
Generalizable Dexterity with

Reinforcement Learning

Wenxuan Zhou

CMU-RI-TR-23-78

October 23, 2023

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
David Held, Carnegie Mellon University, Chair
Abhinav Gupta, Carnegie Mellon University
Oliver Kroemer, Carnegie Mellon University

Vincent Vanhoucke, Google

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Robotics.

Copyright © 2023 Wenxuan Zhou. All rights reserved.

To my husband, Huadian.

iv

Abstract

Dexterity, the ability to perform complex interactions with the physical
world, is at the core of robotics. However, existing research in robot
manipulation has been focused on tasks with limited dexterity, such as
pick-and-place. The motor skills of the robots are often quasi-static, have
a predefined or limited sequence of contact events, and involve restricted
object motions. In contrast, humans interact with their surroundings with
dynamic and contact-rich manipulation skills, allowing us to perform a
wider variety of tasks in a broader range of settings.

This thesis explores using Reinforcement Learning (RL) to equip robots
with generalizable dexterity. RL solves sequential decision-making prob-
lems modeled as Markov Decision Processes (MDPs). RL has shown
remarkable success in many domains such as games, making it a promis-
ing technique for developing advanced manipulation skills. Our research
advocates for the following thesis statement: Reconsidering how we frame
the robotics problem as an MDP is effective and essential to achieve gener-
alizable dexterity through RL. We examine three challenges when applying
RL to manipulation and discuss our approaches to overcome them by
reconsidering the MDP formulation.

First, robot data is time-consuming and expensive to collect. To reuse
robot data effectively, we propose an offline RL algorithm by constructing
a latent action space of the MDP. In addition, we discuss a framework
that effectively reuses robot data across environments with non-stationary
dynamics.

Second, robot dexterity is often assumed to be limited by the hardware
design of the robot. We propose to enhance the robot’s dexterity beyond
its hardware limitations by exploiting the external environment, showing
dynamic and contact-rich emergent behaviors. We demonstrate that
rethinking how we define the environment of the MDP is effective in
improving robot dexterity with RL.

Third, learning dexterous skills that can generalize is challenging. We
propose an RL framework with an action representation that is spatially-
grounded and temporally-abstracted which allows the robot to learn
complex interactions that can generalize to unseen objects. This further
supports our claim that rethinking the action space of the MDP can lead
to generalizable dexterity.

v

vi

Acknowledgments

I would like to express my gratitude to those who supported and inspired
me throughout this academic journey.

First and foremost, I would like to express my gratitude to my advisor,
David Held. I appreciate Dave’s dedication to providing us with all
kinds of support. From finding research topics to implementation details,
his guidance allows us to overcome many obstacles in research. More
importantly, I appreciate Dave’s constant patience and willingness to
listen to my thoughts and feelings. I always feel that I have his support
and understanding whenever I face difficult situations.

I am grateful to my committee members, Abhinav Gupta, Oliver Kroemer,
and Vincent Vanhoucke. Abhinav introduced me to the field of robot
learning and always challenged me to think deeply about my research.
Conversations with Oliver have been thought-provoking. I formed the
theme of this thesis thanks to the discussion with him. I also appreciate
Vincent for being on my thesis committee. Discussions with Vincent
broadened my horizons and made me think beyond the directions I have
been pursuing.

I am very fortunate to have worked at Google DeepMind and FAIR during
summer internships. The internships enriched my research experience
and exposed me to many exciting research topics. Thank you to my
mentors, Steven Bohez, Chris Paxton, and Keerthana Gopalakrishnan.
Your support during the internship was extremely valuable to me. I’m
also grateful to all the collaborators during my internships, including Jan
Humplik, Abbas Abdolmaleki, Dushyant Rao, Markus Wulfmeier, Tuomas
Haarnoja, Nicolas Heess, Chuyuan Fu, Dorsa Sadigh, Karol Hausman,
Pannag Sanketi, Quan Vuong, Ted Xiao, Pierre Sermanet, Chelsea Finn,
Ying Xu, Zhuo Xu, Michael Ryoo, and many more.

I thank my collaborators, lab mates, and friends at CMU. Working
with Sujay Bajracharya, Harshit Sikchi, Yi Gu, Fan Yang, and Bowen
Jiang was my pleasure. I also am grateful to meet everyone in R-PAD,
including Thomas Weng, Ben Eisner, Yufei Wang, Jenny Wang, Xingyu
Lin, Siddharth Ancha, Brian Okorn, Daniel Sieta, Chuer Pan, Zhanyi Sun,
and many others. I will miss the lab meeting discussions and the office
chats. I also want to say thank you to all my friends, including Yi Sha,

vii

Gengshan Yang, Xianyi Cheng, Shuyan Zhou, Yufei Ye, Donglai Xiang,
Anqi Yang, Shikhar Bahl, Helen Jiang, Homanga Bharadhwaj, Raunaq
Bhirangi, and many other friends. You have made this journey enjoyable
and memorable.

I also want to express my gratitude to my parents. They believe in my
potential more than anyone. They taught me to try my best regardless
of the outcomes. Lastly, I thank my husband, Huadian Liu, for his love
and support throughout this journey and for bringing happiness and
inspiration to my life.

viii

Contents

1 Introduction 1

2 PLAS: Latent Action Space for Offline Reinforcement Learning 5
2.1 Introduction . 5
2.2 Related Work . 7
2.3 Background . 8

2.3.1 Preliminaries . 8
2.3.2 Offline RL: From Pessimistic MDP to Policy Constraints . . . 8
2.3.3 Variational Auto-encoder . 10

2.4 Method . 10
2.4.1 Policy in Latent Action Space (PLAS) 11
2.4.2 Generalization out of the dataset 12
2.4.3 Implementation Details . 13

2.5 Experiments . 14
2.5.1 Experiment Descriptions . 14
2.5.2 Performance on Real-Robot Experiment 15
2.5.3 Performance on D4RL datasets 16
2.5.4 Overestimation of Learned Q-functions 17
2.5.5 Effect of the Optional Perturbation Layer 18

2.6 Conclusion . 19

3 Forgetting and Imbalance in Robot Lifelong Learning with Off-policy
Data 21
3.1 Introduction . 21
3.2 Related Work . 24
3.3 Preliminaries . 25

3.3.1 Problem Definition: Lifelong reinforcement learning with envi-
ronment variations . 25

3.3.2 Off-Policy Reinforcement Learning Algorithms 26
3.4 Forward and Backward trade-off in Lifelong Reinforcement Learning . 28
3.5 Offline Distillation Pipeline . 30

ix

3.6 Imbalanced Experience in Offline Distillation 31
3.7 Experiments . 32

3.7.1 Experiment Setup . 32
3.7.2 Offline Distillation for Lifelong Reinforcement Learning 34
3.7.3 Imbalanced Experience in Offline Distillation 35

3.8 Conclusion . 40

4 Learning to Grasp the Ungraspable with Emergent Extrinsic Dex-
terity 43
4.1 Introduction . 43
4.2 Related Work . 45

4.2.1 Extrinsic dexterity . 45
4.2.2 Grasping . 46
4.2.3 Reinforcement Learning for Manipulation 47

4.3 Task Definition: Occluded Grasping 47
4.4 Learning dexterous grasping with Reinforcement Learning 48

4.4.1 Preliminaries: Goal-conditioned Reinforcement Learning . . . 48
4.4.2 RL Problem Design . 49
4.4.3 Extrinsic Environment . 50
4.4.4 Choice of Low-level Controller 50
4.4.5 Multi-grasp Training and Grasp Selection 51
4.4.6 Improving Policy Generalization 52

4.5 Experiments . 52
4.5.1 Training Curves and Ablations 52
4.5.2 Emergent Behaviors . 53
4.5.3 Multi-grasp Experiments . 55
4.5.4 Policy Generalization . 57
4.5.5 Real-robot experiments . 57

4.6 Limitations . 59
4.7 Conclusion . 60

5 HACMan: Learning Hybrid Actor-Critic Maps for 6D Non-Prehensile
Manipulation 61
5.1 Introduction . 61
5.2 Related Work . 63
5.3 Preliminaries . 65
5.4 Problem Statement and Assumptions 65
5.5 Method . 66

5.5.1 Action Representation . 66
5.5.2 Hybrid RL Algorithm . 67
5.5.3 Representing the Goal as Per-Point Goal Flow 69

x

5.6 Experiment Setup . 70
5.7 Simulation Results . 71
5.8 Real robot experiments . 74
5.9 Limitations . 75
5.10 Conclusion . 76
5.11 Extensions to HACMan . 76

5.11.1 HACLeg: Visual Manipulation with Legs 76
5.11.2 HACMan++: A Spatially-grounded Skill Library for Manipu-

lation . 78

6 Conclusions 83
6.1 Summary . 83
6.2 Future Directions . 84

A Appendix to PLAS (Chapter 2) 87
A.1 Implementation Details . 87
A.2 D4RL Results . 88
A.3 Sensitivity Analysis: Max Latent Action 88
A.4 Ablation Study: Perturbation Layer 92
A.5 Empirical Analysis on MMD Constraint 93
A.6 Robot Experiment . 94

B Appendix to Robot Lifelong Learning (Chapter 3) 97
B.1 Additional results on the offline distillation pipeline 97
B.2 Algorithm . 97
B.3 Additional results with three environments and parallel sharing . . . 100

B.3.1 Forgetting and the effectiveness of Offline Distillation 100
B.3.2 Imbalance experience in offline distillation 102

C Appendix to Grasp the Ungraspable (Chapter 4) 107
C.1 Additional Results . 107

C.1.1 Sensitivity analysis on physical parameters 107
C.1.2 Sensitivity analysis on object pose estimation noise 107
C.1.3 Reward term weights . 109

C.2 Implementation Details . 109
C.2.1 Simulation environment . 109
C.2.2 Grasp configurations . 110
C.2.3 Success rate calculation . 110
C.2.4 Observation and action space 110
C.2.5 Low-level controller . 111
C.2.6 Multi-Grasp Training with Curriculum 112

xi

C.2.7 RL Training . 112
C.3 Automatic Domain Randomization 112
C.4 Real robot experiment . 115

C.4.1 Implementation details . 115
C.4.2 More information on the objects 118
C.4.3 Failure cases . 119

D Appendix to HACMan (Chapter 5) 123
D.1 Simulation Environment . 123

D.1.1 Object dataset preprocessing 123
D.1.2 Collecting goal poses . 125
D.1.3 Representing the goal as per-point goal flow 125
D.1.4 Success rate definition . 126
D.1.5 Observation . 126
D.1.6 Action . 127

D.2 Algorithm and Training Details . 128
D.2.1 HACMan (Ours) . 128
D.2.2 Baselines . 129

D.3 Supplementary Experiment Results 131
D.3.1 Additional ablations . 131
D.3.2 Training curves and tables . 132
D.3.3 Additional baseline: Global feature with query contact location 135
D.3.4 Extending Motion Parameters 136
D.3.5 Experiments in cluttered environments 137
D.3.6 Effect of longer training time 137
D.3.7 Effect of longer episode lengths 138
D.3.8 Per-category result breakdown 138
D.3.9 Final Distance to Goal . 140

D.4 Real Robot Experiments . 140
D.4.1 Real robot setup . 140
D.4.2 Analysis . 142
D.4.3 Failure cases . 142

D.5 Discussion on non-prehensile manipulation 143
D.6 More discussion on the related work 144

Bibliography 147

When this dissertation is viewed as a PDF, the page header is a link to this Table of Contents.

xii

List of Figures

2.1 Overview: Instead of explicitly matching the action distribution of the
agent policy with the behavior policy using divergence metrics such
as KL or MMD, we implicitly constrain the policy to output actions
within the support of the behavior policy through the latent action
space. 6

2.2 Network architecture for PLAS: Given a state, the latent policy outputs
a latent action, which is then input into the decoder. The latent action
space implicitly defines a constraint over the action output. An optional
perturbation layer can be added on top of the output from the decoder
to allow controlled generalization out of the training distribution. . . 11

2.3 Real-robot experiment: (a) Experiment setup for the cloth sliding
task. The cloth is fixed at the top left corner. (b) An example of the
tactile sensor readings when the robot grasps at the edge of the cloth.
(c) Training curves for the cloth sliding task on our method and the
baselines. It shows the episode reward over five evaluation episodes
every 150 training steps. 15

2.4 Training performance for medium-expert and medium-replay datasets
on locomotion tasks. Each curve is averaged over 3 seeds. Shaded area
shows one standard deviation across seeds. 16

2.5 We perform an analysis of Q-function errors of different methods,
using the following metrics: (a) Mean-squared error of the Q-values
(b) The percentage of overestimated Q-values (c) Mean of the positive
errors (magnitude of overestimation) (d) Mean of the negative errors
(magnitude of underestimation) . 17

3.1 We investigate the problem of robot lifelong learning with non-stationary
dynamics. In this example, a robot experiences joint deformation dur-
ing training. 21

3.2 Forgetting in MPO: The figure shows a performance drop in the original
environment after a switch of environment at 200k steps. 28

3.3 CRR is not as efficient as MPO when training from scratch. 29

xiii

3.4 We propose the Offline Distillation Pipeline: the agent is trained over
the environments sequentially during online interaction phase and runs
offline distillation at the end of training before deployment. “RB”
means replay buffer in the figure. 30

3.5 Experiment Setup: A bipedal robot walking task with various envi-
ronment variations. 33

3.6 Evaluation curves of the lifelong learning experiment across two stages.
The Offline Distillation Pipeline effectively breaks the trade-off between
forward and backward transfer and achieves better performance than
the baselines at the end. 34

3.7 The imbalance issue in Offline Distillation: Training CRR with the com-
bined dataset results in much lower performance in Env-A compared
to training on the individual dataset. However, the worse performance
corresponds to a higher average Q-value which indicates overestimation. 37

3.8 To study the imbalance issue, the figure shows the final performance of
different variants of the offline distillation step at 5e6 policy updates.
The Baseline corresponds to the performance of Combined Dataset
in Figure 3.7. 38

3.9 Sensitivity analysis of data imbalance: Higher β makes CRR more
robust to different ratios of dataset imbalance. The legend indicates
the dataset size ratio of Env-A:Env-B corresponding to different colors. 40

4.1 We present a system for the “Occluded Grasping” task with extrinsic
dexterity. The goal of this task is to reach an occluded grasp con-
figuration (indicated by a transparent gripper). The figure shows an
example of the emergent behavior of the policy and successful sim2real
transfer. 44

4.2 Notations: WE denotes the pose of the end-effector in the world frame
W . Og denotes the target grasp in the object frame O. Six marker
locations mi in green on the target grasp are used to calculate the
occlusion penalty. 47

4.3 Outline of policy execution: Given the observations, the policy out-
puts an end-effector delta movement (Section 4.4.2) to the low-level
controller (Section 4.4.4). 49

4.4 Training curves and ablations: Left: ablations on the reward function
and the wall. Right: ablations on the controller. 53

4.5 Visualizations of the policies in different scenarios. 54
4.6 Left: Grasp configurations. Right: MultiGrasp Training results with

and without curriculum. 56
4.7 Evaluation on the generalization of the policies by sampling 100 envi-

ronments. 56

xiv

4.8 We evaluate the policy on the real robot with various test objects.
The policy trained in simulation on box-shape objects can generalize
to the real robot and other shapes. With ADR, the policy achieves
45% better success rate. 58

5.1 We propose HACMan (Hybrid Actor-Critic Maps for Manipulation),
which allows non-prehensile manipulation of unseen objects into ar-
bitrary stable poses. With HACMan, the robot learns to push, tilt,
and flip the object to reach the target pose, which is shown in the
first column and in the top row with transparency. The policy al-
lows for dynamic object motions with complex contact events in
both simulation (top) and in the real world (bottom). The per-
formance of the policy is best understood from the videos on the
website: https://hacman-2023.github.io. 62

5.2 Illustration of our action space. 66

5.3 An overview of the proposed method. The point cloud observation
includes the location of the points and point features. The goal is
represented as per-point flow of the object points. The actor takes the
observation as input and outputs an Actor Map of per-point motion
parameters. The Actor Map is concatenated with the per-point critic
features to generate the Critic Map of per-point Q-values. Finally,
we choose the best contact location according to the highest value in
the Critic Map and find the corresponding motion parameters in the
Actor Map. 68

5.4 Baselines and Ablations. Our approach outperforms the baselines
and the ablations, with a larger margin for more challenging tasks on
the right. Success rates for simple tasks - pushing a single object to an
in-plane goal - are high for all methods, but only HACMan achieves
high success rates for 6D alignment of diverse objects. 71

5.5 Qualitative results for the object pose alignment task. HAC-
Man shows complex non-prehensile behaviors that move the object to
the goal pose (shown as the transparent object). 72

5.6 Goal-conditioned Critic Maps. Blue: goal point cloud. Color map:
observed object point cloud. Lighter colors indicate higher Critic Map
scores. Red arrows: motion parameters at a selected location. The
policy uses different contact locations based on object geometries and
goals. 74

5.7 Real robot experiments. HACMan achieves a 50% success rate
over unseen objects with different geometries and physical properties,
with 6D goal poses. 75

xv

https://hacman-2023.github.io

5.8 HACLeg demonstrates non-prehensile manipulation using leg to align
the 6D pose of the object (white) to a given target pose (red). 77

5.9 In the real robot experiments, HACLeg enables object interactions
such as (a) pushing, (b) flipping, or (c) moving the object to a distant
goal through repeatedly pushing and walking. 77

5.10 HACMan++ Primitives. We consider a set of primitives in HAC-
Man++. Each primitive is defined using a grounded location and a
vector of motion parameters. 79

5.11 Overview of HACMan++. In HACMan++, we extend HACMan to
incorporate multiple manipulation primitives, such as picking, placing,
and poking. We compute the actor and critic maps for each primitives
separately. Each primitive is represented as a one-hot encoding as
an additional input to the actor and the critic network. The policy
output is the type of primitive, a contact location, and a set of motion
parameters, selected according to the highest score from the critic maps. 79

5.12 An example of the modified object pose alignment task. The
goal of this task is to place the object at a target 6D pose in a different
bin. The policy trained with HACMan++ learns to chain a sequence
of prehensile and non-prehensile skills to achieve this task. 81

5.13 HACMan++ policies for the Maniskill2 benchmark. We also
evaluate HACMan++ on the Maniskill2 benchmark, demonstrating
the generality of the method in a wider range of manipulation tasks. . 81

A.1 Sensitivity analysis on the max latent action for the latent policy:
X-axis is the max latent action value. Y-axis is the normalized score. 92

A.2 Ablation study on the perturbation layer: X-axis is the max perturba-
tion. Y-axis is the normalized score. 93

A.3 Simulated MMD loss with N(0,1) as the behavior policy. 94

A.4 Simulated MMD loss with N(0,1) as the behavior policy. 95

B.1 Comparison of off-policy algorithms for training from scratch which
corresponds to the beginning stage of a lifelong learning experiment.
This is an extension of Figure 3.6 Stage-1 result. 98

B.2 Comparison of off-policy algorithms during Stage-2 of the lifelong
learning experiment. This is an extension of Figure 3.6 Stage-2 results. 98

B.3 Lifelong learning experiments with three stages. The policy trained
with MPO during online interaction experiences significant forgetting
on previous environments. With Offline Distillation at the end, the
policy can recover the performance effectively over all the previous
environments. 101

xvi

B.4 Evaluation of Offline Distillation with different transformation func-
tions with a three-stage experiment setup. 103

B.5 Evaluation of Offline Distillation with different transformation func-
tions with a parallel training experiment setup with three environments
(type-A). 104

B.6 Evaluation of Offline Distillation with different transformation func-
tions with a parallel training experiment setup with three environ-
mentsv (type-B). 105

C.1 We evaluate the generalization of policies by changing one parameter at
a time. The dashed lines indicate the default values of these parameters
in the fixed environment. 108

C.2 We evaluate the sensitivity of the ADR policies on object pose estima-
tion noise. 108

C.3 Training curves with different reward weights. For each plot, we train
the policies by changing one of the weight terms to three different values.108

C.4 Outline of policy execution: Given the observation, the policy outputs
an end-effector delta movement. If the desired pose is within the joint
limit of the robot, it will be sent to the low-level controller which
operates at a higher frequency. 112

C.5 Training curves for the ADR policies. 114

C.6 Robot setup. We use one Azure Kinect camera for object pose estimation.116

C.7 Illustrations of pose estimation pipeline for the non-box objects. The
top row shows the scanned object model. The middle row shows
bounding box calculation and pose definition. The last row shows an
example of ICP. 117

C.8 Examples of pose estimation with ICP during an episode. The blue
points are the observed point cloud from the camera. The red points
are the object template that matches to the observed point cloud using
ICP. 117

D.1 Training objects. 32 objects used in training. 124

D.2 Evaluation objects (unseen instance). 7 objects used in unseen
instance evaluations. These instances are from the same categories as
the training objects. 124

D.3 Evaluation objects (unseen category). 5 objects used in unseen
category evaluations. They come from 4 randomly chosen categories. 124

D.4 Camera locations in simulation. 126

D.5 Additional ablations. All of the components of our method are
essential to achieve the best performance when the task becomes more
difficult. 131

xvii

D.6 Baselines. It shows success rates on the train dataset over environment
steps. The shaded area represents the standard deviation across three
training seeds. 133

D.7 Ablations. It shows success rates on the train dataset over environ-
ment steps. The shaded area represents the standard deviation across
three training seeds. 133

D.8 Comparison between our method and the additional baseline
with query contact locations. The left figure shows the success rate
of the simplest task variant - a single object with planar goals. The
right figure shows the most challenging task variant - all objects with
6D goals. The shaded area represents the standard deviation across
three training seeds. Our method performs better than the baseline in
both cases. 135

D.9 Qualitative results for object pose alignment tasks in cluttered
environments. HACMan shows complex non-prehensile behaviors
that move objects to goal poses (shown as the transparent objects).
The scene objects are colored in brown to distinguish from the target
object to be manipulated to the goal pose. 137

D.10 Success rate with extended training. The success rate of our
method reaches 91.1 ± 7.3% after 500k training steps, compared to
83.3% after 200k training steps. 138

D.11 Success rates at various maximum episode lengths. This line
plot shows the success rates of HACMan evaluated on the four datasets.
It is worth noting that the success rates for Unseen Instance (Common)
and Train (Common) are marginally higher compared to Train and
Unseen Category, similar to the pattern in Table 5.2. 139

D.12 Results breakdown. Object categories in the unseen instance set
(orange) can be compared to the same object categories in the train
set (blue) to see the level of instance generalization. 139

D.13 Distribution of distances to the goal at the end of the episode
for our method in the “All Objects 6D Goals” experiment.
The vertical dashed line represents the success threshold at a distance
of 0.03m. The distribution has a median of 2.57cm, a mean of 3.66cm,
and a standard deviation of 4.27cm. 140

D.14 Real robot setup. 141
D.15 Examples showcasing limitations of prehensile manipulation.

The frames where prehensile manipulation is challenging are high-
lighted. The first row shows a cube placed at the corner of the bin,
where any grasp is obstructed by the bin wall. Both the second and
third rows depict instances where objects are too large to be grasped
at specific poses. 144

xviii

D.16 An example of non-quasi-static motion. The figure shows an
example of executing the motion parameters to flip a mug upright.
After the gripper pushes against the edge of the mug (first two images),
it relies on the inertia of the mug to finish the motion which is not
quasi-static (last two images). 145

xix

xx

List of Tables

2.1 Comparison of different perturbation values on random and medium
datasets. Scores are normalized. ϵ = 0 is the performance of the latent
policy without the additional perturbation layer. 18

4.1 Comparison of grasp selection methods: Side grasp policies achieve
better performance when using the Q-function to select the grasp. . 56

5.1 Features of the proposed action representation compared to the baselines. 71

5.2 Generalization to unseen objects. 73

A.1 D4rl Benchmark Results: Average Reward 89

A.2 D4rl Benchmark Results: Normalized Score 89

A.3 D4rl Results on More Datasets: Average Reward. For these datasets,
we searched over 0.5, 1, 2 for max latent action and report the best
results. 90

A.4 D4rl Results on More Datasets: Normalized Score 91

B.1 Combinations of different environment variations in the three environ-
ment experiments. 100

C.1 Hyperparameters for RL training. 113

C.2 Simulation parameters in Automatic Domain Randomization 115

C.3 Real robot evaluations with more object information. We highlight
the out-of-distribution aspect of the object properties in bold. 118

C.4 Failure cases for Policy w/ ADR during real robot evaluation. The
most common failures include dropping the object during rotation,
repeated rotation, and unexpected object dynamics. 120

C.5 Failure cases for Policy w/o ADR during real robot evaluation. The
most common failures include missing the initial contact, repeated
rotation and unexpected object dynamics. 121

D.1 Hyperparameters. 129

xxi

D.2 Baseline-specific Hyperparameters. 130
D.3 Baselines. We compare our method with baselines with different

action representations and observations. Our approach outperforms
the baselines, with a larger margin for more challenging tasks. The
success rate is reported with the mean and standard deviation across
three seeds. 134

D.4 Ablations. We show that all of the components are essential to
achieve the best performance when the task becomes more difficult.
Each success rate is reported with the mean and standard deviation
across three seeds. 134

D.5 Success rates with different motion parameters. All methods
are evaluated on all train objects with 6D goals. 136

D.6 Success rates under different cluttered scenes. All methods are
evaluated with 6D goals. 137

D.7 Additional analysis on the real robot experiments. An episode
is considered a “flow success” if the average norm of the estimated flow
is less than 3 cm. An episode is considered as an “actual success” if the
object is aligned with the goal pose without point cloud registration
failure. 143

xxii

Chapter 1

Introduction

Despite significant progress in robotics over recent decades, robots are still mostly

limited to highly constrained interactions with the physical world due to their limited

dexterity. For example, an extensively studied category of tasks in manipulation is

pick-and-place, where the robot interacts with the object only during the gripper’s

opening and closing [54, 74, 96, 145]. Other examples include planar pushing and

articulated object manipulation, such as opening or closing a drawer, in which the

objects have limited possible movement [22, 26, 81, 136]. The interactions in these

tasks are typically quasi-static, involve very few contact events, and involve limited

changes of the physical world.

However, performing more advanced tasks in the real world often requires robots

to have more dexterous motor skills that are dynamic and contact rich. For instance,

to pick up a book lying on a table, the robot may need to rotate the book before

grasping it from the side [149]. Similarly, organizing a messy cabinet would require

the robot to interact with the objects in the cabinet using more sophisticated skills

than pick-and-place or planar pushing [68]. As a result, improving the dexterity

of robots is a crucial step in building more intelligent and capable robots that can

perform a wider range of tasks in the real world.

In this thesis, we aim to enhance the dexterity of robots with Reinforcement

Learning (RL) [121]. In RL, decision-making is framed as a Markov Decision Process

(MDP): an agent, such as a robot, interacts with the environment and receives rewards

for its actions. The agent then learns to improve its decisions based on the rewards

1

1. Introduction

to eventually master the given task. Since RL has shown tremendous progress in

decision-making problems such as games and animated characters [69, 78, 114], it

holds great promise for developing robot skills. However, applying RL to robotics

presents additional challenges compared to games. In this thesis, we discuss and

address three challenges when leveraging the power of RL for robot dexterity. We

advocate for the following statement: Reconsidering how we frame the robotics problem

as an MDP is effective and essential to achieve generalizable dexterity through RL.

Limited real world data. As the robot’s required motor skills become more

complex, real robot data becomes increasing crucial. More dynamic motor skills

often depend on the details of the physics that are difficult to capture accurately

in simulation. However, collecting real robot data is often a time-consuming and

expensive process, resulting in limited data availability. Therefore, effectively reusing

data becomes increasingly important.

In Chapter 2, we address the challenges of limited data by proposing an offline

reinforcement learning algorithm that operates over an MDP with a latent action

space [151]. The goal of offline reinforcement learning is to learn a policy from a fixed

dataset, without further interactions with the environment [67]. Existing off-policy

algorithms have limited performance on static datasets due to extrapolation errors

from out-of-distribution actions [31]. This leads to the challenge of constraining the

policy to select actions within the support of the dataset during training. We propose

to learn the Policy in the Latent Action Space (PLAS) such that this requirement is

naturally satisfied. We evaluate our method on continuous control benchmarks in

simulation and a deformable object manipulation task with a physical robot. We

demonstrate that our method provides competitive performance consistently across

various continuous control tasks and different types of datasets, outperforming existing

offline reinforcement learning methods with explicit constraints.

In Chapter 3, we study the challenges of reusing robot data with non-stationary

dynamics in RL [152]. Robots will experience non-stationary environment dynamics

throughout their lifetime: the robot dynamics can change due to wear and tear, or

its surroundings may change over time. Eventually, the robots should perform well

in all of the environment variations it has encountered. At the same time, it should

still be able to quickly adapt to a new environment. We identify two challenges

of RL algorithms under such a lifelong learning setting with off-policy data: first,

2

1. Introduction

existing off-policy algorithms struggle with the trade-off between being conservative

to maintain good performance in the old environment and learning efficiently in the

new environment, even if we keep all the data in the replay buffer. We propose

the “Offline Distillation Pipeline” to break this trade-off by separating the training

procedure into an online interaction phase and an offline distillation phase. Second,

we find that training with the imbalanced off-policy data from multiple environments

across the robot’s lifetime creates a significant performance drop. We identify that

this performance drop is caused by the combination of the imbalanced quality and

size among the datasets which exacerbate the extrapolation error of the Q-function.

During the distillation phase, we apply a simple fix to the issue by constraining the

policy closer to the behavior policy that generated the data. In the experiments,

we demonstrate these two challenges and the proposed solutions with a simulated

bipedal robot walking task across various environment changes.

Limited robot hardware. A robot’s dexterity are often assumed to be limited

by its hardware design. Complex motion skills are often associated with complex robot

hardware such as dexterous hands with high degree-of-freedom fingers [13, 87, 99]. In

contrast, we take an alternative perspective to improve the robot’s dexterity beyond

its limited hardware by redefining the environment of the MDP.

In Chapter 4, we investigate such an idea known as “Extrinsic Dexterity” [18, 149].

The key idea is that a simple gripper can solve more complex manipulation tasks if it

can utilize the external environment such as pushing the object against the table or

a vertical wall. Previous work in extrinsic dexterity usually has careful assumptions

about contacts which impose restrictions on robot design, robot motions, and the

variations of the physical parameters [16, 18, 43, 45]. In this work, we develop a

system based on RL to address these limitations. We study the task of “Occluded

Grasping” which aims to grasp the object in configurations that are initially occluded;

the robot needs to move the object into a configuration from which these grasps can be

achieved. We present a system with model-free RL that successfully achieves this task

using a simple gripper with extrinsic dexterity. The policy learns emergent behaviors

of pushing the object against the wall to rotate and then grasp it without additional

reward terms on extrinsic dexterity. We discuss important components of the system

including the design of the RL problem, multi-grasp training and selection, and policy

generalization with automatic curriculum. Most importantly, the policy trained in

3

1. Introduction

simulation is zero-shot transferred to a physical robot. It demonstrates dynamic

and contact-rich motions with a simple gripper that generalizes across objects with

various size, density, surface friction, and shape with a 78% success rate.

Limited generalization. Robots to be deployed in the real world need to face

diverse scenarios. For example, in manipulation, robots might encounter unseen

objects in diverse configurations. Thus, robots not only need to solve the task, but

also need to generalize. However, learning complex motor skills that can generalize

imposes challenges to the RL algorithms. In this thesis, we explore the effectiveness in

rethinking the action space of the MDP to enable complex and generalizable dexterity.

In Chapter 5, we introduce Hybrid Actor-Critic Map for Manipulation (HAC-

Man), a reinforcement learning approach for 6D non-prehensile manipulation of

objects using point cloud observations. HACMan proposes a temporally-abstracted

and spatially-grounded object-centric action representation that consists of selecting a

contact location from the object point cloud and a set of motion parameters describing

how the robot will move after making contact. We modify an existing off-policy

RL algorithm to learn in this hybrid discrete-continuous action representation. We

evaluate HACMan on a 6D object pose alignment task in both simulation and in

the real world. On the hardest version of our task, with randomized initial poses,

randomized 6D goals, and diverse object categories, our policy demonstrates strong

generalization to unseen object categories without a performance drop, achieving an

89% success rate on unseen objects in simulation and 50% success rate with zero-shot

transfer in the real world. Compared to alternative action representations, HACMan

achieves a success rate more than three times higher than the best baseline. With

zero-shot sim2real transfer, our policy can successfully manipulate unseen objects

in the real world for challenging non-planar goals, using dynamic and contact-rich

non-prehensile skills.

Furthermore, we demonstrate the generality of HACMan when applied to other

robot platforms and manipulation tasks. We apply HACMan to a quadruped robot and

enable non-prehensile manipulation of objects using legs, breaking the boundaries of

manipulation and locomotion. In addition, we extend HACman into a hierarchical RL

framework by incorporating a library of spatially-grounded primitives. The extended

framework, HACMan++, demonstrates complex synergies between prehensile and

non-prehensile skills in a diverse set of manipulation tasks.

4

Chapter 2

PLAS: Latent Action Space for

Offline Reinforcement Learning

2.1 Introduction

Reinforcement learning (RL) has achieved much success on many robotics tasks

in simulation [80, 93]. However, it still has limited applications in the real world

including real robots. One major challenge of applying RL in the real world is that it

requires a large number of online interactions with the environment, usually more

than millions of time steps. Offline Reinforcement Learning, or Batch Reinforcement

Learning, aims to develop algorithms that can optimize the policy given a static

dataset of transitions without any active data collection [65, 67]. This is especially

important for robotics because algorithms that train from static datasets can provide

additional flexibility in terms of data collection. We may take into account safety,

use better exploration methods [92], and leverage demonstrations [100]. In addition,

we can accumulate past experience during the development of the algorithm by

re-using the replay buffer or evaluation trajectories from previous RL experiments.

Furthermore, static datasets can be shared within the community, and thus, they are

more likely to be scaled up in size.

In contrast to offline RL, off-policy RL uses a replay buffer that stores transitions

that are actively collected by the policy throughout a training procedure. Past

5

2. PLAS: Latent Action Space for Offline Reinforcement Learning

Latent
Action

[Latent Space] [Action Space]

Behavior
Policy

Action

Behavior
Policy

Explicit Policy Constraint Implicit Policy Constraint (Ours)

Agent Policy
KL/MMD

[Action Space]

Figure 2.1: Overview: Instead of explicitly matching the action distribution of the
agent policy with the behavior policy using divergence metrics such as KL or MMD,
we implicitly constrain the policy to output actions within the support of the behavior
policy through the latent action space.

work has shown that off-policy RL methods cannot be directly applied to static

datasets due to the extrapolation error of the Q-function caused by out-of-distribution

actions [31]. To avoid extrapolation error, we need to constrain the policy to select

actions within the support of the dataset. On the other hand, the constraint cannot be

“overly restrictive”; in the extreme case, an overly constrained policy will degenerate to

behavior cloning on the dataset. The design of such a constraint remains a challenging

problem.

We propose a simple yet effective method that trains the Policy in the Latent

Action Space (PLAS) to implicitly constrain the policy to output actions within

the support of the dataset instead of using explicit constraints, as illustrated in

Figure 2.1. Following previous work, we model the “behavior policy” of the dataset

as a Conditional Variational Autoencoder (CVAE). Our insight is that we can learn

a policy in the latent action space of the CVAE and then use its decoder to output

an action in the original action space of the environment. The latent action space

implicitly constrains the policy by construction.The benefit of such a constraint is that

it can be naturally satisfied without affecting the optimization of the other components

and without being restricted by the density of the behavior policy distribution.

We demonstrate that PLAS allows generalization within the dataset and can

provide consistently good performance for datasets with diverse actions. In cases

where the Q-function generalizes well without significant extrapolation error, we

augment our approach by allowing out-of-distribution actions in a controlled way to

6

2. PLAS: Latent Action Space for Offline Reinforcement Learning

achieve better performance. This explicit separation of in-distribution generalization

and out-of-distribution generalization allows the user fine-grained control over the

generalization of the method. We evaluate our method on the continuous control

tasks from the d4rl benchmark datasets [29] as well as real-robot experiments on

deformable object manipulation and show superior performance to previous methods,

despite the simplicity of our approach.

2.2 Related Work

Offline Reinforcement Learning: Offline reinforcement learning studies the prob-

lem of learning policies from static datasets without any active data collection [65, 67].

