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Abstract

Most Robotic Ultrasound Systems (RUSs) equipped with ultrasound-
interpreting algorithms rely on building 3D reconstructions of the entire
scanned region or specific anatomies. These 3D reconstructions are typ-
ically created via methods that compound or stack 2D tomographic
ultrasound images using known poses of the ultrasound transducer with
the latter requiring 2D or 3D segmentation. While fast, this class of meth-
ods has many shortcomings. It requires interpolation-based gap-filling or
extensive compounding and still yields volumes that generate implausible
novel views. Additionally, storing these volumes can be memory-intensive.

These challenges can be overcome with neural implicit learning which
provides interpolation in unobserved gaps through a smooth learned
function as well as a lighter representation for the volume in terms of
memory. In this thesis, a neural implicit representation (NIR) based on
the physics of ultrasound image formation is presented. With this NIR, a
physically-grounded version of tissue reflectivity function (TRF) is learned
by regression using observed intensities in ultrasound images. Additionally,
this NIR also learns a spatially-varying point spread function (PSF) of the
ultrasound imaging system to improve the photorealism of rendered images.
The TRF learned through this method can handle contrasting observations
from different viewing-directions due to a differentiable rendering function
that incorporates the angle of incidence between ultrasound rays and the
tissue interfaces in the scanned volume. It is a stable representation of
the tissue volume that when combined with the viewing-direction, can
produce true-to-orientation ultrasound images.

Given that many diagnostic and surgical applications, robotic or otherwise,
require anatomy-specific 3D reconstructions, it is not sufficient to learn
entire ultrasound volumes without discerning the required anatomies.
To circumvent the use of traditional 3D segmentation methods that are
computationally-heavy, I demonstrate that the obtained TRF can be used
to learn a neural implicit shape representation for anatomies that are
largely homogeneous. This is formulated as a weakly-supervised binary
voxel occupancy function that is learned in parallel with the NIR. All
these contributions are substantiated on simulated, phantom-acquired and
live subject-acquired ultrasound images capturing blood vessels. Finally,
an application for the anatomy-specific reconstruction is discussed in the
context of physical simulations for deformation modeling of soft tissue.
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Chapter 1

Introduction

1.1 Motivation

Ultrasound (US) imaging or Sonography is a contact-based tomographic imaging

modality that uses high-frequency pressure waves to image soft tissues such as muscles

and internal organs. Being non-ionizing, real-time, portable, and low cost, ultrasound

imaging is a popular diagnostic first step for many medical interventions - from

emergency procedures such as obtaining vascular access for Extracorporeal Membrane

Oxygenation (ECMO) and Resuscitative Endovascular Balloon Occlusion (REBOA)

[79], [51] to diagnostic procedures such as guiding needles for biopsies, monitoring

stones in the gallbladder and kidneys [62], [21], and tumours in the liver and breast

tissue [53], [87]. A 3D volumetric representation of the internal scene from a subject’s

body is valuable to clinicians for diagnostics as well as surgery. However, most

commercial ultrasound systems yield a single 2D cross-sectional view of the anatomy

at a time. Trained sonographers are capable of fusing multiple 2D observations

into a 3D model through their knowledge of the human anatomy. But this abstract

understanding can be error-prone and impossible to achieve in the absence of skilled

sonographers.

More recently, robotic ultrasound systems coupled with ultrasound-interpreting

algorithms are being developed to function in the absence of sonographers. Robotic

ultrasound scanning has many benefits such as known probe poses, constant pressure,

consistent imaging quality and repeatability [47]. Robot poses in specific, have been
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1. Introduction

used extensively for stacking-based 3D volume reconstruction from 2D images [50],

[61], [60]. However this approach has many shortcomings. Firstly, unless an adaptive

acquisition method is used that tracks the unfilled gaps in the volume, many regions

will remain unobserved, making interpolation necessary in some form [84]. Secondly,

interpolation methods often either require hand-tuning parameters or are specific to

the imaged anatomy and produce non-existent artifacts [20]. Thirdly, the generated

volumes are a non-dynamic representation with no physical grounding, meaning that

any new image produced by slicing this volume will not show true intensities that

would be observed in reality by the transducer at that pose. Fourthly, contrasting

intensities observed for the same locations from different observation poses need to

be handled specifically. Finally, storing and manipulating these volumes can demand

considerable amounts of memory.

The use of segmentation in anatomy-specific reconstruction is widespread [73],

[5], [18], [44]. More often, segmentation in 2D image planes (2D U-Net) is preferred

rather than in 3D voxel grids (3D U-Net) as the quality yield is low given high

computational costs [94]. Traditional U-Net and CNN-models require a lot of anatomy-

specific expert-annotated labels and can perform poorly for out-of-distribution data

where discontinuities or deformations are observed in ultrasound [3]. Issues like

discontinuities can affect mesh generation which is a key step in ultrasound simulations

[12], deformation modeling [72] and planning in robot-assisted surgeries [13].

These fundamental challenges with typical volume and anatomy-specific recon-

struction methods for ultrasound motivate the emergence of a novel approach rather

than improvements to existing methods.

1.2 Contributions

I present neural implicit representations for both 3D ultrasound volume reconstruction

and 3D anatomy-specific reconstruction. The NIR for volume reconstruction (volume

NIR) is an advanced version of Ultra-NeRF [90] addressing substantial lacunae. The

NIR for anatomy-specific reconstruction is an original breakthrough contribution.

For the volume NIR, I derive a simple physical model that emulates the physics

of ultrasound wave propagation for image formation. This model learns two essential

components - the tissue reflectivity function (TRF) and the point spread function

2



1. Introduction

(PSF). The tissue reflectivity function quantifies the spatially-varying energy reflected

back to the ultrasound transducer after encountering tissues. This function is influ-

enced by tissue properties such as attenuation and acoustic impedance. The point

spread function (PSF) is the local spatial impulse response of an ultrasound imaging

system, or namely, the resulting image when the medium is solely composed of a

single scatterer [67]. Convolving the PSF with the TRF produces the final observed

intensities in ultrasound images [14], and by having both these parameters in a

differentiable renderer, a multi-layer perceptron (MLP) can regress over multi-view

2D images to learn a volume. This is the basis of the volume NIR.

The PSF affects the general specularity and blurring observed in the rendered

image. Ultra-NeRF takes in a pre-defined Gaussian kernel for the PSF and operates

with the assumption that the PSF remains constant throughout the imaging-plane,

when in reality, it varies with multiple factors, like the transducer geometry, plane-

wave steering angle, and scatterer position to name a few. To mimic a realistic PSF

with room for spatial variation, I have two additional parameters in our volume

NIR that model per-point Gaussian PSFs based on the resolutions of the ultrasound

system. Learning these additional parameters in a depth-constrained manner helps

improve the photorealism of the rendered images, especially for more complex scenes

observed in ultrasound data collected from real-world living subjects.

The wave-propagation model used in the differentiable rendering formulation in

Ultra-NeRF produces correct viewing-direction dependent silhouettes and shadows,

but it lacks the understanding of the variation of reflectance of tissue with respect

to the viewing-direction. This results in correct geometry but incorrect intensities

in rendered images for novel-views. The tissue reflectance signal received at the

ultrasound transducer from a point depends on the angle of the incidence of the

ultrasound ray at the tissue surface at that point. Finding this angle of incidence is

reliant on determining surface normals of internal tissue interfaces throughout the

learned volume. In order to render fully correct view-dependent images, I propose a

new approach to learn a normal field in addition to the TRF with the volume NIR.

This contribution is particularly useful in determining the best viewing pose for a

particular tissue so that it appears with highest visual contrast to the observer.

