
Decentralized Model Predictive Control for
Constrained Multi-Robot System

Allison J. Seo
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA
ajseo@andrew.cmu.edu

Sha Yi
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA

shayi@andrew.cmu.edu

Katia Sycara
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA

sycara@andrew.cmu.edu

Abstract—Multi-robot systems (MRS) have shown collective
behaviors and enhanced capabilities in the literature. Real-time
control of MRS is challenging due to the exponentially growing
state space. This scalability issue becomes more difficult with a
highly constrained system. In this paper, we present a Model
Predictive Control (MPC) with a decentralized state space and
parallelized computations. Our MPC framework effectively mod-
els the dense constraints of reconfigurable multi-robot systems
and enables scalable real-time control of the system. We show
that the proposed MPC enables significantly faster computation
compared with an MPC with a centralized state space. We tested
our algorithm on up to eight robots in simulation and three robots
on the hardware platform. Detailed implementation can be found
here: https://github.com/allisonjseo/decentralized-mpc.

I. INTRODUCTION

Multi-robot systems (MRS) have gained significant attention
in fields such as search and rescue operations, environmental
monitoring, and industrial automation. Through collaboration,
these systems have capabilities that surpass those of individual
robots. Multiple robots can not only perform efficient explo-
ration [7] but also can form structures that enable them to
traverse uneven terrain or cross gaps on the ground [15]. While
the wheeled mobile robot has simple kinematics, robot control
can be a challenge when there are multiple robots involved.
Since constraints can also be different for each robot, it can
be difficult to obtain good robot control [4].

To enable scalable control of MRS, researchers have ex-
plored ways to implement controllers in a decentralized man-
ner. Xing et al. [12] applied their feedback linear consen-
sus algorithm to a decentralized control law, where robots
could access their respective local controller and the states
of their neighbors to coordinate a collective behavior. Other
researchers have considered various coordination methods,
such as Ant Colony Optimization [7] and leader-follower
[5]. In the last several decades, Model Predictive Control
(MPC), which optimizes an objective function while taking
into account the current state, the future predictions, and
the constraints of the system, has proven to be an efficient
framework for nonlinear systems [3]. As MPC computation
time depends on the number of constraints, researchers have
explored ways to reduce the number of constraints through
decentralized MPC. Tallamraju et al. [9] showed that this can
be effective in obstacle avoidance for MRS, and [6, 8] achieved

Fig. 1: Two Puzzlebots couple by inserting one Puzzlebot’s anchor into the
opening of the other robot (circuitry removed for clarity). This coupling
mechanism allows for flexible yet stable connections.

good results in real-time control by combining a form of
decentralized MPC with a high-level planner for autonomous
robots. A decentralized and prioritized MPC has also been
shown to overcome synchronization limitations, leading to
faster convergence compared to centralized algorithms, for a
system of unmanned aerial vehicles [2].

MPC remains limited in multi-robot systems due to its
computational complexity, making it challenging to solve
dynamic optimization problems in real-time [4]. The large
state spaces for a centralized system lead to increasingly
expensive computations, which inhibits the scalability of MPC.
In addition, for robots that physically interact with each
other, it is difficult to define and incorporate the desired
physical interactions as constraints into the MPC framework.
Depending on the robot system and behavior, these constraints
can get very dense. For these reasons, it can be anticipated that
the MPC computation time will exhibit exponential growth as
more agents are added to the system. While decomposing a
centralized state space into a decentralized framework may
speed up the computation, the optimality may decrease and
further influence the performance of the controller. Compared
with multi-robot systems that only consider collision avoid-
ance when robots come close to each other, pairwise physical
constraints are denser, making it challenging for the controller
to run in real-time.

In our previous work [13, 14], we proposed the Puzzlebot
system - a multi-robot system where robots physically couple
to form functional structures. We modeled the physical inter-

https://github.com/allisonjseo/decentralized-mpc

Fig. 2: The blue triangle represents the constraint of the right robot (robot
i)’s anchor head while it is coupled with the left robot (robot j). Cr

j and
Cl

j denote the front right corner and the front left corner of the robot j,
respectively [15].

actions between robots as geometric polygon constraints [15],
and incorporated them into a centralized MPC framework.
The dense pairwise constraints are essential for maintaining
the passive structure of the multi-robot system. While this
formulation successfully controls the robot to form a given
configuration, it is not scalable to more than four robots in
real time. In this paper, We propose a decentralized MPC
framework for such a robot system with dense constraints.
Our research differs from previous approaches due to the large
number of changing physical constraints in our optimization
problem between time steps.