Recent work proposes different approaches in this direction [4, 57, 94, 95, 141]. It

has been empirically shown that the performance of off-policy algorithms drasti-

cally degrades when directly applied to static datasets due to out-of-distribution

actions [31]. Several papers propose to avoid out-of-distribution actions by enforcing

constraints on the policy such as using a KL-divergence constraint or maximum

mean discrepancy (MMD) constraint [49, 62, 132]. In the most similar approach to

our work, Fujimoto, et al. [31] (BCQ) propose to learn a generative model for the

behavior policy and perturb the randomly generated samples to find good perturbed

actions that maximize the Q-function. Our experiments show that these approaches

have worse performance than our method, likely due to the difficulty of satisfying the

constraints or balancing in-distribution vs out-of-distribution generalization.

Imitation Learning: The most naive way of using a static dataset is to perform

behavior cloning. This approach is usually used when the dataset is generated by

an expert policy. Behavior cloning only mimics the actions in the dataset and does

not reason about which actions in the dataset are better than others. Imitation

learning methods sometimes also assume access to an expert policy [103] and may

allow interactive data in the environment [42], which is very different from offline RL.

Generative Models for Actions: Previous work has used a conditional variational

autoencoder to model actions, although not in the offline RL setting. Mishra et al. [77]

samples action sequences from the CVAE when they perform trajectory optimization

7

2. PLAS: Latent Action Space for Offline Reinforcement Learning

with the learned latent dynamics model. Krupnik et al. [61] extended the previous

method to multi-agent RL by learning a disentangled latent action representation. In

contrast to these works, we focus on demonstrating the capability of using a CVAE

over actions to deal with the out-of-distribution issue in off-policy RL in the offline

setting.

2.3 Background

2.3.1 Preliminaries

As is common in reinforcement learning, we define the environment as a Markov

Decision Process (MDP) represented as the tupleM = (S,A,P , r, γ), where S is the

state space, A is the action space, P : S ×A×S → [0, 1] is the transition probability

function, r : S × A × S → R is the reward function, and γ is the discount factor.

The general objective of RL is to find a policy that maximizes the expectation of the

return Gt =
∑∞

k=0 γ
kr(st+k, at+k, st+k+1).

Given a policy π, the action-value function, or Q-function, is defined as Qπ(s, a) =

Eπ[Gt|St = s, At = a]. Our method builds on top of the commonly used off-policy

actor-critic procedure with a deterministic policy [30, 69]. The Q-function of the

deterministic policy π is estimated based on the Bellman Operator:

T Q̂π(st, at) = Est+1 [rt + γQ̂π(st+1, π(st+1))] (2.1)

The policy πθ is updated following the Deterministic Policy Gradient [113]:

∇θJ(θ) = Es∼ρπ [∇θπθ(s)∇aQ
πθ(s, a)|a=πθ(s)] (2.2)

2.3.2 Offline RL: From Pessimistic MDP to Policy

Constraints

In this section, we will discuss the objectives for offline reinforcement learning and

the limitations of existing methods that build on top of off-policy RL.

In offline RL, we are given a fixed dataset D = {(st, at, rt, st+1)i} with a finite

number of transitions. The difficulty comes from the fact that the static dataset

8

2. PLAS: Latent Action Space for Offline Reinforcement Learning

does not cover the entire state space and action space of the MDP. This is especially

true when the state and action spaces are continuous. The objective of offline RL

is typically to find the policy that maximizes the cumulative reward during its

deployment in the environment. However, the performance of the policy will be

limited by our knowledge over the MDP, which is inferred from a limited set of

transitions.

Reconsidering this problem, another reasonable objective for offline RL is to

maximize the cumulative reward of the MDP under the transitions that have been

visited in the dataset. Following [57], we may assume a pessimistic MDP such

that r(s, a) is significantly small for any unvisited (s, a). Optimizing under such a

pessimistic MDP is an intuitive surrogate objective. In addition, [57] proves that the

performance of any policy for such a pessimistic MDP is a lower bound in the true

MDP.

An additional reason to optimize for this pessimistic MDP is the extrapolation

error of approximated Q-functions [31]. In off-policy algorithms, we bootstrap Q(st, at)

by using Q(st+1, π(st+1)) according to the Bellman operator as in Equation (2.1). If

(st+1, π(st+1)) is not in the dataset, Q(st+1, π(st+1)) can be arbitrarily wrong. This

error caused by out-of-distribution actions will be accumulated and exacerbated

by the policy update. (Note that out-of-distribution states do not occur during

training.) Thus, optimizing the policy under the pessimistic MDP is equivalent to

forcing the policy to select known actions that avoid any error accumulation. This is

the motivation for constraining the policy to be within the support of the dataset.

On the other hand, the constraint should not be overly restrictive and should not

be affected by the distribution of the dataset as proposed in [62]. The policy should

have the full flexibility to choose actions within the support.

Existing offline RL methods enforce such a constraint in different ways. BCQ [31]

constrains the policy by sampling from the behavior policy. However, the policy is

then restricted by the distribution of the behavior policy. BEAR [62] and BRAC [132]

incorporate the constraint on the policy as a regularization term into the optimization

process for the policy or the Q-function. This regularization term is calculated by a

divergence metric, such as KL-divergence or MMD. There are two practical challenges

to these approaches. First, this additional loss term creates a trade-off between

optimizing the original objective and satisfying the constraint. Although BEAR uses

9

2. PLAS: Latent Action Space for Offline Reinforcement Learning

a Lagrangian multiplier to solve a constrained optimization problem, in practice, the

constraint is almost never satisfied [132]. Second, the choice of the divergence metric,

such as KL and MMD, might be overly restrictive given datasets that have diverse

actions. We provide further discussion on MMD constraint in Appendix A.5. These

past approaches have shown that properly enforcing an explicit policy constraint is

difficult; this observation motivates our approach.

2.3.3 Variational Auto-encoder

Since our method uses a conditional variational autoencoder, we include a brief

background of VAE in this section in its most general form based on [59] and [20].

Given a dataset X = {x(i)}Ni=1, the goal of a VAE is to generate samples that are from

the same distribution as the data points, in other words, to maximize p(x) for all x(i).

This is achieved by introducing a latent variable z sampled from a prior distribution

p(z) and modeling a decoder pθ(x|z) with parameter θ. Directly maximizing the

marginal likelihood pθ(x) =
∫
pθ(z)pθ(x|z)dz is intractable. Instead, Kingma and

Welling [59] propose to approximate the true posterior pθ(z|x) by training an encoder

qϕ(z|x). In this way, they derive the following evidence lower bound (ELBO) on the

log-likelihood of the data:

max
θ

log p(x) ≥ max
θ,ϕ

Eqϕ(z|x)[log pθ(x|z)]−DKL[qϕ(z|x)||pθ(z)] (2.3)

The term log pθ(x|z) (where z is sampled from qϕ(z|x)) represents the reconstruc-

tion loss. The second term is the KL-divergence between the encoder output qϕ(z|x)
and the prior of z, pθ(z), usually set to be N (0, 1). Thus, optimizing for this objective

enables us to train a model that generates samples similar to the data distribution

by sampling z and then passing it into the decoder.

2.4 Method

In this section, we introduce our method PLAS (Policy with Latent Action Space)

that implicitly constrains the policy to be within the support of the behavior policy.

Our method disentangles the in-distribution and out-of-distribution generalization

10

2. PLAS: Latent Action Space for Offline Reinforcement Learning

Latent
PolicyState Latent

Action Decoder Action Perturbation
Layer

+
Final

Action
Output

Implicit Policy Constraint Out-of-distribution Generalization
(Optional)

Figure 2.2: Network architecture for PLAS: Given a state, the latent policy outputs a
latent action, which is then input into the decoder. The latent action space implicitly
defines a constraint over the action output. An optional perturbation layer can be
added on top of the output from the decoder to allow controlled generalization out of
the training distribution.

of actions, enabling fine-grained control over the generalization of the method. The

network architecture of our method is shown in Figure 2.2.

2.4.1 Policy in Latent Action Space (PLAS)

Given a static dataset, we use a conditional variational autoencoder (CVAE) to model

the behavior policy p(a|s), as in other recent methods [31, 62, 132]. The CVAE is

trained to reconstruct actions conditioned on the states. Converting Equation 2.3

into our problem formulation, the objective of the CVAE is to maximize log p(a|s) by
maximizing its lower bound:

max
α,β

log p(a|s) ≥ max
α,β

Ez∼qα [log pβ(a|s, z)]−DKL[qα(z|a, s)||P (z|s)] (2.4)

where z is the latent variable, α and β are the parameters of the encoder and the

decoder, respectively. This is similar to Equation 2.3, except that all terms are

conditioned on the state s. A trained decoder pβ(a|s, z) provides a mapping from the

latent space to the action space, conditioned on the state.

In order to constrain the policy to be within the support of the dataset, we propose

to train a deterministic policy z = π(s) to map from a state s to a “latent action”

z; we then use the pretrained decoder pβ(a|s, z) to project the latent action into

the actual action space as shown in Figure 2.2. This is significantly different from

11

2. PLAS: Latent Action Space for Offline Reinforcement Learning

BCQ which samples from a fixed range of the latent space. The latent policy has the

flexibility of choosing the latent actions and thus avoids being affected by the density

of the dataset distribution. The CVAE is trained to maximize log p(a|s), equivalent
to maximizing the expected output of the decoder Ep(z|s)[pβ(a|s, z)] as shown:

p(a|s) =
∫
z

pβ(a|s, z)p(z|s)dz = Ep(z|s)[pβ(a|s, z)] (2.5)

Thus, for values of z that have a high probability under the prior p(z|s), the
decoder pβ(a|s, z) will output a high probability action under the behavior policy

distribution p(a|s) in expectation.

If we constrain the latent policy z = π(s) to output a latent action z that has a high

probability under the prior p(z|s), then the full policy, formed by pβ(a|s, z = π(s)),

is likely to have a high probability under the behavior policy p(a|s). Fortunately, this
constraint is simple to enforce; since the prior p(z|s) is set to a normal distribution

N (0, 1), we simply define z = π(s) such that zi ∈ [−σ, σ] for each latent dimension i

for some hyperparameter σ (see Section 2.4.3 for details). Furthermore, for each state

s, the latent policy has the flexibility to choose any latent action z in this constrained

latent action space, leading to an easier optimization compared to previous work with

explicit constraints.

2.4.2 Generalization out of the dataset

The latent policy provides a natural constraint to stay within the support of the

dataset. However, in some cases when the Q-function can generalize well, we may

relax the pessimistic objective and allow the policy to select out-of-distribution actions

to improve its performance. The benefit of the out-of-distribution actions is more

likely to happen when the environment (both transition probabilities and the reward

function) is smooth and when the dataset has limited quality and diversity. To

do so, we add a perturbation layer to the output of the decoder that outputs a

residual over the action. The residual is limited to a specific range [−ϵ, ϵ], where ϵ is
a hyperparameter. Mathematically, this enforces the final output action to be close

to the actions within the dataset in terms of the L∞ norm. This perturbation layer

is inspired by BCQ. However, BCQ forms a policy by sampling from the generative

model; the perturbation layer is used to prevent “sampling from the generative model

12

2. PLAS: Latent Action Space for Offline Reinforcement Learning

for a prohibitive number of times” [31]. In our case, we don’t perform any sampling

since our policy is deterministic; the perturbation layer is instead specifically designed

for out-of-distribution generalization. In the experiments, we will demonstrate that

when the dataset has enough coverage in the state-action space, this additional layer

is not necessary.

Algorithm 1: Off-policy RL with PLAS

Input: Dataset D = {(st, at, rt, st+1)i}
// VAE Training
Initialize encoder Eα and decoder Dβ with parameters α and β.
for i← 1 to M do

Sample a minibatch of k state-action pairs (st, at) from D.
Optimize α and β using Equation 2.4.

end
// Policy Training
Initialize the latent policy network πθ, critic networks Qϕ1 , Qϕ2 and their
corresponding target networks πθ′ , Qϕ′

1
and Qϕ′

2
with θ′ ← θ, ϕ′

1 ← ϕ1,
ϕ′
2 ← ϕ2.

for i← 1 to N do
Sample a minibatch of k transitions {(st, at, rt, st+1)i=1,..,k} from D.
For each transition, generate a latent action using the latent policy:
ψt+1 = πθ(st+1).
Decode latent actions using the decoder at+1 = Dβ(ψt+1).
Set y = λmini=1,2Q

′
ϕi
(st+1, at+1) + (1− λ)maxi=1,2Q

′
ϕi
(st+1, at+1).

Update critic by minimizing: L = (Qϕi
(s, a)− (r + γy))2 for i = 1, 2.

Update actor according to Equation 2.2.
Update target networks: θ′ ← τθ + (1− τ)θ′, ϕ′

i ← τϕi + (1− τ)ϕ′
i for

i = 1, 2.
end

2.4.3 Implementation Details

The full algorithm is summarized in Algorithm 1. Our algorithm can be built on

top of off-policy algorithm such as DDPG [69] or TD3 [30]. We use a deterministic

policy z = π(s) to output a latent action. The policy uses a tanh activation at the

output layer to limit the max latent action. This limit is set to 2 by default, which

corresponds to 2σ for the latent variable p(z) = N (0, 1). We use a soft Clipped

13

2. PLAS: Latent Action Space for Offline Reinforcement Learning

Double Q-learning with parameter λ to weight the two Q-functions. Following

common practice, we use target networks to stabilize training with hyperparameter τ .

The code for our algorithm is based on the BCQ repository, and we mostly follow the

hyperparameters of BCQ. Further implementation details and hyperparameters can

be found in Appendix A.1.

2.5 Experiments

We evaluate our algorithm on a wide range of continuous control tasks, including a

physical robot experiment on deformable object manipulation and the d4rl bench-

marks [29] including OpenAI Gym locomotion tasks, Adroit, Franka Kitchen, etc.

For the d4rl benchmarks, our analysis in the main text is focused on the locomo-

tion datasets; the full results including the other environments can be found in

Appendix A.2. We compare our method with the following baselines: BCQ [31],

BEAR [62], and BRAC [132]. We use the author’s implementation of these algorithms

with recommended hyperparameters reported in these papers. Note that we use the

latent policy without the perturbation layer by default because our primary focus is

on the policy constraint and in-distribution generalization. The experiments that use

the perturbation layer are explicitly mentioned.

2.5.1 Experiment Descriptions

Real-Robot Experiment: The task for the real-robot experiment is to slide along

the edge of the cloth as far as possible with a tactile sensor. The experiment setup

is shown in Figure 2.3(a) and an example of the tactile sensor reading is shown in

Figure 2.3(b). More details of this experiment can be found in Appendix A.6. The

dataset consists of the replay buffer from a previous online RL experiment with

around 7000 timesteps of transitions and 5 episodes (around 300 timesteps) of expert

demonstrations from a trained policy. We train the policy for 2400 steps in total for

each experiment with evaluations every 150 steps over 5 episodes.

Locomotion Datasets: We mainly focus on the locomotion environments from

the d4rl datasets in this section including Walker2d-v2, Hopper-v2, and Halfcheetah-

v2. For each environment, there are four types of datasets: random, medium, medium

14

2. PLAS: Latent Action Space for Offline Reinforcement Learning

(a) Experiment Setup (b) Tactile Sensor Readings (c) Training Curves

x
y

z

Figure 2.3: Real-robot experiment: (a) Experiment setup for the cloth sliding task.
The cloth is fixed at the top left corner. (b) An example of the tactile sensor readings
when the robot grasps at the edge of the cloth. (c) Training curves for the cloth
sliding task on our method and the baselines. It shows the episode reward over five
evaluation episodes every 150 training steps.

expert, and medium replay datasets. Random datasets are generated by randomly

initialized policies. Medium datasets are generated from rollouts of a “medium”

performance policy trained with Soft Actor-Critic up to a certain performance.

Medium-expert datasets are generated by combining the medium datasets and expert

datasets. Medium-replay datasets are the replay buffers created during the training

of the medium policies. Note that medium-replay datasets are much smaller than

the other types of datasets, making it more challenging to obtain stable training

performance. We train the policy for 500 epochs and each epoch has 1000 training

steps. The policy is evaluated every 1 epoch over 10 episodes.

2.5.2 Performance on Real-Robot Experiment

Figure 2.3(c) shows the evaluation performance of different methods across the training

process for the cloth sliding task. The brown dashed line indicates the behavior

cloning (BC) policy. It fails as expected because the average quality of the dataset

is poor. The “Offline-TD3” baseline is to directly run TD3 over the offline dataset

without any extra online data collection. The performance is even worse than BC,

which shows the necessity of designing offline RL algorithms that can utilize fixed

datasets for real-world applications. BCQ also doesn’t perform well, possibly because

it is overly constrained by the dataset distribution, resulting in similar performance

as behavior cloning. BEAR achieves reasonable performance at the beginning of

15

2. PLAS: Latent Action Space for Offline Reinforcement Learning

0 100 200 300 400 500
Epochs

0

1000

2000

3000

4000

5000

Ep
iso

de
 R

ew
ar

d

Walker2d-v2

0 100 200 300 400 500
Epochs

0

1000

2000

3000

4000

Ep
iso

de
 R

ew
ar

d

Hopper-v2

0 100 200 300 400 500
Epochs

0
2000
4000
6000
8000

10000
12000
14000

Ep
iso

de
 R

ew
ar

d

HalfCheetah-v2

PLAS (Ours)
BCQ
BRAC
BEAR
Expert score

Medium Expert Datasets

0 100 200 300 400 500
Epochs

0

500

1000

1500

2000

Ep
iso

de
 R

ew
ar

d

Walker2d-v2

0 100 200 300 400 500
Epochs

0
200
400
600
800

1000
1200
1400

Ep
iso

de
 R

ew
ar

d

Hopper-v2

0 100 200 300 400 500
Epochs

0

1000

2000

3000

4000

5000

6000

Ep
iso

de
 R

ew
ar

d

HalfCheetah-v2

PLAS (Ours)
BCQ
BRAC
BEAR

Medium Replay Datasets

Figure 2.4: Training performance for medium-expert and medium-replay datasets
on locomotion tasks. Each curve is averaged over 3 seeds. Shaded area shows one
standard deviation across seeds.

training but it drops soon after. Our method outperforms all the baselines, and the

final performance is similar to the expert policy.

2.5.3 Performance on D4RL datasets

To more systematically benchmark the performance of our method with the other

offline RL algorithms, we ran experiments on the d4rl benchmarks. We focus the

discussions and analysis on the locomotion environments here; full results on the d4rl

datasets can be found in Appendix A.2 including Locomotion, Maze2d, AntMaze,

Adroit Hand, Franka Kitchen environments. To highlight the performance of our

method over the medium-expert datasets and the medium-replay datasets, we include

the training curves in Figure 2.4. These two types of datasets are especially important

because they have diverse coverage over states and actions generated by a mixture of

policies. These kinds of diverse datasets are also more likely to appear in real-world

applications with data collected from different sources. The diversity allows the

potential to learn a good policy from the data; on the other hand, diversity also

16

2. PLAS: Latent Action Space for Offline Reinforcement Learning

0 100 200 300 400 500
Epochs

0

10000

20000

30000

40000

M
SE

0 100 200 300 400 500
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Po
sit

iv
e

Er
ro

r P
er

ce
nt

ag
e

0 100 200 300 400 500
Epochs

0

50

100

150

200

Po
sit

iv
e

Er
ro

r M
ea

n

0 100 200 300 400 500
Epochs

200

150

100

50

0

Ne
ga

tiv
e

Er
ro

r M
ea

n

PLAS (Ours)
BRAC
BEAR
BCQ

Figure 2.5: We perform an analysis of Q-function errors of different methods, using
the following metrics: (a) Mean-squared error of the Q-values (b) The percentage of
overestimated Q-values (c) Mean of the positive errors (magnitude of overestimation)
(d) Mean of the negative errors (magnitude of underestimation)

introduces difficulties for the policy constraints. Figure 2.4 shows that we consistently

achieve performance that is similar to or better than the best baselines on these

datasets, demonstrating the effectiveness of our method in fully utilizing the datasets.

2.5.4 Overestimation of Learned Q-functions

We analyze the quality of the learned Q-function in detail with the Walker2d medium-

expert dataset for different algorithms. By definition, the Q-value Qπ(st, at) is equal to

the expected return starting from state st following action at; our learned Q-function

attempts to estimate this value. Thus, we evaluate the Q-values by comparing them

to the true returns for the transitions during rollouts. The true return is calculated by

the cumulative discounted reward until termination or up to rt+1000, since the reward

after 1000 steps is negligible due to the discount factor. We define the estimation

error to be Q(st, at)−G(st, at), where G(st, at) is the empirical return. Positive error

corresponds to overestimation bias and negative error corresponds to underestimation

bias. In Figure 2.5, we show four metrics on the quality of the Q-function over N

transitions from 50 episodes:

• Mean Squared Error (MSE) - measures the overall quality:
∑

i(Q(si, ai)−
G(si, ai))

2)

• Positive Error Percentage - percentage of overestimation: 1
N

∑
i(1(Q(si, ai)−

G(si, ai)) > 0))

• Positive Error Mean - the mean value of the positive errors, which indicates

the average magnitude of over-estimation: Average of Q(si, ai)−G(si, ai) for

17

2. PLAS: Latent Action Space for Offline Reinforcement Learning

Table 2.1: Comparison of different perturbation values on random and medium
datasets. Scores are normalized. ϵ = 0 is the performance of the latent policy without
the additional perturbation layer.

Dataset ϵ = 0 ϵ = 0.05 ϵ = 0.1 ϵ = 0.2 ϵ = 0.5
walker2d-random 3.1 6.8 2.4 1.3 −0.3
hopper-random 10.5 11.1 11.6 12.2 13.3
halfcheetah-random 25.8 25.7 27.4 27.6 28.3
walker2d-medium 44.6 64.8 66.9 62.1 39.2
hopper-medium 32.9 35.5 17.5 2.5 2.1
halfcheetah-medium 39.3 41.3 42.2 42.2 40.4

Q(si, ai)−G(si, ai) > 0

• Negative Error Mean - the mean value of the negative errors, which indicates

the average magnitude of under-estimation: Average of Q(si, ai)−G(si, ai) for
Q(si, ai)−G(si, ai) < 0

MSE measures the overall estimation bias, and the other three metrics capture

the direction of the bias. Our method achieves consistently low MSE during training

compared with the baselines. Note that BRAC has low MSE during the beginning of

training because the return is close to 0, as shown in the training curves in Figure 2.4.

Although both our method and BRAC achieve similar performance at the end of

training on the Walker2d medium-expert dataset (though our method converges

faster), MSE indicates that our method results in a better Q-function. In terms of

the direction of the bias, BEAR has a large overestimation bias and BRAC has a

large underestimation bias. Overestimation bias is usually considered more harmful

than underestimation for Q-learning based algorithms [30]. As a result, although

BRAC has a higher MSE than BEAR, the evaluation performance is still better. Our

method does not have significant underestimation or overestimation in this case.

2.5.5 Effect of the Optional Perturbation Layer

In Section 2.3.2, we mentioned that when the Q-function generalizes well, allowing the

policy to select some out-of-distribution actions might be helpful. This motivates us to

introduce an additional perturbation layer as mentioned in Section 2.4.2. We evaluate

the benefit of this optional perturbation layer with different max perturbation limits,

18

2. PLAS: Latent Action Space for Offline Reinforcement Learning

with ϵ = 0 being the latent policy alone. The results for a selective set of environments

are summarized in Table 2.1. Note that the action space in these tasks is defined to

be (−1, 1); thus ϵ = 0.5 allows a very high range of perturbation. We found that the

importance of the perturbation layer depends on both the dataset and the environment.

Allowing out-of-distribution actions often leads to improved performance for random

datasets. The “medium” datasets tend to have peak performance with smaller

values of ϵ; a larger value likely leads to errors in the Q-function evaluation due to

out-of-distribution state-action pairs. The full results including medium-expert and

medium-replay datasets are in Appendix A.4. We found that medium-expert and

medium-replay datasets usually do not benefit from the perturbation layer.

2.6 Conclusion

We propose a straightforward approach to offline RL that implicitly constrains the

policy to be within the support of the dataset without being restricted by the

density of the dataset distribution. Furthermore, we study the effect of an additional

perturbation layer that allows out-of-distribution generalization of Q-functions. We

demonstrate that our approach can effectively learn a policy with real-world data in

the cloth sliding experiment and achieves competitive performance over offline RL

benchmarks. By enabling a more efficient use of data from various sources, PLAS

paves the way for future possibilities of using RL on real robots.

19

2. PLAS: Latent Action Space for Offline Reinforcement Learning

20

Chapter 3

Forgetting and Imbalance in Robot

Lifelong Learning with Off-policy

Data

3.1 Introduction

Figure 3.1: We investigate the
problem of robot lifelong learn-
ing with non-stationary dynam-
ics. In this example, a robot ex-
periences joint deformation dur-
ing training.

Lifelong learning, also commonly known as contin-

ual learning, studies the problem of learning with

a stream of tasks sequentially with incremental,

non-stationary data [35, 123]. Lifelong learning has

been an important topic in artificial intelligence

and it naturally reflects the challenges faced by

animals and humans [37]. In this work, we study

the problem of lifelong robot reinforcement learn-

ing in the face of changing environment dynamics

(Figure 3.1). Non-stationary environment dynam-

ics present a practical and important challenge for

training reinforcement learning policies on robots

in the real world. Especially on low-cost or low-tolerance robots, the robot dynamics

can change due to wear and tear both during training and deployment. Also, in most

21

3. Forgetting and Imbalance in Robot Lifelong Learning with Off-policy Data

natural settings, the robot’s environment will change over time, for instance when the

robot encounters new terrains or objects. Ideally, when the robot encounters the same

or a similar environment again during deployment, it should be able to draw on the

entirety of its past experience to retrieve the previously learned skill. In addition, one

important property of sequential environment variations in the real world is that the

task boundaries may be unknown or not well defined. For example, deformation of the

robot can happen gradually. This limits the applicability of many existing approaches

in lifelong learning which rely on well-defined task boundaries [60, 73, 106]. We

aim to investigate a practical solution for lifelong robot learning across environment

variations without the need of task boundaries.

One important challenge in lifelong learning is the trade-off between remembering

the old task (backward transfer) and learning the new task efficiently (forward

transfer). The most widely studied aspect of this trade-off is the catastrophic

forgetting issue of neural networks [28]. We follow the memory-based method to

avoid forgetting by simply saving all the incoming data in the replay buffer and train

the policy with an off-policy algorithm, which does not require task boundaries [102].

However, we find that even if we save all the data across environment variations,

“forgetting” still happens. In this case, the additional challenge of forgetting is due to

the extrapolation error of the Q-function which is widely discussed in the Offline RL

literature [31]: when the agent does not have access to the previous environments, it

becomes “offline” over these environments. Thus, the agent cannot correct for the

overestimation error of the Q-function by collecting more data in these environments.

Conversely, if we use “conservative” (or “pessimistic”) algorithms that force the policy

to stay close to the existing replay buffer to maintain the performance in the old

environments, it affects data collection and creates difficulties in learning in the new

environment [50]. Different from the stability-plasticity dilemma of neural networks

often discussed in the lifelong learning literature, this trade-off between forward and

backward transfer is specific to RL due to off-policy data. We propose the Offline

Distillation Pipeline to disentangle this trade-off into two stages. To learn the task in

the latest environment efficiently, we can use any RL algorithm suitable for online

data collection without worrying about forgetting. To obtain a policy for deployment

that effectively accumulates previous experience across environment variations, we

can distill the entire dataset into a policy by treating it as an offline RL problem.

22

3. Forgetting and Imbalance in Robot Lifelong Learning with Off-policy Data

In addition, we investigate a practical consideration of lifelong learning where

the stream of experience is imbalanced across environment variations. For example,

the agent might be trained on one environment much longer than the other. The

ideal lifelong learning algorithm should be robust to such imbalanced experience. In

the Offline Distillation Pipeline, we find that training a policy with the imbalanced

datasets from multiple environments can sometimes lead to much worse performance

than training on each dataset individually. Through the experiments, we provide

evidence for the following hypothesis: both the imbalanced quality and the imbalanced

size of the datasets become extra sources of extrapolation error in offline learning.

The imbalanced quality makes the Q-function biased towards larger values. The

imbalanced size leads to more fitting error of the policy network on the smaller

dataset, which exacerbates the bootstrapping error caused by out-of-distribution

actions. Furthermore, we find that keeping the policy to be closer to the dataset could

be a simple yet effective solution to this issue without requiring task boundaries.

In summary, we identify two practical challenges in lifelong robot learning over

environment variations and provide corresponding analysis and solutions. The contri-

butions of this work include the following:

• We identify the trade-off between learning in the new environments and remem-

bering the old environments in existing off-policy RL algorithms even when all

the data is kept in the replay buffer. We connect this problem to the Offline RL

literature and propose the Offline Distillation Pipeline to break this trade-off

without the need for task boundaries.

• We identify that the dataset imbalance can lead to unexpected performance

drop in offline learning and characterize its relationship with extrapolation error

with thorough empirical analysis.

We evaluate our method on a bipedal robot walking task in simulation with

different environment changes. The proposed pipeline is shown to achieve similar or

better performance than the baselines across the sequentially changing environments

even with imbalanced experience.

23

3. Forgetting and Imbalance in Robot Lifelong Learning with Off-policy Data

3.2 Related Work

Lifelong Learning: Lifelong learning has been widely studied in machine learning

literature [35, 56, 123]. When given a stream of non-stationary data or non-stationary

tasks, the agent should maintain the performance of previous tasks (backward transfer)

while learning the new task efficiently (forward transfer). One direction of lifelong

learning literature focuses more on the issue of backward transfer caused by the

catastrophic forgetting of neural networks [28]. Existing methods in this direction

can be expansion-based [106, 108], regularization-based [60], gradient-based [73] or

memory-based [102]. There has also been a line of work in task-agnostic continual

learning [5, 6, 146], where the task boundaries are unknown or not well-defined. We

follow the task-agnostic memory-based method from Rolnick et al. [102] by saving all

the transitions in the replay buffer. In this work, we show that there are additional

challenges in lifelong reinforcement learning besides the catastrophic forgetting issue

of the neural networks. Another direction in lifelong learning focuses on maximizing

forward transfer without worrying about forgetting where the performance is only

measured by the new task. For example, recent work Xie and Finn [134] studies the

problem of learning a sequence of tasks and proposes to selectively use past experience

to accelerate forward transfer.

Offline Reinforcement Learning: The additional forgetting issue in off-policy

reinforcement learning discussed in this work is related to offline RL. Thus, the

proposed Offline Distillation Pipeline is based on this line of work. Offline RL investi-

gates the problem of learning a policy from a static dataset without additional data

collection [24, 65, 67]. Such a problem setting challenges existing off-policy algorithms

due to the mismatch between the state-conditioned action distribution induced by the

policy and the dataset distribution [31]. Previous work has proposed to fix this issue

by constraining the policy to be close to the dataset explicitly [50, 62, 112, 130, 132]

or implicitly [31, 151], learning a conservative Q-function [63], or modifying the

reward based on model uncertainy [57, 141]. We use Critic Regularized Regression

(CRR) from Wang et al. [130] to perform offline distillation. In terms of related

work in imbalanced dataset in offline RL, Zhang et al. [147] investigates imbalanced

offline datasets collected by a variety of policies, in contrast to having a mixed

24

3. Forgetting and Imbalance in Robot Lifelong Learning with Off-policy Data

dataset from multiple environments in our case. While most of the work in offline

RL focuses on one task, Yu et al. [142] studies multi-task offline RL with the goal of

improving single task performance by selectively sharing the data across tasks. In

contrast, we aim at learning a universal policy for all the tasks which does not rely

on task boundaries during training. The difference in the objectives is mainly due to

the difference in the domains of interests: the “tasks” are defined to have different

reward functions in Yang et al. [137] while defined to be different dynamics in our case.

Distillation: The proposed pipeline is also related to knowledge distillation [41].

In RL, policy distillation has been used to compress the network size [105, 108],

improve multitask learning [122, 126], or improve generalization [48]. In contrast to

policy distillation methods which distill the knowledge from networks to networks, we

directly distill the data into a policy. This eliminates the need of task boundaries and

additional data collection in previous methods. Nonetheless, the proposed pipeline

with offline distillation may still share similar benefits of modifying network size or

improving generalization because it trains a new policy from scratch [48].

3.3 Preliminaries

3.3.1 Problem Definition: Lifelong reinforcement learning

with environment variations

We define the lifelong learning problem across environment variations to be a time-

varying Markov Decision Process (MDP) M as a tuple (S,A, Pt, r, γ), with state

space S, action space A, non-stationary dynamics function Pt : S ×A× S → [0,∞)

that may change over time t, reward function r : S × A × S → [rmin, rmax], and

discount factor γ. In contrast to our work, most reinforcement learning literature

considers static dynamics, which is a special case when Pt = P for all t. In rein-

forcement learning, the objective is to optimize the policy to maximize the return

given by Gt =
∑∞

k=0 γ
kr(st+k, at+k, st+k+1). We also define a policy π(a|s) and its

corresponding Q-function Qπ(s, a) = Eπ,Pt [Gt|st = s, at = a] where the expectation is

taken over the trajectories that start from an initial state s, an initial action a, and

follow st+1 ∼ Pt(s|st, at) and at+1 ∼ π(a|st+1) for the following timesteps.

25

3. Forgetting and Imbalance in Robot Lifelong Learning with Off-policy Data

In this work, we assume that the agent experiences Pt for a fixed amount of time

[0, T] during training, and will be evaluated and deployed at time T . This involves

efficient data collection across [0, T] and being able to recall the skills at time T . We

formulate our problem as maximizing the return of the policy over the support of the

environment distribution p(Pt=[0,T]). Intuitively, although the agent might experience

one environment more than the other during training, we treat different environments

as equally important. For example, the agent experiences Pt = PA for t ≤ tA and then

experiences Pt = PB for tA < t ≤ tA + tB. In this case, the objective can be defined

as maximizing the performance of EPA
[G] + EPB

[G] during evaluation at the end of

training. We aim to learn a policy that works well on both PA and PB regardless of tA

and tB. Although we have two distinct stages with two environments in this example,

in general the task boundaries may not always be accessible or well-defined since Pt

can change continuously. Without task boundaries, we cannot directly optimize the

policy over the support of Pt instead of the density of Pt. However, we aim to treat

the importance of different environments equally during evaluation.

3.3.2 Off-Policy Reinforcement Learning Algorithms

The proposed Offline Distillation Pipeline is built on top of two RL algorithms:

Maximum a Posteriori Policy Optimisation (MPO) [1, 2] and Critic Regularized

Regression (CRR) [130]. As will be discussed later in Section 3.5, our pipeline

uses MPO to update the policy during data collection, and uses CRR for offline

distillation. Although MPO and CRR are both off-policy RL algorithms and share a

lot of similarities, they are designed for different problem settings. MPO works well

in the online setting, i.e. when data collection is allowed. CRR is designed for offline

reinforcement learning, i.e. to learn from a fixed dataset without additional data

collection. To stabilize learning in the offline setting, CRR attempts to avoid selecting

actions outside of the dataset, which also renders it more “conservative”. More

discussion of the connections between CRR and MPO can be found in Abdolmaleki

et al. [3], Jeong et al. [50]. Both algorithms alternate between policy evaluation and

policy improvement. Both algorithms perform policy evaluation to estimate the

Q-function Q̂π(st, at) using the Bellman Operator T :

T Q̂π(st, at) = Est+1,at+1∼π(a|st+1)[rt + γQ̂π(st+1, at+1)]. (3.1)

26

3. Forgetting and Imbalance in Robot Lifelong Learning with Off-policy Data

We will discuss their differences in the policy improvement step below.

Maximum a Posteriori Policy Optimisation (MPO): To improve the current

policy πold(a|s) given the corresponding Q-function Qold(a, s) and a state distribution

µ(s), MPO performs two steps. In the first step, for each state s ∼ µ(s), an improved

policy q(a|s) ∝ πold(a|s)f(Qold(s, a)) is obtained where f is a transformation function

that gives higher probabilities to actions with higher Q-values. In the second step, a

new parametric policy πnew is obtained by distilling the improved policies q(a|s) into
a new parametric policy using the supervised learning loss:

πnew = argmax
π

∫
µ(s)

∫
q(a|s) log π(a|s)f(Qold(s, a))dads (3.2)

In practice, we represent q(a|s) as a non-parametric policy consists of samples

from πold(a|s) for each state and re-weighting each sample by f(Qold(s, a)). If the

exponential function is chosen as the transformation function f , the improved policy

can be written as q(a|s) ∝ πold(a|s) exp(Qold(s, a)/β) where β is the temperature

term. This is the solution to the following KL regularized RL objective that keeps

the improved policies q close to the current policy πold while maximising the expected

Q-values:

q = argmax
q

Es∼µ(s)[Ea∼q(·|s)[Q
old(s, a)]− βKL(q(·|s)||πold(·|s))] (3.3)

Critic Regularized Regression (CRR): CRR follows a similar procedure as MPO

for the policy improvement step. The major difference is the way of constructing the

improved policy q. Since CRR is designed for offline RL, the optimization objective

is to improve the policy according to the Q-function while keeping the policy close

to the dataset distribution. In CRR, we construct the improved policies based on

the joint distribution of µB(a, s) by sampling state-action pairs from the dataset B.
Thus, the improved policy for each state s ∼ µB(s) is defined as a joint distribution

q(a, s) ∝ µB(a, s)f(Q
old(s, a)) instead of a conditional distribution q(a|s) as in MPO.

