
Redefining the Perception-Action

Interface: Visual Action Representations

for Contact-Centric Manipulation

Thomas Weng

CMU-RI-TR-23-73

September 29, 2023

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
David Held, CMU, Chair
Oliver Kroemer, CMU

Shubham Tulsiani, CMU
Alberto Rodriguez, MIT

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Robotics.

Copyright © 2023 Thomas Weng. All rights reserved.

To my grandfather Xiyu Weng 翁锡瑜,
for teaching me to dream, like him,

of inventions and possibilities.
Ah-gong, this work is yours.

iv

Abstract

In robotics, understanding the link between perception and action is
pivotal. Typically, perception systems process sensory data into state rep-
resentations such as segmentations and bounding boxes, which a planner
uses to plan actions. However, these state estimation approaches can fail
in environments with partial observability, or in cases with challenging
object properties like transparency and deformability. Alternatively, sen-
sorimotor policies directly convert raw sensor input into actions, but they
produce actions that are not grounded in contact, and perform poorly in
unseen task configurations.

To address these shortcomings, we delve into visual action representations,
a class of approaches in which the perception system conveys information
to the planner about potential actions. Visual action representations do
not require full state estimation, generalize well to unseen task configura-
tions, and output object-centric actions, reasoning about where to make
contact with an object, how to approach contact locations, and how to
manipulate the object once contact is made. Reformulating the role of
perception to include action reasoning simplifies downstream planning.

This thesis presents visual action representations for addressing visual
and geometric challenges in manipulation. We devise a transfer learning
method for grasping transparent and specular objects, and present Neural
Grasp Distance Fields for 6-DOF grasping and motion planning. We
then introduce algorithms for cloth manipulation, starting with adapting
semantic segmentation for the task of grasping edges and corners of cloth.
Next, we develop a tactile sensing-based closed-loop policy to manipulate
stacked cloth layers. Finally, we present FabricFlowNet, a policy that
learns optical flow-based correspondences for goal-conditioned, bimanual
cloth folding.

v

vi

Acknowledgments

First, I would like to express my deepest appreciation to my advisor,
David Held. Dave has been a steadfast source of support and guidance
throughout my PhD. Dave always made time to discuss research and
provide feedback, reflecting his dedication to mentorship and teaching.
His organized and methodical approach to research is rare and something
I hope to emulate in my own work. I am extremely grateful for the
opportunity to work with and learn from him.

I thank Oliver Kroemer, Shubham Tulsiani, and Alberto Rodriguez for
serving on my thesis committee. Their feedback and guidance were
invaluable in shaping my research and thesis. Collaborating with Oliver on
multiple projects has been a great privilege. Shubham’s ability to dive deep
on technical questions is truly inspiring. I hold in high esteem Alberto’s
kind and thoughtful approach to advising. I also thank Christopher
Atkeson and Mohit Sharma for serving on my qualifier committee.

I have a deep appreciation for Mustafa Mukadam and Franziska Meier for
their mentorship and collaboration during my time as a visiting researcher
at Meta AI. Mustafa is a gracious mentor with wide-ranging knowledge,
and I learned so much under his guidance. Franziska’s insightful feedback
helped us frame our research contributions most effectively. I would also
like to thank others that I had the pleasure of working with and learning
from at Meta, including Taosha Fan, Austin Wang, Yixin Lin, Priyam
Parashar, Tess Hellebrekers, Chris Paxton, Vikash Kumar, and others.

I thank the mentors who guided my path to the PhD, Henny Admoni,
Maya Cakmak, and Reid Maker. When I was a Yale undergraduate, Henny
took me under her wing and introduced me to robotics research, and has
continued to mentor me on this path. Maya gave me the opportunity
to work with her at UW, and I am deeply grateful for the time and
energy she invested into my growth as a researcher. Reid was the best
manager I could have had at Microsoft, and I try to emulate his principles
of management and engineering in my own work. I also thank Brian
Scassellati, Siddhartha Srinivasa, Stefanos Nikolaidis, Leah Perlmutter,
Yasaman Sefidgar, Bryan Ford, Ennan Zhai, Anunay Kumar, and all
others who influenced me at Yale, UW, and Microsoft.

