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ABSTRACT

Autonomous navigation in human crowds (i.e., social navigation) presents several challenges:

The robot often needs to rely on its noisy sensors to identify and localize pedestrians in human

crowds; the robot needs to plan efficient paths to reach its goals; and the robot needs to do so

in a safe and socially appropriate manner. Recent work has proposed model-based methods with

an emphasis on modeling specific interaction scenarios and learning-based methods to tackle the

navigation problem end-to-end. Model-based methods lack adaptation in complex crowded en-

vironments, while learning-based methods do not have access to large, complex datasets and can

only be trained in unrealistic simulators.

In this thesis, we focus on the novel angle of leveraging pedestrian groups to address the so-

cial navigation problem. We first introduce the concept of social group space via group split and

merge predictions and formulate a model for group state predictions. We further show that split

and merge predictions on group-based representations are more accurate than predictions made on

individual-based representations. Second, we integrate our group-based representations and pre-

diction models into a Model Predictive Control (MPC) framework. We show that compared to

individual-based representations in the same MPC framework, our framework produces safer and

more socially appropriate motions. This demonstrates the benefit of model-based methods when

coupled with a learning-based state predictor. Third, we propose a simplified representation of

the social group space based on the visible edges of the groups. We show that the simplified rep-

resentation can replace our original representation in an MPC framework by maintaining similar

performance levels while significantly reducing computation time.

In parallel to these contributions, we address the need for real-world large-scale pedestrian

ii



datasets in training learning-based methods for social navigation. We also identify a similar need

to capture greater varieties of group-based pedestrian interactions. In response to these needs, we

introduce our own scalable data collection efforts and dataset: the TBD Pedestrian Dataset. Our

data collection pipeline enables efficient collection and labeling of large quantities of data. Our

publicly available dataset contains both top-down and ego-centric view sensor data and is much

larger than similar prior datasets. This contribution will dramatically advance the work on social

robot navigation.
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CHAPTER 1

INTRODUCTION

Figure 1.1: A food delivery robot developed by Starship Technologies.

Over the last three decades, as mobile robots’ navigation capabilities have increased, we have

seen growing interest in mobile robots navigating in pedestrian environments. Early deployments

of this type have focused on autonomous mobile robots that serve as tour guide robots in mu-

seums, such as RHINO [Burgard et al., 1998] and Minerva [Thrun et al., 1999]. More recently,

mobile robots have taken on the tasks of cleaning and delivery in crowded public areas, leading

to documented problems with social behavior [Mutlu and Forlizzi, 2008]. In particular, the ability

to navigate among humans is a necessity for autonomous service robots (an example of which is

shown in Figure 1.1 1). This ability, often referred to as social navigation, requires the robot to

perform socially acceptable navigation actions that cause minimal disturbance to pedestrians while

preserving efficiency in reaching task goals. However, many commercial service robots today lack

full social navigation capacity. They often run on predefined paths and employ a stop-and-go strat-

egy when a pedestrian approaches. These overly constrained navigation settings and strategies

result in low efficiency for the robots in achieving their tasks, and the predefined paths severely
1“16a.Robot.Postmates.WDC.25October2017” by Elvert Barnes is licensed under CC BY-SA 2.0
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limit the robots’ possible navigation goals.

The primary reason a stop-and-go strategy has low efficiency is that service robots often run into

dense human crowds. In a dense population, the robot frequently detects nearby human presence

and waits. Even if the robot is equipped with a planner, a conservative estimate of the pedestrian

dynamics could result in no free space for the robot to navigate. This is referred to by Trautman

and Krause [2010] as the freezing robot problem.

To address this issue, researchers have concluded that modeling human-human and human-

robot navigation interactions is the key to improving efficiency while maintaining safety. This is

explored using both model-based interaction modeling methods [van den Berg et al., 2011, Traut-

man et al., 2015, Singamaneni et al., 2021] and learning-based methods [Chen et al., 2017, Chen

et al., 2019, Liu et al., 2021, Kästner et al., 2020]. A survey paper by [Mavrogiannis et al., 2021]

provides more in-depth coverage of work in both directions. Model-based methods offer the bene-

fits of good safety control and interpretability of robot behavior, but they adapt poorly to complex,

crowded real-world scenarios where pedestrian behavior is too diverse to be covered comprehen-

sively by the proposed models. Learning-based models have the ability to abstract pedestrian be-

havior, but current methods are trained only in simulation due to a lack of large-scale datasets. The

simulators used in training these models are often unrealistic in terms of how pedestrian movements

are simulated. If pedestrians are realistically simulated in simulation, we can copy their behavior

model as the social navigation solution to a real-world robot.

In this thesis, we propose leveraging pedestrian groups to address navigation in dense human

crowds. Humans subconsciously behave and perceive others as groups when in crowds [Koffka,

1935]. Therefore, using group-based representations inherently respects the social norm of group-

ing and reduces the likelihood of intruding into pedestrian groups. In addition, dense crowds pose

perception challenges for a mobile robot as the robot is unable to detect everyone in the environ-

ment due to occlusions. By abstracting sensor detection into groups, we can potentially bypass

the challenge of identifying individual pedestrians in a computationally efficient manner. Pedes-

trian group formulation is a level of model-based abstraction to simplify inter-group interactions.

We further integrate our group-based representations into a Model Predictive Control framework

for better safety control. However, to model group behavior and inter-group interactions, we use

learning-based models to capture and predict future states of the groups.

Parallel to the work on group-based navigation, we also address the lack of large-scale labeled

pedestrian datasets in the learning-based community. We also identify the need for large-scale

datasets to better model group-based behavior and interactions. We propose a data collection in-

frastructure that allows efficient labeling of large quantities of pedestrian data. With it, we also
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present a larger-scale dataset, the TBD Pedestrian Dataset. Our dataset contains many unique char-

acteristics and is much larger than prior similar datasets.

1.1 Challenges

First, we explain in greater detail the challenges that hinder current mobile robots’ ability to achieve

full social navigation in pedestrian environments, particularly in crowded scenarios. This thesis

contributes work addressing the following observed challenges.

1.1.1 Social Challenges of Social Navigation

Many social challenges exist in this domain. To support the top-level goal of abiding by social

norms while maintaining safety and efficiency, mobile robots need to reason about and perform

actions that minimize disturbances to pedestrian behavior. However, there is limited knowledge on

systematic modeling of pedestrian behavior.

In this thesis, we focus on the challenge of understanding and preserving inter-pedestrian re-

lationships. In a crowded environment, pedestrians form varying levels of relationships with other

pedestrians, ranging from strangers who temporarily share common navigation goals to intimate

partners. At the proxemics level, these relationships inform the social spaces among pedestrians.

Mobile robots that intrude on such social spaces are often perceived as rude and unsocial. On a

side note, mobile robots can also form implicit navigational relationships with nearby pedestrians

to better communicate intentions and produce predictable navigation actions.

1.1.2 Practical Challenges of Social Navigation

From a practical perspective, we observe two complexities associated with real-world mobile robot

implementations.

The first complexity involves limitations in perception. Mobile robots take inputs from noisy

onboard sensors such as sonars, LiDARs, and RGBD cameras to perceive humans [Chatterjee and

Steinfeld, 2016]. These sensors, despite the potential of state-of-the-art deep learning models [Wu

et al., 2019, Redmon and Farhadi, 2018], often fail to produce identification and localization of

pedestrians with reliability guarantees. Even if the sensors are noise-free, occlusions are com-

monplace in crowds from the perspective of a ground-level mobile robot. Additionally, unlike

autonomous driving vehicles, mobile service robots are often smaller in profile, and their operating
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environment often demands closer interaction with pedestrians. As a result, their perception of

pedestrians can be partial, observing only the leg and waist areas of nearby pedestrians.

The second complexity originates from current limitations in planning. In crowded environ-

ments, conservative estimates of pedestrian dynamics and future state predictions sometimes block

off all available navigation paths between the robot and its goal. With no available paths to proceed

in its planning space, the robot is unable to make a progressive navigation decision, i.e. it encoun-

ters the freezing robot problem. A natural solution is to consider navigation strategies that coor-

dinate with pedestrians. However, explicit forms of communication (e.g. verbal communication)

with nearby pedestrians are undesirable because they distract pedestrians, may induce discomfort,

and do not scale when considering large groups of robots and people. They are also inefficient

because mobile robots make navigation decisions frequently. Therefore, in this thesis, we solely

focus on the robot’s motions with humans, or implicit interactions.

1.1.3 Background Challenges of Social Navigation

Learning-based methods have gained great popularity in the social navigation community. Many

works focus on end-to-end learning, through reinforcement learning [Chen et al., 2017, Chen et al.,

2019, Liu et al., 2021, Kästner et al., 2020] or inverse reinforcement learning [Tai et al., 2018, Okal

and Arras, 2016]. Other works focus on the use of learning-based models to address perception

challenges, such as pedestrian trajectory forecasting [Alahi et al., 2016, Gupta et al., 2018], group

detection [Taylor et al., 2020] or eye gaze [Belkada et al., 2021]. For a dataset to be useful for social

navigation, it needs to be collected in pedestrian-rich environments and contain grounded labels in

the metric space. So far, datasets that satisfy these two criteria are small, with ETH [Pellegrini

et al., 2009] and UCY [Lerner et al., 2007] still the mainstream datasets used in social navigation

research. Some datasets such as ATC [Brščić et al., 2013] and SCAND [Karnan et al., 2022] use

automated methods to label pedestrians or do not label pedestrians. Although these datasets are

valuable large-scale datasets, the social navigation research community largely utilizes simulation

or computer vision task-related datasets as alternatives.

Social navigation simulation tools have also developed rapidly. Notable recent social naviga-

tion simulators include [Biswas et al., 2021, Tsoi et al., 2020, Kästner et al., 2022]. However, the

problem of modeling pedestrian behavior realistically in simulators is a paradox: if the pedestrians

behave realistically in simulators, then the same behavior model can be carried over to the real

world, and social navigation will be solved.
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1.2 Contributions

In a step towards addressing these challenges, this thesis proposes leveraging pedestrian groups in

support of robot social navigation and showcases a data collection system for large-scale pedestrian

datasets.

The use of pedestrian groups is psychologically intuitive. From a perception perspective, we

argue that human perceptions of crowds are short-term and do not scale with crowd size. Instead

of tracking and predicting pedestrians individually, humans group other pedestrians with similar

motion characteristics together. This observation is in line with the psychological process known

as Gestalt [Koffka, 1935], where organisms observe the formation of entities rather than individ-

ual components. From a behavioral perspective, we similarly argue that humans do not expend

significant energy in navigation planning in crowds. Instead of carefully zigzagging through gaps

among pedestrians, humans often conform to the behavior of neighboring pedestrians with similar

short-term goals and form pedestrian groups.

On the perception level, this thesis proposes a novel group-based obstacle representation of

pedestrians. Leveraging pedestrian groups in this way directly offers the benefit of preventing

the robot from intruding into social spaces formed by inter-pedestrian relationships. Pedestrians

often navigate in groups when they share social ties with each other. Intrusion into such pedestrian

groups is often perceived as rude and unsocial. Even without social ties, cutting through pedestrian

groups can cause disturbances to the pedestrians navigating within the groups.

From a practical standpoint, our group-based obstacle representation can also be generated

from noisy sensor inputs, such as point clouds, instead of outputs from pedestrian detection and

localization models. In addition, by focusing on the edges of the groups that are closest to the robot,

group-based representations can potentially cover occluded pedestrians [Chatterjee and Steinfeld,

2016]. We also show that group-based representations, when integrated with a traditional planner

on a mobile robot, result in fewer group intrusions. This may lead to safer and more socially

appropriate navigation behavior for the robot.

On the navigation level, we observe that pedestrian groups, as an intermediate representation,

not only help to prevent social group intrusions, but also close off the tiny gaps that exist among

pedestrians. It is dangerous for the robot to navigate using these tiny gaps because it leaves little

margin for error in controls or uncertainty in perception. As shown in chapter 4, the robot’s overall

behavior becomes more polite and safe.

In parallel to the proposed group-based navigation system, we address the background chal-

lenge in social navigation by designing a scalable pedestrian data collection system. The system
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consists of portable hardware powered by batteries, so that data can be collected at any location

theoretically. The semi-autonomous labeling pipeline coupled with our error-checking tools can

produce large amounts of grounded, human-verified labels quickly. With this system, we collect

a large-scale pedestrian dataset that supports social navigation research. Our dataset also contains

some unique characteristics such as a combination of top-down views and ego-centric views and

the use of a suitcase robot that is pulled by humans to capture naturalistic pedestrian interactions

with the robot.

1.3 Outline

An outline of the thesis projects is as follows.

• Chapter 3: We introduce our initial pipeline to generate group-based representations. We

show that by observing the transformation of social group shapes generated in this way, we

can successfully predict social group splits and merges. We also show that such a task may

be successfully performed on social group shapes generated both from pedestrians and from

simulated laser scan points.

• Chapter 4: We incorporate the group-based representations generated by the pipeline in

Chapter 3 into a model predictive control (MPC)-based planner. We show that by leveraging

group-based representations and future state predictions, the mobile robot produces safer and

more social behavior in simulation.

• Chapter 5: We propose to modify our group generation pipeline by focusing on the visible

edge of the groups. This modification greatly decreases the computation time to generate

group-based representations and inference prediction models while maintaining similar per-

formance.

• Chapter 7: Due to the small scales of the pedestrian datasets available, we do not see large

quantities of pedestrian groups present in these datasets. We describe our first set of data

collection efforts, which include a portable hardware setup and a semi-autonomous labeling

system to facilitate the data collection process.

• Chapter 8: We introduce our second set of data collection efforts, which include major

improvements on hardware, the labeling pipeline, and the addition of an error checking tool

that enables fast label production. Using the updated system, we create a much larger dataset.
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CHAPTER 2

PROBLEM DEFINITION

For the purposes of this work, we use the problem definition from [Mavrogiannis et al., 2021].

Navigation is the task of following a collision-free, efficient route from an initial location to a

destination. In general, navigation has been studied as a hierarchical planning problem composed

of global planning and local planning. Given a static environment, a global planner is designed to

find a sequence of waypoints to reach a destination. Given a route or a set of waypoints found by a

global planner, a local planner aims to navigate safely to the next waypoint. In this thesis, we focus

on the local planning level.

We define social navigation as a navigation task in a dynamic human environment where each

agent has both hidden and visible objectives. In this thesis, we do not factor in visible objectives that

can be captured via explicit pedestrian communications such as verbal communication or gestures.

Instead, we only focus on capturing implicit pedestrian objectives via their motion trajectories.

The uncertainty induced by the lack of knowledge of explicit parameters introduces the need for

the incorporation of prediction mechanisms over the behaviors of pedestrians but also the need for

frequent re-planning to ensure adaptation to the dynamic environment.

Definition 2.0.1 (Social Navigation). Consider a robot navigating in a workspace W ⊆ R2

amongst n other dynamic agents. Denote by s ∈ W the state of the robot and by si ∈ W the

state of agent i ∈ N = {1, . . . , n}. The robot navigates from a state s0 towards a destination sT
by executing a policy π : Wn+1 × U → U that maps the world state S = s ∪i=1:n s

i to a control

action u ∈ U , drawn from a space of controls U ⊆ R2. We assume that the robot is not aware of

agents’ destinations siT or policies πi : Wn+1 × U i → U i, i ∈ N . Our goal is to design a policy

π that enables the robot to navigate from s0 to sT safely and socially.

In case of unknown agent states due to imperfect perceptions, si ∈ W represents the states of

sensor input (instead of agents) from n observations i ∈ N = {1, . . . , n}.
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Part II

Group Based Representations and
Predictions
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CHAPTER 3

GROUP SPLIT AND MERGE

This chapter describes the work in Wang and Steinfeld [2020].

3.1 Introduction

One goal of human-robot interaction (HRI) is to enable trust and acceptance of robots in public

settings. A key capability in support of this goal is social navigation when a robot is maneuvering

among pedestrians. Traditionally, mobile robots have poor navigation skills in crowded areas,

which can lead to the freezing robot problem [Trautman and Krause, 2010] or result in displays of

confusion or unpredictability. Humans may perceive these and other nonsocial behaviors as rude

or dangerous [Ljungblad et al., 2012, Mutlu and Forlizzi, 2008].

In this project, we try to predict social group splits and merges. Our analysis of social groups is

inspired by a human perceptual process known as Gestalt [Gadol, 1981], where humans mentally

group individuals moving together at a similar direction and pace into a single unit. This has

been used successfully for robot perception of human crowds [Chatterjee and Steinfeld, 2016].

Likewise, previous work suggests that individuals within such a group may have social ties among

them [Moussaı̈d et al., 2010], making it inappropriate for a robot to plan a path that cuts through

the group. Predicting splits and merges is also important because it may lead to more efficient robot

navigation. Knowing when and where a split or merge will occur allows path planning toward a

split point or preemptive avoidance of merging groups. This planning consideration can form more

natural navigation paths, increasing trust and acceptance from humans.

We formulate our group dynamics analysis as a video event prediction and localization prob-

lem. As shown in Figure 3.1, we attempt to predict if a split or merge will occur given a history of

social group shape images. If an event occurs, we also attempt to predict where it will happen.