Similarly, Equation 3.2 can be modified to obtain a new parametric policy πnew:

πnew = argmax
π

∫
q(a, s) log π(a|s)das (3.4)

27

3. Forgetting and Imbalance in Robot Lifelong Learning with Off-policy Data

When the transformation function is the exponential function, the improved

policy can be written as q(a, s) ∝ µB(a, s) exp(Q
old(s, a)/β) which is a solution to the

following objective similar to Equation 3.3:

q = argmax
q

Es,a∼q[Q̂
π(s, a)]− Es,a∼B[βKL[q(a, s)||µB(a, s)]]. (3.5)

In Equation 3.5, when the temperature β is higher, the constraint on staying close

to the dataset becomes stronger, which makes the policy more “conservative”. A

common practice is to replace the Q-value by the advantage in the transformation

function: q(a, s) ∝ µB(a, s) exp(A
old(s, a)/β). Besides the exponential function,

another popular choice of the transformation is the indicator function: q(a, s) ∝
µB(a, s)1[A

old(s, a) > 0] where A is the advantage function. The indicator function

corresponds to an exponential transformation clipped to [0, 1] with β → 0 which is

less “conservative”.

3.4 Forward and Backward trade-off in Lifelong

Reinforcement Learning

Figure 3.2: Forgetting in
MPO: The figure shows a
performance drop in the
original environment after
a switch of environment
at 200k steps.

To build a pipeline for lifelong learning, we need to first

deal with the catastrophic forgetting issue of neural net-

works, as widely discussed in the literature [35]. We follow

the memory-based approach from Rolnick et al. [102] by

saving all the transitions across the agent’s life-cycle and

run off-policy algorithms such as MPO [2]. In off-policy

algorithms, the policy is used for exploration in the latest

environment while being trained on the entire history of

data. However, we still observe that “forgetting” happens

in the old environment following this setup. Figure 3.2

shows an example in which the policy experiences a change

in the environment dynamics at 200k steps while being

evaluated in the first environment across the full training

process. More details of the experiment can be found in Section 3.7.1. Once the policy

28

3. Forgetting and Imbalance in Robot Lifelong Learning with Off-policy Data

starts training in a new environment, the performance of MPO drops significantly

even if the data from the old environment is kept in the replay buffer. We identify this

extra challenge in lifelong reinforcement learning besides the catastrophic forgetting

issue of the neural network.

The reason behind this drop is related to the issues of applying off-policy algorithms

to Offline Reinforcement Learning problems [31]. The objective of offline RL is to

learn a policy from a fixed dataset without further exploration. During training, due

to the extrapolation error in the Q-function, the policy might select overestimated

actions beyond the dataset. This error will be accumulated by bootstrapping during

Q-function updates which results in significant overestimation bias of the Q-function.

When the agent does not have access to collect more data to correct the overestimation

bias, the performance of the policy will drastically degrade. Thus, off-policy algorithms

designed with the assumption of active data collection often break under this problem

setting. Similarly, in the lifelong learning scenario discussed above, when the agent

switches from one environment to another, it is essentially training over the static

dataset of the old environment. When the agent cannot collect more data in the old

environment, it cannot correct the extrapolation error on those state-action pairs.

Figure 3.3: CRR is not
as efficient as MPO when
training from scratch.

Prior work in offline RL proposes to fix the overesti-

mation issue of off-policy algorithms by restricting the

policy π(a|s) to be closer to the conditional distribution

µB(a|s) of the dataset, such as Critic Regularized Regres-

sion (CRR) as described in Section 3.3.2. If we apply a

similar “conservative” objective in the lifelong learning

setting, we find that it is able to reduce the forgetting is-

sue. However, it will instead affect forward transfer due to

the conservatism. Figure 3.3 shows an example of running

CRR from scratch, which can be viewed as the beginning

stage of a lifelong learning experiment. Although CRR

has been shown to have strong performance on offline RL

benchmarks, it does not have good performance when exploration is needed due to

the constraint on the policy. In the experiment, we will further show that tuning the

constraint will lead to either forgetting or ineffective forward transfer.

The above examples demonstrate the trade-off between preserving performance

29

3. Forgetting and Imbalance in Robot Lifelong Learning with Off-policy Data

Figure 3.4: We propose the Offline Distillation Pipeline: the agent is trained over the
environments sequentially during online interaction phase and runs offline distillation
at the end of training before deployment. “RB” means replay buffer in the figure.

in the old environment (backward transfer) and exploring in the new environment

effectively (forward transfer). Note that this is different from the “stability-plasticity”

dilemma in previous lifelong learning literature in two ways. First, in terms of

backward transfer, the issue of forgetting rises from the extrapolation error of Q-

function which is specific to off-policy reinforcement learning. Second, in terms of

forward transfer, previous work mainly considers the trade-off between past and

recent experience from the streaming data. The issue we discuss above is a trade-off

between past and future experience which is specific to reinforcement learning where

the performance highly depends on effective data collection.

3.5 Offline Distillation Pipeline

To address this trade-off, we propose the Offline Distillation Pipeline shown in

Figure 3.4. During data collection across environment variations, we can use any RL

algorithm that maximizes forward transfer without considering forgetting. At the

end of training, we “distill” the experience into a single policy by treating the entire

dataset as an offline RL dataset. In this work, we use MPO to train the policy for data

collection, and use CRR during offline distillation. In this way, the forgetting issue of

the off-policy data is handled by the distillation step without affecting exploration.

The full algorithm can be found in Appendix B.2.

There are several benefits of this pipeline that are especially important for lifelong

30

3. Forgetting and Imbalance in Robot Lifelong Learning with Off-policy Data

learning of real robots. First, the proposed pipeline does not require task boundaries.

The wear and tear of the robot might happen over time and sometimes the change

of the environment might not be immediately noticeable. This is different from a

common multi-task learning setting where the task switches are well defined (such as

learning to stand up and then learning to walk). In our method, the distillation step

happens after the agent has experienced the sequence of environments and treats

the replay buffer as a single dataset. Second, our method is flexible on the choice

of data collection methods since the offline distillation phase only shares the replay

buffer dataset with the online interaction phase. For example, the training of multiple

robots can happen in parallel or sequentially, and potentially with different choices of

algorithms. The Offline Distillation Pipeline can reuse all of these previous experience

within the “lifetime” of the platform.

3.6 Imbalanced Experience in Offline Distillation

The second challenge we identify in such a lifelong learning setting is the issue of

imbalanced experience with offline data. In the offline distillation phase, we find that

when the policy is trained over the combined dataset from multiple environments,

the imbalance of the datasets might create an unexpected performance drop. For

example, following Figure 3.4, the agent is first trained in Env-A and then switches

to Env-B. During the offline distillation phase, we use CRR to train a policy with the

combined dataset DA ∪ DB and evaluate the performance in both environments, as

formulated in Section 3.3.1. We find that this sometimes results in worse performance

in Env-A compared to training on DA alone. Although previous work has studied

the problem of data imbalance in supervised learning [53, 101], the issue we observe

has the extra complexity from the boostrapping procedure in off-policy RL. We

provide evidence to the following hypothesis: Both the imbalanced quality and the

imbalanced size of the combined dataset lead to additional extrapolation error of

the Q-function in offline learning which contribute to the performance drop. As we

discussed in Section 3.4, extrapolation error of the Q-function plays an important role

in the failure cases in offline RL. The imbalanced dataset exacerbates this problem

in the following way: if one dataset has a higher average return than the other, it

may cause overestimation bias of the Q-function for the “weaker” dataset. At the

31

3. Forgetting and Imbalance in Robot Lifelong Learning with Off-policy Data

same time, if there is a large size imbalance, the policy network will be trained with

more data points from one environment than the other. In this way, the policy

may create more out-of-distribution actions in the environment that comes with a

smaller dataset which makes the extrapolation error worse. Both of these two aspects

contribute to the undesirable performance we observe in offline distillation phase. In

the experiment, we provide evidence to support this hypothesis and eliminate other

potential factors.

To build a robust algorithm for lifelong learning, we need to improve the offline

distillation phase to achieve good performance on all of the environments despite

imbalanced experience. We prefer a solution that does not rely on task boundaries

as discussed before. Our insight is that since both the quality imbalance and the

size imbalance eventually result in additional extrapolation error, we can follow the

conservative objective in offline RL and make the policy even more conservative to

compensate for this issue. As shown in Equation 3.5, the temperature β controls the

strength of the KL term in the policy improvement objective in CRR. With a larger

temperature, the policy is constrained to be closer to the behavior policy µB(a|s)
of the dataset. We find that the imbalanced dataset requires a higher strength of

the KL term compared to single dataset training to compensate for the additional

extrapolation error. In the experiment, we show that increasing β is a simple yet

effective fix to the data imbalance problem. The effectiveness of increasing β can also

serve as an evidence that the performance drop is highly related to extrapolation

error. Note that increasing β only makes the policy more “conservative” during the

distillation phase which will not affect exploration.

3.7 Experiments

3.7.1 Experiment Setup

We study the lifelong learning problem in a simulated bipedal walking task, where

the goal is to maximize the forward velocity while avoiding falling. Our experiments

involve a small humanoid robot, called OP31, that has 20 actuated joints and has

been previously used to train walking directly on hardware [8]. All of the experiments

1https://emanual.robotis.com/docs/en/platform/op3/introduction/

32

https://emanual.robotis.com/docs/en/platform/op3/introduction/

3. Forgetting and Imbalance in Robot Lifelong Learning with Off-policy Data

Figure 3.5: Experiment Setup: A bipedal robot walking task with various environment
variations.

in this work are conducted in simulation both due to limited access to hardware

and for a more controlled experiment setting. All of the results are averaged over

3 random seeds. The shaded area of the curves and the error bars of the bar plots

represent ± one standard deviation across seeds.

The experiments in the section are based on the setup where the robot is trained

in Env-A for 0.2M steps, and then trained in Env-B for 1M steps (Figure 3.4). The

goal is to achieve good performance at the end of training in both Env-A and Env-

B. Additional experiment setups with three environments and parallel sharing can

be found in Appendix B.3. To evaluate the generality of the results, we consider

different types of changes in the environment including softer ground texture, hip joint

deformation and larger foot size (Figure 3.5). The parameters for each change of the

environment are chosen to create a clear performance drop when we perform zero-shot

transfer of a policy trained in the default environment to the new environment. In the

following experiments when there is a switch from Env-A to Env-B, we use the default

environment as Env-A, and change one of the physical parameters to create Env-B.

When we switch from one environment to another, we always keep the previous policy,

Q-function and the replay buffer.

To remove partial observability in non-stationary dynamics, we include the ground

truth physical parameters in the observation. This eliminates the possibility that the

issue we observe in the lifelong learning pipeline and the imbalanced experience are

caused by the partial observability. The results we provide can be served as an upper

33

3. Forgetting and Imbalance in Robot Lifelong Learning with Off-policy Data

Figure 3.6: Evaluation curves of the lifelong learning experiment across two stages.
The Offline Distillation Pipeline effectively breaks the trade-off between forward and
backward transfer and achieves better performance than the baselines at the end.

bound on the expected performance without the physical parameters. However, the

physical parameters are not explicitly used to denote task boundaries in the proposed

method. In a realistic scenario, the partial observability could be handled by memory

or system identification methods [39, 143, 150]. In these cases, the variations of

the environments might be represented as continuous embeddings which cannot be

used as task boundaries. Thus, we avoid relying on the physical parameters in the

proposed pipeline as task boundaries.

3.7.2 Offline Distillation for Lifelong Reinforcement

Learning

In this section, we demonstrate the trade-off between forward transfer and backward

transfer in lifelong reinforcement learning and the effectiveness of the Offline Dis-

tillation Pipeline. The policy is trained from scratch in Env-A during Stage-1 and

then switched to Env-B during Stage-2 (as illustrated in Figure 3.4). We compare

the performance of MPO, CRR with a less conservative objective (with an indicator

function which corresponds to β → 0 as discussed in 3.3.2), CRR with a more

conservative objective (β = 1) and the Offline Distillation Pipeline. In the example

shown in Figure 3.6, the robot in Env-B has its right hip joints deformed for 0.3 rad.

The results for more Env-B variations are included in Appendix B.1.

34

3. Forgetting and Imbalance in Robot Lifelong Learning with Off-policy Data

We first demonstrate the forward transfer problem in Stage-1. As shown on the left

figure in Figure 3.6, conservative algorithms such as CRR cannot learn as efficiently

as MPO from scratch. Then, we show the backward transfer problem in Stage-2. To

compare the performance drop better, we enforce the same starting performance of

Stage-2 for all the baselines. This is done by loading the same agent (networks and

replay buffer) trained with MPO from Stage-1. All the baselines keep training on

the loaded replay buffer with Env-A data while collecting new data in Env-B with

the latest policy. In Stage-2, the policy only collects data in Env-B, but we evaluate

the performance in both Env-A and Env-B. From the middle figure in Figure 3.6,

the performance of MPO drops significantly in Env-A after the switch. This could

potentially be explained by the fact that Env-A transitions are “offline” during

Stage-2 and thus the extrapolation error starts to accumulate. The forgetting issue

also happens in the less conservative CRR, despite being less severe than MPO. The

more conservative CRR keeps the performance of Env-A effectively which indicates

that the performance drop is indeed related to the extrapolation issue in offline RL.

However, as shown in the right figure in Figure 3.6, more conservative CRR does not

improve the performance in Env-B as the other baselines.

In summary, these baselines either struggle with backward transfer or forward

transfer. As described in Section 3.5, we propose the Offline Distillation Pipeline

which distills the data collected by MPO using CRR. In this experiment, we perform

the distillation step at the end of Stage-2. The performance is shown as the dotted

lines in the figures. Taking the best of both world, our method can achieve better

performance than the baselines in both environments. Note that in this experiment

we include the results of the proposed method with the data imbalance issue fixed

which will be discussed in the next section.

3.7.3 Imbalanced Experience in Offline Distillation

As discussed in Section 3.6, we sometimes observe a performance drop during the

distillation phase in the proposed pipeline with imbalanced experience. We will

provide experimental evidence for the hypothesis that the decrease in performance

is caused by the imbalanced size and quality between the datasets. In this section,

we use CRR with the indicator function by default which corresponds to a less

35

3. Forgetting and Imbalance in Robot Lifelong Learning with Off-policy Data

conservative CRR objective as discussed in Section 3.3.2.

The Imbalance Issue. Following the setup in the previous section (Figure 3.4),

we run the offline distillation step at the end of Stage-2 with the combination of

dataset DA in Env-A from Stage-1 and DBi
in Env-B from Stage-2, both collected

by MPO. We apply different environment variations in Env-B to generate DBi
with

different i while keeping DA the same in the combined dataset (Figure 3.5). In

Figure 3.7a, the blue curves (Combined Dataset) show the performance of the

distilled policy πDA∪DBi
evaluated in Env-A and Env-B across the CRR training

process of the distillation stage. Each column corresponds to a different DBi
. Note

that there is no data collection in this stage and the x-axis here is the number of policy

updates in CRR rather than environment steps. As a comparison, we run CRR on DA

and DBi
separately with the same hyperparameters (Env-A Dataset Only, Env-B

Dataset Only). Given that there is no partial observability (see Section 3.7.1), we

expect πDA∪DBi
to have similar or better performance than πDA

evaluated in Env-A,

and πDBi
evaluated in Env-Bi. From the second row of Figure 3.7a, the performance

in Env-Bi is similar between πDA∪DBi
and πDBi

at convergence. However, from the

first row of Figure 3.7a, the performance of πDA∪DBi
in Env-A is much worse than

training with DA alone: we observe the blue curves to converge at a lower reward,

converge much slower, or becomes unstable during training. Despite being trained on

the same DA, the distilled policies πDA∪DBi
have very different performance in Env-A

due to the fact that they are combined with different DBi
. Although the performance

drop in Env-A does not always happen, it is important to understand when and why

the performance degrades to develop a robust lifelong learning pipeline that works for

diverse settings. To get more insights of the problem, we also train a behavior cloning

policy with the combined dataset. Figure 3.8 includes the final performance of CRR

(Baseline) and behavior cloning (BC) over the combined dataset. Despite the size

imbalance, with only supervised learning, BC performs reasonably well in Env-A.

The CRR Baseline is much worse than BC in Env-A. This comparison indicates that

the performance drop we observe in Env-A is more likely to be rooted in the RL

procedure, instead of being a regular data imbalance problem in a supervised setting.

We have also tried a few sanity check experiments including increasing batch size,

increasing network capacity, or using a mixture of Gaussians as the policy output.

None of these can prevent the performance drop in Env-A. In the following sections,

36

3. Forgetting and Imbalance in Robot Lifelong Learning with Off-policy Data

(a) Reward

(b) Q-values

Figure 3.7: The imbalance issue in Offline Distillation: Training CRR with the
combined dataset results in much lower performance in Env-A compared to training
on the individual dataset. However, the worse performance corresponds to a higher
average Q-value which indicates overestimation.

37

3. Forgetting and Imbalance in Robot Lifelong Learning with Off-policy Data

Figure 3.8: To study the imbalance issue, the figure shows the final performance of
different variants of the offline distillation step at 5e6 policy updates. The Baseline
corresponds to the performance of Combined Dataset in Figure 3.7.

we will discuss the most important experiments that can support our hypothesis

discussed in Section 3.6.

Overestimation due to the imbalanced quality. Figure 3.7b plots the average

estimated Q-values of each method over (s, a) ∼ DA and (s, a) ∼ DBi
separately.

Although πDA∪DB
has a lower performance in Env-A than πDA

, the corresponding

Q-functions Q
πDA∪DBi produce higher estimated Q-values over Env-A datapoints,

which indicates significant overestimation. In contrast, if we compare the Q-values

over (s, a) ∼ DBi
on the second row, the curves are similar to each other within each

plot. This indicates that Q
πDA∪DBi suffers from overestimation specifically for Env-A

data points. Furthermore, we observe that the average Q-value over DBi
is higher

than DA for the individual dataset experiments. This is because DA is collected

by training from scratch, while DBi
is collected during Stage-2 where the policy is

bootstrapped from the previous experience and starts from a higher performance (see

Figure 3.6). This observation leads us to the hypothesis that the high value datapoints

in Env-B bias the Q-function which leads to overestimation for Env-A datapoints.

To verify this hypothesis, we perform an experiment where we scale the reward for

all the transitions in DB by 0.5, which does not change the optimal solution of the

policy. After this change, the distilled policy with the combined dataset works well on

both environments (Scale Rwd in Figure 3.8) and achieves similar performance as

38

3. Forgetting and Imbalance in Robot Lifelong Learning with Off-policy Data

the individual dataset baselines. However, re-scaling the reward is not an acceptable

solution in our problem setting because it requires the knowledge of task boundaries.

It only serves as an analysis to demonstrate the imbalance issue due to the quality of

the dataset.

Additional fitting error of the actor. We also test the contribution of the

fitting error of the actor to the overall extrapolation error. We use separate actor

networks for each dataset when training CRR on the combined dataset DA ∪ DBi

(Two Actors in Figure 3.8): Actor-A and Actor-B are trained with the transitions

from Env-A and Env-B respectively, while the critic is shared across two environments.

This change also makes the policy work well in both environments despite that the

imbalanced reward is not corrected. In the Two Actors experiment, we find that

the overestimation over DA still exists but has been reduced. Together with the

Scale Reward experiment, the results indicate that the overestimation we observe

in Figure 3.7b in Env-A is caused by two sources of error: the imbalanced quality

creates overestimation; The imbalanced size creates more fitting error of the actor

which results in more out-of-distribution actions that may take advantage of the

overestimation. Note that using two separated actors also requires task boundaries

and only serves as an analysis.

Effectiveness of the temperature. As shown in previous sections, fixing either

the imbalanced quality or the fitting error of the actor makes the algorithm stable

when evaluated in both Env-A and Env-B. However, we need a solution that does not

require task boundaries. As proposed in Section 3.6, increasing the temperature term

β in CRR can largely fix this issue. Figure 3.8 includes the performance of CRR with

different β. Baseline uses an Indicator function as the transformation function which

corresponds to very small β. With increased β, the performance in Env-A increases.

Although we observe a minor drop in Env-B with high β, the overall performance

in both Env-A and Env-B are reasonably satisfactory. To further demonstrate the

effectiveness of increasing β, we conduct an experiment where we upsample either

DA or DBi
to simulate other compositions of the combined dataset (Figure 3.9). As

mentioned in Section 3.7.1, the size ratio of DA : DBi
is 1 : 5 (denoted as raw).

The performance in Env-A of CRR with the indicator function (Baseline) decreases

drastically with higher Env-B sampling ratio. Interestingly, when the size ratio is

1 : 1, the policy is still not able to consistently achieve the single dataset performance

39

3. Forgetting and Imbalance in Robot Lifelong Learning with Off-policy Data

Figure 3.9: Sensitivity analysis of data imbalance: Higher β makes CRR more robust
to different ratios of dataset imbalance. The legend indicates the dataset size ratio of
Env-A:Env-B corresponding to different colors.

in Env-A (which is expected to be above 400 as shown in Figure 3.6). In contrast,

CRR with β = 1 works well across a wider range of size ratios (which is what we

use in Section 3.7.2). As shown in previous work [130], the specific choice of β could

be domain-dependent. The more important takeaway from this analysis is that if

we observe a performance drop during RL training with an imbalanced dataset, we

may consider increasing the conservativeness of the policy to compensate for the

additional extrapolation error, such as increasing β in CRR.

3.8 Conclusion

In this work, we investigate the lifelong learning problem of variations in environment

dynamics as commonly observed when learning on robot hardware. Our main

contributions include identifying and addressing two challenges within such a problem

setting: First, we find that there is a trade-off between backward and forward

transfer of existing RL algorithms in this problem setting even when we keep all

of the transitions in the replay buffer. We connect the problem to offline RL and

40

3. Forgetting and Imbalance in Robot Lifelong Learning with Off-policy Data

propose the Offline Distillation Pipeline to break this trade-off. In the proposed

pipeline, the forgetting issue is prevented by distilling the replay buffer data across

multiple environments into a universal policy as an offline RL problem. In this

way, the solution to the forgetting problem is disentangled from data collection. We

empirically verify the effectiveness of the pipeline through a bipedal robot walking task

in simulation across various physical changes. Second, we identify an potential issue

with imbalanced experience in offline distillation. Through controlled experiments,

we demonstrate how the quality imbalance and the increased fitting error of the actor

might exacerbate extrapolation error and create a performance drop. We also provide

a simple yet effective solution to this issue by increasing the temperature term in

CRR.

The insights from this work could potentially be applied in other settings beyond

the lifelong learning problem of varying dynamics. For example, the Offline Distillation

Pipeline can be used in other lifelong reinforcement learning settings with a different

definition of “task” without varying dynamics. The imbalance issue may also happen

in other cases of multi-task learning in offline RL, or in single-task RL with sufficient

non-stationarity (e.g. due to partial observability). In future work, we hope to see

the proposed method being verified and deployed in more settings including having

multiple distillation steps across the training procedure or real robot experiments.

41

3. Forgetting and Imbalance in Robot Lifelong Learning with Off-policy Data

42

Chapter 4

Learning to Grasp the Ungraspable

with Emergent Extrinsic Dexterity

4.1 Introduction

Humans have dexterous multi-fingered hands; however, similarly dexterous robot

hands are expensive and fragile. Instead, a simple hand can achieve dexterous

manipulation by leveraging the environment, known as “Extrinsic Dexterity” [18].

For example, a simple gripper can rotate an object by pushing it against the table [11],

or lifting an object by sliding it along a vertical surface [45]. With the exploitation

of external resources such as contact surfaces or gravity, even simple grippers can

perform skillful maneuvers that are typically studied with a multi-fingered dexterous

hand. Different from a common practice of considering the robot and an object of

interest in isolation, extrinsic dexterity focuses on a holistic view of considering the

interactions among the robot, the object, and the external environment.

Previous work in extrinsic dexterity has demonstrated a variety of tasks such as

in-hand reorientation with a simple gripper, prehensile pushing, or shared grasping [11,

18, 45]. However, the underlying approaches come with several limitations such as

relying on hand-designed motions or primitives with limited capability of generalizing

across different objects, making assumptions about contact locations and contact

modes, or requiring specific gripper design [11, 12, 15, 16, 18, 44, 45]. Instead, we

43

4. Learning to Grasp the Ungraspable with Emergent Extrinsic Dexterity

Figure 4.1: We present a system for the “Occluded Grasping” task with extrinsic
dexterity. The goal of this task is to reach an occluded grasp configuration (indicated
by a transparent gripper). The figure shows an example of the emergent behavior of
the policy and successful sim2real transfer.

build a system with reinforcement learning (RL) to remove these limitations. With

RL, the agent can learn a closed-loop policy of how the robot should interact with the

object and the environment to solve the task, taking into account both planning and

control. In addition, when trained with domain randomization, the policy can learn

to be robust to different variations of physics. These properties of RL can enable

extrinsic dexterity in a more general setting.

In this work, we study “Occluded Grasping” as an example of a task that requires

extrinsic dexterity. The goal of this task is to grasp an object in poses that are

initially occluded. Consider, for example, a robot that needs to grasp a cereal box

lying on its side on a table; the desired grasp is not reachable because it is partially

occluded by the table (Figure 4.1). To achieve this grasp with a parallel gripper,

the robot might rotate the object by pushing it against a vertical wall to expose the

desired grasp and then reach it. This task is in contrast with common grasping tasks

which focus on reaching an unoccluded grasp in free space with a static or near-static

scene [83, 86, 128].

The goal of this work is to build a system for the “Occluded Grasping” task as an

example of the combination of RL and extrinsic dexterity that works on a physical

robot. We investigate design choices of such a system and emphasize the simplicity

of the method. With model-free RL, we design a reward function that optimizes

pre-grasp and grasping motion without the separation of stages as previous work

44

4. Learning to Grasp the Ungraspable with Emergent Extrinsic Dexterity

in pre-grasp [10, 36, 118]. By placing the object in the bin and using a compliant

low-level controller, the agent shows emergent extrinsic dexterity behavior without

additional reward terms. We also incorporate a set of desired grasps with a training

curriculum and a grasp selection procedure during evaluation. We improve the

policy with Automatic Domain Randomization [91] over physical parameters which

robustify the contact-rich behaviors across noise and environment variations. In the

experiments, we provide a comprehensive evaluation of the system in simulation to

analyze the importance of each component. The policy is zero-shot transferred to

the physical robot and successfully executes similar behaviors to complete the task.

The policy achieves a success rate of 78% and shows generalization across various

out-of-distribution objects. Our main contribution is the real robot experiment results.

Existing work with a simple hand has not shown such behaviors on the real robot

with a similar level of complexity in contact events and generalization across objects

at the same time.

4.2 Related Work

4.2.1 Extrinsic dexterity

“Extrinsic dexterity” is a type of manipulation skill that enhances the intrinsic capa-

bility of a robot hand using external resources including external contacts, gravity, or

dynamic motions of the arm [18]. Previous work in extrinsic dexterity has demon-

strated complex tasks with a simple gripper including in-hand reorientation [18, 44],

prehensile pushing [11, 12], shared grasping [45], and more. Their methods are

based on hand-crafted trajectories [18], task-specific motion primitives [23, 44, 45], or

planning over contact modes [11, 12, 15, 16] to simplify the problem. They relies on

careful assumptions on contacts such as assuming a fixed number of sticking contacts

between the fingertips and the object. In this work, we take an alternative approach

to use RL to learn a closed-loop policy that considers both planning and control

without limitations on contact events. The resulting policy shows more versatile

contact switches beyond prior work and can be transferred to a physical robot.

45

4. Learning to Grasp the Ungraspable with Emergent Extrinsic Dexterity

4.2.2 Grasping

Grasping is an important task in robot manipulation and has been studied from

various aspects.

Grasp generation: One area of study in grasping is to generate stable grasps using

analytical approaches [90, 110] or learning approaches [9, 83, 85, 86, 96]. In this work,

we assume that the desired grasp configurations are given which may come from any

grasp generation method.

Grasp execution: To execute a grasp following grasp generation, a motion planner

is usually used to generate a collision-free path towards the desired grasp config-

uration [27, 127, 128, 129]. All of these works aim at achieving the unoccluded

grasp configurations in static or near-static scenes. Instead, our work focuses on a

complementary direction of achieving occluded grasp locations by interacting with

the object of interest. Another line of work in grasping uses an end-to-end pipeline

without the separation of grasp generation and grasp execution [54, 117]. However,

they do not demonstrate performing the occluded grasps studied in this work.

Pre-Grasp manipulation: To deal with occluded grasps, prior work has studied

pre-grasps as a preparatory stage of the grasping task. Typical motions for pre-grasps

include rotation through planar pushing [10], sliding the object to the edge of the

table [36, 58], or rotate the object against the wall [118]. Sun et al. [118] is the most

related to our work, but they use a specially designed end-effector to perform the

pre-grasp motion and then use a second gripper to grasp. We demonstrate that the

full grasping task can be solved with a single gripper without special requirements

on the end-effectors. These previous work typically separates pre-grasp motion and

grasp execution into two stages and impose restrictions on the transitions of the

stages. Instead, we co-optimize pre-grasp and grasp execution throughout the episode

without explicit separation of the stages.

46

4. Learning to Grasp the Ungraspable with Emergent Extrinsic Dexterity

!

"

!

"
#!

#!

Figure 4.2: Notations: WE denotes the pose of the end-effector in the world frame W .
Og denotes the target grasp in the object frame O. Six marker locations mi in green
on the target grasp are used to calculate the occlusion penalty.

4.2.3 Reinforcement Learning for Manipulation

Previous work in RL for manipulation usually treats the object and the robot in

isolation from the environment without considering extrinsic dexterity. RL has been

applied to dexterous manipulation with a multi-fingered hand and shows contact-rich

behaviors [13, 87, 91]. In contrast, with a parallel gripper, prior work focuses on tasks

with limited contacts and object motions without utilizing the environment [66, 124].

This is the first work that demonstrates extrinsic dexterity with a simple parallel

gripper using RL.

4.3 Task Definition: Occluded Grasping

The goal of a common grasp execution task is to move the end-effector E close to a

given desired grasp pose g. The desired grasp might come from any grasp generation

method [83, 85, 86] as the input to the grasp execution task. As shown in Figure 4.2,

we define an “Occluded Grasping” task to be a subset of the grasp execution tasks

where the input desired grasp g is initially occluded. To clarify, the term “occluded”

in this work is more than visual occlusion. It means the desired grasp intersects with

the table and moving the gripper in free space cannot solve this task. The robot has

to interact with the object to make the grasp pose reachable. The grasp Og is defined

in the object frame O and moves with the object. Formally, the grasp execution

47

4. Learning to Grasp the Ungraspable with Emergent Extrinsic Dexterity

is defined to be successful if the position difference ∆T (g, E) and the orientation

difference ∆θ(g, E) are less than the pre-defined thresholds ϵT and ϵθ respectively at

the end of an episode. After successfully reaching a desired grasp pose, the gripper

will be closed to complete the grasp. In addition, when the input to the system is a

set of grasps G = {gi}ki=1 instead of a single grasp, the agent may select any of the

grasp to approach to.

4.4 Learning dexterous grasping with

Reinforcement Learning

We build a system that learns a closed-loop policy for the occluded grasping task

defined above with model-free RL. In this section, we will discuss important design

choices of the system including the design of the RL problem, the extrinsic environment,

and the choice of low-level controller. Then we will discuss how to deal with a set

of grasps by training with a grasp curriculum and selecting the best grasp during

evaluation. We also include Automatic Domain Randomization [91] to improving the

generalization of the policy across environment variations.

4.4.1 Preliminaries: Goal-conditioned Reinforcement

Learning

We define a Markov Decision Process (MDP) with states st ∈ S, actions at ∈ A,
reward function r : S ×A → R, and discount factor γ. The state space, action space

and the reward function for our task will be discussed in detail in the next section. The

goal is to find a policy π(at|st) that maximizes the return Rt =
∑∞

k=t γ
k−tr(sk, ak). A

Q-function is defined to be the expected return of the policy Qπ(s, a) = Eπ[Rt|st, at].
In goal-conditioned RL, we define a set of goals η ∈ G correspond to the reward

function rη(st, at) [107]. To train a policy with a set of goals, both the policy and the

Q-function will now take the goal η as input, given by π(at|st, η) and Qπ(st, at, η). In

the occluded grasping task, we use the desired grasps as goals.

48

4. Learning to Grasp the Ungraspable with Emergent Extrinsic Dexterity

Policy (MLP)

End-effector	
Delta	Movement

Δ3

Desired
End-effector	Pose

3!Check Joint
Limit

Operational
Space

Controller(2Hz)

Joint	torque	
command
(100Hz)

Goal:
Target grasp A

Observations:
End-effector pose 3

Object pose B
End-effector pose in the

object frame 3!

"

"

Figure 4.3: Outline of policy execution: Given the observations, the policy outputs an
end-effector delta movement (Section 4.4.2) to the low-level controller (Section 4.4.4).

4.4.2 RL Problem Design

Observation and Action Space: The observation that is input to the policy in-

cludes a target grasp configuration in the object frame Og, the pose of the end-effector

in the world frame WE and the object pose in the world frame WO. Note that the

policy only takes one grasp Og as input but we will discuss how to deal with a set of

grasps in Section 4.4.5. For real robot experiments, we use Iterative Closest Point

(ICP) for pose estimation of the object which matches a template point cloud of

the object to the current point cloud [104]. The action space of the policy is the

delta pose of the end-effector ∆E in its local frame which is passed into a low-level

controller (Section 4.4.4). An outline of the policy execution is shown in Figure 4.3.

More details can be found in Appendix C.2.

Reward: We design the reward function to optimize the pre-grasp motion and grasp

execution without separating them into two stages as in previous work [10, 36, 58, 118]:

r = αD(g, E) + β
∑
i

P (mi) (4.1)

D(g, E) = α1∆T (g, E) + α2∆θ(g, E) (4.2)

where α1, α2 and β are the weights for the reward terms. The first term of Equation 4.1,

D(g, OE), is the pose difference between the target grasp and the current end-

effector pose, which is to optimize for reaching the grasp. This term is expanded

in Equation 4.2 to include the translational and rotational distance, as described in

Section 4.3. The second term of Equation 4.1 is the target grasp occlusion penalty

which is to penalize the agent if the target grasp configuration is in collision with

49

4. Learning to Grasp the Ungraspable with Emergent Extrinsic Dexterity

the table. This corresponds to a pre-grasp objective. To measure how much the

target grasp is occluded by the table, we set six marker points on the target gripper

(Figure 4.2) denoted as mi and compare the height of the markers with the table top.

If a marker is below the table top, the height difference will be used as the penalty.

Including this occlusion penalty can effectively reduce the local optima where the

gripper will reach close to the target grasp (which is occluded) without trying to move

the object. Note that we did not impose any reward terms that are explicitly related

to extrinsic dexterity. In our system, the use of extrinsic dexterity is an emergent

behavior of policy optimization given our objective and environmental setup.

4.4.3 Extrinsic Environment

To exploit the benefits of extrinsic dexterity from object-scene interaction in this

task, we construct the scene as having an object in a bin, instead of leaving the

object on the table as shown in Figure 4.2. We also make the workspace of the robot

large enough such that the robot can move the object to make contacts with the

walls (during which the robot itself may also make contact with the wall). In the

experiments, we will show that the policy will learn to utilize the wall to rotate the

object. Without the wall, it is not able to find a strategy that can perform the task

with the parallel gripper.

