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Abstract

Accurate satellite-based positioning has revolutionized several industries
over the past two decades from agriculture to transportation. However,
conventional GNSS receivers consume significant amounts of energy and
are too large for many applications, including wildlife-tracking which is
critical for conservation efforts and improving our understanding of the
global climate. To address this capability gap, we propose a new position-
ing system to minimize the mass, power, and size of the terrestrial tracking
device. We analyze, through extensive modeling and simulation, a mission
concept that relies on space-based receivers hosted on a constellation of
small satellites in low-Earth orbit (LEO) that detect and localize signals
from very small transmitter tags. We compare a variety of positioning
techniques, including both Doppler and time-of-arrival methods, and
evaluate the achievable position accuracy across a wide range of design
parameters. Our model also accounts for errors in satellite orbital state
knowledge, clock offsets, frequency measurement errors, and ionospheric
effects. This thesis will present the results of our extensive trade study
along with the orbit determination methods used to obtain the satellite
state uncertainty.
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Chapter 1

Introduction

The development of satellite-based tracking began with TRANSIT, a Doppler-based

satellite navigation system that calculated the position of a terrestrial receiver. This

system provided infrequent position updates for Polaris ballistic missile submarines

using the Doppler shift, the change in frequency a signal experiences once a transmitter

is moving relative to a receiver [7]. Then, the need for continuous tracking led to

the development of global positioning system (GPS) which uses a constellation of

24 satellites in medium earth orbit to provide positioning information globally [25].

GPS determines the pseudorange between the receiver and each satellite in sight

using time of arrival measurements. Both Transit and GPS satellites transmit signals

to localize the terrestrial receiver, however, having the receivers onboard satellites

and the transmitter emit signals from Earth is another method of tracking a mobile

asset. COSPAS-SARSAT, an international satellite system designed for search and

rescue operations, utilizes this inverse method of tracking to locate emergency locator

transmitters (ELT’s) [34]. ELT’s are onboard aircraft and broadcast distress signals at

406 MHz automatically when submerged in water or experience a high impact. These

signals are then detected by non geostationary satellites and the aircraft position

is located using trilateration [23]. Over the years, satellite-based tracking has been

applied to a spectrum of domains from search and rescue to military, however, most

receivers are too large for many applications including wildlife tracking. Wildlife

tracking is essential for our understanding of the global climate as species migration

behavior is an important indicator of climate change [19]. Existing methods for

1



1. Introduction

wildlife tracking include ARGOS and GPS. ARGOS exploits the frequency shift in

the transmitter signal measured by the receiver onboard a LEO satellite. Collecte

Localisation Satellites (CLS) reports an ARGOS system accuracy of 150-2500 m

depending on the scenario [2], however, Witt reports accuracies in the kilometer range

on experiments tracking sea turtles as seen in Table 1.1 [32]. Table 1.1 organizes the

localized tags by classes where each class corresponds to a tracking uncertainty. The

highest number of estimates pertained to the classes with the highest uncertainty (A

and B).

ARGOS Accuracy
Location
Class

N comparisons CLS estimates [m] Our Estimate [m]

3 54 < 250 400 ± 200
2 81 250-500 700 ± 700
1 133 500-1500 800 ± 700
0 108 > 1500 2300 ± 2700
A 398 No acc. 1400 ± 2500
B 546 No acc. 1800 ± 3900

Table 1.1: ARGOS tracking sea turtle accuracy

ARGOS was also tested to track movements of bottle nose dolphins and the final

error was 7.4 kilometers on the total distance traveled, which is not reasonable [14].

Also, the cost of the ARGOS transmitting tag ranges from $1500-$4000 which is not

feasible for large scale tracking [2], and the smallest ARGOS tag weighs 17g which

is only appropriate for animals weighing 300 g or more. Applying GPS receivers on

animals is another approach for tracking, however, these receivers are expensive, use

large amounts of energy, and are also too heavy for smaller species. To address the

cost, tracking accuracy, and weight of existing methods, we propose a new approach

for wildlife tracking.

2



1. Introduction

1.1 Contributions

In this thesis, we present a mission concept that relies on a constellation of low-cost

cube satellites in LEO hosting receivers to detect and localize signals emitted from

small transmitter tags on Earth. We compare the performance of a time of arrival

measurement model and Doppler measurement model in terms of tag positioning

root mean squared (RMS) error and a final state bias. Our simulation also includes

necessary uncertainties such as the effect of the ionosphere, measurement noise, and

satellite state estimate errors. We calculate the magnitude of the satellite state

estimate uncertainty by implementing an extended Kalman filter (EKF) for a LEO

satellite. Model mismatch in the filter is common in low earth orbiters due to the

limited compute onboard, so we investigate bias modeling techniques for stochastic

time processes to account for higher order gravity terms and other unknown forces.

We culminate all the results into an interactive software tool to analyze and evaluate

the effect the satellite constellation geometry and measurement accuracy have on the

tag position accuracy.

1.2 Thesis Structure

The thesis is organized as follows: Chapter 2 describes the sequential estimation

algorithm and implementation of orbit determination for LEO satellites. Chapter 3

covers the unified positioning algorithms using Doppler and time of arrival measure-

ments with uncertainties as well as an end to end system architecture modeling and

constellation geometry trade study. Chapter 4 provides a conclusion and future work

on this mission concept. Finally, the Appendix covers important equation derivations

in detail.
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Chapter 2

Orbit Determination for Low-Earth

Orbit Satellites using Sequential

Estimation

2.1 Motivation

Obtaining an accurate state estimate of a spacecraft traversing along an orbit is

essential for tracking because the tag position measurement functions such as time-

of-arrival depend on the satellite state. Inaccurate satellite state estimates result in a

greater tag state uncertainty. Using GPS measurements as the satellite state estimate

is infeasible because of sensor inaccuracies due to hardware limitations, and only

using a dynamics model is also impractical as these set of differential equations serve

as an approximation of the real environment. For this project, we utilize a truncated

dynamics model to save computation onboard, therefore unmodeled effects prevent a

forward simulation of the dynamics to be used as the state estimate. In this chapter,

we explore sequential state estimation for satellites in LEO to provide a maximum

likelihood state estimate at each timestep along a reference orbit. We discuss the

extended Kalman filter (EKF) algorithm in detail as well as implementation details

such as covariance tuning and bias modeling for unmodeled dynamics.

5



2. Orbit Determination for Low-Earth Orbit Satellites using Sequential Estimation

2.2 Background

2.2.1 Gaussian Distributions and Covariance

Gaussian (normal) probability density functions are used to describe continuous

random variables in sequential state estimators like the Kalman Filter. These

functions are only characterized by the mean of the random variable (µ) and a

variance (σ2). The mean is the expected value (E(X)) of the distribution while the

variance is a metric that describes the spread of possible values the random variable

can take. This spread is measured with respect to the mean and it is essentially the

mean squared error about the mean.

It is important to note that the square root of the variance is the standard

deviation (σ) which is another metric that measures the variability of the random

variable from the mean. It is expected that 68.2% of all the values the random

variable can take are within 1 standard deviation away from the mean on both sides.

The percentages for two-sigma and three-sigma are 95% and 99.7% respectively.

Equation (2.1) is the equation for a univariate Gaussian and Figure 2.1 shows

this distribution.

f(x) =
1

σ
√
2π

exp(−1

2
(
x− µ

σ
)2) (2.1)

For state estimation, most states are multidimensional, therefore a parameter to

describe the relationship between all the state variables is needed. This parameter

is known as the covariance matrix (Σ) which is symmetric positive definite and the

diagonals consist of the variances of each element in the state while the off diagonals

capture the relationship between all possible pair of variables in the state. A n-

dimensional multivariate Gaussian can be viewed as a collection of n independent

distributed Gaussian distributed random variables with means µi and variances σ2
i

[9]. The equation for a multivariate Gaussian is shown in Equation (2.2)

f(x) =
1

|Σ|1/2(2π)n/2
exp(−1

2
(x− µ)TΣ−1(x− µ)) (2.2)

One of the favorable properties of Gaussians is once they are input into a linear

6



2. Orbit Determination for Low-Earth Orbit Satellites using Sequential Estimation

Figure 2.1: Univariate Gaussian distribution with zero mean and a standard deviation
equal to 1. The area under the curve denotes the probability of the continuous
random variable to be a value between the integration interval.

function, the output is also a Gaussian. Also the central limit theorem states that for

an infinite number of samples of size n from an arbitrary probability density function,

the mean of each of those n samples is normally distributed. The notation used

throughout this thesis is shown in Equation (2.3).

x ∼ N (µ, Σ) (2.3)

Equation (2.3) means that the multidimensional variable x is sampled from a Gaussian

distribution with mean µ and covariance Σ.

