. Optimal Differential Drag Control of Small Satellite Constella-
tions. PhD thesis, University of California at Berkeley, August 2018. URL https:

//www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-121.pdf. 4.2

[9] Joseph A. Burns. Elementary derivation of the perturbation equations of celestial
mechanics. American Journal of Physics, 44(10):944–949, October 1976. ISSN
0002-9505, 1943-2909. doi: 10.1119/1.10237. URL http://aapt.scitation.

org/doi/10.1119/1.10237. 4.3.2

89

https://github.com/MOSEK/Mosek.jl
https://github.com/MOSEK/Mosek.jl
https://arc.aiaa.org/doi/10.2514/1.36362
https://arc.aiaa.org/doi/10.2514/1.36362
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-121.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-121.pdf
http://aapt.scitation.org/doi/10.1119/1.10237
http://aapt.scitation.org/doi/10.1119/1.10237

Bibliography

[10] Charles D. Bussy-Virat, Aaron J. Ridley, Abhay Masher, Kyle Nave, and Marissa
Intelisano. Assessment of the differential drag maneuver operations on the
CYGNSS constellation. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 12(1):7–15, January 2019. ISSN 2151-1535.
doi: 10.1109/JSTARS.2018.2878158. 4.2

[11] Vladimir A. Chobotov. Orbital Mechanics, chapter 8. Introduction to Orbit
Perturbations, page 185–213. American Institute of Aeronautics and Astronautics,
Inc., 2002. 4.3.2, 4.3.3

[12] WH Clohessy and RS Wiltshire. Terminal guidance system for satellite ren-
dezvous. Journal of the Aerospace Sciences, 27(9):653–658, 1960. 3.2

[13] Howard D. Curtis. Orbital Mechanics for Engineering Students, page 652–715.
Elsevier Butterworth Heinemann, third edition, 2005. 4.3.1, 4.3.3

[14] F deBruijn, E Gill, and J How. Comparative analysis of Cartesian and curvilinear
Clohessy-Wiltshire equations. Journal of Aerospace Engineering, 3(2):1, 2011.
3.2

[15] Mohammed AA Desouky and Ossama Abdelkhalik. A new variant of the B-dot
control for spacecraft magnetic detumbling. Acta Astronautica, 171:14–22, 2020.
5.2, 5.3.2

[16] Mohammed AA Desouky and Ossama Abdelkhalik. Time-optimal magnetic
attitude detumbling. Journal of Spacecraft and Rockets, 57(3):549–564, 2020.
5.2, 5.3.2

[17] Alexander Domahidi, Eric Chu, and Stephen Boyd. ECOS: An SOCP solver for
embedded systems. In 2013 European control conference (ECC), pages 3071–3076.
IEEE, 2013. 4.5

[18] HA Nour Eldin. Trajectory control in rendezvous problems using the regulariza-
tion techniques. IFAC Proceedings Volumes, 3(1):101–115, 1970. 3.2

[19] Giusy Falcone and Zachary R Putnam. Energy depletion guidance for aerobraking
atmospheric passes. Journal of Guidance, Control, and Dynamics, 45(4):651–668,
2022. doi: 10.2514/1.G006171. 4.3.2

[20] Giusy Falcone, Jacob B Willis, and Zachary Manchester. Propulsion-free cross-
track control of a leo small-satellite constellation with differential drag. arXiv
preprint arXiv:2306.13844, 2023. 1

[21] Cyrus Foster, James Mason, Vivek Vittaldev, Lawrence Leung, Vincent Beuke-
laers, Leon Stepan, and Rob Zimmerman. Constellation phasing with differential
drag on Planet Labs satellites. Journal of Spacecraft and Rockets, 55(2):473–
483, March 2018. ISSN 0022-4650, 1533-6794. doi: 10.2514/1.A33927. URL
https://arc.aiaa.org/doi/10.2514/1.A33927. 3.1, 4.1, 4.2, 4.3.2

90

https://arc.aiaa.org/doi/10.2514/1.A33927

Bibliography

[22] Bo Fu, Evan Sperber, and Fidelis Eke. Solar sail technology—A state of the art
review. Progress in Aerospace Sciences, 86:1–19, 2016. 3.1