4.4.4 Choice of Low-level Controller

The choice of low-level controller is important for this task due to the fact that

we expect the agent to use extrinsic dexterity which involves rich contacts among

the gripper, the object and the bin. We choose Operation Space Control (OSC) as

the lower-level controller to execute the policy output which operates at a higher

frequency (100Hz) than the RL policy (2Hz) [55] (Figure 4.3). Given a desired pose

of the end-effector, OSC first calculates the corresponding force and torque at the

end-effector to minimize the pose error according to a PD controller with gain Kp

and Kd. Then, the desired force and torque of the end-effector will be converted into

desired joint torques according to the model of the robot. We choose relatively low

gains so that the controller becomes compliant in the end-effector space. There are two

benefits of a compliant OSC in such a contact-rich manipulation task with extrinsic

50

4. Learning to Grasp the Ungraspable with Emergent Extrinsic Dexterity

dexterity. First, being compliant in end-effector space allows safe execution of the

motions without smashing the gripper on the objects or the bin. Limiting the delta

pose and selecting proper gains Kp, Kd will limit the final force and torque output of

the end-effector. If we use a controller that is compliant in the joint configuration

space instead, we will not have direct control over the maximum force the end-effector

might have on the object and the bin. Second, as shown in Mart́ın-Mart́ın et al.

[75], using OSC as the low-level controller might speed up RL training and improve

sim2real transfer for contact-rich manipulation.

4.4.5 Multi-grasp Training and Grasp Selection

In this section, we consider the scenario in which a set of desired grasp configurations

are given instead of just a single one. During training, given a set of grasps Gtrain,

we aim at covering as many grasp configurations as possible. As we will show in

the experiments, reaching different grasps might require a significantly different

behavior. Learning directly over a diverse set of goals might create difficulties for

policy learning [32, 140]. We use an automatic curriculum following OpenAI et al.

[91] to gradually expand the set of grasps to be trained with. We start the training

with just a single fixed grasp; after the policy has achieved a success rate larger than

a threshold, it will be trained on a slightly larger set with grasps close to the initial

grasp location.

During testing, if a set of grasps Gtest is provided, we can select the best grasp

within the set to improve the performance of the grasping task, following previous

work in integrated grasp and motion planning [27, 127, 128]. With value-based

model-free RL algorithms such as Soft Actor Critic [34], the policy is trained

together with a Q-function (defined in Section 4.4.1). We propose to select the

grasp that maximizes the learned Q-function for the given observation and action:

g∗ = argmaxg∼Gtest Q(st, at, g). The selection can be performed for each timestep t,

or at the beginning of an episode when t = t0. We include both implementations in

the experiments. This can select the grasp that is most easily reached which depends

both on the environmental configuration as well as how well the policy has learned to

achieve different grasp configurations.

51

4. Learning to Grasp the Ungraspable with Emergent Extrinsic Dexterity

4.4.6 Improving Policy Generalization

To improve generalization across environment variations, we train the policy with

Automatic Domain Randomization (ADR) [91]. Similar to the multi-grasp curriculum,

the policy is first trained on a single environment with a single object, and gradually

expands the range of randomization automatically according to its performance. This

significantly reduces the effort of tuning the range of randomization. We randomize

different variations of the environment properties such as object size, density, and

friction coefficient. We also randomize the parameters of the controller. More

descriptions on the ADR procedure can be found in Appendix C.3.

4.5 Experiments

We build the simulation environment for this task using Robosuite [153] and the

MuJoCo simulator [125] as shown in Figures 4.1 and 4.2. The environment contains

a Franka Emika Panda robot with a parallel gripper and an object in the bin in

front of it. We focus on grasping large flat objects from the side since they cannot

be grasped with a top-down motion. The policy is trained in simulation with Soft

Actor Critic [34]. In this section, we include the results in simulation to discuss each

component of the proposed system. We then evaluate zero-shot sim2real transfer on

a physical Panda robot across different objects. Implementation details can be found

in Appendix C.2.

4.5.1 Training Curves and Ablations

We first evaluate our method by training the policies with a single desired grasp in

the default environment without ADR. Figure 4.4(left) shows the training curve of

the proposed method and the ablations. The policy trained with the complete system

can reach a success rate of 100% before 4000 episodes which corresponds to 160000

environment steps. To evaluate the importance of extrinsic dexterity, we remove the

walls of the bin. The resulting policies have 0% success rate and push the object

outside of the table. For ablations on the reward function, we remove the occlusion

penalty (the second term of Equation 4.1) and also try a sparse reward. Without the

52

4. Learning to Grasp the Ungraspable with Emergent Extrinsic Dexterity

0 1000 2000 3000 4000 5000
Episodes

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s

Ours
Sparse Reward

w/o Penalty
w/o Walls

0 1000 2000 3000 4000 5000
Episodes

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s

OSC (Ours)
Joint Torque

Joint Position
High-gain OSC

Figure 4.4: Training curves and ablations: Left: ablations on the reward function
and the wall. Right: ablations on the controller.

occlusion penalty, the policy is more likely to get stuck at a local optima (an example

shown in Figure 4.5a) and thus the success rate becomes lower. With the alternative

of a {−1, 0} sparse reward, the policy learns much slower. We also experiment with

different low-level controllers. Both joint torque and joint position control lead to

worse performance which indicates the importance of using end-effector coordinates.

With a less compliant controller by increasing the gains of OSC, the success rate

becomes lower which demonstrates the importance of compliance for contact-rich

tasks in addition to the safety considerations.

4.5.2 Emergent Behaviors

Figure 4.1 shows a typical strategy of a successful policy which involves multiple

stages of contact switches. The gripper first moves close to the object and makes

contact on the side of the object with the top finger. It then pushes the object against

the wall to rotate it. During this stage, the gripper usually maintains a fixed or

rolling contact with the object, but sliding also occurs. The object might have sliding

or sticking contacts with the wall and the ground. After the gripper has rotated a bit

further and the bottom fingertip is below the object, the gripper will let the object

drop on the bottom finger. After that, the gripper will try to match the desired pose

more precisely. At this point, the policy has executed the grasp successfully and

it is ready to close the gripper. This type of learned contact-rich behaviors with a

53

4. Learning to Grasp the Ungraspable with Emergent Extrinsic Dexterity

(a) Local optima: An example of local optima where
the gripper uses the bottom finger to lift the object
(instead of the top) and then fails to move the object
between its two fingers to prepare for the grasp.

(b) Standing object: One of the successful strategies
is to flip the object until it stands on the side and then
reach the grasp.

(c) MultiGrasp-Front: When the desired grasp is at
the corner, the policy flips the object by pushing it on
the side and then move close to the grasp.

(d) MultiGrasp-Side: When the grasp is on the side,
the policy can use another side of the wall to rotate
the object and reach the desired grasp.

Figure 4.5: Visualizations of the policies in different scenarios.

54

4. Learning to Grasp the Ungraspable with Emergent Extrinsic Dexterity

simple gripper has not been shown in previous work. In Section 4.5.5, we will further

demonstrate that it can be transferred to a physical robot.

One of the key decisions in this strategy is to use the top finger to rotate the

object instead of the bottom finger. One might suppose an alternative approach

which is to use the bottom finger to scoop the object against the wall and then

directly roll the finger underneath the object to reach the grasp. However, this

strategy is not physically feasible on the parallel gripper due to the limited degree of

freedom of the finger. We observe that the policies that follow this strategy during

exploration usually get stuck at a local optima without successfully reaching the grasp

(Figure 4.5a). Another successful strategy is to flip the object to stand on its side

and then move to the grasp (Figure 4.5b). This strategy relies on the fact that the

object remains stable after the rotation. We will show in the real-robot experiments

that for a non-box object, the object may lie on the wall to maintain stability.

4.5.3 Multi-grasp Experiments

Multi-grasp Training: Going beyond a single desired grasp, we generate the grasp

configurations around the side of the object and parameterized the grasps into a

continuous grasp ID in the range of [0, 4] (Figure 4.6). We train two types of multi-

grasp policies with curriculum: MultiGrasp-Front which starts from grasp ID=1.5 and

MultiGrasp-Side which starts from grasp ID=2.5. As a baseline, we train a policy by

uniformly sampling from the entire set of grasps without curriculum (No curriculum).

Figure 4.6 shows the performance of these policies evaluated across all grasp IDs.

Without curriculum, the agent has difficulties in reaching any of the grasps. With

the automatic curriculum, both MultiGrasp-Front and MultiGrasp-Side expand from

a single grasp to most of the grasps on one side of the object. Figures 4.5c and 4.5d

include qualitative examples of the behaviors which shows that it may require a

completely different behavior for different grasps.

Grasp Selection: We compare grasp selection methods with MultiGrasp-Front and

MultiGrasp-Side. We sample 50 grasps from the training range of the policy at the

beginning of each episode. The grasp selection methods will choose a grasp from

this set as the input to the policy. We evaluate the following grasp selection options:

55

4. Learning to Grasp the Ungraspable with Emergent Extrinsic Dexterity

Figure 4.6: Left: Grasp configurations. Right: MultiGrasp Training results with
and without curriculum.

Figure 4.7: Evaluation on the generalization of the policies by sampling 100 environ-
ments.

Table 4.1: Comparison of grasp selection methods: Side grasp policies achieve better
performance when using the Q-function to select the grasp.

MultiGrasp
Front

MultiGrasp
Side

ArgmaxQ 1.00± 0.00 1.00± 0.00
ArgmaxQ-t0 1.00± 0.00 1.00± 0.00
PoseDiff 1.00± 0.00 0.96± 0.08
PoseDiff-t0 1.00± 0.00 0.50± 0.43
Uniform 0.54± 0.16 0.90± 0.06

56

4. Learning to Grasp the Ungraspable with Emergent Extrinsic Dexterity

ArgmaxQ selects the grasp that corresponds to the highest Q-value. PoseDiff selects

the grasp according to the closest distance to the current gripper pose according to

Equation 4.2 (with the same weights as the reward function). Both ArgmaxQ and

ArgmaxQ select a grasp for each timestep. Alternatively, ArgmaxQ-t0 and PoseDiff-t0

only selects a grasp during the first timestep of the episode. Uniform samples a grasp

from the set uniformly. The results are summarized in Table 4.1. For MultiGrasp-Side,

using the Q-function for grasp selection is better than the other approaches. Since

the policy has a more complicated maneuver to reach the side (Figure 4.5d), the

Q-function can capture the difficulty of the goal better than pose difference.

4.5.4 Policy Generalization

In this section, we evaluate the generalization of the policy across environment varia-

tions: open loop trajectories (Open Loop), policies trained over a fixed environment

(Fixed Env) and policies trained with ADR (With ADR). The open loop trajectories

are obtained by rolling out the Fixed Env policies in the default environment. We

sample 100 environments from the range covered by the ADR policies (Appendix C.3)

and plot the percentage of environments that are above a certain performance metric

(Figure 4.7). The closed-loop policies are much better than open-loop trajectories.

With ADR, the generalization can be improved even further. Sensitivity analysis on

single physical parameters can be found in Appendix C.1.

4.5.5 Real-robot experiments

We execute the single grasp policies on the real robot with zero-shot sim2real transfer

over 10 test cases with different dimensions, densities, surface frictions, and sizes

as shown in Figure 4.8. For non-box objects, the poses are defined with respect

to the bounding boxes. The bounding boxes are obtained by running Principle

Component Analysis (PCA) on the scanned object point cloud. More details of the

real robot experiments can be found in Appendix C.4. Note that most of the objects

are out-of-distribution. We evaluate 10 episodes for each test case and summarize

the results in Figure 4.8. The success is measured by being able to close the gripper

and lift the object at the end of the episode. We first compare the policies with and

without Automatic Domain Randomization, denoted as w ADR and w/o ADR

57

4. Learning to Grasp the Ungraspable with Emergent Extrinsic Dexterity

Box-0 Box-1 Box-2 Box-3

Toy bag Bottle Container Container-reverse

Object-ID
Success

w/o ADR
Success
w/ ADR

Success
Init-pose

Box-0 (128g) 9/10 9/10 7/10
Box-0 (237g) 6/10 10/10 7/10
Box-0 (345g) 3/10 4/10 5/10
Box-1 5/10 8/10 8/10
Box-2 2/10 9/10 9/10
Box-3 0/10 7/10 9/10
Toy Bag 7/10 7/10 9/10
Bottle 0/10 8/10 1/10
Container 0/10 10/10 1/10
Container-rev 0/10 6/10 0/10
Average 33% 78% 56%

Figure 4.8: We evaluate the policy on the real robot with various test objects. The
policy trained in simulation on box-shape objects can generalize to the real robot
and other shapes. With ADR, the policy achieves 45% better success rate.

58

4. Learning to Grasp the Ungraspable with Emergent Extrinsic Dexterity

respectively. Quantitatively, the policy with ADR achieves a success rate of 78%

while the policy without ADR achieves 33%. Interestingly, the policy with ADR

achieves 24/30 successes over the bottle, the Cool Whip container, and the container

with a reversed initial pose. This demonstrates that although the policy is only

trained with boxes in simulation, it can also generalize to other shapes to some extent

when we represent the object with its bounding box. However, when the object

with an out-of-distribution shape has a very different transition dynamics, the policy

could fail. Qualitatively, both policies being evaluated exhibit similar strategies as

discussed in Section 4.5.2. In fact, a single policy network may execute either the

dropping strategy (Figure 4.1) or the standing strategy (Figure 4.5b) depending on

the current state. We also include additional results when the initial object location

is not close to the wall, denoted as Init-pose in Figure 4.8. We finetune the w/

ADR policy to expand further over the range of initial object locations. The success

rate remains similar for most objects, but this setting becomes more challenging

for non-box shapes. Videos of the full real robot evaluation including failure cases

and recovery behaviors can be found on the website 1. These real robot results are

valuable to the field of manipulation because it is beyond what has been shown with

a simple hand considering the combined complexity of contact events, object motion

and object generalization.

4.6 Limitations

One limitation of this work is that the policy is trained with box-shape objects.

Although it may generalize to other shapes to some extent as shown in the experiments,

the policy might be improved by including other shapes during training. In addition,

the pose of the object alone may not be sufficient to generalize to novel objects; using

a better representation of the shape such as a point cloud or key-points could improve

generalization across shapes. However, these changes would also increase the training

complexity. Another limitation is that we assume a reasonably accurate robot and

gripper model, in terms of geometries, kinematic and dynamic parameters. It would

be interesting to explore how to extend the method to transfer across robots and

grippers.

1https://sites.google.com/view/grasp-ungraspable

59

https://sites.google.com/view/grasp-ungraspable

4. Learning to Grasp the Ungraspable with Emergent Extrinsic Dexterity

4.7 Conclusion

In this work, we study the “Occluded Grasping” task where the robot with a parallel

gripper aims to reach a grasp configuration using extrinsic dexterity. We present a

system that learns a closed-loop policy for this task with reinforcement learning. In

the experiments, we demonstrate the importance of each component of the system.

We also show that the policies can be executed on the real robot and generalize to

various objects. One potential extension of our work is to train the policy with a wide

variety of object shapes which may require image-based or point cloud-based policies.

Also, the pipeline can potentially be extended to other extrinsic dexterity tasks.

Despite the simplicity of the proposed method, we would like to emphasize the

following takeaways from this work: First, we provide a concrete example that a

simple gripper can do much more than pick-and-place while being cheaper and easier

to maintain than a dexterous hand, following previous work in extrinsic dexterity.

We envision more future work in this direction in manipulation. Second, RL can be

a good option to generate policies with emergent extrinsic dexterity, and sim2real

transfer works reasonably well with our proposed system. Our work takes a step

towards deploying contact-rich policies with a simple gripper in the real world.

60

Chapter 5

HACMan: Learning Hybrid

Actor-Critic Maps for 6D

Non-Prehensile Manipulation

5.1 Introduction

The ability to manipulate objects in ways beyond grasping is a critical aspect of human

dexterity. Non-prehensile manipulation, such as pushing, flipping, toppling, and

sliding objects, is essential for a wide variety of tasks where objects are difficult to grasp

or where workspaces are cluttered or confined. However, non-prehensile manipulation

remains challenging for robots; previous work has only shown results with limited

object generalization [16, 43] or limited motion complexity, such as planar pushing or

manipulating articulated objects with limited degrees of freedom [81, 136, 138]. We

propose a method that generalizes across object geometries while showing versatile

interactions for complex non-prehensile manipulation tasks.

We present Hybrid Actor-Critic Maps for Manipulation (HACMan), a reinforce-

ment learning (RL) approach for non-prehensile manipulation from point cloud obser-

vations. The first technical contribution of HACMan is to propose an object-centric

action representation that is temporally-abstracted and spatially-grounded.

The agent selects a contact location and a set of motion parameters determining the

61

5. HACMan: Learning Hybrid Actor-Critic Maps for 6D Non-Prehensile
Manipulation

Target Object Pose

Figure 5.1: We propose HACMan (Hybrid Actor-Critic Maps for Manipulation),
which allows non-prehensile manipulation of unseen objects into arbitrary stable
poses. With HACMan, the robot learns to push, tilt, and flip the object to reach the
target pose, which is shown in the first column and in the top row with transparency.
The policy allows for dynamic object motions with complex contact events in both
simulation (top) and in the real world (bottom). The performance of the policy is
best understood from the videos on the website: https://hacman-2023.github.io.

trajectory it should take after making contact. The contact location is selected from

the observed object point cloud which provides spatial grounding. At the same time,

the robot decisions become more temporally-abstracted because we focus on only

learning the contact-rich portions of the action.

The second technical contribution of HACMan is to incorporate the proposed

action representation in an actor-critic RL framework. Since the contact location

is defined over a discrete action space (selecting a contact point among the points

in the object point cloud) and the motion parameters (defining the trajectory after

contact) are defined over a continuous action space, our action representation is in

a hybrid discrete-continuous action space. In HACMan, the actor network outputs

per-point continuous motion parameters and the critic network predicts per-point

Q-values over the object point cloud. Different from common continuous action space

RL algorithms [30, 70], the per-point Q-values are used both to update the actor and

also to compute the probability for selecting the contact location. We modify the

update rule of an existing off-policy RL algorithm to incorporate such a hybrid action

space.

62

https://hacman-2023.github.io

5. HACMan: Learning Hybrid Actor-Critic Maps for 6D Non-Prehensile
Manipulation

We apply HACMan to a 6D object pose alignment task with randomized initial

object poses, randomized 6D goal poses, and diverse object geometries (Fig. 5.1).

In simulation, our policy generalizes to unseen objects without a performance drop,

obtaining an 89% success rate on unseen objects. In addition, HACMan achieves

a training success rate more than three times higher than the best baseline with

an alternative action representation. We also perform real robot experiments with

zero-shot sim2real transfer, in which the learned policy performs dynamic object inter-

actions over unseen objects of diverse shapes with non-planar goals. Our contributions

include:

• We propose a novel object-centric action representation based on 3D spatial

action maps to learn complex non-prehensile interactions. We also modify an

existing off-policy RL algorithm to incorporate such a hybrid discrete-continuous

action space.

• The proposed action representation demonstrates substantive improvements

of performance over the baselines and shows strong generalization to unseen

objects.

• The learned policy showcases complex contact-rich and dynamic manipulation

skills, including pushing, tilting, and flipping, shown both in simulation and

with a real robot.

5.2 Related Work

Non-prehensile manipulation. Non-prehensile manipulation is defined as manipu-

lating objects without grasping them [76]. Many non-prehensile manipulation tasks in-

volve complex contact events among the robot, the object, and the environment, which

lead to significant challenges in state-estimation, planning and control [16, 43, 82, 138].

Recent work has applied learning-based methods in non-prehensile manipulation,

but they are limited in terms of either skill complexity [68, 81, 131, 136] or object

generalization [68, 149]. In contrast, our work shows 6D object manipulation involving

more complex object interactions while also generalizing to a large variety of unseen

object geometries.

63

5. HACMan: Learning Hybrid Actor-Critic Maps for 6D Non-Prehensile
Manipulation

Visual Reinforcement Learning with Point Clouds. Recent research has

explored various ways of incorporating point clouds into RL [71, 99]. To overcome the

optimization difficulties, previous work has tried pre-training the feature extractor

with an auxiliary loss [46], initializing the RL policy with behavior cloning [129], or

using student-teacher training [13, 14] (see detailed discussion in Appendix D.6). Our

method does not require these additional training procedures due to the benefits of

the proposed action representation. In the experiments, we show that the baselines

following the most relevant previous work [13, 14, 99] struggles when the task becomes

more complex.

Spatial action maps. Similar to our method, recent work has explored spatial

action maps that are densely coupled with visual input instead of compressing it

into a global embedding, based on images [25, 136, 145], point clouds [81, 109, 119],

or voxels [111]. Unlike previous works with spatial action maps that consider one-

shot decision making (similar to a bandit problem) [81, 131, 136] or rely on expert

demonstrations with ground truth actions [109, 111, 145], our method reasons over

multi-step sequences with no expert demonstrations. For example, Xu et al. [136]

only chooses a single contact location followed by an action sequence, rather than a

sequence of contact interactions. Unlike previous work in spatial action maps that

uses DQN with discrete actions [25, 47, 131, 144], our hybrid discrete-continuous

action space allows the robot to perform actions without discretization. Furthermore,

we demonstrate the benefit of spatial action representations when applied to a 6D

non-prehensile manipulation task, which is more challenging than the pick-and-place

and articulated object manipulation tasks in previous work.

RL with hybrid discrete-continuous action spaces. Most RL algorithms focus

on either a discrete action space [79] or a continuous action space [30, 34, 70]. However,

certain applications are defined over a hybrid action space where the agent selects

a discrete action and a continuous parameter for the action [38, 89, 135]. Unlike

previous work, our hybrid action space uses a spatial action representation in which

the discrete actions are defined over a map of visual inputs. The closest to our work

is Feldman et al. [25] in terms of applying RL to spatial action maps, but they only

consider a finite horizon of 2. We include formal definitions of the policies over the

hybrid action space and modify the loss functions and exploration accordingly.

64

5. HACMan: Learning Hybrid Actor-Critic Maps for 6D Non-Prehensile
Manipulation

5.3 Preliminaries

A Markov Decision Process (MDP) models a sequential stochastic process. An

MDP can be represented as a tuple (S,A, P, r), where S is the state space; A is the

action space; P (st+1|st, at) is the transition probability function, which models the

probability of reaching state st+1 from state st by taking action at; r(st, at, st+1) is the

immediate reward at time t. The objective is to maximize the return Rt, defined as

the cumulative discounted reward Rt =
∑∞

i=0 γ
irt+i. Given a policy π, the Q-function

is defined as Qπ(s, a) = Eπ[Rt|st = s, at = a].

HACMan is built on top of Q-learning-based off-policy algorithms with a continu-

ous action space [30, 34, 38]. In these algorithms, we define a deterministic policy πθ

parameterized by θ and a Q-function Qϕ parameterized by ϕ. Note that since the

policy is deterministic, we use epsilon-greedy during exploration. Given a dataset D

with transitions (st, at, st+1), the Q-function loss is defined according to the Bellman

residual:

L(ϕ) = Est,at,st+1∼D[(Qϕ(st, at)− yt)2], (5.1)

where yt is defined as:

yt = rt + γQϕ(st+1, πθ(st+1)). (5.2)

The policy loss for πθ is defined to maximize the Q-function:

J(θ) = −Est∼D[Q
πθ(st, at)|at=πθ(st)]. (5.3)

5.4 Problem Statement and Assumptions

We focus on the task of 6D object pose alignment with non-prehensile manipulation.

The objective of the robot is to perform a sequence of non-prehensile actions (i.e.

pushing, flipping) to move an object on the table into a target goal pose. We assume

that the goals are stable object poses on the table. The robot policy observes the

point cloud of the scene from depth cameras, denoted as X . We assume that the

point cloud observation is segmented between the background and the object to be

manipulated. Thus, the full point cloud X consists of the object point cloud X obj

and the background point cloud X b. The feature for each point is a 4-dimensional

65

5. HACMan: Learning Hybrid Actor-Critic Maps for 6D Non-Prehensile
Manipulation

vector, including a 1-dimensional segmentation mask and a 3-dimensional goal flow

vector (will be defined in Section 5.5.3).

5.5 Method

5.5.1 Action Representation

We propose an object-centric action space that consists of two parts: a contact

location aloc on an object and motion parameters am which define how the robot

moves to interact with the object after contact. As shown in Fig. 5.2, to execute an

action, the end-effector will first move to a location in free space near location aloc,

after which it will interact with the object using the motion parameters am. After

the interaction, the end-effector will move away from the object, a new observation is

obtained, and the next action can be taken.

(a) Before action
execution

(b) Move to the
contact location

(c) Execute the
motion parameters

Figure 5.2: Illustration of our action
space.

Specifically, given the object point

cloud X obj = {xi | i = 1 . . . N}, where
xi ∈ R3 are the point locations, the con-

tact location aloc is chosen from among

the points in X obj. Thus, aloc is defined

over a discrete action space of dimension

N . We assume a collision-free motion

planner to move the gripper to the con-

tact location aloc (see Appendix D.1.6 for

details). In contrast, the motion parameters am, which define how the gripper interacts

with the object after contact, are defined in a continuous action space. Furthermore,

we define am as the end-effector delta position movement from the contact position,

hence am ∈ R3. Our experiments show that translation-only movements are sufficient

to enable complex 6D object manipulation in our task. We also include additional

experiments on extending motion parameters to enable rotations in Appendix D.3.4.

The proposed action representation has two benefits compared to previous work.

First, it is temporally-abstracted. We “abstract” a sequence of lower-level gripper

movements of approaching the contact and executing the motion parameters into one

action decision step in the RL problem definition. Compared to the common action

66

5. HACMan: Learning Hybrid Actor-Critic Maps for 6D Non-Prehensile
Manipulation

space of end-effector delta movements [84, 97, 139, 149], the agent with our action

space can avoid wasting time learning how to move in free space and instead focus

on learning contact-rich interactions. Second, it is spatially-grounded since the

agent selects a contact location from the observed object point cloud.

5.5.2 Hybrid RL Algorithm

The proposed action space is a hybrid discrete-continuous action space: the contact

location aloc is discrete while the motion parameters am are continuous. We propose a

way to adapt existing off-policy algorithms designed for continuous action spaces [30,

34] to this hybrid action space. First, consider the simpler case of an action space that

only has the continuous motion parameters am. In this case, we can directly apply

existing off-policy algorithms as described in Section 5.3. Given the observation s

(which is the point cloud X in our task), we can train an actor to output the motion

parameters πθ(s) = am. Similarly, the critic Qϕ(s, a
m) outputs the Q-value given the

observation s and the motion parameters am; the Q-value can be used to update the

actor according to Eqn. 5.3.

To additionally predict the contact location aloc, we also need the policy to select

a point among the discrete set of points in the object point cloud X obj. Our insight

is that we can embed such a discrete component of the action space into the critic by

training the critic to output a per-point Q-value Qi for each point xi over the entire

point cloud. The Q-value at each point on the object represents the estimated return

after selecting this point as the contact location. These Q-values can thus be used

not only to update the actor, but also to select the contact location as the point with

the highest Q-value. Additionally, we train the actor to also output per-point motion

parameters ami for each point xi. If point xi is selected as the contact location aloc,

then the motion parameters at this point ami will be used as the gripper motion after

contact.

The overall architecture is shown in Fig. 5.3. The actor πθ receives as input the

point cloud observation and outputs per-point motion parameters πθ(X) = {ami =

πθ,i(X) | i = 1 . . . N}. We call this per-point output an “Actor Map”. The critic

also receives as input the point cloud observation. It first calculates per-point features

f(X) = {fi | i = 1 . . . N}. The critic then concatenates each per-point feature fi

67

5. HACMan: Learning Hybrid Actor-Critic Maps for 6D Non-Prehensile
Manipulation

Segmentation-style
Point Cloud

Network

Segmentation-style
Point Cloud

Network

Target SE(3)
Transformation

Raw Point Cloud

Per-Point
Critic Feature

Per-Point
Motion Parameters

Actor Map

MLP

......
Per-Point
Q-value

Critic Map

Point Cloud Observation Action Output

Point Location (x, y, z)

Goal Flow (dim=3)
Segmentation (dim=1)

Best Contact
Location

Corresponding
Motion Parameter
(Delta EE Movement)

HACMan: Hybrid Actor-Critic Maps for Manipulation

...

Highest
value

Figure 5.3: An overview of the proposed method. The point cloud observation
includes the location of the points and point features. The goal is represented as per-
point flow of the object points. The actor takes the observation as input and outputs
an Actor Map of per-point motion parameters. The Actor Map is concatenated
with the per-point critic features to generate the Critic Map of per-point Q-values.
Finally, we choose the best contact location according to the highest value in the
Critic Map and find the corresponding motion parameters in the Actor Map.

(Section 5.4) with the corresponding per-point motion parameter ami and inputs the

concatenated vector to an MLP. The output of the MLP is a per-point Q-value:

Qi = Qϕ(fi, a
m
i), which scores the action of moving the gripper to location xi and

executing motion parameters ami . We call this per-point output a “Critic Map”. In

this way, the critic is able to reason jointly about the contact location (via the feature

fi) as well as the motion parameters ami . In our implementation, both the actor and

the critic use segmentation-style PointNet++ architecture [98] (Appendix D.2).

At inference time, we can select the point xi within the object points X obj with

the highest Q-value Qi as the contact location and use the corresponding motion

parameters ami . For exploration during training, we define a policy πloc which selects

the contact location based on a softmax of the Q-values over all of the object points.

The probability of a point xi being selected as the contact location is thus given as:

πloc(xi | s) = πloc(xi | X) =
exp(Qi/β)∑

k=1,...,N exp(Qk/β)
. (5.4)

β is the temperature of the softmax which controls the exploration of the contact

location. Note that the background points X b are included in the observation

68

5. HACMan: Learning Hybrid Actor-Critic Maps for 6D Non-Prehensile
Manipulation

s = X = {X b,X obj}, but are excluded when choosing the contact location. We

modify the update rules of the off-policy algorithm for this hybrid policy. Given

s = X , we first define the per-point loss for updating the actor πθ,i(s) at location xi

according to Eqn. 5.3:

Ji(θ) = −Qϕ(fi, a
m
i) = −Qϕ(fi, πθ,i(s)). (5.5)

fi is the feature corresponding to point xi. The total objective of the actor is then

computed as an expectation over contact locations:

J(θ) = Exi∼πloc [Ji(θ)] =
∑
i

πloc(xi | s) · Ji(θ). (5.6)

πloc(xi | s) is the probability of sampling contact location xi, defined in Eq. 5.4. The

difference between Eqn. 5.6 and the regular actor loss in Eqn. 5.3 is that we use the

probability of the discrete action to weight the loss for the continuous action. To take

into account πloc during the critic update, the Q-target yt from Eqn. 5.2 is modified

to be:

y = rt + γExi∼πloc [Qϕ(fi(st+1), πθ,i(st+1))]. (5.7)

5.5.3 Representing the Goal as Per-Point Goal Flow

As described in Section 5.4, the objective of our task is to move an object to a

given goal pose. Instead of concatenating the goal point cloud to the observed point

cloud [13, 14], we represent the goal as per-point “goal flow”: Suppose that point xi

in the initial point cloud corresponds to point x′i in the goal point cloud; then the goal

flow is given by ∆xi = x′i − xi. The goal flow ∆xi is a 3D vector which is included

as the feature of the point cloud observation (concatenated with a segmentation

label, resulting in a 4-dimensional feature vector). This flow representation of goal

is also used to calculate the reward and success rate for the pose alignment task

(Appendix D.1.3). In the real robot experiments, we estimate the goal flow using point

cloud registration (Appendix D.4). Our ablation experiments suggest that utilizing

the flow representation of the goal drastically enhances performance compared to

directly concatenating the goal point cloud (Appendix D.3.1).

69

5. HACMan: Learning Hybrid Actor-Critic Maps for 6D Non-Prehensile
Manipulation

5.6 Experiment Setup

We evaluate our method on the 6D object pose alignment task as described in

Section 5.4. The objective is to perform a sequence of non-prehensile actions (i.e.

pushing, flipping) to move the object to a given goal pose. In this section, we

describe the task setup in simulation, used for training and simulation evaluation (see

Section 5.8 for real robot experiments).

Task Setup. The simulation environment is built on top of Robosuite [154] with

MuJoCo [125]. We include 44 objects with diverse geometries from Liu et al. [72].

Details and visualizations of the object models are included in Appendix D.1.1. The

object dataset is split into three mutually exclusive sets: training set (32 objects),

unseen instances (7 objects) and unseen categories (5 objects). The 7 unseen instances

consist of objects from categories included in the training set, whereas the 5 objects

in “unseen categories” consist of novel object categories. An episode is considered a

success if the average distance between the corresponding points of the object and

the goal is less than 3 cm. More details on our simulation environment setup can be

found in Appendix D.1.

Task Variants. To analyze the limitations of different methods, we design the object

pose alignment task with varying levels of difficulty. We consider three types of object

datasets: An All Objects dataset that includes the full object dataset, a Cylindrical

Objects dataset consisting of only cylindrical objects, and a Single Object dataset

consists of just a single cube. We also try different task configurations: In the Planar

goals experiments, the object starts from a fixed initial pose at the center of the bin,

and the goal pose is a randomized planar translation of the starting pose. In the

6D goals experiments, both the object initial pose and goal pose are randomized

SE(3) stable poses, not limited to planar transformations. This task requires SE(3)

object movement to achieve the goal which imposes challenges in spatial reasoning.

These different task variations are used to show at what level of difficulty each of the

baseline methods stop being able to complete the task.

70

5. HACMan: Learning Hybrid Actor-Critic Maps for 6D Non-Prehensile
Manipulation

Single Object
Planar Goals

Cylindrical Objects
Planar Goals

Single Object
6D Goals

Cylindrical Objects
6D Goals

All Objects
6D Goals

Task Variants

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e Select Contact Location [Ours]

Select Contact Location [Ours Greedy]
Regress Contact Location (Point Cloud)
Regress Contact Location (State)
No Contact Location (Point Cloud)
No Contact Location (State)

Figure 5.4: Baselines and Ablations. Our approach outperforms the baselines and
the ablations, with a larger margin for more challenging tasks on the right. Success
rates for simple tasks - pushing a single object to an in-plane goal - are high for all
methods, but only HACMan achieves high success rates for 6D alignment of diverse
objects.

Table 5.1: Features of the proposed action representation compared to the baselines.

Spatially
Grounded?

Temporally
Abstracted?

Select Contact Location [Ours] ✓ ✓
Regress Contact Location × ✓
No Contact Location [13, 14, 84, 99, 139, 149] × ×

5.7 Simulation Results

In this section, we demonstrate the effectiveness of HACMan compared to the

baselines and ablations. Fig. 5.4 summarizes the performance of each method after

being trained with the same number of environment interactions. The training curves,

tables, and additional results can be found in Appendix D.3. Implementation details

of all methods are included in Appendix D.2.

Effect of action representations. We compare our method with two alternative

action representations, summarized in Table 5.1. In Regress Contact Location,

the policy directly regresses to a contact location and motion parameters, instead

of choosing a contact point from the point cloud as in HACMan. The No Contact

Location baseline directly regresses to a delta end-effector movement at each timestep.

For every action, the robot continues from its position from the previous action,

instead of first moving the gripper to a selected contact location. This is the most

common action space in manipulation [13, 14, 84, 99, 139, 149]. As input for these two

baselines, we use either point cloud observations or ground-truth state, establishing

71

5. HACMan: Learning Hybrid Actor-Critic Maps for 6D Non-Prehensile
Manipulation

Figure 5.5: Qualitative results for the object pose alignment task. HACMan
shows complex non-prehensile behaviors that move the object to the goal pose (shown
as the transparent object).

four baselines in total. The baseline that regresses motion parameters from point

cloud observations is a common action representation used in prior work in RL from

point clouds such as Qin et al. [99]. The baseline that regresses motion parameters

from ground-truth state is the most common approach in prior work, such as in Zhou

and Held [149] as well as the teacher policies in Chen et al. [13, 14] (see Appendix D.6

for more discussion).

As shown in Fig. 5.4, these baseline action representations struggle with the more

complex task variants. For the most challenging task variant “All Objects + 6D goals,”

our method achieves a success rate 61% better than the best baseline (see Table D.3

for numbers). As mentioned in Section 2.4, the proposed action representation benefits

from being spatially-grounded and temporally-abstracted. The comparison against the

baselines demonstrates the importance of each of these two features (Table 5.1). The

“Regress Contact Location” baseline still benefits from being temporally-abstracted

because the gripper starts from a location chosen by the policy at each timestep;

however, this action representation is not spatially-grounded because it regresses to a

contact location which might not be on the object surface, unlike our approach which

selects the contact location among the points in the point cloud observation. Thus,

the “Regress Contact Location” baseline suffers from training difficulties with more

diverse objects (last two variants in Fig. 5.4). The “No Contact Location” baseline is

neither spatially-grounded nor temporally-abstracted; it follows the usual approach

from prior work [13, 14, 84, 99, 139, 149] of regressing an end-effector delta motion

at each timestep. While this is the most common action space in prior work, it has

close to zero performance with 6D goals.

72

5. HACMan: Learning Hybrid Actor-Critic Maps for 6D Non-Prehensile
Manipulation

Table 5.2: Generalization to unseen objects.