To the members of R-PAD that had the pleasure of working with, thank
you for your hard work and dedication to our research: Daniel Seita, Brian

vii

Okorn, Yufei Wang, Aurora Qian, Sujay Bajracharya, Jenny Nan, Amith
Pallankize, Mansi Agarwal, Sashank Tirumala, Sarthak Shetty, Khush
Agrawal, Yimin Tang, Ji Liu, Rashmi Anil, and Patrick Liu. A warm
thank you to other members of R-PAD for insightful research discussions
and friendship: Xingyu Lin, Sid Ancha, Wenxuan Zhou, Ben Eisner,
Jenny Wang, Edward Ahn, Chuer Pan, Carl Qi, Zixuan Huang, Fan Yang,
Gautham Narasimhan, Olivia Xu, Harshit Sikchi, Qiao Gu, Harry Zhang,
Zhanyi Sun, Bowen Jiang, Pranay Gupta, and others.

To the friends I made on the journey, thank you for all the laughs and
camaraderie that made the path lighter: Cherie Ho, Suddhu Suresh, Ada
Taylor, Raunaq Bhirangi, Ceci Morales, Ceci Padilla, Pragna Mannam,
Leo Keselman, Abhijat Biswas, Kate Shih, and others; the Japan crew
Mike Lee, Ravi Pandya, and Michelle Zhao; Gloomhaveners Brian Okorn,
Ankit Bhatia, and Ben Newman; the VR Cult consisting of Xuning Yang,
Alex Spitzer, Cherie, and Suddhu; Meta “Interns Internal”; Adelyn Yeoh
and the climbers; and finally my brazilian jiu jitsu partners and teachers
at StoutPGH.

I thank my partner Violet Wang for putting up with me when I’m being
silly to make her laugh, for supporting me in stressful times, and simply
for loving me as I am. To my sister Mary and brother-in-law Tim, thank
you for being the best sister and brother I could have. Finally, I thank my
parents Guoen and Shanna Weng, for their unwavering love and support
throughout my life.

viii

Funding

This work was supported by the US Air Force and DARPA (FA8750-18-
C-0092), the Office of Naval Research (N00014-18-1-2775), the National
Science Foundation (NSF) Smart and Autonomous Systems Program
(IIS-1849154), an NSF CAREER Award (IIS-1849154), NSF Gradu-
ate Research Fellowship Award (DGE1745016, DGE2140739), an NSF
grant (CMMI-2024794), a NASA Space Technology Research Fellow-
ship (80NSSC17K0233), CMU GSA/Provost Conference Funding, and
ShanghaiTech University. This work was also supported by the Meta AI
Mentorship Program, LG Electronics, Sony Corporation, and the Efort
Intelligent Equipment Company.

ix

x

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Organization . 4

1.2.1 Visual Action Representations for Grasping 4
1.2.2 Visual Action Representations for Cloth Manipulation 5

2 Multi-modal Transfer Learning for Grasping Transparent and Spec-
ular Objects 9
2.1 Introduction . 12
2.2 Related Work . 13

2.2.1 Sensing Transparent and Specular Objects 13
2.2.2 Grasp Synthesis . 14
2.2.3 Cross-modal Transfer Learning 16

2.3 Approach . 16
2.3.1 Problem Statement . 16
2.3.2 Supervision Transfer for Multi-modal Perception 17
2.3.3 Implementation of Supervision Transfer 19

2.4 Experimental Setup . 21
2.4.1 Physical Components . 21
2.4.2 Training the Network . 21
2.4.3 Test Objects . 22

2.5 Experimental Results . 22
2.5.1 Multi-modal Perception . 23
2.5.2 Grasping in Clutter . 24
2.5.3 Lighting Variation Experiments 26
2.5.4 Failure Cases . 27

2.6 Conclusion . 28

3 Neural Grasp Distance Fields for Robot Manipulation 31
3.1 Introduction . 34
3.2 Related Work . 36

xi

3.2.1 6-DOF Grasp Estimation . 36
3.2.2 Joint Grasp Selection and Motion Planning 36
3.2.3 Implicit Neural Representations 37

3.3 Background . 38
3.4 Method . 39

3.4.1 Neural Grasp Distance Fields 39
3.4.2 Optimization of Grasping Trajectories using NGDF 40
3.4.3 Implementation Details . 41

3.5 Experiments . 42
3.5.1 NGDF Level Set Evaluation 42
3.5.2 Simulated Reaching and Grasping Evaluation 44
3.5.3 Intra-Category Generalization 46
3.5.4 Real Robot Reaching and Grasping Evaluation 46

