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Incremental Multimodal Surface Mapping via Self-Organizing Gaussian
Mixture Models

Kshitij Goel and Wennie Tabib

Abstract— This letter describes an incremental multimodal
surface mapping methodology, which represents the environ-
ment as a continuous probabilistic model. This model enables
high-resolution reconstruction while simultaneously compress-
ing spatial and intensity point cloud data. The strategy em-
ployed in this work utilizes Gaussian mixture models (GMMs)
to represent the environment. While prior GMM-based map-
ping works have developed methodologies to determine the
number of mixture components using information-theoretic
techniques, these approaches either operate on individual sensor
observations, making them unsuitable for incremental mapping,
or are not real-time viable, especially for applications where
high-fidelity modeling is required. To bridge this gap, this
letter introduces a spatial hash map for rapid GMM submap
extraction combined with an approach to determine relevant
and redundant data in a point cloud. These contributions
increase computational speed by an order of magnitude com-
pared to state-of-the-art incremental GMM-based mapping. In
addition, the proposed approach yields a superior tradeoff
in map accuracy and size when compared to state-of-the-art
mapping methodologies (both GMM- and not GMM-based).
Evaluations are conducted using both simulated and real-world
data. The software is released open-source to benefit the robotics
community.

I. INTRODUCTION

Robotic exploration systems are being deployed to auto-
mate multimodal data collection for applications like artifact
detection [1], active thermal mapping [2], and planetary
exploration [3]. For example, multi-instrument payloads (e.g.
range and thermal sensors) are critical for mapping planetary
caves [4]. These missions require an autonomous agent to
incrementally create a mathematical model of the environ-
ment using onboard sensors and computers. The model must
accurately represent fine details to enable operation in close
proximity to complex, unknown structures (e.g. stalactites,
thin wires, etc) and be compact to transfer via low-bandwidth
communication channels [4]. Prior work has demonstrated
that the exploration performance of a multi-agent team is
impacted by the compactness of the environment model used
in communications restricted environments due to the ability
(or lack thereof) to share information [5, 6].

Few environment models are compact while enabling
high-resolution reconstruction and safe navigation. Oc-
tomap [7], Voxblox [8], and GMM maps [9] are the
key methodologies that have been used recently for
communication-constrained exploration by Agha et al.
[10], Tranzatto et al. [1], and Goel et al. [5], respectively.
These methods enable safe navigation but suffer from the
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Fig. 1: A reconstructed point cloud using spatial and intensity
information inferred from the compact multimodal point cloud
model created using the proposed approach. The representation
leverages a formulation that has been demonstrated to be amenable
for higher level robot autonomy objectives like exploration in
complex, unstructured 3D environments. A video is available at:
https://youtu.be/VgPEEcbUAnY.

same limitation in terms of fixing the highest achievable
map fidelity throughout exploration (e.g., minimum leaf
size for Octomap, voxel size for Voxblox, and number of
mixture components for GMM maps). This is inefficient
because all parts of the environment are assigned the same
level of highest fidelity, leading to larger map sizes and
communication inefficiency [6].

To enable large-scale exploration with many robots si-
multaneously sharing information, the mapping algorithm
must adapt to the scene complexity. Our recent work [11],
the Self-Organizing Gaussian Mixture Models (SOGMMs),
proposes an information-theoretic approach for automatically
determining the number of mixture components from the
underlying sensor data; however, the approach operates on
single observations. Because consecutive sensor observations
have significant overlap, the formulation in [11] is not well-
suited for incremental mapping.

Prior GMM mapping approaches not demonstrated on-
board a robot either require iterating over the mixture
components [12] or use approximate geometric projection
methods [13, 14]. The computational requirements for these
methods increase prohibitively with the number of compo-
nents in the GMM map. To bridge these gaps, we extend the

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

https://doi.org/10.1109/LRA.2023.3327670
https://youtu.be/VgPEEcbUAnY


approach of [11] and provide the following novel contribu-
tions (Fig. 1):

1) a methodology which alleviates the computational bur-
den of submap extraction by innovating a spatial hash
table of mixture components;

2) an efficient method to incrementally update the global
environment model leveraging the log-likelihood of the
point cloud data with respect to the extracted submap;

3) extensive evaluations on simulated and real-world
datasets with comparisons against state-of-the-art ap-
proaches (both GMM-based and not GMM-based); and

4) an open-source release of the approach for the benefit
of robotics research and industry.