Object Set Split Success Rate # of Objects

Train 0.833 ± .018 32
Train (Common Categories) 0.887 ± .024 13
Unseen Instance (Common Categories) 0.891 ± .033 7
Unseen Category 0.827 ± .047 5

Effect of Multi-step Reasoning. To test the necessity of multi-step reasoning for

the pose alignment task, we experiment with a “Greedy” version of HACMan by

setting the discount factor γ in the RL algorithm to γ = 0. This forces the algorithm

to optimize for greedy actions for each step. Using RL for multi-step reasoning is

one of the important differences between our method and previous work such as

Where2Act [81] and UMPNet [136] which optimize for one-step contact locations.

Fig. 5.4 indicates that greedy actions might work for planar goals, but suffer from

poor performance for 6D goals that requires multi-step non-greedy interactions. For

example, the last row in Fig. 5.5 shows an example of our method pushing the object

away from the goal position to prepare for flipping it to the correct orientation,

demonstrating non-greedy behavior. In contrast, we find that the greedy ablation

often results in local optima of only trying to match the object position but not its

orientation.

Generalization to unseen objects. The evaluation of our method over unseen

objects with 6D goals is summarized in Table 5.2. Our method generalizes well to

unseen object instances and unseen categories without a performance drop. When

we increase the maximum episode length from 10 steps to 30 steps, our method

achieves 95.1% success on unseen categories (Appendix D.3.7). Table 5.2 shows

that, comparing the same set of object categories (“common categories”), the success

rates of the training instances are similar to the unseen instances. The differences

in geometry comparing the training objects and the unseen objects are visualized in

Appendix D.1.1.

Goal-conditioned Object Affordance and Multimodality. We visualize the

Critic Map, which computes the score of each contact location of the object (Fig. 5.6).

The Critic Maps capture goal-conditioned object affordances which describe how the

object can be moved to achieve the goal. Fig. 5.6(a) and (b) are two scenarios of

performing translation object motions for different object heights: For a thin object,

73

5. HACMan: Learning Hybrid Actor-Critic Maps for 6D Non-Prehensile
Manipulation

(a) Planar – thin object (d) Knock over (e) Flip up(b) Planar – thick object (c) Planar – Multimodal solution

Figure 5.6: Goal-conditioned Critic Maps. Blue: goal point cloud. Color map:
observed object point cloud. Lighter colors indicate higher Critic Map scores. Red
arrows: motion parameters at a selected location. The policy uses different contact
locations based on object geometries and goals.

the Critic Map highlights the region of the top of the object (dragging) or from the

back side of the object (pushing). For a thick object, it prefers to push from the

bottom to avoid the object falling over. In Fig. 5.6(c), the hammer needs to be

rotated by 180 degrees. The Critic Map predicts a multimodal solution of pushing

from either end of the object. Fig. 5.6(d) and (e) show out-of-plane motions of the

object of knocking over and flipping up the objects.

Additional Results. We include additional experiment results in Appendix D.3,

including additional ablations, extending the motion parameters, cluttered scenes,

longer training steps, longer episode lengths, and success rate breakdown for each

object category.

5.8 Real robot experiments

In the real robot experiments, we aim to evaluate the ability of the trained policy

to generalize to novel objects and execute dynamic motions in the real world. We

evaluate the policy with a diverse set of objects with different shapes, surface frictions,

and densities (Fig. 5.7). We use random initial poses and random 6D goals (referred

to in the previous section as “All Objects + 6D Goals”). For example, the red mug

(Fig. 5.7(g)) has goal poses of being upright on the table or lying on the side. An

episode is considered a success if the average distance of corresponding points between

the object and the goal is smaller than 3 cm; we also mark an episode as a failure if

there is a failure in the point cloud registration between the observation and the goal.

Implementation details of the real robot experiments can be found in Appendix D.4.

74

5. HACMan: Learning Hybrid Actor-Critic Maps for 6D Non-Prehensile
Manipulation

(a) Blue cup (b) Milk carton (c) Box (d) Red bottle (e) Hook

(f) Black mug (g) Red mug (h) Wood block (i) Toy bridge (j) Toy block

Object Name
Planar
Goals

Non-planar
Goals

Total

(a) Blue cup 4/7 4/13 8/20
(b) Milk bottle 6/7 10/13 16/20
(c) Box 2/5 10/15 12/20
(d) Red bottle 4/7 0/13 4/20
(e) Hook 5/8 5/12 10/20
(f) Black mug 4/7 0/13 4/20
(g) Red mug 5/7 3/13 8/20
(h) Wood block 6/7 6/13 12/20
(i) Toy bridge 9/10 5/10 14/20
(j) Toy block 2/2 10/18 12/20

Total 47/67 53/133 100/200
Percentage 70% 40% 50%

Figure 5.7: Real robot experiments. HACMan achieves a 50% success rate over
unseen objects with different geometries and physical properties, with 6D goal poses.

Fig. 5.7 (right) summarizes the quantitative results of the real robot experiments.

We run the evaluations without manual reset, which may create uneven numbers of

planar versus out-of-plane goals. It achieves 70% success rate on planar goals and 40%

success rate on non-planar goals. Non-planar goals are more difficult than the planar

goals because they require dynamic motions to interact with the object. A small error

in the action may result in large changes in the object movement. Videos of the real

robot experiments can be found on the website: https://hacman-2023.github.io.

The real robot experiments demonstrate that the policy is able to generalize to novel

objects in the real world, despite the sim2real gap of the simulator physics and

inaccuracies of point cloud registration for estimating the goal transformation. More

discussion can be found in Appendix D.4.

5.9 Limitations

Since the contact location in our action space is defined over the point cloud observa-

tion, our method requires relatively accurate depth readings and camera calibration.

Further, the contact location is currently limited to the observed part of the object.

In addition, for this goal-conditioned task, we represent the goal as per-point flow

(Section 5.5.3) which relies on point cloud registration algorithms. Inaccuracies in the

registration algorithm sometimes lead to failure cases in real robot experiments. More

discussion of the failure cases can be found in Appendix D.4.3. In addition, finetuning

the policy on the real robot can potentially improve the success rate further.

75

https://hacman-2023.github.io

5. HACMan: Learning Hybrid Actor-Critic Maps for 6D Non-Prehensile
Manipulation

5.10 Conclusion

We propose to learn Hybrid Actor-Critic Maps with reinforcement learning for non-

prehensile manipulation. The learned policy shows complex object interactions

and strong generalization across unseen object categories. Our method achieves a

significantly higher success rate than alternative action representations, with a larger

performance gap for more difficult task variants. We hope the proposed method and

the experimental results can pave the way for future work on more skillful robot

manipulation over diverse objects.

One thing to note is that the RL policy also has the potential to discover extrinsic

dexterity behaviors in the object pose alignment task, such as pushing the objects

against the wall, following the idea from Chapter 4. Currently, the policy does not

show such extrinsic dexterity behavior of using the walls mainly because the initial

object locations are not close to the walls, and most of the objects we consider in this

chapter do not require extrinsic dexterity to be rotated by the gripper. In the future,

if we train the policies with a broader range of initial object locations and more

diverse objects, the policies may discover strategies involving extrinsic dexterity.

5.11 Extensions to HACMan

5.11.1 HACLeg: Visual Manipulation with Legs

Animals have the ability to use their arms and legs for both locomotion and manipula-

tion. We envision quadruped robots to have the same versatility. We present a system

as an extension to HACMan that empowers a quadruped robot to perform object

interactions with its legs, drawing inspiration from non-prehensile manipulation,

named Hybrid Actor Critic Maps for Leg Manipulation (HACLeg).

The proposed system has two main components: a manipulation module based

on HACMan and a locomotion module implemented based on impedance control

and Model Predictive Control (MPC). The manipulation module follows HACMan.

Given a point cloud observation of the object, the module outputs the best contact

location and a set of motion parameters. The locomotion module serves to coordinate

leg movement and body pose adjustments to complement the manipulation module.

76

5. HACMan: Learning Hybrid Actor-Critic Maps for 6D Non-Prehensile
Manipulation

(a) Push box forward (Random goal) (b) Right flip box (Fixed goal)

(c) Push multi-objects forward (Random goal)

Figure 5.8: HACLeg demonstrates non-prehensile manipulation using leg to align the
6D pose of the object (white) to a given target pose (red).

(a) Box pushing (b) Box flipping

(c) Interleaved pushing and walking

Figure 5.9: In the real robot experiments, HACLeg enables object interactions such as
(a) pushing, (b) flipping, or (c) moving the object to a distant goal through repeatedly
pushing and walking.

77

5. HACMan: Learning Hybrid Actor-Critic Maps for 6D Non-Prehensile
Manipulation

During object interaction, the locomotion module converts the high-level action from

HACMan into the low-level robot torque commands. Specifically, we use impedance

control to control the leg that interacts with the object, and use MPC to control the

other three legs to maintain the stability of the robot. Between manipulation actions,

the locomotion module adjusts the robot’s base pose if the object is out of immediate

reach. This adjustment enables the robot to effectively push objects toward distant

goals, broadening its operational range.

We evaluate the proposed system with the object pose alignment task similar to

Section 5.6. In simulation, we experiment with three task variants, including pushing

a box forward, flipping a box to the side, and pushing objects with diverse geometries.

As shown in Figure 5.8, the policies are able to manipulation the objects to desired

goal locations effectively. In the real-world experiment, we evaluate the feasibility

of zero-shot sim2real transfer of the manipulation module and the performance

of the controller in the locomotion system. As shown in Figure 5.9, the robot is

able to perform object pose alignment while maintaining balance using the other

three legs. Across 10 episodes, the proposed system achieves a 60% success rate for

forward pushing and a 50% success rate for box flipping. HACLeg showcase enhanced

manipulation skill and precision beyond previous work related to manipulation with

legs [17, 51, 52, 115, 116]. We also demonstrate that the robot is able to push

the object to a distant goal by repeatedly pushing the object and walking forward

(Figure 5.9c).

5.11.2 HACMan++: A Spatially-grounded Skill Library for

Manipulation

In previous sections, we show the effectiveness of HACMan for non-prehensile ma-

nipulation. However, the concept of spatially-grounded and temporally-abstracted

action space can be applied to a broader range of manipulation tasks. For example,

when the robot needs to grasp an object, it can ground the decision of the grasp

location on the object point cloud [120]; when the robot needs to place an object, it

can ground the decision of the place location on the table [145]. We extend HACMan

to incorporate more manipulation primitives to solve a wider variety of manipulation

tasks that may involve both prehensile and non-prehensile motions.

78

5. HACMan: Learning Hybrid Actor-Critic Maps for 6D Non-Prehensile
Manipulation

Figure 5.10: HACMan++ Primitives. We consider a set of primitives in HAC-
Man++. Each primitive is defined using a grounded location and a vector of motion
parameters.

MLP

Per Point Critic
Feature

…
…

Segmentation-style
Point Cloud

Network

!! "!

Observed
Point Cloud

Critic Map

Actor Map

Per Point Motion
Parameters

#!"
Segmentation-style

Point Cloud
Network

One-hot encoding of
the primitive

Primitive 1

Actor Maps

Critic Maps

Primitive 2 Primitive 3

Primitive 1 Primitive 2 Primitive 3

Select the primitive with
the highest score

Calculate an Actor Map and a Critic Map
for each primitive

Figure 5.11: Overview of HACMan++. In HACMan++, we extend HACMan to
incorporate multiple manipulation primitives, such as picking, placing, and poking.
We compute the actor and critic maps for each primitives separately. Each primitive
is represented as a one-hot encoding as an additional input to the actor and the critic
network. The policy output is the type of primitive, a contact location, and a set of
motion parameters, selected according to the highest score from the critic maps.

79

5. HACMan: Learning Hybrid Actor-Critic Maps for 6D Non-Prehensile
Manipulation

We propose HACMan++, a spatially-grounded skill library for manipulation.

Examples of the primitive definitions are shown in Figure 5.10. From Section 2.4, the

action space of HACMan consists of a contact location and a set of motion parameters,

which describes a non-prehensile poking motion. In HACMan++, we also include a

grasping primitive, where the action space consists of a grasp point grounded on the

object point cloud, and a gripper orientation which is a continuous parameter. We

also define a placing primitive, where the action space consists of a target placing

location grounded on the background point cloud and an offset vector which allows

more flexibility in the placing location. All of these primitives are defined by a

grounded location (discrete) and a vector of motion parameters (continuous), which

can fit into the HACMan training framework. Given these primitives, we extend

the action space of HACMan to include primitive selection. Based on the current

observation, the robot needs to decide which type of primitive to execute, together

with the location and motion parameters that define the motion of the primitive.

The modified network architecture is shown in Figure 5.11. We first compute the

actor and critic maps for each primitive. We concatenate the one-hot encoding of each

primitive with the per-point features before feed them into the MLPs for the actor

or the critic. From the critic maps of all primitives, we determine the primitive and

location associated with the highest Q-value. The selected primitive, point location,

and the corresponding motion parameters become the final output of the policy.

The proposed framework HACMan++ has two novelties compared to HACMan:

First, it demonstrates the generality of the idea of spatially-grounded and temporally-

abstracted action space beyond non-prehensile skills. Second, training with the skill

library with RL may result in sequential reasoning of the skills. As we will show in the

experiments, the robot may learn to poke the object first to facilitate grasping (similar

idea as Chapter 4.5). This may allows the robots to perform a broader range of

manipulation tasks. The proposed method is also related to previous work Dalal et al.

[19] and Nasiriany et al. [88]. These work also use a set of manipulation primitives in

RL. However, the skills are only temporally-abstracted but not spatially-grounded.

In addition, they select the primitive based on policy output while we select the

primitive according to the Q-values of different primitives.

In our experiments, we evaluate HACMan++ using a modified object pose

alignment task and two tasks from the Maniskill2 benchmark [33]. In the modified

80

5. HACMan: Learning Hybrid Actor-Critic Maps for 6D Non-Prehensile
Manipulation

(a) Initial configuration (b) Push the object upright (c) Grasp the object

(d) Place the object near the goal (e) Knock over the object (f) End of episode

Figure 5.12: An example of the modified object pose alignment task. The
goal of this task is to place the object at a target 6D pose in a different bin. The policy
trained with HACMan++ learns to chain a sequence of prehensile and non-prehensile
skills to achieve this task.

(a) Stack Cube (b) Peg Insertion

Figure 5.13: HACMan++ policies for the Maniskill2 benchmark. We also
evaluate HACMan++ on the Maniskill2 benchmark, demonstrating the generality of
the method in a wider range of manipulation tasks.

81

5. HACMan: Learning Hybrid Actor-Critic Maps for 6D Non-Prehensile
Manipulation

object pose alignment task shown in Figure 5.12, the robot needs to transfer the

object from one bin to another which requires both prehensile and non-prehensile

skills. The policy trained with HACMan++ exhibits complex sequential reasoning

of using appropriate skills at various stages of the task. In the example shown in

Figure 5.12, the object in the bin is initially too large for direct top-down picking.

Thus, the policy first tilts the object upright and then grasps it from on the thinner

side. The policy also learns the correct gripper orientation when the robot tries

to grasp the object. Subsequently, the policy places the object near the goal by

grounding the placing location on the background point cloud. In the final action,

the policy knocks over the object to achieve the desired 6D pose. We also evaluate

HACMan++ using two tasks from the manipulation benchmark Maniskill2 [33], cube

stacking and peg insertion, as shown in Figure 5.13. The policy learns to solve

the task efficiently by selecting appropriate primitives along with the corresponding

locations and parameters. These experiments further underscore the flexibility and

generality of HACMan framework in manipulation.

82

Chapter 6

Conclusions

6.1 Summary

In this thesis, we have explored various challenges and approaches to advance robot

dexterity using reinforcement learning. Firstly, we proposed an offline RL algo-

rithm“Policy in Latent Action Space (PLAS)” and introduced the “Offline Distillation

Pipeline” to reuse robot data more efficiently in reinforcement learning. Secondly,

we improved the robot’s dexterity beyond its hardware limitations with emergent

“Extrinsic Dexterity” learned using RL by rethinking the environment of the MDP.

Lastly, we have introduced “Hybrid Actor-Critic Map for Manipulation (HACMan)”

to improve the generalization capability of complex motor skills to unseen objects by

proposing a better action space. We demonstrate that re-framing the action space

and the environment of the MDP can be an effective way of addressing the challenges

in applying RL to manipulation. These advancements pave the way for robots to

become more capable of learning complex and generalizable motor skills that can be

used to perform a broader range of tasks in the real world.

In the future, the different methods proposed in this thesis could be combined

together to build a better robotics system. For example, we may apply the idea of

extrinsic dexterity from Chapter 4 in the object pose alignment task from Chapter 5.

Currently, the results we presented for the object pose alignment task in Chapter 5

did not utilize extrinsic dexterity for two reasons: First, the robot can rotate most of

the objects we considered without using the walls. Second, the randomized initial

83

6. Conclusions

object locations are not close to the walls. Suppose we train the policies with objects

that require extrinsic dexterity to manipulate and with a broader range of initial

object locations. In that case, we might see emergent extrinsic dexterity behaviors in

the object pose alignment task. In addition, we may apply the action space proposed

in HACMan from Chapter 5 to the Occluded Grasping task studied in Chapter 4 to

make the RL policy generalize to more diverse objects. We may also use the offline

RL algorithm from Chapter 2 and Chapter 3 to reuse real robot data for all tasks we

studied in this thesis.

6.2 Future Directions

Throughout this thesis, our primary focus was on improving the dexterity and

generalizability of a single robot to solve a single task at a time, which can be

considered as an effort to build a better specialist robot. Moving forward, we are

also excited about exploring a scalable and efficient way to build a generalist robot,

capable of performing many tasks while achieving a similar level of dexterity and

generalization as we showed in this thesis. Additionally, it would also be interesting to

explore the possibility of scaling from a single robot to multiple robots with different

embodiments.

From one task to many tasks. We need to consider several aspects to build

a generalist robot that can perform many tasks. The most basic aspect is that

we need methods that are general enough to be applied to different tasks. In this

thesis, we have taken a step towards this goal. For instance, we have demonstrated

the applicability of PLAS (Chapter 2) and HACMan (Chapter 5) to many tasks in

the experiments. The Offline Distillation Pipeline (Chapter 3) and the concept of

emergent Extrinsic Dexterity (Chapter 4) also have the potential to be applied to

more tasks. To take one step further, we may consider how to share the data across

different tasks to improve overall data efficiency. For example, training HACMan

across various tasks with a shared network may enable positive transfer among

the tasks. This research direction is related to many previous work in Multi-task

RL [122, 139, 140] and Offline RL [64, 142]. In addition, we need to scale up the

way we define the tasks. Typically, we need to tune the reward functions in RL to

obtain desired robot behaviors when we develop a new task. In the future, it would

84

6. Conclusions

be interesting to explore how to efficiently specify a new task, such as by using visual

language models as a reward function [21].

From one robot to many robots. A related future direction is to build a robot

brain that can solve tasks across different robot embodiments such as different designs

of robot arms, multi-fingered hands, wheeled robot, and quadruped robots. From

one perspective, different robots can be considered as different “tasks” in robot

learning. Thus, scaling robot learning to many robots also involve the challenges

mentioned above. However, there might be additional challenges and opportunities.

For example, a universal action representation can play a more important role in

cross-embodiment training. In HACMan from Chapter 5, we propose an object-centric

and robot-agnostic action representation that was applied to both a robot arm and

a quadruped robot. Similar embodiment-agnostic representations can be especially

beneficial when we scale the problems to multi-robot training.

85

6. Conclusions

86

Appendix A

Appendix to PLAS (Chapter 2)

A.1 Implementation Details

The implementation of our algorithm is based on the original implementation of

BCQ: https://github.com/sfujim/BCQ. We train the CVAE first and then train

the policy using the fixed decoder. The latent policy is a deterministic policy with

tanh activation at the output. The output is then scaled by a hyperparameter max

latent action. More discussions on the max latent action is in Appendix A.3. The

perturbation layer is not used by default. We include the discussion on the effect of

the perturbation layer in Appendix A.4.

Hyper-parameters for MuJoCo datasets: The actor, the critic, and the

CVAE are optimized using Adam. The actor learning rate is 1e-4 and the critic

learning rate is 1e-3. The CVAE learning rate is 1e-4. Both the encoder and the

decoder have two hidden layers (750, 750) by default. For datasets smaller than

1e6 transitions such as the medium-replay datasets, we use (128, 128) to prevent

overfitting. We train the CVAE for 5e5 timesteps with batch size 100. The latent

policy, the critic, and the perturbation layer have two hidden layers (400, 300). We

use τ = 0.005 for the soft target update. λ = 1 is used to calculate the Q-value target.

The policy is trained for 5e5 timesteps with batch size 100.

Hyper-parameters for the robot experiment: The actor and critic learning

rates are set to 3e-4 and the CVAE learning rate is 1e-4, with Adam as the optimizer.

All of the networks have two hidden layers of size 64, including the actor, the critic,

87

https://github.com/sfujim/BCQ

A. Appendix to PLAS (Chapter 2)

the encoder, and the decoder. The smaller network sizes are to prevent overfitting.

The CVAE is trained for 15000 iterations. For soft target update we use τ = 0.005.

We use λ = 0.75 for clipped double Q learning and use batch size of 256. The max

latent action is set to 2.0.

A.2 D4RL Results

To benchmark the performance of our algorithm, we include the full results for

the d4rl MuJoCo datasets here as a reference. The numbers for the baselines are

from the d4rl paper [29]. The results are averaged over 3 seeds. “PLAS” refers to

the latent policy without the perturbation layer. “PLAS+P” refers to the latent

policy + perturbation layer. For max latent action, hopper-medium-replay and

halfcheetah-medium-expert use 0.5 and all the other locomotion datasets use 2 for

both “PLAS” and “PLAS+P”. For the max perturbation, we report the best result

from Appendix A.4. Our method consistently achieves good performance especially

on medium-expert and medium-replay datasets. The other baselines work well on a

part of the datasets and fail on the others.

In the current version of the d4rl dataset, hopper-medium-expert is actually a

combination of the medium-replay and the expert datasets instead of the medium

and the expert datasets. We have verified that the results given in their paper also

correspond to the medium-replay + expert dataset. In Table A.1 and Table A.2

below, we use hopper-medium-expert(a) to refer to the results on this dataset. In

addition, we generate the actual hopper-medium-expert by concatenating the medium

and the expert datasets, referred to as hopper-medium-expert(b) in the table. The

results from Figure 2.4 and the other experiments in the appendix are all based on

hopper-medium-expert(b).

A.3 Sensitivity Analysis: Max Latent Action

The max latent action limits the range of output for the latent policy to ensure that

the output has a high probability under the latent variable prior of the CVAE. As

mentioned in Section 2.4.1, if the output of the latent policy has a high probability

88

A. Appendix to PLAS (Chapter 2)

Table A.1: D4rl Benchmark Results: Average Reward

Dataset BEAR BRAC-v BCQ
PLAS
(Ours)

PLAS+P
(Ours)

walker2d-medium-expert 1842.7 4926.6 2640.3 4113.2 4465.0
hopper-medium-expert-(a) 3113.5 5.1 3588.5 3593.7 3062.5
hopper-medium-expert-(b) 2648.4 2245.7 2021.7 3592.4 3518.5
halfcheetah-medium-expert 6349.6 4926.6 7750.8 11716.9 12051.4
walker2d-medium-replay 883.8 44.5 688.7 1387.9 658.4
hopper-medium-replay 1076.8 −0.8 1057.8 888.4 1669.6
halfcheetah-medium-replay 4517.9 5640.6 4463.9 5172.6 5397.4
walker2d-medium 2717.0 3725.8 2441.0 2047.0 3072.4
hopper-medium 1674.5 990.4 1752.4 1050.4 1182.1
halfcheetah-medium 4897.0 5473.8 4767.9 4602.6 4964.6
walker2d-random 336.3 87.4 228.0 104.0 311.6
hopper-random 349.9 376.3 323.9 320.5 412.2
halfcheetah-random 2831.4 3590.1 −1.3 2922 3235.8

Table A.2: D4rl Benchmark Results: Normalized Score

Dataset BEAR BRAC-v BCQ
PLAS
(Ours)

PLAS+P
(Ours)

walker2d-medium-expert 40.1 81.6 57.5 89.6 97.2
hopper-medium-expert-(a) 96.3 0.8 110.9 111.0 94.7
hopper-medium-expert-(b) 82.0 69.6 62.7 111.0 108.7
halfcheetah-medium-expert 53.4 41.9 64.7 96.6 99.3
walker2d-medium-replay 19.2 0.9 15 30.2 14.3
hopper-medium-replay 33.7 0.6 33.1 27.9 51.9
halfcheetah-medium-replay 38.6 47.7 38.2 43.9 45.7
walker2d-medium 59.1 81.1 53.1 44.6 66.9
hopper-medium 52.1 31.1 54.5 32.9 36.9
halfcheetah-medium 41.7 46.3 40.7 39.3 42.2
walker2d-random 7.3 1.9 4.9 3.1 6.8
hopper-random 11.4 12.2 10.6 10.5 13.3
halfcheetah-random 25.1 31.2 2.2 25.8 28.3

89

A. Appendix to PLAS (Chapter 2)

Table A.3: D4rl Results on More Datasets: Average Reward. For these datasets, we
searched over 0.5, 1, 2 for max latent action and report the best results.

Dataset BC SAC-off BEAR BRAC-v BCQ
PLAS
(Ours)

maze2d-umaze 29.0 145.6 28.6 1.7 41.5 102.6
maze2d-medium 93.2 82.0 89.8 102.4 35.0 109.6
maze2d-large 20.1 1.5 19.0 115.2 23.2 334.6
antmaze-umaze 0.7 0.0 0.7 0.7 0.6 0.7
antmaze-umaze-diverse 0.6 0.0 0.6 0.7 0.7 0.5
antmaze-medium-play 0.0 0.0 0.0 0.0 0.0 0.2
antmaze-medium-diverse 0.0 0.0 0.1 0.0 0.0 0.0
antmaze-large-play 0.0 0.0 0.0 0.0 0.0 0.0
antmaze-large-diverse 0.0 0.0 0.0 0.0 0.0 0.0
pen-human 1121.9 284.8 66.3 114.7 2149.0 2101.0
hammer-human −82.4 −214.2 −242.0 −243.8 −210.5 324.7
door-human −41.7 57.2 −66.4 −66.4 −56.6 73.3
relocate-human −5.6 −4.5 −18.9 −19.7 −8.6 7.1
pen-cloned 1791.8 797.6 885.4 22.2 1407.8 1558.0
hammer-cloned −175.1 −244.1 −241.1 −236.9 −224.4 −142.9
door-cloned −60.7 −56.3 −60.9 −59.0 −56.3 41.2
relocate-cloned −10.1 −16.1 −17.6 −19.4 −17.5 −16.7
pen-expert 2633.7 277.4 3253.1 6.4 3521.3 3693.3
hammer-expert 16140.8 3019.5 16359.7 −241.1 13731.5 16333.5
door-expert 969.4 163.8 2980.1 −66.6 2850.7 3004.0
relocate-expert 4289.3 −18.2 4173.8 −21.4 1759.6 4528.5
kitchen-complete 1.4 0.6 0.0 0.0 0.3 1.4
kitchen-partial 1.4 0.0 0.5 0.0 0.8 1.8
kitchen-mixed 1.9 0.1 1.9 0.0 0.3 1.6

90

A. Appendix to PLAS (Chapter 2)

Table A.4: D4rl Results on More Datasets: Normalized Score

Dataset BC SAC-off BEAR BRAC-v BCQ
PLAS
(Ours)

maze2d-umaze 3.8 88.2 3.4 −16.0 12.8 57.0
maze2d-medium 30.3 26.1 29.0 33.8 8.3 36.5
maze2d-large 5.0 −1.9 4.6 40.6 6.2 122.7
antmaze-umaze 65.0 0.0 73.0 70.0 78.9 70.7
antmaze-umaze-diverse 55.0 0.0 61.0 70.0 55.0 45.3
antmaze-medium-play 0.0 0.0 0.0 0.0 0.0 16.0
antmaze-medium-diverse 0.0 0.0 8.0 0.0 0.0 0.7
antmaze-large-play 0.0 0.0 0.0 0.0 6.7 0.7
antmaze-large-diverse 0.0 0.0 0.0 0.0 2.2 0.3
pen-human 34.4 6.3 −1.0 0.6 68.9 67.3
hammer-human 1.5 0.5 0.3 0.2 0.5 4.6
door-human 0.5 3.9 −0.3 −0.3 0.0 4.4
relocate-human 0.0 0.0 −0.3 −0.3 −0.1 0.3
pen-cloned 56.9 23.5 26.5 −2.5 44.0 49.0
hammer-cloned 0.8 0.2 0.3 0.3 0.4 1.0
door-cloned −0.1 0.0 −0.1 −0.1 0.0 3.3
relocate-cloned −0.1 −0.2 −0.3 −0.3 −0.3 −0.2
pen-expert 85.1 6.1 105.9 −3.0 114.9 120.7
hammer-expert 125.6 25.2 127.3 0.3 107.2 127.1
door-expert 34.9 7.5 103.4 −0.3 99.0 104.2
relocate-expert 101.3 −0.3 98.6 −0.4 41.6 106.9
kitchen-complete 33.8 15.0 0.0 0.0 8.1 34.8
kitchen-partial 33.8 0.0 13.1 0.0 18.9 43.9
kitchen-mixed 47.5 2.5 47.2 0.0 8.1 40.8

91

A. Appendix to PLAS (Chapter 2)

0.5 1 2 3
0.0

2.5

5.0

7.5

walker2d-random

0.5 1 2 3
0

20

40

60
walker2d-medium

0.5 1 2 3
0

10

20

30

walker2d-medium-replay

0.5 1 2 3
0

50

100
walker2d-medium-expert

0.5 1 2 3
0

5

10

hopper-random

0.5 1 2 3
0

20

40

hopper-medium

0.5 1 2 3
0

10

20

30
hopper-medium-replay

0.5 1 2 3
0

50

100

hopper-medium-expert

0.5 1 2 3
0

10

20

30
halfcheetah-random

0.5 1 2 3
0

20

40

halfcheetah-medium

0.5 1 2 3
0

20

40

halfcheetah-medium-replay

0.5 1 2 3
0

50

100

halfcheetah-medium-expert

Figure A.1: Sensitivity analysis on the max latent action for the latent policy: X-axis
is the max latent action value. Y-axis is the normalized score.

under the distribution of the latent variable prior, then the decoded output has a high

probability to be within the distribution of the behavior policy. Larger max latent

action may result in out-of-distribution actions. On the other hand, smaller max

latent action will make the action selection more restrictive. We evaluated the effect

of the max latent action from {0.5, 1, 2, 3} over the MuJoCo datasets in d4rl as shown

in Figure A.1. In hopper-medium-replay and halfcheetah-medium-expert, 0.5 works

the best. In most cases, 2 works well. Thus, we use 0.5 for hopper-medium-replay

and halfcheetah-medium-expert and 2 by default for all the other environments for

simplicity. Note that all the experiments for walker2d-random are unstable, thus the

comparison across different parameters might not be valuable since we only average

across 3 seeds.

A.4 Ablation Study: Perturbation Layer

We provide a full comparison of the perturbation layer on MuJoCo datasets in this sec-

tion. We summarize the results with max perturbation ϵ ∈ {0, 0.01, 0.05, 0.1, 0.2, 0.5}
in Figure A.2. ϵ = 0 is only using the Latent Policy without the perturbation layer.

As mentioned above, the walker2d-random experiments are not stable, thus the

comparison might not be valuable. In most cases, the addition of the perturbation

layer sometimes improves the performance, but not significant. With a large ϵ higher

92

A. Appendix to PLAS (Chapter 2)

0 0.01 0.05 0.1 0.2 0.5
0.0

2.5

5.0

7.5
walker2d-random

0 0.01 0.05 0.1 0.2 0.5
0

25

50

75
walker2d-medium

0 0.01 0.05 0.1 0.2 0.5
0

10

20

30

walker2d-medium-replay

0 0.01 0.05 0.1 0.2 0.5
0

50

100

walker2d-medium-expert

0 0.01 0.05 0.1 0.2 0.5
0

5

10

15
hopper-random

0 0.01 0.05 0.1 0.2 0.5
0

20

40
hopper-medium

0 0.01 0.05 0.1 0.2 0.5
0

20

40

60
hopper-medium-replay

0 0.01 0.05 0.1 0.2 0.5
0

50

100

hopper-medium-expert

0 0.01 0.05 0.1 0.2 0.5
0

10

20

30
halfcheetah-random

0 0.01 0.05 0.1 0.2 0.5
0

20

40

halfcheetah-medium

0 0.01 0.05 0.1 0.2 0.5
0

20

40

halfcheetah-medium-replay

0 0.01 0.05 0.1 0.2 0.5
0

50

100

halfcheetah-medium-expert

Figure A.2: Ablation study on the perturbation layer: X-axis is the max perturbation.
Y-axis is the normalized score.

than a certain value, the performance usually drops. Thus, we make the perturbation

layer an optional component in our method.

A.5 Empirical Analysis on MMD Constraint

To understand the limitation of using sampled MMD constraint to limit out-of-

distribution actions, we simulate the MMD loss in different scenarios. In the first

experiment, we construct a one-dimensional behavior policy sampling from N(0, 1)

and an agent policy sampling from N(0, x), where x is a variable. In Figure A.3

below, we plot the MMD loss for this agent policy with different x as the x-axis with

various kernel parameters. Ideally, the loss should be smaller than a threshold for

any x ≤ 1 to allow the agent policy to select the best action within the support with

a higher probability. However, as shown in Figure A.3, this is only roughly satisfied

with the Gaussian kernel and large sigma. Sampled MMD constraint aims to match

the entire support of two distributions and could be overly restrictive.

In Figure A.4, we further demonstrate the limitation of MMD constraint on

multimodal distributions. We assume a behavior policy sampling uniformly from

[−2,−1]
⋃
[1, 2] and an agent policy sampling from N(x, 0.5). We vary the mean

value x in the x-axis of the figures. In this case, we expect the minimum loss to

happen at x = −1.5 and x = 1.5 to prevent out of distribution actions. However,

93

A. Appendix to PLAS (Chapter 2)

0 1 2
Std

0.4

0.6

0.8

1.0

M
M

D
Lo

ss

Laplacian, Sigma=1

0 1 2

0.2

0.3

Laplacian, Sigma=10

0 1 2
0.10

0.15

0.20

0.25

Laplacian, Sigma=20

0 1 2
Std

0.4

0.6

0.8

1.0

M
M

D
Lo

ss

Gaussian, Sigma=1

0 1 2

0.2

0.3

0.4

0.5
Gaussian, Sigma=10

0 1 2
0.1

0.2

0.3

Gaussian, Sigma=20

n=1
n=2
n=3
n=4
n=5

Figure A.3: Simulated MMD loss with N(0,1) as the behavior policy.

the simulation results show that this is not the case for any of the curves. With

large sigma, the minimum MMD loss occurs at x = 0, which lies in the “hole” of the

behavior policy distribution.

A.6 Robot Experiment

For the real robot experiments, we use a Sawyer robot equipped with a WSG 32

gripper and a WSG DSA tactile sensor finger. The physical setup involves a cloth

with one corner clamped on a fixture. The task is to slide along the cloth as far as

possible, ideally until the other corner is reached.

The movement of the end-effector is constrained to a vertical plane from the

fixture. The environment’s action space consists of the incremental movement in

horizontal (x) and vertical (z) directions for a single time step. The observation

space of the environment consists of the tactile sensor readings, end-effector force,

and end-effector pose (z position and angle). The observations are thus in the form

of a 89-d vector. The action space consists of horizontal and vertical delta position

actions.

The reward and the terminal conditions are designed to encourage large movement

in the x-direction without losing the cloth. For each timestep, if the gripper is

94

A. Appendix to PLAS (Chapter 2)

2 0 2
Mean

0.6

0.8

1.0

1.2

1.4

M
M

D
Lo

ss

Laplacian, Sigma=1

2 0 2
0.2

0.4

0.6

0.8

Laplacian, Sigma=10

2 0 2

0.2

0.4

0.6

Laplacian, Sigma=20

2 0 2
Mean

0.8

1.0

1.2

1.4

M
M

D
Lo

ss

Gaussian, Sigma=1

2 0 2

0.5

1.0

Gaussian, Sigma=10

2 0 2

0.5

1.0

Gaussian, Sigma=20

n=1
n=2
n=3
n=4
n=5

Figure A.4: Simulated MMD loss with N(0,1) as the behavior policy.

sliding along the cloth, it receives a reward equal to the horizontal action. This is to

encourage faster sliding. However, if the edge is lost from the gripper, the reward

will be zero for that timestep and the episode ends. This failure condition is detected

based on the gripper width adjustment procedure discussed below. In addition, the

maximum episode length is 70 timesteps.