In addition to ensuring that constraints, particularly the
maintenance of coupling structures among the robots, are met,
our MPC framework uses the decentralized state space to
define an optimization problem for each robot at every time
step. In our simulation results, we test the decentralized MPC
on up to eight robots to investigate the scalability of our
approach, as well as the optimality and performance compared
with the centralized method.

The structure of this paper is as follows. Section II discusses
the kinematic model of the robots, the coupling behavior, and
the MPC setup. Section III outlines the simulation results.
Section IV presents the conclusion and potential future works.

II. METHODOLOGY

In this section, we first review the robot model and kinemat-
ics. Then, we review the constraints required for coupling the
robots and how they are represented in the MPC framework.

A. Robot Model and Dynamics

The robots in this paper are Puzzlebots [15], which are
shown in Figure 1. For more details about the robot, our
previous paper [15] should be referenced.

Each robot’s main structure is 50 mm in depth, 50 mm
in width, 45 mm in height, and weighs 68 g. The anchor,
which serves as our coupling mechanism, is flexible but robust
enough to hold the weight of multiple robots and requires no
additional power for the coupling process. Each robot has an
anchor on the back and an opening in the front. To couple, one
robot’s anchor is inserted into the opening of another robot.
With this design, the anchor can be inserted easily, requiring
much less force than what is provided by the robot. It is more
difficult to remove an inserted anchor.

Consider a multi-robot system of N robots. The state
and control input of robot i ∈ 1, 2, . . . , N , are xi =
[pxi

, pyi
, θi, vi, wi]

⊺, ui = [v̇i, ẇi]
⊺ respectively. pxi

, pyi
∈ R

are the positions of robot i in the x and y axis. θi ∈ (−π, π]
is the robot’s heading angle (yaw). vi and wi are the robot’s
linear and angular velocities. We model the robot dynamics
with a unicycle dynamics model as follows:

ẋi = f(xi,ui) =

vi cos θi
vi sin θi

wi

0
0

+

0 0
0 0
0 0
1 0
0 1

ui (1)

This equation is incorporated into our MPC framework,
which is specified in Section II-C.

B. Control of Coupling Behaviors

Once robots are coupled, they should avoid movement that
may cause them to unintentionally decouple. To maintain
the coupling status while enabling sufficient flexibility for
movement between the robots, we consider the anchor head
Ci on robot i to be within a polygon region of robot j, as
shown in Figure 2. This polygon formulation can be modeled
as linear constraints into the MPC framework [15].

These polygon constraints are a set of linear constraints that
we have derived from the Point-In-Polygon problem. Consider
the connection pair (Ci, Cj), where Ci is the anchor point
on robot i and Cj is the body point on robot j. The linear
constraint, where Ci = [xi, yi]

⊺ is constrained to be inside a
triangle defined by three points on robot j, Rj , C

r
j , and Cl

j

(Figure 2), is[
yk+1 − yk − (xk+1 − xk)

]([xi

yi

]
−

[
xk

yk

])
≤ 0 (2)

where the point of interest [xk, yk]
⊺ ∈ {Cr

j , C
l
j , Rj}. We

simplify this constraint by writing pip(Ci|Rj , C
r
j , C

l
j) ≤ 0 in

the formulation of the MPC framework in Section II-C.

C. Model Predictive Control Setup and Algorithm

MPC is an optimal control strategy that minimizes an
objective function. At each time step, the behavior of the
system is predicted over a horizon. Based on these predictions,
an objective function is minimized according to a set of
constraints. Only the input values for the current time step
are used. As the same process is repeated at the next time
step, this is known as a moving or receding horizon strategy.
This constant recalculation makes MPC adaptable to dynamic
environments.