2.2.2 Satellite Dynamics

The satellite is modeled as a point mass that experiences a wide range of accelerations

in LEO. The sources of these accelerations include Earth’s gravity field, Earth’s

atmosphere, solar radiation pressure (srp), and additional forces caused by the

7



2. Orbit Determination for Low-Earth Orbit Satellites using Sequential Estimation

gravitational pull from third bodies such as the sun and moon. The details of these

accelerations are described in the following subsections. The state of the satellite is

represented by a six-dimensional vector (x⃗ ∈ R6) in Cartesian coordinates which is

composed of the satellite position with respect to the center of the Earth (r⃗ ∈ R3)

and the satellite velocity (v⃗ ∈ R3). Both of these quantities are described in the Earth

Centered Inertial (ECI) frame. The sum of all these accelerations is the ground truth

satellite dynamics model that is used in the state estimator. This ground truth model

is used to test the consistency of the filter along with the accuracy of the estimator.

Earth Gravity

The effect of the gravitational force can be derived from a potential since it is a

conservative force. The potential for Earth’s gravity (U) is an infinite summation of

perturbations which is described by Equation (2.4).

U =
GM⊕

r

∞∑
n=0

n∑
m=0

Rn
⊕

rn
Pnm(sinϕ)(Cnmcos(mλ) + Snmsin(mλ)) (2.4)

In this equation, G represents the gravitational constant, M⊕ is the mass of Earth, r

is the scalar distance of the satellite from the center of the Earth in ECI coordinates, ϕ

and λ represent latitude and longitude of the spacecraft, Cnm and Snm are geopotential

coefficients that are related to the mass distribution of Earth, and Pnm is the associated

Legendre polynomial of degree n and order m. The geopotential coefficients are

obtained through a table that was generated through gravity model improvement

missions [24].

The most dominant higher-order gravity force is known as J2. This force emerges

due to the fact that the Earth is not a perfect sphere but rather an oblate spheroid

where the equatorial radius exceeds the polar diameter by approximately 20 km [24].

This difference in diameter exerts a force on the spacecraft that attempts to align

the orbital plane with the equator. A derivation of the gravitational potential for up

to J2 is shown in the Appendix. In summary, the infinite series in (2.4) describes

the effect of the perturbations on the gravity field and it is dependent on latitude,

longitude, Legendre polynomials, and geopotential coefficients.

Once the gravity potential is derived to the desired order and degree, the acceler-

8



2. Orbit Determination for Low-Earth Orbit Satellites using Sequential Estimation

ation is determined by Equation (2.5).

ag = ∇U (2.5)

A closed form equation in of Earth’s gravitational force up to J2 in Cartesian

coordinates is shown in Equation (2.6).

agJ2 =
−µ

r2
+

3µJ2R
2
⊕

2||r⃗||5
(
5(r⃗ · I⃗z)2

||r⃗||2
− 1)r⃗ − 2(r⃗ · I⃗z)I⃗z (2.6)

In Equation (2.6), µ is the standard gravitational parameter which is equivalent

to GM⊕, J2 is known as the zonal coefficient which is equivalent to −Cnm with n=2

and m=0. Setting m=0 means that this force does not depend on longitude of the

spacecraft. The variable I⃗z corresponds to the unit vector pointing in the z direction.

2.2.3 Atmospheric Drag

The spacecraft also experiences a drag force in LEO due to the resistance of Earth’s

atmosphere. This force acts in the opposite direction of the velocity vector and is

characterized by Equation (2.7).

ad = −1

2
CDAρ||v⃗rel||v⃗rel (2.7)

In Equation (2.7), CD represents the drag coefficient which depends on the

interaction of the satellite surface material and the atmosphere, ρ is the atmospheric

density which is obtained through the Harris-Priester model [24], A is the cross

sectional area perpendicular to the velocity vector, and vrel is the relative velocity of

the satellite with respect to the atmosphere and Equation (2.8) shows this relation.

vrel = v⃗ − ωEARTH × r⃗ (2.8)

For this simulation, the drag coefficient and cross sectional area were set arbitrarily

and assumed to be constant throughout orbit.

9
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Solar Radiation Pressure

The eccentricity of the satellite orbit is affected by solar radiation pressure from the

sun and it is proportional to the surface area and mass of the satellite. For this

project, we assume the mass of the satellite to be 1 kg. This force is due to the

reflection and absorption of the photons, and it is characterized by Equation (2.9)

with the assumption that the surface normal points toward the sun [24].

asrp = −P⊙CR
A

m

r⃗⊙
||r⃗⊙||3

(AU)2 (2.9)

In Equation (2.9), P⊙ is the solar radiation pressure, A is the cross sectional area in

the direction of the sun, r⊙ is the vector from the spacecraft to the sun, and AU is

an astronomical unit.

Third Body Forces

The sun and moon also exert forces on the spacecraft and they are modeled using

Newtons law of gravity shown in Equations (2.10) and (2.11).

asun =
GMs(r⃗sun − r⃗)

||r⃗sun − r⃗||3
(2.10)

amoon =
GMm(r⃗moon − r⃗)

||r⃗moon − r⃗||3
(2.11)

In these equations, Ms is the mass of the sun and Mm is the mass of the moon.

Similarly, rsun represents the position of the sun in ECI frame and rmoon is the position

of the moon in the ECI coordinate frame.

2.3 Extended Kalman Filter

The discrete extended Kalman filter (EKF) is a sequential state estimation algorithm

that optimally fuses imperfect measurements and an uncertain nonlinear dynamics

model to obtain the best state estimate of a system. In this algorithm, the observations

are processed individually as they are measured by the spacecraft. The EKF is

10
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a variant of the Kalman filter to account for nonlinear dynamics and nonlinear

measurement functions which is the case for a spacecraft. The nonlinear dynamics

are linearized about the current estimated mean and the measurement function is

linearized about the propagated mean. The mean is modeled as a belief which is

a random variable characterized by a Gaussian distribution, and the uncertainty

is represented through a covariance matrix. The purpose of a Kalman filter is to

propagate a Gaussian forward in time through a linear transformation and calculate

the new mean and covariance in closed form. These values correspond to the next

exact belief. However, with a nonlinear dynamics model, only an approximation of

the belief can be made. This is because of the linear approximation via the first-order

Taylor expansion of the nonlinear dynamics. The quality of the linear approximation

depends on the uncertainty of the dynamics as well as the nonlinearities that exist in

the function at the linearization point.

To validate the filter is converging, a ground truth model must be defined. For

this application, the ground truth model is a summation of all the forces described in

Section 2.2.2 and it is shown in Equation (2.12). The gravitational force (ag) consists

of higher-order gravity terms up to degree and order 10.

agt = ag + ad + asun + amoon + asrp (2.12)

The EKF consists of two primary steps: a prediction step where and a correction

step and both will be discussed in detail.

2.3.1 Prediction Step

The nonlinear dynamics model used in the filter is known as the process model and it

only consists of two body gravity force with J2 as well as the drag acceleration. The

entire dynamics are not included in the filter to reduce computation in each step as

the EKF requires the computation of a discrete dynamics jacobian at each timestep.

Equation (2.13) shows the process model dynamics.

aprocess = agJ2 + ad (2.13)

Equations (2.12) and (2.13) are continuous dynamics functions, and we will define

11
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notation for the discrete versions of these models. The discrete ground truth model is

defined as xk+1 = fgt(xk) and the discrete process model is defined as xk+1 = fp(xk).

The discrete models are obtained by numerically integrating the continuous dynamics

models using a fourth-order Runga Kutta (RK4) integrator. Equation (2.14) shows

the relationship we assume between the state at time k + 1 of the discrete ground

truth model and state at time k of the discrete process model.

xk+1 = fp(xk) + qk (2.14)

The term qk corresponds to additive white Gaussian noise (AWGN) which means

qk is sampled from a zero mean Gaussian distribution with covariance matrix Q

(process noise covariance matrix) as shown in Equation (2.15). Additive white noise

requires a constant standard deviation with time along with no correlation between

time steps.

qk ∼ N (0, Q) (2.15)

The unmodeled accelerations and higher-order acceleration terms from the gravity

geopotential are treated as process noise for some versions of the filter. A set of

residuals shown in Equation (2.16) are calculated until a final simulation time (T ) and

their covariance is used to generate an initial guess for the process noise covariance.