We use a hard-coded procedure to adjust the gripper width. The overall objective

is to get clearer tactile readings of the cloth by grasping tightly while allowing the

gripper to slide easily without too much friction. The adjustment is based on the

coverage and the mean value of the tactile readings as well as the end-effector force

readings. When the gripper width is at the minimum value and there is still no tactile

reading or force reading, we consider it as a failure and the episode ends.

95

A. Appendix to PLAS (Chapter 2)

96

Appendix B

Appendix to Robot Lifelong

Learning (Chapter 3)

B.1 Additional results on the offline distillation

pipeline

In Figure 3.6, we present the results of the two-stage lifelong learning experiments

when Env-A is the default environment and Env-B has the hip joint of the robot

deformed by 0.3 rad. In this section, we include more results across more environ-

ment variations. To demonstrate the difficulty of data collection with conservative

algorithms, Figure B.1 shows the performance of each algorithm when they are

trained from scratch, which corresponds to the first stage of the lifelong learning setup

discussed in Section 3.7.2. MPO performs significantly better than both versions of

CRR. Figure B.2 shows the performance during Stage-2 where all of the algorithms

loaded an agent which is pretrained in Env-A (the default environment) for 0.2M

steps. The Offline Distillation Pipeline can achieve the best performance consistently

across different Env-B variations.

B.2 Algorithm

A summary of the algorithm is included in Algorithm 2.

97

B. Appendix to Robot Lifelong Learning (Chapter 3)

Figure B.1: Comparison of off-policy algorithms for training from scratch which
corresponds to the beginning stage of a lifelong learning experiment. This is an
extension of Figure 3.6 Stage-1 result.

Figure B.2: Comparison of off-policy algorithms during Stage-2 of the lifelong learning
experiment. This is an extension of Figure 3.6 Stage-2 results.

98

B. Appendix to Robot Lifelong Learning (Chapter 3)

Algorithm 2: Offline Distillation Pipeline

Input: Maximum data collection step N . Maximum offline traning step M .
A training environment with non-stationary dynamics Pt. A testing
environment with dynamics Ptest within the support of the training
distribution.

// Online Interaction Phase
Initialize policy π0 and Q-function Q0. Initialize an empty replay buffer D.
for t← 1 to M do

Collect data with the current dynamics Pt and save the transition
(st, at, st+1) into the replay buffer D.
Sample a batch of transitions {(si, ai, si+1)}i from D.
Update Q0 with MPO Policy Evaluation Step according to Equation 3.1.
Update π0 with MPO Policy Improvement Step according to Equation 3.2.

end
// Offline Distillation Phase
Initialize policy π1 and Q-function Q1.
for t← 1 to M do

Sample a batch of transitions {(si, ai, si+1)}i from D.
Update Q1 with CRR Policy Evaluation Step according to Equation 3.1.
Update π1 with CRR Policy Improvement Step according to Equation 3.4.

end
// Deployment
Execute the distilled policy π1 in the testing environment Ptest.

99

B. Appendix to Robot Lifelong Learning (Chapter 3)

B.3 Additional results with three environments

and parallel sharing

In Section 3.7, we focus on the experiment setup with two environments: switching

from Env-A to Env-B during training, and evaluate on both Env-A and Env-B during

evaluation. To show the generality of the discussed problems and the proposed

solutions, we include experiments with three environments in this section with both

sequential training and parallel training. For each experiment setup, we include three

different combinations of environment variations as listed in Table B.1.

Env-Combination-1 Env-Combination-2 Env-Combination-3
Env-A Default Default Default
Env-B hip deformation = 0.2 hip deformation = 0.3 foot scale = 1.2

Env-C
hip deformation = 0.2

foot scale = 1.6
hip deformation = 0.3

foot scale = 1.6
foot scale = 1.2

ground texture = 0.1

Table B.1: Combinations of different environment variations in the three environment
experiments.

B.3.1 Forgetting and the effectiveness of Offline Distillation

In this section, we demonstrate the forgetting issue and the effectiveness of the Offline

Distillation Pipeline with a three-stage experiment. As shown in Figure B.3a, the

agent first collects data in Env-A for 0.2M steps, switches to Env-B for 0.2M steps,

and eventually experiences Env-C for 1M steps. During this online interaction phase,

the agent is trained with MPO and keeps all the history data in the replay buffer.

We plot the evaluation performance for all three environments across this procedure

in Figure B.3b. Similar to the observations from Section 3.7.2, the agent experiences

significant performance drop on the previous environments after the switches. At the

end of the online interaction phase, we run Offline Distillation on the entire dataset

indicated as the dotted lines in Figure B.3b. With Offline Distillation, we can recover

a policy that works on all the previous environments.

100

B. Appendix to Robot Lifelong Learning (Chapter 3)

Private & Confidential

Env-A Env-B Env-C

Env-A
Env-B

Env-C

0.2M steps 0.2M steps 1M steps

0.2M steps

1M steps

0.2M steps

Env-A Env-B

Env-C
0.2M steps

1M steps0.2M steps

π

π

π

(a) Experiment Setup: The agent experiences three stages across the online interaction
phase.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Environment Steps 1e6

0

200

400

600

Re
wa

rd

Env-Combination-1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Environment Steps 1e6

0

200

400

600
Env-Combination-2

Env-A MPO
Env-B MPO
Env-C MPO

Env-A Offline Distillation
Env-B Offline Distillation
Env-C Offline Distillation

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Environment Steps 1e6

0

200

400

600
Env-Combination-3

(b) Reward curves

Figure B.3: Lifelong learning experiments with three stages. The policy trained
with MPO during online interaction experiences significant forgetting on previous
environments. With Offline Distillation at the end, the policy can recover the
performance effectively over all the previous environments.

101

B. Appendix to Robot Lifelong Learning (Chapter 3)

B.3.2 Imbalance experience in offline distillation

We construct additional experiment setups to demonstrate the imbalance issue in

Offline Distillation and verify the proposed solution of using a more conservative

transformation function. First, we follow the setup from the previous section where the

agent experiences three environments consecutively (Figure B.4a). We compare the

results of Offline Distillation with an indicator function (Baseline) and an exponential

function with β = 1. From Figure B.4b, the baseline has a significant performance

drop in Env-A for Env-Combination-2 and Env-Combination-3, similar to the results

from Section 3.7.3. With the exponential function with β = 1, CRR training during

the distillation phase is more reliable across all the environments.

We evaluate two additional experiment setup with parallel training. In Figure B.5a,

the agent is first trained on Env-A. After 0.2M steps, the agent is copied into two

different agents (including the policy, the Q-function, and the replay buffer). Two

copies of the agents continues the training on Env-B and Env-C independently. At

the end of the online interaction phase, we run Offline Distillation on the entire

dataset. In Figure B.6a, one agent is trained on Env-A and then switches to Env-B.

Another agent is trained from scratch on Env-C. The offline distillation is performed

on the combined dataset of these three environments. For both experiment setups, the

baseline often experiences performance drop in Env-A. For the setup in Figure B.6b,

Env-C might also suffer from a performance drop since the dataset is trained from

scratch and it is relatively small. As we discussed in Section 3.6, both size and quality

contributes to the performance drop of imbalanced dataset. For both setups, CRR

with exponential function with β = 1 can largely fix this issue.

102

B. Appendix to Robot Lifelong Learning (Chapter 3)

Private & Confidential

Env-A Env-B Env-C

Env-A
Env-B

Env-C

0.2M steps 0.2M steps 1M steps

0.2M steps

1M steps

0.2M steps

Env-A Env-B

Env-C
0.2M steps

1M steps0.2M steps

π

π

π

(a) Experiment Setup: The agent experiences three stages across the online interaction
phase.

Env-A Env-B Env-C
0

200

400

600

Re
wa

rd

Env-Combination-1

Env-A Env-B Env-C
0

200

400

600
Env-Combination-2

Baseline = 1

Env-A Env-B Env-C
0

200

400

600
Env-Combination-3

(b) Final performance of Offline Distillation.

Figure B.4: Evaluation of Offline Distillation with different transformation functions
with a three-stage experiment setup.

103

B. Appendix to Robot Lifelong Learning (Chapter 3)

Private & Confidential

Env-A Env-B Env-C

Env-A
Env-B

Env-C

0.2M steps 0.2M steps 1M steps

0.2M steps

1M steps

0.2M steps

Env-A Env-B

Env-C
0.2M steps

1M steps0.2M steps

π

π

π

(a) Experiment Setup: Parallel training during the online interaction phase (type-A).

Env-A Env-B Env-C
0

200

400

600

Re
wa

rd

Env-Combination-1

Env-A Env-B Env-C
0

200

400

600
Env-Combination-2

Baseline = 1

Env-A Env-B Env-C
0

200

400

600
Env-Combination-3

(b) Final performance of Offline Distillation.

Figure B.5: Evaluation of Offline Distillation with different transformation functions
with a parallel training experiment setup with three environments (type-A).

104

B. Appendix to Robot Lifelong Learning (Chapter 3)

Private & Confidential

Env-A Env-B Env-C

Env-A
Env-B

Env-C

0.2M steps 0.2M steps 1M steps

0.2M steps

1M steps

0.2M steps

Env-A Env-B

Env-C
0.2M steps

1M steps0.2M steps

π

π

π

(a) Experiment Setup: Parallel training during the online interaction phase (type-B).

Env-A Env-B Env-C
0

200

400

600

Re
wa

rd

Env-Combination-1

Env-A Env-B Env-C
0

200

400

600
Env-Combination-2

Baseline = 1

Env-A Env-B Env-C
0

200

400

600
Env-Combination-3

(b) Final performance of Offline Distillation.

Figure B.6: Evaluation of Offline Distillation with different transformation functions
with a parallel training experiment setup with three environmentsv (type-B).

105

B. Appendix to Robot Lifelong Learning (Chapter 3)

106

Appendix C

Appendix to Grasp the

Ungraspable (Chapter 4)

C.1 Additional Results

C.1.1 Sensitivity analysis on physical parameters

In addition to the evaluation on policy generalization in Section 4.5.4, we modify

the important physical parameters one at a time to understand the sensitivity of

the policy performance to these parameters (Figure C.1). We compare the same

baselines as Section 4.5.4: policies trained over a fixed environment (Fixed Env),

policies trained with ADR (With ADR) and open-loop trajectories generated by

rolling out the fixed env policy in the default environment (Open Loop). The ranges

of parameters are chosen to create a performance drop for all the baselines as a stress

test. Similar to what we observe in Section 4.5.4, the policy can cover a wider range

of physical parameters with closed-loop execution and with ADR.

C.1.2 Sensitivity analysis on object pose estimation noise

The proposed system takes the 6D object pose as policy input. In the real world,

object pose estimation might be noisy. In this section, we evaluate the policies trained

with ADR with different levels of pose estimation noise for each dimension of the 6D

107

C. Appendix to Grasp the Ungraspable (Chapter 4)

Figure C.1: We evaluate the generalization of policies by changing one parameter at
a time. The dashed lines indicate the default values of these parameters in the fixed
environment.

0 2 4 6 8 10
Orientation Noise (deg)

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

0 1 2 3 4 5
Position Noise (cm)

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

x y z

Figure C.2: We evaluate the sensitivity of the ADR policies on object pose estimation
noise.

0 1000 2000 3000 4000
Episodes

0.25
0.00
0.25
0.50
0.75
1.00
1.25

Av
er

ag
e

Su
cc

es
s

alpha1=30
alpha1=50 (Ours)
alpha1=70

0 1000 2000 3000 4000
Episodes

0.25
0.00
0.25
0.50
0.75
1.00
1.25

Av
er

ag
e

Su
cc

es
s

alpha2=1
alpha2=2 (Ours)
alpha2=3

0 1000 2000 3000 4000
Episodes

0.25
0.00
0.25
0.50
0.75
1.00
1.25

Av
er

ag
e

Su
cc

es
s

beta=100
beta=200 (Ours)
beta=300

Figure C.3: Training curves with different reward weights. For each plot, we train
the policies by changing one of the weight terms to three different values.

108

C. Appendix to Grasp the Ungraspable (Chapter 4)

object pose (Figure C.2). During evaluation, for each timestep across the episode, we

sample a scalar noise from a Gaussian distribution N (µ = 0, σ = x) and add it to

one dimension of the object pose. The standard deviations σ = x are shown as the

x-axis in the plots. The shaded area indicates the standard deviation of the success

rates across seeds.

C.1.3 Reward term weights

The reward function shown in Equation 4.1 is composed of three terms with weights

α1, α2 and β. α1 and α2 weight the translation and rotation error between the target

grasp and the current end-effector.β weights the target grasp occlusion penalty which

is to penalize the agent if the target grasp configuration is in collision with the table.

We use α1 = 50, α2 = 2, β = 200 in all the experiments. In this section, we train

the policies with different weight values to see how much reward tuning is required

to achieve reasonable performance for the occluded grasping task. Figure C.3 shows

that the policy is not too sensitive in most of the case we tested except that a higher

α1 = 70 leads to a 50% drop in performance.

C.2 Implementation Details

C.2.1 Simulation environment

We build the simulation environment with Robosuite [153] which uses the MuJoCo

simulator [125]. Each episode has a length of 40 timesteps which corresponds to 20

seconds of real time execution. At the beginning of each episode, we set the robot

arm to an initial joint configuration with Gaussian noise in the joint angles of 0.02

rad. We use a box-shaped object in the simulation environment. The dimensions

of the box are randomized in the ADR experiments. One important note on the

simulator environment is the parameters of the MuJoCo solver. We notice that

MuJoCo sometimes creates unrealistic contacts with the default solver. We reduce

the simulation solver timestep from the default value of 0.002 to 0.001 and set the

“noslip iterations” to 20 which significantly improved simulation quality on contacts.

109

C. Appendix to Grasp the Ungraspable (Chapter 4)

C.2.2 Grasp configurations

In this work, we focus on grasping large objects from the side because this is a task

that may demonstrate the benefits of extrinsic dexterity. For single grasp experiments,

a default grasp location is shown in Figure 4.1. In multi-grasp experiments, the grasps

are sampled from a distribution shown in Figure 4.6. The grasps are sampled along

the side of the box and they are 2 cm away from the edges. These grasp configurations

are supposed to be the input to our proposed system, and could be replaced by other

grasp generation methods.

C.2.3 Success rate calculation

In simulation, the success of the task is computed as 1(∆T < 3 cm) · 1(∆θ < 10 deg)

at the end of an episode. As defined in Section 4.3, ∆T is the position difference

between the end-effector and the target grasp and ∆θ is the orientation difference.

The success is defined in this way because we focus on reaching the desired grasp.

One alternative is to evaluate the final grasping success by closing the gripper and

lift the object. However, this will increase the simulation time during training. To

confirm that the pose difference is a good proxy for the final grasping success, we

evaluated a trained policy and verified that if the robot closes the gripper at the end

of a successful episode according to the pose difference metric, it is able to lift the

object 100% of the time.

For the real robot experiments, we evaluate success by closing the gripper and

lifting the object; if the object was successfully lifted, we will mark it as a successful

episode.

C.2.4 Observation and action space

As mentioned in Section 4.4.2, the observation includes a target grasp configuration

in the object frame Og, the pose of the end-effector in the world frame WE and the

object pose in the world frame WO. One implementation detail is that we also include

the pose of the end-effector in the object frame OE = (WO)−1(WE) because we found

that it sometimes speeds up learning. Each pose is represented as a 3D translation

vector and a 4D quaternion representation of the rotation.

110

C. Appendix to Grasp the Ungraspable (Chapter 4)

The action space of the policy is the delta pose of the end-effector ∆E in its

local frame represented by a vector of translation p ∈ R3 and a 3D vector of rotation

q ∈ SO(3) with axis-angle representation. An outline of the policy execution pipeline

is shown in Figure C.4. ∆E is then passed into a collision check function to form a

desired pose Ed which will be sent to a low-level controller.

C.2.5 Low-level controller

Handling joint limit: Although we may use nullspace in the operational space

controller to avoid reaching joint limit, in practice, certain desired end-effector poses

still reach joint limits that cannot be avoided by nullspace. Thus, we handling the

joint limit in the following way. If the corresponding joint configuration of the desired

pose is going to reach joint limits, we will overwrite the policy action to output the

desired pose of the previous timestep to the low-level controller. In detail, we use the

Jacobian J to estimate the joint configuration of the desired pose:

θt+1
joints = θtjoints + J−1 ·∆E (C.1)

where θjoints are the joint angles and ∆E is the output of the policy. If any joint in

θt+1
joints is close to the limit, the low-level controller will use the previous desired pose

Ed instead.

Parameters of the Operational Space Controller: We use Kp = 300 for position

error, Kp = 30 for orientation error, and Kd =
√
Kp. These values are chosen by

making sure that the real robot is compliant enough to safely collide with the object

and the bin without damage. In Figure D.5, the baseline of “High-gain OSC” uses

Kp = 600 for position error, Kp = 60 for orientation error, and Kd =
√
Kp. This

baseline with less compliance is not only slower to train in the simulation, but also

not safe to execute on the real robot for our task which involves rich contacts and

relies on environment constraints. During our initial experiments, with the high-gain

OSC, the robot deforms the object and the bin surface.

111

C. Appendix to Grasp the Ungraspable (Chapter 4)

Policy (MLP)

End-effector	
Delta	Movement

Δ3

Desired
End-effector	Pose

3!Check Joint
Limit

Operational
Space

Controller(2Hz)

Joint	torque	
command
(100Hz)

Goal:
Target grasp A

Observations:
End-effector pose 3

Object pose B
End-effector pose in the

object frame 3!

"

"

Figure C.4: Outline of policy execution: Given the observation, the policy outputs
an end-effector delta movement. If the desired pose is within the joint limit of the
robot, it will be sent to the low-level controller which operates at a higher frequency.

C.2.6 Multi-Grasp Training with Curriculum

Here are more details on multi-grasp training. When the success rate of policy on a

boundary case of the training range is above 0.8, it will expand the range of grasps by

0.25 (See Figure 4.6 for parameterizations of the grasp configurations). For example,

if the policy is currently training with grasps [1, 2], and the success rate evaluated

at grasp ID 1 is above 0.8, the new training range will be [0.75, 2]. This is following

a similar procedure as Automatic Domain Randomization, but randomizing goals

instead of simulation parameters.

C.2.7 RL Training

We use Soft Actor Critic [34] to train the RL policy with the impementation from rlkit

(https://github.com/rail-berkeley/rlkit). Hyperparameters for SAC training

are included in Table C.1. Since the task is conditioned on the target grasp as a goal,

we use Hindsight Experience Replay [7] for all the experiments with 60% original goals

and 40% of the goals sampled from the same rollout. We compare the policies across

5 random seeds of each method and plot the average performance with standard

deviation across seeds. We use 10 episodes for each evaluation setting.

C.3 Automatic Domain Randomization

As discussed in Section 4.4.6, we use Automatic Domain Randomization [91] to

improve policy generalization across environment variations. In ADR, the policy is

first trained with an environment with very little randomization, and then we gradually

112

https://github.com/rail-berkeley/rlkit

C. Appendix to Grasp the Ungraspable (Chapter 4)

Table C.1: Hyperparameters for RL training.

Hyperparameters Values
Optimizer Adam
Learning rate - Policy 1e-3
Leraning rate - Q-function 5e-4
Networks [512, 512, 512] MLP
Batch size 256
Nonlinearity ReLU
Soft target update (τ) 0.005
Replay buffer size 1e6
Discount factor (γ) 0.99
HER rollout goals 40%

expand the variations based on the evaluation performance. For a set of environment

parameters λi, each λi is sampled from a uniform distribution λi ∼ U(ϕL
i , ϕ

H
i) at

the beginning of each episode. During training, the policy will be evaluated at

these boundary values λi = ϕL
i or λi = ϕH

i . If the performance is higher than a

threshold, the boundary value will be expanded by an increment ∆. For example, if

the performance at λi = ϕH
i is higher than the threshold, the training distribution

becomes λi ∼ U(ϕL
i , ϕ

H
i +∆) in the next iteration. Compared to directly training

the policy with the entire variations, Automatic Domain Randomization can reduce

the need of manually tuning a suitable range of variations for each environment

parameter.

Table C.2 summarized the simulation parameters in the experiment. All the

parameters are uniformly sampled from these ranges at the beginning of each episode.

The ranges of the parameters start from a single initial value and gradually expand

to a wider range according to the pre-specific increment step +∆ on the upper bound

and the decrement step −∆ at the lower bound.

We include the training plots of the ADR policies in Figure C.5. Dashed lines in

Figure C.5 indicate fixed parameter boundaries where we do not intent to expand. The

final ranges are used when we sample 100 environments for evaluation in Section 4.5.4.

113

C. Appendix to Grasp the Ungraspable (Chapter 4)

0 2500 5000 7500 10000
Episodes

0.00

0.25

0.50

0.75

1.00

1.25

Av
er

ag
e

Su
cc

es
s

0 2500 5000 7500 10000
Episodes

0

10

20

30

40

AD
R

ex
pa

ns
io

n
co

un
ts

(a) Overall training performance of the ADR policies: Success rate over the entire training
range (left) and total number of expanded parameter boundaries.

0 2500 5000 7500 10000
Episodes

0.000

0.005

0.010

0.015

0.020

ob
je

ct
_t

o_
wa

ll_
di

st

0 2500 5000 7500 10000
Episodes

0.0200

0.0225

0.0250

0.0275

0.0300

co
nt

ro
lle

r_
m

ax
_t

ra
ns

la
tio

n

0 2500 5000 7500 10000
Episodes

0.100

0.125

0.150

0.175

0.200

co
nt

ro
lle

r_
m

ax
_r

ot
at

io
n

0 2500 5000 7500 10000
Episodes

2.0

2.5

3.0

gr
ip

pe
r_

fri
ct

io
n

0 2500 5000 7500 10000
Episodes

0.48

0.49

0.50

0.51

0.52

ta
bl

e_
of

fs
et

_x

0 2500 5000 7500 10000
Episodes

0.055

0.060

0.065

0.070

0.075

ta
bl

e_
of

fs
et

_z

0 2500 5000 7500 10000
Episodes

0.1

0.2

0.3

0.4

0.5

ta
bl

e_
fri

ct
io

n

0 2500 5000 7500 10000
Episodes

0.140

0.145

0.150

0.155

0.160

ob
je

ct
_s

ize
_x

0 2500 5000 7500 10000
Episodes

0.040

0.045

0.050

0.055

0.060

ob
je

ct
_s

ize
_z

0 2500 5000 7500 10000
Episodes

0

50

100

150

ob
je

ct
_d

en
sit

y

expanding upper bound
expanding lower bound
fixed upper bound
fixed lower bound

(b) Training progress of individual ADR parameters. Each plot for the physical parameters
has two curves indicating the upper and lower bound of the expanded training range.
Dashed lines indicate fixed parameter boundaries where we do not intent to expand.

Figure C.5: Training curves for the ADR policies.

114

C. Appendix to Grasp the Ungraspable (Chapter 4)

Table C.2: Simulation parameters in Automatic Domain Randomization

Initial Value +∆ −∆ Final Range
Object size x (m) 0.15 0.01 -0.01 [0.14, 0.16]
Object size z (m) 0.05 0.01 -0.01 [0.04, 0.06]
Table friction 0.3 0.1 -0.1 [0.1, 0.5]
Gripper friction 3 / -1 [2, 3]
Object Density (g/m3) 86 86 43 [43, 172]
Action translation scale (m) 0.03 / -0.005 [0.02, 0.03]
Action rotation scale (rad) 0.2 / -0.05 [0.1, 0.2]
Initial distance to wall (m) 0 0.01 / [0, 0.02]
Table offset x (m) 0.5 0.01 -0.01 [0.48, 0.52]
Table offset z (m) 0.07 0.01 0.01 [0.055, 0.075]

C.4 Real robot experiment

In this section, we include more details and discussion for the real robot experiments.

Quantitative results can be found on the website 1 where we include all the videos

for the real robot experiments, video examples of failure cases, recovery behaviors

and ICP results.

C.4.1 Implementation details

The robot setup is shown in Figure C.6. The code for controlling the real robot is

built on top of FrankaPy [148]. The policies are trained in the simulator and zero-shot

transferred to a physical Franka Emika Panda robot. For the real robot experiments,

we train a policy in the XZ plane from the side view to reduce the sim2real gap of

the policy, since the motion is mostly in the XZ plane for the side grasp.

Sim2Real gap of the low-level controller: We observe a noticeable sim2real gap

on the low-level controller when deploying the policy. The same command of moving

the end-effector to a certain pose in free space may not have the same resulting move-

ment. This is a combination of two factors: First, there is a significant discrepancy

between the robot model in simulation and the real robot. The real robot has more

damping and friction on the joints. Second, we use a compliant controller for this

task, which is more susceptible to the noise in the system. As a result, the real robot

1https://sites.google.com/view/grasp-ungraspable

115

https://sites.google.com/view/grasp-ungraspable

C. Appendix to Grasp the Ungraspable (Chapter 4)

Figure C.6: Robot setup. We use one Azure Kinect camera for object pose estimation.

always executes a smaller delta movement than the simulator. To compensate for this

sim2real gap, we slightly increase the action scale and reduce the policy execution

rate from 2Hz to 1Hz. Both of these changes will allow the real robot to compensate

for the smaller movement caused by the damping and friction of its joints. Note that

the sim2real gap still exists after these changes. However, the remaining gap could be

further compensated by using a closed-loop policy. During our experiments, we first

use the default object Box-0 to tune the controller until we observe several successes in

a row. After that, we keep the same controller setting for the entire evaluation process.

Defining object pose: The pose of a box can simply be defined at the center of

its volume and with the axes defined parallel to the edges. For non-box object, we

define the pose to be the center of its bounding box. We scan the non-box objects

into point clouds with the Qlone app on the phone (Figure C.7 top row). To obtain

the bounding box, we first run Principle Component Analysis of the scanned object

to get the principle axes. Then, we take the min and max values along the axes to

get the dimension of the bounding box. The axes are then aligned to global axes

based on the initial pose (Figure C.7 middle row).

Pose estimation with Iterative Closest Point: To get the pose of the object as

the observation of the policy, we use Iterative Closest Point (ICP) which matches

116

C. Appendix to Grasp the Ungraspable (Chapter 4)

Toy bag Bottle Container Container-reverse

Figure C.7: Illustrations of pose estimation pipeline for the non-box objects. The top
row shows the scanned object model. The middle row shows bounding box calculation
and pose definition. The last row shows an example of ICP.

the current point cloud to a template point cloud of the object [104]. We use the

implementation from Open3D. For box objects, we simply create a box shape template

with measured size. For non-box objects, we use the scanned object point clouds as

mentioned above. Figure C.8 shows an example of the results from ICP across an

episode. Figure C.7 includes examples of ICP results for non-box objects potentially

with partial point cloud. More visualizations of ICP results can be found on the

website.

Figure C.8: Examples of pose estimation with ICP during an episode. The blue
points are the observed point cloud from the camera. The red points are the object
template that matches to the observed point cloud using ICP.

117

C. Appendix to Grasp the Ungraspable (Chapter 4)

Table C.3: Real robot evaluations with more object information. We highlight the
out-of-distribution aspect of the object properties in bold.

Object-ID Box? Surface Material
Bounding Box
Dimension (cm)

Weight
(g)

Success
w/o ADR

Success
w/ ADR

Box-0 Yes Cardboard (15.0, 20.0, 5.0) 128 9/10 9/10
Box-0 + 4 erasers Yes Cardboard (15.0, 20.0, 5.0) 237 6/10 10/10
Box-0 + 8 erasers Yes Cardboard (15.0, 20.0, 5.0) 345 3/10 4/10
Box-1 Yes Cardboard (15.4, 29.2, 5.8) 130 5/10 8/10
Box-2 Yes Cardboard (15.3, 22.2, 7.4) 113 2/10 9/10
Box-3 Yes Cardboard with tape (16.5, 24.5, 5.2) 50 0/10 7/10
Toy Bag Almost Silicone (16.6, 14.5, 7.1) 203 8/10 7/10
Bottle No Plastic (16.3, 28.8, 9.0) 112 0/10 8/10
Container No Plastic (14.7, 14.7, 8.1) 61 0/10 10/10
Container-reverse No Plastic (14.7, 14.7, 8.1) 61 0/10 6/10
Average 33% 78%

C.4.2 More information on the objects

To emphasize the diversity of the objects and demonstrate the generalization capability

of the policy, we include more descriptions on the objects in this section. In Table C.3,

we highlight the object properties that are out of the ADR training distribution in

bold. Box-0 is the default object that we used to calibrate the simulator and to tune

the low-level controller.

The policy trained with ADR generalizes across physical properties such as weight

and surface friction. We stress test Box-0 with additional weights by putting four or

eight erasers inside of the box. The erasers can move in the box during execution,

which is not modeled in simulation. Although we do not have access to the true

friction coefficient between the object and the table, the difference in friction results

in qualitatively different behavior of the object even among the cardboard boxes.

For example, Box-3 has tape on its surface which has much higher friction than the

others cardboard boxes. It tends to stick to the wall during execution. The toy bag

has a similar cross section as the box but the material is very different.

We also evaluate the policies with objects that are not similar to a box shape

including a bottle and a container. Due to the difference in shape, both objects

result in different dynamics during execution. In addition, with the same container

object, starting it from different initial poses will also lead to different object pose

distribution. Videos can be found on the website. Nonetheless, the policy trained

with ADR shows reasonable generalization across these non-box objects.

118

C. Appendix to Grasp the Ungraspable (Chapter 4)

C.4.3 Failure cases

In this section, we include discussions on the failure cases of the evaluation. We

categorize the failure cases into the following categories and discuss the potential

reasons:

A failure case that happens before the initial contact:

• Missing initial contact: The robot is not able to reach the initial contact of

the object to rotate it. This is mostly due to the noise in pose estimation and

the variations in object dimension.

Failure cases that happen during the rotation:

• Object drops during rotation: The object drops to the table during rotation.

One potential reason for this failure case is that the finger slips on the object

during rotation. Another potential reason for this failure case is the insufficient

rotation of the low-level controller due to the sim2real gap (See Section C.4 -

Sim2Real gap of the low-level controller). In the “dropping” strategy, the policy

is supposed to rotate object and then let it drop on the bottom finger. Before

the dropping happens, the gripper needs to be rotated until the bottom finger

is below the object. Otherwise, the bottom finger will not be able to catch the

object and the object directly drops to the table.

• Repeated rotation: The robot repeatedly rotates and drops the object. This

is different from the previous failure case because the robot moves down with

the object at the same time. Our hypothesis for this failure case is that the

policy gets stuck in a loop in the MDP.

• Joint limit: The robot hits a joint limit and the policy gets stuck at the joint

limit.

Failure cases that happen after the rotation:

• Unexpected object dynamics: When the robot rotates the object, the object

might move in unexpected ways. This mostly happens for the non-box objects.

• Stop reaching: Following the “standing” strategy, the policy successfully

rotates the object to a stable pose on the side of the object. However, it cannot

reach the final grasping pose. The gripper tries to move down to reach the pose

but it collides with the object due to the unexpected object dimension.

119

C. Appendix to Grasp the Ungraspable (Chapter 4)

• Timeout: Since we use a fixed episode length during evaluation, sometimes

the policy does not have enough time to finish the task although it is very close

to a success. This happens when the policy spends time to recover from some

failed attempts at the beginning of the episode.

Videos on these failure cases can be found on the website. We summarize the

counts of the failure cases in Table C.4 and Table C.5. The most common failure

case for the policy trained with ADR is the repeated rotation. For the policy trained

without ADR, the most common failure case is missing the initial contact. Comparing

the percentage of the failure cases between Table C.4 and Table C.5, we observe that

percentage of missing the initial contact and the percentage of stopping the reaching

motion drops drastically when the policy is trained with ADR because the policy is

more robust to variations in shape and dimensions.

Table C.4: Failure cases for Policy w/ ADR during real robot evaluation. The
most common failures include dropping the object during rotation, repeated rotation,
and unexpected object dynamics.

Initial

contact

Object

drops

Repeated

rotation

Joint

limit

Unexpected

dynamics

Stop

reaching
Timeout

Box-0 0 0 1 0 0 0 0

Box-0 + 4 erasers 0 0 0 0 0 0 0

Box-0 + 8 erasers 0 3 3 0 0 0 0

Box-1 0 1 1 0 0 0 0

Box-2 0 0 0 1 0 0 0

Box-3 0 0 2 0 0 0 0

Toy Bag 0 2 1 0 0 0 0

Bottle 1 0 0 0 1 0 0

Container 0 0 0 0 0 0 0

Container-reverse 0 0 0 0 4 0 0

Total 1 6 8 1 5 0 0

Percentage 4.8% 28.5% 38.1% 4.8% 23.8% 0.0% 0.0%

120

C. Appendix to Grasp the Ungraspable (Chapter 4)

Table C.5: Failure cases for Policy w/o ADR during real robot evaluation. The
most common failures include missing the initial contact, repeated rotation and
unexpected object dynamics.

Initial

contact

Object

drops

Repeated

rotation

Joint

limit

Unexpected

dynamics

Stop

reaching
Timeout

Box-0 0 0 0 0 0 0 1

Box-0 + 4 erasers 1 0 2 0 0 0 1

Box-0 + 8 erasers 0 1 3 0 0 2 1

Box-1 2 0 2 0 1 0 0

Box-2 1 0 1 0 0 6 0

Box-3 10 0 0 0 0 0 0

Toy Bag 0 2 0 0 0 0 1

Bottle 6 0 0 0 4 0 0

Container 0 0 2 0 8 0 0

Container-reverse 1 1 6 0 1 0 1

Total 21 4 16 0 14 8 5

Percentage 30.9% 5.9% 23.5% 0.0% 20.6% 11.8% 7.3%

121

C. Appendix to Grasp the Ungraspable (Chapter 4)

122

Appendix D

Appendix to HACMan (Chapter 5)

D.1 Simulation Environment

D.1.1 Object dataset preprocessing

We use the object models from Liu et al. [72]. Before importing the object models

to MuJoco, we perform convex decomposition using V-HACD (https://github.

com/kmammou/v-hacd) and generate watertight meshes using Manifold (https://

github.com/hjwdzh/Manifold). The objects are first scaled to 10 cm according to

the maximum lengths along x, y, and z axis. The object sizes are randomized with

an additional scale within [0.8, 1.2] for the “All Objects” task variants.

We filter out a part of the objects in the original dataset due to simulation artifacts

such as wall penetration and unstable contact behaviors. For example, some of the

long and thin objects can be pushed into the walls and bounce back like springs. Some

of the objects cannot remain stable on the table. The filtering procedure proceeds as

follows: 1) we drop an object with an arbitrary quaternion and translation for 100

times; 2) we calculate the percentage of rollouts where the objects are still unstable

after 80 simulation steps; 3) we filter out objects with larger than 10% instability rate.

We also filter out flat objects because they are hard to flip. Flat objects are defined

as objects for which the ratio between the second smallest dimension to the smallest

dimension is larger than 1.5. After filtering, we are left with 44 objects. We split the

44 objects into three datasets: train (32 objects), unseen instances (7 objects), and

123

https://github.com/kmammou/v-hacd
https://github.com/kmammou/v-hacd
https://github.com/hjwdzh/Manifold
https://github.com/hjwdzh/Manifold

D. Appendix to HACMan (Chapter 5)

Figure D.1: Training objects. 32 objects used in training.

Figure D.2: Evaluation objects (un-
seen instance). 7 objects used in unseen
instance evaluations. These instances are
from the same categories as the training
objects.

Figure D.3: Evaluation objects (un-
seen category). 5 objects used in un-
seen category evaluations. They come
from 4 randomly chosen categories.

124

D. Appendix to HACMan (Chapter 5)

unseen categories (5 objects). The object models of the three datasets are visualized

in Fig. D.1, Fig. D.2 and Fig. D.3 respectively. The Cylindrical Objects used in the

experiments is a subset of the All Objects dataset. Cylindrical Objects consist

of 9 train objects, 3 unseen instance objects, and 4 unseen category objects.

D.1.2 Collecting goal poses

To collect stable goal poses, we sample an SE(3) object pose in the air above the

center of bin, drop the object in the bin, and then wait until it becomes stable to

record the pose. We collect 100 goal poses for each object. At the beginning of each

episode, a goal is sampled from the list of stable poses. Furthermore, we randomize

the location of the sampled stable goal pose within the bin.

