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Abstract

The vision of integrating a robot into the kitchen, capable of acting as
a chef, remains a sought-after goal in robotics. Current robotic systems,
mostly programmed for specific tasks, fall short in versatility and adapt-
ability to a diverse culinary environment. While significant progress has
been made in robot learning, with advancements in behavior cloning,
reinforcement learning, and recent strides in diffusion policies and trans-
formers, the challenge remains to develop a robot that matches human
capabilities in learning and generalizing across tasks, particularly in com-
plex, unstructured real-world scenarios.

In the thesis, I focus on enabling robots to learn manipulation tasks
from a single human demonstration, with predefined primitives that are
generalizable across similar objects and environments. We developed a
system that can process RGBD video demonstrations to identify task-
relevant key poses and frames using Segment Anything. We then addressed
challenges for robots replicating human actions, such as collision and robot
configuration limitations. To validate the effectiveness of our approach,
we conducted experiments focusing on manual dishwashing. With one
human demonstration in a lab kitchen, the method was tested under
varied conditions in a standard home kitchen, differing in geometry and
appearance from the learning environment.

Further, we broaden the scope of learning to more generalized data
sources, particularly focusing on videos from unstructured environments
like YouTube. By enabling the use of unseen videos as a source for
specific robot learning tasks, we translated visual elements into physical
constraints and goals in simulation, inferring physics of the tasks. We
demonstrated the transferability of this learning methods to real-world
scenarios with actual robots, on tasks including fruit cutting, dough
manipulation, and pouring liquids.
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Chapter 1

Introduction

The aspiration of integrating a robot into the kitchen to assist in meal preparation

has long been a dream in robotics. The landscape of culinary robotics has seen

notable developments, with inventions like Miso Robotics’ Flippy robot [1] adept at

flipping hamburgers, Hyper-Robotics’ pizza-making robot [3], and the salad-preparing

robot named Sally [2]. Additionally, the Moley kitchen [4] presents a prototype

that adapts an entire kitchen for robotic cooking. However, these innovations, while

groundbreaking, exhibit limitations in their intelligence and versatility. They are

typically programmed for specific, repetitive tasks, lacking the adaptability required

for a diverse culinary repertoire and are not designed to learn new recipes or adapt

to varying kitchen environments.

I envision a robot that not only assists in the kitchen but acts as a culinary

connoisseur, capable of recommending and preparing a variety of dishes based on the

available ingredients at home. It would be able to simultaneously cook multiple dishes,

learn new recipes, and adapt to personal taste preferences, akin to having a 3-star

Michelin chef in one’s own kitchen. The concept extends beyond mere automated

machines; it is about creating a robot that learns and adapts, similar to how humans

learn cooking through video tutorials and textual instructions. By combining these

learning modalities, the goal is to develop a generalized robot that can acquire

and refine skills from video demonstrations, thereby significantly enhancing

its utility and intelligence in a domestic setting. Our research focuses on Learning

from Demonstrations (LfD), aiming to imbue robots with the capability to master
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1. Introduction

and perform complex manipulation tasks.

Admittedly, the field of robot learning has witnessed significant advancements.

Traditional behavior cloning [74], for instance, optimizes policies to replicate actions

from demonstration data through extensive network engineering; visual behavior

cloning [89] has shown the capability to learn simple tasks in unseen environments

by converting tasks into specific rewards aligned with vision representations; rein-

forcement learning [79] has been successfully applied to generate solutions for kitchen

tasks within simulated environments. Moreover, recent developments in Diffusion

Policies [23] and Transformers [77] have introduced more efficient ways of learning

from multi-modal data, eliminating the need for designing specific primitives.

However, achieving the level of robotic proficiency where it can learn from demon-

strations and generalize learning across tasks to match human capabilities remains an

unfulfilled goal. Current advancements have not yet bridged the gap in fully address-

ing the complexity and variability inherent in real-world diverse and unstructured

scenarios.

The first significant challenge is the difficulty in acquiring and annotating scalable,

reusable robot data. Methods like behavior cloning and diffusion often struggle to find

consistent visual elements across different demonstrations, and the scarcity of alignable

demonstrations for specific tasks further complicates this issue. The variability in

how individuals perform tasks poses a significant hurdle for methods not requiring

explicit reward shaping [5, 37], as it hinders the convergence of these methods amidst

such diversity. While self-collected data and residual learning approaches [102] offer

some solutions, they demand considerable system-specific engineering, which may not

be transferable to other tasks. Hence, an ideal approach would be to enable robots to

learn effectively from single or a few demonstrations, reducing dependence on large,

varied datasets and simplifying the learning process.

Secondly, it is hard to learn without demonstrations or directly within simula-

tion. When training in simulation, environmental collisions and dynamics can vary

significantly from real-world settings, making the sim2real transfer nearly impossible

without highly accurate physics simulations and detailed models of objects and envi-

ronments. Moreover, reinforcement learning in this context requires the laborious

definition of rewards, which can be a painstaking and intricate process. Training

a robot in a new, real-world environment often requires extensive retraining and
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1. Introduction

potential adjustments in the reward function parameters. This lack of adaptability

and the need for prolonged training periods in new settings pose significant hurdles

to the development of versatile and efficient robotic systems that can seamlessly

transition from simulated to real environments.

Thirdly, manual definition of primitives is laborious and not generalizable. Typi-

cally, each task demands a unique set of primitives, which leads to a lack of generaliz-

ability and adaptability in different environments. While there have been efforts to

learn primitives based on contact relationships [92], these approaches primarily focus

on the making of contact between objects, not applying to long-horizon tasks that

involve more complex and varied interactions over extended periods. This limitation

restricts the scope of tasks that robots can learn and execute, particularly in dynamic

and unstructured environments where the requirements can change significantly over

the course of a task.

The aim of this research is to enable robots to learn manipulation tasks from a

single human demonstration, with predefined primitives that are generalizable across

various objects and environments. The initial focus, in Chapter 2, is on learning

object poses from demonstrations collected in controlled environments, with manual

dishwashing as a representative example. Then in Chapter 3 we extend the work to

learn physics from less controlled environments such as YouTube videos.

In Chapter 2, we developed a system that can identify, learn, and execute manip-

ulation tasks from a single RGBD human demonstration. This involves processing

video demonstrations to identify task-relevant key poses and frames using Grounded

Segment Anything [35]. To bridge the gap between human demonstrations and robot

execution through generalizable manipulation, we address challenges for robots in

replicating human actions, such as collision avoidance, different kinematics, and joint

range limitations, to enable more nuanced and precise robotic tasks. To validate the

effectiveness of our approach, we conducted experiments focusing on the complex

manipulation task of manual dishwashing. Initially demonstrated in a lab kitchen,

the method was tested under varied conditions in a standard home kitchen, differing

in geometry, appearance, and physics from the learning environment. Employing

a Franka Research 3 Robot, we successfully replicated dishwashing, as shown in

Figure 1.1(a), demonstrating our method’s adaptability and potential in real-world

applications. This evaluation results underscore our approach’s robustness, emphasiz-

3



1. Introduction

(a) (b)

(c) (d)

Figure 1.1: Robot Performing Experiment Tasks with Human Demonstrations in
corners. (a) Washing dishes, (b) cutting an avocado, (c) rolling dough, (d) pouring
liquid.

ing its ability to efficiently rely on contact information and learn from a single human

demonstration, with generalizablity to similar objects and environments.