The variable x̄k is the reference ground truth trajectory from a forward roll out on

the ground truth dynamics. The final algorithm required additional hand tuning to

the process noise covariance matrix for a consistent result.

rk = fp(x̄k)− x̄k+1 (2.16)

In the prediction step, the predicted mean (x−
k+1) is calculated by propagating the

corrected mean (x+
k ) forward in time using the nonlinear discrete deterministic process

model dynamics, and the predicted covariance is calculated using the discrete process

model dynamics jacobian (Ak) and the process noise covariance (Q). The prediction

step is summarized in Equation (2.17).

x−
k+1 = fp(x

+
k )

P−
k+1 = AkP

+
k AT

k +Q
(2.17)

12
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2.3.2 Correction Step

The Kalman filter also requires a measurement prediction dependent on the predicted

mean. For this mission, we assume that the spacecraft has a NovAtel GPS receiver

onboard. The measurement model is simplified by assuming it is linear function that

outputs position of the spacecraft, however additive noise is included in the simulation

as shown in Equation (2.18).

zk = h(xk) + rk

h(xk) = Cxk

C = [I3x3 03x3]
T

(2.18)

The measurement noise (rk) is also assumed to be AWGN and it is sampled from a

zero mean Gaussian distribution with covariance R (Equation (2.19)). The magnitude

of the elements in R is determined by the accuracy of the measurement which is

usually provided on a sensor specification sheet. We approximate the accuracy of

GPS to be about 10 meters [25], so we construct R matrix according to this metric.

All the implementation details will be described in Section 2.3.6.

rk ∼ N (0, R) (2.19)

The correction step incorporates the information from a measurement at timestep

k + 1 to correct the prediction. This step also includes the calculation of the Kalman

gain Kk+1, the corrected mean x+
k+1, and the corrected covariance P+

k+1. A derivation

of the Kalman filter equations is shown in [29], and this section will describe the

overall intuition of each calculated parameter. Equation (2.20) shows the calculation

of the Kalman gain. This parameter captures the ratio of the uncertainty in prediction

over the uncertainty of the predicted measurement error. The predicted measurement

error is the difference between the true measurement at timestep k + 1 (zk+1) and

the predicted measurement. It is used as a scale factor to determine how much of the

predicted measurement error to use to update the predicted mean. A high Kalman

gain means that the measurements are accurate and the prediction is inaccurate,

and a low Kalman gain allows the filter to trust the predictions more than the

measurements.

13
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Kk+1 = P−
k+1C

T (CP−
k+1C

T +R)−1 (2.20)

The mean correction step is shown in Equation (2.21) and the covariance correction

is described in (2.22).

x+
k+1 = x−

k+1 +Kk+1(zk+1 − h(x−
k+1)) (2.21)

P+
k+1 = (I −Kk+1C)P−

k+1(I −Kk+1C)T +Kk+1RKk+1 (2.22)

2.3.3 Assumptions

One of the assumptions the EKF makes is that the dynamics and measurement

functions are differentiable. This is because the algorithm requires derivatives of these

functions for the linear approximation. Another assumption is that the uncertainty of

the state is centered around the mean. Lastly, the state difference between the process

model and the ground truth model have to be additive white Gaussian noise. For this

application, the higher-order gravity terms and additional unmodeled accelerations

are technically not white as the standard deviation changes between time steps which

results in a non optimal state estimate [33]. This causes the state difference between

the process and ground truth model to also violate the assumption. Figure 2.2 shows

the magnitude of the unmodeled accelerations in each dimension over a 5 period

horizon. Alternate filter implementations estimate the additional accelerations by

adding it to the state. More detail on adding the unmodeled accelerations to the

state are in Section 2.3.4.

However, if the ground truth model and the process model have the same order

gravity terms, the unmodeled accelerations behave in a sinusoidal pattern and are

smooth which make them easier to estimate out in the filter. Figure 2.3 shows the

unmodeled accelerations once the ground truth and process model have the same

order gravity terms.
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Figure 2.2: Unmodeled accelerations in LEO between the ground truth model with
order 10 gravity and the process model with up to J2

2.3.4 Bias Modeling

The errors between the process model and ground truth model will eventually cause

the filter to diverge or be inconsistent if the process noise is not tuned correctly. In the

previous section, the addition of process noise is known as state noise compensation

(SNC) and it attempts to correct the model difference [5]. However, this assumes that

the state difference due to the unmodeled accelerations behave as a white Gaussian

process which is not the case. Figure 2.2 shows that the unmodeled accelerations are

time correlated because the standard deviations at each timestep are not the same

throughout the entire simulation. We obtain the effect the unmodeled accelerations

have on the state through integration, and these effects are also not white. We then

attempt to estimate out an approximation of the unmodeled accelerations (ε ∈ R3) by

adding them to the state. This approach is known as dynamic model compensation

(DMC) and it has been shown to provide more precise state estimates for lunar

satellites using Apollo 10 data [28] and near-Earth orbiters [22]. Model errors are

always present because of uncertainties in atmospheric density models, variations in

solar radiation pressure, and tidal forces, etc [22]. Our approach only corrects the

model errors arising from the truncated process dynamics model.
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Figure 2.3: Unmodeled accelerations in LEO for a ground truth model and a process
model with the same order gravity terms

One approach is to assume the accelerations follow a stochastic process known as

a random walk which is modeled in Equation (2.23).

ε̇ = w(t)

w(t) ∼ N (0, Qε)
(2.23)

The covariance matrix Qε is manually set depending on how much variation one

predicts the unmodeled accelerations to have.

Another approach is to use a first-order, Gauss-Markov stochastic process in

Equation (2.24) to describe the evolution of the unmodeled accelerations over time

[22]. Estimating out these unmodeled accelerations can be used to improve the current

truncated dynamics model, however the disadvantage is an increase in computation

due to the size of the EKF state increasing [6].

ε̇ = −B(t)ε+ w(t)

w(t) ∼ N (0, Qε)
(2.24)

The 3 parameter vector w(t) is random noise sampled from a Gaussian distribution
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with covariance Qε and B is a diagonal 3x3 matrix of the time correlation coefficients

βx, βy, βz. The time correlation coefficients are also set to follow a random walk in

Equation (2.25).

β̇ = u(t)

u(t) ∼ N (0, Qβ)
(2.25)

The new state becomes a twelve-dimensional vector that includes the position,

velocity, unmodeled accelerations, time correlation coefficients. The implementation

details are provided in Section 2.3.6.

The drag force is difficult to model due to the complexity of the atmosphere

as it experiences variations due to solar activity and Earth’s magnetic field. For

example, [31] reports the maximum atmospheric density is 5e−11 kg
m3 and the minimum

is 2e−14 kg
m3 at an altitude of 500 km given solar flares. This difference of 3 orders of

magnitude is not predictable in a atmospheric density model like the Harris-Priester

model, therefore estimating out the drag term in the filter is another option for filter

design. One approach is to estimate the drag term plus the unmodeled accelerations

in one term and the other is to estimate a scale factor (kρ) from the atmospheric

density obtained from the Harris-Priester (ρest) model as shown in (2.26).

ρtrue = kρρest (2.26)

The atmospheric density is not estimated directly because the magnitude of the this

term is approximately order 1e−12 which is drastically smaller than the position and

velocity of the spacecraft. This difference in magnitude leads to ill conditioning in

the filter covariance updates. However, estimating out the scale factor improves the

numerical properties of the filter because this value is approximately order 1.

2.3.5 Square Root Filtering

Throughout the correction of the covariance matrix, round off errors may occur due

to poorly conditioned problems. This may cause the matrix to not be positive semi

definite which is a problem for the Kalman filter. One reason this can occur is when

the covariance matrix is rapidly reduced by processing accurate measurements [16].
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Square root filtering avoids this problem by propagating the matrix square root (F )

of the covariance matrix (P ) as shown in Equation (2.27). For this implementation,

the square root of a semi positive definite matrix is defined as the lower Cholesky

factor of the covariance matrix. This improves the numerical properties of the problem

as it doubles the amount of working precision which allows the algorithm to maintain

the positive semi definite nature of the covariance matrix [16].

P = FF T (2.27)

The square root filter requires the ability of expressing the square root of a sum

of matrices as a function of the individual square roots [30]. This is obtained by

leveraging the properties of the QR factorization, as the square root of the sum of

matrices is the R matrix of the QR factorization of each individual square root matrix

concatenated and this relation is shown in Equation (2.28).

Q,R = qr(

[√
A√
B

]
)

R =
√
A+B

(2.28)

The property in Equation (2.28) is used to reformulate the original extended Kalman

filter update equations. The final square root extended Kalman filter algorithm is

shown in Algorithm 1. In this algorithm, µ is the mean of the estimate, F is the

square root of the covariance matrix, A is the discrete process dynamics jacobian

evaluated at the corrected mean, C is the linear measurement function matrix, fp is

the nonlinear discrete deterministic process dynamics model, ΓW is the square root

of the process noise covariance, and ΓV is the square root of the measurement noise

covariance.