The letter proceeds with an overview of related work
(Section II). Section III presents the proposed approach and
Section IV details the results. Limitations of the approach
are detailed in Section V and the letter is concluded with
Section VI.

II. RELATED WORK

This section reviews mapping methods that enable
high-resolution multimodal reconstruction and occupancy
modeling for 3D robotic exploration.

Early exploration works leveraged discrete occupancy grid
maps [15] for rapid volumetric querying [16, 17]. However,
voxel grids are subject to aliasing due to the independence
assumption between cells (voxels) leading to poor multi-
modal reconstruction. To alleviate the effects of aliasing,
smaller voxel sizes can be used; however, the memory
footprint substantially increases as the number of voxels
scales cubically according to the environment extents.

To mitigate the memory challenges, Hornung et al. [7]
leverages octrees to enable a multi-resolution and hier-
archical volumetric representation. This method has been
used by recent exploration frameworks due to its scalabil-
ity improvements over the occupancy grids at small voxel
sizes [1, 18]. However, the insertion cost for new point
clouds into Octomap and the cost of voxel state access
(for the purposes of informative planning) is higher than
occupancy grids. To decrease these costs while leveraging a
hierarchical approach, the OpenVDB method by Museth [19]
utilizes B+ trees, which yields increased efficiency in frontier
extraction at large spatial scales [20]. An alternate approach
by Oleynikova et al. [8] called Voxblox enables superior,
constant-time, insertion and queries to the voxel grid while
enabling informative planning and multimodal reconstruction
capabilities [1]. Voxblox uses a regular occupancy grid and
Truncated Signed Distance Fields (TSDFs) to approximately
alleviate the aliasing due to the discrete representation. How-
ever, in terms of communication efficiency the representation
suffers from the same drawbacks as occupancy grids. In this
work, we present a mapping method that achieves higher
multimodal reconstruction accuracy than Voxblox and Oc-
tomap through compact and continuous point cloud models.

Saarinen et al. [21] motivate the development of NDTMap,
which uses a Gaussian density in each cell, by arguing that
larger voxels may be used since the Gaussian density better

approximates the surface geometry. However, this represen-
tation also suffers from the aliasing challenges of a regular
occupancy grid as each Gaussian density is considered an
independent component of a uniformly-weighted Gaussian
mixture model (GMM). [9, 22] relax the assumption of
uniform weights, by using a maximum-likelihood fit over the
point cloud data to create a global map that is represented as
a GMM without the use of a discrete grid. However, these
works require specifying the number of mixture compo-
nents before operation which limits the maximum achievable
fidelity of the map. We bridge this gap by proposing a
GMM-based approach that enables creating a map repre-
sentation that increases the model fidelity incrementally via
an information-theoretic self-organizing approach [11] and
enables scalable and efficient inference via spatial hashing.

Neural Radiance Fields (NeRFs) [23] enable photorealistic
environment rendering at lower memory costs; however,
incremental mapping with implicit representations are known
to suffer from catastrophic forgetting [24]. Catastrophic
forgetting is the problem of forgetting old knowledge af-
ter training with new data [25]. To mitigate this issue,
some incremental NeRF mapping approaches [26, 27] retain
keyframes from historical data and replay them with current
data to train the network; however, this approach requires
more memory to store the keyframes [24]. Zhong et al. [24]
develop a technique for large scale Signed Distance Field
(SDF) mapping using LiDAR, but it is not clear how robust
it will be to catastrophic forgetting when intensity data is
incorporated. In contrast, the proposed approach adaptively
increases the fidelity of the parametric GMM-based environ-
ment model depending on the scene complexity. This way,
while offering an implicit representation of the surface, no
special consideration for catastrophic forgetting is required.

Finally, note that the current state-of-the-art in radiance
field rendering in the computer graphics literature leverages
3D Gaussian densities in place of neural networks [28, 29],
demonstrating superior performance in both training and
inference compared to NeRFs. Our method uses a mixture of
4D Gaussian densities to jointly model intensity and spatial
data. Therefore, incorporating radiance field rendering within
the proposed incremental mapping method is an exciting
direction for future work.

III. APPROACH

This section provides details of the mapping methodology.
The incremental mapping methodology is presented in Sec-
tion III-A and Section III-B describes the inference method
used for multimodal surface reconstruction.

Notation. We follow the notation from [11], which uses
small letters for scalars (e.g., x, y), bolded small letters for
vectors (e.g., x, y), bolded capital letters for matrices (e.g.,
X, Y), and calligraphic letters for sets (e.g., I, X , Y).