Deep learning techniques have shown great potential recently for many real-world tasks. Acting

as complex function approximators [Liang and Srikant, 2017], deep learning models can approxi-

mate implicit functions not yet sufficiently studied. Predicting splits and merges based on temporal

and spatial features within social group shapes is one such implicit function.

Our problem is different from many other video analysis tasks. First, the inputs to our model are

textureless binary image videos, as shown in Figure 3.1. The model needs to rely on subtle temporal
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Figure 3.1: Predicting social group splits and merges offers navigation benefits for mobile robots.
We first generate social group shape sequences from available pedestrian information. Then, we
use our model to predict splits and merges. The blue circles represent the locations of splits and
merges.

features in group shape transformations because it is impossible to predict splits and merges from

a single image, unlike action recognition tasks [Ibrahim et al., 2016, Ji et al., 2013, Shu et al.,

2017]. Second, our model uses social group shapes, because group shapes can be generated from

noisy raw sensor inputs such as point clouds and, depending on the formulation of group shapes,

can be used to account for occluded pedestrians [Chatterjee and Steinfeld, 2016]. This makes our

task different from tasks that require precise tracking of pedestrians, such as trajectory prediction

tasks [Alahi et al., 2016, Gupta et al., 2018, Robicquet et al., 2016, Vemula et al., 2018]. Third,

our network tries to predict an event in the future. In other words, the defining features that signal

the event are not available to the network, as opposed to the tracking tasks [Henriques et al., 2011,

Perera et al., 2006, Zhu et al., 2014].

In summary, we utilize a 3D convolutional network to predict the occurrence and location of

group splits and merges, given a sequence of video frames representing the evolution of social

group shapes. Our contributions include:

1. Definition of a new formulation for the split-merge problem, which includes example pipelines

to generate social group shape images;

2. A slightly modified C3D architecture [Tran et al., 2015] with demonstrated effectiveness;

3. Discussions of human behavioral implications from our model’s learned features.
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3.2 Related Work

3.2.1 Social Interaction Between Pedestrians

Traditionally, researchers have tried to understand pedestrian social behavior from a classical

model-based point of view, drawing inspiration from topics in physics, such as fluid dynamics [Hel-

bing, 1992] and potential energy [Cui et al., 2011]. The Social Force model approach by Helbing

and Molnár [1995] employs attractive and repulsive forces to model pedestrian interactions. These

rule-based models are too simple to account for the complexities that arise within human interac-

tions.

Due to its superior performance, machine learning has played an active role in analyzing other

types of pedestrian behavior. A popular topic in the field is pedestrian trajectory prediction. Alahi

et al. [2016] uses the SocialLSTM model to account for the actions of neighboring pedestrians.

Vemula et al. [2018] uses Social Attention to bypass the assumption of the local neighborhood.

Gupta et al. [2018] uses generative adversarial models with a global social pooling layer. More so-

phisticated models developed by Sadeghian et al. [2019] employ a multimodal approach by taking

local image patches around pedestrians as extra inputs. These models generate predicted trajecto-

ries that simulate realistic pedestrian interaction behavior. However, these models require precise

tracking of pedestrian locations, which is often infeasible for real-world robot platforms.

There have also been studies on the grouping of pedestrians. Previously, Solera et al. [2017]

proposed using structural support vector machine-based learning to model social groups, and Mi-

haylova et al. [2014] modeled grouping as a sequential Monte Carlo process. Additionally, the

dynamics of grouping have been actively incorporated into pedestrian tracking problems. Perera

et al. [2006] and Zhu et al. [2014] believe that social groups can be used to enhance the track-

ing of pedestrians, including social group merges and splits. Henriques et al. [2011] incorporated

group splits and merges in an extended maximum-a-posteriori problem. Makris and Prieur [2014]

utilized Bayesian multiple hypothesis tracking. However, due to the nature of the tracking task,

pedestrian information during merging or splitting is available to these models. In some cases,

future pedestrian information is available to the models. In contrast, our task is a prediction task

and is excluded from observing any information about the pedestrians from the moment when the

split or merge happens.

A similar category of tasks that has potential application in pedestrian behavior analysis is

group action recognition. Ibrahim et al. [2016] uses hierarchical recurrent networks to identify

joint actions performed by athletes during a sporting event. Shu et al. [2017] and Shu et al. [2015]
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utilize a similar concept on pedestrians to predict group activities, such as queueing or crossing

the street. Similarly to trajectory prediction tasks, these approaches depend on tracking individual

pedestrians. In addition, these approaches only model within-group activities, whereas splits and

merges involve multiple groups.

3.2.2 Deep Learning of Videos

The Long-Short Term Memory (LSTM) network, a kind of Recurrent Neural Network (RNN), has

shown recent success in sequential data analysis tasks. Some models use LSTMs to process the

features produced by CNNs [Donahue et al., 2015, Wu et al., 2015]. Shi et al. [2015], Patraucean

et al. [2015] proposed Convolutional LSTM (ConvLSTM) for video prediction tasks. However,

Varol et al. [2018] suggested that any form of RNN breaks the video patches into short clips, likely

leading to suboptimal performance. Our initial attempts on RNN-based architectures also resulted

in unsatisfactory performance.

In recent years, Convolutional Neural Networks (CNN) have had great success in tackling

image processing challenges because of their ability to encode useful spatial features from large

numbers of images [Zeiler and Fergus, 2014]. Ji et al. [2013] proposed a 3D CNN that was similar

to a traditional CNN, but used 3D kernels to jointly encode spatial-temporal features. Shortly

after, Tran et al. [2015] created a C3D network to classify videos successfully. Since then, many

networks based on 3D convolutions [Liu et al., 2016, Sun et al., 2015, Varol et al., 2018] have

shown great performance in tasks such as action recognition. We believe that C3D’s success lies in

its ability to combine video frames as video patches.

3.3 Approach

Group shapes can be generated using arbitrary algorithms, assuming that the resulting group shapes

reflect temporal patterns as pedestrians progress. We first formulate two group shape generation

algorithms: one from pedestrian information to compare our approach with trajectory prediction

models, and another from simulated 2D laser scan points to demonstrate the flexibility of our

model.

3.3.1 Group Shapes from Pedestrians

Social group definition. In our definition, a social group is formed when a number of people who

are in close proximity to each other share largely similar motion characteristics. Therefore, when a
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Figure 3.2: Left: A sample individual social space. Right: A sample group space from simulated
laser scans. Note that the lower-right pedestrian is occluded from the ”robot” (blue circle) and is
not included in the group.

group of fast-walking people make a small split to pass a slow-walking pedestrian, the fast group is

maintained, but they do not include the slow-walking pedestrian in their group due to the different

walking speeds. Suppose there are n pedestrians in frame Vi. The motion characteristics that we

use to define grouping are their positions Pi = {(xi1, yi1), (xi2, yi2), . . . , (xin, yin)}, their velocity

directions Θi = {θi1, θi2, . . . , θin}, and their velocity magnitudes Si = {si1, si2, . . . , sin}.
Grouping algorithm. For each image frame Vi, we apply the approach from Chatterjee and

Steinfeld [2016], which uses the Density-Based Spatial Clustering of Applications with Noise (DB-

SCAN) algorithm [Ester et al., 1996]. We apply DBSCAN three times, each time within the clusters

from the previous DBSCAN iteration. We perform DBSCAN in the order of Θi, Si, Pi, and obtain

group membership labels Li = {li1, li2, . . . , lin}. During each DBSCAN pass, we use a threshold

value to determine the clustering boundary. These threshold values are determined by observing

the grouping outcomes on the dataset, and group membership assignments can be changed by ad-

justing these values.

Individual social space. Once we have the group membership labels, we can define how to

generate a social group space. We first define the social space of a single pedestrian fs(x, y, θ, s)

as a 2D asymmetric Gaussian distribution similar to Kirby [2010], shown in Figure 3.2. Given s,

we first construct four axes corresponding to the front, the two sides, and the rear of the pedestrian,

with the pedestrian location (x, y) as the origin. Each axis has a variance value:

σf = max(2s, 0.5), σs =
2

3
σf , σr =

1

2
σf (3.1)

Then, according to Kirby [2010], each individual’s social space can be defined by the following
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equations:

Le(φ) =

√
C

cos2 γ/(2σ1) + sin2 γ/(2σ2)
(3.2)

fs(x, y, θ, s) =

(
x+ cos(φ+ θ)Le(φ)

y + sin(φ+ θ)Le(φ)

)
,

for 0 < φ ≤ 2π

(3.3)

where we define C = 0.35, γ = mod (φ, π/2) and σ1, σ2 as the variances of two axis that are

closest to angle φ.

Group Social Space. For each group membership j in the image frame Vi, we first obtain

all pedestrians belonging to this group Gij = {k|lik = j}. Then, we construct individual social

spaces for each of them Sij = {fs(xik, yik, θik, sik)|k ∈ Gij}. Next, we construct a convex hull

around the set of these social spaces Hij = convexhull (Sij). This convex hull Hij is the social

group space for the group label j in the image frame Vi. Some examples of social group shapes are

shown in Figure 3.1.

Splits and merges. Group splits and merges occur when group memberships of the pedestrians

change from frame Vi to frame Vi+1. As shown in Figure 3.1, if pedestrians who had the same

group membership Gij now have two memberships among them G(i+1)j1 , G(i+1)j2 , then a split

occurs. Similarly, if pedestrians who had different group memberships Gij1 , Gij2 now have the

same membership G(i+1)j , a merge occurs. Note that j ̸= j1 ̸= j2.

3.3.2 Group Shapes from Simulated Laser Scan Points

Most robots will not have data representing overhead views where the full perimeter of convex hulls

is visible. Likewise, many robots may only be equipped with a laser scanner and not have access

to full video scenes. Therefore, it is important to also examine the performance of our approach

when a robot is limited to a single laser scan plane.

Simulated Laser Scans. For each video frame Vi, we place a “robot” at a random location

in the scene unoccupied by pedestrians. The robot is a point and emits rays of lines around itself

with 0.1 degree resolution. We assume that each pedestrian is a circle with a diameter of 0.5

meters. A scan point is defined when one of the robot’s rays touches the perimeter of a pedestrian’s

circle. We further add standard Gaussian noise truncated at ±5 cm to the coordinates of each

scan point. Each scan point shares the same orientation and speed as its corresponding pedestrian.

Similar to definitions in Section 3.3.1, we now have laser scan point information that can also be
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Figure 3.3: Volumetric features of a merge (left) and a split (right). Only features before the branch
(the 17th layer) are visible to our model.

represented as Pi = {(xi1, yi1), (xi2, yi2), . . . , (xin, yin)}, Θi = {θi1, θi2, . . . , θin}, and Si =

{si1, si2, . . . , sin}.
Grouping algorithm. Similar to Section 3.3.1, we apply DBSCAN on Θi, Si, Pi to obtain

group membership labels Li = {li1, li2, . . . , lin}.
Group Social Space. We no longer assume known pedestrian locations as the “robot” only sees

the laser scan points (Figure 3.2, right), so we generate social spaces directly from laser scan points.

As would occur with a real lidar, the “robot” sometimes fails to observe occluded pedestrians. We

obtain the group space Hij of the group label j by constructing a convex hull around the group of

laser scan points Gij = {k|lik = j} in video frame Vi: Hij = convexhull ({(xik, yik)|k ∈ Gij}).
The splits and merges follow the same formulation as in Section 3.3.1.

3.3.3 3D Convolution Neural Network

The Third Spatial Dimension. Ji et al. [2013] and Tran et al. [2015] proposed 3D Convolutions

based on the intuition that 3D kernels connect spatial features and temporal features together. Al-

though Tran et al. [2015] provided examples of learned features, it is hard to distinguish whether

these features belong to the spatial dimension or the temporal dimension, since even a single frame

in the video can signal the entire action. In our case, identifying whether a split or merge takes

place from a single image is impossible.
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Figure 3.4: Our 3D convolutional neural network architecture. Each blue block represents a 3D
convolution block with the number indicating the number of output channels. Each orange block
represents a pooling block. Each yellow block represents a fully connected layer. The portion
of our architecture within the green block is the same as C3D [Tran et al., 2015] before the fully
connected layers. Sharing the pool5 layer, two branches of fully connected layers predict split
and merge occurrences and locations respectively.

As shown in Figure 3.3, splits and merges have unique volumetric features [Ke et al., 2005]

in the temporal dimension. Both represent shapes similar to tree branches. In our task, the deci-

sive branching moments are not available to our model. Thus, an alternative interpretation of our

model’s goal is to perform 3D object classification by analyzing voxel-grid-represented 3D objects

and predicting whether these 3D objects will evolve into tree branches.

The architecture. We use the C3D architecture shown in Figure 3.4 [Tran et al., 2015] as

our architecture backbone, because it has demonstrated strong performance in action recognition

tasks. A difference between our network and C3D occurs after the pool5 layer where our network

progresses into two branches with two fully connected hidden layers of 4096 units. The first branch

outputs a three-class prediction score p = (p0, p1, p2) with the classes arranged in the order of no-

action, merge, and split. The second branch predicts 2D pixel coordinates r = (rx, ry), indicating

a possible split or merge location regardless of what the other branch predicts.

The location of group splits and merges is a vague concept. When asked where exactly a split

or merge takes place, few people can agree on a fixed pixel location. In our problem, we define the

location of the ground truth as the midpoint of the shortest line that connects the two social group

spaces involved as shown in Figure 3.1. In practice, the pursuit of the exact location accuracy of

the split and merge is meaningless.

Two-task loss function. We have two output layers, the ground truth one-hot class prediction

score pt = (pt0, pt1, pt2) and the previously defined ground truth event location rt = (rtx, rty), so

we combine the two loss functions as follows:

L(p, r, pt, rt) = Lcls(p, pt) + λδ(pt)Lloc(r, rt) (3.4)
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Lcls is the softmax cross-entropy loss function representing the class prediction loss,

Lcls(p, pt) = −
2∑

i=0

pti log

(
epi∑2
j=0 e

pj

)
(3.5)

Lloc is the L2 loss function representing the location prediction loss,

Lloc(r, rt) = (rtx − rx)2 + (rty − ry)2 (3.6)

δ(pt) is to ensure that the location loss will only be incorporated if the ground truth event is a merge

or split. Given that both p and pt have their class indexes in the order of no action, merge, and split,

δ(pt) is of the form:

δ(pt) =

1, if argmaxi(pti) ≥ 1

0, otherwise
(3.7)

The hyperparameter λ in Eq. (3.4) controls how much the location loss influences the overall loss.

3.4 Experiments

3.4.1 Setup

Our default experiment setting is very similar to Tran et al. [2015]. With input videos of size

16 × 224 × 224, the network has 8 3D convolution layers and 5 3D max-pooling layers. Each

convolution layer has a kernel size of 3×3×3 and strides 1×1×1. This configuration was found

to be the most effective in [Tran et al., 2015]. Each max-pooling layer has a kernel size of 2×2×2

and strides 2×2×2, except for pool1, which has strides 1×2×2 to accommodate our 16-frame

inputs.

During training for all experiments, we used λ = 0.005. Using an Adam optimizer, the initial

learning rate was set to 1e−5 with a batch size of 1. Details on the inputs to the network are

presented in the following section.

3.4.2 Datasets

Our raw dataset was a mixture of the publicly available ETH dataset [Pellegrini et al., 2009] and

UCY dataset [Lerner et al., 2007]. These two datasets have been commonly used in pedestrian

trajectory prediction problems [Alahi et al., 2016, Robicquet et al., 2016, Vemula et al., 2018,

Yamaguchi et al., 2011]. Both datasets contain complex group interaction behaviors [Pellegrini
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et al., 2009] and their videos are recorded at 25 FPS. The ETH dataset contains two sets of data

from two scenes (ETH and HOTEL). The UCY dataset contains three sets of data from another two

scenes (ZARA1, ZARA2, UCY1).

To generate training data for a merge instance, suppose that the merge takes place at time i+1

and that we want to predict this event n number of frames beforehand. Also, suppose the merging

groups have labels j1, j2. From this we can first obtain convex hullsHj1 = (H(i−n−15)j1 , . . . ,H(i−n)j1)

and similarly convex hulls Hj2 following the procedures in Section 3.3. Next, we paste these

convex hulls into blank images, frame by frame, to generate a binary social space video W =

(Wi−n−15, . . . ,Wi−n). Because we want to filter out noisy groups, W would be invalid training

data if j1 or j2 are missing in these 16 frames. Generating training data for a split follows a similar

method, the only difference being that there is now only one convex hull blob in the input video

instead of two convex hull blobs.

To generate training data for no-action cases, we randomly sampled a time step i+1 and a group

label j in Li. Then, we constructed Hj = (H(i−15)j , . . . ,Hij) and generated the training data W .

We also need to construct no-action data with two convex hull blobs to distinguish between merge

and no-action. For this, the second convex hull sequence Hj′ was defined such that the centroid of

Hij′ was the nearest neighbor to the centroid ofHij among all centroids of the convex hulls at time

i.

Unfortunately, group splits and merges are infrequent events. Training on inputs that are 1

frame ahead of the event only gives us a total of 477 splits and 367 merges across all 5 sets of data.