In Chapter 3, we broaden the scope of learning to more generalized data sources,

particularly focusing on videos from unstructured environments such as YouTube

videos. We translated YouTube videos into physical constraints and goals (repre-

sented as scene graphs) for simulations, aiding in the learning and optimization

of robot manipulation tasks in diverse environments. We also demonstrated the

transferability of tasks learned in simulation to real-world scenarios with experiments

on the Franka and xArm robots, encompassing tasks like slicing fruits, pouring, and

dough manipulation, shown in Figure 1.1(b)–(d). Each task, learned from a single

YouTube video, represents a significant advancement in robot learning from human

video demonstrations, paving the way for future scalability in this domain.
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Chapter 2

Robot Manual Dishwashing:

Learning from RGBD Human

Demonstration Videos

2.1 Introduction

Recent advancements in robot learning have significantly expanded the range of

tasks that robots can perform. Despite numerous breakthroughs in the field, robots

have yet to match human proficiency in performing simple household tasks like

cooking, dishwashing, and laundry. These tasks remain challenging, primarily due to

limitations in computer vision and robot learning capabilities. This work extends

these advancements to encompass multi-step tasks with enhanced generalizability.

Our research seeks to address this challenge, focusing initially on one of the most

fundamental kitchen tasks: manual-style dishwashing.

The need for robots to wash dishes by hands, despite the existence of dishwashing

machines, stems from several practical considerations. First, many items, such as

bamboo cutting boards and fine china, are unsuitable for machine washing and require

hand washing. Additionally, pre-rinsing dishes before placing them in a dishwasher

is a common practice, underscoring the need for robotic assistance in these tasks.

Moreover, dishwashing represents a challenging multi-step manipulation task for

5



2. Robot Manual Dishwashing: Learning from RGBD Human Demonstration Videos

(a) (b) (c)

(d) (e) (f)

Figure 2.1: Comparative Overview of the Manual Dishwashing Task. The top row
(a-c) depicts human demonstrations and the bottom row (d-f) shows robot executions.
Key actions include (a) and (d) interacting with the faucet to turn on the water, (b)
and (e) holding a bowl under the running water, and (c) and (f) turning off the water.
This side-by-side comparison highlights the task’s sequential nature and the robot’s
ability to mirror human actions in a real-world setting.

research, involving the handling of liquids and objects with high variance in shapes

and sizes.

Our approach to robot learning from human demonstrations revolves around a

generalizable method for manipulation tasks. The core concept is to enable robots to

autonomously interpret human demonstrations by segmenting the task into modular,

learnable primitives that can be executed by robots. This process demands an

advanced vision system capable of identifying objects in videos, video temporal

segmentation, and understanding of 3D spaces. Additionally, it necessitates task

understanding alongside precise robot motion planning and control, particularly

critical in contact-rich environments.

A pivotal aspect of object manipulation in robotics is the understanding of

contacts, centering on hand-object and object-object relationships. Based on this

principle, we have developed methods to segment manipulation tasks by their contact

6



2. Robot Manual Dishwashing: Learning from RGBD Human Demonstration Videos

states: initiating contact, move while maintaining contact, and breaking contact. For

instance, as illustrated in Figure 2.1, these contact phases are matched in both the

human demonstrations and robot executions of a manual dishwashing task. The robot

is trained to estimate and replicate contact states observed in the demonstrations,

thereby replicating some intentions (the contacts) of the human actions.

Our system integrates three modules: vision, learning, and manipulation. The

vision module initiates the process by analyzing videos of human demonstrations,

constructing point clouds, and estimating object poses. This visual information is

then fed into the learning module, where action templates are employed to recognize

and generalize the human intentions behind the demonstrated actions. The final step

involves the manipulation module, which maps the templates into robot programs,

enabling robots to replicate the observed tasks in varied settings and with different

objects. Essentially, our system is designed to interpret, learn, and execute tasks in

diverse scenarios based on a single human demonstration.

The main contributions are:

1. Developed a system that can analyze, learn, and execute tasks from a single

human demonstration. This involves processing video demonstrations to identify

task-relevant key poses and frames using Ground Segment Anything [35].

2. By estimating and replicating human intent, we enable robots to perform a

demonstrated task differently from the human demonstration when the robot

cannot exactly copy human motion due to differences in kinematics, limb shapes,

joint ranges, and strength.

3. Implementation and evaluation of these methodologies on real-world robots,

providing practical evidence of their effectiveness and applicability.

Our method significantly enhances an agent’s ability to learn from a single human

video demonstration. Initially demonstrated in a kitchen mockup in the lab, the

method was tested under varied conditions with a Franka Research 3 Robot in a

standard home kitchen, differing in geometry, appearance, and physics from the

training environment.

7



2. Robot Manual Dishwashing: Learning from RGBD Human Demonstration Videos

2.2 Related Work

2.2.1 Learning from Demonstration

Extensive research has been done on Learning from Demonstration (LfD) [8, 16, 75],

, where a robot acquires manipulation behaviors given demonstrations of experts

performing the task. Many works seek to learn a policy. A popular algorithm in

this field is behavior cloning [74], which optimizes a policy to generate actions that

match the demonstration data. While conceptually simple, these systems often

require significant neural network engineering (e.g. transformer architectures [21, 27],

multi-modal prediction heads [65, 77], etc.) and/or human-in-the-loop data collection

algorithms [42, 74] to work in practice. Human supervision typically involves human

supervision through methods like teleoperation (using a joystick or VR interface) [10,

103, 105] or kinesthetic teaching [18, 57], where a user physically guides the robot

arm. However, collecting demonstrations with these approaches can be laborious and

time-consuming.

Recent developments have explored alternative methods for providing human

demonstrations, such as retargeting hand-pose estimation to robot end effector [11, 73,

81] and training policies directly from first and third-person human demonstrations [14,

82, 89]. These approaches aim to replicate human actions in robots, ignoring human-

robot differences in tasks beyond robot capability with human motion. Another route

emphasizes objects in demonstrations [92, 106, 107], but these approaches do not

apply to complex multi-step tasks that involve contact-rich interactions over extended

periods. Addressing forementioned limitations, our system centers on the contact

dynamics between human hand and objects, as well as between objects themselves.

Our work enhances generalizability and data efficiency, empowering robots to learn

multi-step manipulation tasks effectively from a single demonstration.

2.2.2 Object Pose Estimation

We rely on the recovery of object poses to provide robots with an initial understanding

of the scene. We broadly categorized methodologies into four types: Point Pair

Features based methods [30, 69, 86], Template Matching [29, 38], Learning-based

8



2. Robot Manual Dishwashing: Learning from RGBD Human Demonstration Videos

approaches [39, 83, 88, 93], and methods utilizing 3D Local Features [36]. Other

works seek to enhance pose estimation accuracy using multiple views [19, 55, 80].

However, these all require additional training for adaptation to unseen data and suffer

from limited generalizability to objects and scenarios deviating from their training

data.

Recent advancements propose using Transformers [6, 41, 104, 108] and Neural

Radiance Fields (NeRF) [58, 100] for pose estimation enhancement. Ongoing devel-

opments regularly reported in the Benchmark for 6D Object Pose Estimation [84].

Yet, applying these methods to customized environments remains challenging because

they are specifically designed for standard datasets and benchmarks, and are not

tested for generalization to data that is similar to, but different from, the training

environment.

Addressing these limitations, we instead combine identifying object pixels through

2D image segmentation with the fundamental template matching technique, Iterative

Closest Point (ICP) [22], for determining object pose. We employ Grounded Segment

Anything [35] for object detection and segmentation from images with text prompts.

This approach offers generalizability, functioning effectively in diverse scenarios

without additional training. Moreover, this part of our system is modular, allowing

for replacement as more advanced technique emerge, thus ensuring adaptability and

future-proofing.

2.2.3 Temporal Video Segmentation

Temporal video segmentation is essential in our work for segmenting videos into

meaningful robot actions. There are many datasets in this domain, some incorporating

spatio-temporal annotations and object relations [43], which mainly focus on bounding

boxes. Seminal video datasets [70, 91, 97] offer pixel labels over time, yet these are

typically short-term and lack fine-grained action labels. The Epic-Kitchen dataset [26],

collected using an ego-centric camera, is particularly relevant to our research. It

has been the basis for numerous video segmentation tasks, including Hand Object

Segmentation [25, 78], which aims to identify contact relationships between hands and

objects in images. This dataset also supports experiments in tasks including action

recognition [17, 71, 87, 99] and action detection [31, 59]. However, these methods

9



2. Robot Manual Dishwashing: Learning from RGBD Human Demonstration Videos

generally do not surpass 60% in accuracy.