A. Incremental Multimodal Surface Mapping

Before describing the algorithm, three key data structures
are described: the Local SOGMM, Global SOGMM, and
Spatial Hash table.
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Fig. 2: Information flow during surface point cloud modeling via the proposed incremental mapping approach (Section III-A).

Local SOGMM. A GMM model created via the SOGMM
method using the relevant points corresponding to the latest
multimodal point cloud. Each point z in this point cloud
is assumed to be of the form, z = {(x, i) | x ∈ R3, i ∈
[0.0, 1.0]}. Formally, the GMM model is represented as the
function pL ≡ pL(z) =

∑
j∈J πjN (z | µj ,Σj), where

πj , µj , and Σj are the weight, mean, and covariance for
the mixture component associated with index j in pL. Each
mixture component is a Gaussian probability density N (z |
µj ,Σj). The set of indices is denoted by J . The sum of
weights must be 1,

∑
j∈J πj = 1, for a valid pL.

Global SOGMM. A GMM model created after merging
all prior pL models. The global model contains |K| ≥
|J | mixture components. Formally, pG ≡ pG(z) =∑

k∈K τkN (z | νk,Λk), where different index and param-
eter symbols are used to notationally differentiate pG from
pL. Similar to pL, the set of indices is denoted by K and∑

k∈K πk = 1 must hold for a valid pG.
Spatial Hash. A hash table H : M → Q,m 7→ qA[h(m)]

is created to map any point in 3D space (key m ∈ M) to a
vector of mixture component indices in pG (value qA ∈ Q)
that are within a fixed volume around the point. This fixed
volume is a cube with side length α. The hash function h :
M → A maps the keys to an index set A = {0, 1, . . . , |A|−
1} used to insert into and query from H .

Figure 2 provides an overview of the multimodal surface
mapping method. There are three steps: (1) creating pL, (2)
merging pL into pG, and (3) spatially hashing pL into H .
Details of each step are provided in the following sections.

1) Creating pL: For each point cloud Z , the relevant
subset of the point cloud Zr is determined. If the number
of points in this set is greater than a pre-specified threshold,
then pL is created; otherwise, Zr is cached and used along
with the subsequent frames. Zr represents points not already
modeled by pG. Therefore, if pG is not initialized, all
points are treated as relevant (Zr = Z). Otherwise, Zr is
determined using a threshold (φ) on the log-likelihood [12]
that points Z originated from the model pG,

Zr = {z ∈ Z | L(z) = ln (pG(z)),L(z) < φ}. (1)

However, this approach has two drawbacks when used
with multimodal point clouds. First, thresholding the log-
likelihood scores via Eq. (1) over the multimodal point cloud
directly does not yield the intended Zr as the 4th dimension
contains intensity data, which is not in the metric space of the
other three dimensions. Second, as the size of the model pG
(i.e., the value of K) increases over time, the time complexity
of calculating Eq. (1) increases linearly. Performing this

computation for all points in Z is prohibitive for real-time
operation on computationally-constrained robotic systems.

The first challenge is addressed by utilizing the marginal
probability density p(x) instead of p(z) for the log-likelihood
calculation, i.e.,

Zr = {z ∈ Z | z = (x, i),L(x) < φ} where, (2)

L(x) = ln
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Figure 3 details the effect of using Eq. (2) instead of Eq. (1).
The value of φ is determined empirically, as done in [31],
and it is fixed for the synthetic and real-world scenarios.

The second challenge is addressed by selecting only the
subset of mixture components from pG (i.e., selecting B ⊆
K) that are overlapped by or close to the points in Z . This
way we can reduce the number of summands in Eq. (3). The
hash table H is leveraged for this purpose. Each 3D point
x from z ∈ Z is a key m for the hash function h that is
used to search H for the closest vector of mixture component
indices, qA[h(m)]. After attaining these vectors for all points
in Z , the unique set of mixture component indices form the
index set B. For the example scenario in Fig. 3, Fig. 3d
shows the output after this approximation. The output is
similar to the case when the original set of components
K (Fig. 3c) is used but B is smaller (480 elements instead
of 1165). Consequently, for this example the time taken to
compute Eq. (3) with K is 0.35 s whereas with B it is 0.25 s
(28% faster). Note that the ratio |K|/|B| grows over time as
the size of pG increases when point clouds from new regions
are observed. An analysis of the computational savings using
this approach is provided in Section IV-A.