2.3.6 Implementation and Results

Various versions of the EKF were implemented to conduct a filter design analysis for

low-earth-orbiting satellites. Each version differs in the assumptions made between

the ground truth model and the process model as well as the state that is being

estimated. The process model described in Section 2.3.1 is used in all the versions
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Algorithm 1 Square Root Extended Kalman Filter using QR factorization

1: function QR EKF(µt|t, Ft|t, yt+1, A, C,ΓW ,ΓV )
2: µt+1|t = fp(µt|t) ▷ State Prediction
3: , Ft+1|t = qr(Ft|tA

T ,ΓW ) ▷ Covariance Prediction
4: z = yt+1 − Cµt+1|t ▷ Measurement Innovation
5: , G = qr(Ft+1|tC

T ,ΓV ) ▷ Innovation Covariance
6: K = [G−1(G−TC)F T

t+1|tFt+1|t]
T ▷ Kalman Gain

7: µt+1|t+1 = µt+1|t +Kz ▷ State Update
8: Ft+1|t+1 = qr(Ft + 1|t(I − LC)T ,ΓVL

T ) ▷ Covariance Update

and a ground truth trajectory was generated by simulating the nonlinear ground

truth dynamics forward for 5 orbits. The initial condition for the forward roll out

corresponds to the polar orbit chosen for the wildlife-tracking mission. The orbital

parameters for the wildlife-tracking orbit are shown Table 2.1.

Orbital Parameters
Semimajor Axis 6871e3
Eccentricity 0.0004879
Inclination 90.6391
RAAN 194.5859
Argument of Perigee 151.2014
Mean Anomaly 190

Table 2.1: Orbital parameters for the ground truth model

All the simulations were run in Julia [4], and the open-source Julia package

SatelliteDynamics.jl [11] was used to simulate ground truth orbit. Filter performance

was based on ensuring the difference between the estimated EKF trajectory and the

ground truth trajectory (residual) is within the three-sigma covariance bound of the

EKF covariance matrix over time. If the errors are outside of these bounds, the filter

believes the estimate is accurate, however the estimated state is diverging from the

ground truth. This is known as filter inconsistency and it is caused due to the filter

being too optimistic. A filter is optimistic when the measurements or process model

are assumed to be better than they actually are. Tuning the process noise covariance

was essential for this implementation to converge, and this was done through checking

the consistency of the filter after several simulation runs.
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The metric to determine the accuracy of the estimated state is the root mean

squared (RMS) error between the estimated trajectory (xest) and the ground truth

trajectory (x̄). Equation (2.29) shows the calculation of the RMS error, and we

compute this error on the position, velocity, and unmodeled accelerations for each

version. The variable k represents the each timestep along the trajectory, and K is

the total number of time steps in the horizon.

RMSE =

√
(

∑K
k=1 ||xestk − x̄k||2

K
) (2.29)

The results are summarized in Table 2.2. The final estimated covariance matrix can

also be used to calculate the RMS error, however this value measures how accurate

the filter believes it is. We label this metric as RMSEΣ. Since we use the square

root variant of the EKF, we must obtain the original covariance by multiplying the

covariance square root (F ) by it’s transpose. We then take the square root of the

trace (tr) corresponding to the position elements (1 : 3, 1 : 3) to obtain (RMSEΣ).

The same metric is used for the velocity and unnmodeled acceleration estimates, and

the only change is the indices of the covariance matrix in Equation (2.30).

RMSEΣ =
√

tr((FF T )1:3,1:3) (2.30)

The RMS error from the final covariance matrix of the EKF should be within close

range of the RMS error calculated from the residuals in Equation (2.29). This ensures

the filter is consistent and not diverging from the ground truth.

The overall accuracy of the state estimate is best when the filter is optimistic,

however the estimated trajectory diverges from the ground truth trajectory over time.

Increasing the variances in the process noise covariance matrix prevents the filter

from being being optimistic. The trade off in Kalman filters is consistency versus

accuracy, and tuning the process noise affects this relation. The measurement noise

for all implementations was set to reflect a GPS position uncertainty to be 10 meters.

The derivation and measurement noise covariance matrix is shown in (2.31).
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V ar(x+ y + z) = 102

V ar(x) + V ar(y) + V ar(z) = 100

R =
[
100
3
I(3)

] (2.31)

The following subsections will describe each version of the EKF along with errors

of each implementation.

EKF Errors
Version Position RMS

Error (m)
Velocity RMS
Error (m/s)

Acc. RMS Error
(m/s2)

1 1.352 0.0158 N/A
2 0.692 0.00146 1.676e-6
3 1.345 0.0125 8.152e-5
4 1.237 0.0127 9.548e-5

Table 2.2: EKF Version Errors

Estimator with SNC and different order gravity models

In this implementation, we use a ground truth model up to order and degree 10.

The state of the filter is six-dimensional and includes the position and velocity of

the spacecraft in ECI coordinates (x = [r v]). Figures 2.4, 2.5, and 2.6 show the

position residuals and Figures 2.7, 2.8, 2.9 illustrate the velocity residuals along with

the three-sigma bounds over a simulation time of 5 orbits. The filter is consistent as

these residuals are bounded by the covariance bounds, and the position RMS error

is 1.352 meters. This version of the filter treats the higher-order gravity terms and

the unmodeled accelerations from solar radiation pressure and acceleration from the

sun and moon as AWGN, and the process noise covariance matrix for this version is

shown in (2.32).

Qv1 =

[
(1× 10−2)I(3) 0

0 (8.2× 10−4)I(3)

]2

(2.32)
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Figure 2.4: Estimator with SNC and different order gravity models X position residual

Figure 2.5: Estimator with SNC and different order gravity models Y position residual
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Figure 2.6: Estimator with SNC and different order gravity models Z position residual

Figure 2.7: Estimator with SNC and different order gravity models X velocity residual
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Figure 2.8: Estimator with SNC and different order gravity models Y velocity residual

Figure 2.9: Estimator with SNC and different order gravity models Z velocity residual
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Estimator with DMC via random walk and the same order gravity models

This version assumes that the process model and the ground truth model have

the same order gravity terms. Both were modeled up to J2 and the unmodeled

accelerations consist of forces from solar radiation pressure, the sun, and the moon.

However, these accelerations behave smoothly as seen in Figure 2.3, and this is not

the case with the higher-order gravity terms. The smooth sinusoidal behavior makes

it more accessible for the filter to estimate out these additional acceleration terms,

however it still is not AWGN, so a position error is still expected. The state for this

version is the spacecraft position, velocity, the unmodeled accelerations modeled by

a random walk, and the atmospheric density scale described in Section 2.3.4. The

position residuals are shown in Figures 2.10, 2.11, and 2.12, and the velocity residuals

are displayed in Figures 2.13, 2.14, and 2.15. Both sets of residual plots are consistent

for the majority of the simulation time. Additionally the unmodeled acceleration

residuals are shown in Figures 2.16, 2.17, and 2.18, and these plots highlight the filter

is more pessimistic in the acceleration terms compared the others states. Overall, this

version had the best performance with a position accuracy of 0.692 m, however the

assumptions made are not realistic as the higher-order terms do effect the spacecraft

trajectory significantly over long horizons. The process noise is shown in 2.33.

Qv2 =


(1.1547× 10−5)I(3) 0 0 0

0 (5.1962× 10−5)I(3) 0 0

0 0 (3× 10−8)I(3) 0

0 0 0 5× 10−4


2

(2.33)

The algorithm was also able to successfully track the atmospheric scale consistently

as shown in Figure 2.19.
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Figure 2.10: Estimator with DMC via random walk and the same order gravity
models X position residual

Figure 2.11: Estimator with DMC via random walk and the same order gravity
models Y position residual
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Figure 2.12: Estimator with DMC via random walk and the same order gravity
models Z position residual

Figure 2.13: Estimator with DMC via random walk and the same order gravity
models X velocity residual
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Figure 2.14: Estimator with DMC via random walk and the same order gravity
models Y velocity residual

Figure 2.15: Estimator with DMC via random walk and the same order gravity
models Z velocity residual
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Figure 2.16: Estimator with DMC via random walk and the same order gravity
models X unmodeled acceleration residual

Figure 2.17: Estimator with DMC via random walk and the same order gravity
models Y unmodeled acceleration residual
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Figure 2.18: Estimator with DMC via random walk and the same order gravity
models Z unmodeled acceleration residual

Figure 2.19: Estimator with DMC via random walk and the same order gravity
models atmospheric scale residual
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Estimator with DMC via random walk and different order gravity models

The unmodeled accelerations can be added to the state and estimated through the

bias modeling techniques described in Section 2.3.4. This version estimates out the

additional accelerations using a random walk model. The model assumes the dynamics

of the unmodeled accelerations are governed by Gaussian noise and the scale of this

noise determines the amount the user predicts the unmodeled accelerations to change.