To tackle this challenge, we opted for an approach using videos with depth

information. By leveraging accurate image segmentation, we reconstruct object point

clouds and calculate contact relationships to segment actions. We identify contacts

by thresholding the minimum distance between objects. This approach eliminates

the dependency on a particular dataset and provides accurate segmentation points

for robots to understand and mimic human actions.

2.3 Problem Formulation

The problem is a human demonstrating a manipulation task to the robot system

once, which the system then learns to execute. The input is a video of the human

demonstration, and the system should recognize and execute corresponding robot

primitives. These primitives need to be adaptable to various objects and environments,

differing from the learning scenario, and executable by different robot arms when

provided with task-specific parameters. Therefore, the goal is to develop a function g

that maps each frame fi in a video V to a robot primitive p in the set of primitives

P . Formally,

g : F ×O → P ,

where F represents the set of frames in the video, and O denotes the set of task-relevant

objects.

The set P could be pre-defined and needs to span the range of A, all possible actions

observable in human demonstrations. A fundamental feature of these primitives is

their clear demarcation, designed to avoid overlap, as the robot executes one primitive

at one time. In this case, each action a maps to a unique primitive p through a

function ϕ, leading to the following definition of P :

P = {p | p = ϕ(a), ∀a ∈ A}.

We make three assumptions. (1) All task-relevant objects and environment are

visible in at least one frame of the video. (2) The objects can be treated as rigid,

even if not rigid in nature. (3) The scenario involves only one instance of each object

type, eliminating the complexity of object tracking.
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2.4 Methods

The system has vision (Section 2.4.1), learning (Section 2.4.2), and manipulation

(Section 2.4.3) modules to achieve its adaptive capabilities. The vision module

processes video from human demonstrations, forming point clouds and detecting

object poses. The learning module then uses this information, coupled with predefined

primitives, to understand and generalize the intent behind the demonstrated actions.

The manipulation module takes robot policy and controls the robot, allowing it

to replicate the observed task in varied environments and with similar objects. In

essence, from just a single human demonstration, our system identifies, learns, and

performs manipulation tasks across different objects and environments.

2.4.1 Vision Module

The vision module serves as a bridge between raw visual input and actionable data

for other modules of the system. It processes RGBD images captured from (a) Multi-

Camera System into a (b) Point Cloud Registration. With (c) Object Segmentation,

the vision module tags each point of the point cloud to a corresponding object or

environment, and subsequently transforms the points into meshes, as described in

(d) Model Construction. These meshes serve as models in (e) Object Pose Estimation

and collision detection in the manipulation module.

(a) Multi-Camera System

We employed eight RealSense D435 depth cameras, chosen for their precision and

compatibility with our requirements. Calibration is the first step to enable accurate

depth perception and spatial understanding. To achieve this, we utilized Multical [12],

paired with a customized April Tag [67] board, as shown in Figure 2.3(b) to perform

the calibration process. Throughout the human demonstration phase, all eight

cameras capture video at a resolution of 640× 480 pixels and a rate of 30 fps.

It’s important to note that while our current setup provides satisfactory results,

there remains potential for improvements. The accuracy of the camera’s depth

perception, coupled with the calibration process, offers avenues for further refinement,

allowing even more precise and consistent data capture in future iterations.
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(e) Object Pose Estimation

(d) Model Construction

(g)  
Primitive 

Segmentation 
and 

Classification

Make Contact

Break Contact

Maintain Contact

(h) Policy 
Generation

(c) Object Segmentation

(a) Multi-Camera System

(b) Point Cloud Registration

RGBD RGB
(f) Hand-Object and Object-Object Contact Detection

Robot 
Policy

Contact Relationships

Hand-Object Contact 
Location(s)

A. Vision and Data Processing B. Learning Primitive Sequence and Parameters

C. Manipulation and Robot Execution

(i) Timed Object 
Trajectory Generation

(j) Alternative Object  
Pose Proposal

(k) Inverse Kinematics and Motion 
Planning with Collision Avoidance (l) Robot Controller

Object Poses in Human Demos

Object Poses During Robot Execution

Desired Object Pose Robot Path in Joint Space
YesFor Each Pose

No

Path Found?

Model Point Cloud

Point Cloud Being Estimated

Figure 2.2: System Overview. In the Module A. Vision and Data Processing, we start
with (a) eight pre-calibrated RGBD cameras capturing human video demonstrations,
whose outputs collectively generate one (b) point cloud. Each color frame undergoes
processing by (c) Grounded Segment Anything. Then We use the segmented point
clouds to (d) construct object models, serving as templates for (e) object pose
estimation using ICP. In the Module B. Learning Primitive Sequence and Parameters,
a (f) contact detector analyzes the segmented point clouds to determine contact
relationships and locations. This information helps to (g) classify primitives and (h)
generate policy parameters for robot execution. The object poses derived earlier are
also necessary in formulating effective robot policies. The Module C. Manipulation
and Robot Execution execute primitives on a robot by providing execution parameters
in the testing environment.

(b) Point Cloud Registration

Harnessing the depth and color information from the recordings, coupled with cal-

ibrated intrinsics and extrinsics, enables the construction of point clouds. These

point clouds amalgamate data from all eight cameras, providing a comprehensive and

cohesive spatial representation. Given the issues that arise when synthesizing data

from multiple RGBD images, we chose point clouds as the medium for representing

this fused information because they are convenient for later processing, such as mesh

reconstruction and distance calculation. The voxel grid could be an alternative

method worth exploring further. Additionally, to establish a consistent reference
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Multi RGB-D Camera System

Simultaneous Recording Calibration Point Cloud

(a) (b)

Figure 2.3: Camera Setup and Calibration. Eight RealSense D435 depth cameras,
seven of them shown in (a), strategically positioned around the sink area, capturing
different angles and perspectives for comprehensive depth perception. Calibration
board is shown in (b), used for determining the camera intrinsics and extrinsics.

framework, the origin of the point cloud is set at a specific fixed camera, ensuring

standardization and ease of interpretation across different data sets.

(c) Object Segmentation

We conduct image segmentation on captured color images, providing a mask for

each object of interest. To achieve this segmentation, we use an off-the-shelf method

called Grounded Segment Anything [35], a combination of Grounding DINO [62] and

Segment Anything [49]. This method detects objects using text prompts and produces

detailed object masks. Notably, during the recording of human demonstrations, we

define the objects of interest through text prompts for detection.

(d) Model Construction

To capture the environment’s point cloud, we focus on the initial frames of the

demonstration when the scene is devoid of any objects. We refine the point clouds

of both the environment and objects by removing outliners that are further away

from their neighbors in average. These refined point clouds serve as models for pose

estimation.
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Next, we transform the point clouds into meshes through the Poisson surface

reconstruction method [46]. This method retains points in point clouds as the vertices

of a resulting triangle mesh. We then decompose the reconstructed surfaces into

convex components, using V-HACD technique [85]. These meshes, less noisy and

more computational efficient than original point clouds, serve as models for collision

detection, enabling the safe and efficient operation of the system in real-world

scenarios.

(e) Object Pose Estimation

Estimating the pose of an object is a part of understanding its spatial context. For

each frame in recorded video, we compute relative poses between the segmented

point cloud and the model point cloud of the object, using Iterative Closest Point

(ICP) [22]. ICP, as it iteratively refines the alignment of two point clouds, is effective

in this context, where capture point clouds represent similar objects under similar

conditions. By minimizing the distance between corresponding points in these point

clouds, ICP can provide accurate object pose estimation.