2) Merging pL into pG: After the pL model is created
using Zr, it is merged with the global point cloud model pG
by appending the parameters and re-normalizing the weights.
Let the global model before merging be ptG and after merging
be pt+1

G . The parameters for pt+1
G are given by τ t+1 =

[τ t,π]> such that
∑

b∈B τ t+1
b = 1, νt+1 = [νt,µ]>, and

Λt+1 = [Λt,Σ]>. The index set for the global model is also
updated and the number of components increase accordingly,
|K|t+1 = |K|t + |J |.

3) Spatially Hashing pL into H: In addition to the global
model, the hash table H is updated using the mixture
components from the latest local model pL. A total of |J |
hash keys are inserted into the table where each hash key mj

is the spatial part of the mean position µx
j along with points
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Fig. 3: Illustration of the relevant point cloud calculation using two multimodal point clouds, Z1 and Z2 (Section III-A.1). The objective
is to find the relevant point cloud, Zr

2 , from Z2 using pG, which is created from Z1. (a) shows the 3D parts of these point clouds in
different colors and the associated 3D poses. (b) shows Zr

2 and Z1 with intensity values, when Eq. (1) is used. (c) shows the same but
when Eq. (2) is used. Notice that in the former case Zr

2 contains more misclassified points that overlap with pG than in the latter case. (d)
shows the output Zr

2 when only a subset (|B| = 480) of components in pG (|K| = 1165) derived using the hash table H are used. This
output is similar to (c). The point clouds are sourced from from the real-world Lounge dataset [30]. This figure is best viewed in color.

generated at constant probability ellipsoids corresponding to
68% (1-sigma), 95% (2-sigma) and 99.7% (3-sigma) of the
data points, for all j ∈ J .

The hash function h that maps mj to an index in A is
given by h(mj) ≡ h(µx

j ) = Nz(r(µ
x
j )Nx+ c(µx

j ))+s(µx
j )

such that, r(µx
j ) = b(µy

j −oy)/αc, c(µx
j ) = b(µx

j −ox)/αc,
and s(µx

j ) = b(µz
j − oz)/αc. Here, [Nx, Ny, Nz] are the

number of cells along each axis of a 3D regular grid of spatial
resolution α, o = − 1

2α[Nx, Ny, Nz] is the origin position of
this grid, and b.c is the floor operator. Intuitively, the hash
function h assigns the mean positions µx into a sparse grid
of a pre-specified extent [Nx, Ny, Nz] and resolution α.

The value corresponding to each key is the index of the
component j in the global model after the merging step
(Section III-A.2) is complete. Thus, the value corresponding
to the hash key mj is |K|t + j. It is possible that multiple
hash keys are mapped to the same cell in the grid (i.e.,
hash collisions are possible). An example scenario is when
α is large and a subset of means µx are spatially within α
distance. In this case, we want to store all the values in a
vector. This is why the value set Q is defined as a set of
vectors as opposed to a set of integers. If a hash collision
occurs for any two keys mf and mg (i.e., h(mf ) = h(mg)),
the values are appended into the vector qA[h(mf )].

B. Global Spatial and Intensity Inference

Given the global model pG, we want to reconstruct the
environment spatially along with the intensity values. The
marginal global model given by τ , νx, and Λxx (as defined
by Eq. (4)) is used for spatial inference and densely sam-
pled using the Box-Muller transform [32]. The conditional
probability density p(i | x) (as noted in [11]), is used to
infer intensity at the sampled spatial points. This inference is
performed in batches of components from pG. The batch size
is determined based on the available memory on the CPU
used to perform inference. An example of the reconstruction

obtained for the Living Room dataset [33] is shown in Fig. 1.

IV. RESULTS

The experimental results are divided into two parts. In Sec-
tion IV-A, the computational performance gain offered by the
proposed incremental mapping approach due to the spatial
hash formulation is compared with the prior work on GMM-
based multimodal mapping [12]. In Section IV-B the recon-
struction accuracy from the global map created through the
proposed approach is compared with Octomap [7], Voxblox
(Nvblox1) [8], and GMM-based maps that use a fixed number
of components (FCGMM) [14]. These methods are chosen
as baselines because they have been used for our target
application, multi-robot 3D exploration. We will use the
“Method-Parameter” notation to denote the parameter being
used. For example, Proposed-0.02 denotes the proposed
approach with the bandwidth parameter σ = 0.02.