[23] Joseph Gangestad, Brian Hardy, and David Hinkley. Operations, orbit deter-
mination, and formation control of the AeroCube-4 CubeSats. Small Satellite
Conference, 2013. 4.2

[24] Andrew Gatherer and Zac Manchester. Magnetorquer-only attitude control of
small satellites using trajectory optimization. In Proceedings of AAS/AIAA
Astrodynamics Specialist Conference, 2019. 4.1, 5.2, 6.1.1, 6.2.1

[25] Dong-Woo Gim and Kyle T Alfriend. State transition matrix of relative motion
for the perturbed noncircular reference orbit. Journal of Guidance, Control, and
Dynamics, 26(6):956–971, 2003. 3.2

[26] Andrew T Harris, Christopher D Petersen, and Hanspeter Schaub. Linear coupled
attitude–orbit control through aerodynamic drag. Journal of Guidance, Control,
and Dynamics, 43(1):122–131, 2020. 4.2

[27] Matthew W. Harris and Behçet Açıkmeşe. Minimum time rendezvous of multiple
spacecraft using differential drag. Journal of Guidance, Control, and Dynamics,
37(2):365–373, March 2014. ISSN 0731-5090. doi: 10.2514/1.61505. URL
https://arc.aiaa.org/doi/10.2514/1.61505. 4.2

[28] Sonia Hernandez and Maruthi R Akella. Lyapunov-based guidance for orbit
transfers and rendezvous in Levi-Civita coordinates. Journal of Guidance,
Control, and Dynamics, 37(4):1170–1181, 2014. 3.2

[29] Max Holliday, Kevin Tracy, Zachary Manchester, and Anh Nguyen. The V-R3X
mission: Towards autonomous networking and navigation for cubesat swarms.
In The 4S Symposium 2022, 2022. 6.2.1

[30] Maximillian Holliday, Andrea Ramirez, Connor Settle, Tane Tatum, Debbie
Senesky, and Zachary Manchester. PyCubed: An open-source, radiation-tested
cubesat platform programmable entirely in Python. 33rd Annual AIAA/USU
Conference on Small Satellites, 2019. 1, 6

[31] Matthew Hunter and Simone D’Amico. Closed-form optimal solutions for
propulsive-differential drag control of spacecraft swarms. In AAS/AIAA Astro-
dynamics Specialist Conference, 2022. 4.2

[32] Roger C. Hunter. NASA Small Spacecraft Technology Program Town
Hall, 2023. URL https://www.nasa.gov/wp-content/uploads/2023/09/12.

hunter-2023-nasa-town-hall-august-7-final.pdf. 6.2

[33] Davide Invernizzi and Marco Lovera. A projection-based controller for fast
spacecraft detumbling using magnetic actuation. Automatica, 113:108779, 2020.
5.2, 5.3.2, 5.6

91

https://arc.aiaa.org/doi/10.2514/1.61505
https://www.nasa.gov/wp-content/uploads/2023/09/12.hunter-2023-nasa-town-hall-august-7-final.pdf
https://www.nasa.gov/wp-content/uploads/2023/09/12.hunter-2023-nasa-town-hall-august-7-final.pdf

Bibliography

[34] Benjamin Jensen. A low-cost attitude determination and control system and
hardware-in-the-loop testbed for cubesats. Master’s thesis, Carnegie Mellon
University, Pittsburgh, PA, August 2022. 6.2.1

[35] Neil Khera. PyCubed-mini: A low-cost, open-source satellite research platform.
Master’s thesis, Carnegie Mellon University, Pittsburgh, PA, August 2023. 6.1.1

[36] Adam W Koenig, Tommaso Guffanti, and Simone D’Amico. New state transition
matrices for spacecraft relative motion in perturbed orbits. Journal of Guidance,
Control, and Dynamics, 40(7):1749–1768, 2017. 3.2, 3.6

[37] Balaji Shankar Kumar, Alfred Ng, Keisuke Yoshihara, and Anton De Ruiter.
Differential drag as a means of spacecraft formation control. IEEE Transactions
on Aerospace and Electronic Systems, 47(2):1125–1135, April 2011. ISSN 1557-
9603. doi: 10.1109/TAES.2011.5751247. 4.2