For obtaining anatomy-specific reconstructions, the volume NIR is modified to also

learn an implicit voxel occupancy function for a specific tissue. Provided the anatomy

3



1. Introduction

is largely homogeneous, the tissue properties for the anatomy are characterized by

minimal variations. The physical tissue parameters learnt by the NIR adhere to

this property. Additionally, the correlation between the parameters differentiate

different types of tissue. These properties are sufficient to demarcate tissue such as

blood vessels and in this work have been implicitly learned by a shape representation

coupled with the volume NIR. This implicit shape representation, which is a larger

dual-purpose NIR by itself, is formulated as a weakly-supervised binary occupancy

function. Like the volume NIR, it is parameterized by the 3D coordinate space but I

add the learned tissue properties as parameters as well. In my work, I analyse vessels

and observe that a handful of 2D masks are sufficient for generating high-fidelity 3D

reconstructions.

Shortly before these NIR methods were developed, I was focused on developing

subject-specific tissue deformation simulations. Most methods in this area depend

on detailed computed tomography (CT) scans for surface mesh generation but CT

data is not always readily available. Ultrasound volumes can be a substitute but

the issues discussed in section 1.1 make mesh generation very noisy. The implicit

shape representation enables more accurate mesh generation from ultrasound data.

The impact of good 3D anatomy-specific reconstruction is discussed in the context of

FEM simulations for soft tissue and so is a novel subject-specific stiffness calibration

method specific to 2D ultrasound.

Chapter 2 discusses all relevant prior work, chapter 3 dicusses the experimental

setup and data used for experiments, chapter 4, chapter 5, chapter 6 and chapter 7

discuss methods, and their respective experiments and results, and finally, chapter 8

discusses conclusions and future work.
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Chapter 2

Background and Related Works

2.1 Reconstruction in Robotic Ultrasound

2.1.1 Building Volumes

In stacking-based reconstruction, there exist two major categories of methods: pixel-

based and voxel-based methods. The pixel nearest neighbor (PNN) method is the

most common pixel-based method [60]. Each pixel in 2D images is mapped to the

nearest voxel in the 3D volume. It is simple and computationally inexpensive but it

results in the loss of important details and produces blocky or non-smooth artifacts

due to low resolution [15]. In [75], the pixel method is employed to reconstruct blood

vessels from ultrasound images by positional calibration of the ultrasound probe.

Voxel-based methods use 2D ultrasound frames to reconstruct a detailed 3D volume

by interpolating or averaging pixel values [60]. This method considers the spatial

relationship between voxels and pixels, resulting in more accurate images. However,

it requires more computation and may be sensitive to the quality and resolution of

2D images. Voxel-nearest neighbor (VNN) and distance-weighted (DW) are common

methods of computing the voxel values. VNN can preserve the most original texture

from ultrasound images, but it tends to generate large reconstruction artifacts when

the distance of the voxel to the image plane is large. DW suppresses speckle noise

but smooths out the volume, losing information. The authors of [34] presented the

squared-distance-weighted (SDW) reconstruction algorithm to reduce the smoothing

5



2. Background and Related Works

effect and preserve details in the reconstructed volume.

Radial Basis Function (RBF) interpolation was proposed in [66] as an approxi-

mation with splines that try to use the underlying shape of the data in the volume

reconstruction. Overfitting is typically unavoidable for the spline method. In [69], the

authors present the Rayleigh reconstruction/interpolation with a Bayesian framework

that estimates a function for the tissue by statistical methods. The Rayleigh method

tends to suppress speckle noise but over-smoothes the boundaries. To summarize,

there are still problems to be solved in this area.

2.1.2 Segmenting Anatomies

Quite some works exist that try to reduce supervision for ultrasound image seg-

mentation. In [9], the authors proposed iterative pseudo label-based learning for

semi-supervised cardiac structure segmentation. The authors of [48] argued that

pseudo labels could be generated via uncertainty estimation during the semi-supervised

segmentation. Uncertainty-based confidence-aware refinement at the pixel level was

proposed in [83] to ensure the accuracy of pseudo-labels. Although these methods are

commonly used, they do not guarantee the accuracy of the generated pseudo labels

when applied to US images with typical shadow artifacts. Mean Teacher proposed in

[77], is a method that averages model weights instead of label predictions for promot-

ing the consistency between model predictions and the target. Nevertheless, these

methods do not consider the negative impact of random artifacts on the prediction of

labels in the face of insufficient annotations, which may limit their applicability in

accurately segmenting US images with missing or uncertain boundaries.

2.2 Ultrasound Image Synthesis

2.2.1 Interpolative approaches

The interpolative approaches to ultrasound image synthesis use prerecorded 3D

ultrasound volumes and reslicing techniques combined with post-processing like

adding deformations and artificial shadows in the slice. This technique is very fast,

but because the artifacts in the ultrasound images are inserted ad-hoc, they suffer from

6



2. Background and Related Works

method-immanent disadvantages such as restricted orientations and the absence of

several artifacts like mirroring, refractions, and reverberations [4], [27]. An evaluation

of a simulation training system for gynecological sonography was presented in [32].

Re-slicing pre-acquired 3D freehand ultrasound data is directly used for simulation

of 2D ultrasound images. Given all the issues that persist, reslicing-based methods

are far more suitable to data augmentation for segmentation [61] to present more

variations in organs/anatomy to networks in training rather than generate novel-views

for any diagnostics.

2.2.2 Generative approaches

Advances in deep learning have enabled various learning-based approaches for ultra-

sound image synthesis. Some of them incorporate wave-propagation based parameters.

Conditional GANs are widely used in generating ultrasound images conditioned on

physical input, such as calibrated coordinate values [33] and echogenicity maps [78].

A 2020 paper [49] employed a generative autoencoder model, trained on a large

amount of tracked ultrasound data, to perform patient-specific image generation from

transducer position and orientation. In [80], a cycleGAN model is used to improve

the realism of simulated ultrasound images produced from a ray-casting approach.

A GAN approach for image translation is proposed in [95] that bypasses rendering

during inference. To simulate realistic ultrasound speckle patterns, the authors of [10]

introduced a speckle layer to incorporate the physical model of speckle generation

into a GAN-based data augmentation network. However, this was based on Fourier

optics and not the physics of ultrasound wave propagation.

2.2.3 Physics-based Simulation

The physics of ultrasound image formation has been touched upon in many works

that investigate ultrasound simulation and multiple models have been proposed. Fully

synthetic ultrasound simulation has been proposed by [39], [36], [38] based on an

acoustic wave-propagation model and the concept of spatial impulse response which

is implemented in a program called Field II [37]. Field II can be used to simulate

any linear ultrasound system given apodization, focus, pulse excitation scheme and

aperture geometry. The program requires location and strength of scatterers as

7



2. Background and Related Works

input and produces best results with carefully designed and synthetically generated

scattering patterns. As such, the program is mostly used to determine the effects

of various parameters on transducer design. Additionally, the simulations for even

a single B-mode image takes an extremely long amount of time and needs to be

parallelized, making it impractical for real-time simulation.

Some works like [42] and [6] used the Westervelt equation, solved with the finite

difference method, to create ultrasound wave-propagation models. These models fell

out of favour due to high computation complexities. Simple ray-based models were

introduced in [46] and [71] that discussed reflection and lambertian scattering. Later

works expanded on these models and perhaps the foundational paper in the context of

current standard wave-propagation models is [12]. It describes the convolution-based

model for ultrasound. The simulation uses deformable mesh models of tissue for

which acoustic parameters can be defined. This work was expanded by [68] where

the authors showed optimization for tissue parameters using MRI data. Almost all

these simulators are heavily reliant on user-provided material properties which is a

huge disadvantage.

2.3 Implicit Learning

2.3.1 RGB

Implicit neural representations refer to a class of methods that use neural networks

to encode complex, high-dimensional data without explicitly defining the underlying

structure or function. The authors of [25] showed that implicit functions could

represent a template for a detailed surface geometry. Integration an implicit surface

representation into a neural network was suggested in [57], demonstrating that this

approach enabled the inference of shapes with greater geometric intricacies compared

to voxel-based representations. A neural scene representation that integrated rendering

for a scene through ray-casting with deep learning was introduced in [74]. It did

not require shape supervision. This bleeds into neural radiance fields (NeRF) [58],

where a fusion of volume rendering and neural networks is employed. However, in this

approach, an analytical function is utilized for differentiable rendering, distinguishing

it from methods solely relying on neural networks for scene representation.