One synthetic (D1: Living Room from the Augmented
ICL-NUIM datasets [33]) and three real-world datasets (D2:
Lounge, D3: Copyroom, and D4: Stonewall from the Red-
wood datasets [30]) are used for qualitative and quantitative
evaluation of the proposed approach and its comparison
with the baseline methods. All datasets contain 640 × 480
RGB and depth images along with the corresponding camera
poses. All methods are provided reduced resolution 128×96
images for incremental mapping. The computer used for
all experiments contains an Intel Core i9-10900K CPU (20
threads, maximum clock speed 5.3GHz, 32GB RAM) and
a NVIDIA GeForce RTX 3060 GPU (12GB RAM). The
CPU implementation of the Octomap approach for color
data is used. Nvblox and the proposed method2 use the
CPU and GPU for incremental mapping. Nvblox uses both

1Nvblox is the GPU-accelerated extension of Voxblox: https://
github.com/nvidia-isaac/nvblox

2Release 0.1.0 of https://github.com/gira3d/
gira3d-reconstruction.

https://github.com/nvidia-isaac/nvblox
https://github.com/nvidia-isaac/nvblox
https://github.com/gira3d/gira3d-reconstruction
https://github.com/gira3d/gira3d-reconstruction


0 1,000 2,000
10−2

10−1

100

101

Frame

Z
r

C
al

c.
Ti

m
e

(s
)

100 200

400 800

(a) Baseline [12] with varying |J |

0 1,000 2,000
10−2

10−1

100

101

Frame

0.02 0.03

0.04 0.05

(b) Proposed with varying σ

Method Time (s) ∆

FCGMM-800 44751.6 –
FCGMM-400 20702.3 –
FCGMM-200 9957.6 –
FCGMM-100 4774.7 –
Proposed-0.02 1239.6 36.1×
Proposed-0.03 666.1 31.0×
Proposed-0.04 488.0 20.4×
Proposed-0.05 436.9 10.9×

(c) Cumulative time taken

0 1,000 2,000
10−2

10−1

100
101

0.1 0.2

0.4 0.8

(d) Ablation for α

Fig. 4: Comparison of the relevant subset Zr calculation time
between the prior work on multimodal GMM mapping [12] and
the proposed approach. The per-frame calculation time in seconds
is plotted for (a) different values of fixed numbers of components
|J | and (b) different values of the bandwidth parameter σ for the
proposed method. (c) Notice that the spatial hash (Section III-
A.3) enables an order of magnitude improvement and that the
performance gains increase monotonically with model size. (d)
shows an ablation of calculation times for different values of the
spatial hash resolution parameter α.

depth and color data by default. It is modified to use
depth and grayscale images for the comparison presented
in this section. Since the software for prior GMM map
works [12, 14, 31] is not openly available, the codebase for
the proposed approach is modified to use a fixed number
of components for the FCGMM comparison. The FCGMM
approach uses the GPU for EM execution but CPU for the
Zr calculation because it requires access to more RAM than
is available to the GPU.

A. Relevant Point Cloud Calculation

As mentioned in Section III-A.1, a drawback of prior
work [12] is that the relevant point cloud subset Zr cal-
culation in Eq. (1) is not real-time viable, especially as the
number of components |K| increase in the global point cloud
model pG. The proposed spatial hashing approach reduces
this computation cost by selecting a subset of components B
that geometrically overlaps the point cloud. Figure 4 demon-
strates the performance gains due to the proposed approach.
While the methodology proposed in [12] is hierarchical, we
choose to compare against their highest fidelity model (i.e.,
lowest layer) in the hierarchy for a fair comparison.

For the baseline approach (Fig. 4a), the calculation times
per frame are shown for increasing values of number of
mixture components |J |, J = {100, 200, 400, 800}. The
proposed methodology enables an order of magnitude faster
Zr calculation as compared to the baseline approach, be-
cause the log-likelihood operates over all mixture compo-
nents and points. The spatial hash resolution α is fixed at
0.2m for all values of σ. Because lower σ yields higher

resolution reconstruction, the computation time increases as
σ decreases. Figure 4c presents the cumulative Zr calcu-
lation times for the D1 dataset. The ∆ columns show the
order of magnitude improvement via the proposed approach.
Notice that while the performance gain of Proposed-0.05
compared to FCGMM-100 is nearly 10×, it increases with
the model fidelity; the Proposed-0.02 is about 30× faster
than FCGMM-800. Finally, Fig. 4d compares the Zr calcu-
lation times for α = {0.1, 0.2, 0.4, 0.8}. Increasing α results
in overall higher calculation times because the size of B
gets larger. Before using the proposed method, the value of
α should be set according to the available CPU computation
resources.