To improve training, we first performed scale normalization for each W to limit the size range of

all convex hull blobs. This was done by cropping the empty space around the input volumetric

feature. Then, we performed translation normalization so that the geometric center of the group

shapes in the last input frame is at the center. We then performed data augmentations to randomly

flip the video images or rotate them at an arbitrary angle. Also, due to the scarcity of the events,

we did not perform evaluations on time horizons longer than 0.5 seconds. At 0.5 seconds, there are

only a total of 313 splits and 214 merges, and at 1 second, there are only a total of 229 splits and

153 merges.

3.4.3 Evaluation

Due to the size of the dataset, we performed leave-one-out cross-validation. This evaluation ap-

proach has also been adopted by others [Alahi et al., 2016, Gupta et al., 2018, Zhang et al., 2019].

We trained our model on 4 sets of data and evaluated it on the remaining set.
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Comparisons with trajectory models. A logical approach is to generate group shapes from

trajectory prediction models. Because local overhead image patches around pedestrians are in-

feasible for a ground-based, real-world robot, we did not compare them with models that take

local image patches as inputs (e.g., Sadeghian et al. [2019], Xue et al. [2018]). Therefore, we

used Social-LSTM [Alahi et al., 2016] and Social-GAN [Gupta et al., 2018] as baselines, and

SR-LSTM [Zhang et al., 2019] as the state-of-the-art model for comparisons.

Social-LSTM, Social-GAN, and SR-LSTM use input sequences of 8 frames, so we changed

the pool2 layer of our model to have strides 1 × 2 × 2 similar to pool1. For these models, we

applied our grouping algorithm on the first frame to determine the original group memberships of

the pedestrians. We then fed the pedestrian trajectories into these models to obtain the predicted

future trajectories. Next, we applied our grouping algorithm to the predicted future trajectories to

obtain their new group memberships. The change in memberships allows us to determine whether

these models can predict splits, merges, or no-actions. We evaluated the models on all of the

merges and splits and an equal number of no-action sequences on the test dataset. Then we used

the leave-one-out approach following a similar evaluation methodology as prior work [Alahi et al.,

2016, Gupta et al., 2018, Zhang et al., 2019].

To allow location prediction accuracy comparisons, we also modified the trajectory-based mod-

els by applying our group shape generation pipeline to the predicted trajectories. Once we obtained

the group shapes, we applied our definition to estimate the split and merge location.

Since this is a categorization, all models were evaluated on the usual classification metrics of

precision, recall, and F1 score for the three ground truth events (no action, merge, and split). We

only report F1 scores in Table 3.1, but saw that our model regularly outperforms the others for all

three metrics.

As shown in Table 3.1, our method was generally better than these techniques. Although

designed for a different task, the Social-GAN and SR-LSTM models still outperformed the baseline

Social-LSTM models. However, our approach outperformed all other models on all three metrics,

especially for splits and merges. Social-LSTM, Social-GAN, and SR-LSTM models performed

better in predicting no-actions, but they were weak at rejecting false negatives, resulting in an

overall F1 score that was on par with our model. We also observed that all three models showed

a strong bias towards predicting no-actions. This demonstrates that individual pedestrian-based

models are unable to accurately capture complex pedestrian interactions, such as grouping, even

when modified for social behaviors.

When making predictions 0.5 seconds ahead, the trajectory models incur a significant perfor-

mance downgrade, while our model’s performance drops moderately. This indicates that our model
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successfully captures the temporal clues within the inputs to predict temporally distant splits and

merges. In contrast, the trajectory models are lackluster in predicting splits and merges in the far

future. Note that the trajectory models’ performances lowered to near random guess levels and are

likely to downgrade further for longer time horizons.

Our model’s performance on predicting no-actions was generally worse than for splits and

merges. This is because too much data variation exists in the no-action class during training. Our

model was trained in equal numbers for each class instance. In reality, no-action instances vastly

dominate pedestrian interactions and map to far more possible social group shape transformations.

However, feeding too much training data from the no-action class leads to the class imbalance

problem [Buda et al., 2018]. The issue of large data variety with limited amounts of data is an

important area for future work.

Accuracy across parameters. Recall from Section 3.3 that we use DBSCAN as our grouping

algorithm with three threshold values. These threshold values were determined subjectively, so a

sensitivity analysis was performed on models trained with inputs from the social generation method

in Section 3.3.1. Varying these values also simulates how pedestrian behavior in social groups can

vary greatly across cultures (e.g., Sorokowska et al. [2017]). Therefore, this analysis shows how

well our model transfers when one of the grouping parameters changes. We selected two models

evaluated on ETH and UCY1 to represent a normal and difficult scenario, because our model

performed moderately on ETH and the worst on UCY1 as shown in Table 3.1. Then, we adjusted

each grouping parameter to examine our model’s adaptability.

We evaluated performance using event prediction accuracy and average event location predic-

tion error. The latter was measured in the normalized images, as mentioned at the end of Sec-

tion 3.4.2. This error can be significantly lower when the prediction is projected back to the raw

image.

In Table 3.2, P is the position distance threshold in meters; O is the velocity orientation thresh-

old in degrees; and V is the velocity magnitude threshold in meters per second. Arrows indicate

an increase or decrease in the corresponding parameter from the value used for the single frame

prediction in Table 3.1. The values of average location errors are in parentheses. From the ta-

ble, we can infer that our approach demonstrates excellent model transfer abilities across different

parameter settings both in terms of prediction accuracy and location prediction error.

Comparison to simulated laser scans. As mentioned in Section 3.3, we approximated a sim-

ulated laser scan for use in our model. This was done to demonstrate that our model is compatible

with various types of inputs. Input video sequences generated from simulated laser scans are noisier

and can neglect occluded pedestrians compared to those generated from basic pedestrian informa-
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Table 3.2: Sensitivity analysis on different sets of grouping parameters (F1, Location Accuracy in
Pixels)

Threshold
Values ETH UCY1 Threshold

Values ETH UCY1

↓ P = 1.5
O = 30
V = 1.0

48.7
(17.05)

70.1
(15.79)

↑ P = 2.5
O = 30
V = 1.0

63.7
(16.69)

60.9
(22.64)

P = 2.0
↓ O = 15
V = 1.0

54.6
(17.05)

64.0
(15.15)

P = 2.0
↑ O = 45
V = 1.0

70.1
(14.75)

64.7
(18.67)

P = 2.0
O = 30
↓ V = 0.5

63.2
(16.75)

66.2
(18.58)

P = 2.0
O = 30
↑ V = 1.5

64.6
(16.25)

66.3
(19.02)

P = 2.0
O = 30
V = 1.0

65.9
(16.54)

67.2
(18.98)

tion. Training for this analysis was stopped once performance had reached levels comparable to

our regular approach. As shown in Table 3.1, applying our model to simulated laser scans results

in similar prediction accuracies, but location predictions are less accurate because the inputs are

more challenging.

Future work should examine performance from real laser scan data, but this analysis hints that

our approach will be effective with laser scans.

Group interaction signals and evidence in 3D CNN. A key concern is whether the process is

understandable by humans. We took the feature map of conv5b and followed the deconvolution

pipeline [Zeiler and Fergus, 2014] to trace the feature map layer back to the input image space.

We selected the highest activation value in the conv5b feature map for four example cases. We

then inspected the corresponding input image space projections to examine which parts of the

input image contribute to these activation values (Figure 3.5). The results suggest that the features

captured by our model can also be interpreted from a behavioral perspective.

1. In the first split example, our network focused on the portion of the leading edge close to

the bottom-left individual. As the bottom-left person moved farther away from the other

person, our network captured the increase in length of that portion of the leading edge. From

a human perspective, a leading edge increase reflects a gap increase within the group.
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Figure 3.5: Visualization of our model using the method from Zeiler and Fergus [2014]. The first
four rows are two inputs corresponding to two cases of splits and their learned contributions to the
highest activation value in conv5b. The last four rows correspond to two cases of merges.

2. In the second split example, our network focused on the round edge above the person at the

top. The projected features show that as time progresses, the network rotated its attention

along the group space boundary counterclockwise. From a human perspective, this means

that a subgroup within the group starts to show signs of changing movement direction.

3. In the first merge example, our network focused on the two edges of the two groups that are

closest to each other. Over time, our network captured the trend that these two edges are

approaching each other, indicating a merge. This is also consistent with how humans predict

merges by observing diminishing gaps.

4. In the second merge example, as a group of people walked past an individual, the individual

sped up and joined the group. As a result, the social space around this individual grew larger.

Our network captured this by noticing the shrinking of two “cracks” around their combined

social space. From a human perspective, this can be interpreted as an individual’s behavior

evolving to conform with a group’s behavior.

Based on the learned features shown in Figure 3.5, we can infer that our model captures the tem-

poral features of our input data. If we concatenate these learned temporal features frame-by-frame,

we can then interpret the results as spatial features of our volumetric features. Examples include an
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enlarging surface, a slightly twisted round curve, two surfaces that are about to intersect, and the

narrowing of two dents.

3.5 Conclusion

To improve robot navigation efficiency and social navigation near moving pedestrian groups, we

present a 3D CNN model to predict social group splits and merges. We first developed a pipeline

that transformed pedestrian information into social group spaces. Then, we utilized a modified

C3D network [Tran et al., 2015] since volumetric features [Ke et al., 2005] can transform the

temporal dimension into a spatial dimension and 3D CNNs excel at encoding 3D spatial features.

We showed that our approach was (a) on par with, or better than, the state-of-the-art pedestrian

trajectory prediction models for predicting the occurrence of splits and merges, and (b) transferred

well across different prediction times and cultural settings. However, our approach does require a

diverse training dataset.

This project included secondary results that are valuable for future research efforts. We pro-

vide examples demonstrating that our model learns features that can be interpreted from a human

perspective. We also showed, using an approximation of laser scan data, that our approach has the

potential for robot deployments that lack access to overhead views. Finally, our model’s success

also provides evidence that 3D convolution learns temporal features in videos.
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Part III

Group Based Navigation
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CHAPTER 4

GROUP-BASED REPRESENTATION WITH MODEL PREDICTIVE CONTROL

Work in this chapter is featured as a paper at CoRL2021 [Wang et al., 2022] (oral presentation).

4.1 Introduction

Over the past three decades, there has been vivid interest in the area of robot navigation in pedes-

trian environments [Thrun et al., 1999, Kruse et al., 2013, Kretzschmar et al., 2016, Trautman et al.,

2015, Mavrogiannis et al., 2019]. Planning robot motion in such environments can be challenging

due to the lack of rules regulating traffic, the close proximity of agents, and complex emerging

multiagent interactions. In addition, accounting for human safety and comfort as well as robot

efficiency add to the complexity of the problem.

To address such specifications, a common [Luber et al., 2012, Trautman et al., 2015, Kret-

zschmar et al., 2016, Kim and Pineau, 2016, Everett et al., 2018] paradigm involves the integration

of a behavior prediction model into a planning mechanism. Recent models tend to predict individ-

ual interactions among agents to enable the robot to determine collision-free candidate paths [Kret-

zschmar et al., 2016, Trautman et al., 2015, Mavrogiannis et al., 2017]. While this paradigm is

well-motivated, it tends to ignore the structure of interaction in such environments. Often, the mo-

tion of pedestrians is coupled as a result of social grouping. Furthermore, the motion of multiple

agents can often be effectively grouped as a result of similarity in motion characteristics. Lacking a

mechanism for understanding the emergence of this structure, the robot motion generation mecha-

nism may yield unsafe or uncomfortable paths for human bystanders, often violating the space of

social groups.

Motivated by such observations, we draw inspiration from human navigation to propose the

use of group-based prediction for planning in crowd navigation domains. We argue that humans

do not employ detailed individual trajectory prediction mechanisms. In fact, our motion predic-

tion capabilities are short-term and do not scale with the number of agents. We do, however,

employ effective grouping techniques that enable us to discover safe and efficient paths among

motions of crowd networks. This anecdotal observation is aligned with Gestalt theory from psy-

chology [Koffka, 1935] which suggests that organisms tend to perceive and process formations

of entities, rather than individual components. Such techniques have recently led to advances in
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Figure 4.1: Based on a representation of social grouping [Wang and Steinfeld, 2020], we build
a group behavior prediction model to empower a robot to perform safe and socially compliant
navigation in crowded spaces. The images to the left demonstrate an example of our representation
overlayed on top of a scene from a real-world dataset [Pellegrini et al., 2009]. The images to the
right demonstrates that a model predictive controller equipped with our prediction model is able to
navigate around the group socially (middle) as opposed to the baseline that cuts through the group
(left). Our formulation is also able to handle imperfect state estimates (right) where the green arcs
are scan points from a simulated 2D lidar laser scan.

computer vision [Desolneux et al., 2007] and computational photography [Vázquez and Steinfeld,

2011]. Similarly, we envision that a robot could reason about the formation of groups in a crowded

environment and react to their motion as an effective way to navigate safely.

Here, we propose a group-based representation coupled with a encoder-decoder prediction

model based on the group space approximation model of Wang and Steinfeld [2020]. This model

groups a crowd into sets of agents with similar motion characteristics and draws geometric enclo-

sures around them, given observation of their states. The prediction module then predicts the future

states of these enclosures. We conduct an extensive empirical evaluation on 5 different pedestrian

datasets [Pellegrini et al., 2009, Lerner et al., 2007], each with a flow following and a crossing sce-

nario. We further conduct the same set of evaluations with agents powered by ORCA [van den Berg

et al., 2011] that share the start and end locations in the datasets. Last but not least, we conduct

evaluation given inputs in the form of simulated laser scans, from which pedestrians are only par-

tially observable or even completely occluded. We compare the performance of our group-based

formulation against three individual reasoning baselines: a) a reactive baseline without prediction;

b) a constant velocity prediction baseline; and c) one based on individual S-GAN trajectory pre-

dictions [Gupta et al., 2018]. We present statistically significant evidence suggesting that agents

powered by our formulation produce safer and more socially compliant behavior and are potentially

capable of handling imperfect state estimates.
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4.2 Related Work

In recent years, considerable research has been focused on the problem of robot navigation in

crowded pedestrian environments [Trautman et al., 2015, Kretzschmar et al., 2016, Mavrogiannis

et al., 2018, Everett et al., 2018, Chen et al., 2019]. Such environments often comprise groups of

pedestrians, who navigate as coherent entities. This has motivated recent work on group detection

and group motion modeling.

Groups are often perceived as sub-modular entities that collectively define the behavior of the

crowd. Šochman and Hogg [2011] suggests that 50-70% of pedestrians walk in groups. Many

works exist in group detection. One popular area in this domain is static group detection, of-

ten leveraging F-formation theories [Kendon, 1990]. However, dynamic groups often dominate

pedestrian-rich environments and exhibit different spatial behavior [Yang and Peters, 2019]. Among

dynamic group detection, the most common approach treats grouping as a probabilistic process

where groups are a reflection of the close probabilistic association of pedestrian trajectories [Baz-

zani et al., 2012, Chang et al., 2011, Gennari and Hager, 2004, Pellegrini et al., 2010, Zanotto

et al., 2012]. Others use graph models to build inter-pedestrian relationships with strong graphi-

cal connections that indicate groups [Chamveha et al., 2013, Khan et al., 2015]. The social force

model [Helbing and Molnár, 1995] also inspires Mazzon et al. [2013], Šochman and Hogg [2011]

to develop features that indicate groups. Clustering is another common technique for grouping

pedestrians with similar features into groups [Solera et al., 2016, Ge et al., 2012, Taylor et al.,

2020, Chatterjee and Steinfeld, 2016]. In this project, we do not intend to explore the state-of-

the-art grouping practice. For our formulation, it is sufficient to employ a simple clustering-based

grouping method proposed by Chatterjee and Steinfeld [2016].

Applications of groups often focus on a specific behavior aspect. In terms of interaction with

pedestrians, a major focus in this area is how a robot should behave as part of group formation [Cun-

toor et al., 2012]. In dyad groups involving a single human and a robot, some researchers exam-

ined socially appropriate following behavior [Gockley et al., 2007, Granata and Bidaud, 2012,

Jung et al., 2012, Zender et al., 2007] and, conversely, guiding behavior [Nanavati et al., 2019,

Feil-Seifer and Matarić, 2011, Pandey and Alami, 2009]. In works that do not include robots

as part of pedestrian groups, some research teams studied how a robot should guide a group of

pedestrians [Garrell and Sanfeliu, 2010, Shiomi et al., 2007, Martinez-Garcia et al., 2005]. From a

navigation perspective, [Yang and Peters, 2019] leverage groups as obstacles, but their group space

is a collection of individual personal spaces with occasional O-space modeling from F-formation

theories. Without the engineered occasional occurrence of O-space, their representation reduces
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to one of our baselines. [Katyal et al., 2020] introduce an additional cost term that leverages the

robot’s distance to the closest group in a reinforcement learning framework. They model groups

using convex hulls directly generated from pedestrian coordinates instead of taking personal spaces

into consideration. This less principled approach often leads to the robot approaching dangerously

close to pedestrians. In this project, we additionally explore the capabilities of our grouping tech-

nique in handling imperfect sensor inputs. While our focus is on analyzing the benefits of using

groups, our group-based formulation can be easily incorporated into Katyal et al. [Katyal et al.,

2020]’s framework.