During robot execution, the vision module detects the presence of objects and

discerns their poses. When there is a need to determine an object’s pose, all cameras

synchronously capture RGBD images, and we determine the pose using the same

procedure as in processing demonstration videos. The manipulation module uses this

pose as a bridge to align the execution reality with human demonstrations.

2.4.2 Learning Module

The primary goal of the learning module is to convert human demonstrations into

robot primitives, emphasizing the understanding and recovery of contacts in manipu-

lation tasks. In this process, we calculate distances between object point clouds for

(f) Hand-Object and Object-Object Contact Detection, and we use changes in contact

relationships to guide (g) Primitive Segmentation and Classification. By combin-

ing object poses from human demonstrations with contact information, (h) Policy

Generation formulates a robot policy for execution in the manipulation module.

14
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(f) Hand-Object and Object-Object Contact Detection:

We assess the distances between two point clouds to determine their contact relation-

ship. To minimize noisy fluctuations in contact change, especially when the distance

is close to the threshold, we use two distinct thresholds in a sequential test. The

threshold for breaking contact is higher than that for making contact. Additionally,

we conduct this test in reverse order. If the contact results vary when evaluated

forward and in reverse, we choose the outcome that leads to the fewest contact

changes.

Moreover, we record the contact location(s) between the hand and the object it

holds, which could be useful in generating a robot policy for making contact with the

object. In the reference frame of the object’s model point cloud, we cluster points

that are close to the hand, and the center of each cluster represents a contact location.

(g) Primitive Segmentation and Classification

We compartmentalized human actions into three generalizable robot primitives, each

rooted in the nature of hand-object contact relationships:

• Make Contact: This represents the initial point of interaction between the

hand and the object. For instance, it correlates to the initial touching of an

object to grasp it or push it.

• Break Contact: This denotes the cessation of hand-object interaction. Typi-

cally, this corresponds to letting go of an object.

• Maintain Contact: This primitive encompasses actions where the hand

maintains contact with an object over a prolonged period, manipulating it in

various ways. An example is rinsing a bowl while continuously holding it.

We posit that we can distill most human manipulation actions into these three

foundational categories, under the assumption that all objects are rigid bodies.

Figure 2.6 presents an example of breaking down the task of washing a bowl.

The boundaries between primitives can sometimes be blurred. For example, the

action of switching a faucet on or off may involve making and breaking contact with

faucet within a few frames. However, we generate robot policy relying on contact

changes, not on these blurred boundaries.
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It’s worth noting that while our demonstrations do feature deformable objects

like water and ketchup, we’ve opted to bypass any consideration of changes in their

shape for the scope of this work. Instead, our focus is their presence or absence.

In Chapter 3, we explore the manipulaiton of soft or deformable objects. In that

exploration, we’re assessing the manipulation of such objects based on attribute

changes such as shapes and friction.

(h) Policy Generation

The robot policy for a task comprises a sequence of robot primitives along with their

learned parameters. The sequences of primitive mirror those in human demonstrations,

and each kind of primitive has different learned parameters.

Making contact requires hand-object contact location(s), with the goal of having

the robot make contact with the object similarly to human demo. If a human

makes contact with an object at more locations than the two fingers of a robot can

accommodate, as illustrated by holding a cup in Figure 2.2 (f), we manually define

applicable contact locations for the object.

Breaking contact requires the object’s final pose at the moment it breaks contact

with the hand. We can override this with a manually defined object pose in cases

where we do not want the robot to place the object at a location similar to that in

the human demonstration.

While the hand maintains contact with an object, changes in object-object contact

relationships and the object’s state, such as its appearance or disappearance, are

crucial. The learned parameters include object poses and contact relationships

captured in the demonstration whenever these changes occur. The aim is to have the

robot replicate the relative object pose with the same contact relationships.

2.4.3 Manipulation Module

The manipulation module executes robot primitives by providing execution parameters

in the testing environment. It generates a timed object trajectory and convert the

trajectory into desired joint angle commands. Getting a robot to make the object move

along the desired object trajectory raises challenges, including different kinematics,

collisions, and many constraints imposed by the robot’s configuration.
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(i) Timed Object Trajectory Generation

The robot primitives operate by taking inputs derived from demonstrations as well

as real-time object and environment statuses and churning out a trajectory detailing

key poses that guide how the object should be manipulated. This streamlines the

transition from human demonstration to robot execution, enabling robots to replicate

human’s actions.

We represent this translation through a “timed object pose trajectory”, a sequence

of object poses each tagged with a timestamp. This trajectory is object-centric, with

poses being relative, focusing on the spatial and temporal evolution of the object’s

pose over the course of a demonstration. The trajectory enables the generalization and

replication of actions observed in demonstrations across various scenarios, regardless

of specific robots or environmental conditions.

(j) Alternative Object Pose Proposal

Humans and robots are different in their anatomical and mechanical configurations.

This divergence means that a robot cannot merely copy human demonstrations exactly.

For instance, a motion or pose of a human wrist might be inaccessible or impractical

for a robot’s end-effector due to its structural constraints. Our system adjusts target

object poses when confronted with configurations the robot cannot feasibly achieve.

For a pose that has no solution from IK or motion planner, our system proposes a

new alternative desired object pose that are both logical and maintain the functional

intent of the original pose. Central to this strategy is the consideration of an object’s

inherent symmetries and an emphasis on preserving the relative spatial relationships

among interacting objects. Take an example of holding a bowl. While the position of

the bowl is invariant, the orientation of the bowl can be flexible about its symmetric

axis. In this case, the program can suggest rotating an object about its symmetric

axis, while remaining contact relationships between objects unchanged. Such an

adjustment not only retains the functional intent but also provides the robot with an

expanded range of configurations to explore, especially in complex environments like

around a sink.
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(k) Inverse Kinematics and Motion Planning with Collision Avoidance

Robot movement needs the amalgamation of precise inverse kinematics and adept

motion planning, particularly when the imperative is to navigate in cluttered or

unpredictable environments. Many inverse kinematics algorithms lack integrated

collision avoidance capabilities. To this end, we’ve adopted a two-pronged approach:

employing the TRAC-IK solver [13] for inverse kinematics, complemented by the

RRT-Connect [51] for motion planning.

The IK solver produces a set of potential solutions for a desired robot end-effector

pose. Solutions causing robot collision are discarded. The remaining solutions are

designated as the preferred robot joint angle set. Following this, the RRT motion

planner, informed by the robot’s current and desired joint angles, generates a collision-

free path. This path’s viability is ascertained using a collision detection function in

PyBullet [24], which, given the robot’s joint angles and the environmental mesh data,

determines whether the robot is in collision.

(l) Robot Controller

For controlling the Franka robot, a NUC equipped with a real-time kernel is employed

to interface with the robot’s control box, enabling high-frequency control important for

precise task execution. Command signals are transmitted from an Ubuntu computer

to the NUC via Ethernet. The controller implementation and pipeline is provided by

Polymetis [61].

The primary basic control employed is Proportional-Derivative (PD) joint position

control. In the PyBullet simulation phase, a robot joint path is calculated based on

desired object poses. This path is then smoothed and sampled at a high frequency

of 1000 Hz using the method described in [54]. This helps the robot’s capability

to adhere to the command path, although it is found less critical in actual testing

scenarios. However, one issue encountered is the ”path deviation” error, which occurs

randomly at specific joint angles. The cause of this error remains elusive. Our current

workaround involves restarting the robot controller and resuming motion from the

point of interruption whenever this error triggers a stop.
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2.5 Experiments and Results

We present a series of experiments and evaluations to test the robot system’s effec-

tiveness. Initial experiments are conducted in a laboratory kitchen mockup, where

the foundational aspects of the system, including key pose identification and collision

avoidance, are tested. The experiments are then extended to a standard home kitchen,

offering a more challenging and varied environment to test the adaptability of the

system in real-world scenarios.