8



2. Background and Related Works

2.3.2 Medical

MedNeRF [19] proposed the incorporation of GRAF (Generative Radiance Field)

[70] to render CT projections from single or multi-view X-ray images. GRAF is

a combination of NeRF and GAN. This is proposed as NeRF struggles to handle

complex scenes with large amounts of geometric complexity. To handle this limitation,

NeRF is trained to minimize the differences between the rendered and ground truth

images, while the GAN is trained to distinguish between the generated image and

a ground truth image, and utilized to refine the NeRF outputs and improve image

quality.

Neural implicit representations have been successfully employed for tasks such as

3D reconstruction from ultrasound images, e.g. in ImplicitVol [92], segmentation with

continuous functions [43], deformable image registration [88], and high-resolution MR

reconstruction [89]. Another category of methods combines implicit representations

with complex imaging models that address intricacies of medical imaging modalities.

For instance, [65] incorporates implicit neural representations into a 4D-CT recon-

struction pipeline, utilizing them as a fixed prior alongside a motion field. Multiple

neural networks are proposed in [91] to represent bias field, noise variance, and volume

intensities implicitly, enhancing 3D reconstruction from motion-corrupted 2D slices.

The use of NeRF in the medical domain is an emerging research area since adapting

volume-rendering methods for medical imaging requires addressing the unique char-

acteristics of image formation models unique to medical imaging. Existing literature,

largely centered on CT or MR, includes examples like MedNeRF [19], specializing

in CT reconstruction from X-ray data, and [35], extending the approach to brain

MR scans by incorporating a radiation attenuation response. However, ultrasound

imaging stands in stark contrast to MR and CT due to its inherent anisotropic nature.

2.3.3 Ultra-NeRF

Ultra-NeRF [90] presented the first differentiable rendering-based NIR for ultrasound

with a convolution-based ray-tracing model. The method is able to reconstruct a

continuous volume from multiple angled ultrasound sweeps. It produces partially

view-dependent rendering, rendering shadows precisely but lacking consideration

of view-dependent reflection. The formulation of the rendering presented in [90]
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2. Background and Related Works

is discussed in chapter 4. Ultra-NeRF serves as the baseline for the contributions

presented in this thesis.

2.3.4 Ultrasound vs RGB imaging

Being tomographic in nature, ultrasound allows us to image cross-sections of a scene or

object by using penetrating waves. This is fundamentally different from RGB imaging

which is projection-based. This difference leads to a key distinction in the way neural

representations for both these modalities differ. In RGB imaging, knowing the poses

of the camera for multiple images does not amount to a 3D representation of the scene.

Either feature-matching based triangulation is required for an explicit point-cloud like

representation, or ray propagation is required for a NeRF-like implicit representation.

However, with tomographic images, known poses can help stack observed pixels in a

3D voxel grid, providing us with a direct explicit 3D representation of the scene. Given

the discussed challenges with this compounding-based representation, a NeRF-like

NIR for ultrasound is justified for better reconstructions.

It is also worthwhile to note that there exist methods coupled with NeRF that

attempt label-propagation in 3D from weak 2D supervision for segmenting out objects

in RGB scenes. But these methods are more complex, often combining additional

knowledge [59], [81] from other larger pre-trained models to understand 3D geometry.

In contrast, a handful of annotated 2D masks are sufficient for our equivalent task of

anatomy-specific reconstruction in the ultrasound domain. This is possible because

firstly, we learn physical parameters which convey more meaningful information about

tissues instead of using appearance parameters like intensities [28]. Secondly, most

tissues (fat, nerves, sheaths, vessels etc.) are largely homogeneous in appearance,

eliminating the requirement for using other sources for shape understanding.

2.4 Deformation Modeling

Force data collected from a multi-axial force sensor mounted on the robotic ma-

nipulator, and tissue deformation data collected from a stereo camera system are

used for estimating mechanical parameters of soft tissue in [11]. The authors of

[24] use RGB-D sensing to learn force values in an ex-vivo set up with a da Vinci
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Surgical System for brain tissue. In [41], a novel approach to simulate the soft-body

deformation of an observed object is introduced. The approach tracks an object’s

movement using an RGB-D sensor and simulates its deformation iteratively. The

method could be applied to track skin deformation but since the scope of this thesis

is vessels, exterior RGB-D sensing is not applicable.

Quite a few studies have explored simulating soft-tissue deformations but few opti-

mize simulations using medical images. In [30], the authors propose a comprehensive

pipeline to create patient-specific biomechanical models and optimize deformation

predictions in FEM through iteratively updating model parameters by maximizing

image similarity between FEM-predicted MR images and the experimentally acquired

MR images of a breast. To predict deformations in real-time, in [96] a liver model

with biomechanical properties similar to a real one is created using FEM and a data

set of deformations with different forces is generated. The mechanical behaviour is

simulated in real time by a LightGBM (Light Gradient Bossting Machine) regression

model trained with the generated data set. Vessels are modeled and deformed in

real-time using a tensor-mass method in [29] and the authors perform experiments

for determining realism but do not use medical imaging to quantify it and rely on

qualitative results. Other papers [40], [56] simulate vessel deformations due to blood

flow.

In [54], the authors propose using deep neural networks to learn large deformations

occurring in ultrasound-guided breast biopsy as FEM is not real-time. They train

a U-Net architecture on a relatively small amount of synthetic data generated in

an offline phase from FEM simulations of probe-induced deformations to provide

accurate prediction of lesion displacement. 3D-PhysNet, proposed in [85], can predict

three-dimensional deformations in solids under applied forces by encoding the physical

properties of materials and applied forces in the network, essentially learning the

FEM simulation.
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Chapter 3

Experimental Setup and Data

Two categories of data are used in this work - 1) Synthetic ultrasound data and 2)

Real-world ultrasound data captured through a robotic system.

3.1 Synthetic Ultrasound Data

The synthetic ultrasound data is generated from liver CT scans using ImFusion [1]

which has a proprietary ray-tracing based simulator. The subject has hepatic vessels

visible. Six angled sweeps with 200 images each and pose tracking, are generated

from the CT data. The tilted sweeps differ in slope compared to the outer surface.

Therefore, the scene is observed from different viewing directions. The frames contain

occlusions caused by bone structures (ribs).

3.2 Real-world Ultrasound Data

The real world ultrasound data is acquired with a robotic ultrasound system as

shown in Figure 3.1. The system consists of a PaoLus UF-760AG Portable Diagnostic

Ultrasound Imaging Equipment (FUKUDA DENSHI,UK) using a 5-12 MHz 2D

linear transducer mounted on the 6-DoF Universal Robot UR3e robot. The robot

provides poses for the ultrasound transducer at 150 Hz and is well-calibrated, having

sub-millimeter accuracy.
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3. Experimental Setup and Data

Figure 3.1: The Robotic Ultrasound System used for data acquisition.

This system is used to acquire data from two types of subjects - 1) Blue-gel

Phantom and 2) Live-pig subjects.

3.2.1 Blue-gel Dataset

The medical phantom is a Blue-gel phantom with a pair of bifurcating vessels. It

is a homogeneous subject without any features corresponding to muscle, fat, nerves

etc. The blue-gel dataset is collected by imaging the phantom placed in a water-

bath. This is done to eliminate direct contact with the phantom which will cause

deformations. 3 sweeps, 2 transverse to the vessels (with 360 images each) and 1

raster scan longitudinal to the vessels (500 images), are captured perpendicular to

the surface of the the phantom (0◦ from the surface normal). 8 transverse sweeps

with an average of 350 images each, tilted from angles −20◦ to +20◦ at intervals of 5◦

are collected along the same trajectory as the first transverse sweep at 0◦. The tilting

rotation occurs along the longitudinal plane, which implies that all tilted sweeps

image in transverse planes.