[38] P. Kustaanheimo, A. Schinzel, H. Davenport, and E. Stiefel. Perturbation theory
of kepler motion based on spinor regularization. Journal für die reine und
angewandte Mathematik, 1965(218):204–219, 1965. doi: doi:10.1515/crll.1965.
218.204. URL https://doi.org/10.1515/crll.1965.218.204. 3.2

[39] Juyoung Lee and Hyochoong Bang. Ground track control using differential drag
for small earth observation satellite constellations. Journal of Spacecraft and
Rockets, 59(5):1552–1564, 2022. 4.2

[40] Kristina Lemmer. Propulsion for cubesats. Acta Astronautica, 134:231–243, 2017.
3.1, 3.7.1

[41] C. L. Leonard, W. M. Hollister, and E. V. Bergmann. Orbital formation keeping
with differential drag. Journal of Guidance, Control, and Dynamics, 12(1):
108–113, January 1989. ISSN 0731-5090, 1533-3884. doi: 10.2514/3.20374. URL
https://arc.aiaa.org/doi/10.2514/3.20374. 4.2

[42] Hannu Leppinen. Deploying a single-launch nanosatellite constellation to several
orbital planes using drag maneuvers. Acta Astronautica, 121:23–28, April 2016.
ISSN 00945765. doi: 10.1016/j.actaastro.2015.12.036. 4.2

[43] T Levi-Civita. Sur la résolution qualitative du problème restreint. Acta Mathe-
matica, 30:305, 1906. 3.2

[44] Xinfu Liu and Ping Lu. Robust trajectory optimization for highly constrained
rendezvous and proximity operations. In AIAA Guidance, Navigation, and
Control (GNC) Conference, page 4720, 2013. 3.2

[45] Xinfu Liu, Ping Lu, and Binfeng Pan. Survey of convex optimization for aerospace
applications. Astrodynamics, 1:23–40, 2017. 4.2

[46] TD Maclay and Christopher Tuttle. Satellite stationkeeping of the ORBCOMM
constellation via active control of atmospheric drag: operations, constraints, and

92

https://doi.org/10.1515/crll.1965.218.204
https://arc.aiaa.org/doi/10.2514/3.20374

Bibliography

performance (AAS 05-152). Advances in the Astronautical Sciences, 120(1):763,
2005. 4.2

[47] Andrew Makhorin. GLPK (GNU linear programming kit). https://github.

com/jump-dev/GLPK.jl, 2023. 4.5

[48] Danylo Malyuta, Yue Yu, Purnanand Elango, and Behçet Açıkmeşe. Advances
in trajectory optimization for space vehicle control. Annual Reviews in Control,
52:282–315, 2021. 4.2

[49] F. Markley. Attitude control algorithms for the solar maximum mission. In
Guidance and control conference, page 1247, 1978. 5.1, 5.2, 5.3.2

[50] F. Landis Markley and John L. Crassidis. Fundamentals of spacecraft attitude
determination and control, volume 1286. Springer, 2014. 2.1.2, 4.1, 4.1, 5.1, 5.2,
5.3.2

[51] Michael Mathews and Suzan Leszkiewicz. Efficient spacecraft formationkeeping
with consideration of ballistic coefficient control. In 26th Aerospace Sciences
Meeting. American Institute of Aeronautics and Astronautics, 1988. doi: 10.2514/
6.1988-375. URL https://arc.aiaa.org/doi/abs/10.2514/6.1988-375. 4.2

[52] David Q. Mayne, James B. Rawlings, Christopher V. Rao, and Pierre O.M.
Scokaert. Constrained model predictive control: Stability and optimality. Auto-
matica, 36(6):789–814, 2000. doi: 10.1016/S0005-1098(99)00214-9. 4.5.2

[53] Oliver Montenbruck, Eberhard Gill, and Fh Lutze. Satellite orbits: models,
methods, and applications. Appl. Mech. Rev., 55(2):B27–B28, 2002. 2.1.1, 2.1.2

[54] Sanny Omar. Drag-based formation control of Millennium Space Systems satel-
lites. 2023 Small Satellite Conference, 2023. 4.2

[55] Alba Orbital, Delft University of Technology, and GAUSS Srl. The PocketQube
Standard, 2018. URL https://www.albaorbital.com/pocketqube-standard.
6.1