As seen in Equation 1, we use non-linear unicycle dynamics
for our robots. Based on these dynamics and other constraints
to be introduced later, our Model Predictive Control (MPC)
minimizes its cost functions at every time step. For our paper,
we consider the behavior of aligning and coupling a set of
robots.

The constraints for each robot are as follows. First, there
is an initial constraint that will make the optimization start

Fig. 3: Overview of the decentralized Model Predictive Controller (MPC)
which calculates the optimal control signal of each robot independently and
in parallel.

from the robot’s current state. Then, there are dynamics update
constraints on the robot’s state variables between horizons that
are based on the unicycle model. Based on the actuation limits,
we also set constraints on the linear and angular velocities of
the robot. Finally, we check if the robot is part of a connection
pair in Cconn, which is the set of already coupled robots. If
so, we set the polygon constraints to ensure that the robot’s
anchor point stays in its respective polygon, and thus remains
coupled with the other robot, or vice versa.

We define the cost function as the sum of the cost of aligning
connection pairs and the stage cost. If the robot is part of
an active connection pair in Cactive - that is, currently in
the process of aligning or coupling with another robot - we
calculate a weighted norm-2 error of the alignment based on
the current status. The same calculations are done if the robot
is part of an already-connected pair. Given this framework,
the MPC will then optimize one robot’s cost function to
obtain the control signal based on the current status of the
other robots. Compared with the centralized MPC in [15],
this formulation decomposed the state space and control signal
into a decentralized space. Each robot only optimized its own
states and control signals, which significantly reduces the size
of state space and constraints.

The MPC is formulated as follows:

min
xi,ui

Wc

Hc∑
k=0

J(Cconn, t+ k|t) +Wm

Hm−1∑
k=0

J(t+ k|t) (3)

subject to,

xi(t|t) = xi(t) (4)
xi(t+ k + 1|t) = xi(t+ k|t)

+ f (xi(t+ k|t), ui(t+ k|t))∆t (5)
for k = 0, . . . ,Hm − 1

pip(Ci(t+ k|t)|Rj(t+ k|t), Cr
j (t+ k|t), Cl

j(t+ k|t)) (6)

for k = 1, . . . ,Hc, if (Ci, Cj) ∈ Cconn where j ̸= i

pip(Cj(t+ k|t)|Ri(t+ k|t), Cr
i (t+ k|t), Cl

i(t+ k|t)) (7)
for k = 1, . . . ,Hc, if (Cj , Ci) ∈ Cconn where j ̸= i

xi(t+ k|t) ∈ X , ui(t+ k|t) ∈ U , k = 0, . . . ,Hm (8)

In this MPC formulation, we calculate the objective function
for robot i at time step t and obtain the control signal ui. Since
the optimization recomputes at every time step, the constraints
are not essential for the entire MPC horizon Hm [10]. Thus,
the constant horizon Hc ≤ Hm. The objective function,
Equation (3), includes the cost of the coupling behavior J ,
the weight for maintaining already coupled pairs Wc, and the
weight for the stage cost Wm. The set of already coupled
pairs is denoted as Cconn. There can be up to four sets of
constraints for robot i. First, the initial constraint, Equation (4),
ensures that the optimization starts from the robot’s current
state. Then, the constraints for the dynamics update with the
unicycle model in Equation (1) is seen in Equation (5). The
constraints for coupled pairs are incorporated in Equation (6)
and Equation (7), depending on which of the two connection
points robot i contains, as outlined in the inequality (2). These
constraints are enforced on the pairwise robots with their
coupled neighboring robots. It is also necessary to maintain
these constraints throughout the execution phase, which makes
the constraints dense and challenging. We also incorporate
actuation constraints in Equation (8). U = {ui|umin ≤
ui ≤ umax} is the constraint set for the acceleration values.
X = {xi|vi ≤ |wmax

vmax
wi|} is the constraint set for the velocities

of the robot. Once constraints are set, we use a warm start for
the state variables xi.