13
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3.2.2 Live-Pig Dataset

The live animal subjects are 2 living pigs. For both these live-pig datasets, we use our

robotic system to scan the femoral vessels in the transverse orientation. For live-pig1,

5 angled sweeps are collected, tilted from angles 0◦ to −20◦ at intervals of 5◦. Each

of these sweeps have 245 images. The tilting rotation occurs along the longitudinal

plane, which implies that all tilted sweeps image along the transverse plane. For

live-pig2, 7 angled sweeps are collected, tilted from angles −15◦ to +15◦ at intervals

of 5◦. Each of these sweeps have 200 images on an average.

3.3 Compute

All the learning-based methods are implemented in PyTorch [64] and trained on an

NVIDIA TITAN RTX GPU with 24 GB memory.
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Chapter 4

Learning point-wise Point Spread

Functions and Architecture

Changes to Ultra-NeRF

4.1 Ultrasound Volume Rendering Revisited

Ultra-NeRF used a R3 → R5 NIR where attenuation α, reflection coefficient β, border

probability ρb, scattering density ρs and scattering amplitude ϕ are predicted for each

sampled (x, y, z) location in the volume. In experiments conducted by the authors

later, it was found that the border probability term is redundant. The following

ray-propagation model encapsulates the modified volume rendering formulation from

Ultra-NeRF.

For each scan-line or ultrasound ray r, eq. (4.1) defines a recorded US echo E(r, t),

measured at distance t from the transducer, as a sum of reflected energy R(r, t) and

backscattered B(r, t) energy:

E(r, t) = R(r, t) +B(r, t) (4.1)

As shown in eq. (4.2), the reflected energy at a point (r, t) is a product of the remaining
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energy in the ray I(r, t) and the reflection coefficient at that point β(r, t).

R(r, t) = |I(r, t) · β(r, t)| (4.2)

I(r, t) is dependent on both tissue attenuation and energy lost due to reflections up

till point t in the ray. Given that the initial energy of the ultrasound ray at the

transducer I0 is of unit intensity, I(r, t) is given by eq. (4.3)

I(r, t) = I0 ·
t−1∏
n=0

(1− β(r, n)) · e(−
∫ t−1
n=0 (α·f ·dt)) (4.3)

where α values correspond to the physical attenuation of tissue only up to an unknown

scaling factor, f corresponds to the frequency of the ray, and loss of energy happens

at an infinitesimal step dt along the ray. The final α learned by the network is

representative of the product of the attenuation and frequency.

To obtain the backscattered energy B(r, t) term, the product of the remaining

energy I(r, t) and the PSF is convolved with a 2D map of scattering points, as shown

in eq. (4.4). This map is obtained by multiplying an admittance function H with

the scattering amplitude ϕ. H is sampled from a Relaxed Bernoulli distribution with

parameter ρs showing the inherent uncertainty in the observation of the scattering

effect of each point scatterer.

B(r, t) = I(r, t) · PSF (r)⊗ (H(r, t) · ϕ(r, t)) (4.4)

Ultra-NeRF uses a constant 7x7 Gaussian kernel with mean 0 and variance 1 as

the PSF. This is an informed guess that worked well for the datasets in consideration

in [90].

4.2 Drawbacks of Using a User-specified Global

PSF

As described in section 1.1, the PSF observed at a location depends on multiple factors

such as transducer geometry, beam shape, steering angle, location of scatterer etc.
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Therefore, a single PSF, constant throughout the volume is an incorrect assumption.

Additionally, relying on a user-input necessitates fine-tuning.

While testing on real-world ultrasound data (blue-gel and live-pig), the PSF used

by Ultra-NeRF results in rendered images which have a very different speckle-pattern

from the ground truth images. Figure 4.1 captures this phenomenon.

Figure 4.1: The original (ground truth) ultrasound image (left) and the corresponding
rendered image with a constant PSF (formulation from Ultra-NeRF) (right). It shows
the mismatched speckle pattern.

4.3 Literature

Homomorphic filtering in the cepstrum domain is used in [52] for extracting PSFs

from raw RF (Radio-Frequency) data. Although the paper mentions the use of

ultrasound images for the method, raw signals from the RF image are used as the

input and not B-mode ultrasound images. RF images are not accessible on most

commercial ultrasound systems. Therefore, to the best of my knowledge, no accessible

method using B-mode ultrasound images exists for estimating the PSFs of imaging

systems.
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4.4 Method: Learning a per-point PSF

Modeling transducer-specific properties is very parameter-intensive and in most cases,

infeasible due to proprietary ultrasound systems. However, the effect of the scatterer

position on the PSF can be modeled using regression over observed intensities through

the volume rendering equations while considering beam resolutions.

We know from prior work that the PSF [52] is a cosine-modulated 2D Gaussian

kernel with the parameters being the axial (σx) and spatial (σy) resolutions in pixels

eq. (4.5).

PSF (r, t) = exp

(
−1

2

(
x2

σx
2
+

y2

σy
2

))
· cos (2πf) (4.5)

Here, x and y refer to the coordinates in the PSF kernel.

To learn the per-point PSFs, the network predicts two further parameters per

sampled point - σx and σy, making the NIR a R3 → R6 function. The axial resolution

refers to the ability of the system to distinguish between two structures that are

aligned along the axis of the ultrasound beam. The spatial resolution is a measure of

how well the system can depict fine details and differentiate between structures that

are adjacent to each other.

We allow the network to predict σx and σy values within the actual axial and

spatial resolution ranges of most commercially-available ultrasound systems. This is

done with scaled sigmoid activation functions. σx and σy are between 0.145 - 1.45

mm and 0.4 - 3 mm respectively [12]. The learned resolutions are multiplied by the

system-specific mm-to-pixel scaling factor before being applied to eq. (4.5) in the

rendering. We use a 7x7 kernel for the Gaussian PSF.

We expect the PSFs to be consistent along the width of the imaging plane at a

particular depth, implying that the primary variation should be along the height of

the image. In order to enforce this, I regularize the learned values for σx and σy in a

depth-wise manner using a loss. To achieve this, the following loss eq. (4.6) is used.

Ldepth reg =

(
H∑

h=1

L2(Varh(σx), 0) +
H∑

h=1

L2(Varh(σy), 0)

)
2

(4.6)
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Here, H is the height of the image in pixels and V ar refers to the computed

variance.

The rendering loss applied to the NIR is the same as [90]. It is given by eq. (4.7).

Lrender = λ SSIM (Im′, Im) + (1− λ)L2 (Im′, Im) (4.7)

Here, Im is the original image, Im′ is the rendered image and λ = 0.7. The final

loss used for the training is:

Ltotal = 0.8Lrender + 0.2Ldepth reg (4.8)

The network is trained with the Adam Optimizer [45] and a learning rate of 0.001.

4.5 Method: Neural Network Architecture

Changes

While applying the Ultra-NeRF architecture for learning ultrasound volumes from

live-pig data, some aberrations are observed in the rendered images, especially

near high-frequency regions. Some typical artifacts like pixelation, non-smooth

interpolation and failed interpolation were observed, indicating that the network was

struggling to fit to the data. Examples can be seen in fig. 4.2.

Drawing inspiration from other works in the domain of medical imaging addressing

inverse learning problems [89], [76], I expanded the MLP network to contain 14 hidden

layers in addition to the prediction layer. I also added 3 skip connections to layers

4, 8 and 12. The modified network architecture which learns the PSF is shown in

fig. 4.3.
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Figure 4.2: The comparison of rendered images from the learned volume to the
ground truth images of live-pig1 dataset when using the 8-layer MLP architecture
from Ultra-NeRF. The red boxes highlight the high-frequency details missed.

Figure 4.3: The new network architecture used for learning the TRF as well as the
PSFs.
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4.6 Results

4.6.1 New Network Architecture

The new architecture is better-suited to learning more complex scenes that are present

in data from real-world subjects. The improved rendered images demonstrate that

the new network architecture helps learn high-frequency artifacts well, being able to

interpolate seamlessly. Observe improved rendered images on the live-pig1 datatset

in fig. 4.4.