[56] M. Yu Ovchinnikov and D.S. Roldugin. A survey on active magnetic attitude
control algorithms for small satellites. Progress in Aerospace Sciences, 109:
100546, 2019. 5.2

[57] John E. Prussing and Bruce A. Conway. Orbital Mechanics, chapter 9. Perturba-
tion, page 155–168. Oxford University Press, 2013. 4.3.2

[58] Christopher Rackauckas and Qing Nie. DifferentialEquations.jl — A performant
and feature-rich ecosystem for solving differential equations in Julia. Journal of
Open Research Software, 5(1):15, 2017. 3.6

[59] Enrico Silani and Marco Lovera. Magnetic spacecraft attitude control: a survey
and some new results. Control engineering practice, 13(3):357–371, 2005. 5.2

[60] Emmanuel Sin, Murat Arcak, and Andrew Packard. Small satellite constellation

93

https://github.com/jump-dev/GLPK.jl
https://github.com/jump-dev/GLPK.jl
https://arc.aiaa.org/doi/abs/10.2514/6.1988-375
https://www.albaorbital.com/pocketqube-standard

Bibliography

separation using linear programming based differential drag commands. In 2018
Annual American Control Conference (ACC), pages 4951–4956, June 2018. doi:
10.23919/ACC.2018.8431408. 4.2

[61] Dario Spiller, Fabio Curti, and Christian Circi. Minimum-time reconfiguration
maneuvers of satellite formations using perturbation forces. Journal of Guidance,
Control, and Dynamics, 40(5):1130–1143, May 2017. ISSN 0731-5090, 1533-
3884. doi: 10.2514/1.G002382. URL https://arc.aiaa.org/doi/10.2514/1.

G002382. 4.2

[62] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. OSQP: An
operator splitting solver for quadratic programs. Mathematical Programming
Computation, 12(4):637–672, 2020. doi: 10.1007/s12532-020-00179-2. URL
https://doi.org/10.1007/s12532-020-00179-2. 3.7.1

[63] A. Craig Stickler and K.T. Alfriend. Elementary magnetic attitude control
system. Journal of spacecraft and rockets, 13(5):282–287, 1976. 5.2, 5.3.2

[64] Eduard L Stiefel and Gerhard Scheifele. Linear and regular celestial mechanics:
Perturbed two-body motion, numerical methods, canonical theory, volume 174.
Springer, 1971. 3.3.2, 3.4

[65] Joshua Sullivan, Sebastian Grimberg, and Simone D’Amico. Comprehensive
survey and assessment of spacecraft relative motion dynamics models. Journal
of Guidance, Control, and Dynamics, 40(8):1837–1859, 2017. 3.2, 3.6

[66] Michael Swartwout. The internet ruins everything: The sixth age of small
satellites. In 2023 IEEE Aerospace Conference, pages 1–8. IEEE, 2023. 1

[67] James D Thorne and Christopher D Hall. Minimum-time continuous-thrust orbit
transfers using the Kustaanheimo-Stiefel transformation. Journal of guidance,
control, and dynamics, 20(4):836–838, 1997. 3.2

[68] Michael Tillerson, Gokhan Inalhan, and Jonathan P How. Co-ordination and
control of distributed spacecraft systems using convex optimization techniques.
International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal,
12(2-3):207–242, 2002. 4.2

[69] Kevin Tracy and Zachary Manchester. Low-thrust trajectory optimization
using the Kustaanheimo-Stiefel transformation. In AAS/AIAA Astrodynamics
Specialist Conference, pages 1–12, 2021. 3.1, 3.2, 3.4

[70] Ch Tsitouras. Runge–kutta pairs of order 5 (4) satisfying only the first column
simplifying assumption. Computers & Mathematics with Applications, 62(2):
770–775, 2011. 3.6

[71] Madeleine Udell, Karanveer Mohan, David Zeng, Jenny Hong, Steven Diamond,
and Stephen Boyd. Convex optimization in Julia. SC14 Workshop on High

94

https://arc.aiaa.org/doi/10.2514/1.G002382
https://arc.aiaa.org/doi/10.2514/1.G002382
https://doi.org/10.1007/s12532-020-00179-2