4.3 Group-based Prediction

We recap the framework for group-based representations introduced in Chapter 3 [Wang and Stein-

feld, 2020], but with a different set of mathematical notations that better fit into our Model Predic-

tive Control framework later introduced in Section 4.4. We then introduce a group-based prediction

model that is suited for use in decentralized multi-agent navigation.

4.3.1 Group Representation

Define as θi ∈ [0, 2π) the orientation of agent i ∈ N , which is assumed to be aligned with

the direction of its velocity ui extracted via finite differencing of its position over a timestep dt.

Denote by vi = ||ui|| ∈ R+ its speed. We define an augmented state for agent i as qi = (si, θi, vi).

We treat a social group as a set of agents who are in close proximity and share similar motion

characteristics. Assume that a set of J groups, J = {1, . . . , J} navigate in a scene. Define by

gi ∈ J a variable indicating the group membership of agent i. We then define a group j ∈ J as a

setGj = {i ∈ N | gi = j} and collect the set of all groups in a scene into a set G = {Gj | j ∈ J }.
Extracting Group Membership. We define the combined augmented state of all agents as

q = ∪i=1:nq
i. To obtain group memberships for a set of agents N , we apply the Density-Based

Spatial Clustering of Applications with Noise algorithm (DBSCAN) [Ester et al., 1996] on agent

states:

G←− DBSCAN(q | ϵs, ϵθ, ϵv), (4.1)

where ϵs, ϵθ, ϵv are respectively threshold values on agent distances, orientation, and speeds for the

clustering method.

Extracting the Social Group Space. For each group Gj , j ∈ J , we define a social group

space as a geometric enclosure Gj around the agents of the group. For each agent i ∈ Gj , we define
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a personal space P i as an asymmetric two-dimensional Gaussian based on the model introduced

by Kirby [2010]. Refer to Section 3.3.1 for detailed descriptions.

Given the personal spaces P i, i ∈ Gj , of all agents in a group j, we extract the social group

space of the whole group as a convex hull:

Gj = Convexhull({P i | i ∈ Gj}). (4.2)

The shape described by Gj represents an obstacle space representation of a group containing agents

in close proximity with similar motion characteristics. For convenience, we collect the spaces of

all groups in a scene into a set G = {Gj | j ∈ J }.

4.3.2 Group Space Prediction Oracle

Based on the group-space representation of Sec. 4.3.1, we describe a prediction oracle that outputs

an estimate of the future spaces occupied by a set of groups Gt:tf up to a time tf = t+ f , where f

is a future horizon given a past sequence of group spaces Gth:t from time th = t− h where h is a

window of past observations:

Gt:tf ← O(Gth:t) = ∪j=1:JOj(Gjth:t), (4.3)

where Oj is a model generating a group space prediction for group Gj .

We implement the oracle Oj of Eq. (4.3) using a simple encoder-decoder model. The encoder

follows the 3D convolutional architecture in [Tran et al., 2015] and the decoder mirrors the model

layout of the encoder. The encoder-decoder model takes as input a sequence1 Gth:t and outputs

a sequence Gt+1:tf which we pass through a sigmoid layer. We supervise the encoder-decoder

model’s output using the binary cross-entropy (BCE) loss function:

LBCE =
1

f

t+f∑
k=t+1

BCE(Gk,G∗k), (4.4)

where Gj∗t+1:tf
denotes the ground truth group spaces in the image coordinates for a group.

We verify the effectiveness of our encoder-decoder model on the 5 scenes of our experiments

by conducting a cross-validation comparison against a baseline. The baseline predicts the future

shapes by linearly translating the last social group shape using its geometric center’s velocity. We
1The oracle input sequence is first converted into image-space coordinates using the homography matrix of the

scene. We also preprocess inputs to have normalized scale and group positions. The encoder-decoder model output is
converted back into Cartesian coordinates using the inverse homography transform.
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Table 4.1: Encoder-Decoder Model Performance

Metric ETH HOTEL ZARA1 ZARA2 UNIV

Baseline
mIoU (%) 83.52 90.37 88.04 89.30 85.32
fIoU (%) 76.32 85.38 82.14 83.88 77.24

Ours
mIoU (%) 86.66 92.10 89.97 90.94 87.52
fIoU (%) 78.64 86.83 83.77 85.09 78.55

use Intersection over Union (IoU) as our metric. Between the ground truths and the predictions,

this metric divides the number of overlapped pixels by the number of pixels occupied by either of

them. As shown in Table 4.1, our encoder-decoder model outperforms the baseline.

4.3.3 Partial Input Handling

Note that in a dynamic pedestrian scene, we will have frequent occurrences of partial inputs for

individual agents or groups due to new agents entering the scene or new groups being formed,

respectively. Therefore, our prediction model must be able to handle cases in which the input is

complete up to a past window tĥ with tĥ = t− ĥ, ĥ < h, i.e., Gtĥ:t
. To handle these cases, for time

th < τ < tĥ, we compute Gjτ by making the following membership assumptions:

• For any agent i ∈ Gj
t such that i /∈ Gj

τ and for whom we have the complete state history

sith:t, we set giτ = j. In other words, the prior group membership of any recent members of

group j is set to j (although agent imay be a member of another group j′ in those instances).

• For any agent i ∈ Gj
t such that i /∈ Gj

τ and for whom we only have a partial state history

sitĥ:t
, we take the agent’s last known state sit and velocity uit and backpropagate it as siτ−1 =

siτ − uiτdt.

Given a small h, these assumptions should reflect a close approximation of the group’s complete

history state, because the pedestrian group switching process is gradual and pedestrian movements

are smooth and predictive in short time windows.

4.4 Model Predictive Control with Group-based Prediction

We describe G-MPC, a group-prediction informed model predictive control (MPC) framework for

navigation in multiagent environments that leverages the group-based prediction oracle of Sec. 4.3.

At planning time t, given a (possibly partial) augmented world state history Qtĥ:t
, we first

extract a sequence of group spaces Gth:t based on the method of Sec. 4.3.1. Given these, the
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robot computes an optimal control trajectory u∗ = u∗1:K of length K by solving the following

optimization problem:

(s∗,u∗) = argmin
u1:K

K∑
k=1:K

γkJ(sk+1,Gk+1, sT ) (4.5)

s.t. G2−h:1 ← Gth:t (4.6)

s1 ← st (4.7)

Gk+1:kf = O(Gkh:k) (4.8)

uk ∈ U (4.9)

sk+1 = sk + uk · dt, (4.10)

where γ is the discount factor and J represents a cost function; eq. (4.6) initializes the group

space history (k = 2 − h is the timestep displaced by a horizon h in the past from the first MPC-

internal timestep k = 1); eq. (4.7) initializes the robot state to the current robot state st; eq. (4.8)

is an update rule that recursively generates a predicted future group sequence up to timestep kf =

k+f given history from time kh = k−h up to time k;O represents a group-space prediction oracle

based on Sec. 4.3; and eq. (4.10) is the robot state transition assuming a fixed time parameterization

of step size dt.

We employ a weighted sum of costs Jg and Jd, penalizing respectively distance to the robot’s

goal and proximity to groups:

J(sk,Gk, sT ) = λJg(sk, sT ) + (1− λ)Jd(sk,Gk), (4.11)

where λ is a weight representing the balance between the two costs and

Jg(sk) =

0, if sk ∈ Gk

||sk−1 − sT ||, else,
(4.12)

penalizes a rollout according to the distance of the last collision-free waypoint to the robot’s goal.

Further, we define Jd as:

Jd(sk,Gk) = exp(−D (sk+1,Gk)) , (4.13)

where

D(sk,Gk) =

minj∈J D
(
sk − Gjk

)
, if sk /∈ Gjk

−minj∈J D
(
sk − Gjk

)
, else,

(4.14)
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where D(sk − Gjk) returns the minimum distance between the robot state and the space occupied

by group j at time k. Using D, the function D computes the minimum distance to any group for

a given time. In most cases, the robot lies outside of groups, that is, sk /∈ Gjk —- therefore, the

cost Jd tries to maximize the distance D. Sometimes, the robot might end up entering the group

space G –in those cases, Jd tries to minimizeD, to steer the robot towards the direction of quickest

escape from the group. If the robot is inside a group to begin with, we shrink the group sizes in

Sec. 4.3.1 until the robot is outside the groups again.

To solve Eq. (4.5), we search over a finite set U of control trajectories of horizon K. With the

assumption that the robot is holonomic and is not under any kinematic constraints, we use a set of

R control rollouts U = {u1, ...,uR} with three levels of tangential speeds and a fixed number set

of turning speeds, i.e.,

ur1:K = (v cosψ, v sinψ, ω), ψ =
2πr

R
, v ∈

{
1

3
vmax,

2

3
vmax, vmax

}
, ω ∈

{
0,±π

2

}
(4.15)

To ensure compatibility between our group-based prediction model and our MPC formulation, we

set the control rollout time horizon to be the prediction model’s prediction horizon, or K = f .

4.5 Evaluation

We evaluate our framework through a simulation study in which the robot performs a navigation

task (a transition between two points) within a crowd of dynamic agents in a set of scenes.

4.5.1 Experimental Setup

We consider a set of realistic pedestrian scenes drawn from the ETH [Pellegrini et al., 2009] (ETH

and HOTEL scenes) and UCY [Lerner et al., 2007] (ZARA1, ZARA2, and UNIVERSITY scenes)

datasets, which often serve as benchmarking testbeds in the motion prediction and social navigation

literature [Alahi et al., 2016, Gupta et al., 2018, Zhang et al., 2019, Cao et al., 2019]. In each

scene, we define two navigation tasks (see Fig. 4.2): Flow, in which the robot navigates along the

crowd flow, and Cross, in which the robot intersects vertically with the traffic flow. For each task,

we generate a set of trials by segmenting the scene recording into blocks involving challenging

interactions. We define a challenging interaction as a segment involving at least 5 pedestrians

inside the test region drawn in black in Fig. 4.2. This process provides us with a distribution of

trials as shown in table Table 4.2. Across all trials, we keep the robot’s maximum at 1.75m/s and

use a fixed timestep size dt = 0.1.
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Table 4.2: Number of trials per task and scene.

Task ETH HOTEL ZARA1 ZARA2 UNIV

Flow 58 43 25 127 106
Cross 58 44 28 129 114

Figure 4.2: Trajectories of all pedestrians in the datasets. The red dots represent the task start and
end locations. The red lines represent the task paths. The black box represents the test region to
check for non-trivial tasks.

We consider two experimental conditions: Offline and Online. In the Offline one, the robot

navigates among a crowd moving according to a recording of a human crowd. Under this condition,

pedestrians act as dynamic obstacles that do not react to the robot, a situation which could arise

in cases where robots are shorter and could thus be easily missed by navigating pedestrians. In

the Online one, the robot navigates among a crowd2 moving by running ORCA [van den Berg

et al., 2011], a policy that is frequently used as a simulation engine for benchmarking in the social

navigation literature [Cao et al., 2019, Everett et al., 2018, Mavrogiannis et al., 2021].

To investigate the value of G-MPC, we develop three variants of it. group-auto is a G-MPC

in which the encoder-decoder model has a history h = 8 and a horizon f = 8. group-nopred is

a variant that features no prediction at all–it just reacts to observed groups at every timesteps and

is equivalent to the framework of Yang and Peters [2019]. Finally, laser-group-auto is identical

to group-auto but instead of using ground truth pose information, it takes as input noisy lidar scan

readings. We simulate this by modeling pedestrians as 1m-diameter circles and lidar scans as rays

projecting from the robot. We refer to the spec sheet of a SICK LMS511 2D lidar for simulation

parameters. We further inject noise into the readings according to the spec sheet. In this simulation,

pedestrians may only be partially observable or even completely occluded from the robot.

We compare the performance of these policies against a set of MPC variants using differing
2For consistency, the agents in the crowd start and end at the same spots as the agents in the recorded crowd from

the Offline condition.
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mechanisms for individual motion prediction. ped-nopred is a vanilla MPC that reacts to the

current states of other agents without making predictions about their future states. ped-linear
is a vanilla MPC that estimates future states of agents by propagating agents’ current velocities

forward. This baseline is motivated by recent work showing that constant-velocity models yield

competitive performance in pedestrian motion prediction tasks [Schöller et al., 2020]. Finally,

ped-sgan is an MPC that uses S-GAN [Gupta et al., 2018] to extract a sequence of future state

predictions for agents based on inputs from their past states. We selected S-GAN because it is a

recent high-performing model.

We measure the performance of the policies with respect to four different metrics: a) Success

rate, defined as the ratio of successful trials over the total number of trials; b) Comfort, defined as

the ratio of trials in which the robot does not enter any social group space over the total number of

trials; c) Minimum distance to pedestrians, defined as the smallest distance between the robot and

any agent observed over each trial; d) Path length, defined as the total distance traversed by the

robot in a trial.

We define a trial as successful if the robot never collides with a pedestrian and reaches the goal

within a time limit. Whenever the robot is within 0.5m of any pedestrian, we say that a collision

occurs. Additionally, we define the time limit to be three times the time required for the robot to

reach its goal by following a straight line without any surrounding pedestrians.

To track the performance of G-MPC, we design a set of hypotheses targeting aspects of safety

and group space violation, which we investigate under both experimental conditions, i.e., offline

and online:

H1: To explore the benefits of group-based representations alone, we hypothesize that group-
nopred is safer than ped-nopred while achieving similar success rates but worse efficiency.

H2: To explore the full benefit of the group-based formulation, we hypothesize that group-auto
is safer than ped-linear and ped-sgan while achieving similar success rates but worse efficiency.

H3: To explore how our formulation handles imperfect input, we hypothesize that laser-group-
auto achieves similar safety to group-auto while achieving similar success rates and efficiency.

H4: To check that our formulation is socially compliant, we hypothesize that group-nopred,

group-auto and laser-group-auto violate agents’ group space less often than the baselines.

4.5.2 Encoder-Decoder Model Details

Our encoder-decoder model largely leverages [50]’s C3D network. As shown in Fig. 4.3, the

encoder architecture contains the following layers (beginning from the input layer): one 3× 3× 3
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Figure 4.3: Our simple encoder-decoder model’s architecture. The decoder’s deconvolution layers
mirror the layout of the encoder.

convolution layer with 64 channels, one 1× 2× 2 maxpool layer, one 3× 3× 3 convolution layer

with 128 channels, another 1× 2× 2 maxpool layer, another 3× 3× 3 convolution layer with 128

channels, one 3× 3× 3 convolution layer with 256 channels, one 2× 2× 2 maxpool layer, another

3× 3× 3 convolution layer with 256 channels, one 3× 3× 3 convolution layer with 512 channels,

another 2× 2× 2 maxpool layer, two 3× 3× 3 convolution layers with 512 channels, and another

2× 2× 2 maxpool layer.

We used an initial learning rate of 1e − 5 and a batch size of 1 and trained for 200 epochs.

We used the Adam optimizer with default PyTorch settings. The data samples are generated by

sampling a random segment during the evolution of a group for all groups in all the datasets. The

data samples are normalized in scale and position so that the entire group space sequence fits inside

the 224 × 224 image sequences and the geometric center of the group in the last input sequence

frame is at the center of the image. After obtaining the predictions from the model, we filter

out pixel predictions with a confidence level lower than 0.5. An example comparison between

the ground truth and the preidcted sequence is shown in Fig. 4.4. For evaluation on each dataset

scene, including both evaluation of the encoder-decoder model’s performance and the policies in

the navigation setting, we use a model that was trained on the other four datasets.

In simulated laser scan settings, we do not retrain the group shape prediction models. Instead,

we transfer the learned group shape prediction models on perfect perception settings directly into

this new setting. We use a nearest neighbor approach based on geometric centers to identify the

history sequence of a group in order to predict the group’s future states. If the nearest neighbor

of a group in the previous frame is more than 0.25m away, then we say that no prior history of

this group is available and use the technique in Section 4.3.3 to linearly back-propagate the group’s

history.
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Figure 4.4: Top: An example group space input sequence for our encoder-decoder model. Mid:
The ground truth future sequence of the group. Bottom: The predicted future sequence of the group
as output by our encoder-decoder model.

4.5.3 Parameter Details

For the parameters of Eq. 4.1, we picked ϵs, ϵθ, andϵv so that the grouping results match our qual-

itative inspection of human grouping in the datasets, similarly to our prior project [Wang and Ste-

infeld, 2020]. For ETH, HOTEL, ZARA1 and ZARA2 we set ϵs = 2.0m, ϵθ = 30◦, andϵv =

1.0m/s. Because UNIV is more crowded than the other four datasets, group formations are tighter,

and we set ϵs = 1.5m, ϵθ = 15◦, andϵv = 0.5m/s.

For the personal space constants of Eq. (3.2), we selected C under the assumption that closely

interacting pedestrians walk around the boundaries of each other’s personal space. For ETH, HO-

TEL, ZARA1 and ZARA2, we set C = 0.35. Again, because UNIV has denser crowds, we set

C = 0.25. If at any given time the robot enters a social group space, we incrementally reduce C

by 0.1 with a minimum value of 0.05 until the robot is outside the group space.