3.6 Discussion . 47
3.7 Conclusion . 48

4 Cloth Region Segmentation for Robust Grasp Selection 49
4.1 Introduction . 52
4.2 Related Work . 54

4.2.1 Cloth Perception . 54
4.2.2 Cloth Grasping . 55

4.3 Approach . 56
4.3.1 Problem Statement . 56
4.3.2 Method Overview . 56
4.3.3 Cloth Region Segmentation 57
4.3.4 Grasp Configuration Selection 58
4.3.5 Grasp Execution . 62
4.3.6 Implementation Details . 63

4.4 Experiments . 63
4.4.1 Experimental Design . 64
4.4.2 Experimental Results . 65

4.5 Conclusion . 71

5 Learning to Singulate Layers of Cloth based on Tactile Feedback 73
5.1 Introduction . 76
5.2 Related Work . 78

5.2.1 Cloth Manipulation Policies 78
5.2.2 Grasping for Cloth Manipulation 78
5.2.3 Tactile Sensor Hardware . 79

5.3 Problem Statement . 80
5.4 Approach . 81

xii

5.4.1 Hardware . 81
5.4.2 Proposed Grasp Policy . 83

5.5 Physical Experiments . 85
5.5.1 Experiment Protocol . 85
5.5.2 Methods and Baselines . 87

5.6 Results . 88
5.6.1 The Tactile Classifier . 88
5.6.2 Grasping 1 Cloth Layer . 88
5.6.3 Grasping 2 Cloth Layers . 90

5.7 Conclusion . 91

6 FabricFlowNet: Bimanual Cloth Manipulation with a Flow-based
Policy 93
6.1 Introduction . 96
6.2 Related Work . 97
6.3 Learning a Goal-Conditioned Policy for Bimanual Cloth Manipulation 100

6.3.1 Problem Definition . 100
6.3.2 Overview . 100
6.3.3 Estimating Flow between Observation and Goal Images 102
6.3.4 Learning to Predict Pick Points 102
6.3.5 Estimating the Place Points from Flow 104
6.3.6 Implementation Details . 105

6.4 Experiments . 105
6.4.1 Simulation Experiments . 105
6.4.2 Real World Experiments . 108

6.5 Conclusion . 109

7 Conclusions 111
7.1 Future Directions . 111

A Chapter 2 Appendix 113
A.1 Network Architecture . 113
A.2 Evaluations without random cropping 114
A.3 Hyperparameters . 115

B Chapter 3 Appendix 117
B.1 Ablations for Neural Grasp Distance Fields 117
B.2 Simulation Experiment Details . 118

B.2.1 Camera Position in Simulation 118
B.2.2 Qualitative Results . 119

B.3 Real System Experiment Details . 119

xiii

B.3.1 Calibration . 119
B.3.2 Point Cloud Processing . 119
B.3.3 Control . 120

B.4 Experimental Setup . 120

C Chapter 4 Appendix 123
C.1 Network Architecture . 123
C.2 Network Training . 123
C.3 Grasp Direction Uncertainty Estimation 124

D Chapter 6 Appendix 125
D.1 Additional Details and Results for FabricFlowNet 125

D.1.1 FabricFlowNet Implementation Details 125
D.1.2 Additional Simulation Results for FabricFlowNet 127
D.1.3 Additional Real World Details and Results for FabricFlowNet 127

D.2 Additional Details and Results for Fabric-VSF [67] 130
D.2.1 Fabric-VSF [67] Implementation Details 130
D.2.2 Additional Fabric-VSF [67] Results 130

D.3 Additional Details and Results for Lee et al. [96] 132
D.3.1 Lee et al. [96] Implementation Details 132
D.3.2 Additional Lee et al. [96] Results 132

D.4 Additional Details and Results for Ablations 134
D.4.1 Ablation Implementation Details 134
D.4.2 Additional Ablation Results 135

D.5 Additional Results on Unseen Cloth Shapes 135
D.6 End-to-End Variants of FFN . 136
D.7 FFN Performance with Crumpled Starting Configurations 137
D.8 FFN Performance with Iterative Refinement 138
D.9 FlowNet Performance . 138

Bibliography 143

xiv

List of Figures

1.1 A summary of this thesis. Visual action representations can be used
for object grasping: (a) grasping transparent and specular objects,
and (b) joint 6-DOF grasp and motion optimization. Visual action
representations are also presented for cloth manipulation: (c) seg-
menting and grasping cloth hems, and (d) bimanual cloth folding. (e)
Tactile sensing is investigated as a complementary modality to vision
for manipulating stacked layers of cloth. 3