2.5.1 Environment and Robot Setup

To prepare environments and the robot for experiments, we reconstructed kitchen

settings in the PyBullet simulator, created a waterproof skin for the Franka Research

3 robot, and customized the robot’s gripper to adapt to the specific requirements of

the dishwashing task which included reaching into the sink, which had limited space.

Additionally, the experiments also required a control system implemented for precise

task execution, enabling the adaptability of our setup to various robot platforms.

Learning and Testing Environment

Human demonstrations were initially recorded in a lab kitchen mockup, shown in

Figure 2.4(a). This setting facilitated focused and safe testing, particularly in terms

of managing water usage during robot experiments. Subsequently, the system was

moved to an actual home kitchen, also illustrated in Figure 2.4(b). In this new

environment, key elements such as the sink, faucet, and camera positions differed

from the lab. Despite these changes, the learned primitives demonstrated adaptability

to different environments, thereby validating the potential for generalization inherent

in our system.

Both the lab and home kitchen environments were modeled in the PyBullet simu-

lator. The process involved creating detailed meshes from the point clouds captured

by the multi-camera system, as described in Section 2.4.1. The resulting simulation,

which accurately mirrors the real-world lab kitchen, is shown in Figure 2.4(c).
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(a) (b) (c)

Figure 2.4: Learning and testing environment. Human Demonstrations are recorded
in (a) the lab kitchen, and the robot can perform the task at a previously unseen
(b) home kitchen. The (c) reconstructed lab kitchen in simulation is used for motion
planning.

Robot

For experiments, we utilized the Franka Research 3 robot arm equipped with the

Franka Hand as the end-effector, augmented with a custom 3D printed finger. The

original fingers of the Franka Hand were too short, and the hand and wrist dimen-

sions were too large for dishwashing, as depicted in Figure 2.5(a). In the original

configuration, when holding objects like bowls or cups under the faucet, the robot

inadvertently obstructed the water flow. Therefore, we engineered a longer finger

with a 135-degree angle, shown in Figure 2.5(b), specifically designed to position the

robot’s wrist away from the manipulated object, allowing unblocked water flow while

washing dishes.

In the experiment, the presence of real water requires the waterproofing of the robot,

given the inherent sensitivity of electronic components to moisture. Figure 2.5 (c)

illustrates the robot arm was encased in poly tubing, while the gripper was sheathed

in a rubber glove. This design is practical and cost-effective, as selected materials not

only maintain the robot’s operational flexibility and dexterity but also offers ease of

replacement and maintenance, ensuring the robot’s longevity in wet environments.

2.5.2 Results

Experiments were designed to test the adaptability of our system across a variety of

scenarios, including interactions with both seen and unseen objects, their placement
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(a) (b) (c)

Figure 2.5: Robot Finger and Waterproof Design. The (a) original Franka Hand
fingers are so short that the robot blocks the water. We solved this by designing (b)
longer fingers. (c) The robot is waterproofed with poly tubing on the robot arm and
glove on gripper.

locations, and different environments. The results, detailed in Figure 2.6 and Table 2.1,

illustrate how the system performed in different settings. The seen environment is

the lab kitchen, used for human demonstrations, while the unseen environment was

the home kitchen. The range of objects tested included bowls, cups, and forks. In the

demonstrations, a blue bowl with ketchup was used, and this knowledge sucessfully

generalized to similar objects, such as a red bowl with mustard and a plastic white

bowl. Cups were varied in their design; a blue cup without a handle was shown to

the system, whereas a red cup with a handle is the unseen variation. Similarly, the

system’s ability to generalize from a fork to a differently shaped spoon was assessed.

Initially, the experiments were conducted in a laboratory setting, where the objects

were placed in the same locations as demonstrated by a human. In this controlled

environment, the system achieved an approximate success rate at least 80% for

each subtask. However, the errors in individual subtasks accumulated over time.

Consequently, when the robot attempted to complete the overall task which had the

five components listed, the overall success rate decreased to around 40%.

When the experiment’s conditions were altered by moving the objects to dif-

ferent locations, the system’s performance declined, with the success rate of each
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Figure 2.6: Overview of the Task of Washing A Bowl. We break down human
demonstrations into robot primitives (top row), conduct experiments in the lab
kitchen mockup (middle row), and test the system in a home kitchen (bottom row).

Table 2.1: Success rate of dishwashing task tested on Seen and Unseen Objects,
Locations, and Environments.

Obj Loc Env Faucet On/Off Pick Place Rinse Whole Sequence

S S S 0.8 1.0 0.8 0.4
U S S

0.9 0.8
0.8 1.0 0.4 0.2

S U S 0.6 0.8 0.8 0.2
U U S

0.6 0.5
0.4 0.8 0.6 0.2

S U U 0.8 0.8 0.8 0.4
U U U

0.5 0.5
0.6 1.0 0.6 0.2

subtask dropping to about 50-80%. This reduction in effectiveness reduced the

robot’s ability to successfully complete a sequence of five tasks. The experiment was

further extended to a home kitchen environment, posing additional challenges for the

system, particularly for the vision module. In this setting, the system struggled with

accurately determining the pose of the faucet lever, which was crucial for the task of

turning the faucet on and off. Despite the challenges, the system demonstrated some

generalizability, achieving a success rate of 20% across all tasks.

The analysis of failure cases in the experiments highlights several key areas of

concern. Pose estimation inaccuracies were the most significant issue, accounting for

50% of the failures, indicating challenges for the vision system’s ability to precisely

locate and orient objects. Motion planning issues, where the robot couldn’t find a

feasible path to complete a task, contributed to 26% of the failures. In 10% of cases,
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the robot failed to rinse off the ketchup adequately. The robot dropping the bowl

when it became too heavy with water accounted for 8% of failures, suggesting a

need for better grasping and handling strategies. The faucet being only half-opened

resulted in 3% of failures and other miscellaneous issues comprised the remaining

3%, indicating a range of smaller, yet significant, challenges that need addressing to

improve the overall system’s reliability and efficiency.

2.6 Limitations and Future Works

This section outlines the challenges encountered in the areas of vision, learning, and

manipulation within the current system. These challenges highlight key areas for

improvement and guide the direction for future work to enhance the system’s overall

performance and adaptability.

2.6.1 Vision

The vision module of our system, while functional, faces several limitations, predom-

inantly due to the inherent challenges in point cloud generation and object pose

estimation. Notably, the point clouds derived from the RealSense depth cameras

exhibit significant noise. This is primarily because these cameras rely on stereo

vision features to estimate depth, which can be inaccurate, especially around the

edges of objects. Calibration and global registration of point clouds also present

areas for improvement. These inaccuracies tend to accumulate and are particularly

evident when dealing with small objects, such as the tip of a faucet lever, which has

a diameter of less than 1 cm. Incorrect pose estimation can lead to the robot missing

the intended object, resulting in operational failures like the inability to turn on a

faucet.

A promising future direction is the adoption of more advanced depth cameras,

such as the Azure Kinect, which employs Amplitude Modulated Continuous Wave

(AMCW) Time-of-Flight (ToF) technology. However, a challenge with using multiple

such cameras is the potential interference due to the emitted light. An alternative

approach might involve using multiple RGB cameras, although this would necessitate

highly accurate calibration of camera intrinsics and extrinsics. Advances in Neural
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Radiance Fields (NeRF) offer the potential to reconstruct point clouds from RGB

cameras without needing explicit calibration.

The current inaccuracies in the vision module also adversely affect the calculation

of contact relationships, leading to over or under-segmentation of primitives. This can

have catastrophic consequences for the system’s operation. Currently, we manually

correct the sequence of primitives, but a more automated and accurate method would

be necessary for scaling up the system. Additionally, the current system lacks tracking

capabilities; it operates under the assumption that all task-relevant objects are visible

in at least one frame and that there is only one instance of each object type.