For the time horizon parameter f and the history window parameter h from Section 4.2, we set

f = 8 and h = 8 to ensure our MPC formulation’s compatibility with the SGAN models.

For the weight parameter λ in the cost function of Eq. 4.11, we perform a complete parameter

sweep to tune λ. We tested λ with values from 0.1 to 0.9 with increments of 0.05 on 100 randomly

sampled test cases. We then select a λ that results in high success rates (at least 90%) for both agent-

based and group-based policies without predictions where the success rates of the two policies are

the closest to each other. For trials with nonreactive agents, we set λ = 0.65. For trials with reactive

agents, we set λ = 0.3. Note that we want the weight parameter to be the same for both pedestrian-
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Figure 4.5: Performance per scene under the Offline condition. Horizontal lines indicate statisti-
cally significant results corresponding to different hypotheses.

based and group-based policies because the distance from the pedestrians to the boundaries of the

social space are the same in both settings. Keeping the same weight allows fair evaluations of these

two types of policies.

For the number of control rollouts R in Eq. 4.15, we set R = 12.

4.5.4 Results

4.5.4.1 Quantitative Analysis.

Fig. 4.5 and Fig. 4.6 contain bar charts representing the performance of G-MPC compared with its

baselines under Offline and Online settings respectively. Bars indicate means, error bars indicate

standard deviations, “F” and “C” are flow and cross scenarios respectively, and the number of

asterisks indicates increasing significance levels: α = 0.05, 0.01, 0.001 according to two-sided

Mann-Whitney U-tests.

H1: We can see from both Fig. 4.5 and Fig. 4.6 that G-MPC achieves statistically significantly

larger minimum distances to pedestrians across all scenarios, often with p < 0.001. This illustrates

that the group representation is in itself capable of upgrading a simple MPC with no prediction. As
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Figure 4.6: Performance per scene under the Online condition (simulated pedestrians powered
by ORCA [van den Berg et al., 2011]). Horizontal lines indicate statistically significant results
corresponding to different hypotheses.

Figure 4.7: Qualitative performance difference between approaches leveraging pedestrian-based
(top) and group-based (bottom) representations. Left: non-reactive agents. Right: reactive agents.
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expected, we observe that the tradeoff G-MPC pays for increased safety is a larger average path

length. We also see that success rates are comparable. Overall, we conclude that H1 holds.

H2: When future state predictions are considered, G-MPC obtains statistically significant re-

sults in most scenes that support its attributes of being safer at the cost of worse efficiency. Thus,

H2 is partially confirmed. In offline scenarios, G-MPC has lower success rates in crossing scenar-

ios. Upon closer inspection, most failure cases are due to timeouts from the conservative behavior

of G-MPC. However, in online scenarios where pedestrians react to the robot, G-MPC achieves

high success rates. In real-world situations, to cross dense traffic, the robot needs to plan its actions

with the expectations of reactive pedestrians. Otherwise, the robot will probably face the freezing

robot problem [Trautman et al., 2015].

H3: Overall, we observe that with simulated imperfect states, G-MPC does not perform statis-

tically significantly worse in terms of safety, but in dense crowds of the UNIV scenes, it has worse

efficiency and worse success rates in online cases. This shows that H3 holds in terms of safety

and, in moderately dense human crowds, holds in terms of efficiency. Future work on better group

representation is needed to achieve better efficiency in high-density human crowds given imperfect

states.

H4: From Fig. 4.5 and Fig. 4.6, we can see that G-MPC often has fewer group space intrusions

than its baselines. Although this relationship is not always statistically significant, we do see a

general trend of group-based approaches to respect group spaces more often than individual ones.

Therefore, we conclude that H4 is partially confirmed.

4.5.4.2 Numeric Results of Figures

Tab. 4.3 and Tab. 4.4 are the numerical results of Fig. 4 and Fig. 5. S is the success rate. C is

the percentage of trials in which the robot does not enter any group space (collisions also count as

group intrusions). D is the average minimum distance to pedestrians. L is the average path length.

4.5.4.3 Qualitative Analysis.

Qualitatively, it is more common for regular MPCs to perform aggressive and socially inappropriate

maneuvers than G-MPC. As shown in the two examples in Fig. 4.7 executed by ped-sgan and

group-auto agents, we can see that under offline conditions, the MPC agent aggressively cuts in

front of the two pedestrians to the left before proceeding headlong into the cluster of pedestrians,

only managing to avoid the deadlock by escaping through the narrow gap that opens up. In contrast,

G-MPCtracks the movements of the two pedestrian groups that come from the left. When the two
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Table 4.3: Performance per scene under the Offline condition.

Scene ETH HOTEL ZARA1 ZARA2 UNIV

Task Metric Flow Cross Flow Cross Flow Cross Flow Cross Flow Cross

ped-nopred

S(%) 91.38 75.86 95.35 95.45 96.00 85.71 97.64 96.90 83.96 83.33
C(%) 56.9 24.14 81.4 63.64 72.0 46.43 82.68 70.54 68.87 64.91
D(m) 1.29 0.97 1.35 1.14 1.31 1.03 1.39 1.27 0.95 0.98
L(m) 27.16 16.93 19.31 10.55 20.75 8.80 20.87 8.92 22.96 17.38

ped-linear

S(%) 94.83 96.55 97.67 100 96 96.43 94.49 100 86.79 99.12
C(%) 75.86 74.14 86.05 88.64 84.0 89.29 88.19 95.35 79.25 90.35
D(m) 1.42 1.28 1.28 1.25 1.53 1.36 1.53 1.46 1.01 1.09
L(m) 27.31 18.08 19.28 10.72 20.29 9.48 20.84 9.16 22.93 17.06

ped-sgan

S(%) 93.1 94.83 95.35 100 96 100 96.06 100 86.79 100
C(%) 79.31 70.69 81.4 79.55 80.0 92.86 89.76 95.35 73.58 86.84
D(m) 1.45 1.27 1.34 1.23 1.46 1.35 1.50 1.47 0.98 1.08
L(m) 27.05 17.99 19.20 10.10 20.51 9.66 20.83 9.21 23.05 17.22

group-nopred

S(%) 94.83 87.93 100 88.64 92 75 96.06 92.25 93.4 93.86
C(%) 82.76 79.31 97.67 86.36 88.0 71.43 92.91 89.92 90.57 88.6
D(m) 1.70 1.61 1.8 1.61 1.83 1.59 1.68 1.59 1.18 1.22
L(m) 29.52 23.32 21.98 14.38 22.86 13.02 23.47 11.17 28.57 20.61

group-auto

S(%) 96.55 86.21 100 90.91 96 82.14 96.85 94.57 89.62 93.86
C(%) 82.76 81.03 100.0 88.64 92.0 82.14 92.91 93.02 86.79 92.98
D(m) 1.67 1.90 1.83 1.65 1.87 1.75 1.77 1.67 1.19 1.32
L(m) 29.51 23.17 21.88 13.63 23.01 11.95 23.45 11.13 27.82 20.06

laser-group-auto

S(%) 94.83 84.48 97.67 95.54 96 75 93.7 86.05 83.02 89.47
C(%) 81.03 82.76 97.67 90.91 92.0 75.0 92.13 86.05 82.08 85.09
D(m) 1.75 2.21 1.86 1.70 1.92 1.81 1.8 1.76 1.25 1.40
L(m) 29.57 23.99 22.42 15.45 23.50 12.26 23.63 11.58 29.49 22.36

pedestrian groups merge, the agent turns around and re-evaluates its approach to cross. In the

online condition, we observe that the MPC agent cuts through a pedestrian group to reach the other

side, forcing a member of the group to stop and yield as indicated by the pedestrian’s shrinking

personal space which is proportional to its speed. In the same situation, the G-MPC agent chooses

to cross behind the social group.

4.6 Conclusion

We introduced a methodology for generating group-based representations and predicting their fu-

ture states. Through an extensive evaluation over the flow and crossing scenarios drawn from 10

different real-world scenes from 2 different human datasets with both reactive and nonreactive

agents, we demonstrate that our approach is safer and more socially compliant. Through exper-
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Table 4.4: Performance per scene under the Online condition (simulated pedestrians powered by
ORCA [van den Berg et al., 2011]).

Scene ETH HOTEL ZARA1 ZARA2 UNIV

Task Metric Flow Cross Flow Cross Flow Cross Flow Cross Flow Cross

ped-nopred

S(%) 96.55 98.28 100 97.73 100 100 97.64 100 88.68 99.12
C(%) 50.0 63.79 79.07 77.27 60.0 64.29 65.35 79.84 60.38 78.95
D(m) 0.93 1.05 0.94 1.04 0.92 0.97 0.98 0.99 0.89 0.98
L(m) 24.02 13.73 15.75 8.50 16.71 6.13 17.16 7.32 17.20 13.82

ped-linear

S(%) 94.83 98.28 100 97.73 100 100 98.43 100 89.62 99.12
C(%) 43.1 70.69 83.72 90.91 64.0 85.71 74.8 80.62 61.32 88.6
D(m) 0.94 1.04 0.97 1.03 0.94 0.99 0.98 0.99 0.90 0.98
L(m) 23.83 13.25 15.43 8.32 16.54 6.22 17.03 6.74 16.87 13.53

ped-sgan

S(%) 96.55 98.28 100 97.73 100 100 98.43 100 89.62 99.12
C(%) 39.66 63.79 88.37 88.64 64.0 82.14 77.95 82.95 62.26 86.84
D(m) 0.93 1.04 0.95 1.04 0.94 0.99 0.98 0.99 0.90 0.98
L(m) 23.85 13.20 15.63 8.14 16.54 6.18 17.06 6.72 16.90 13.53

group-nopred

S(%) 93.1 98.28 95.35 100 96 100 97.64 98.45 89.62 100
C(%) 75.86 79.31 81.4 88.64 88.0 71.43 90.55 85.27 68.87 88.6
D(m) 1.15 1.15 1.17 1.16 1.11 1.03 1.21 1.11 0.94 1.04
L(m) 25.36 15.37 16.62 9.72 18.16 7.50 18.36 8.56 18.98 15.15

group-auto

S(%) 94.83 98.28 97.67 97.73 92 96.43 99.21 99.22 93.4 98.25
C(%) 74.14 87.93 81.4 95.45 88.0 89.29 91.34 93.8 80.19 91.23
D(m) 1.13 1.24 1.16 1.21 1.17 1.13 1.18 1.11 0.93 1.07
L(m) 25.19 14.99 16.45 9.14 17.93 7.62 18.22 7.88 18.71 14.74

laser-group-auto

S(%) 91.38 98.28 95.35 97.73 96 89.29 97.64 97.67 84.91 92.11
C(%) 70.69 84.48 88.37 93.18 88.0 85.71 88.98 94.57 60.38 78.07
D(m) 1.18 1.33 1.26 1.28 1.18 1.12 1.23 1.14 0.93 1.07
L(m) 25.40 16.27 16.81 9.82 18.72 8.54 19.07 8.57 21.39 16.46

imentation with simulated laser scans, our model displays promising potential to process noisy

sensor input without much performance downgrade.

Various improvements to our control framework are possible. For example, we could incor-

porate state-of-the-art oracles in the form of advanced video prediction models [Guen and Thome,

2020]. Furthermore, additional considerations such as the set of rollouts or the cost functions used

could possibly increase performance. Finally, alternative control frameworks such as reinforce-

ment learning approaches could be applicable. However, our goal was to illustrate the value of

group-based representations for navigation tasks.
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CHAPTER 5

EDGE-BASED GROUP REPRESENTATION WITH MODEL PREDICTIVE CONTROL

5.1 Introduction

In Chapter 4, we discovered that the use of group-based representations allows a basic MPC

controller-based robot to perform safer and more social navigation behavior. Newer work such

as [Katyal et al., 2020] also supports this. However, there are still limitations in this project that

hinder the ability to deploy group-based representation in real-world robots. To address these, we

present improvements to prior group-based representations.

Our current definition of group space is in the shape of convex hulls of intricate personal

spaces [Kirby, 2010]. These convex hulls contain too many vertices, often more than the number

of pedestrians within the corresponding groups. Therefore, it is more time consuming to evaluate

MPC rollout costs with respect to the group space vertices than with individuals. Additionally, it

is difficult to run group prediction models directly with the vertices, which vary in number from

group to group. Instead, we have to convert the vertices, which are in metric coordinates, into

image space, as shown in Section 4.3.2. We draw groups on empty canvases and use a video

Figure 5.1: An illustration of our proposed new group space definition. The blue circles are the
robot. We propose to leverage the visible edges of the groups to build a simplified group space
representation. We also add offsets to the back of the visible edges to account for occlusions. The
pentagon shape on the right is the resulting simplified social group space.
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prediction-based encoder-decoder model to train and predict future group states. The predictions

are then converted back into metric space.

With this technique, a great amount of computation is invested in the conversion processes

between metric space and image space. The second problem associated with image space con-

version is that occasionally the predicted group space can extend beyond the image boundary on

the last predicted frame. Because there is no information about the group space outside the image

boundary, a cut-off artifact can occur when the group space is converted back to the metric space.

Last but most importantly, image sequence prediction models typically contain larger amounts of

parameters than models that work with point trajectories (e.g. trajectory prediction models). As is

the case with the encoder-decoder model in Chapter 4, the 3D convolution-based models require

many 3D convolution model parameters to achieve sufficient prediction accuracy. This results in a

long inference time.

To overcome these challenges, we present a new group representation based on simple point

coordinates inspired by Chatterjee and Steinfeld [2016], as shown in Figure 5.1. However, the

approach presented in this project is different from the leading edges in Chatterjee and Steinfeld

[2016], where leading edges are defined using splines and are intractable to compute using simple

mathematical equations. Our new representation is scalable so that conversion into image space

will be unnecessary, and a trajectory-based encoder-decoder model instead of image sequence-

based models can be used to make predictions. Our initial observation from Chapter 4 was that

accurate group space size and location predictions matter more than predictions on their geom-

etry details. Therefore, we hypothesize that a simplified group space representation will suffice

when integrated into an MPC-based control framework, as long as the representation conveys the

location and size of the group. In our extensive simulation evaluation, we show that with our new

representation, we can achieve a much faster computation time in representation generation and

prediction model inference, while maintaining similar levels of navigation performance.

5.2 Method

5.2.1 Visible-Edge-Based Group Representation

We follow the notation from Section 4.3.1. As a quick recap, we define an augmented state for

agent i as qi = (si, θi, vi). We also define a group j ∈ J as a set Gj = {i ∈ N | gi = j} and

collect the set of all the groups in a scene into a set G = {Gj | j ∈ J }. We use the same grouping

method, DBSCAN [Ester et al., 1996], with the same parameters to assign group memberships to
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agents.

For each group Gj , j ∈ J , we define a simplified social group space as a geometric enclosure

Gj around the agents of the group based on the visible edge of the group. The visible edge of the

group is the edge of the group that is closest to the robot in the scene.

As shown in Figure 5.1, we first define the visible edge of the group by identifying three key

points: the point closest to the robot pc,j ; the point that is the leftmost visible point from the robot’s

perspective pl,j ; and the point that is the rightmost visible point from the robot’s perspective pr,j .

To obtain pc,j , pl,j , and pr,j , we first find the closest agent of the group qc,j , the leftmost visible

agent of the group ql,j , and the rightmost visible agent of the group qr,j . We then apply the egg-

shaped personal space model P from Section 3.3.1 and establish a set of boundary points for each

of the three agents Pc,j , Pl,j and Pr,j . Finally, pc,j is the closest point to the robot among Pc.
pl,j and pr,j are the leftmost and rightmost visible points from the robot’s perspective among Pl,j
and Pr,j respectively. After the three key points are identified, the visible edge consists of the two

connecting line segments (pc,j , pl,j) and (pc,j , pr,j).

The method we used to identify pc,j , pl,j , and pr,j from qc,j , ql,j , and qr,j is partially supported

by Theorem 5.2.1. Because qc,j , ql,j , and qr,j all belong to the same group, there are only small

variations in their speed and orientation, and their personal spaces have a similar size and orienta-

tion. The egg-shaped personal spaces are reasonably similar to circles, so we can use this method

to obtain the key points with negligible errors. This means that we can skip the need to generate

personal spaces for all agents in the same group, and we do not need to obtain the convexhull group

space first.

Theorem 5.2.1. For all agents qj who belong to group Gj , assume that they all have the same

orientation θj and velocity vj and their personal spaces Pj are all circles. If an agent qx is the

agent closest / leftmost / rightmost to the robot r, then the closest / leftmost / rightmost point px in

its personal space Px is the closest/leftmost/rightmost point to the robot among all the points from

the convex hull social group space Gj defined in Section 7.3.1.

Proof. We can prove this by contradiction. Simple mathematical deductions can show that if there

exists another agent qy who is not the closest / leftmost / rightmost agent among the group to the

robot, its closest / leftmost / rightmost point in its personal space cannot be closer / more left / more

right than that of qx and this point will not be on the convex hull Gj .