Figure 4.4: The comparison of rendered images from the learned volume to the ground
truth images of live-pig1 dataset when using the new 15-layer MLP architecture.
Most of the high frequency artifacts are captured.

While the network performs better in capturing these high frequency artifacts,

this is not directly reflected in the SSIM scores. The general smoothing and higher

average intensities obtained in the rendered images from the 8 layer architecture

produce SSIM scores (0.486) which are equivalent to the SSIM scores for rendered

images from the 15 layer architecture (0.487).
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Dataset
Ultra-NeRF
(pre-defined,
constant PSF)

Proposed NIR
(learned,

varying PSFs)
Synthetic 0.369 0.455
Phantom:
Blue-Gel

0.394 0.553

Live-pig1 0.486 0.632
Live-pig2 0.487 0.643

Table 4.1: SSIM scores of rendered images from Ultra-NeRF and the proposed NIR

4.6.2 Learned PSFs

It is observed that learning the local spatial and axial resolutions for PSFs help

improve the quality of the rendered images and provide higher mean SSIM scores.

The comparisons with SSIM scores of rendered images from models with a single,

constant PSF are provided in table 4.1. For all the datasets, we observe an increase

in the mean SSIM scores.

Qualitative results are provided in fig. 4.5, fig. 4.6, fig. 4.7. The general observation

is that the rendered images are smoother which particularly helps discern smaller

structures. With a grainier pattern from the constant PSF, it is entirely possible that

speckle makes smaller features discontinuous, making them harder to observe. This

is a very important distinction for smaller anatomies such as nerves.

The observed variation in the axial and spatial resolutions learned by the method

is minimal, observed only in the fourth decimal place while measured in millimeters.

While this does not indicate what the beam shape looks like, the changes in the kernel

values affect the final intensities after multiple convolutions.

Discussion

As stated earlier, to the best of my knowledge, no open-sourced method exists to

determine the Point Spread Function for an ultrasound imaging system. Field II

provides a library to compute the PSF but this requires a special phantom which

was not accessible to me. However, one good check for validating that the network is

learning meaningful resolution values, is to compare the learned resolutions on two

different datasets collected by the same system. In table 4.2, we can see that the
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Figure 4.5: The comparison of rendered images from the synthetic dataset while 1)
using constant PSF estimate and 2) learning per-point PSFs. Images from two poses
are provided.
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Figure 4.6: The comparison of rendered images from the blue-gel dataset while 1)
using constant PSF estimate and 2) learning per-point PSFs. Images from two poses
are provided.
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Figure 4.7: The comparison of rendered images from the live-pig datasets while 1)
using constant PSF estimate and 2) learning per-point PSFs. Images from one pose
are provided per dataset.
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Dataset
Mean σx (Axial Resolution)

in mm
Mean σy (Spatial Resolution)

in mm
Blue-Gel 0.723 2.126
Live-pig1 0.743 2.098

Table 4.2: Mean estimations for PSF parameters for a single ultrasound imaging
system on two different subjects.

network estimates nearly the same mean axial and spatial resolutions for datasets from

two different subjects acquired by the same imaging system showing that meaningful

values are learned for the PSF. However, to ensure that the PSFs follow the expected

profiles according to bean shape, further constraints and regularization needs to be

added to the method.
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Chapter 5

Viewing Direction-Dependence for

Ultrasound Volume Rendering

5.1 Literature

Reflection occurs at large scale tissue boundaries and is incidence-angle dependent.

A common physical model for the reflection, which is described in textbooks [31] and

[93] and further used [86] and [82], is to calculate the reflected signal by multiplying a

cos(θ) term with the reflectance coefficient where θ refers to the local incidence angle.

This formulation is derived from Lambertian reflectance with the key distinction being

that the cos(θ) term has an exponent when it comes to modeling tissue reflectance in

the context of ultrasound.

5.2 Method

The literature presents a physics model which incorporates the angle of incidence

of ultrasound rays with tissue interfaces. This can be utilized in the differentiable

rendering module that my NIR uses. However, it is evident that the incidence angle

must be known in order to use the incidence-angle dependent rendering.

Let us first examine the changes to the rendering formulation for incorporating

the incidence angles. The reflected energy, computed by eq. (4.2), is now computed
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by the modified eq. (5.1).

R(r, t) = |I(r, t) · β(r, t) · cos(θ)m| (5.1)

And the remaining transmitted energy I(r, t) as seen in eq. (4.3) is computed by:

I(r, t) = I0 ·
t−1∏
n=0

{1− β(r, n) · (cos(θ(r, n))m)} · e(−
∫ t−1
n=0 (α·f ·dt)) (5.2)

As θ features in the differentiable rendering module, one could assume that training

the network with this module on images from different viewing angles will suffice

and that the regression will converge to the correct incidence angles. The network

would directly predict the normal field (N) parameters Nx, Ny, and Nz for each (r, t).

However, given that the data is collected in sweeps with unknown gaps between

frames, few pixels in the entire observed volume have observations from different

imaging planes corresponding to different viewing angles. This means that unless

many more angled sweeps are acquired and used in training, the network will not

be able to converge on meaningful values for θ. Additionally, abrupt geometries in

tissue interfaces could also mean that the smooth function that the network learns

would have degenerate solutions for θ at many locations.

Another method to estimate N , is to compute surface normals from the volumetric

gradients. To obtain high-fidelity volumetric gradients, the learned volume must

be sampled at multiple planes, preferably at infinitesimal increments, in order to

compute differences. Computing the gradient in the ultrasound domain will result in

wrongly computed surface normals because the scattering artifacts and shadows lead

to incorrect gradients. Therefore, gradients from ultrasound images would be noisy

and incorrect in magnitudes by a large margin. Another complexity is the added

computation of rendering new ultrasound images from the learned volume at multiple

poses.

In the NIR, reflectance fields learned by the network are cleaner (no scattering)

and view-independent (no shadow effects). This makes reflectance maps a better

choice, albeight not flawless, to learn a close approximation of the true N . However,

reflectance learned by the network is not guaranteed to indicate all tissue interfaces

correctly, especially in regions where the network has difficulty attributing pixel
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intensities in the right ratios between reflectivity and backscattering. For this reason,

we do not rely on recomputing N from gradients along the reflectance field at every

epoch, even though this can be performed differentiably. However, the normals

computed from the gradients of the reflectance field can serve as a rough prior for N

that the network can refine as it trains with varying intensities from data at different

viewing-angles. Therefore, in the proposed method, we combine the prior computed

from volumetric reflectance gradients with the view-dependent rendering formulation.

Initially, the network is trained for a few epochs on a single sweep, preferably with

the ultrasound probe at the same orientation throughout the sweep. The network

predicts the TRF and PSF only, with the N prediction initially frozen. Once a

rudimentary TRF is learnt, the training pauses and the normal field prior P is

computed from sampled reflectance maps. The training then resumes and processes

all the training sweeps with per-point Nx, Ny, and Nz values being predicted.

The predicted N is used to compute incidence angles between known rays and

tissue interfaces which are used in eq. (5.2) and eq. (5.1). As for the supervision

through the rough prior, we apply a soft loss as shown in eq. (5.3), allowing the

network to deviate from and correct over P where the signal from the rendering

dictates.

Lnormal = 0.9−

HxW∑
n=1

Nn · Pn

HxW
(5.3)

Where H and W are the height and width of the image in pixels. The value 0.9

was chosen empirically and provides the best results in the experiments conducted.

When combined with learning the PSFs, the loss used in training the network is

given by eq. (5.4).

Ltotal = 0.75Lrender + 0.1Ldepth reg + 0.15Lnormal (5.4)

From multiple experiments, the value of m in eq. (5.1) and eq. (5.2) is determined

to be 1. The network is trained with the Adam Optimizer [45] and a learning rate of

0.001. Observe fig. 5.1 for the architecture.
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Figure 5.1: Network architecture for learning surface normal field for view-dependent
rendering. The modules in the red box are activated once the prior P is computed.i,
j, k correspond to Nx, Ny and Nz.