Bibliography

Performance Technical Computing in Dynamic Languages, 2014. 4.5

[72] David A Vallado. Fundamentals of astrodynamics and applications, volume 12.
Springer Science & Business Media, 2001. 2.1.1

[73] Surjit Varma and Krishna Dev Kumar. Multiple satellite formation flying
using differential aerodynamic drag. Journal of Spacecraft and Rockets, August
2012. doi: 10.2514/1.52395. URL https://arc.aiaa.org/doi/abs/10.2514/

1.52395. 4.2

[74] James R. Wertz. Space mission analysis and design, chapter 6. Introduction to
Astrodynamics, page 131–159. Microcosm Press, 2005. 4.3.2

[75] Jacob B Willis and Zachary Manchester. Convex optimization of relative or-
bit maneuvers using the Kustaanheimo-Stiefel transformation. In 2023 IEEE
Aerospace Conference, pages 1–7. IEEE, 2023. 1

[76] Jacob B. Willis, Paulo R.M. Fisch, Aleksei Seletskiy, and Zachary Manchester.
Building a better B-dot: Fast detumbling with non-monotonic Lyapunov func-
tions. 2024 IEEE Aerospace Conference (accepted), 2024. 1

[77] Rafal Wisniewski and F. Landis Markley. Optimal magnetic attitude control.
IFAC Proceedings Volumes, 32(2):7991–7996, 1999. 5.2

[78] Koji Yamanaka and Finn Ankersen. New state transition matrix for relative
motion on an arbitrary elliptical orbit. Journal of guidance, control, and dynamics,
25(1):60–66, 2002. 3.2

[79] L.A. Zadeh and B.H. Whalen. On optimal control and linear programming. IRE
Transactions on Automatic Control, 7(4):45 – 46, 1962. 4.4.3

95

https://arc.aiaa.org/doi/abs/10.2514/1.52395
https://arc.aiaa.org/doi/abs/10.2514/1.52395

	1 Introduction
	2 Background
	2.1 Orbital Dynamics
	2.1.1 Two-Body Dynamics
	2.1.2 Orbit Perturbations

	2.2 Attitude Dynamics
	2.2.1 Rotation Matrices
	2.2.2 Unit Quaternions
	2.2.3 Angular Rate Dynamics

	2.3 Rigid Body Dynamics

	3 Relative Kustaanheimo-Stiefel Dynamics
	3.1 Introduction
	3.2 Related Work
	3.3 Background
	3.3.1 Cartesian Orbit Dynamics
	3.3.2 The Kustaanheimo-Stiefel Transform

	3.4 Transforming from Cartesian to KS space
	3.5 Relative KS Dynamics
	3.6 Comparison of relative-orbit models
	3.7 Relative Orbital Maneuvers via Convex Optimization
	3.7.1 Low-Thrust Rendezvous Maneuver

	3.8 Conclusions

	4 Drag-Based Formation Control
	4.1 Introduction
	4.2 Related Work
	4.3 Background
	4.3.1 Keplerian Motion
	4.3.2 Atmospheric Drag
	4.3.3 Nodal Precession and The Method of Averaging

	4.4 Formation Flying
	4.4.1 Linearized Dynamics
	4.4.2 Constraints on the Final Conditions of Drag-Based Formation Control
	4.4.3 Optimization-Based Drag Maneuver Planning

	4.5 Simulation Experiments
	4.5.1 Trajectory Optimization
	4.5.2 Closed-Loop Simulation Results

	4.6 Conclusions

	5 Magnetorquer Detumbling
	5.1 Introduction
	5.2 Related Work
	5.3 Background
	5.3.1 Attitude Dynamics
	5.3.2 Detumbling Control

	5.4 Non-monotonic Control Derivation
	5.4.1 Non-Monotonic Detumbling
	5.4.2 Causal Implementation
	5.4.3 Complete Controller

	5.5 Simulation Experiments
	5.6 Conclusion

	6 Satellite Flight Hardware and Software
	6.1 PyCubed-mini
	6.1.1 Flight Hardware
	6.1.2 Flight Software
	6.1.3 Software States
	6.1.4 Software Tasks

	6.2 Py4
	6.2.1 Guidance and Control Software
	6.2.2 Detumbling

	7 Conclusions
	Bibliography