D.1.3 Representing the goal as per-point goal flow

As mentioned in Section 5.5.3, we represent the goal as the “goal flow” of each object

point from the current point cloud to the corresponding point in the transformed

goal point cloud. In other words, suppose that point xi in the initial point cloud

corresponds to point x′i in the goal point cloud; then the goal flow is given by

∆xi = x′i − xi. The goal flow ∆xi is a 3D vector which is concatenated to the

other features of the input point cloud to represent the goal. In the ablations in

Appendix D.3.1, we show that such a representation of the goal significantly improves

training, compared to other goal representations such as concatenating the goal point

cloud with the observed point cloud.

In order to compute the flow to the goal, we need to estimate correspondences

between the observation and the goal. In simulation, we calculate the goal flow based

on the ground truth correspondences, based on the known object pose and goal pose.

In the real robot experiments, we estimate the correspondences using point cloud

registration methods (see Appendix D.4 for details).

Further, for training the RL algorithm, we need some measure of the distance

between the initial pose and the goal pose as the reward. Rather than computing a

weighted average of the translation and rotation distance (which requires a weighting

hyperparameter), we instead define the reward at each timestep rt as the negative of

the average goal flow: rt = − 1
N

∑N
i=1 ||∆xi||, in which || · || denotes the L2 distance

125

D. Appendix to HACMan (Chapter 5)

Figure D.4: Camera locations in simulation.

and ∆xi is the “goal flow” as defined above. This computation is similar to the

“matching score” [40] or “PLoss” [133] used in previous work, except here we use it as

a reward function.

D.1.4 Success rate definition

An episode is marked as a success when the average distance of the corresponding

points between the object and the goal is smaller than 3 cm. More specifically, this

is calculated by the average norm of the per-point goal flow vectors as described in

Appendix D.1.3. The episode terminates when it reaches a success. If the episode

does not reach a success within 10 steps, it is marked as a failure. We include an

additional experiment on longer episode length in Appendix D.3.7.

D.1.5 Observation

The observation space includes a point cloud of the entire scene X . It contains

background points X b and object points X obj. Note that we move the gripper to a

reset pose after every action before taking the next observation. Thus, the gripper is

not observed in the point cloud. To get the point cloud, we set three cameras around

the bin (Fig. D.4). The depth readings from the cameras are converted to a set of

point locations in the robot base frame and combined.

126

D. Appendix to HACMan (Chapter 5)

The object points are then downsampled with a voxel size of 0.005 m × 0.005 m

× 0.005 m and the background points are downsampled with a voxel size of 0.02 m

× 0.02 m × 0.02 m. We empirically find that using a slightly denser object point

cloud may increase the performance. More specifically, using a 0.005 m × 0.005 m ×
0.005 m voxel downsample is slightly better than 0.01 m × 0.01 m × 0.01 m. We

suspect that the policy can perform more precise manipulation of the object with a

denser point cloud.

After downsampling, we estimate the normals of the object points using Open3D.

The estimated normals will be used during action execution (discussed in the next

section).

As mentioned in Section 5.5.3 and Appendix D.1.3, the feature of each point

contains the goal flow and the segmentation mask (foreground vs background). The

goal flow of the object point is calculated according to Section D.1.3. The goal

flow of the background point is set to zero. We obtain the segmentation labels of

the object points and the background points from Robosuite[154] during simulation.

Details of obtaining segmentation labels in real robot experiments are discussed in

Appendix D.4.

D.1.6 Action

As mentioned in Section 2.4, the proposed method uses an action space with a contact

location selected from the object points and a set of motion parameters. We discuss

the implementation details of executing such an action in the simulation environment

in this section. Note that we use a floating gripper as the robot in simulation since

we only focus on gripper interactions with the objects.

Once the policy selects a point on the object point cloud, we obtain the correspond-

ing location and estimated normal of the point as described in the previous section.

The robot first moves to a “pre-contact” location which is 2 cm away from the contact

location along the surface normal. In simulation, this is implemented by directly

setting the gripper to the desired pose. In real experiments, we adopt a workaround

solution discussed in Appendix D.4. If the gripper encounters a collision at the

desired pose, we mark this action as failure and skip the remaining action execution

procedure. After reaching the pre-contact location, the gripper will approach to the

127

D. Appendix to HACMan (Chapter 5)

desired contact location using a low-level controller.

After that, the robot will execute the motion parameters which is the end-effector

delta position command that was output by the policy. For the delta actions, we use

an action scale of 2 cm. The delta action is executed with an action repeat of 3. We

use Operation Space Controller with relatively low gains to allow compliant contact-

rich motions with the object. Note that we only consider translation commands (3

dimensions) without rotation in the main experiments because it leads to sufficiently

complex object motion for our task. Appendix D.3.4 discusses the effect of including

rotation in the gripper movements.

The gripper may not exactly reach the desired location in both sim and real,

due to the compliant low-level controller and the gripper geometry. We consider

this imperfect execution as a part of the environment dynamics. We do not enforce

assumptions such as keeping the contact while executing the motion parameter or

avoiding other contact points. Avoiding such assumptions on contacts is a strength

of the proposed method compared to some of the classical methods [16, 43].

D.2 Algorithm and Training Details

D.2.1 HACMan (Ours)

HACMan is implemented as a modification on top of TD3 [30] based on the implemen-

tation from Stable-Baselines3 (https://github.com/DLR-RM/stable-baselines3).

We use PointNet++ segmentation-style backbones for both the actor and the critic us-

ing the implementation from PyG (https://pytorch-geometric.readthedocs.io).

Weights are not shared between the actor and the critic. Hyperparameters are in-

cluded in Table D.1. The actor and the critic use the same network size and the

same learning rate. To improve the stability of policy training, we clamp the target

Q-values according to an estimated upper and lower bound of the return for the task.

The location policy temperature β is described in Eqn. 5.4.

128

https://github.com/DLR-RM/stable-baselines3
https://pytorch-geometric.readthedocs.io

D. Appendix to HACMan (Chapter 5)

Table D.1: Hyperparameters.

Hyperparameters Values
Initial timesteps 10000
Batch size 64
Discount factor (γ) 0.99
Critic update freq per env step 2
Actor update freq per env step 0.5
Target update freq per env step 0.5
Learning rate 0.0001
MLP size [128, 128, 128]
Critic clamping [-20, 0]
Location policy temperature (β) 0.1

D.2.2 Baselines

The baselines share the same code framework as HACMan. We discuss their differences

with HACMan in this section.

Regress Contact Location. Unlike HACMan, this baseline does not use the

object surface for contact point selection. Instead, it directly predicts a location

(3 dimensions) and a motion parameter (3 dimensions, represented as a delta end-

effector movement). For each action execution, the end-effector moves to the selected

location, moves according to the motion parameters, and then resets to the default

pose. To improve the performance of this baseline, we project the contact location

output to be within the bounding box of the object. Thus, in this baseline, for a

location output of the policy, a value of 0 corresponds to the center of the object

along a specific dimension, while 1 and −1 represent the maximum and minimum

boundaries of the bounding box along that dimension, respectively. Since the location

output is no longer a point selected from the object surface, we can no longer use the

surface normal vector to determine the approach direction as in HACMan. Instead,

this baseline always approaches the location from the top at a height equal to the

maximum side length of the object bounding box.

No Contact Location. This baseline does not use the idea of a contact point.

Instead, the policy only predicts a motion parameter (3 dimensions, represented as

a delta end-effector movement). For each action execution, the end-effector moves

according to the motion parameter starting from where it ends after the previous

action, without resetting to the default pose. To reduce the exploration difficulties,

129

D. Appendix to HACMan (Chapter 5)

we make two additional changes: 1) we always start the end-effector right above the

object (at a height equal to the maximum side length of the object bounding box)

at the beginning of an episode, and 2) we add an extra term to the reward function

that penalizes the end-effector for being too far from the object,

Jdist =

{
−λdist(dmin − 0.05), dmin > 0.05 m

0, otherwise
(D.1)

where dmin is the minimum distance from the end-effector to the object point cloud

vertices, and λdist is the weight for this reward term.

Point Cloud. Unlike HACMan, these point cloud baselines use PointNet++

classification-style backbones from PyG (https://pytorch-geometric.readthedoc.

io). For each point cloud, it extracts a single global feature vector instead of per-point

feature.

State. In the state-based baselines, the input consists of the pose of the current

object, the goal, and optionally the end-effector if the baseline is using “No Contact

Location”. Each pose is a vector (dim=7) that consists of a position (dim=3) and a

quaternion (dim=4). The model concatenates all the pose vectors into a single vector

as the input to an MLP.

We report the best results of the baselines by searching over different hyperpa-

rameters for each baseline, including learning rate, actor update frequency, initial

timesteps, and EE distance weight λdist. The best hyperparameters for each baseline

that are different from HACMan are summarized in Table D.2; any hyperparameter

not listed in Table D.2 is the same as our method (Table D.1).

Table D.2: Baseline-specific Hyperparameters.

Baselines Hyperparameters Values

Regress Contact Location (Point Cloud) Actor update freq per env step 0.25
No Contact Location (Point Cloud) Actor update freq per env step 0.25

EE Distance Weight λdist 1
No Contact Location (State) EE Distance Weight λdist 5

130

https://pytorch-geometric.readthedoc.io
https://pytorch-geometric.readthedoc.io

D. Appendix to HACMan (Chapter 5)

D.3 Supplementary Experiment Results

D.3.1 Additional ablations

We perform additional ablation studies to analyze each component of the proposed

method with all the variants of the object pose alignment task. The results of the

ablations are summarized in Fig. D.5.

Single Object
Planar Goals

Cylindrical Objects
Planar Goals

Single Object
6D Goals

Cylindrical Objects
6D Goals

All Objects
6D Goals

Task Variants

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e Ours

No Actor Map
No Flow (Goal Transformation)
No Flow (Goal PC)
Random Location

Figure D.5: Additional ablations. All of the components of our method are
essential to achieve the best performance when the task becomes more difficult.

Effect of Contact Location: To test the hypothesis that contact location matters

for non-prehensile manipulation, we design a “Random Location” ablation: the

policy randomly selects a contact location on the object instead of learning to predict

a contact location. From Fig. D.5, we observe a performance drop for not predicting

the contact location even for the simplest task variant.

Effect of Goal Representations: As described in Section 5.5.3 and Appendix D.1.3,

in our method, we represent the goal by first computing the correspondence between

the observation and goal point clouds and concatenating a per-point “goal flow” to

the observation. We include two alternative goal representations to justify the use

of goal flow in our pipeline: “No Flow (Goal PC”) concatenates the goal point

cloud with the observed point cloud [13, 14]. We use an additional segmentation label

in the point features to distinguish the goal points from the observed points. From

Fig. D.5, this ablation only works well on planar goals for this task. In “No Flow

(Goal Transformation)”, we represent the goal as the transformation between the

current observation pose and the goal pose. We represent this transformation as

a 7D vector that includes a translation vector and a quaternion. We concatenate

131

D. Appendix to HACMan (Chapter 5)

the 7D goal pose to the observation at all of the object points. Note that, similar

to our method, this baseline also requires computing correspondences between the

observation and the goal. This approach performs well but slightly worse than our

method in the last two task variants.

Effect of Actor Map: Instead of using an Actor Map which has per-point outputs,

this ablation uses an actor that outputs a single vector of motion parameters while

keeping the Critic Map. This is different from the baselines in the previous section that

remove both the Actor and Critic Maps. In the “No Actor Map” experiments, we

observe a relatively minor performance drop compared to the full method. Nonetheless,

using the per-point action output from an Actor Map instead of a single output may

allow the agent to reason more effectively about different actions for different contact

locations, such as the multimodal solution shown in Fig. 5.6 (middle).

D.3.2 Training curves and tables

In this section, we include the full training results for all the methods with additional

task variants. Fig. D.6 and Fig. D.7 include the training curves for the baselines and

the ablations. Table D.3 and Table D.4 are recorded at 200k environment interaction

steps from the training curves for all the methods. The numbers in the tables are

used to generate the bar plots in Fig. 5.4 and Fig. D.5.

Note we also interpolate between the tasks ”Planar Goals” and ”6D Goals”

and include an additional task configuration with a fixed initial object pose and a

randomized 6D goal, “6D Goals (Fixed Init)”. This task configuration is combined

with the Single Object dataset and the Cylindrical Object dataset. Thus, we include

7 variants in total (5 variants in the main text).

As discussed in Section 5.7, the baselines and ablations have poor performance

when the task becomes more challenging. Our method achieves the best converged

performance across all task variants while being more sample efficient.

132

D. Appendix to HACMan (Chapter 5)

0 50 100 150 200
Environment Step (1e3)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Single Object
Planar Goals

0 50 100 150 200
Environment Step (1e3)

0.0

0.2

0.4

0.6

0.8

1.0

Single Object
6D Goals (Fixed Init)

0 50 100 150 200
Environment Step (1e3)

0.0

0.2

0.4

0.6

0.8

1.0

Single Object
6D Goals

0 50 100 150 200
Environment Step (1e3)

0.0

0.2

0.4

0.6

0.8

1.0

Cylindrical Objects
Planar Goals

0 50 100 150 200
Environment Step (1e3)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Cylindrical Objects
6D Goals (Fixed Init)

0 50 100 150 200
Environment Step (1e3)

0.0

0.2

0.4

0.6

0.8

1.0

Cylindrical Objects
6D Goals

0 50 100 150 200
Environment Step (1e3)

0.0

0.2

0.4

0.6

0.8

1.0

All Objects
6D Goals

Ours
Regress Contact
Location (Point Cloud)
Regress Contact
Location (State)
No Contact Location
 (Point Cloud)
No Contact Location
 (State)

Figure D.6: Baselines. It shows success rates on the train dataset over environment
steps. The shaded area represents the standard deviation across three training seeds.

0 50 100 150 200
Environment Step (1e3)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Single Object
Planar Goals

0 50 100 150 200
Environment Step (1e3)

0.0

0.2

0.4

0.6

0.8

1.0

Single Object
6D Goals (Fixed Init)

0 50 100 150 200
Environment Step (1e3)

0.0

0.2

0.4

0.6

0.8

1.0

Single Object
6D Goals

0 50 100 150 200
Environment Step (1e3)

0.0

0.2

0.4

0.6

0.8

1.0

Cylindrical Objects
Planar Goals

0 50 100 150 200
Environment Step (1e3)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Cylindrical Objects
6D Goals (Fixed Init)

0 50 100 150 200
Environment Step (1e3)

0.0

0.2

0.4

0.6

0.8

1.0

Cylindrical Objects
6D Goals

0 50 100 150 200
Environment Step (1e3)

0.0

0.2

0.4

0.6

0.8

1.0

All Objects
6D Goals

Ours
Random Location
No Flow (Goal PC)
No Flow
(Goal Transformation)
No Actor Map
Greedy

Figure D.7: Ablations. It shows success rates on the train dataset over environment
steps. The shaded area represents the standard deviation across three training seeds.

133

D. Appendix to HACMan (Chapter 5)

Table D.3: Baselines. We compare our method with baselines with different action
representations and observations. Our approach outperforms the baselines, with a
larger margin for more challenging tasks. The success rate is reported with the mean
and standard deviation across three seeds.

Methods

No Contact Location Regress Contact LocationObject Dataset Task Configuration

State Point Cloud State Point Cloud
Ours

Single Object

Planar Goal 0.812 ± .012 0.973 ± .016 1.000 ± .000 0.996 ± .005 1.000 ± .000

6D Goal (Fixed Init) 0.003 ± .000 0.020 ± .002 0.060 ± .014 0.971 ± .005 0.982 ± .004

6D Goal 0.000 ± .000 0.009 ± .001 0.573 ± .015 0.991 ± .004 0.997 ± .003

Planar Goal 0.361 ± .019 0.107 ± .007 0.990 ± .002 0.924 ± .027 0.961 ± .003

6D Goal (Fixed Init) 0.001 ± .001 0.021 ± .002 0.264 ± .017 0.324 ± .014 0.885 ± .004Cylindrical Objects

6D Goal 0.006 ± .002 0.035 ± .002 0.258 ± .010 0.187 ± .012 0.879 ± .014

All Objects 6D Goal 0.012 ± .004 0.016 ± .009 0.094 ± .018 0.243 ± .028 0.854 ± .028

Table D.4: Ablations. We show that all of the components are essential to achieve
the best performance when the task becomes more difficult. Each success rate is
reported with the mean and standard deviation across three seeds.

Object Dataset Task Configuration

Methods

Random
Greedy

No Flow No Flow No
Ours

Location (Goal PC) (Goal Pose) Action Map

Single Object

Planar Goal 0.323 ± .011 1.000 ± .000 0.989 ± .002 1.000 ± .000 1.000 ± .000 1.000 ± .000

6D Goal (Fixed Init) 0.075 ± .005 0.754 ± .023 0.198 ± .025 1.000 ± .000 0.991 ± .002 0.982 ± .004

6D Goal 0.037 ± .003 0.633 ± .014 0.181 ± .018 0.994 ± .004 0.989 ± .002 0.997 ± .003

Cylindrical Objects

Planar Goal 0.158 ± .006 0.767 ± .017 0.949 ± .003 0.927 ± .012 0.925 ± .012 0.961 ± .003

6D Goal (Fixed Init) 0.097 ± .006 0.346 ± .012 0.189 ± .009 0.746 ± .015 0.805 ± .016 0.885 ± .004

6D Goal 0.093 ± .004 0.262 ± .011 0.216 ± .008 0.631 ± .016 0.775 ± .018 0.879 ± .014

All Objects 6D Goal 0.147 ± .021 0.293 ± .026 0.153 ± .017 0.808 ± .028 0.835 ± .017 0.854 ± .028

134

D. Appendix to HACMan (Chapter 5)

D.3.3 Additional baseline: Global feature with query

contact location

We consider an additional baseline in this section where both the actor and the critic

use a global point cloud feature and a query contact location as input. The query

contact location is represented as a 3D coordinate (x, y, z). More specifically, the

actor takes as input a global feature and a contact location and outputs a continuous

vector of motion parameters. The critic takes as input a global feature and a contact

location and outputs a Q-value. Since both the actor and the critic require a contact

location as input, we still need a way of selecting the query contact location. We

follow a similar way as our method to use the observed points on the object as

candidate queries and select the contact location based on the highest Q-value. In

this way, the action space remains a discrete-continuous action space as our method,

but it uses a global point cloud feature rather than a segmentation-style per-point

feature.

As shown in Fig. D.8, this alternative baseline performs worse than our method.

We hypothesize that a segmentation-style point cloud network can reason about

the local point features more effectively than a global feature extractor due to skip

connections.

0 50 100 150 200
Environment Step (1e3)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Single Object

0 20 40 60 80 100
Environment Step (1e3)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

All Objects

Per-Point Feature (Ours)
Global Feature w/
Query Contact Location

Figure D.8: Comparison between our method and the additional baseline
with query contact locations. The left figure shows the success rate of the simplest
task variant - a single object with planar goals. The right figure shows the most
challenging task variant - all objects with 6D goals. The shaded area represents the
standard deviation across three training seeds. Our method performs better than the
baseline in both cases.

135

D. Appendix to HACMan (Chapter 5)

D.3.4 Extending Motion Parameters

The motion parameters in the main results are defined as a 3D vector that describes

the translation motion of the gripper. In this section, we extend the motion parameters

in different ways:

6D Contact. The motion parameters also predict the orientation of the gripper

when the gripper approaches the contact location. The orientation is in the form

of ZYX Euler angles. To account for the physical constraints of our task setup, we

restrict the y and x angles to the range of [−0.5π, 0.5π], and the z angle to the range

of [−π, π].
6D Motion. We introduce the ability for the gripper to change orientation while

executing the motions after making contact. Similar to the translation motion

parameters, the rotation motion parameters (ZYX Euler angles) represent the delta

rotation at each action repeat step.

Per-point Contact Location Offset. We conduct an experiment where the agent

learns a per-point contact location offset combined with 3D motion. The agent’s

continuous action space is defined as (contact offset, 3D motion parameters). For

each action on a given point at location x, the agent uses (x+ xoffset) as the contact

location. Notably, the xoffset value is mapped to scale with the bounding box since it

ranges between [−1, 1].

Table D.5: Success rates with dif-
ferent motion parameters. All
methods are evaluated on all train ob-
jects with 6D goals.

Method Success Rate

HACMan Default 0.833 ± .018

+ with 6D Motion 0.866 ± .090

+ with 6D Contact 0.819 ± .077

+ with Contact Offset 0.800 ± .011

Regress Contact Location Default 0.243 ± .028

+ with 6D Motion 0.356 ± .133

Table D.5 compares the performance of

HACMan with the modified action spaces.

The success rates are reported along with

their corresponding standard deviations. We

find that including 6D motion in the motion

parameters results in a slightly higher success

rate. However, 6D contact or contact offset

does not seem to provide significant bene-

fits. We also try to include 6D motion in the

Regress Contact Location baseline. As

shown in Table D.5, 6D motion improves the

performance of the baseline, but the success

rate is still much worse than our method.

136

D. Appendix to HACMan (Chapter 5)

D.3.5 Experiments in cluttered environments

Table D.6: Success rates under dif-
ferent cluttered scenes. All meth-
ods are evaluated with 6D goals.

of Scene Objects Success Rate

0 (Default) 0.833

1 0.773

5 0.580

We can directly apply HACMan to a setting

of manipulating objects in cluttered scenes.

We conduct preliminary experiments in which

we introduce varying numbers of scene ob-

jects into the bin. The scene objects serve as

obstacles that add challenges to the task. We

train HACMan under two conditions: with

one scene object and with five scene ob-

jects, and we compare the results with the

performance achieved in the absence of any scene objects (default setting). From

Table D.6, as expected, the task becomes more challenging when there are more

obstacles in the bin. As illustrated in Fig D.9, the policy tends to push the object

directly toward the goal by pushing the scene object aside.

Figure D.9: Qualitative results for object pose alignment tasks in cluttered
environments. HACMan shows complex non-prehensile behaviors that move objects
to goal poses (shown as the transparent objects). The scene objects are colored in
brown to distinguish from the target object to be manipulated to the goal pose.

D.3.6 Effect of longer training time

Although we report the success rate at 200k training steps for all the results due

to computational limitations, our method continues to improve performance with

longer training (Figure D.10). The graph illustrates the success rate achieved by our

method as the number of training steps increases. Notably, after 500k training steps,

137

D. Appendix to HACMan (Chapter 5)

0 100 200 300 400 500
Environment Step (1e3)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Success rate over training steps

Figure D.10: Success rate with extended training. The success rate of our
method reaches 91.1± 7.3% after 500k training steps, compared to 83.3% after 200k
training steps.

our method achieves a success rate of 91.1± 7.3%, significantly improving from the

83.3% success rate reported in the main text (at 200k training steps).

D.3.7 Effect of longer episode lengths

We conducted an additional experiment to explore the relationship between success

rates and maximum episode length. In the main text, our episodes were limited to

a maximum of 10 steps, and any episode exceeding this limit was deemed a failure.

During this additional evaluation, we relaxed the episode length restrictions and

allowed the agent to operate with a maximum episode length of 30. As shown in

Fig D.11, HACMan achieves more than 95% success rates across all datasets (Train

96.6%, Train (Common) 99.4%, Unseen Instance (Common) 99.7%, Unseen Category

95.1%) when the maximum episode length is extended to 30. This suggests that

providing the agent with a longer time horizon enables it to achieve higher success

rates without the need for retraining.

D.3.8 Per-category result breakdown

Fig. D.12 shows the breakdown of the results for each object category. Although our

method demonstrates consistent performance across the majority of objects, there

138

D. Appendix to HACMan (Chapter 5)

0 5 10 15 20 25 30
Max Episode Length

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Success Rate vs. Max Episode Length

Train
Train (Common)
Unseen Instance (Common)
Unseen Category

Figure D.11: Success rates at various maximum episode lengths. This line
plot shows the success rates of HACMan evaluated on the four datasets. It is worth
noting that the success rates for Unseen Instance (Common) and Train (Common)
are marginally higher compared to Train and Unseen Category, similar to the pattern
in Table 5.2.

0.0 0.2 0.4 0.6 0.8 1.0
Success Rate

Ob
je

ct
 C

at
eg

or
y

pill bottle (UI)

pill bottle

rubiks

lego

salt (UI)

canister (UI)

tape (UC)

teapot

lens (UC)

lunch bag (UC)

bottle

pencil case (UI)

pencil case

cup

flashlight

can (UI)

canister

can

salt

bottle (UI)

mug

plant

plant (UI)

camera

hand bell

pitcher

marker (UC)

headphone

bowl

Success Rate per Object Category

Train
Unseen Instance (UI)
Unseen Category (UC)

Figure D.12: Results breakdown. Object categories in the unseen instance set
(orange) can be compared to the same object categories in the train set (blue) to see
the level of instance generalization.

139

D. Appendix to HACMan (Chapter 5)

are certain objects with geometries that pose intrinsic challenges for our approach.

For example, our method is limited to poking a bowl from the top due to occlusions,

making it difficult to flip an upward-facing bowl downwards.

D.3.9 Final Distance to Goal

To further analyze the performance of our method, Fig. D.13 visualizes the distribution

of distances to goal of our method at the end of the episodes for the “All Objects 6D

Goals” task variant. These distances are computed as the norms of the flow distances

between the objects and their respective goals.

0.00 0.02 0.04 0.06 0.08 0.10
Flow Distance (m)

0

2

4

6

Pe
rc

en
ta

ge
 o

f E
pi

so
de

s (
%

)

Histogram of Episode-End Flow Distances
success threshold

Figure D.13: Distribution of distances to the goal at the end of the episode
for our method in the “All Objects 6D Goals” experiment. The vertical
dashed line represents the success threshold at a distance of 0.03m. The distribution
has a median of 2.57cm, a mean of 3.66cm, and a standard deviation of 4.27cm.

D.4 Real Robot Experiments

D.4.1 Real robot setup

The robot setup is shown in Fig. D.14. We use three cameras on the real robot

to get a combined point cloud. We follow a similar procedure as Appendix D.1 to

process the point cloud and to execute the action except the following details: We

segment the object points from the full point cloud based on the location and the

dimension of the bin instead of using the ground truth segmentation labels from

Robosuite. To move the gripper to the pre-contact location, we first move the robot

140

D. Appendix to HACMan (Chapter 5)

Figure D.14: Real robot setup.

to a location above the pre-contact location and then move down to the pre-contact

location, instead of “teleporting” the gripper in simulation.

To obtain goals for the real world evaluation, we record 10 goal point clouds

for each object by manually setting the objects into different stable poses. Dur-

ing each timestep, we use point cloud registration algorithm to estimate the goal

transformation to calculate the goal flow. Specifically, we use the global registration

implementation from Open3D (http://www.open3d.org/docs/release/tutorial/

pipelines/global_registration.html) and then use Iterative Closest Point (ICP)

for local refinement. Note that we only match the shapes of the object instead of

matching both the colors and the shapes due to the limitation of the registration

algorithms.

Note that the evaluation process can be done automatically without any manual

resets. The reward and the episode termination condition (Appendix D.1.4) are both

calculated automatically.

For the real robot experiments, we use the policy trained with “6D goals” and the

“All Objects” dataset. We perform zero-shot sim2real transfer without finetuning or

additional domain randomization. We have tried to add noise to the contact location

execution and add noise to the point cloud observation. However, these modifications

did not result in better real robot performance.

141

http://www.open3d.org/docs/release/tutorial/pipelines/global_registration.html
http://www.open3d.org/docs/release/tutorial/pipelines/global_registration.html

D. Appendix to HACMan (Chapter 5)

D.4.2 Analysis

We include additional analysis on the real robot results in this section. The proposed

method assumes an estimated goal transformation as input. To estimate the transfor-

mation from the object to the goal, we use point cloud registration, as described above.

However, the estimation of the transformation might not be perfect in the real world.

To better understand the performance of our system, we define two types of evaluation

criteria: The “flow success” is automatically calculated based on the estimated point

cloud registration according to the evaluation metric in Appendix D.1.4. Hence, “flow

success” will sometimes mark an episode as a success or failure incorrectly due to

errors in the point cloud registration. For the “actual success” evaluation metric, we

manually mark as failures the cases among the flow success episodes where the goal

estimation is significantly wrong. Thus, “flow success” indicates the performance of

the trained policy (assuming perfect point cloud registration at termination) while

the “actual success” indicates the performance of the full system (accounting for

errors in the point cloud registration). Fig. 5.7 in the main text reports the actual

success. We include both success metrics in Table D.7 below. The policy achieves a

61% success rate based on the flow success, indicating that some of our errors are

due to failures in point cloud registration.

D.4.3 Failure cases

We discuss the failure cases of the real robot experiments in this section and include

the videos on our website: https://hacman-2023.github.io/. The most noticeable

failure cases are due to the errors of point cloud registration. The challenges of the

registration methods come from noisy depth readings and partial point clouds. The

error of the point cloud registration methods will lead to unexpected actions during

the episode. In addition, it may end the episode early because the episode termination

depends on the goal estimation. This motivates us to separate out the success criteria

in Table D.7 based on the failures of the registration method.

On the action side, both the contact location and the motion parameters might

have execution errors. Since the contact location is selected from the observed point

cloud, when the camera calibration is not accurate enough, the robot might not be

able to reach the desired contact location of the object. In addition, since we use a

142

D. Appendix to HACMan (Chapter 5)

Table D.7: Additional analysis on the real robot experiments. An episode is
considered a “flow success” if the average norm of the estimated flow is less than 3
cm. An episode is considered as an “actual success” if the object is aligned with the
goal pose without point cloud registration failure.

Planar Goals Non-planar Goals Total
Object Name

Flow Actual Flow Actual Flow Actual

(a) Blue cup 4/7 4/7 7/13 4/13 5/20 4/20
(b) Milk carton 6/7 6/7 10/13 10/13 16/20 16/20
(c) Box 2/5 2/5 10/15 10/15 12/20 12/20
(d) Red bottle 7/7 4/7 6/13 0/13 13/20 4/20
(e) Hook 5/8 5/8 5/12 5/12 10/20 10/20
(f) Black mug 4/7 4/7 2/13 0/13 6/20 4/10
(g) Red mug 5/7 5/7 7/13 3/13 12/20 8/20
(h) Wood block 6/7 6/7 8/13 6/13 14/20 12/20
(i) Toy bridge 9/10 9/10 7/10 5/10 16/20 14/20
(j) Toy block 2/2 2/2 10/18 10/18 12/20 12/20

Total 50/67 47/67 72/133 53/133 122/200 100/200
Percentage 75% 70% 54% 40% 61% 50%

compliant low-level controller to execute the motion parameters, the robot might not

be able to execute the desired motion the same way as in the simulation.

In addition, the object dynamics might be different from the simulation due to

the surface friction and the density of the object. The performance of our method

could be further improved with domain randomization over the physical parameters.

D.5 Discussion on non-prehensile manipulation

Non-prehensile manipulation is an important aspect of the robot’s capabilities, par-

ticularly in scenarios where grasping encounters limitations, as demonstrated in

Fig. D.15. This section discusses the importance of non-prehensile actions in two key

contexts:

Environment Occlusion. The first row of Figure D.15 shows an example where the

potential grasp poses of the object are occluded by the wall. Non-prehensile moves,

like nudging objects to a better position, offer a practical solution in such a scenario.

Oversized Objects. The last two rows of Figure D.15 include scenarios where

certain dimensions of the object are larger than the width of the gripper.

143

D. Appendix to HACMan (Chapter 5)

Figure D.15: Examples showcasing limitations of prehensile manipulation.
The frames where prehensile manipulation is challenging are highlighted. The first
row shows a cube placed at the corner of the bin, where any grasp is obstructed by
the bin wall. Both the second and third rows depict instances where objects are too
large to be grasped at specific poses.

D.6 More discussion on the related work

Compared to Chen et al. [13, 14]. Our work is substantially different from Chen

et al. [13, 14] from the follow aspects: Approach: The approach in Chen et al.

[13, 14] follows a student-teacher training pipeline. The teacher training is equivalent

to the “No Contact Location” baseline with “states” observations in this work. The

policy takes all the relevant robot state and object state information and outputs

delta robot actions. Note that they train a single teacher policy across all shapes

without using the point cloud which results in a state-observation policy that is

“robust” to shapes instead of “adaptive” to shapes (see Discussion section in Chen

et al. [14]). As shown in Table II, this baseline performs significantly worse than our

method in our task because it lacks shape information from the point cloud and the

robot-centric action space is not as efficient as our object-centric action space. On

the other hand, although the student policy in Chen et al. [13, 14] takes point cloud

observation, it is trained using imitation learning from the teacher, so its performance

is upper bounded by the teacher policy which has been shown to be worse than our

proposed method. Task: We investigate a completely different task and thus the

numbers are not really comparable with the numbers from previous work [13, 14].

144

D. Appendix to HACMan (Chapter 5)

Figure D.16: An example of non-quasi-static motion. The figure shows an
example of executing the motion parameters to flip a mug upright. After the gripper
pushes against the edge of the mug (first two images), it relies on the inertia of the
mug to finish the motion which is not quasi-static (last two images).

First, we use a simple gripper instead of a dexterous hand. Second, we consider

matching the orientation and position of the goal pose while Chen et al. [13, 14] only

considers orientation.

Compared to Cheng et al. [16], Hou and Mason [43]. Unlike Cheng et al.

[16], Hou and Mason [43], our method is not limited to a simplified gripper model

and does not require the knowledge of object environment contact modes which

are challenging to estimate during real robot execution. In addition, Cheng et al.

[16], Hou and Mason [43] are restricted by quasi-static assumptions. Although our

method requires static point cloud observations in between robot actions, the robot

interaction with the object is not restricted to quasi-static motion. As shown in

Figure D.16, the flipping motion could be non-quasi-static. However, we also want

to point out that static point cloud observations may limit the method from more

complex dynamic motions.