Next, to account for occlusions, we define a fixed offset behind the visible edge. Given pl,j and

pr,j , we draw a rectangle of width d away from the robot and obtain the two offset points plo,j and
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pro,j . We set d to 1 meter to account for occlusions that are close to the visible edge. We rely on the

regeneration of group space to find new visible edges and offsets of the group for future timesteps

if more occluded parts of the group emerge.

With this, our updated group space is now a pentagon.

Gj = Pentagon(pc,j , pl,j , pr,j , plo,j , pro,j). (5.1)

We collect the spaces of all groups in a scene into a set G = {Gj | j ∈ J }.

5.2.2 Group Space Prediction Oracle

Our social group space is now only defined by five points pc,j , pl,j , pr,j , plo,j , pro,j . Only three of

them (pc,j , pl,j , pr,j) need to be tracked. Compared to our original convex hull representations that

have to be converted into image space, our new representation is much more tractable.

Similar to Section 4.3.2, we collect information from time th = t− h and make predictions up

to time tf = t+ f . Both h and f are set to 8, just like in the previous chapter. We collect a history

of the trajectories for pc,j , pl,j , pr,j and obtain τc,j = pc,jth:t
, τl,j = pl,jth:t, τr,j = pr,jth:t. After that, we

do this for every group T th:t = {τc,j , τl,j , τr,j | j ∈ J }. We use Social-GAN [Gupta et al., 2018],

a popular trajectory prediction prediction model, to predict future trajectories.

T t:tf = SGAN(T th:t) (5.2)

We then obtain pc,jt:tf
, pl,jt:tf , p

r,j
t:tf

from T t:tf . Following the procedures in the previous section, from

these predicted key points we then calculate the offset points plo,jt:tf
, pro,jt:tf

. Finally, we obtain the

predicted future simplified social group space Gjt:tf using equation 5.1.

We chose Social-GAN because it is a well-established trajectory prediction model. Further, we

need a trajectory prediction model that only requires positional trajectories as input. Models such

as Sophie [Sadeghian et al., 2019] or Y-net [Mangalam et al., 2021] require image patches or se-

mantic segmentation as additional input and are not suitable for us. There may be better-performing

trajectory prediction models such as Trajectron++ [Salzmann et al., 2020] or AgentFormer [Yuan

et al., 2021], but [Poddar et al., 2023] has shown that better trajectory prediction models only offer

marginal benefits when integrated into a navigation system.

5.2.3 Integration into MPC

Integration of the group representation based on visible edges into MPC follows the same steps as

in Section 4.4. The only differences are in how we define the distance functionD(sk−Gjk) and how
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we determine whether the robot is not inside a group sk /∈ Gjk in the cost function (eq. 4.14). The

visible edge-based group spaces are pentagons defined by five line segments, so instead of using

sampled group boundaries, we can directly apply geometric formulas to calculate the elements in

this cost function.

5.3 Evaluation

5.3.1 Evaluation Setup

We follow the exact same simulation evaluation setup as in Section 4.5.1 of the previous chapter.

We name our new MPC framework with the simplified visual edge-based group representation

edge-sgan. Our goal is to show that edge-sgan is computationally faster than group-auto with

navigation performance similar to group-auto. To measure performance levels, we use Success

Rate, Minimum Distance to Pedestrians, and Path Lengths as described in Section 4.5.1.

We also design two hypotheses to test our claims.

H1: To explore the computation benefits of simplified group space representations, we hypoth-

esize that edge-sgan is much faster than group-auto in terms of computation time.

H2: To check that integrating simplified group space representations does not significantly

affect navigation performance, we hypothesize that edge-sgan achieves similar Success Rate, Min-

imum Distance to Pedestrians, and Path Lengths as group-auto.

5.3.2 Results

Similarly to the analysis performed in Section 4.5.4, we compiled our results into bar charts

(Fig. 5.2, Fig. 5.3, Fig. 5.4, and Fig. 5.5) that compare the results between group-auto and edge-
sgan on four different metrics. Bars indicate means, error bars indicate standard deviations, “F”

and “C” are flow and cross scenarios respectively, and the number of asterisks indicates increasing

significance levels: α = 0.05, 0.01, 0.001 according to two-sided Mann-Whitney U-tests.

H1: From Fig. 5.2, although the asterisks indicating statistical significance levels are not

shown, we can clearly see that edge-sgan performs about ten times faster than group-auto in

UNIV scenarios and about five times faster in other less crowded scenarios. As mentioned in Sec-

tion 5.2, our visual edge-based representation does not require conversion into the image space, and

the trajectory prediction models that work with these representations have many fewer parameters

than image sequence prediction models. Both factors contribute to the significantly reduced com-

putation time. Computation times are longest in UNIV scenarios due to the high crowd densities.
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Figure 5.2: Performance in terms of computation time per step.

Figure 5.3: Performance in terms of success rates. Horizontal lines indicate statistically significant
results corresponding to different hypotheses.
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Figure 5.4: Performance in terms of minimum distance to pedestrians. Horizontal lines indicate
statistically significant results corresponding to different hypotheses.

Figure 5.5: Performance in terms of path lengths. Horizontal lines indicate statistically significant
results corresponding to different hypotheses.
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H2: From Fig. 5.3, Fig. 5.4, and Fig. 5.5, we can see that edge-sgan and group-auto perform

similarly in terms of success rates, minimum distance to pedestrians, and path lengths. Many

of the comparisons do not yield statistically significant results, which indicate that both methods

perform similarly. Interestingly, we do observe occasional statistically significant comparisons in

the Online scenarios where simulation agents react to the robot, but no conclusions can be made

from these observations, because in some cases edge-sgan performs better while in other cases

group-auto performs better.

Overall, we conclude that both hypotheses hold.

5.4 Conclusion

We proposed a method of defining visual edges and generating simplified group space representa-

tions based on these visual edges. This formulation skips the need for image space conversions.

We additionally adopted a trajectory prediction model that contains many fewer parameters than

our image sequence predictor model as our oracle. In a setting similar to Section 4.5.1 from the

previous chapter, we show that with these improvements, we are able to achieve much faster com-

putation speeds while maintaining similar levels of navigation performance.

Many improvements can still be applied to our framework. As suggested in Section 4.6, the

same possible MPC improvements are applicable and it is still possible to switch to a reinforce-

ment learning-based framework. Although unlikely as suggested by [Poddar et al., 2023], better

trajectory prediction models such as [Salzmann et al., 2020, Yuan et al., 2021] can be explored and

tested to see if they offer significant improvements in navigation performance.
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Part IV

Naturalistic Pedestrian Data Collection
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CHAPTER 6

PROJECT INTRODUCTION

6.1 Introduction

Pedestrian datasets are essential tools for modeling socially appropriate robot behaviors, recogniz-

ing and predicting human actions, and studying pedestrian behavior. Researchers may use these

data to predict future pedestrian motions, including forecasting their trajectories [Alahi et al., 2016,

Gupta et al., 2018, Ivanovic and Pavone, 2019] and/or navigation goals [Kitani et al., 2012, Liang

et al., 2020]. In social navigation, datasets can also be used to model [Okal and Arras, 2016,

Kretzschmar et al., 2016] or evaluate robot navigation behavior [Biswas et al., 2021]. For this, an

in-the-wild pedestrian dataset that is large-scale and supports ground-truth metric labels is desired.

However, existing public pedestrian datasets are either unlabeled [Karnan et al., 2022, Paez-

Granados et al., 2022], only contain labels produced by an automated pipeline [Brščić et al., 2013,

Majecka, 2009], only contain pixel level information [Robicquet et al., 2016, Oh et al., 2011], or are

small in scale [Pellegrini et al., 2009, Lerner et al., 2007, Martin-Martin et al., 2021]. We propose

a system that can efficiently collect large quantities of quality data. The data collected using our

system feature a novel combination of three critical elements: a combination of top-down and ego-

centric views, natural human motion, and human-verified labels grounded in the metric space. This

allows the data collected using our system to contain rich information.

Large datasets with high-quality labels and rich information can help address human behavioral

research questions that require modeling interactions. For example, a key problem researchers

have tried to address is the freezing robot problem [Trautman and Krause, 2010]. Researchers

have attributed this problem to the robot’s inability to model interactions [Sun et al., 2021]. Some

works [Nishimura et al., 2020] have used datasets to show that modeling human reactions to the

robot’s actions enables the robot to deliver better performance. However, interactions are diverse

and uncommon in human crowds. The set of possible interactions contains many types [Mavro-

giannis et al., 2021] and can be further diversified by the environment (e.g. an open plaza or a

narrow corridor), so pedestrian datasets need to be large-scale in order to capture enough interac-

tion data.

Autonomous vehicle datasets [Caesar et al., 2020, Cordts et al., 2016] have inspired a plethora
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Figure 6.1: This set of images represents the same moment recorded from multiple sensors: a)
Top-down view image taken by a static camera with grounded pedestrian trajectory labels shown.
b) Ego-centric point cloud from a 3D lidar with the projected trajectories from (a). c) Ego-centric
RBG and depth images from a mounted stereo camera. Green vertical bars represent the projected
labels. Note that two pedestrians at the back are respectively partially and completely occluded
from the stereo camera.

of research. However, a dataset of similar caliber and label quality in pedestrian-dominant environ-

ments has yet to arrive. As a step toward this goal, we have constructed a data collection system

that can achieve these two requirements: large data quantity and diversity and human-verified po-

sitional labels. First, we ensure that our equipment is portable and easy to set up. This allows

data to be collected at a variety of locations with limited lead time. Second, we address the chal-

lenge of labeling large quantities of data using a semi-autonomous labeling pipeline. We employ a

state-of-the-art deep learning-based [Zhang et al., 2021] tracking module combined with a human

inspection and tracking error-fixing web app to semi-automatically produce high-quality ground

truth pedestrian trajectories in metric space. We make the web app open source1 so that other

researchers can use this tool or contribute to this effort.
1https://github.com/CMU-TBD/tbd label correction UI
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While we hope our contributions support robot system improvements in the community and

we aim to accommodate a wide variety of pedestrian behavior research, our dataset primarily sup-

ports human environment navigation research that requires ground truth pedestrian positional in-

formation, such as social navigation, pedestrian trajectory prediction, and ego-centric perception.

Specifically, we include three important characteristics.

(1) Top-down view and ego-centric views: This ensures that the ego-centric view data has access

to ground-truth data even with occlusions.

(2) Natural human motion: Manually pushing the inconspicuous suitcase robot mitigates the

curiosity effects of nearby pedestrians.

(3) Ground truth labeling in metric space: This allows our dataset to be useful for research where

positional pedestrian data are needed.

To the best of our knowledge, other publicly available datasets have at most two of these character-

istics.

We demonstrate our system through a dataset collected in a large indoor space: the TBD Pedes-

trian Dataset2. Our dataset contains scenes with a variety of crowd densities and pedestrian inter-

actions. We show through our analysis that our dataset (Batch 1: 133 minutes - 1416 trajectories;

Batch 2: 626 minutes - 10300 trajectories) is larger in scale and contains unique characteristics

compared to prior similar datasets. This is an ongoing effort, and we plan to collect additional data

in more diverse locations.

6.2 Related Work

With the explosion of data-hungry machine learning methods in robotics, demand for pedestrian

datasets has been on the rise in recent years. One popular category of research in this domain is

human trajectory prediction (e.g., [Alahi et al., 2016, Gupta et al., 2018, Sadeghian et al., 2019,

Mohamed et al., 2020, Ivanovic and Pavone, 2019, Kitani et al., 2012, Liang et al., 2020, Wang

and Steinfeld, 2020]). Much of this research utilizes selected mechanisms to model pedestrian

interactions in hopes for better prediction performance (e.g., pooling layers in the deep learning

frameworks [Alahi et al., 2016, Gupta et al., 2018] or graph-based representations [Mohamed et al.,

2020]). [Rudenko et al., 2019] provides a good summary of this topic. While the state-of-the-art

performance continues to improve with the constant appearance of newer models, it is often unclear
2https://tbd.ri.cmu.edu/tbd-social-navigation-datasets
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how well these models can generalize in diverse environments. As shown in [Rudenko et al., 2019],

many of these models only conduct their evaluation on the relatively small-scale ETH [Pellegrini

et al., 2009] and UCY [Lerner et al., 2007] datasets.

Another popular demand for pedestrian datasets comes from social navigation research. Com-

pared to human motion prediction research, social navigation research focuses more on planning.

For example, much of social navigation research uses learning-based methods to identify socially

appropriate motions for better robot behavior. These methods include deep reinforcement learn-

ing [Everett et al., 2018, Chen et al., 2019, 2020] and inverse reinforcement learning [Okal and

Arras, 2016, Tai et al., 2018]. Due to the lack of sufficiently large datasets, these models often

train in simulators that lack realistic pedestrian behavior. Apart from training, datasets are also in-

creasing in popularity in social navigation evaluation due to their realistic pedestrian behavior [Gao

and Huang, 2021]. Social navigation methods are often evaluated in environments using pedestrian

data trajectory playback (e.g., [Trautman et al., 2015, Cao et al., 2019, Sun et al., 2021, Wang et al.,

2022]). However, similar to human motion prediction research, these evaluations are typically only

conducted on the ETH [Pellegrini et al., 2009] and UCY [Lerner et al., 2007] datasets, as shown

by [Gao and Huang, 2021]. These two datasets only use overhead views and therefore lack the

ego-centric view used by most robots.

Large-scale and high-quality datasets exist for other navigation-related applications and re-

search. Autonomous vehicle datasets such as nuScenes [Caesar et al., 2020], Cityscapes [Cordts

et al., 2016] and ArgoVerse [Wilson et al., 2021] also contain pedestrian-related data. However,

pedestrians often have limited appearances on sidewalks or in crosswalks. There is also no data on

how pedestrians navigate indoors in these autonomous vehicle datasets. Another group of similar

datasets mainly supports computer vision-related research, such as MOT [Dendorfer et al., 2020]

for pedestrian tracking and the Stanford Drone Dataset (SDD) [Robicquet et al., 2016] and VI-

RAT [Oh et al., 2011] for prediction of pedestrian motions/goals at the image level. Detailed com-

parisons of the characteristics between the TBD Pedestrian Dataset and similar existing datasets

can be found in Section 7.2.1.

Simulators can fill the role of datasets for both training and evaluation. Simulators such as

PedSIM [Gloor, 2016], CrowdNav [Chen et al., 2019], SocNavBench [Biswas et al., 2021] and

SEAN [Tsoi et al., 2020] are in use by the research community. However, sim-to-real transfer is

an unsolved problem in robotics. Apart from the lack of fidelity in visuals and physics, pedestrian

simulators in particular entail the additional paradox of pedestrian behavior realism [Mavrogiannis

et al., 2021]: If pedestrian models are realistic enough for use in simulators, why don’t we apply

the same model to social navigation?
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CHAPTER 7

RICH, PORTABLE, AND LARGE-SCALE NATURAL PEDESTRIAN DATA: SET 1

Work in this chapter is featured in IROS2022 EMPP Workshop [Wang et al., 2022].

7.1 System Description - Set 1

In this project, we introduce a portable and easy-to-configure data collection system that will allow

scalable collection of large quantities of data. The data collection setup also contains a cart that

provides data on naturalistic pedestrian reactions to the robot from a typical perspective view.

7.1.1 Hardware Setup

Figure 7.1: Sensor setup used to collect the TBD Pedestrian Dataset. (Left) One of three nodes
used to capture top-down RGB views. Each node is self contained with an external battery and
communicates wirelessly with other nodes. (Right) Cart used to capture sensor views from the
mobile robot perspective during data collection. The cart is powered by an onboard power bank
and laptop.

As shown in Figure 7.2, we positioned three FLIR Blackfly RGB cameras (Figure 7.1) sur-

rounding the scene on the upper floors overlooking the ground level at angles of approximately 90

degrees apart from each other. The RGB cameras are connected to portable computers powered by
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lead-acid batteries. We also positioned three more units on the ground floor, but did not use them

for pedestrian labeling. Compared to a single overhead camera, multiple cameras ensure better

pedestrian labeling accuracy. This is achieved by labeling pedestrians from cameras that have the

highest image resolution for a given pedestrian (i.e., are closest).

In addition to the RGB cameras, we pushed a cart (Figure 7.1) equipped with a ZED stereo

camera through the scene to collect both perspective RGB views and depth information. A GoPro

Fusion 360 camera for capturing high-definition 360◦ videos of nearby pedestrians was mounted

above the ZED. Data from on-board cameras are useful for capturing pedestrian pose data and

facial expressions. The ZED camera was powered by a laptop with a power bank. Our entire data

collection hardware system is portable and does not require power outlets, allowing data collection

outdoors or in areas where wall power is inaccessible.

During each data collection session, we pushed the cart from one end of the scene to another

end, avoiding pedestrians and obstacles along the way in a natural motion similar to a human

pushing a delivery cart. The purpose of this cart was to represent a mobile robot that traverses

the human environment. However, unlike other datasets such as [Yan et al., 2017], [Martin-Martin

et al., 2021], [Karnan et al., 2022] and [Paez-Granados et al., 2022] that use a teleoperated robot

or [Rudenko et al., 2020] that uses a scripted policy to act autonomously, we chose to have all

motion performed by the human walking with the system. This provides better trajectory control,

increased safety, and further reduces the novelty effect on surrounding pedestrians.