5.3 Experiments and Results

We test this method on the blue-gel and live-pig2 datasets. In the actual ultrasound

images in fig. 5.3, we can observe the changes in observed intensities at the top and

bottom edges of the phantom as well as the vessel walls when we view it from varying

orientations. Our goal is to duplicate these findings in the NIR renderings.

For training on the blue-gel dataset, sweeps at 0◦, 10◦and -20◦were used. The

validation is performed on unseen sweeps at orientations 20◦and -15◦. As observed

in the regions corresponding to the vessel walls and the phantom edges in fig. 5.4

and fig. 5.5, the network is able to render realistic images at different orientations,

suggesting that the network is learning a reasonable N . The learnt surface normals

for a given slice are seen in fig. 5.2. One interesting thing to note is that the overall

intensities in the rendered images when the NIR is trained for different viewing

directions, is lower in comparison to the ground truth images. It is possible that the

NIR is unable to fully model the complexity of the scene and is averaging intensities

across views to some extent. More tests need to be conducted to ascertain the reason

behind this.

For training on the live-pig2 dataset, sweeps at 0◦, -5◦, 5◦, -15◦and 15◦were used.

The validation is performed on unseen sweeps at orientations +10◦and -10◦. With
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Figure 5.2: Left: Ground truth ultrasound image at a given pose; Right: Surface
normals pertaining to the slice at the same pose, extracted from learned N .

Figure 5.3: Illustration depicting ground truth images of the blue-gel phantom at
varying orientations in a fanning motion of the probe along with the corresponding
slices with a visualization of vessel for understanding relative pose.
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Figure 5.4: The ground truth images at training orientations and the corresponding
rendered images as seen in training from the blue-gel dataset.
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Figure 5.5: The ground truth images at validation orientations and the corresponding
rendered images as seen during inference from the blue-gel dataset.
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Dataset SSIM Non view-dependent rendering SSIM View-dependent rendering
Phantom:
Blue-Gel

0.38 0.42

Table 5.1: Mean SSIM scores for blue-gel dataset.

the pig data, there are many mixed results. A few sections of the sweep are captured

well by the model and in these patches, view dependence is observed but not for

all the tissue interfaces. While the training views show some amount of success,

the validation results are not good fig. 5.6. Before attributing the subpar results

to scene complexity, one should also consider that the pig data is not collected in

a water-bath, and so there exist varying compression-based deformations in all the

angled sweeps. This means that a non-coherent set of observations is fed to the

network. Unsurprisingly, it fails to render good images.

The mean SSIM scores of rendered images from view dependent rendering vs non

view-dependent rendering are presented in table 5.1 for blue-gel data. As the results

on the live-pig data are not structurally sound (do not represent tissue boundaries

well) due to deformations, no SSIM is provided.
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Figure 5.6: The ground truth images and their corresponding rendered images during
training and validation.
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Chapter 6

Implicit Shape Representation for

Anatomy-specific 3D

Reconstruction

6.1 Literature

There is rich history of using implicit voxel-based representations for reconstructing

3D objects [55], [17], [8]. In non-medical applications, surface-based shape represen-

tations are being preferred [63] over volume-based shape representations like voxel

occupancy grids. This is primarily due to the graphical requirement for high resolution

representations, especially for objects with complex geometries that appear more

choppy with voxel grids. However, most medical applications and anatomical recon-

structions commonly use voxel-based representations. The closest example to our

work [8], shows how implicit representations can help with anatomical reconstructions

when only sparse labels are available. Most implicit shape representation methods,

even [8], use shape embeddings to reconstruct multiple 3D shapes during inference.
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6.2 Method

The key difference of my approach from prior voxel-based shape representation

networks is that I apply the reconstruction to a single subject/scene/geometry at a

time. This means that my method does not require shape embeddings or any prior

understanding of the geometry of the anatomy that is to be reconstructed. The 3D

shape is conditioned on the TRF parameters.

Three layers added to the Ultra-NeRF network represent the implicit shape

representation. These layers are not a part of the core network learning the TRF. For

this chapter, all training has been done without including contributions from chapter 5

and chapter 4. As seen in fig. 6.1, this module takes as input the (x, y, z) coordinates of

(r, t) locations, appends the parameters of the TRF, namely attenuation, reflectance,

scattering density and scattering amplitude and predicts a 0/1 occupancy per (r, t)

location. The idea is to leverage the homogeneous acoustic properties of tissue learned

by our INR.

Figure 6.1: Network architecture for learning anatomy-specific implicit shape repre-
sentation while learning the NIR.

The network is trained jointly for rendering as well as the occupancy prediction.

As this contribution uses the original Ultra-NeRF implementation, it is extensible to

any Ultra-NeRF-like implementation that learns a TRF. The shape representation

is trained in a weakly-supervised manner. A Binary Cross Entropy loss (eq. (6.1))

computed with predicted 2D occupancy maps and sparse ground truth segmentation

masks of vessels, is applied to the network.
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LOcc = LBCEwithLogits(OccPr,OccGT ) (6.1)

The method is a dual optimization on two objectives - 1) learn the TRF that

produces the best rendered images and 2) learn the occupancy function that best

matches the ground truth segmentation masks. As the occupancy prediction is for

a region within the observed volume, the optimization for the occupancy acts like

an attention mechanism in an indirect way, forcing the NIR to learn to render the

region corresponding the masks first. This could result in some incorrectly learned

TRF parameters as it breaks from the depth-wise learning in ray propagation model.

Additionally, if the network focuses too much on the occupancy prediction, it is likely

that the TRF learned is one that facilitates the best occupancy function, and is not

representative of the actual underlying tissue properties. More than one unique set of

TRF parameters exist that can render the same image. There is currently no existing

mechanism to ensure that a non-degenerate solution to the TRF isn’t learned.

However, to ensure that the occupancy prediction does not corrupt the TRF

function learned by the NIR, we use a warm up mechanism within a single optimizer

training framework instead of using a memory-intensive and complex two optimizer

framework. The individual losses for rendering and occupancy prediction are weighted

and the weight for rendering loss gradually decreases from 1 to 0.5 while the weight

for the occpuancy loss increases from 0 to 0.5. Therefore, the loss for the shape

representation training is given by eq. (6.2).

LTotal = γLRender + (1− γ)LOcc (6.2)

6.3 Experiments and Results

We evaluate the reconstructed vessels for a 3D Dice score which is a volumetric

measure of reconstruction accuracy. The results for synthetic, blue-gel and live-pig2

data are provided at three levels of supervision in table 6.1 and the visualizations

are provided in fig. 6.2. The visualizations for the synthetic data is created in a

500x250x500 grid, whereas the visualizations for the remaining two datasets are

created in 500x500x500 grids. A high overlap in the predicted shape in blue with
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Dataset 5% Supervision 10% Supervision 20% Supervision
Synthetic 0.741 0.857 0.867
Blue-gel 0.852 0.904 0.915
Live-pig2 0.708 0.801 0.830

Table 6.1: 3D Dice scores for vessel reconstructions obtained with the proposed
method against ground truth voxel occupancy maps.

the ground truth is red is observed. As expected, as the supervision reduces, the

performance decreases. In the case of synthetic and blue-gel data, we can recover the

ground truth voxel occupancy map from the CT scan. However, for pig data, as CT

scans were unavailable, voxel occupancy maps are created through dense segmentation

and compounding, on originally acquired frames as well new intermediate frames

queried from the NIR.

Figure 6.2: (a) Reconstructed vessel from synthetic dataset, trained with 10% super-
vision; (b) Reconstructed vessel from blue-gel dataset, trained with 10% supervision;
(c) Reconstructed vessel from live-pig2 dataset, trained with 10% supervision. Here
red represents the ground truth and blue represents the learned implicit shape
representation.