For future improvements, one avenue could be integrating the vision system with

Large Language Models (LLMs) to enhance the identification of task-relevant objects

and their sequence. Another promising approach is to develop Diffusion policies that

bypass state estimation, combining task and motion planning with visual feedback for

a more integrated and robust system. Such advancements could significantly enhance

the precision and scalability of our vision module, contributing to more efficient and

reliable robotic operations.

2.6.2 Learning Generalizability

The generalizability of our current learning setup is primarily oriented towards

replicating the same sequences of primitives as observed in human demonstrations.

While the modular nature of these primitives theoretically allows for adaptation

to different sequences, this flexibility has not been fully explored or utilized. This

limitation becomes particularly apparent in complex scenarios where the environment

or sequence of primitives might change unexpectedly, such as the sudden appearance

or disappearance of objects. Under such circumstances, the learned primitives may not

adequately address the challenge, for example, when the target object is obstructed

by unforeseen objects.

Regarding dynamic changes in task execution, several potential solutions emerge.

1) One approach could involve integrating new human demonstrations to directly

instruct the robot in handling novel scenarios. 2) Reinforcement learning within

simulations could offer a means to teach the robot to adapt to a broader range of

situations. 3) Expanding the dataset to include more varied demonstrations, each
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presenting different solutions to the same problem, could also enhance the system’s

adaptability. 4) Applying learning from analogy or transfer learning might enable

the system to draw parallels from different tasks and apply this knowledge to new,

unencountered scenarios.

One intuitive method, for example, is to sample using k-nearest neighbor to

generate each key pose within this trajectory. Specifically, it samples a key pose

that is proximate in characteristic to the corresponding key poses observed in the

demonstrations. This methodology bears resemblance to the construction of token

matrices in linguistic research. In such matrices, the prediction of a subsequent word

relies on its historical likelihood given the context of preceding words.

Another significant limitation lies in our approach to soft objects, which are

currently treated as rigid. This treatment can lead to difficulties in segmentation

and action identification, especially for actions involving soft object manipulation.

Addressing this challenge requires much more accurate simulation and a deeper

understanding of the interaction dynamics with soft materials. One area of potential

improvement, as discussed in Chapter 3 of this thesis, involves exploring new methods

and sensory inputs to better grasp the mechanics of soft objects. This advancement

would necessitate a more nuanced approach to force and impedance estimation, going

beyond the capabilities of pure vision-based systems.

2.6.3 Grasping and Motion Planning

The concept of making contact in robotic object manipulation, which is commonly

referred as robot grasping problem, is a vast and highly active area of research. In

our work, the ’make contact’ primitive is somewhat limited, focusing primarily on

one-contact pushing and two-contact grasping. However, human hands demonstrate

far greater dexterity, capable of producing numerous contact points and modes,

especially in soft contacts. Our current modes are unable to encompass all these

variances, leading to situations where specific actions, such as picking up a plate using

the sink’s wall, must be manually defined. These non-prehensile strategies present a

future research direction, leading to more complex and varied grasping techniques.

Hardware limitations of the robot also pose challenges. For instance, the current

gripper may struggle to hold a bowl full of water due to its weight, leading to
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assumptions like the absence of drift between the end effector and the object. The

robot’s speed further restricts the range of interactions with objects and water. While

hardware improvements are one solution, advancing the robot’s intelligence is equally

crucial. Techniques like residual learning could address issues like drift during object

holding, enhancing the robot’s capability to handle complex dynamics changes using

current trajectories as references.

Motion planning presents another area of limitation, particularly in terms of

inefficiency and limited success rates. Our current setup can generalize to some

extent, adapting to scenarios where human demonstrations might not be directly

replicable by the robot. This is achieved by altering the desired object pose without

changing the contact relationship requirements. More intelligent methods could be

developed to bridge the gap between human capabilities and robot configuration

limits.

Moreover, humans possess a remarkable ability to adapt to new environments and

tasks, developing a kind of ‘muscle memory’ that allows for efficient task execution

without extensive conscious thought. Exploring the potential of implementing a

similar strategy in robotics could lead to faster motion planning and more efficient

task execution. Such an approach would enable robots to perform complex tasks

more autonomously, such as driving and typing, resembling human-like adaptability

and learning efficiency.

To briefly conclude this chapter, we have explored the complexities of robotic learning

from human demonstrations, focusing on the nuances of long-horizon tasks like dish-

washing. Our primary contribution is identifying weak points in current approaches.

Another contribution is developing a system that segments these tasks into modular

primitives, based on rigid body object pose, has shown promising results in both

lab and home environments for a robot to understand and replicate human actions.

While our methods showed promising adaptability and generalizability, they also

highlighted certain limitations, particularly in vision accuracy and efficient task learn-

ing and execution. Addressing these challenges, our future work aims to refine the

system’s adaptability and dexterity, exploring more advanced computer vision and
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more intelligent robot learning techniques. In the next chapter, we extend our work

beyond relying solely on rigid body object pose to exploring the learning of force and

impedance from human demonstrations using simulation, pushing the boundaries

of what is achievable in the field of robotic manipulation and learning from human

demonstrations.
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Chapter 3

Beyond Object Pose: Learning

Impedance by Watching YouTube

and Trying in Simulation

3.1 Introduction

The previous chapter demonstrates the capability to learn from human demonstrations

in a controlled lab setting using depth cameras to create segmented point clouds.

This chapter aims to broaden the scope of learning to more generalized data sources,

particularly focusing on videos from unstructured environments like YouTube. The

potential of such platforms for scaling robot learning is substantial.

Extracting robot programs from YouTube videos, however, presents unique chal-

lenges. The visual characteristics of these videos often significantly differ from target

test environments, impacting the transferability of visually-based programs such as

Behavior Cloning [74] or Diffusion Policies [23]. Moreover, to extend learning beyond

rigid body object pose to encompass a broader range of deformable objects, liquids,

and granular materials requires strategies to infer physics from videos, determining

the dominant forces for different objects. Understanding forces and impedance at

contacts is key to success for dynamic tasks as well as many quasi-static tasks..

To address these challenges, we focus on object contacts and physical constraints,
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Figure 3.1: Three Tasks Learned from YouTube. (a) and (d) Cutting an avocado.
(b) and (e) Rolling dough. (c) and (f) Pouring.

such as establishing and breaking contacts, rather than relying solely on direct visual

appearances. With these object states and contact constraints, we construct scene

graphs, a popular model in computer vision for describing attributes and relations

among objects. These graphs, combined with advanced simulation environments,

capable of modeling non-rigid objects and providing force information, can help

perceive the invisible physics in video content.

The key contributions of this chapter include:

1. Enabling the use of single YouTube video as a source for robot learning manip-

ulation of deformable objects, liquids, and granular materials.

2. Abstracing unseen videos into physical constraints and goals (represented as

scene graphs) for simulations, aiding in the learning and optimization of robotic

tasks in diverse environments.

3. Demonstrating the transferability of tasks learned in simulation to real-world

scenarios using actual robots.

The effectiveness of this methodology is validated with experiments on the Franka

Research 3 Robot and uFactory xArm, encompassing tasks, illustrated in Figure 3.1,

like slicing fruit, pouring, and dough manipulation. Each task, learned from a single

YouTube video, represents a significant advancement in robot learning from human

video demonstrations, paving the way for future scalability in this domain.
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3.2 Related Work

3.2.1 Scene Graphs

Scene graphs have become a popular representation in computer graphics for de-

scribing, manipulating, and rendering complex scenes [90]. In computer vision, scene

graphs have primarily been used to abstract the content of 2D images. Visual

Genome [50] proposed using natural language captions to generate scene graphs

to model attributes and relations among objects, which have been used for many

tasks such as image captioning [7], retrieval [45], action recognition [63] and visual

question-answering [34].