The process noise matrix for this version is shown in (2.34), and the residuals for the

position and velocity are depicted in Figures 2.20, 2.21, 2.22, 2.23, 2.24, and 2.25.

The residuals of the acceleration estimate shown in Figures 2.26, 2.27, 2.28 violate

the three-sigma boundary at multiple time steps, therefore the filter is inconsistent

for this part of the state. Modeling the unmodeled accelerations with a random walk

is not the most optimal representation as a Gaussian does not capture the unmodeled

acceleration dynamics well.

Qv3 =

(2.3094× 10−5)I(3) 0 0

0 (5.7735× 10−5)I(3) 0

0 0 (5× 10−6)I(3)


2

(2.34)

Figure 2.20: Estimator with DMC via random walk and different order gravity models
X position residual

31



2. Orbit Determination for Low-Earth Orbit Satellites using Sequential Estimation

Figure 2.21: Estimator with DMC via random walk and different order gravity models
Y position residual

Figure 2.22: Estimator with DMC via random walk and different order gravity models
Z position residual
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Figure 2.23: Estimator with DMC via random walk and different order gravity models
X velocity residual

Figure 2.24: Estimator with DMC via random walk and different order gravity models
Y velocity residual
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Figure 2.25: Estimator with DMC via random walk and different order gravity models
Z velocity residual

Figure 2.26: Estimator with DMC via random walk and different order gravity models
X unmodeled acceleration residual

34



2. Orbit Determination for Low-Earth Orbit Satellites using Sequential Estimation

Figure 2.27: Estimator with DMC via random walk and different order gravity models
Y unmodeled acceleration residual

Figure 2.28: Estimator with DMC via random walk and different order gravity models
Z unmodeled acceleration residual
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Estimator with DMC via first-order Gauss-Markov model and different

order gravity models

Another alternative to estimate the unmodeled accelerations is modeling their dynam-

ics as a first-order Gauss-Markov stochastic process. This process is time correlated

which is a more accurate representation unmodeled accelerations over time. An

analytical representation of the process noise covariance is shown in (2.35) and de-

rived in [17] by integrating the differential equations (2.24) and (2.23), and making

approximations of the stochastic integrals.

Qk−1 =


h4

4
Λ h3

2
Λ h2

2
Λ 03×3

h3

2
Λ h2Λ hΛ 03×3

h2

2
Λ hΛ Λ 03×3

03×3 03×3 03×3 Ψ


Λ =

qεx [1− e−2βxh]/2βx 0 0

0 qεy [1− e−2βyh]/2βy 0

0 0 qεz [1− e−2βzh]/2βz


Ψ = hQβ

(2.35)

In (2.35), h is the simulation timestep which we set to 1 second and qεx,y,z are

the diagonal elements of Qε. We assume the variances of each ε and β parameters

are equal to σ2
ε and σ2

β respectively. We set σ2
ε = 5.5e−11 and σ2

β = 2e−9 to achieve

consistent filter performance.

Overall, this adaptive method setting process noise covariance produced the best

results with a position RMS error of 1.237 meters. However, this method is highly

dependent on well-tuned noise values σϵ and σβ. These values were determined

through inspection of the residual plots as well as the superimposed plot of the true

unmodeled accelerations and the estimated unmodeled accelerations. A small value

of σϵ causes the estimate to quickly diverge and the residual plots to violate the

covariance bounds. A large value of σε causes large covariance bounds which permits

larger errors in the estimate of the unmodeled accelerations. The position residuals

are shown in Figures 2.29, 2.30, and 2.31, and the velocity residuals are displayed in

Figures 2.32, 2.33, and 2.34. As seen acceleration residuals from Figures 2.35, 2.36,
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and 2.37, this version of the filter is superior to version 3 in terms of consistency

among all variables in the state as the residuals are bounded by the three-sigma

covariance.

Figure 2.29: Estimator with DMC via first-order Gauss-Markov model and different
order gravity models X position residual

Figure 2.30: Estimator with DMC via first-order Gauss-Markov model and different
order gravity models Y position residual
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Figure 2.31: Estimator with DMC via first-order Gauss-Markov model and different
order gravity models Z position residual

Figure 2.32: Estimator with DMC via first-order Gauss-Markov model and different
order gravity models X velocity residual
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Figure 2.33: Estimator with DMC via first-order Gauss-Markov model and different
order gravity models Y velocity residual

Figure 2.34: Estimator with DMC via first-order Gauss-Markov model and different
order gravity models Z velocity residual
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Figure 2.35: Estimator with DMC via first-order Gauss-Markov model and different
order gravity models X unmodeled acceleration residual

Figure 2.36: Estimator with DMC via first-order Gauss-Markov model and different
order gravity models Y unmodeled acceleration residual
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Figure 2.37: Estimator with DMC via first-order Gauss-Markov model and different
order gravity models Z unmodeled acceleration residual
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Chapter 3

Satellite-Based Wildlife Tracking

and Simulation

3.1 Motivation

Existing methods for wildlife tracking include ARGOS and GPS, however these

systems are costly and use large amounts of energy. We propose a new method

using a constellation of CubeSats receiving signals from a lightweight transmitting

tag weighing 1.4 g [18]. ARGOS claims to provide a tag position accuracy in the

range of 150-2500 meters with a single satellite pass using Doppler measurements.

Our approach consists a constellation of 4 satellites in LEO using time-of-arrival

measurements to achieve accuracies under 100 meters. The lightweight tag will enable

tracking of smaller animals to study migration patterns which can provide insight

on natural resource exploitation and climate change patterns. Conservation efforts

for endangered species is another benefit from accurate tracking data. ARGOS has

a low sampling frequency which allows the tag to last for longer periods of time,

however it provides noisy time series recordings. On the contrary, GPS has a high-

sampling frequency with uncertainties lower than 50 m, but the receivers have short

life expectancy [10]. Our method addresses these issues by using a low sampling

frequency resulting in a long tag life along with a CubeSat constellation processing

time-of-arrival measurements to provide accurate tracking.
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3.2 Background

3.2.1 Measurement Models

Time-of-Arrival

The measurement for the time-of-arrival model is the transit time of the signal from

the transmitting tag to the receiver onboard the satellite. We assume the initial

transmission time is known and that the receive time is the same as the total transit

time. The satellite and transmitter clocks are not synchronized which introduces a

bias in the measurement. This bias is also estimated out in the algorithm as it can

introduce errors of several meters in the estimation. The time-of-arrival measurement

model is described in Equation 3.1:

ctm = ||rtag − Arsat||+ cτ + Iρ + η (3.1)

A =

 cosωEtm sinωEtm 0

−sinωEtm cosωEtm 0

0 0 1

 (3.2)

GPS literature refer to the product of the transit time (tm) and the speed of

light (c) as the pseudorange (ρ) as the result is a biased range due to additional

additive error terms. However, we express the equation in terms of the transit time

because this is the measurement we receive at every time step. The transit time

(tm) is a function of the true range added with a clock bias term (τ), an error term

Iρ that encapsulates the delay caused from the ionosphere, and random noise due

to measurement uncertainty (η). The ionospheric delay is described in Section 3.5.

In Equation 3.1, c represents the speed of light in a vacuum, and A is defined in

Equation 3.2. This variable represents a rotation matrix to transform the position

of the satellites (rsat) from the Earth-Centered Inertial (ECI) frame to the Earth

Centered Earth Fixed (ECEF) frame at the receiving time t. This transformation

considers the rotation of the earth (ωE) that happens as the signal is traveling. The

earth rotation angle is small but can introduce an error of 10-20 m in the range

computation which induces an east-west error in the position estimate [25]. Using
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this model, we estimate the position of the tag (rtag) in Cartesian coordinates in the

ECEF frame as well as the clock offset term (τ).

Doppler Shift

Figure 3.1: Behavior of Doppler curve as the satellite passes over the transmitter
horizon. The y axis represents the difference between the received frequency and the
original transmission frequency.

The Doppler measurement model records the change between the transmitted

and received frequencies (Doppler shift) that occurs due to the relative motion of the

spacecraft with respect to the tag. As the satellite approaches the tag, the received

frequency is greater than the transmission frequency; and as the satellite moves away

from the transmitter, the received frequency is lower than the transmission frequency.