The implicit shape representation is unique in the sense that it provides a con-

tinuous 3D volume of the vessel which cannot be acquired directly by any standard

ultrasound method. 2D U-Net/similar methods yield 2D segmentation masks (no

3D information). 3D U-Net/similar methods are computationally expensive and

yield segmented volumes but these inherently contain gaps from ultrasound voxel

compounding (discontinuous). Both 2D U-Net and 3D U-Net are heavily supervised
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Dataset IoU from U-Net IoU from implicit shape representation
Live-pig2
(10% supervision)

0.8011 0.8868

Live-pig2
(20% supervision)

0.7934 0.8914

Table 6.2: 2D Dice Scores for U-Net and the proposed method.

methods (100s of images at the very least) whereas this new implicit method is weakly

supervised on a handful of frames. There does not exist a truly apples-to-apples

comparison against standard baseline methods. The current best way to validate

the proposed method is in 2D against a pretrained 2D U-Net (on pig ultrasound

images), fine-tuned on the dataset in consideration, but only on the same frames that

the NIR used. I performed this comparison for the live-pig2 dataset. The 2D Dice

scores from the implicit shape representation outperformed the weakly-supervised

fine-tuned U-Net (see table 6.2), proving that the proposed method does better than

a traditional 2D U-Net when using so little subject-specific labeled data.
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Chapter 7

3D Soft Tissue Deformation in

Simulation

7.1 Motivation

Ultrasound imaging requires the application of a significant force to maintain contact

between the probe and the subject, and in some cases, improve the quality of imaging.

An undesirable effect is that the applied force deforms the elastic tissue and can

cause vessel collapses or lateral displacement termed rolling. While an in-plane

needle insertion (needle fully visible in the 2D ultrasound plane) into a vessel under a

constant force is feasible with ultrasound, insertions out of the the ultrasound plane

(needle partially or fully out of the 2D ultrasound plane) run the risk of missing the

vessels as the localized vessel centers might shift due to deformations. In such a

scenario, having an estimate of the 3D vessel deformation can turn a blind insertion

into an informed insertion.

Traditionally, simulators using the Finite Element Method (FEM) have been

used to estimate deformations of 3D structures under applied forces. Porting this

method to concealed anatomy such as vessels comes with its own set of challenges :

1. The material properties of the tissue are not known exactly; 2. Tissue is typically

non-homogeneous material; 3. The 3D shape of the entire vessel cannot be obtained

easily; 4. How do we ascertain that the simulation is realistic? Additionally, FEM
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Figure 7.1: Left: Robotic system; Right: The registered simulation setup.

simulation, even with fast simulators utilizing GPU compute, is time-consuming and

cannot be applied in real time for high resolutions.

Inference with neural networks can be much faster than FEM simulation [54].

Networks that process 3D representations such as point clouds and meshes can be

conditioned on forces to predict deformed shapes [85], effectively mimicking FEM

simulation. While such networks may not learn the underlying physics of deformation

with the highest precision, they have shown to produce realistic deformations. Few

such networks exist in the domain of medical data, perhaps due to the difficulties in

obtaining training data from concealed anatomy and using 2D imaging to observe 3D

deformations. Therefore realistic deformation data generation is a key challenge.

7.2 Method

I present a method to utilize 2D tomographic medical imaging for building and

calibrating a simplified FEM simulation of 3D vessel structures. This simulation

mimics vessel compression due to forces from an ultrasound probe. The material

properties in calibration are estimated by using an optimization for the Young’s

modulus and Poisson’s ratio. This is achieved by maximizing the IoU area between

the deformed vessels observed in real-world ultrasound images captured by a robot

and vessel cross-section from the simulated deformed model. This method can be
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used to generate 3D training data for neural networks being developed to predict

deformations.

7.2.1 3D Model Generation

Slices of the CT volume of the phantom are segmented through pixel thresholding

in 3DSlicer [23] for labeling vessels. The vessel labels are manually rectified and

propagated through the length of the CT volume to obtain a hollow triangular mesh.

This mesh is uniformly downsampled with Blender [2] to ensure vertices are uniformly

distributed with low distances between vertices. FEM simulations could fail with

meshes that have sparse vertices placed far apart. This downsampled mesh is then

converted to a volumetric tetrahedral mesh using Gmsh [26], with the vessel region

not having any connectivity. The tetrahedral connectivity is only for the region of

the phantom that mimics tissue.

For the porcine subjects, I previously (before Ultra-NeRF) employed a U-Net-

based segmentation model to obtain masks for vessels from ultrasound images. These

masks are then stacked by robot pose to create a solid volume of the vessel. This

volume is processed through marching cubes to obtain a hollow mesh which is then

fused with an artificially-added outer mesh that represents tissue. The resulting mesh

is tetrahedralized for results similar to the phantom model. Figure 7.2 shows the

medical image data and the generated 3D models of the phantom and the porcine

vessels.

This approach to building 3D models is very tedious, requires manual corrections,

and often results in non-smooth meshes with concavities and discontinuities due to

the presence of gaps in the ultrasound volume. Both triangular and tetrahedral mesh

fitting algorithms behave weirdly for such data. The models from chapter 6 are much

smoother and seldom have gaps. Moving ahead, the implicit shape presentation

can be a very effective means of 3D model generation, especially when CT data is

unavilable or costly.

7.2.2 Simulation

I used the SOFA library [7] for simulations and parameterize the simulation in a

simplistic manner. It is assumed that material density, Young’s modulus E and
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Figure 7.2: a. The CT volume of the blue-gel phantom; b. The tetrahedral mesh
of the blue-gel phantom; c. The stacked ultrasound volume of a pig vessel; d. The
tetrahedral mesh of the pig vessel

Poisson’s ratio ν are the primary factors affecting the response of a model to applied

forces. After defining the correct transformations that register the simulation frame

to the robot frame, the 3D tetrahedral model is loaded for simulation. Downward

gravity is defined and all the points at the base of the model are fixed. By defining

simulation parameters such as material properties, force and application direction, I

simulate the probe-phantom interaction resulting in vessel deformations.

7.2.3 Calibration with IoU

In this setup, the assumption is that the exact material properties of the subject are

unknown. While the material properties for the phantom are known as it is standard

equipment, this information has to be estimated for the tissue of every new subject

that we would want to perform deformation simulation for. It then becomes necessary

to apply some form of per-subject estimation. In this case, the estimation is achieved

through an optimization for E and ν of the material by maximising the overlap of the

vessel area between the ultrasound images and the corresponding cross-sections from
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generated simulations. This is performed for the model of the phantom for which the

material density was known.

The idea is that since the simulation frame is registered to the robot, the cross

section from the deformed model at a given pose p and force f , along the image

plane, should resemble the vessel anatomy seen in the ultrasound image collected by

the robot at p and force f . The IoU between vessel regions is used to determine the

overlap and is used as a reward in a Cross-Entropy Maximization method.

7.3 Experiments and Results

An iterative Cross Entropy Maximization method [22] for optimization is applied

with 8 agents, sampling values for E and ν from known ranges for the gel material

of the phantom. 2 agents are purely exploratory and the ranges are 60-850 kPa [16]

and 0.47-0.49 for E and ν. The optimization was considered converged when the

standard deviation was lower than 5 and 0.005 for E and ν respectively. With the

addition of scattering agents to the polymers used for manufacturing the blue-gel

phantom, we expect a slight deviation from the expected 600 KPa and 0.48 values

for both the parameters. The optimization is performed at two poses with 3 different

force values (6, 8 and 10 N) and averaged over them for obtaining the final calibrated

material properties. All 6 optimizations converged within 10 epochs.

Figure 7.3: The mean E (left) and ν (right) values (with standard deviations in grey)
after each epoch of the optimization for pose 1, force 8 N.