Armeni et al. [9] proposed a semi-automatic algorithm to construct 3D scene

graphs for static rooms. However, their method is limited to static scenes and does

not include dynamic objects and their relationships over time. Similarly, Kim et

al. [47] proposed a 3D scene graph model for robotics that only includes static objects.

These methods rely heavily on SLAM to understand 3D geometry, which is proving

difficult to apply to YouTube videos that mainly focus on moving objects. Our work

extends the usage of scene graphs to typical instructional YouTube videos, enabling

us to reason about dynamic objects and their relationships in 3D over time.

3.2.2 Inverse Reinforcement Learning

Similar to Learning from Demonstration (LfD), Inverse Reinforcement Learning

(IRL) [5, 33, 37, 66] aims to recover the underlying reward function responsible

for a teacher’s observed behavior. By understanding and imitating the teacher’s

decision-making process, an RL agent can learn from demonstrations without the

need for manually designing reward functions.

Recent research has focused on enabling RL agents to learn directly from raw

sensory data [20, 32, 44, 56, 76, 95], such as videos, which have become a valuable

resource for demonstrations. For example, XIRL [101] learns a reward function from

video demonstrations through temporal cycle-consistency and trains an RL agent to

maximize the learned rewards. Another example is GraphIRL [53], which improves

visual representation by employing a graph-structured abstraction. Although these
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works demonstrate promising results and exhibit potential for cross-embodiment trans-

ferability, they often rely on a substantial number of in-domain expert demonstrations

captured in similar environments, which significantly restricts the applicability of

these methods.

3.3 Methods

In this section, we first outline the process of constructing a scene graph from YouTube

videos using off-the-shelf tools (Section 3.3.1). Following that, we delve into the

process of constructing a digital twin for trajectory optimization within simulation

environments to ground the physical constraints (Section 3.3.2). Lastly, we explain

the method for transferring the policy to the real world (Section 3.3.3).

3.3.1 Video to Scene Graphs

A human demonstration video on YouTube is transformed to scene graphs which

detail attributes and relationships among objects and later serve as constraints for

simulation and optimization of robot programs.

To construct scene graphs from videos, our approach consists of three key steps,

as outlined in Figure 3.2. First, we employ computer vision techniques to extract

depth information, perform instance segmentation, and estimate optical flow, which

enables us to reconstruct a semantic point cloud for each frame. Next, we decouple

camera motion from object motion and project all frames into the coordinates of the

first frame. Finally, we retain only objects of interest and calculate their attributes

and relationships with other objects, facilitating the construction of the scene graph.

We now introduce each module in detail.

Semantic Point Cloud Reconstruction

We first estimate the monocular depth. We leverage ZoeDepth [15], an off-the-shelf

solution that has been trained on 12 datasets using relative depth and further fine-

tuned on two datasets using metric depth. ZoeDepth utilizes a lightweight head

with a novel metric bins module, allowing for domain-specific adjustments. During

inference, an input image is automatically routed to the appropriate head based on
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Consistent Video 
Depth Estimation

Grounded-SAM

Deprojection OBB Retrieval ICP + Constraints

Simulatable 
Digital Twin

Physical Constraints Imitation

Inverse Reinforcement Learning 
Trajectory Optimization

Milk Carton

Cup

Milk Carton

Milk 

Cup

Hybrid Motion-Force Control

Video Processing

Policy Learning

Figure 3.2: Pipeline overview for learning from YouTube videos. (a) Video Process-
ing: Scene graphs are generated by instance segmentation, consistent video depth
estimation, and object relationship calculation. (b) Policy Learning: Constructing
a digital twin for trajectory optimization and performing sim to real transfer with
hybrid motion-force control.

a latent classifier. By leveraging ZoeDepth, we can obtain depth information with

metric scale for each RGB frame.

Next, we utilize Grounding DINO [62] for detection and Segment Anything

(SAM) [49] for segmentation. Grounding DINO takes an RGB image and a predefined

category of interest, producing bounding boxes for each object. These bounding

boxes are then used as prompts for SAM to generate masks for each object. Both

models exhibit strong zero-shot generalizability to unseen environments, providing

accurate 2D positions and semantic information for individual objects.

We also employ GMFlow [96] for optical flow estimation, which is treated as a

global matching problem. GMFlow extracts image features using a Convolutional

Neural Network (CNN), enhances them with a Transformer, and calculates pairwise

feature similarities. We then compute the optical flow in a softmax matching layer.

With GMFlow, we obtain crucial motion information between consecutive frames,

which aids in tracking objects with the same identity across a video.
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Overall, we generate point clouds from depth estimation, mapping the instance

segmentation onto these point clouds, and track objects with optical flow. This

process enables us to construct a semantic point cloud that encompasses both spatial

and semantic details.

Consistent Video Depth Estimation

We employ Consistent Video Depth Estimation (CVDE) [64] to produce temporally

coherent and geometrically consistent depth maps throughout the entire video. Using

a monocular video as input, CVDE selects a pair of frames, potentially distant, and

utilizes a pre-trained single-image depth estimation model [15] to generate initial depth

maps. Establishing correspondences through optical flow with forward-backward

consistency checks, CVDE then leverages these correspondences and camera poses to

extract 3D geometric constraints. These constraints are decomposed into two losses,

namely spatial loss and disparity loss, which are utilized to fine-tune the weight of the

depth estimation network via standard backpropagation. During test-time training,

this process compels the network to minimize geometric inconsistency errors across

multiple frames specific to the video. Following the fine-tuning stage, the final depth

estimation results for the video are computed using the fine-tuned model.

Graph Generation

To generate the scene graph, our first step is to filter out irrelevant objects. We

specifically identify objects that interact with the hand as objects of interest. This

concept of interaction can be hierarchically propagated. For example, objects directly

interacting with the hand are classified as the first level of interaction, and objects

interacting with first-level objects are classified as the second level of objects, and so

forth. In our current implementation we preserve objects with up to three levels of

interaction, prioritizing the most pertinent ones.

Next, we generate a scene graph representation to capture attribute changes and

relationship dynamics among the objects of interest. Given that 4D reconstruction

remains an open problem with no comprehensive solution, we propose a retrieval-

based approach for estimating 6DOF object poses. Initially, we compute an oriented

bounding box (OBB) around each object using the method from [68]. Next, employing
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Pointnet++[72], we retrieve the nearest neighbor from a subset of Objaverse-XL[28].

We then resize and orient the retrieved object to fit the OBB of each corresponding

object. Due to potential occlusion, the estimated OBBs may not tightly bound the

objects. To address this, we further refine the object poses using iterative closest

points (ICP) [22], which are used are node attributes. Additionally, we incorporate

edge information to indicate whether two objects are in contact with each other.

This involves calculating the Chamfer Distance between their respective point clouds.

If the minimum distance falls below a predefined threshold, we determine that the

two objects are in contact. Additionally, we capture the closest points of each pair

of objects in contact. To enhance the representation, we apply Gaussian filters to

smooth the contact region, and these smoothed regions are then utilized to optimize

physical constraints. Through these processes, we construct a scene graph for a given

YouTube video. In this graph, each node corresponds to an object of interest, and

each edge denotes the relationship between them.

3.3.2 Simulation and Optimization

MLS-MPM Simulation

To enhance the capabilities of robotic learning from human demonstrations, a spe-

cialized simulation environment was developed using Python and Taichi. This

environment incorporates the Moving Least Squares Material Point Method (MLS-

MPM) [40], as per the approach outlined in [94, 98], which is adept at modeling

interactions between both soft and rigid objects, including forces between them. The

flexibility and precision of MLS-MPM make it an ideal choice for simulating the

complex dynamics observed in real-world tasks.