Algorithm 1 Decentralized MPC for Coupling Behavior

Input: T : target configuration, x: robot states at time t
Output: u: control input for robots

1: function COUPLEPAIRS(T , x)
2: u =[]
3: cost = 0
4: Cconn, Cactive ← getPairs(x)
5: for roboti in robots do ▷ done in parallel
6: xi = state of roboti
7: ui ← MPC(xi, Cconn, Cactive)
8: add ui to u
9: add costi to cost

10: end for
11: return u
12: end function

Algorithm 1 demonstrates a simplified pseudocode of the
overall controller algorithm. We first initialize a set u for the
control signals and a cost variable. Then, we obtain Cconn,
which is the set of already connected pairs and Cactive, which
is the set of active connection pairs that are not yet coupled.
Next, we calculate the control signal for each robot in parallel,
adding its cost costi to the running total cost for that time
step. A diagram of the MPC is shown in Figure 3. In the MPC
function, we initialize the robot’s variables and set constraints.
The objective function, as defined earlier in this section, is
minimized and the control signal ui is obtained and returned.

Fig. 4: Screenshots from simulator. Robots first couple into pairs, then the pairs join to create groups of four, and on to eventually form a line of connections.
In this example, four robots successfully form a line of connections.

Fig. 5: Screenshots of three robots couple to form a line.

III. RESULTS

We tested our decentralized MPC algorithm on the Puzzle-
Bots [15] system in simulation. We improved the scalability
of the highly-constrained MPC. Although the decentralized
method provides a sub-optimal result compared with the join-
space centralized method, our approach is able to successfully
drive the robots to couple and perform the intended tasks.

A. Experiment Setup

We tested our algorithm on a MacBook Pro. The MPC
framework is written in Python and uses the CasADi [1]
interface’s ip-opt [11] class, which is a non-linear optimiza-
tion problem solver. Since each robot’s MPC formulation is
independent from those of other robots, we use the Python
multiprocessing package’s Pool object to run each robot’s
computations in parallel. Because Python has the Global
Interpreter Lock, users cannot run multiple threads on one
process - however, the multiprocessing package allows users
to spawn multiple Python processes, each with one thread.
The Pool object can be reused, so only one is instantiated per
simulation run and is reused at every time step.

B. Results

The desired behavior is for all robots to couple as a
line. We compare our decentralized MPC algorithm with
a centralized one. The simulator, which can be found at
https://github.com/allisonjseo/decentralized-mpc, was run 50-
60 times for the different numbers of robots for each algorithm.
The behavior we tested is coupling into a line formation as
shown in Figure 4. For the decentralized MPC, the computa-
tion time for each time step equals max([t0, . . . , tn]), where ti
is the computation time for robot i. The average computation
time and cost of each time step for both algorithms is shown
in Figure 6. Compared with the original centralized MPC, the
decentralized MPC was significantly faster and more scalable.
However, considering the total cost as the optimality of the
controller, the decentralized MPC gives sub-optimal results,
while still being able to perform the desired behavior. We

also tested our algorithm on three PuzzleBots on the hardware
system as shown in Figure 5.

Fig. 6: The computation time (left) and cost (right) for each time step versus
the number of robots.

IV. CONCLUSION AND FUTURE WORKS

In this paper, we presented an MPC framework with a
decentralized state space and parallelized computations for
multi-robot systems with dense constraints. The MPC frame-
work included four types of constraints, one of which used
connection points to formulate a set of linear constraints
derived from the Point-In-Polygon problem. We tested our
framework with the behavior of alignment and coupling of
Puzzlebots, and we ran the experiments in both simulation
and hardware platforms.

While the decentralized MPC framework requires less com-
putation, it has a lower accuracy than the centralized MPC
framework. In a semi-decentralized state space, coupled robots
can form a local joint space and share the same variables. An
MPC framework with a semi-decentralized state space may
achieve a lower computation complexity than the centralized
MPC and better performance than the decentralized MPC.
Furthermore, the experiments of this paper focus on one
behavior. By testing on a variety of swarm behaviors, we
can understand how the decentralized state space affects the
execution of different desired robot interactions.

REFERENCES

[1] Joel A E Andersson, Joris Gillis, Greg Horn, James B
Rawlings, and Moritz Diehl. CasADi – A software
framework for nonlinear optimization and optimal con-
trol. volume 11, pages 1–36, 2019. doi: 10.1007/
s12532-018-0139-4.