The graph showing the convergence of the optimization for the blue-gel phantom

model is shown in Fig 7.3. The average converged values for Young’s Modulus and

Poisson’s Ratio are 592.5433 ± 20.13 kPa and 0.482 ± 0.003. The highest IoU at the

poses where the optimization was applied was 0.76. The simulation and optimization
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results for the blue-gel phantom showing the contours from the cross section of the

deformed mesh progressively aligning better with the vessel masks from the ultrasound

data are seen in Fig 7.4.

Figure 7.4: a. The ultrasound image captured by the robot at pose 1 with force 6 N;
b. Vessel masks identified in the ultrasound image by our segmentation model; c. The
cross-section contours from the undeformed mesh at pose 1. d-f. Cross-sections from
the deformed phantom model with the registered vessel masks at pose 1. The cross-
sections were generated with applied force 6 N, simulated with material properties
estimated in epochs 0, 2, 6 and 8 of the optimization respectively.

7.4 Discussion

It is observed that after optimization, the highest IoU score in simulations across all

the poses at three different forces is 0.79 with the average being 0.72. This shows that

the parameter estimates work uniformly at all poses over the homogeneous phantom.

The gap in the IoU from the perfect score of 1 can be attributed to some of the

assumptions made in our simplified model and to discrepancies arising from obtaining

vessel masks in both CT and ultrasound data. If ultrasound images are used to

generate the 3D model using chapter 6, then the need for cross-model CT-ultrasound

registration would be eliminated. No simulation is performed for fluid inside the

vessels and the underlying assumption is that the Young’s Modulus and Poisson’s
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Ratio are sufficient to model soft tissue properties. The vessel masks obtained either

through thresholding or segmentation are prone to the usual noise in the data and to

the robustness of the segmentation model.

Work presented in this chapter was accepted as a workshop paper for ICRA

Workshop on Representing and Manipulating Deformable Objects.
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Chapter 8

Conclusions

Prior methods for reconstructing ultrasound volumes (and the organs within) suffer

from a number of challenges that I have addressed. My advanced method contributes

significantly to the previous state of the art in neural implicit representations for

ultrasound - Ultra-NeRF.

In chapter 4, I discuss modifying the architecture of the MLP network derived from

NeRF. With the proposed changed, Ultra-NeRF is able to represent complex real-

world tissue volumes from live subjects. However, the assumed PSF that Ultra-NeRF

employs results in rendered images which have very different speckle from ground

truth images. To remedy this and better define the image-formation parameters, I

learn per-point Point Spread Functions, which is a property specific to an ultrasound

imaging system. As a result, the rendered images are more photo-realistic. In the

chapter 5, I propose a novel approach to learn viewing-direction dependence within the

NIR, in order to render true-to-orientation images. In chapter 6, I present a method

to learn an implicit shape representation for homogeneous tissue like vessels using the

acoustic physics parameters the NIR learns for the observed tissue. Finally, linking

the NIR work to my prior research in the direction of 3D deformation simulation

for soft tissue, I propose the implicit shape representation as a better 3D model

generation method for simulations.
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8. Conclusions

8.1 Future Work

In chapter 4, I show that learning the PSF helps render better ultrasound images

and mention that my learned resolution values show very little variation along the

depth. According to the physics of ultrasound beam-formation, the variation in the

PSF can help determine a general focus depth and beam shape. More research needs

to be done into how to regularize the learned values to depict the beam shape. For

incorporating view-dependence, in chapter 5, I show that the method does not work

for deformable scenes. For this purpose, some form of deformation-aware non-rigid 3D

registration is required for building one coherent volume. While the voxel occpuancy

based implicit shape representation is useful, for many applications such as VR,

deformation simulations and even robotic path planning for surgical interventions,

having a surface representation is more valuable. Perhaps, SDFs can be learnt

within this NIR framework. Finally, the 3D tissue model generation for deformation

simulation needs to be tested with the models reconstructed from my proposed NIR

method.
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[20] Pierrick Coupé, Pierre Hellier, Xavier Morandi, and Christian Barillot. Probe
trajectory interpolation for 3d reconstruction of freehand ultrasound. Medical
image analysis, 11(6):604–615, 2007. 1.1

[21] Jessica C Dai, Michael R Bailey, Mathew D Sorensen, and Jonathan D Harper. In-
novations in ultrasound technology in the management of kidney stones. Urologic
Clinics, 46(2):273–285, 2019. 1.1

[22] Lih-Yuan Deng. The cross-entropy method: A unified approach to combinatorial
optimization, monte-carlo simulation, and machine learning. Technometrics, 48
(1):147–148, 2006. doi: 10.1198/tech.2006.s353. 7.3

[23] Andriy Fedorov, Reinhard Beichel, Jayashree Kalpathy-Cramer, Julien Finet,
Jean-Christophe Fillion-Robin, Sonia Pujol, Christian Bauer, Dominique Jen-
nings, Fiona Fennessy, Milan Sonka, and et al. 3d slicer as an image computing
platform for the quantitative imaging network. Magnetic Resonance Imaging, 30
(9):1323–1341, 2012. doi: 10.1016/j.mri.2012.05.001. 7.2.1

[24] Cong Gao, Xingtong Liu, Michael Peven, Mathias Unberath, and Austin Reiter.
Learning to see forces: Surgical force prediction with rgb-point cloud temporal
convolutional networks. In OR 2.0 Context-Aware Operating Theaters, Computer
Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image
Analysis: First International Workshop, OR 2.0 2018, 5th International Work-
shop, CARE 2018, 7th International Workshop, CLIP 2018, Third International
Workshop, ISIC 2018, Held in Conjunction with MICCAI 2018, Granada, Spain,
September 16 and 20, 2018, Proceedings 5, pages 118–127. Springer, 2018. 2.4

[25] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T Freeman,
and Thomas Funkhouser. Learning shape templates with structured implicit func-
tions. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 7154–7164, 2019. 2.3.1

[26] Geuzaine, Christophe and Remacle, Jean-Francois. Gmsh. URL http://http:

//gmsh.info/. 7.2.1

[27] Orcun Goksel and Septimiu E Salcudean. B-mode ultrasound image simulation
in deformable 3-d medium. IEEE transactions on medical imaging, 28(11):
1657–1669, 2009. 2.2.1

[28] Ang Nan Gu, Purang Abolmaesumi, Christina Luong, and Kwang Moo Yi.
Representing 3d ultrasound with neural fields. In Medical Imaging with Deep
Learning, 2022. 2.3.4

[29] Shuxiang Guo, Xiaojuan Cai, and Baofeng Gao. A tensor-mass method-based
vascular model and its performance evaluation for interventional surgery virtual
reality simulator. The International Journal of Medical Robotics and Computer
Assisted Surgery, 14(6):e1946, 2018. 2.4

52

http://http://gmsh.info/
http://http://gmsh.info/


Bibliography

[30] Lianghao Han, John H Hipwell, Christine Tanner, Zeike Taylor, Thomy
Mertzanidou, Jorge Cardoso, Sebastien Ourselin, and David J Hawkes. De-
velopment of patient-specific biomechanical models for predicting large breast
deformation. Physics in Medicine & Biology, 57(2):455, 2011. 2.4

[31] W.R. Hedrick, D.L. Hykes, and D.E. Starchman. Ultrasound Physics and
Instrumentation. Ultrasound Physics and Instrumentation. Elsevier Mosby, 2005.
ISBN 9780323032124. 5.1

[32] IM Heer, K Middendorf, S Müller-Egloff, Martin Dugas, and A Strauss. Ultra-
sound training: the virtual patient. Ultrasound in Obstetrics and Gynecology:
The Official Journal of the International Society of Ultrasound in Obstetrics and
Gynecology, 24(4):440–444, 2004. 2.2.1

[33] Yipeng Hu, Eli Gibson, Li-Lin Lee, Weidi Xie, Dean C Barratt, Tom Ver-
cauteren, and J Alison Noble. Freehand ultrasound image simulation with
spatially-conditioned generative adversarial networks. In Molecular Imaging,
Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and
Treatment: Fifth International Workshop, CMMI 2017, Second International
Workshop, RAMBO 2017, and First International Workshop, SWITCH 2017,
Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September
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