The MLS-MPM works by discretizing materials into a set of material points

(Eulerian method), which carry properties like mass, velocity, and deformation

gradients. These points are then mapped onto a background grid (Lagrangian

method) where force calculations and updates are performed. After grid operations,

the updated information is transferred back to the material points. By integrating the

robustness of grid-based calculations with the flexibility of particle-based dynamics,

MLS-MPM is not only versatile but also capable of being parallelized on GPUs. This

makes it a faster and more efficient option compared to traditional methods like the
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Finite Element Method (FEM), thereby enhancing its suitability for a wide range of

simulation applications.

While most other simulation using MLS-MPM focus on simulating one specific task,

our implemented simulation environment, paired with an extensive object library [28],

could be capable of replicating a wide array of tasks, automatically constructed from

demonstration videos. By accurately modeling the physical interactions and dynamics

of various objects, the simulation bridges the gap between virtual simulations and

real-world applications.

Trajectory Optimization

To ground the physical constraints over the entire video, we initially decompose

each task into multiple subtasks based on changes in these constraints, such as the

establishment and breaking of contacts. For each subtask, we utilize the physical

constraints of the subsequent subtask as optimization goals. We frame this process

within a Markov Decision Process (MDP) defined by a set of states s ∈ S, actions
a ∈ A, and a deterministic, differentiable transition dynamics st+1 = p(st, at), where

t denotes discrete time, and states are composed of different objects st = {sit}i=1,...,n.

For any pair of objects (sit, s
j
t), the physical constraints can either exist (in contact) or

not (not in contact), and a cost function is denoted as C(sit, s
j
t). For any reference state

(6 DoF poses of objects) ŝt, a distance function is denoted as D(st, ŝt). The objective

is to determine a trajectory that minimizes the total loss L. Following [60], we use

gradient-based trajectory optimization to solve for an open-loop action sequence:

argmin
a0,...,aT−1

L(a0, ..., aT−1) = argmin
a0,...,aT−1

λ1

∑
i,j

C(siT , s
j
T ) + λ2

T∑
t=1

D(st, ŝt) + λ3

T∑
t=1

E(at)

where st+1 = p(st, at)

(3.1)

C(siT , s
j
T ) represents the KL divergence [52] in contacting distributions if physical

constraints exist between (sit, s
j
t); otherwise, it is 0. The action at are the translation

velocity and angular velocity of each object, and E(at) denotes the energy associated

with executing action at. Additionally, λ1, λ2, λ3 are weighting parameters.
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Table 3.1: Success Rates of Robot Experiments in the Real World.

Cutting Avocado Pouring Liquid Rolling Dough

75% 80% 50%

We solve Equation 3.1 by updating the action sequence using ∇atL, t = 0...T , with

an Adam optimizer [48], initialized with the trajectories from the video. Additionally,

we compute the force ft and torque τt observations at each timestep, facilitating the

implementation of a hybrid motion-force controller for real-world applications.

3.3.3 Hybrid Motion Control

To transfer the result of optimized simulation to a real world experiment, we we

employ a hybrid motion-force controller:

prt = k1p
s
t + k2(f

r
t − f s

t ) (3.2)

Here, prt , f
r
t are positions and forces of real robot, and pst , f

s
t are positions and

forces from the simulation to use as references in the controller. k1 and k2 are

impedance parameters, which are determined during experiments. The desired pose

of the object of interest is subsequently translated into the desired robot end-effector

pose. Employing inverse kinematics, the robot undergoes PD control in joint space.

3.4 Experiments and Results

In this section, we present experiments conducted in both simulated and real-world

environments, followed by results and an exploration of ablation studies.

3.4.1 Experiment Setup

Our experiments were designed to evaluate the performance of our approach on three

tasks: Cutting An Avocado, Pouring Liquid, and Rolling Dough. We selected these

tasks, ubiquitous in kitchen settings–an important environment for future robots–to

assess the model’s generalizability and adaptability. We use the simulation for training,
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Figure 3.3: Qualitative Results of Robot Experiments. We test on three tasks:
Cutting Fruit, Pouring Liquid, and Rolling Dough. The corners of the images present
the corresponding frames from the YouTube video demonstrating the human action.

and set up real-world experiment to gauge the model’s sim-to-real transferability.

Pouring Liquid and Rolling Dough calls for subtle control over the tools and precise

handling, testing the dexterity of the learning model. Cutting Fruit, meanwhile, tests

the model’s ability to learn precise positioning and force application.

3.4.2 Results

Table 3.1 displays the success rates of real-world robot experiments. Our approach

effectively transferred the policy from YouTube to the robot, achieving a high success

rate. Of the three tasks undertaken, manipulating a dough proved most challenging

due to the non-uniform nature of the dough, which caused significant disturbances

despite controlled force application by the robot during execution.

Figure 3.3 presents the qualitative outcomes of the experiments. Notably, the

robot successfully halves an avocado, skillfully navigating around its non-circular

seed without attempting to slice through it. This highlights the robot’s successful

force control during execution.
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3.5 Limitations and Future Works

This work has a few key limitations. One limitation is that the tasks we tested are

simple, allowing a large range of forces and robot impedances. For example, cutting

an avocado only requires the seed to be touched by the knife without destroying

the avocado, which can be done with a range of forces. However, we think this

is characteristic of many tasks, where forces and impedances are constrained to a

range but not to exact values. Position control typically has to satisfy much tighter

constraints.

Another challenge lies in the current necessity of running optimization processes

during task execution, rather than having a pre-defined, optimized program applicable

across various scenarios. Furthermore, the system’s reliance on the accuracy of vision

algorithms poses a significant constraint. Any inaccuracies in scene reconstruction

or object identification due to vision errors directly impacts the effectiveness of the

simulation and the subsequent robotic action. Addressing these limitations will be

crucial in evolving the system into a more precise, efficient, and versatile tool for

robot learning.

To conclude this chapter, we extended the learning capabilities of robots to interpret

and replicate human demonstrations from unstructured video sources like YouTube.

The development and implementation of a simulation environment that supports both

rigid and deformable objects and liquids and granular materials have been important in

this progress. Using scene graphs from videos as physical constraints for optimization,

the system has been able to perceive the invisible physics from demonstration videos

with high fidelity, translating them into effective robot policies. By further addressing

the current limitations and building on the established foundation, there is potential

to significantly enhance the versatility and effectiveness for robots to scale up in

learning and performing complex manipulation tasks.
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Chapter 4

Conclusions

In this thesis, we first explored the complexities of robot learning from human

demonstrations, particularly focusing on multi-step tasks such as manual dishwashing.

The developed system, which segments task execution into modular primitives based

on rigid body object poses and contact relationships, has demonstrated promising

results. It has enabled robots to understand and replicate human actions in both

laboratory and home environments.

In the second part of the thesis, the learning capabilities of robots were extended to

interpret and replicate human demonstrations from unstructured video sources, such

as YouTube. The implementation of a simulation environment with optimization was

important to infer physics from the videos. By constructing scene graphs from videos

and using them as constraints for optimization, the system successfully recovered

tasks from demonstration videos with high fidelity, creating robot policies. These

achievements are a step towards narrowing the gap between human capabilities and

robot execution.

While these methods have some generalization capability, they also revealed

certain limitations, particularly in terms of vision accuracy and the effectiveness of

task learning and execution. Future work is directed towards refining the system’s

adaptability and enhancing its dexterity, with a focus on advancing computer vision

techniques and intelligent robot learning strategies. By addressing these current

limitations and building upon the established groundwork, there is significant po-

tential to further enhance the versatility and effectiveness of robots. This ongoing
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development lays the foundation for scaling up robots’ ability to learn and perform

complex manipulation tasks, pushing the boundaries in the field of robot learning

from human demonstrations.
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[84] Martin Sundermeyer, Tomáš Hodaň, Yann Labbe, Gu Wang, Eric Brachmann,
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