2.1 Transparent and specular objects provide poor depth readings with
conventional depth sensors, posing a challenge for depth-based grasping
techniques. (left) Robot workspace with fixed overhead sensor for
grasping. (top right) Color image of scene from overhead sensor.
(bottom right) Depth image of scene showing that most values in
depth image are close to the table. 13

2.2 We train a grasp quality CNN that takes RGB input by supervising
the loss of the network on the output of a trained depth model for
paired, unlabeled RGB-D image data. 18

2.3 Diagrams of the four methods evaluated in this work. We compare
against FC-GQCNN [153], which takes a depth image as input and
outputs dense grasp scores over image coordinates x, y and rotation θ
about the depth axis. RGB-ST and RGBD-ST are both trained using
supervision transfer, but differ in the input they accept (3-channel
RGB or 4-channel RGB-D input). RGBD-M takes the outputs of the
RGB and Depth networks and averages them to produce the final output. 19

2.4 Data collection setup and example images from the dataset of all three
object types. 23

2.5 Probability heatmaps of grasping across methods for the max grasp
score of a grasp with fingertips horizontal to the image, centered at
the each pixel. Objects from each set are arrayed horizontally such
that the top row is opaque objects, the next transparent, and the final
one specular. 24

xv

2.6 (a) Setup for lighting variation experiments. Lighting is controlled
using the overhead lights and floor lamp. (b) Failure case in the
extreme lighting condition. The method predicts the best grasp to be
on the object’s shadow. 27

2.7 Examples of failure cases. (top left) Grasp does not account for
transparent part of sharpener. (top right) Gripper fails to detect
transparent plastic cube and grasps at table. (bottom left) Mass
distribution of squeegee causes grasp to fail. (bottom right) Foil on
top of balloon weight appears graspable but the gripper passes through. 28

3.1 (a) Existing grasp estimation methods produce discrete grasp sets which
do not represent the true continuous manifold of possible grasps. (b)
Our work, Neural Grasp Distance Fields (NGDF), learns a continuous
grasp manifold: given a query pose q and an object shape embedding
z, NGDF outputs the distance d between q and the closest grasp. This
distance can be leveraged as a cost for optimization, facilitating joint
grasp and motion planning. 34

3.2 Columns illustrate design decisions within grasp and motion planning
pipelines. The left-most column highlights representative pipelines like
OMG-Planner [183], CBiRRT [4], and baseline B1 from Table 3.2
which uses a SOTA grasp estimator [167]. The respective design
choices for these methods are traced through the columns. We identify
learned continuous representations as an under-explored option for
grasp estimation, and propose NGDF as a solution that does not
require a heuristic grasp selection step since the grasp pose is jointly
optimized with motion planning. 35

3.3 We use NGDF as a goal cost function on the final state of a trajectory
during gradient-based optimization. Given the current robot joint
configuration and a point cloud of an object or scene, the current
gripper pose and a shape embedding are computed as inputs for
NGDF. Then, NGDF predicts the distance of the current gripper pose
to the closest grasp (Sec. 3.4.1). The predicted distance is used as
the cost and the gradient with respect to the joint configuration is
computed with backpropagation. This cost (with gradient) is used
with other costs like smoothness and collision avoidance to update the
trajectory (Sec. 3.4.2). 38

3.4 Grasp Level Set Evaluation. Left: Final predicted pose (magenta) and
its closest grasp pose (green) in the training dataset. Right: Gripper
path (teal) as it is optimized from initial to final pose. Object meshes
shown for visual clarity; our method takes point clouds as input. . . . 43

xvi

3.5 Real System Evaluation. (a) Visualizing the plan and imperfect object
point cloud; (b) executing the plan on hardware (cameras highlighted
with red boxes); (c) lifting the object. (d) The nine objects used for
testing. (e) Additional successful grasps. 47

4.1 Grasping using cloth region segmentation: Robot with depth sensor
(a) captures depth image of test cloth (b). Depth image is segmented
into outer edges (yellow), inner edges (green) and corners (blue) using
our cloth region segmentation network (c). Ambiguous regions are
colored in orange. Our method selects a grasp location and direction,
shown as a magenta arrow. The robot executes a sliding grasp and
successfully grips the cloth by its edge. 52