145

D. Appendix to HACMan (Chapter 5)

146

Bibliography

[1] Abbas Abdolmaleki, Jost Tobias Springenberg, Jonas Degrave, Steven Bohez,
Yuval Tassa, Dan Belov, Nicolas Heess, and Martin Riedmiller. Relative entropy
regularized policy iteration. arXiv preprint arXiv:1812.02256, 2018. 3.3.2

[2] Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos,
Nicolas Heess, and Martin Riedmiller. Maximum a posteriori policy optimisation.
arXiv preprint arXiv:1806.06920, 2018. 3.3.2, 3.4

[3] Abbas Abdolmaleki, Sandy H Huang, Giulia Vezzani, Bobak Shahriari, Jost To-
bias Springenberg, Shruti Mishra, Dhruva TB, Arunkumar Byravan, Konstanti-
nos Bousmalis, Andras Gyorgy, et al. On multi-objective policy optimization as
a tool for reinforcement learning. arXiv preprint arXiv:2106.08199, 2021. 3.3.2

[4] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic
perspective on offline reinforcement learning. International Conference on
Machine Learning, 2020. 2.2

[5] Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11254–11263, 2019. 3.2

[6] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based
sample selection for online continual learning. Advances in neural information
processing systems, 32, 2019. 3.2

[7] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Pe-
ter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba.
Hindsight experience replay. arXiv preprint arXiv:1707.01495, 2017. C.2.7

[8] Michael Bloesch, Jan Humplik, Viorica Patraucean, Roland Hafner, Tuomas
Haarnoja, Arunkumar Byravan, Noah Yamamoto Siegel, Saran Tunyasuvu-
nakool, Federico Casarini, Nathan Batchelor, et al. Towards real robot learning
in the wild: A case study in bipedal locomotion. In Conference on Robot
Learning, pages 1502–1511. PMLR, 2022. 3.7.1

[9] Jeannette Bohg, Antonio Morales, Tamim Asfour, and Danica Kragic. Data-
driven grasp synthesis—a survey. IEEE Transactions on Robotics, 30(2):289–309,

147

Bibliography

2013. 4.2.2

[10] Lillian Y Chang, Siddhartha S Srinivasa, and Nancy S Pollard. Planning pre-
grasp manipulation for transport tasks. In 2010 IEEE International Conference
on Robotics and Automation, pages 2697–2704. IEEE, 2010. 4.1, 4.2.2, 4.4.2

[11] Nikhil Chavan-Dafle and Alberto Rodriguez. Sampling-based planning of in-
hand manipulation with external pushes, 2017. 4.1, 4.2.1

[12] Nikhil Chavan-Dafle, Rachel Holladay, and Alberto Rodriguez. In-hand manip-
ulation via motion cones, 2019. 4.1, 4.2.1

[13] Tao Chen, Jie Xu, and Pulkit Agrawal. A system for general in-hand object
re-orientation. Conference on Robot Learning, 2021. 1, 4.2.3, 5.2, 5.5.3, 5.1, 5.7,
5.7, D.3.1, D.6

[14] Tao Chen, Megha Tippur, Siyang Wu, Vikash Kumar, Edward Adelson, and
Pulkit Agrawal. Visual dexterity: In-hand dexterous manipulation from depth.
arXiv preprint arXiv:2211.11744, 2022. 5.2, 5.5.3, 5.1, 5.7, 5.7, D.3.1, D.6

[15] Xianyi Cheng, Eric Huang, Yifan Hou, and Matthew T Mason. Contact mode
guided sampling-based planning for quasistatic dexterous manipulation in 2d.
In 2021 IEEE International Conference on Robotics and Automation (ICRA),
pages 6520–6526. IEEE, 2021. 4.1, 4.2.1

[16] Xianyi Cheng, Eric Huang, Yifan Hou, and Matthew T Mason. Contact mode
guided motion planning for quasidynamic dexterous manipulation in 3d. In
2022 International Conference on Robotics and Automation (ICRA), pages
2730–2736. IEEE, 2022. 1, 4.1, 4.2.1, 5.1, 5.2, D.1.6, D.6

[17] Xuxin Cheng, Ashish Kumar, and Deepak Pathak. Legs as manipulator:
Pushing quadrupedal agility beyond locomotion, 2023. 5.11.1

[18] Nikhil Chavan Dafle, Alberto Rodriguez, Robert Paolini, Bowei Tang, Sid-
dhartha S Srinivasa, Michael Erdmann, Matthew T Mason, Ivan Lundberg,
Harald Staab, and Thomas Fuhlbrigge. Extrinsic dexterity: In-hand manipula-
tion with external forces. In 2014 IEEE International Conference on Robotics
and Automation (ICRA), pages 1578–1585. IEEE, 2014. 1, 4.1, 4.2.1

[19] Murtaza Dalal, Deepak Pathak, and Russ R Salakhutdinov. Accelerating robotic
reinforcement learning via parameterized action primitives. Advances in Neural
Information Processing Systems, 34:21847–21859, 2021. 5.11.2

[20] Carl Doersch. Tutorial on variational autoencoders, 2016. 2.3.3

[21] Yuqing Du, Ksenia Konyushkova, Misha Denil, Akhil Raju, Jessica Landon,
Felix Hill, Nando de Freitas, and Serkan Cabi. Vision-language models as
success detectors. arXiv preprint arXiv:2303.07280, 2023. 6.2

[22] Ben Eisner, Harry Zhang, and David Held. Flowbot3d: Learning 3d articulation

148

Bibliography

flow to manipulate articulated objects. arXiv preprint arXiv:2205.04382, 2022.
1

[23] Clemens Eppner and Oliver Brock. Visual detection of opportunities to exploit
contact in grasping using contextual multi-armed bandits. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
273–278, 2017. doi: 10.1109/IROS.2017.8202168. 4.2.1

[24] Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode
reinforcement learning. Journal of Machine Learning Research, 6:503–556, 2005.
3.2

[25] Zohar Feldman, Hanna Ziesche, Ngo Anh Vien, and Dotan Di Castro. A hybrid
approach for learning to shift and grasp with elaborate motion primitives. In
2022 International Conference on Robotics and Automation (ICRA), pages
6365–6371. IEEE, 2022. 5.2

[26] Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid,
Laura Downs, Adrian Wong, Johnny Lee, Igor Mordatch, and Jonathan Tomp-
son. Implicit behavioral cloning. In Conference on Robot Learning, pages
158–168. PMLR, 2022. 1

[27] Joan Fontanals, Bao-Anh Dang-Vu, Oliver Porges, Jan Rosell, and Máximo A.
Roa. Integrated grasp and motion planning using independent contact regions.
In 2014 IEEE-RAS International Conference on Humanoid Robots, pages 887–
893, 2014. doi: 10.1109/HUMANOIDS.2014.7041469. 4.2.2, 4.4.5

[28] Robert M French. Catastrophic forgetting in connectionist networks. Trends in
cognitive sciences, 3(4):128–135, 1999. 3.1, 3.2

[29] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine.
D4rl: Datasets for deep data-driven reinforcement learning. arXiv preprint
arXiv:2004.07219, 2020. 2.1, 2.5, A.2

[30] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approxi-
mation error in actor-critic methods. In International conference on machine
learning, pages 1587–1596. PMLR, 2018. 2.3.1, 2.4.3, 2.5.4, 5.1, 5.2, 5.3, 5.5.2,
D.2.1

[31] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement
learning without exploration. In International Conference on Machine Learning,
pages 2052–2062. PMLR, 2019. 1, 2.1, 2.2, 2.3.2, 2.4.1, 2.4.2, 2.5, 3.1, 3.2, 3.4

[32] Dibya Ghosh, Avi Singh, Aravind Rajeswaran, Vikash Kumar, and
Sergey Levine. Divide-and-conquer reinforcement learning. arXiv preprint
arXiv:1711.09874, 2017. 4.4.5

[33] Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou

149

Bibliography

Mu, Yihe Tang, Stone Tao, Xinyue Wei, Yunchao Yao, et al. Maniskill2:
A unified benchmark for generalizable manipulation skills. arXiv preprint
arXiv:2302.04659, 2023. 5.11.2

[34] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with
a stochastic actor. In International conference on machine learning, pages
1861–1870. PMLR, 2018. 4.4.5, 4.5, 5.2, 5.3, 5.5.2, C.2.7

[35] Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan Pascanu. Embracing
change: Continual learning in deep neural networks. Trends in cognitive sciences,
24(12):1028–1040, 2020. 3.1, 3.2, 3.4

[36] Kaiyu Hang, Andrew S. Morgan, and Aaron M. Dollar. Pre-grasp sliding
manipulation of thin objects using soft, compliant, or underactuated hands.
IEEE Robotics and Automation Letters, 4(2):662–669, 2019. doi: 10.1109/LRA.
2019.2892591. 4.1, 4.2.2, 4.4.2

[37] Demis Hassabis, Dharshan Kumaran, Christopher Summerfield, and Matthew
Botvinick. Neuroscience-inspired artificial intelligence. Neuron, 95(2):245–258,
2017. 3.1

[38] Matthew Hausknecht and Peter Stone. Deep reinforcement learning in parame-
terized action space. arXiv preprint arXiv:1511.04143, 2015. 5.2, 5.3

[39] Nicolas Heess, Greg Wayne, Yuval Tassa, Timothy Lillicrap, Martin Riedmiller,
and David Silver. Learning and transfer of modulated locomotor controllers.
arXiv preprint arXiv:1610.05182, 2016. 3.7.1

[40] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer, Gary
Bradski, Kurt Konolige, and Nassir Navab. Model based training, detection
and pose estimation of texture-less 3d objects in heavily cluttered scenes. In
Computer Vision–ACCV 2012: 11th Asian Conference on Computer Vision,
Daejeon, Korea, November 5-9, 2012, Revised Selected Papers, Part I 11, pages
548–562. Springer, 2013. D.1.3

[41] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531, 2(7), 2015. 3.2

[42] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In
Advances in neural information processing systems, pages 4565–4573, 2016. 2.2

[43] Yifan Hou and Matthew T Mason. Robust execution of contact-rich motion
plans by hybrid force-velocity control. In 2019 International Conference on
Robotics and Automation (ICRA), pages 1933–1939. IEEE, 2019. 1, 5.1, 5.2,
D.1.6, D.6

[44] Yifan Hou, Zhenzhong Jia, and Matthew T. Mason. Fast planning for 3d

150

Bibliography

any-pose-reorienting using pivoting. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 1631–1638, 2018. doi: 10.1109/ICRA.
2018.8462834. 4.1, 4.2.1

[45] Yifan Hou, Zhenzhong Jia, and Matthew Mason. Manipulation with shared
grasping. In Robotics: Science and Systems, 2020. 1, 4.1, 4.2.1

[46] Wenlong Huang, Igor Mordatch, Pieter Abbeel, and Deepak Pathak. Gener-
alization in dexterous manipulation via geometry-aware multi-task learning.
arXiv preprint arXiv:2111.03062, 2021. 5.2

[47] Andrew Hundt, Benjamin Killeen, Nicholas Greene, Hongtao Wu, Heeyeon
Kwon, Chris Paxton, and Gregory D Hager. “good robot!”: Efficient rein-
forcement learning for multi-step visual tasks with sim to real transfer. IEEE
Robotics and Automation Letters, 5(4):6724–6731, 2020. 5.2

[48] Maximilian Igl, Gregory Farquhar, Jelena Luketina, Wendelin Boehmer, and
Shimon Whiteson. Transient non-stationarity and generalisation in deep rein-
forcement learning. arXiv preprint arXiv:2006.05826, 2020. 3.2

[49] Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson,
Agata Lapedriza, Noah Jones, Shixiang Gu, and Rosalind Picard. Way off-policy
batch deep reinforcement learning of implicit human preferences in dialog. arXiv
preprint arXiv:1907.00456, 2019. 2.2

[50] Rae Jeong, Jost Tobias Springenberg, Jackie Kay, Daniel Zheng, Yuxiang Zhou,
Alexandre Galashov, Nicolas Heess, and Francesco Nori. Learning dexterous
manipulation from suboptimal experts. arXiv preprint arXiv:2010.08587, 2020.
3.1, 3.2, 3.3.2

[51] Yandong Ji, Zhongyu Li, Yinan Sun, Xue Bin Peng, Sergey Levine, Glen
Berseth, and Koushil Sreenath. Hierarchical reinforcement learning for precise
soccer shooting skills using a quadrupedal robot, 2022. 5.11.1

[52] Yandong Ji, Gabriel B. Margolis, and Pulkit Agrawal. Dribblebot: Dynamic
legged manipulation in the wild, 2023. 5.11.1

[53] Justin M Johnson and Taghi M Khoshgoftaar. Survey on deep learning with
class imbalance. Journal of Big Data, 6(1):1–54, 2019. 3.6

[54] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog,
Eric Jang, Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Van-
houcke, and Sergey Levine. Qt-opt: Scalable deep reinforcement learning for
vision-based robotic manipulation, 2018. 1, 4.2.2

[55] Oussama Khatib. A unified approach for motion and force control of robot
manipulators: The operational space formulation. IEEE Journal on Robotics
and Automation, 3(1):43–53, 1987. 4.4.4

151

Bibliography

[56] Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards
continual reinforcement learning: A review and perspectives. arXiv preprint
arXiv:2012.13490, 2020. 3.2

[57] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten
Joachims. Morel: Model-based offline reinforcement learning. Advances in
neural information processing systems, 33:21810–21823, 2020. 2.2, 2.3.2, 3.2

[58] Jennifer King, Matthew Klingensmith, Christopher Dellin, Mehmet Dogar,
Prasanna Velagapudi, Nancy Pollard, and Siddhartha Srinivasa. Pregrasp
manipulation as trajectory optimization. In Proceedings of Robotics: Science
and Systems, Berlin, Germany, June 2013. doi: 10.15607/RSS.2013.IX.015.
4.2.2, 4.4.2

[59] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2014.
2.3.3

[60] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural
networks. Proceedings of the national academy of sciences, 114(13):3521–3526,
2017. 3.1, 3.2

[61] Orr Krupnik, Igor Mordatch, and Aviv Tamar. Multi agent reinforcement
learning with multi-step generative models. CoRR, abs/1901.10251, 2019. URL
http://arxiv.org/abs/1901.10251. 2.2

[62] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine.
Stabilizing off-policy q-learning via bootstrapping error reduction. In Advances
in Neural Information Processing Systems, pages 11784–11794, 2019. 2.2, 2.3.2,
2.4.1, 2.5, 3.2

[63] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative
q-learning for offline reinforcement learning. Advances in Neural Information
Processing Systems, 33:1179–1191, 2020. 3.2

[64] Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey
Levine. Offline q-learning on diverse multi-task data both scales and generalizes.
arXiv preprint arXiv:2211.15144, 2022. 6.2

[65] Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement
learning. In Reinforcement learning, pages 45–73. Springer, 2012. 2.1, 2.2, 3.2

[66] Alex X Lee, Coline Manon Devin, Yuxiang Zhou, Thomas Lampe, Konstantinos
Bousmalis, Jost Tobias Springenberg, Arunkumar Byravan, Abbas Abdolmaleki,
Nimrod Gileadi, David Khosid, et al. Beyond pick-and-place: Tackling robotic
stacking of diverse shapes. In 5th Annual Conference on Robot Learning, 2021.
4.2.3

152

http://arxiv.org/abs/1901.10251

Bibliography

[67] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforce-
ment learning: Tutorial, review, and perspectives on open problems. arXiv
preprint arXiv:2005.01643, 2020. 1, 2.1, 2.2, 3.2

[68] Jacky Liang, Xianyi Cheng, and Oliver Kroemer. Learning preconditions of
hybrid force-velocity controllers for contact-rich manipulation. arXiv preprint
arXiv:2206.12728, 2022. 1, 5.2

[69] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015. 1, 2.3.1,
2.4.3

[70] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015. 5.1, 5.2

[71] Minghua Liu, Xuanlin Li, Zhan Ling, Yangyan Li, and Hao Su. Frame mining:
a free lunch for learning robotic manipulation from 3d point clouds. In 6th
Annual Conference on Robot Learning, 2022. 5.2

[72] Weiyu Liu, Tucker Hermans, Sonia Chernova, and Chris Paxton. Structdiffusion:
Object-centric diffusion for semantic rearrangement of novel objects. arXiv
preprint arXiv:2211.04604, 2022. 5.6, D.1.1

[73] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for
continual learning. Advances in neural information processing systems, 30, 2017.
3.1, 3.2

[74] Jeffrey Mahler and Ken Goldberg. Learning deep policies for robot bin picking
by simulating robust grasping sequences. In Sergey Levine, Vincent Vanhoucke,
and Ken Goldberg, editors, Proceedings of the 1st Annual Conference on Robot
Learning, volume 78 of Proceedings of Machine Learning Research, pages 515–
524. PMLR, 13–15 Nov 2017. 1

[75] Roberto Mart́ın-Mart́ın, Michelle A Lee, Rachel Gardner, Silvio Savarese,
Jeannette Bohg, and Animesh Garg. Variable impedance control in end-effector
space: An action space for reinforcement learning in contact-rich tasks. In 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 1010–1017. IEEE, 2019. 4.4.4

[76] Matthew T Mason. Progress in nonprehensile manipulation. The International
Journal of Robotics Research, 18(11):1129–1141, 1999. 5.2

[77] Nikhil Mishra, Pieter Abbeel, and Igor Mordatch. Prediction and control
with temporal segment models. CoRR, abs/1703.04070, 2017. URL http:

//arxiv.org/abs/1703.04070. 2.2

153

http://arxiv.org/abs/1703.04070
http://arxiv.org/abs/1703.04070

Bibliography

[78] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013. 1

[79] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013. 5.2

[80] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning.
nature, 518(7540):529–533, 2015. 2.1

[81] Kaichun Mo, Leonidas J. Guibas, Mustafa Mukadam, Abhinav Gupta, and
Shubham Tulsiani. Where2act: From pixels to actions for articulated 3d objects.
In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 6813–6823, October 2021. 1, 5.1, 5.2, 5.7

[82] Igor Mordatch, Emanuel Todorov, and Zoran Popović. Discovery of complex be-
haviors through contact-invariant optimization. ACM Transactions on Graphics
(TOG), 31(4):1–8, 2012. 5.2

[83] Arsalan Mousavian, Clemens Eppner, and Dieter Fox. 6-dof graspnet: Varia-
tional grasp generation for object manipulation. In International Conference
on Computer Vision (ICCV), 2019. 4.1, 4.2.2, 4.3

[84] Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Cathera Yang, Xuanlin Li,
Stone Tao, Zhiao Huang, Zhiwei Jia, and Hao Su. Maniskill: Generalizable
manipulation skill benchmark with large-scale demonstrations. In Thirty-fifth
Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021. 5.5.1, 5.1, 5.7, 5.7

[85] Adithyavairavan Murali, Weiyu Liu, Kenneth Marino, Sonia Chernova, and
Abhinav Gupta. Same object, different grasps: Data and semantic knowledge
for task-oriented grasping, 2020. 4.2.2, 4.3

[86] Adithyavairavan Murali, Arsalan Mousavian, Clemens Eppner, Chris Paxton,
and Dieter Fox. 6-dof grasping for target-driven object manipulation in clutter,
2020. 4.1, 4.2.2, 4.3

[87] Anusha Nagabandi, Kurt Konolige, Sergey Levine, and Vikash Kumar. Deep
dynamics models for learning dexterous manipulation. In Conference on Robot
Learning, pages 1101–1112. PMLR, 2020. 1, 4.2.3

[88] Soroush Nasiriany, Huihan Liu, and Yuke Zhu. Augmenting reinforcement
learning with behavior primitives for diverse manipulation tasks. In 2022
International Conference on Robotics and Automation (ICRA), pages 7477–
7484. IEEE, 2022. 5.11.2

154

Bibliography

[89] Michael Neunert, Abbas Abdolmaleki, Markus Wulfmeier, Thomas Lampe,
Tobias Springenberg, Roland Hafner, Francesco Romano, Jonas Buchli, Nicolas
Heess, and Martin Riedmiller. Continuous-discrete reinforcement learning for
hybrid control in robotics. In Conference on Robot Learning, pages 735–751.
PMLR, 2020. 5.2

[90] Van-Duc Nguyen. Constructing force-closure grasps. The International Journal
of Robotics Research, 7(3):3–16, 1988. 4.2.2

[91] OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin,
Bob McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell,
Raphael Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek, Peter Welinder,
Lilian Weng, Qiming Yuan, Wojciech Zaremba, and Lei Zhang. Solving rubik’s
cube with a robot hand, 2019. 4.1, 4.2.3, 4.4, 4.4.5, 4.4.6, C.3

[92] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-
driven exploration by self-supervised prediction. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pages
16–17, 2017. 2.1

[93] Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel Van De Panne.
Deeploco: Dynamic locomotion skills using hierarchical deep reinforcement
learning. ACM Transactions on Graphics (TOG), 36(4):1–13, 2017. 2.1

[94] Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-
weighted regression: Simple and scalable off-policy reinforcement learning. arXiv
preprint arXiv:1910.00177, 2019. 2.2

[95] Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted
regression for operational space control. In Proceedings of the 24th international
conference on Machine learning, pages 745–750, 2007. 2.2

[96] Lerrel Pinto and Abhinav Gupta. Supersizing self-supervision: Learning to
grasp from 50k tries and 700 robot hours. In 2016 IEEE international conference
on robotics and automation (ICRA), pages 3406–3413. IEEE, 2016. 1, 4.2.2

[97] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation. arXiv preprint
arXiv:1612.00593, 2016. 5.5.1

[98] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. arXiv preprint
arXiv:1706.02413, 2017. 5.5.2

[99] Yuzhe Qin, Binghao Huang, Zhao-Heng Yin, Hao Su, and Xiaolong Wang.
Dexpoint: Generalizable point cloud reinforcement learning for sim-to-real
dexterous manipulation. Conference on Robot Learning (CoRL), 2022. 1, 5.2,
5.1, 5.7, 5.7

155

Bibliography

[100] Aravind Rajeswaran*, Vikash Kumar*, Abhishek Gupta, Giulia Vezzani, John
Schulman, Emanuel Todorov, and Sergey Levine. Learning Complex Dexterous
Manipulation with Deep Reinforcement Learning and Demonstrations. In
Proceedings of Robotics: Science and Systems (RSS), 2018. 2.1

[101] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to
reweight examples for robust deep learning. In International conference on
machine learning, pages 4334–4343. PMLR, 2018. 3.6

[102] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gre-
gory Wayne. Experience replay for continual learning. Advances in Neural
Information Processing Systems, 32, 2019. 3.1, 3.2, 3.4

[103] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation
learning and structured prediction to no-regret online learning. In Proceedings
of the fourteenth international conference on artificial intelligence and statistics,
pages 627–635, 2011. 2.2

[104] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the icp algorithm. In
Proceedings third international conference on 3-D digital imaging and modeling,
pages 145–152. IEEE, 2001. 4.4.2, C.4.1

[105] Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume
Desjardins, James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Ko-
ray Kavukcuoglu, and Raia Hadsell. Policy distillation. arXiv preprint
arXiv:1511.06295, 2015. 3.2

[106] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer,
James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell.
Progressive neural networks. arXiv preprint arXiv:1606.04671, 2016. 3.1, 3.2

[107] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value
function approximators. In International conference on machine learning, pages
1312–1320. PMLR, 2015. 4.4.1

[108] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-
Barwinska, Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress
& compress: A scalable framework for continual learning. In International
Conference on Machine Learning, pages 4528–4537. PMLR, 2018. 3.2

[109] Daniel Seita, Yufei Wang, Sarthak Shetty, Edward Li, Zackory Erickson, and
David Held. ToolFlowNet: Robotic Manipulation with Tools via Predicting
Tool Flow from Point Clouds. In Conference on Robot Learning (CoRL), 2022.
5.2

[110] Karun B Shimoga. Robot grasp synthesis algorithms: A survey. The Interna-
tional Journal of Robotics Research, 15(3):230–266, 1996. 4.2.2

156

Bibliography

[111] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-actor: A multi-task
transformer for robotic manipulation. In Proceedings of the 6th Conference on
Robot Learning (CoRL), 2022. 5.2

[112] Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdol-
maleki, Michael Neunert, Thomas Lampe, Roland Hafner, Nicolas Heess, and
Martin Riedmiller. Keep doing what worked: Behavioral modelling priors for
offline reinforcement learning. arXiv preprint arXiv:2002.08396, 2020. 3.2

[113] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. Deterministic policy gradient algorithms. In International
conference on machine learning, pages 387–395. Pmlr, 2014. 2.3.1

[114] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. Mastering the game of go without human knowledge. nature, 550
(7676):354–359, 2017. 1

[115] Mohsen Sombolestan and Quan Nguyen. Hierarchical adaptive loco-
manipulation control for quadruped robots, 2023. 5.11.1

[116] Mohsen Sombolestan and Quan Nguyen. Hierarchical adaptive control for
collaborative manipulation of a rigid object by quadrupedal robots, 2023. 5.11.1

[117] Shuran Song, Andy Zeng, Johnny Lee, and Thomas Funkhouser. Grasping
in the wild: Learning 6dof closed-loop grasping from low-cost demonstrations.
Robotics and Automation Letters, 2020. 4.2.2

[118] Zhaole Sun, Kai Yuan, Wenbin Hu, Chuanyu Yang, and Zhibin Li. Learning
pregrasp manipulation of objects from ungraspable poses, 2020. 4.1, 4.2.2, 4.4.2

[119] Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, and Dieter Fox.
Contact-graspnet: Efficient 6-dof grasp generation in cluttered scenes. In 2021
IEEE International Conference on Robotics and Automation (ICRA), pages
13438–13444, 2021. doi: 10.1109/ICRA48506.2021.9561877. 5.2

[120] Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, and Dieter Fox.
Contact-graspnet: Efficient 6-dof grasp generation in cluttered scenes. In 2021
IEEE International Conference on Robotics and Automation (ICRA), pages
13438–13444. IEEE, 2021. 5.11.2

[121] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018. 1

[122] Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick,
Raia Hadsell, Nicolas Heess, and Razvan Pascanu. Distral: Robust multitask
reinforcement learning. Advances in neural information processing systems, 30,
2017. 3.2, 6.2

157

Bibliography

[123] Sebastian Thrun. Lifelong learning algorithms. In Learning to learn, pages
181–209. Springer, 1998. 3.1, 3.2

[124] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and
Pieter Abbeel. Domain randomization for transferring deep neural networks
from simulation to the real world, 2017. 4.2.3

[125] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for
model-based control. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5026–5033. IEEE, 2012. 4.5, 5.6, C.2.1

[126] René Traoré, Hugo Caselles-Dupré, Timothée Lesort, Te Sun, Guanghang Cai,
Natalia Dı́az-Rodŕıguez, and David Filliat. Discorl: Continual reinforcement
learning via policy distillation. arXiv preprint arXiv:1907.05855, 2019. 3.2

[127] Nikolaus Vahrenkamp, Martin Do, Tamim Asfour, and Rüdiger Dillmann.
Integrated grasp and motion planning. In 2010 IEEE International Conference
on Robotics and Automation, pages 2883–2888, 2010. doi: 10.1109/ROBOT.
2010.5509377. 4.2.2, 4.4.5

[128] Lirui Wang, Yu Xiang, and Dieter Fox. Manipulation trajectory optimization
with online grasp synthesis and selection. In Robotics: Science and Systems
(RSS), 2020. 4.1, 4.2.2, 4.4.5

[129] Lirui Wang, Yu Xiang, Wei Yang, Arsalan Mousavian, and Dieter Fox. Goal-
auxiliary actor-critic for 6d robotic grasping with point clouds. In The Confer-
ence on Robot Learning (CoRL), 2021. 4.2.2, 5.2

[130] Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Sprin-
genberg, Scott E Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas
Heess, et al. Critic regularized regression. Advances in Neural Information
Processing Systems, 33:7768–7778, 2020. 3.2, 3.3.2, 3.7.3

[131] Jimmy Wu, Xingyuan Sun, Andy Zeng, Shuran Song, Johnny Lee, Szymon
Rusinkiewicz, and Thomas Funkhouser. Spatial action maps for mobile ma-
nipulation. In Proceedings of Robotics: Science and Systems (RSS), 2020.
5.2

[132] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline
reinforcement learning. arXiv preprint arXiv:1911.11361, 2019. 2.2, 2.3.2, 2.4.1,
2.5, 3.2

[133] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox. Posecnn:
A convolutional neural network for 6d object pose estimation in cluttered scenes.
Robotics: Science and Systems (RSS), 2018. D.1.3

[134] Annie Xie and Chelsea Finn. Lifelong robotic reinforcement learning by retaining
experiences. arXiv preprint arXiv:2109.09180, 2021. 3.2

158

Bibliography

[135] Jiechao Xiong, Qing Wang, Zhuoran Yang, Peng Sun, Lei Han, Yang Zheng,
Haobo Fu, Tong Zhang, Ji Liu, and Han Liu. Parametrized deep q-networks
learning: Reinforcement learning with discrete-continuous hybrid action space.
arXiv preprint arXiv:1810.06394, 2018. 5.2

[136] Zhenjia Xu, He Zhanpeng, and Shuran Song. Umpnet: Universal manipulation
policy network for articulated objects. IEEE Robotics and Automation Letters,
2022. 1, 5.1, 5.2, 5.7

[137] Fan Yang, Chao Yang, Huaping Liu, and Fuchun Sun. Evaluations of the gap
between supervised and reinforcement lifelong learning on robotic manipulation
tasks. In Conference on Robot Learning, pages 547–556. PMLR, 2022. 3.2

[138] Kuan-Ting Yu, Maria Bauza, Nima Fazeli, and Alberto Rodriguez. More than
a million ways to be pushed. a high-fidelity experimental dataset of planar
pushing. In 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 30–37, 2016. doi: 10.1109/IROS.2016.7758091. 5.1,
5.2

[139] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman,
Chelsea Finn, and Sergey Levine. Meta-world: A benchmark and evaluation for
multi-task and meta reinforcement learning. In Conference on Robot Learning
(CoRL), 2019. URL https://arxiv.org/abs/1910.10897. 5.5.1, 5.1, 5.7, 5.7,
6.2

[140] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman,
and Chelsea Finn. Gradient surgery for multi-task learning. arXiv preprint
arXiv:2001.06782, 2020. 4.4.5, 6.2

[141] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey
Levine, Chelsea Finn, and Tengyu Ma. Mopo: Model-based offline policy
optimization. Advances in Neural Information Processing Systems, 33:14129–
14142, 2020. 2.2, 3.2

[142] Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Sergey Levine,
and Chelsea Finn. Conservative data sharing for multi-task offline reinforcement
learning. Advances in Neural Information Processing Systems, 34, 2021. 3.2,
6.2

[143] Wenhao Yu, Jie Tan, C Karen Liu, and Greg Turk. Preparing for the unknown:
Learning a universal policy with online system identification. arXiv preprint
arXiv:1702.02453, 2017. 3.7.1

[144] Andy Zeng, Shuran Song, Stefan Welker, Johnny Lee, Alberto Rodriguez, and
Thomas Funkhouser. Learning synergies between pushing and grasping with
self-supervised deep reinforcement learning. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 4238–4245. IEEE,

159

https://arxiv.org/abs/1910.10897

Bibliography

2018. 5.2

[145] Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien,
Maria Attarian, Travis Armstrong, Ivan Krasin, Dan Duong, Vikas Sindhwani,
and Johnny Lee. Transporter networks: Rearranging the visual world for robotic
manipulation. Conference on Robot Learning (CoRL), 2020. 1, 5.2, 5.11.2

[146] Chen Zeno, Itay Golan, Elad Hoffer, and Daniel Soudry. Task agnostic continual
learning using online variational bayes. arXiv preprint arXiv:1803.10123, 2018.
3.2

[147] Hongchang Zhang, Jianzhun Shao, Yuhang Jiang, Shuncheng He, and Xiangyang
Ji. Reducing conservativeness oriented offline reinforcement learning. arXiv
preprint arXiv:2103.00098, 2021. 3.2

[148] Kevin Zhang, Mohit Sharma, Jacky Liang, and Oliver Kroemer. A modular
robotic arm control stack for research: Franka-interface and frankapy. arXiv
preprint arXiv:2011.02398, 2020. C.4.1

[149] Wenxuan Zhou and David Held. Learning to grasp the ungraspable with
emergent extrinsic dexterity. In Conference on Robot Learning (CoRL), 2022.
1, 5.2, 5.5.1, 5.1, 5.7, 5.7

[150] Wenxuan Zhou, Lerrel Pinto, and Abhinav Gupta. Environment probing
interaction policies. arXiv preprint arXiv:1907.11740, 2019. 3.7.1

[151] Wenxuan Zhou, Sujay Bajracharya, and David Held. Plas: Latent action space
for offline reinforcement learning. In Conference on Robot Learning, 2020. 1,
3.2

[152] Wenxuan Zhou, Steven Bohez, Jan Humplik, Nicolas Heess, Abbas Abdolmaleki,
Dushyant Rao, Markus Wulfmeier, and Tuomas Haarnoja. Forgetting and
imbalance in robot lifelong learning with off-policy data. In Sarath Chandar,
Razvan Pascanu, and Doina Precup, editors, Proceedings of The 1st Conference
on Lifelong Learning Agents, volume 199 of Proceedings of Machine Learning
Research, pages 294–309. PMLR, 22–24 Aug 2022. URL https://proceedings.

mlr.press/v199/zhou22a.html. 1

[153] Yuke Zhu, Josiah Wong, Ajay Mandlekar, and Roberto Mart́ın-Mart́ın. robosuite:
A modular simulation framework and benchmark for robot learning. arXiv
preprint arXiv:2009.12293, 2020. 4.5, C.2.1

[154] Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Mart́ın-Mart́ın, Abhishek
Joshi, Soroush Nasiriany, and Yifeng Zhu. robosuite: A modular simu-
lation framework and benchmark for robot learning. In arXiv preprint
arXiv:2009.12293, 2020. 5.6, D.1.5

160

https://proceedings.mlr.press/v199/zhou22a.html
https://proceedings.mlr.press/v199/zhou22a.html

	1 Introduction
	2 PLAS: Latent Action Space for Offline Reinforcement Learning
	2.1 Introduction
	2.2 Related Work
	2.3 Background
	2.3.1 Preliminaries
	2.3.2 Offline RL: From Pessimistic MDP to Policy Constraints
	2.3.3 Variational Auto-encoder

	2.4 Method
	2.4.1 Policy in Latent Action Space (PLAS)
	2.4.2 Generalization out of the dataset
	2.4.3 Implementation Details

	2.5 Experiments
	2.5.1 Experiment Descriptions
	2.5.2 Performance on Real-Robot Experiment
	2.5.3 Performance on D4RL datasets
	2.5.4 Overestimation of Learned Q-functions
	2.5.5 Effect of the Optional Perturbation Layer

	2.6 Conclusion

	3 Forgetting and Imbalance in Robot Lifelong Learning with Off-policy Data
	3.1 Introduction
	3.2 Related Work
	3.3 Preliminaries
	3.3.1 Problem Definition: Lifelong reinforcement learning with environment variations
	3.3.2 Off-Policy Reinforcement Learning Algorithms

	3.4 Forward and Backward trade-off in Lifelong Reinforcement Learning
	3.5 Offline Distillation Pipeline
	3.6 Imbalanced Experience in Offline Distillation
	3.7 Experiments
	3.7.1 Experiment Setup
	3.7.2 Offline Distillation for Lifelong Reinforcement Learning
	3.7.3 Imbalanced Experience in Offline Distillation

	3.8 Conclusion

	4 Learning to Grasp the Ungraspable with Emergent Extrinsic Dexterity
	4.1 Introduction
	4.2 Related Work
	4.2.1 Extrinsic dexterity
	4.2.2 Grasping
	4.2.3 Reinforcement Learning for Manipulation

	4.3 Task Definition: Occluded Grasping
	4.4 Learning dexterous grasping with Reinforcement Learning
	4.4.1 Preliminaries: Goal-conditioned Reinforcement Learning
	4.4.2 RL Problem Design
	4.4.3 Extrinsic Environment
	4.4.4 Choice of Low-level Controller
	4.4.5 Multi-grasp Training and Grasp Selection
	4.4.6 Improving Policy Generalization

	4.5 Experiments
	4.5.1 Training Curves and Ablations
	4.5.2 Emergent Behaviors
	4.5.3 Multi-grasp Experiments
	4.5.4 Policy Generalization
	4.5.5 Real-robot experiments

	4.6 Limitations
	4.7 Conclusion

	5 HACMan: Learning Hybrid Actor-Critic Maps for 6D Non-Prehensile Manipulation
	5.1 Introduction
	5.2 Related Work
	5.3 Preliminaries
	5.4 Problem Statement and Assumptions
	5.5 Method
	5.5.1 Action Representation
	5.5.2 Hybrid RL Algorithm
	5.5.3 Representing the Goal as Per-Point Goal Flow

	5.6 Experiment Setup
	5.7 Simulation Results
	5.8 Real robot experiments
	5.9 Limitations
	5.10 Conclusion
	5.11 Extensions to HACMan
	5.11.1 HACLeg: Visual Manipulation with Legs
	5.11.2 HACMan++: A Spatially-grounded Skill Library for Manipulation

	6 Conclusions
	6.1 Summary
	6.2 Future Directions

	A Appendix to PLAS (Chapter 2)
	A.1 Implementation Details
	A.2 D4RL Results
	A.3 Sensitivity Analysis: Max Latent Action
	A.4 Ablation Study: Perturbation Layer
	A.5 Empirical Analysis on MMD Constraint
	A.6 Robot Experiment

	B Appendix to Robot Lifelong Learning (Chapter 3)
	B.1 Additional results on the offline distillation pipeline
	B.2 Algorithm
	B.3 Additional results with three environments and parallel sharing
	B.3.1 Forgetting and the effectiveness of Offline Distillation
	B.3.2 Imbalance experience in offline distillation

	C Appendix to Grasp the Ungraspable (Chapter 4)
	C.1 Additional Results
	C.1.1 Sensitivity analysis on physical parameters
	C.1.2 Sensitivity analysis on object pose estimation noise
	C.1.3 Reward term weights

	C.2 Implementation Details
	C.2.1 Simulation environment
	C.2.2 Grasp configurations
	C.2.3 Success rate calculation
	C.2.4 Observation and action space
	C.2.5 Low-level controller
	C.2.6 Multi-Grasp Training with Curriculum
	C.2.7 RL Training

	C.3 Automatic Domain Randomization
	C.4 Real robot experiment
	C.4.1 Implementation details
	C.4.2 More information on the objects
	C.4.3 Failure cases

	D Appendix to HACMan (Chapter 5)
	D.1 Simulation Environment
	D.1.1 Object dataset preprocessing
	D.1.2 Collecting goal poses
	D.1.3 Representing the goal as per-point goal flow
	D.1.4 Success rate definition
	D.1.5 Observation
	D.1.6 Action

	D.2 Algorithm and Training Details
	D.2.1 HACMan (Ours)
	D.2.2 Baselines

	D.3 Supplementary Experiment Results
	D.3.1 Additional ablations
	D.3.2 Training curves and tables
	D.3.3 Additional baseline: Global feature with query contact location
	D.3.4 Extending Motion Parameters
	D.3.5 Experiments in cluttered environments
	D.3.6 Effect of longer training time
	D.3.7 Effect of longer episode lengths
	D.3.8 Per-category result breakdown
	D.3.9 Final Distance to Goal

	D.4 Real Robot Experiments
	D.4.1 Real robot setup
	D.4.2 Analysis
	D.4.3 Failure cases

	D.5 Discussion on non-prehensile manipulation
	D.6 More discussion on the related work

	Bibliography