This effect is depicted in Figure 3.1. The Doppler measurement equation is shown

in Equation (3.3), and it depends on the time derivative of the true range (ṙ), the
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speed of light (c), the time derivative of the ionospheric effect (İ), the transmitted

frequency (f0), and measurement errors (η). Similar to the previous measurement

model, the position of the tag (rtag) is estimated in Cartesian coordinates as well as

a frequency offset term (ḃ).

∆f = f0
ṙ + İ

c
+ ḃ+ η (3.3)

The derivation of ṙ and İ are shown in the Appendix.

3.2.2 Newton’s Method

Newton’s method is an iterative root-finding method for a nonlinear equation. This

equation is known as the residual (r(x) = 0) where x is the vector of unknown

variables which is architecture dependent for this application. The unknowns for

each architecture will be described in Section 3.6. For both cases, the residual is the

predicted measurement (mp) subtracted by the actual measurement (m) as shown in

Equation (3.4).

r(x) = mp −m (3.4)

This method requires an initial guess x̄ and the main idea of the algorithm is to

approximate the nonlinear residual function as a linear function through a first-order

Taylor series expansion as shown in Equation (3.5). Next, we find the additive update

∆x that evaluates the linear function to zero when applied to the initial guess. This

is done by solving Equation (3.5) for ∆x. It is recommended to use the backslash

operator rather than an inverse for this solve as it is more robust due to better

numerical properties.

r(x̄+∆x) = r(x̄) +
∂r

∂x
|x̄ ∆x

x = x̄+∆x
(3.5)

Then we solve Equation (3.5) to compute the additive update (∆x). Next, we apply

an backtracking line search known as the Armijo rule to ensure that the step agrees

with the linearization within some user defined tolerance (b). This prevents the

step from overshooting the root as it controls the magnitude of the step length by
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Algorithm 2 Newton’s Method

1: for i = 1, 2, . . . , N do
2: α = 1 ▷ Initialize the step length
3: if r(x̄) < t then
4: break ▷ Check the residual against some tolerance (t)
5: end if
6: J = ( ∂r

∂x̄
|x̄) ▷ Calculate the jacobian of r and evaluate at x̄

7: ∆x = J\(−r(x̄)) ▷ Solve for the iterative update ∆x
8: while r(x̄+∆x) > r(x̄) + bαJ∆x do ▷ Apply an Armijo Linesearch
9: α = cα ▷ Find the new step size
10: end while
11: x̄ = x̄+ α∆x ▷ Apply the iterative update
12: end for=0

multiplying α by a scale factor (c) if the Armijo condition is met. [15]

Then the additive update (∆x) is applied to the initial guess each iteration. This

process is repeated until the residual is below a user defined tolerance (t) or the

algorithm reaches the maximum amount of iterations (N). Reaching the maximum

iterations means the residual did not meet the user defined tolerance and tuning the

line search parameter (b) and tolerance (t) are potential solutions. The root-finding

algorithm is summarized in Algorithm 2.

3.3 Uncertainty Propagation

The goal of the simulation is to propagate the uncertainty of the satellite positions

and the TOA/Doppler measurements onto the tag position estimate. This is done

using two distinct methods which result to the same solution. Both methods are

described in the following subsections.

3.3.1 Monte-Carlo Simulation

A Monte-Carlo simulation relies on repeated random sampling and statistical analysis

to compute a desired result [26]. For this application, the desired result is the Gaussian

probability distribution of the tag state which is considered a random variable

characterized by mean µt and covariance Σt. The satellite state and measurements
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are also modeled as random variables with the satellite mean corresponding to a

reference orbit trajectory and the standard deviation proportional to the satellite

uncertainty result from the Version 4 state estimator in Section 2.3.6. Measurement

uncertainty is proportional to hardware specifications/requirements. The Monte-Carlo

simulation runs N -iterations of the Newton algorithm to solve for N tag positions

and biases. We then compute the mean x̄tag and covariance Σxtag of the N tag state

estimates using Equations (3.6) and (3.7). The variable xi represents one of the N

tag state estimates.

x̄tag =
N∑
i=1

xi (3.6)

Σxtag =
1

N

N∑
i=1

(xi − x̄tag)(xi − x̄tag)
T (3.7)

3.3.2 Linear Approximation

A covariance can also be propagated by approximating the nonlinear residual function

as a linear function. Then, we use the jacobian of the linear function to propagate

the uncertainty of the function inputs (satellite states and measurements) onto the

function outputs (tag state). This jacobian is found using the implicit function

theorem.

Implicit Function Theorem

An implicit function has the form of equation (3.8)

r(x, y) = 0 (3.8)

where x are the known function inputs and y are the unknown function outputs. For

this application, the implicit function is the residual function where the inputs are

the satellite positions and measurements, and the unknown is the tag position along

with the bias. To compute the jacobian (A) that relates a change of the outputs to a

change in the inputs, we use the implicit function theorem which is denoted in (3.9).
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r(x, y) =
∂r

∂x
∆x+

∂r

∂y
∆y = 0

∆y = −(
∂r

∂y
)−1 ∂r

∂x
∆x

A = −(
∂r

∂y
)−1 ∂r

∂x

∆y = A∆x

(3.9)

Covariance Propagation

This jacobian is then used to propagate the uncertainty of the inputs (x) to the

outputs (y) by equation (3.10). The derivation for Equation (3.10) is shown in the

Appendix. The uncertainty of the inputs are represented by a covariance matrix (Px)

in which the diagonals correspond to the variance of each individual input variable.

Py = APxA
T (3.10)

3.4 Constellation Design

The satellite constellation geometry has a significant effect on the transmitter tracking

accuracy. We create two polar orbits with an altitude of 500 km and place two satellites

on each orbit. On these orbits, we parameterize the constellation geometry with three

variables which are the true anomaly between two satellites on the same orbit (θsep),

the true anomaly difference between the first satellite on each orbit (referred to as

the delta true anomaly ∆θsep), and the RAAN separation between the two orbits

(ωsep). These variables are shown in Figure 3.2.

A 2D example of position estimation using range measurements is shown in 3.3.

This example shows two cases in which a satellite pair compute range measurements

with uncertainty (ϵ) to localize a transmitter. The difference between both cases

is the placement of the satellites, however, the region of uncertainty is greater in

3.3b. This example can also be extended to the 3D case where region of uncertainty

becomes a volume. This work characterizes the region of uncertainty through a

covariance matrix which are calculated using a Monte-Carlo simulation and a linear
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Figure 3.2: Satellite constellation showing the variables a user can modify to design
the constellation.

approximation from Section 3.3.
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(a) Transmitter position uncertainty based on
satellite configuration 1

(b) Transmitter position uncertainty based on
satellite configuration 2

Figure 3.3: Transmitter position uncertainty based on an alternate 2D satellite
configuration. The gray points represent potential transmitter locations and the
dark-shaded regions show the uncertainty of the tag position estimate
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3.5 Additional Uncertainties

Figure 3.4: Ionosphere thin shell model used to determine the increased signal path
length. The larger the zenith angle, the larger the delay

The ionosphere is a region of ionized gasses that is caused by the radiation from the

sun, and it extend from about 50 km to 2000 km above the surface of the Earth
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[27]. The physical characteristics of the ionosphere change widely between day and

night, specifically the total electron count (TEC) in the path of the signal. The TEC

is the number of electrons in a tube with a 1 m2 cross section extending from the

transmitter to the satellite. Models of the ionosphere such as the Klobuchar model

and TEC maps exist [21], however uncertainty remains in the model as unexpected

effects such as solar flares can drastically change the TEC value [25]. The ionosphere

is modeled as a thin shell at a set height above the Earth (hE). Equation 3.11 depicts

the effect the ionosphere has on the pseudorange measurement. It is dependent on

the zenith angle of the satellite (ζ), the radius of the Earth (RE), and the frequency

of the signal (f), and the TEC value in the vertical direction (TECV ). The units of

TEC are known as TECU and 1 TECU is equivalent to 1e16 electrons. A change by

1 TECU at the transmission frequency of 400 MHz causes a delay of 2.5 meters for

the time-of-arrival method.

I(ζ) =
40.3TECV

f 2
[1− (

RE sin ζ

RE + hI

)2]
−1
2 (3.11)

The effect of the ionosphere on the Doppler measurements is the time derivative

of the ionosphere delay equation from the time-of-arrival method and is shown in

equation 3.12 [3]. We derive this expression in the Appendix and compare it to the

ionospheric correction equation in [20] to validate our expression. The zenith angle is

a function of time, and the time derivative of the zenith angle was computed using

the finite difference at neighboring time steps.