4.2 Pipeline for our method. Cloth region segmentation takes a depth im-
age and outputs segmentation masks for cloth edges and corners. Grasp
selection uses the masks to compute a grasp point and direction in
the camera frame. Grasp execution transforms the grasp configuration
into the robot frame and executes the grasp. 56

4.3 Training the segmentation network. The network receives a depth
image as input. A paired RGB image supervises the network through
the color labels of the cloth. Different colors are used to label the
corners, outer edges, and inner edges. The ground-truth color for corner
labels was changed from red to blue in the outputs to be color-blind
friendly. 57

4.4 Illustration of grasp configuration selection. Corners are labeled in
blue, outer edges in yellow , inner edges in green. Overlapping outer
edge and inner edge segmentations are in orange; After obtaining the
cloth region segmentation, (b) shows the cropped section in (a); (c)
shows a subsample of grasp direction proposals for each outer edge
points; (d) shows the grasp directional uncertainty for each outer edge
points. 59

4.5 Sequence of poses for the sliding grasp policy. The sliding action is a
translation from the pre-slide to post-slide pose. The slide intercepts
the target grasp point on the cloth. 62

4.6 Examples of cloth grasps. Folds longer than 2cm from edge to fold are
considered grasp failures; of these three, only (a) is considered a success. 64

xvii

4.7 Segmentation and selected grasp point for edge grasping methods.
(b)-(e) visualize the output of each method on top of the reference
image (a). Note that the color image is only provided as input to
Canny-Color (d); all other methods take the corresponding depth
image as input. As shown in (e), our method correctly identifies most
of the apparent edges of the cloth as folds, whereas the other methods
fail to make this distinction. 65

4.8 Failure cases. (top row) Segmentation bleeds over real cloth edge,
leading to poor estimation of grasp height. (bottom row) Grasp fails
to avoid grasping nearby folds and edges (note that misdetection has
also occurred). 70

4.9 Our network is able to segment cloths of various sizes and visual
texture. See the supplementary video for grasping demonstrations on
these cloths. 71

5.1 We present a tactile-based cloth manipulation system. The robot
utilizes a ReSkin [8] sensor attached to the lower one of its two finger-
tips, which is visualized in more detail in the upper right inset. We
train a classifier to distinguish among grasping different numbers of
cloth layers from tactile feedback (no images are provided as input).
The robot then uses this classifier at test time to determine suitable
grasping points for obtaining a desired number of cloth layers. 77

5.2 The proposed tactile-based cloth manipulation pipeline. A 7-DOF
Franka robot uses a mini-Delta [120] gripper with two finger tips,
the lower one of which has a ReSkin [8] sensor (see yellow circle and
zoomed-in inset). Using this gripper, we collect tactile data from the
ReSkin by performing grasps of different categories: grasping nothing,
or pinching 1, 2, or 3 cloth layers (see Fig. 5.3 for more examples).
The graphs above visualize the tactile time series data. At test time,
the robot uses the trained tactile-based classifier to grasp a desired
number of cloth layers. 80

5.3 Examples of collecting data for tactile-based classification, with the
ReSkin attached to the bottom gripper finger tip. From left to right,
we show two examples each of collecting data with (1) contact, but
without cloth, (2) 1 cloth layer, (3) 2 cloth layers, and (4) 3 cloth
layers. The classifier only takes as input the data collected from the
ReSkin sensor B(t) at any give time step. As a baseline for comparison,
we also train an image-based classifier which uses the RGB images
above, which are collected with a webcam. See Sec. 5.4 for further
details. 82

xviii

5.4 The proposed grasp policy parameterization (described in Sec. 5.4.2),
visualized with a frame-by-frame overview of an example trial from the
experiments. Each row, consisting of four frames, shows one action.
The first part of an action (shown in frames 1 and 5) adjusts the
initial gripper height by dvert, possibly from prior tactile feedback. The
second part of an action (shown in frames 2 and 6) moves towards
the cloth stack by some distance dslide. Then, the third part (frames 3
and 7) lifts upwards by dlift and closes the grippers. At this point, the
robot queries the classifier and may decide to release and re-attempt
the grasp (frames 4 and 5) or the robot concludes that it has grasped
the correct number of layers and further lifts the cloth to end the trial
(frame 8). 84

5.5 An example grasping failure case of the task. Due to an insufficiently
robust grasp when lifting (left), the layers may slip out of the robot’s
control during the lifting portion (right). 86