The first batch of our data collection occurred at ground level in a large indoor atrium area

(Figure 7.2). Half of the atrium area had fixed entry/exit points that led to corridors, elevators,

stairs, and doors to the outside. The other half of the atrium was adjacent to another large open

area and was unstructured with no fixed entry/exit points. We collected data around lunch and

dinner times to ensure higher crowd densities.

7.1.2 Post-processing and Labeling

A summary of our post-processing pipeline is summarized in Figure 7.3. We expand on select

nodes to explain the post-processing procedures in greater detail.

7.1.2.1 Time synchronization

To ensure time synchronization across the captured videos, we employed Precision Time Protocol

over a wireless network to synchronize each of the computers powering the cameras, which allows

for sub-microsecond synchronization. For redundancy, we held an LED light at a location inside
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Figure 7.2: Hardware setup for the TBD Pedestrian Dataset. Red circles indicate positions of RGB
cameras. The green box shows our mobile cart with a 360◦ camera and stereo camera which imitate
a mobile robot sensor suite. The cart is manually pushed by a researcher during recording. The
white area is where trajectory labels are collected.

the field of view of all cameras and switched it on and off at the beginning of each recording

session. We then checked for the LED light signal during the post-processing stage to synchronize

the starting frame of all the captured videos for each recording session. We observed very little

time drift in the individual recording computer clocks throughout the duration of each recording

session, meaning that one synchronization point at the beginning of the recording sufficed.

Due to the portable nature of our system and the long distances between the cameras and the

scene, we used scene reconstruction techniques to retrieve the intrinsics and poses of the cameras.

We used COLMAP [Schönberger, 2018] to perform a 3D reconstruction of the scene and estimated

static camera poses and intrinsics by additionally supplying it with dozens of static pictures of

the atrium taken from a smartphone. The effectiveness of obtaining the camera parameters this

way may also be applied to future work. For example, it may be possible to use crowdsourced

approaches to collect such data when trying to repeat our effort with other camera deployments

(e.g., a building atrium with multiple security cameras), since hundreds of images and videos may

be available in populous areas.
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Figure 7.3: Flowchart for our post-processing pipeline. Blue blocks are preparation procedures and
orange blocks are labeling procedures. The green block transforms all the trajectory labels onto the
ground plane z = 0.

7.1.2.2 Ground plane identification

After the 3D reconstruction, the ground plane was not always z = 0, but z = 0 is usually the

assumption for pedestrian datasets. To normalize our data, we first defined an area on the ground

plane and selected all the points within the area P . We then used RANSAC [Fischler and Bolles,

1981] for maximum accuracy to identify a 2D surface G within P .

G = RANSAC(P), (7.1)

where G is expressed as gax + gby + gcz + gd = 0. Once the ground plane was identified, it was

trivial to apply simple geometry to identify the homography matrix that transforms the coordinates

on G to G′ : z = 0.

7.1.2.3 Cart localization

After the cameras were synchronized and calibrated, the next step was to localize the cart in the

scene. This was achieved by first identifying the cart on the static camera videos and then applying
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the camera matrices to obtain the metric coordinates. We are exploring other localization methods

(e.g., visual odometry and ultra wide band positioning) and will continue to track progress on

large-space localization. For the first batch of data included in our dataset, we manually labeled the

locations of the cart.

7.1.2.4 Pedestrian tracking and labeling

Similar to cart localization, we first tracked the pedestrians in static camera videos and then identi-

fied their coordinates on the ground plane G. We found ByteTrack [Zhang et al., 2021] to be very

successful in tracking pedestrians in the image space. Upon human verification over our entire

first batch of data, ByteTrack successfully aided the trajectory labeling of 91.8% of the pedestrians

automatically.

Figure 7.4: Smoothing of noise in auto-generated pedestrian trajectories by applying 3D correction.
(Left) Raw tracking results from ByteTrack [Zhang et al., 2021] (pixel space). Some noise is
present due to human body motion. (Right) Accounting for noise in 3D results in more accurate
labeling.

However, the process to do so was different from cart localization in section 7.1.2.3, where

the cart is tracked either manually or automatically (attached AprilTag). For automatic tracking

of pedestrians, the body movements of the pedestrian while walking created significant noise, as

shown in Figure 7.4. Therefore, the tracking noise was in 3D and assumptions that the noise solely

exists on G may result in large labeling inaccuracies.

We addressed this issue by estimating the 3D metric coordinates from two cameras, instead of

assuming that the metric coordinates are on the 2D plane G, and obtaining these coordinates from

a single camera. For each camera, we had a 3× 4 camera matrix P .

P =

—p1—

—p2—

—p3—

 , (7.2)
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where we had P1, P2, P3 for the three cameras, respectively. For a given 2D point coordinate x we

wanted to estimate its corresponding 3D coordinate X , so we had x = αPX . We then applied the

cross-product technique to eliminate the scalar α. This gave us x× PX = 0, or more precisely[
yp⊤

3 − p⊤
2

p⊤
1 − xp⊤

3

]
X = 0 (7.3)

With two camerasPi, Pj |i ̸= j, (i, j) ∈ {1, 2, 3}, their corresponding 2D image points (xi, yi), (xj , yj),

and the constraint that the 3D coordinates should be on the ground planeG, we constructed the fol-

lowing system of equations to estimate the 3D coordinates.

AX =


yip

⊤
i,3 − p⊤

i,2

p⊤
i,1 − xip⊤

i,3

yjp
⊤
j,3 − p⊤

j,2

p⊤
j,1 − xjp⊤

j,3

ga, gb, gc, gd

X = 0 (7.4)

We then performed singular value decomposition (SVD) on A to obtain the solution.

Once we obtained the automatically tracked labels in pixel space, we needed to convert them

into metric space. With ByteTrack, each camera video contained a set of tracked trajectories in

the image space Ti = {t1, ..., tn}, i ∈ {1, 2, 3} where i is the camera index. We estimated the 3D

trajectory coordinates for each pair of 2D trajectories (ti, tj)|ti ∈ Ti, tj ∈ Tj , i ̸= j and the set

of estimated coordinates that resulted in the lowest reprojection error were selected to be the final

trajectory coordinates in the metric space. We then projected these 3D coordinates onto the ground

plane G to obtain the final metric coordinates.

Finally, we performed human verification over the entire tracking output, fixing any errors

observed during the process. We also manually identified pedestrians who were outside our target

tracking zone but had interactions with pedestrians inside the tracking zone and included them as

part of our dataset.

7.2 Dataset Characteristics

7.2.1 Comparison with Existing Datasets

Compared to existing datasets collected in natural pedestrian-dominant environments, our TBD

pedestrian dataset contains three components that greatly enhance the dataset’s utility. These com-

ponents are:
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Table 7.1: A survey of existing pedestrian datasets and how they incorporate the three components
in section 7.2.1. For component 1, a “No” means either not human verified or not grounded in
metric space. For component 2, TD stands for “top-down view” and “E” stands for “ego-centric
view”.

Datasets Comp. 1 Comp. 2 Comp. 3
(metric labels) (views) (“robot”)

TBD (Ours) Yes TD + E Human + Robot
ETH [Pellegrini et al., 2009] Yes TD N/A

UCY [Lerner et al., 2007] Yes TD N/A
Edinburgh Forum [Majecka, 2009] No TD N/A

VIRAT [Oh et al., 2011] No TD N/A
Town Centre [Benfold and Reid, 2011] No TD N/A

Grand Central [Zhou et al., 2012] No TD N/A
CFF [Alahi et al., 2014] No TD N/A

Stanford Drone [Robicquet et al., 2016] No TD N/A
L-CAS [Yan et al., 2017] No* E Robot

WildTrack [Chavdarova et al., 2018] Yes TD N/A
JackRabbot [Martin-Martin et al., 2021] Yes E Robot

ATC [Brščić et al., 2013] No TD N/A
THÖR [Rudenko et al., 2020] Yes TD + E Robot
SCAND [Karnan et al., 2022] No E Robot

Crowd-Bot [Paez-Granados et al., 2022] No E Human + Robot

Human verified labels grounded in metric space. ETH [Pellegrini et al., 2009] and UCY [Lerner

et al., 2007] datasets are the most popular datasets among human behavior analysis papers [Rudenko

et al., 2019]. We believe this is partly because the trajectory labels in these datasets are human

verified and are grounded in metric space rather than pixel space (e.g. [Robicquet et al., 2016]

and [Benfold and Reid, 2011] only contain labels in bounding boxes). Having labels grounded in

metric space eliminates the possibility that camera poses might have an effect on the scale of the

labels. It also makes the dataset useful for robot navigation related research because robots plan in

the metric space rather than in pixel space.

Combination of top-down views and ego-centric views. Similar to datasets with top-down

views, we used top-down views to obtain ground truth trajectory labels for every pedestrian present

in the scene. Similar to datasets with ego-centric views, we gathered ego-centric views from a

“robot” to imitate robot perception of human crowds. A dataset that contains both top-down views

and ego-centric views will be useful for research projects that rely on ego-centric views. This
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allows ego-centric inputs to their models while still having access to ground truth knowledge of the

entire scene.

Naturalistic human behavior with the presence of a “robot”. Unlike datasets such as [Yan

et al., 2017], [Martin-Martin et al., 2021], [Karnan et al., 2022], and [Paez-Granados et al., 2022],

the “robot” that provides ego-centric view data collection is a cart or a suitcase robot being pushed

by a human. As mentioned in Section 7.1.1, doing so reduces the novelty effects on the surrounding

pedestrians. Having the “robot” pushed by humans also ensures safety for the pedestrians, and its

own motion has less jerk and more human-like behavior.

As shown in Table 7.1, current datasets contain only at most two of the three components1.

A close comparison is the THÖR dataset [Rudenko et al., 2020], but its ego-centric view data are

collected by a robot running on predefined trajectories. Additionally, unlike all other datasets in

Table 7.1, the THÖR dataset is collected in a controlled lab setting rather than in the wild. This

injects artificial factors into human behavior.

7.2.2 Dataset Statistics

Table 7.2: Comparison of statistics between our dataset and other datasets that provide human
verified labels grounded in the metric space. For total time length, 51 minutes of our dataset
includes the perspective view data.

Datasets Time length # of pedestrians Label freq (Hz)

TBD Set 1 (Ours)
133 mins

1416 60
(51 mins)

ETH [Pellegrini et al., 2009] 25 mins 650 15
UCY [Lerner et al., 2007] 16.5 mins 786 2.5

WildTrack [Chavdarova et al., 2018] 200 sec 313 2
JackRabbot [Martin-Martin et al., 2021] 62 mins 260 7.5

THÖR [Rudenko et al., 2020] 60+ mins 600+ 100

Table 7.2 demonstrates the benefit of a semi-automatic labeling pipeline. With the aid of an

autonomous tracker, the dataset we have collected so far has already surpassed all other datasets that

provide human-verified labels in the metric space in terms of total time and number of pedestrians.
1*L-CAS dataset does provide human verified labels grounded in the metric space. However, its pedestrian labels

do not contain trajectory data.
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Figure 7.5: Example scenes from the TBD Pedestrian Dataset. a) A dynamic group. b) A static
conversational group. c) A large tour group with 14 pedestrians. d) A pedestrian affecting other
pedestrians’ navigation plans by asking them to come to the table. e) Pedestrians stop and look
at their phones. f) Two pedestrians change their navigation goals and turn towards the table. g)
A group of pedestrians change their navigation goals multiple times. h) A crowded scene where
pedestrians are heading towards different directions.

7.2.3 Qualitative Pedestrian Behavior

Due to the nature of the environment in which we collected the data, we observed a mixture of

corridor and open-space pedestrian behavior, many of which are rarely seen in other datasets. As

shown in Figure 7.5, we observed both static conversation groups and dynamic walking groups.

We also observe that some pedestrians naturally change goals mid-navigation.

7.3 Conclusion

This chapter presents a data collection system that is portable and enables large-scale data collec-

tion. Our system offers better utility for pedestrian behavior research because our system contains

human verified labels grounded in the metric space, a combination of both top-down views and

perspective views, and a human-pushed cart that approximates naturalistic human motion with a

socially-aware “robot”. We further couple the system setup with a semi-autonomous labeling pro-

cess that easily produces human-verified labels in order to meet the demands of the large-scale

data collected by our hardware. Lastly, we present the TBD Pedestrian Dataset we have collected

using our system, which not only exceeds the quantity of similar datasets, but also offers unique

pedestrian interaction behavior that adds to the qualitative diversity of pedestrian interaction data.
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CHAPTER 8

RICH, PORTABLE, AND LARGE-SCALE NATURAL PEDESTRIAN DATA: SET 2

Work in this chapter is under review for ICRA2024 [Wang et al., 2023]

8.1 System Description - Set 2

We have made many improvements on both the hardware setup and the post-processing pipeline

for Set 2.

8.1.1 Hardware Setup

Similar to the system setup in Section 7.1.1, our system supports multiple static FLIR Blackfly

RGB cameras for labeling and calculation of the metric space (Figure 8.1). The three cameras

surround the scene on the upper floors overlooking the ground level scene spaced at angles ap-

proximately 90 degrees apart (Figure 8.2). The RGB cameras are connected to portable computers

powered by lead-acid batteries.

Instead of a cart, we pushed a robotic suitcase [Kuribayashi et al., 2023] through the scene. The

suitcase robot (Figure 8.1) is a converted carry-on suitcase. It is equipped with an IMU and a 3D

lidar sensor. In addition, the same ZED camera and GoPro Fusion 360 camera are mounted on the

Figure 8.1: Updated sensor setup used to collect the TBD Pedestrian Dataset. (left) One of the
nodes used to capture top-down RGB views. (middle) The cart used to capture ego-centric sensor
views during data collection for Set 1. (right) The suitcase robot used to capture ego-centric sensor
views during data collection for Set 2.
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Figure 8.2: Hardware setup for the TBD Pedestrian Dataset. Blue circles indicate positions of
RGB cameras. The green box shows our suitcase robot pushed through the scene. The white area
is where trajectory labels are collected. The data collection area is much larger for Set 2.

suitcase handle. The robot’s computer, batteries, and all its internal components are hidden inside

the suitcase, so pushing the robot resembles pushing a suitcase. We selected this robot because of

its inconspicuous design to reduce curious, unnatural reactions from nearby pedestrians, as curious

pedestrians may intentionally block robots or display other unnatural movements [Brščić et al.,

2015]. While it is true that real-world pedestrians will react to mobile robots curiously in the short

term and some may argue in favor of a more robotic appearance, we envision that such curiosity

effects will die down in the long term.

Similar to Section 7.1.1, during certain data collection sessions we pushed the suitcase robot

from one end of the scene to another in a natural motion similar to a human walking with a suitcase.

This also collects ego-centric views from a mobile robot traversing the human environment.

This set of data was collected in the same area as set 1 (Figure 8.2), but we have expanded the

area where we label pedestrians. This allows us to collect pedestrian trajectory data with longer

durations. Additional data collection efforts are planned at more diverse locations.

8.1.2 Post-processing Pipelines

The initial post-processing steps are the same as in Section 7.1.2. However, we have made many

optimizations to these post-processing steps, and we can obtain the ground plane and the camera

parameters directly from the calibrated cameras. The extrinsics of the cameras are calibrated using
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measured keypoints from the environment. 3D scene reconstruction and ground plane estimation

are no longer needed.

We used the suitcase robot’s onboard localization stack to localize the suitcase in the scene.

For Set 2, we first made a map inside the building and then computed the robot’s location in the

post-processing phase using the robotic suitcase software 1 powered by Cartographer 2.

For pedestrian tracking, we again tracked the pedestrians on the overhead camera videos. We

found ByteTrack [Zhang et al., 2021] to be very successful in tracking pedestrians in the image

space. We have additionally prepared the inputs to be of higher quality than those of Set 1. As a

result, after human verification of all our data, this time ByteTrack successfully tracked 95.1% of

the pedestrians automatically.

For the automatically tracked labels in the pixel space, we needed to convert them into metric

space. Each camera video contained a set of tracked trajectories in the image space. We estimated

the 3D trajectory coordinates for each pair of 2D trajectories from different cameras, and the set of

estimated coordinates that resulted in the lowest reprojection error were selected to be the trajectory

coordinates in the metric space. This process is also much simpler than the process described in

Section 7.1.2.4.

8.1.3 Human Label Verification

To ensure the quality of the data labels, human verification of the tracked trajectories from Byte-

Track is desired. Semi-autonomous labeling procedures are common in autonomous driving datasets

and pedestrian datasets. However, in a survey of existing pedestrian dataset literature, we noticed

that datasets that contain human-verified metric space labels are often relatively small [Pellegrini

et al., 2009, Lerner et al., 2007, Chavdarova et al., 2018, Martin-Martin et al., 2021], and large-

scale datasets often only use automated tracking pipelines [Majecka, 2009, Oh et al., 2011, Brščić

et al., 2013] or do not label surrounding pedestrians [Karnan et al., 2022, Paez-Granados et al.,

2022]. We attribute this to a lack of tools to streamline the human verification process.

To this end, we designed an open-source web app (Figure 8.3) using Matlab App Designer. The

tool was designed to minimize the complete human relabeling of erroneously tracked trajectories.