İ(ζ) =
(40.3TECV )( (RE sin ζ)(RE(cos ζ)ζ̇)

(RE+hI)2
)

f 2(1− (RE sin ζ
RE+hI

)2)
3
2

(3.12)

3.6 Candidate System Architectures

Table 3.1 summarizes the system architectures that are considered along with a

number label to reference these architectures in Figures 3.5 and 3.6.

Both single and dual-frequency cases were tested as conventional GPS utilizes

a dual-frequency approach to mitigate the ionospheric error. The same result is

observed in this simulation as the additional frequency provides more measurements
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Label Configuration

1 4 Satellites TOA 1 frequency
2 4 Satellites TOA 2 frequencies
3 4 Satellites Doppler 1 frequency
4 4 Satellites Doppler 2 frequencies
5 7 Satellites Doppler 1 frequency
6 7 Satellites Doppler 2 frequencies

Table 3.1: Candidate System Architectures

for the problem which allows the algorithm to estimate the TEC values for each path.

Different variables were estimated out for each architecture, and these selections are

summarized in Table 3.2.

Label Tag Position Tag Velocity Clock Bias Frequency Bias TEC

1 X X
2 X X X
3 X X
4 X X X
5 X X X
6 X X X X

Table 3.2: Estimated parameters for each architecture

The advantages of the time-of-arrival (TOA) measurement model is the low

measurement noise in the simulation as we assume the receiver onboard the satellites

to have a timing accuracy of 20 ns, based on timing error tests conducted in [19].

The numerical conditioning of the TOA measurement equation is also superior to

Doppler as the algorithm is able to converge in a few iterations and robust to several

initial guesses. Timing accuracy is crucial for this method to work, as a timing error

of 1 ms translates to a position error of 300 km. The use of one frequency obtains a

biased tag position along with the clock bias. By using two frequencies, we estimate

out the TEC values as these values have a high uncertainty due to the variability in

the physical characteristics of the ionosphere and this yields better tag positioning

accuracy and a lower bias.

The Doppler-based formations do not require precise time synchronization, but
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the frequencies are required to be stable for long periods of time [25]. Frequency

instability contributes significantly to tag positioning error. We assume an error

of around 1 Hz for the frequency measurement due to the short transmission time

for the proposed tag [3]. Another disadvantage of Doppler-based positioning is the

weak information content regarding the tag position in the Doppler measurement

equation as a change in the tag position does not significantly change the measurement.

Difficulties converging also arise with the initial guess used in the algorithm. Doppler

positioning also produces a biased answer when the tag has a moderate velocity. We

assume the tag has no velocity in the algorithm, however the tag velocity changes the

residual slightly to bias the estimate. The 4 satellite single frequency Doppler system

estimates the tag position along with a frequency bias term, and the 7 satellite single

frequency Doppler system approximates the same parameters along with the velocity

of the tag. All the dual-frequency architectures additionally estimate out the TEC

values for each satellite. For all the single frequency architectures, the TEC was

treated as a random variable sampled from a scaled Gaussian distribution.

3.7 Architecture Accuracy Results

We implemented both a Monte-Carlo simulation and a linear approximation for

uncertainty propagation to ensure the results of each coincide. First we set the

tag position in geocentric coordinates to a longitude of -165.45, longitude of 0, and

altitude of 0. Using SatelliteDynamics.jl, we convert to Earth centered Earth fixed

(ECEF) coordinates and generate time-of-arrival and Doppler measurements using

Newtons method with the known tag and satellite positions without uncertainty. We

then formulate the residual from (3.4) and solve for the tag position and bias using

Newton’s method for each Monte-Carlo iteration. In each iteration, we include the

satellite state and measurement uncertainties. We simulate 1000 Monte-Carlo runs

and calculate the mean and covariance of the tag state. We repeat this process for

every satellite position in the horizon of the tag. The horizon is set to 70 degrees

from the satellite normal on both sides. For the TOA cases, the initial guess was the

centroid of the satellite constellation projected onto the surface of the Earth. The

algorithm converged in 6 iterations with tolerance set appropriately for each case.

However, this initial guess did not result in convergence for the Doppler residual,
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therefore an initial guess 25-50 km kilometers away in each dimension from the ground

truth tag position resulted in convergence in 5 iterations.

Figures 3.5 and 3.6 show the accuracy and bias of each architecture with respect

to a user defined base case. This base case is defined in Table 3.3, and was determined

to comply with mission constraints. We selected an altitude of 500 km to ensure we

follow NASA orbital debris mitigation requirements which assures that the CubeSat

won’t pose an unacceptable hazard to other orbiting spacecraft, will deorbit in a

reasonable amount of time, and no large piece of the CubeSat survives reentry when

it deorbits and burns up in the atmosphere [1]. The RAAN, true anomaly, and delta

true anomaly are proposed to change using drag modulation to control the relative

positions of the satellites in a formation [12].

Base Case
Altitude 500 km
RAAN separation 2◦

True Anom. Sep. 10◦

Delta True Anom. Sep. 3◦

Time Accuracy 20 ns
Frequency Accuracy 1000 mHz

Table 3.3: Orbital parameters for the ground truth model
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Figure 3.5: Accuracy of the tag position as the RAAN changes in the satellite
configuration orbits. This analysis is done on the 4 satellite dual-frequency time-of-
arrival case.
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Figure 3.6: Accuracy of the tag position as the RAAN changes in the satellite
configuration orbits. This analysis is done on the 4 satellite dual-frequency time-of-
arrival case.

The dual-frequency architectures outperformed the single frequency cases for

all the configurations which is expected as the ionospheric term is not treated as

a random variable. Overall the 4 satellite dual-frequency case resulted in the best

configuration with a tag position RMS error of 60.83 meters and a bias of 1.89 meters.

Next, we investigate the role of constellation geometry on the tag position RMS

error. We conduct this analysis on the 4 satellite dual-frequency case since it provided

the best results and use the base case from Table 3.3. We vary the RAAN separation,

delta true anomaly, true anomaly, frequency separation, clock accuracy, and the tag

transit time one at a time to analyze the tag position RMS error. Figures 3.7, 3.8,

3.9 show the results of the effect the satellite constellation geometry has on the tag

position RMS error. These results show that an optimal configuration that minimizes
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tag positioning accuracy consists of a RAAN separation of approximately 3 degrees,

a true anomaly separation of 8 degrees, and a delta true anomaly separation as large

as possible. Increasing the delta true anomaly reduces the amount of time all the

satellites are in the horizon of the tag, therefore it becomes a trade off for the user to

determine. Also, the higher the frequency separation, the lower the tracking accuracy

as the difference in measurements is higher due to the difference in ionospheric effects,

and this difference improves the conditioning of the problem. The clock accuracy plot

in Figure 3.11 shows the position accuracy improves linearly as the clock accuracy

improves. Similarly, we correlate the frequency measurement accuracy with the tag

transmit time, and show that the longer the transit time results in a more accurate

tag position RMS error.
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Figure 3.7: Accuracy of the tag position as the RAAN changes in the satellite
configuration orbits. This analysis is done on the 4 satellite dual-frequency time-of-
arrival case.
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Figure 3.8: Accuracy of the tag position as the delta true anomaly changes in the
satellite configuration. This analysis is done on the 4 satellite dual-frequency time-of-
arrival case.
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Figure 3.9: Accuracy of the tag position as the true anomaly between 2 satellites on
the same orbit changes in the configuration. This analysis is done on the 4 satellite
dual-frequency time-of-arrival case.
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Figure 3.10: Accuracy of the tag position as the frequencies in the 4 satellite dual-
frequency time-of-arrival case change. A base frequency of 400 MHz is used while the
second frequency was incremented by intervals to generate this negative exponential
behavior.
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Figure 3.11: Accuracy of the tag position as the clock accuracy changes. This analysis
is done on the 4 satellite dual-frequency time-of-arrival case.
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Figure 3.12: Accuracy of the tag position as the tag transmit time changes. This
analysis is done on the 4 satellite dual-frequency Doppler case.

3.8 Interactive Simulation

We develop an interactive software modeling tool in Makie [8] to visualize the effects

the satellite formation has on the tag position RMS error. This tool places a four

satellite formation on two orbits (two satellites on each orbit), and allows the user to

change orbital parameters of both orbits such as the orbit attitude, right ascension of

the ascending node (RAAN) separation between both orbits, and the true anomaly

separation between the satellites. The user can also vary the tag latitude to observe

the tag position accuracy at different latitudes. The measurement noise (timing and

frequency accuracy) can also be adjusted based off the hardware specifications of the

proposed sensors onboard the satellite. The result of the tool is a covariance ellipse
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in the north east up coordinate system to display the two-sigma confidence bound of

the mean along with the position RMS error of both TOA and Doppler architectures.