5.6 The cloths we use for experiments. We use the gray towel (left) for
training, and test on all 3 cloths for evaluation. The white towel
and patterned cloth test generalizing to novel cloths. The cloths
have thicknesses between 3-5 mm and variation in surface texture and
stiffness. 87

5.7 A qualitative example of how the task is challenging, particularly with
grasping two layers. Because of the horizontal motion of the gripper,
layers of cloth can be pushed apart (left), creating air pockets between
the top and second layer after the action has finished (right). This gap
makes it easier to grasp the top layer but harder to grasp the top two
layers, due to a smaller gap between the second and third layers (see
overlaid yellow circle). 91

6.1 FabricFlowNet (FFN) overview. We collect a dataset of random actions
and ground truth flow to train FFN. FFN learns to predict flow and
uses it as both an input and action representation in a manipulation
policy. FFN successfully performs single and dual-arm folding in the
real world. 98

6.2 (a) A naive approach to goal-conditioned policy learning is to input
observation and goal images directly to the policy and predict the
action. (b) FabricFlowNet separates representation learning from policy
learning; it first estimates the correspondence between the observation
and goal as a flow image. The flow is then used as the input to PickNet
for pick point prediction, and as a way to compute place points without
requiring additional learning. 101

xix

6.3 PickNet architecture. We utilize a two-network architecture for bi-
manual manipulation, where the second pick point is conditioned on
the prediction of the first pick point. 103

6.4 Qualitative results for FFN on real world experiments. FFN only takes
depth images as input, allowing it to easily transfer to cloth of different
colors. 109

6.5 Generalization to new cloth shapes for FFN trained only on a square
cloth in simulation. FFN achieves single and multi-step goals for
rectangular fabric and a printed T-shirt. 109

A.1 Architecture diagram for supervision transfer networks, adapted from
the FC-GQCNN [153] architecture. The input can be either 3-channel
RGB input or 4-channel RGB-D input. The output is a 3D array of
grasp quality scores over image coordinates x, y and rotation θ about
the depth axis, discretized into 16 bins. The orange color accents
correspond to ReLU activations and purple corresponds to sigmoid
activation. The red layers are max pooling layers. 113

B.1 Camera poses in simulation visualized as axes. The negative z axis (in
blue) is the camera optical axis and points toward the robot workspace.118

B.2 Successful grasp trajectories (left-to-right) planned by our method for
the bowl (top) and mug (bottom). 119

B.3 Meshes reconstructed during system evaluations. The first column
shows the placement of the objects in each trial, along with a close-
up image of the object itself. The second column shows the meshes
reconstructed from the four depth cameras according to the procedure
in Sec. B.3.2, posed roughly as they appear in the first column. The
third column shows the back of each mesh. Note that these meshes and
images are magnified for visual clarity and are not consistently scaled.
Even with outlier removal and other mesh processing techniques, we
observe inaccuracies in the reconstruction; however, our method is
robust to these inaccuracies as demonstrated by our results in Sec. 3.5.4.122

D.1 Training data for FFN. 127

D.2 Goal configurations, achieved configurations, and training data in
simulation. Arrows indicate the executed action. Fabric-VSF uses a
lower camera height than FFN (45 cm vs. 65 cm), thus the cloth looks
slightly larger. 128

xx

D.3 Qualitative performance of FFN and NoFlow on real cloth. The trial
corresponding to the best achieved IOU is shown for each example. For
multi-step goals, only the final goal is shown. FFN only takes depth
images as input, allowing it to easily transfer to cloths of different
colors. Contrast and brightness have been adjusted to enhance visibility.139

D.4 Examples of failure cases . 140
D.5 Qualitative performance of FFN, Fabric-VSF, and Lee et al. on rect-

angular cloth. 140
D.6 Crumpled initial cloth configurations 141
D.7 Configurations achieved by FFN when starting from the “Crumpled

1” configuration for each attempt (compare with Fig. D.2) 141
D.8 FlowNet Qualitative Performance. Two types of visualizations are

provided: representing the flow vector as arrows, and representing the
flow vector using RGB channels. FlowNet outputs a dense flow image
but is trained on sparse ground truth flow. FlowNet takes only depth
images as input; RGB images are shown as a visual aid only. 142

xxi

xxii

List of Tables

2.1 Isolated object grasping, averaged over five trials 25

2.2 Grasping in clutter, averaged over five trials 25

3.1 NGDF Grasp Level Set Results . 44

3.2 Reaching and Grasping Results . 44

4.1 Grasping Cloth Edges . 67

4.2 Grasping Cloth Corners . 68

4.3 Ablations on Grasping Cloth Edges 69

5.1 The average normalized confusion matrix from the cross-validation
training results for the k-nearest neighbor classifier we use for tactile-
based experiments. 88