B. Global Map Accuracy and Compression

For Octomap and Nvblox, the predicted point cloud Zpr

and mesh are constructed, respectively, after processing all
the frames in a given dataset. For FCGMM and the proposed
approach, the predicted point cloud is inferred from the
global model pG using the method in Section III-B. The
Octomap method requires specifying a minimum leaf size
for the underlying octree used for modeling and inference.
We use a range of leaf sizes for the experiments, αom =
{0.02, 0.04, 0.06, 0.08}m. The same set of values are used
for the voxel sizes required in the Nvblox method, αnv =
αom. For FCGMM and the proposed approach, the same set
of parameters are used as in Section IV-A. The ground truth
point cloud, Zgt, is constructed by appending all the point
clouds corresponding to the images and poses in the dataset
followed by downsampling using a voxel grid filter with a
small voxel size (0.01m for all experiments in this section).

The performance measures for 3D reconstruction are (1)
Mean Reconstruction Error (MRE), which is the average
distance of the closest points between Zpr and Zgt (lower is
better), (2) Precision of 3D reconstruction, which measures
the fraction of points in Zpr that lie within 0.01m of a point
in Zgt (higher is better), and (3) Recall of 3D reconstruction,
which measures the fraction of points in Zgt that lie within
0.01m of a point in Zpr (higher is better). Intuitively,
this measure computes the degree of “completeness” in the
reconstruction. The performance measure for intensity recon-
struction is the peak-signal-to-noise ratio (PSNR) calculated
using the mean squared error (MSE) between the intensity
values of the closest points in Zpr and Zgt (higher PSNR
is better). These measures are computed using the closest
point distance computation functions for point clouds in
Open3D [34]. For the Nvblox case in particular, the mesh
output is uniformly and densely sampled to create a point
cloud with number of points equal to the ground truth point
cloud.

The memory storage efficiency of the multimodal envi-
ronment representations is measured by calculating the size
(measured in bytes) of the models that can be loaded from
disk to create Zpr. The models are chosen so that they can
enable reconstruction of the surface and occupancy modeling
for other robots in a multi-robot exploration scenario. For
Octomap, the model size corresponds to the output .ot
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Fig. 5: Quantitative comparison of (a) reconstruction error, (b) precision, (c) recall, and (d) PSNR as a function of the map size in
megabytes (MB) for each approach. The dataset under consideration is the synthetic D1 dataset shown in Fig. 6a. Note that the proposed
approach yields a map that requires less disk space than the competing methods while demonstrating at par or better reconstruction
accuracy (i.e., low reconstruction error and high precision).

(a) Synthetic Dataset (D1) (b) Octomap (0.02m, 3.2MB) (c) Nvblox (0.08m, 6.4MB) (d) FCGMM (400, 4.8MB) (e) Proposed (0.02, 2.1MB)

(f) Real-World Dataset (D2) (g) Octomap (0.02m, 5.9MB) (h) Nvblox (0.06m, 8.2MB) (i) FCGMM (400, 6.2MB) (j) Proposed (0.02, 5.7MB)

Fig. 6: Qualitative comparison of the reconstructions obtained by baseline methods and the proposed approach at similar values of map
size for (a) D1 and (f) D2 datasets. The highest achievable resolution used during execution and resulting map sizes are reported in the
sub-captions. (b) and (g) visualize the lowest level of the Octomap octree. Incorrect intensity values are visible due to the color averaging
within the octree. (c) and (h) illustrate the mesh extracted from the stored TSDF for Nvblox. Aliasing is visible in the meshes due to
large voxel sizes required for a lower memory footprint. (d), (i) FCGMM and (e), (j) the proposed method enable qualitatively similar
high-resolution dense reconstructions; however, the FCGMM output requires a much longer time to process incremental observations
(see Fig. 4). A video of the proposed approach reconstructing the D1 dataset is available at https://youtu.be/VgPEEcbUAnY.

file [7], as opposed to the binary .bt file that does not retain
occupancy information. Due to the same reason, for Nvblox
the SQLite3 database (.db file) output is used instead of
the output .ply mesh file. For the FCGMM and proposed
methodologies, the memory occupied by the means, covari-
ances, and weights in the global model pG is calculated (four
floats for each mean, one float for each weight, and ten
floats for each covariance). Note that occupancy modeling
from a stored GMM map with these parameters has been
demonstrated in prior work [14, 31, 35, 36]