This software used the least squares approach to calculate the tag covariances since

this method for finding the tag covariance is significantly faster than a Monte-Carlo

simulation. Figure 3.13 shows the layout of the tool. The package is open-source and

available in the following link:

https://github.com/vegaf1/SatelliteNavigation.jl

Figure 3.13: Layout of the interactive tool created to analyze the tag position accuracy
using 2 frequency TOA and Doppler configurations.
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Chapter 4

Conclusions

We present a simulation for satellite based tracking of a small transmitting tag using

a constellation of cube satellites, along with an open source package to test user

defined satellite geometries using the time of arrival and Doppler architectures. We

also calculate the satellite state uncertainty using an EKF with bias modeling, and we

include measurement errors and ionospheric effects in the simulation. The 4 satellite

time of arrival dual frequency configuration is recommended due to the performance,

complexity, and cost. This architecture had the best positioning accuracy and lowest

bias due to the high timing accuracy for the receivers and estimating out the TEC

terms in the ionosphere. This method also provides better accuracy than the current

method used in wildlife tracking (ARGOS), and is more cost effective than both GPS

and ARGOS.

Future work includes implementing a batch least squares solution of several orbits

to initialize the satellite state estimation problem as this method optimizes a cost

function rather than iteratively propagating a state and covariance, which may

improve the sequential satellite state estimate. Also we plan on implementing a

unscented Kalman filter (UKF) to compare it to the EKF as the UKF handles

nonlinearities more efficiently due to propagating several points through the nonlinear

functions rather than 1. Combining both time of arrival measurements and Doppler

measurements is also interesting as more variables such as the tag velocity could be

estimated out. We also plan to set up an optimization problem to obtain the most

effective satellite constellation as there may be nonlinear relationships between the
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constellation design parameters.
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Appendix A

A.1 Earth Gravity Expansion to J2

This section will provide a derivation of the gravitational potential up to the J2 term.

U =
GM⊕

r

∞∑
n=0

n∑
m=0

Rn
⊕

rn
Pnm(sinϕ)(Cnmcos(mλ) + Snmsin(mλ)) (A.1)

For only J2, n=2 and m=0, which leads to the following simplification.

U =
GM⊕

r

∞∑
n=0

n∑
m=0

Rn
⊕

rn
Pnm(sinϕ)(Cnm) (A.2)

U =
µ

r
[P0,0(sin(ϕ)C0,0) + (

R⊕

r
)P1,0(sinϕ)C1,0 + (

R⊕

r
)2P2,0(sinϕ)C2,0] (A.3)

From the table on page 60 in [24], the geopotential coefficients are the following:

C0,0 = 1, C1,0 = 0, C2,0 = −1.08264e−3. The value of C2,0 is the same value as variable

J2 in Equation (2.6) but negative. Next, we need the corresponding lower-order

Legendre polynomials which are obtained on page 57 of [24]. The polynomials are

the following: P0,0 = 1 and P2,0 =
3
2
sin2ϕ− 1

2
. Substituting these values in results in

the gravity potential of Earth up to J2 which is shown in Equation A.4.

69



A.

U =
µ

r
(1 +

J2R
2
⊕

2r2
(1− 3sin2ϕ)) (A.4)

By converting Equation (A.4) to Cartesian coordinates and then taking the

gradient through a symbolic differentiation package such as Symbolics.jl [13], one

obtains Equation (2.6).

A.2 Doppler Measurement Equation Derivation

The Doppler measurement model is dependent on the time derivative of the pseudo

range and the derivation for this term is shown below. Equation (A.5) derives the

time derivative of the true range. The matrix A is the rotation of the Earth that

occurs while the signal is being transmitted and transforms the ECI satellite position

into the same ECEF frame as the tag.

r =
√

(rtag − Arsat)T (rtag − Arsat)

r = ((rTtag − rTsatA
T )(rtag − Arsat))

1
2

r = (rTtagrtag − rTtagArsat − rTsatA
T rtag + rTsatA

TArsat)
1
2

r = (rTtagrtag − 2rTtagArsat + rTsatrsat)
1
2

ṙ =
1

2||rtag − Arsat||
(rTtagṙtag + ṙTtagrtag − 2(ṙTtagArsat

+ rTtagȦrsat + rTtagAṙsat) + rTsatṙsat + ṙTsatrsat)

ṙ =
1

2||rtag − Arsat||
(rTtagṙtag + ṙTtagrtag − 2ṙTtagArsat

− 2rTtagȦrsat − 2rTtagAṙsat + rTsatṙsat + ṙTsatrsat)

ṙ =
1

2||rtag − Arsat||
(rTtagvtag + vTtagrtag − 2vTtagArsat

− 2rTtagȦrsat − 2rTtagAvsat + rTsatvsat + vTsatrsat)

(A.5)

Here the term Ȧ is the derivative of a rotation matrix which is equivalent to A(ω̂),

where ω is the angular velocity of the Earth and the hat operator is the skew-symmetric

matrix operator. Next, the derivation for time derivative of the ionospheric delay (İ)

70



A.

is shown in (A.6).

I(ζ) =
40.3TECV

f 2
[1− (

RE sin ζ

RE + hI

)2]
−1
2

I(ζ) =
40.3TECV

f 2
(
−1

2
)([1− (

RE sin ζ

RE + hI

)2]
−3
2 (−2(

RE sin ζ

RE +HI

))(
(RE + hI)(RE(cos ζ)ζ̇)

(RE + hI)2
))

I(ζ) =
40.3TECV

f 2

(RE sin ζ
RE+hI

)( (RE+hI)(RE(cos ζ)ζ̇)
(RE+hI)2

)

[1− (REsinζ
RE+hI

)2]
3
2

İ(ζ) =
(40.3TECV )( (RE sin ζ)(RE(cos ζ)ζ̇)

(RE+hI)2
)

f 2(1− (RE sin ζ
RE+hI

)2)
3
2

(A.6)

A.3 Random Variable Transformations

Two important properties of a random variable (X) are the following:

E[cX] = cE[X]

V ar[cX] = c2V ar[X]
(A.7)

The random variable is represented by a Gaussian and we use these properties to

transform this Gaussian distribution with mean µ1 and variance σ2
1 into a Gaussian

with a desired mean and variance to capture the effects of the actual variable. Suppose

the initial random variable is sampled by the following normal distribution

X ∼ N(µ1, σ
2
1) (A.8)

and we want to transform the random variable X by a multiplicative constant (a)

and additive scalar (b) to obtain a desired mean µ2 and standard deviation σ2
2. The

transformation is Y = aX + b and the derivation for updated mean and variance are
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shown in equation (A.9).

Y = aX + b

E[Y ] = E[aX] + E[b]

E[Y ] = aE[X] + b

E[Y ] = aµ1 + b

V ar(Y ) = V ar(aX) + V ar(b)

V ar(Y ) = a2V ar(X)

(A.9)

The constants a and b are then computed by solving the system of equations in

(A.10).

aµ1 + b = µ2

a2σ2
1 = σ2

2

(A.10)

A.4 Linear Covariance Propagation

Once the nonlinear equation is linearized about a reference state, the jacobian (A) of

the linear equation (∆y = A∆x) is used to propagate the uncertainty of the inputs

to the outputs in the form of a covariance matrix. The derivation of (3.10) is shown

below.
Σ∆y = E((∆y −∆ŷ)(∆y −∆ŷ)T )

Σ∆y = E((A∆x− A∆x̂)(A∆x− A∆x̂)T )

Σ∆y = E((A∆x− A∆x̂)(∆xTAT −∆x̂TAT ))

Σ∆y = E(A(∆x−∆x̂)(∆xT −∆x̂T )AT )

Σ∆y = A(E((∆x−∆x̂)(∆x−∆x̂)T ))AT

Σ∆y = AΣ∆xA
T

(A.11)

A.5 Numerical Stability

The condition number is a metric used for numerical analysis that indicates whether a

matrix is well conditioned or ill conditioned. It is a measure of stability or sensitivity

72



A.

of a matrix to numerical operations. It is defined as the ratio between the largest

singular value (σmax) and the smallest singular value (σmin) of the matrix.

cond(A) =
σmax

σmin

(A.12)

The condition number also indicates loss of precision of a linear system (Ax = b)

solve as the number of decimals lost in the solution (x) is proportional to the base 10

log of the condition number as shown in (A.13).

decimals lost = log10(cond(A)) (A.13)

A condition number close to 1 indicates a well conditioned matrix while values

significantly larger characterize a ill-conditioned matrix. For this project, the system

from the root-finding problem was poorly conditioned and custom units had to be

implemented to allow the system to solve along the entire horizon. The distance was

scaled by the radius of the Earth, and the time was scaled to ensure the speed of

light (c) was equal to 1.
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