[2] Michal Cáp, Peter Novák, Martin Selecký, Jan Faigl, and
Jiff Vokffnek. Asynchronous decentralized prioritized
planning for coordination in multi-robot system. In
2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 3822–3829, 2013. doi:
10.1109/IROS.2013.6696903.

[3] A.L. Dontchev. Model predictive control. In Lectures on
Variational Analysis, Applied Mathematical Sciences, vol
205, 2021. doi: doi:10.1007/978-3-030-79911-3\ 20.

[4] Felipe Kuhne, Walter Fetter Lages, and J Gomes
da Silva Jr. Model predictive control of a mobile robot
using linearization. In Proceedings of mechatronics and
robotics, pages 525–530. Citeseer, 2004.

[5] Youhei Kume, Yasuhisa Hirata, Kazuhiro Kosuge, Ha-
jime Asama, Hayato Kaetsu, and Kuniaki Kawabata.
Decentralized control of multiple mobile robots trans-
porting a single object in coordination without using
force/torque sensors. In Proceedings 2001 ICRA. IEEE
International Conference on Robotics and Automation
(Cat. No. 01CH37164), volume 3, pages 3004–3009.
IEEE, 2001.

[6] David Hyunchul Shim, H Jin Kim, and Shankar Sas-
try. Decentralized nonlinear model predictive control
of multiple flying robots. In 42nd IEEE International
Conference on Decision and Control (CDC), volume 4,
pages 3621–3626. IEEE, 2003.

[7] Alexandru-Calin Stan. A decentralised control method
for unknown environment exploration using turtlebot 3
multi-robot system. In 2022 14th International Con-
ference on Electronics, Computers and Artificial In-
telligence (ECAI), pages 1–6, 2022. doi: 10.1109/
ECAI54874.2022.9847497.

[8] Ardalan Tajbakhsh, Lorenz T Biegler, and Aaron M
Johnson. Conflict-based model predictive control for
scalable multi-robot motion planning. arXiv preprint
arXiv:2303.01619, 2023.

[9] Rahul Tallamraju, Sujit Rajappa, Michael J Black, Ka-
malakar Karlapalem, and Aamir Ahmad. Decentralized
mpc based obstacle avoidance for multi-robot target
tracking scenarios. In 2018 IEEE International Sympo-
sium on Safety, Security, and Rescue Robotics (SSRR),
pages 1–8. IEEE, 2018.

[10] Akshay Thirugnanam, Jun Zeng, and Koushil Sreenath.
Safety-critical control and planning for obstacle avoid-
ance between polytopes with control barrier functions.
In 2022 International Conference on Robotics and Au-
tomation (ICRA), pages 286–292. IEEE, 2022.

[11] Andreas Wächter and Lorenz T. Biegler. On the imple-
mentation of an interior-point filter line-search algorithm

for large-scale nonlinear programming. volume 106,
pages 25–57, 2006. doi: 10.1007/s10107-004-0559-y.

[12] Guansheng Xing, Jianxun Zhang, and Hao Ju. Decen-
tralized control in alignment motion of mobile robots
network. In 2008 7th World Congress on Intelligent
Control and Automation, pages 3207–3212. IEEE, 2008.

[13] Sha Yi, Zeynep Temel, and Katia Sycara. Puzzlebots:
Physical coupling of robot swarms. In 2021 IEEE
International Conference on Robotics and Automation
(ICRA), pages 8742–8748. IEEE, 2021.

[14] Sha Yi, Zeynep Temel, and Katia Sycara. Configuration
control for physical coupling of heterogeneous robot
swarms. In 2022 International Conference on Robotics
and Automation (ICRA), pages 4268–4274. IEEE, 2022.

[15] Sha Yi, Katia Sycara, and Zeynep Temel. Reconfig-
urable robot control using flexible coupling mechanisms.
Robotics: Science and Systems (RSS), 2023.

	Introduction
	Methodology
	Robot Model and Dynamics
	Control of Coupling Behaviors
	Model Predictive Control Setup and Algorithm

	Results
	Experiment Setup
	Results

	Conclusion and Future Works