The app contains a media player. When using the app, human labelers watch videos with the

automatically tracked trajectories. When an error is noticed, the labeler only needs to indicate to

the system the type and location of the error. The system then fixes the errors and updates the
1https://github.com/cmu-cabot
2https://github.com/cartographer-project/cartographer
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Figure 8.3: App interface for the human verification process. It contains a media player and various
options to fix tracking errors automatically and manually.

trajectory visualization accordingly. Currently, the app contains the following set of error-fixing

options:

• Break: Used when ByteTrack incorrectly assigns the same trajectory to two different pedes-

trians.

• Join: Used when two different trajectories actually belong to the same pedestrian.

• Delete: Used when a ghost trajectory appears, such as incorrectly tracking an unworn jacket

as a pedestrian.

• Disentangle: Used when the two trajectories of two pedestrians are swapped in the middle,

which can happen when one partially occludes the other.
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Table 8.1: Comparison statistics for datasets with human verified labels grounded in metric space.
Numbers in parenthesis are for data that includes the ego-centric view.

Datasets Time length # Trajectories Label Freq (Hz)
TBD Set 1 133 (51) mins 1416 60
TBD Set 2 626 (213) mins 10300 10

ETH [Pellegrini et al., 2009] 25 mins 650 15
UCY [Lerner et al., 2007] 16.5 mins 786 2.5

WildTrack [Chavdarova et al., 2018] 200 sec 313 2
JackRabbot [Martin-Martin et al., 2021] 62 mins 260 7.5

THÖR [Rudenko et al., 2020] 60+ mins 600+ 100

The web app also supports undoing previous actions, partial or complete relabeling of trajectories,

and labeling missing trajectories. For future work, we are looking at possible platforms to launch

the app so that the human verification process can be a crowd-sourced effort.

Combined with ByteTrack, it took an expert labeler about 30 hours to produce human-verified

labels for 375K frames of data, or 10300 trajectories. ByteTrack successfully tracks 95.1% of

trajectories. For trajectories that contain errors requiring human rectification, 0.35% are fixed by

“Break”, 1.25% are fixed by “Join”, 0.29% are fixed by “Delete”, 0.89% are fixed by “Disentan-

gle”, 1.21% are fixed by “Relabel”, and 0.48% are fixed by “Missing”.

8.2 Dataset Characteristics and Analysis

8.2.1 Dataset Size

Table 8.1 again demonstrates the ability of a semi-automatic labeling pipeline to produce large

amounts of data. With the aid of our error-fixing tool, humans only need to verify and make

occasional corrections on the tracking results rather than locating pedestrians on every single frame.

Set 2 of the data we have collected so far surpasses all other datasets that provide human-verified

labels in the metric space as well as Set 1 by a great margin in terms of total time and number

of pedestrians. It is more than 10 times bigger in total time and number of trajectories. We will

continue this effort and collect more data for future work.
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Table 8.2: Comparison of statistics between our dataset and other datasets according to the methods
in [Rudenko et al., 2020].

Datasets
Tracking Percep. Motion Min Dist.
Duration Noise Speed To Ped.

[s] [ms−2] [ms−1] [m]
TBD Set 2 25.6± 57.1 0.55 0.88± 0.52 1.25± 1.44

THÖR [Rudenko et al., 2020] 16.7± 14.9 0.12 0.81± 0.49 1.54± 1.60
ETH [Pellegrini et al., 2009] 9.4± 5.4 0.19 1.38± 0.46 1.33± 1.39

ATC [Brščić et al., 2013] 39.7± 64.7 0.48 1.04± 0.46 0.61± 0.16
Edinburgh

10.1± 12.7 0.81 1.0± 0.64 3.97± 3.5
[Majecka, 2009]

8.2.2 Dataset Statistics

Extending the evaluations performed in THÖR [Rudenko et al., 2020], we added the same suite

of analyses to Set 2 of our TBD dataset. The evaluation metrics were the following. (1) Tracking

Duration (s): Average time duration of the tracked trajectories. (2) Perception Noise (ms−2):

The average absolute acceleration of the trajectories. (3) Motion Speed (ms−1): Velocities of the

trajectories measured in 1 second intervals. (4) Minimum Distance Between People (m): Minimum

Euclidean distance between two closest observed people.

As shown in Table 8.2, our dataset has a considerable average trajectory duration (±25.6) and

a large variation (±57.1), second only to ATC, which has a coverage area of 900m2. Although

our dataset has a much smaller coverage, we attribute this to the presence of pedestrians changing

navigation goals and static pedestrians in our dataset. Static pedestrians include standing pedes-

trians having conversations or pedestrians sitting on chairs. Their presence in our dataset often

has a long duration, which also causes a big variation in this metric. The tracking noise of our

system was sub-optimal when compared to other datasets, which is likely due to noisy tracking of

the sitting pedestrians. We observed that sitting pedestrians change their body poses frequently,

which causes the tracked bounding boxes to change size frequently. We will investigate how to

improve this for future work. The motion speeds of our dataset trajectories are lower (0.88ms−1),

suggesting the presence of more static pedestrians. We also have the second-highest variation in

motion speed (±0.52ms−1), suggesting that our dataset captures a wide range of pedestrian behav-

ior. From the minimum distance between people, it can be inferred that our dataset captures both

dense and sparse population scenarios as indicated by the middle mean value (1.25m) among the
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Table 8.3: Trajectory prediction displacement error on ETH/UCY datasets and TBD dataset Set 2.

ETH/UCY Dataset

Models
Static + Dynamic Dynamic

ADE(m) FDE(m) ADE(m) FDE(m)
Social-GAN [Gupta et al., 2018] 0.48 0.96 0.59 1.13

Trajectron++ [Salzmann et al., 2020] 0.27 0.49 0.35 0.65
AgentFormer [Yuan et al., 2021] 0.23 0.39 0.25 0.44

TBD Set 2
Social-GAN 0.36 0.72 0.64 1.30
Trajectron++ 0.16 0.28 0.43 0.83
AgentFormer 0.15 0.23 0.30 0.52

others and the high variance (±1.44m). Note that [Rudenko et al., 2020] also measures trajectory

curvatures, but we noticed that this measurement is heavily affected by how static pedestrians are

processed. [Rudenko et al., 2020] does not provide details on this, so we decided not to evaluate

this metric.

8.2.3 Behavior Distribution Analysis

Additionally, we leveraged trajectory prediction models to evaluate our dataset. We believe that

these well-trained models can be utilized in other ways, such as characterizing the variety of pedes-

trian behavior in datasets. Almost all trajectory prediction models have been tuned and trained on

ETH/UCY datasets. Some have additionally made predictions on SDD [Robicquet et al., 2016] or

autonomous driving datasets. Because we were primarily concerned with metric labels and pedes-

trian environments, we did not evaluate models trained in SDD or autonomous vehicle datasets.

We also chose models that largely leverage pedestrian positional data and can work independently

without image patch inputs [Sadeghian et al., 2019] or semantic segmentation [Mangalam et al.,

2021].

Our dataset contains simple sessions and challenging sessions. To test whether our dataset

contains pedestrian behavior outside the ETH/UCY dataset domains, we analyzed those sessions

of our dataset that contained great variety in pedestrian behavior for this evaluation. We selected

Social-GAN [Gupta et al., 2018] as the baseline model and Trajectron++ [Salzmann et al., 2020]

and AgentFormer [Yuan et al., 2021] as relatively state-of-the-art models. Because the models

trained on each of the other four subdatasets did not perform significantly differently in our dataset,
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we only report the average Average Displacement Error (ADE) and the average Final Displacement

Error (FDE) across the five models.

We observed that when all pedestrians are included, the prediction models all perform better on

our dataset compared to other datasets (Table 8.3). We believe this can be attributed to greater num-

bers of static pedestrians in our datasets compared to ETH/UCY because the models are unlikely

to yield large errors when predicting future trajectories of static pedestrians. We define dynamic

pedestrians as pedestrians who move at least 1m during the prediction window. We included static

pedestrians during model inference, but evaluating only on dynamic pedestrians we discovered that

all the prediction models’ performance degrades. This indicates that the models have encountered

more unseen scenarios in our dataset and that the moving pedestrians in our dataset exhibit more

diverse navigation behavior and wider behavior distribution compared to the ones in ETH/UCY.

8.3 Conclusion

This project presents an upgraded version of our data collection system that enables large-scale

data collection. This project also presents a label verification tool that streamlines the labeling

process. Our semi-autonomous pipeline easily produces human-verified labels in order to meet the

demands of the large-scale data collected by our hardware. The second set of the TBD Pedestrian

Dataset we have collected using our system exceeds the quantity of Set 1 and similar datasets. In

addition, it offers more unique pedestrian interaction behavior that expands the qualitative diversity

of pedestrian interaction data.

As mentioned above, our approach enables additional data collection in a wide range of lo-

cations and constraints. Additional data collection and public updates to this initial dataset are

planned. We have also discovered additional challenges with our labeling pipeline on static pedes-

trians. Because static pedestrians have long trajectory duration and constantly adjust their body

poses, the resulting trajectories can be noisy and escape the labeler’s attention when using our tool.

For future work, we would also explore expanding the diversity of labels. Some examples include:

adding activity labels indicating whether the pedestrian is walking, talking or sitting; adding static

obstacle labels for human-object interaction studies; adding group labels for pedestrian groups; and

adding gaze direction and head orientation labels for the onboard high-definition 360 camera.
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Part V

Conclusion
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CHAPTER 9

FUTURE WORK AND LIMITATIONS

9.1 Future Work on Group-Based Representations

In Chapters 4 and 5 we explored the benefits of group-based representations in social navigation.

In these projects, the robot acts as an outsider agent and navigates around the pedestrian groups.

We argue that the potential of using groups in social navigation cannot be fully achieved unless

the robot also plays an active role in the grouping process. In other words, when a nearby group

reflects the robot’s planning strategy, the robot simply needs to follow the group instead of planning

its own course of actions. We call this navigation strategy group surfing [Du et al., 2019].

As mentioned in the Introduction (Section 1), a common problem that a mobile robot encoun-

ters when navigating in dense human crowds is the freezing robot problem [Trautman and Krause,

2010]. This problem occurs when all possible navigation paths are blocked during planning, pos-

sibly due to conservative estimates of pedestrian dynamics. We encountered similar problems in

Chapter 4 where group-based representations occupy larger obstacle space than individual-based

Figure 9.1: The blue circles are pedestrians, the red circle is the robot and the green circle is the
pedestrian that the robot has formed a group with. Left: In a crowded situation, we hypothesize
that by following the group, the robot can navigate out of the area without the need to predict
the surrounding pedestrians’ future states and model its prediction uncertainties. Right: We expect
pedestrians to respect the group the robot has formed with other pedestrians. In this case, we expect
the robot to be able to influence the crossing pedestrians to not cut in front of the robot.

75



representations. This results in lower efficiency for the robot. If the robot runs into the freezing

robot problem but is able to detect a nearby group with similar motions to itself, the robot can

latch onto the group and let the humans in the group lead the robot out of the deadlocked situation.

An illustrative example is shown in Figure 9.1. In addition to resolving the planning issue, we

hypothesize that by forming a group with nearby pedestrians, the robot joins a social space within

the group. This may send a signal to all pedestrians that this space is not to be intruded on. As a

result, the robot discourages them from cutting into the group that it has joined. This in turn may

further help the robot navigate out of the freezing robot problem, as shown in Figure 9.1.

Group surfing has behavioral implications for pedestrians. As mentioned in Chapters 3 and 4,

humans employ a psychological process known as Gestalt to group entities with similar motions

together. Similar processes also apply when humans navigate in crowds. Not only do humans

perceive surrounding pedestrians as groups, they also act in conformity with the actions of sur-

rounding pedestrians, sometimes only using peripheral vision to detect them. This is the reason

why humans can navigate while checking their smartphones and why humans form lanes in highly

dense crowds.

9.2 Future Work on Datasets

Future work on datasets can be broken down into a) improvements in data collection and b) projects

that become viable with the availability of large-scale datasets.

Future work in data collection will include data collection in different environments. The

environment plays a key role in shaping the context of pedestrian behavior. Collecting data in more

diverse locations will allow our dataset to cover a larger distribution of pedestrian behaviors. A

key type of environment in which we need to collect data is a narrow corridor. So far, our data

have been collected in a semi-open space environment. In narrow-corridor environments, because

the pedestrian’s navigation space becomes much more constrained, different navigation behaviors

might be observed. Additionally, we can replace the static overhead cameras with a hovering drone

that follows the mobile robot. This also allows the overhead camera to be dynamic. A limitation

of our current data collection setup is that as the robot approaches the edge of the data labeling

area, it will no longer have access to top-down-view based labels of pedestrians who are outside

of the data labeling area. A dynamic overhead camera can solve this problem. Lastly, to make our

dataset more useful for other potential research areas, we will explore additional labeling pipelines

to expand our label diversity. As mentioned in Section 8.3, examples include: adding activity

labels indicating whether the pedestrian is walking, talking, or sitting; adding static obstacle labels
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for human-object interaction studies; adding group labels for pedestrian groups; and adding gaze

direction and head orientation labels for the onboard high-definition 360 camera.

A large-scale pedestrian dataset such as the TBD Pedestrian Dataset enables research in areas

that were previously difficult. For example, the group split and merge prediction can be revisited.

Having the model trained on a larger dataset with wider distribution coverage of group behavior

can allow the model to generalize better to unseen scenarios. During the course of my PhD, we

also paused two projects because we determined that a large dataset was needed to train an effective

model.

One of the projects is the personal space modeling project. Throughout this thesis, we have

been using the egg-shaped personal space project defined by [Kirby, 2010]. This personal space

formulation, although better than circles, still does not capture the complexity of proxemics that

pedestrians maintain among themselves. We frequently observed pedestrians intruding into other

pedestrians’ defined personal spaces in the datasets. Personal space should be the minimal space

that a pedestrian feels comfortable around other pedestrians. Based on this idea, we proposed

that when two pedestrians are closest to each other, they should be on the boundaries of each

other’s personal space. We developed a learning-based model that learns the parameters of the egg

shape [Kirby, 2010], but the end result was not satisfactory. We believe that the lack of data on

pairwise pedestrian interaction was the culprit behind this.

The other paused effort is the pedestrian interaction detection project. To better model human-

human interaction or human-robot interaction, it would be beneficial to learn whether an interaction

takes place in the first place. For example, a pedestrian on their phone will likely walk in a straight

line and ignore all surrounding agents. We propose to leverage counterfactuals to build an inter-

action detection model. In other words, we run a trajectory prediction model with and without a

select surrounding pedestrian and observe whether there is a difference in the predicted trajectories.

If there is, an interaction is likely to take place. Similarly, the lack of a large-scale dataset to train

a generalizable trajectory prediction model hindered our progress. We discovered that pedestrians

walk in straight paths by default and that interactions resulting in path perturbations are relatively

rare occurrences. This observation is supported by [Schöller et al., 2020]. Therefore, a large-scale

dataset that contains more instances of interactions that result in path perturbations may help us

train a better interaction detection model.
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CHAPTER 10

CONCLUSION

10.1 Contributions

In this thesis, we begin by introducing a pipeline to generate group-based representations and

explore building prediction models that take these group-based representations as inputs. We then

build a group split and merge prediction model and show that this model performs better than

converted trajectory prediction models. We additionally show that transferring the group split

and merge prediction model directly into simulated laser scan settings results in similar levels of

performance.

In the second part of the thesis, we integrate the group-based representations into an MPC-

based framework and build a group state prediction model. We show that by leveraging group-

based representations and future state predictions, the mobile robot produces safer and more social

behavior in simulation. We similarly show that our G-MPC model does not suffer a significant

performance downgrade when directly transferred to a simulated laser scan setting. However, a

limitation to the framework in this form is that large amounts of computation are required. To

address this, we design a visible edge-based simplified group space representation and show that it

offers computational benefits while maintaining similar levels of performance when integrated into

an MPC framework.

In the third part of the thesis, we describe a portable data collection system coupled with a semi-

autonomous labeling pipeline. As part of the pipeline, we designed a label correction web app that

facilitates human verification of automated pedestrian tracking results. Our system enables large-

scale data collection in diverse environments and fast trajectory label production. Compared to

existing pedestrian data collection methods, our system contains three components: a combination

of top-down and ego-centric views, natural human behavior in the presence of a socially appropriate

“robot”, and human-verified labels grounded in the metric space. We further introduce our ever-

expanding dataset from the ongoing data collection effort, the TBD Pedestrian Dataset, and show

that our collected data is larger in scale and contains richer information when compared to prior

datasets with human-verified labels.
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10.2 Final Words

As described in the Introduction (Chapter 1), leveraging pedestrian groups can help address many

issues in social navigation. However, to the best of my knowledge, work in this area has been

scarce. There is still a long way to go in exploring groups in social navigation. In addition, the

concept of pedestrian groups is a form of abstraction inspired by how humans process surrounding

pedestrians. Many other forms of abstraction also possibly exist in pedestrian-rich environments.

With enough data, maybe we can also use a large, learning-based model to automatically discover

these implicit forms of abstractions. The ideas presented in this thesis are only the first steps

towards this direction.
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