Figure 5 shows the variation in the performance measures
for all methods with respect to the map size on disk for
the D1 dataset. Each data point in the plots corresponds
to a unique parameter setting in αom, αnv, J , and σ for
Octomap, Nvblox, FCGMM, and the proposed approach
respectively. To attain similar levels of mean reconstruction
error and precision, the proposed approach, FCGMM, and
Octomap require an order of magnitude less memory than
Nvblox (Figs. 5a and 5b). This is because Nvblox utilizes

a regular grid of fixed resolution and multiple data storage
layers while Octomap, FCGMM, and the proposed approach
leverage octrees, GMMs, and SOGMMs, respectively. Note
that while these values are close for the FCGMM and the
proposed methods, in the FCGMM case the time taken to
create the model is much higher (Section IV-A).

The FCGMM and the proposed approaches achieve a
recall score close to 1.0 (Fig. 5c) demonstrating that for
nearly each point in the ground truth point cloud, there is
a point in the reconstruction within a 0.01m ball. Both of
these GMM-based methods outperform Octomap because an
arbitrarily high number of points can be densely sampled
from a GMM (Section III-B) whereas the Octomap outputs
the point cloud at its minimum pre-specified leaf size. The
Nvblox method output mesh is uniformly sampled; however,
a low voxel size is required to achieve similar recall scores.

The highest intensity reconstruction accuracy (i.e., PSNR
score in Fig. 5d) attained by Octomap (PSNR = 26.70) is
much lower than the proposed approach (PSNR = 30.29)

https://youtu.be/VgPEEcbUAnY


Method Param.
MRE
(m) ↓ Prec. ↑ Rec. ↑

PSNR
(dB) ↑

Mem.
(MB) ↓

Octomap 0.02 0.007 0.81 0.46 18.37 5.94
0.04 0.011 0.55 0.06 16.76 1.13
0.06 0.016 0.41 0.02 15.84 0.44
0.08 0.021 0.33 0.01 15.30 0.23

Nvblox 0.02 0.006 0.92 0.38 20.63 114.19
0.04 0.008 0.86 0.35 19.08 19.98
0.06 0.011 0.81 0.31 18.26 8.19
0.08 0.014 0.76 0.28 17.51 4.22

FCGMM 800 0.005 0.98 0.72 20.25 14.11
400 0.006 0.97 0.72 19.35 6.24
200 0.005 0.96 0.72 18.64 2.98
100 0.006 0.92 0.72 17.62 1.46

Proposed 0.02 0.005 0.98 0.65 20.74 5.71
0.03 0.005 0.97 0.64 20.18 2.39
0.04 0.006 0.96 0.65 19.76 1.32
0.05 0.006 0.93 0.65 19.12 0.83

(a) Performance measures for the D2: Lounge dataset

Method Param.
MRE
(m) ↓ Prec. ↑ Rec. ↑

PSNR
(dB) ↑

Mem.
(MB) ↓

Octomap 0.02 0.007 0.83 0.51 18.61 5.93
0.04 0.011 0.57 0.06 17.35 1.10
0.06 0.016 0.44 0.02 16.49 0.43
0.08 0.021 0.36 0.01 15.95 0.23

Nvblox 0.02 0.006 0.92 0.38 20.94 96.95
0.04 0.009 0.87 0.33 19.71 18.61
0.06 0.010 0.83 0.29 18.86 8.00
0.08 0.010 0.81 0.26 18.29 4.40

FCGMM 800 – – – – –
400 0.004 0.97 0.83 20.66 10.68
200 0.005 0.95 0.83 19.70 4.85
100 0.007 0.91 0.83 18.59 2.30

Proposed 0.02 0.005 0.98 0.70 21.42 5.59
0.03 0.005 0.97 0.68 20.96 2.48
0.04 0.005 0.95 0.66 20.56 1.39
0.05 0.006 0.93 0.66 20.05 0.88

(b) Performance measures for the D3: Copyroom dataset

Method Param.
MRE
(m) ↓ Prec. ↑ Rec. ↑

PSNR
(dB) ↑

Mem.
(MB) ↓

Octomap 0.02 0.007 0.84 0.62 19.19 5.29
0.04 0.011 0.59 0.08 18.32 0.95
0.06 0.016 0.47 0.02 17.61 0.37
0.08 0.021 0.39 0.01 17.79 0.19

Nvblox 0.02 0.005 0.99 0.42 24.80 155.05
0.04 0.005 0.98 0.39 23.41 25.96
0.06 0.005 0.96 0.37 22.40 9.43
0.08 0.006 0.94 0.34 21.43 4.89

FCGMM 800 0.005 0.99 0.82 22.13 13.34
400 0.004 0.99 0.80 21.51 5.66
200 0.005 0.98 0.79 20.99 2.60
100 0.006 0.96 0.79 20.40 1.24

Proposed 0.02 0.005 0.99 0.68 21.83 3.27
0.03 0.005 0.98 0.66 21.62 1.26
0.04 0.005 0.97 0.65 21.41 0.63
0.05 0.006 0.95 0.65 21.16 0.36

(c) Performance measures for the D4: Stonewall dataset

Fig. 7: Quantitative comparison of Octomap, Nvblox, FCGMM,
and the proposed approach using the real-world datasets with noisy
RGB-D data. The best and worst values in each column are colored
green and red respectively. The FCGMM method results in a larger
map size compared to the proposed approach and is orders of
magnitude slower in execution time (Fig. 4). These results highlight
that the proposed approach balances the accuracy and map size
better than the state-of-the-art approaches.

at a similar storage cost. This is because the intensity in an
Octomap octree node is averaged according to the density
of the points around the node. In contrast, the proposed
approach treats intensity as a univariate random variable and
jointly modeled with the 3D coordinates in the global point
cloud model. Inference from this joint probability density
leads to a higher accuracy than the averaging in Octomap.
Nvblox fuses intensity information into the 3D map using
a weighted average update. This process is an improvement
over Octomap but still requires a low voxel size to attain
a PSNR comparable to GMM-based approaches. Finally,
the FCGMM approach demonstrates a lower PSNR than
the proposed approach for similar storage costs. This is
because the FCGMM uses a fixed number of components
for every scene in the dataset while the proposed method
uses SOGMM, which adapts the number of components
according to the complexity of depth and image data [11].
The impact of these quantitative results is visible in the
qualitative comparison shown in Fig. 6. The reconstructions
from all methods are shown for comparable map sizes along
with the ground truth point cloud for D1 and D2 datasets.

Figure 7 provides performance statistics corresponding to
real-world datasets D2, D3 and D4, which exhibit noisy
sensor readings. For each performance measure, the best and
worst values are highlighted in green and red, respectively.
Note that there is no result for the D2 dataset in the
FCGMM-800 case because the relevant point cloud calcu-
lation required more RAM than the available 32GB. This is
expected since the D2 dataset contains 5490 frames which
is nearly twice the other datasets. While using Octomap at a
0.08m resolution results in the lowest map size (0.23MB),
reconstruction performance is poor compared to all other
methods. Nvblox outputs the largest map size on disk at
114.19MB but does not enable the highest PSNR. The
FCGMM and proposed approach enable similar reconstruc-
tion accuracy; however, the proposed approach results in
smaller map sizes and utilizes less computation as shown
earlier. This trend is observed for the D2 and D3 datasets as
well. One exception for Nvblox is that it provides a higher
PSNR compared to the proposed approach for the D3 dataset
but it consumes about 50× more storage.

V. LIMITATIONS

The effects of changes in illumination in the scene are not
explicitly considered and requires future work. The proposed
method assumes drift-free sensor poses are available through
a localization system. This assumption is consistent with
prior work on multimodal mapping with GMMs [12]. Prior
work in sensor localization via point cloud registration [37,
38] and loop closure [39] using GMMs may be leveraged
for pose estimation.

VI. CONCLUSION

This letter detailed an incremental multimodal surface
mapping methodology for high-resolution environment re-
construction. State-of-the-art GMM-based perceptual model-
ing approaches use a pre-specified number of components to
enable mapping of environment surfaces, which is memory



inefficient. Inserting a new point cloud observation to an
existing GMM map model involves iterating over all the
mixture components; which is computationally expensive.
To bridge these gaps, this paper formulated methodologies
to (1) extract a submap by innovating a spatial hash table
of mixture components and (2) incrementally update the
global environment model in a computationally efficient
manner. The approach was evaluated with synthetic and real-
world datasets and the results demonstrated that the proposed
approach enables high-fidelity reconstruction at low memory
with an order of magnitude increase in speed compared to
existing GMM-based mapping methods.
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