5.2 Results for the first set of physical experiments described in Sec. 5.6.2
with grasping at 1 cloth layer. We run all methods for 10 trials each
and report the success rate, the failure types (grasping and prediction
failures), and the average number of grasp attempts per trial. 89

5.3 Experimental results for grasping at the top 2 cloth layers as described
in Sec. 5.6.3. Besides the change of 1 to 2 layers, the results are
formatted in the same way as in Table 5.2. 90

6.1 Mean Particle Distance Error (mm) and Inference Time (sec) on Cloth
Folding Goals . 106

6.2 Mean Particle Distance Error (mm) for Ablations over All Goals (n=46)108

A.1 Performance on grasping in clutter by method without random crop-
ping, averaged over five trials . 114

B.1 Optimizer Ablation Results . 118

B.2 Real Object Pose Configurations . 120

D.1 mIOU for Folding Square Towel, Rectangular Cloth, and T-shirt . . . 129

xxiii

D.2 Mean Particle Distance Error (mm) and Inference Time (sec) for
Fabric-VSF Variants . 131

D.3 Mean Particle Distance Error for Lee et al. on 20k Training Examples 133
D.4 Mean Particle Distance Error for Lee et al. With and Without Subgoals134
D.5 Mean Particle Distance Error for Ablations 135
D.6 Mean Particle Distance for Folding Unseen Cloth Shapes in Simulation 136
D.7 Mean Particle Distance Error (mm) for End-to-End Variants of FFN 136
D.8 Mean Particle Distance Error (mm) for FFN with Different Start

Configurations . 137
D.9 Mean Particle Distance Error (mm) for FFN with Iterative Refinement138

xxiv

Chapter 1

Introduction

1.1 Motivation

Robots have the potential to transform society by automating physical, labor-intensive

work. A longstanding vision for robotics has been to develop intelligent agents that

can perform complex tasks in diverse environments. While today’s robots are largely

deployed in fully structured environments like factory floors to execute repetitive,

pre-programmed movements, we would like the next generation of robots to operate

in less structured environments, such as logistics hubs, medical facilities, and homes.

Such robots could assist us in activities of daily living, for example preparing food,

doing laundry, and cleaning, or automate commercial tasks like sorting, packing,

and assembly. Robots with these capabilities could reshape the way we live, work,

and interact with the world around us. However, a gap remains between existing

approaches to robotics and the level of embodied intelligence required to achieve this

vision.

A key limitation of existing robotic systems pertains to the design of the interface

between perception and action. A traditional paradigm in robotics is to use a state

representation as the perception-action interface. First, a perception module processes

raw sensory information from the environment into a state representation. Examples

of state representations include object poses [14, 65, 199], keypoints [50, 92, 121],

bounding boxes [77, 149], and segmentations [9, 128]. The state representation is

then input into a planning module, which outputs actions to achieve tasks.

1

1. Introduction

While using state estimation as the interface between perception and action

has been viable for some tasks, this interface is less effective in more challenging

manipulation settings. In environments with partial observability or challenging

object properties like transparency and deformability, recovering the full state may be

difficult. For example, the deformability of cloth results in a much higher-dimensional

configuration space compared to rigid objects, and in many of these configurations,

the cloth occludes portions of itself. If our goal is to manipulate cloth, for example

by smoothing or folding it, then the previously mentioned representations–object

poses, segmentations, bounding boxes–do not capture the state information required

to achieve the intended manipulations. Further, planning over state can be difficult

in situations with large action spaces and complex dynamics, as is the case with cloth

manipulation and other task domains.

A competing approach to the traditional state-based interface is to forego any

intermediate representation, and instead process raw sensory inputs directly into

predicted actions. Such sensorimotor policies are appealing as they can be trained

end-to-end using a deep neural network and a task-relevant loss [52, 98]. However,

such approaches have their own drawbacks; first, sensorimotor policies are particularly

sensitive to out-of-distribution sensor inputs. For high-dimensional sensor inputs

like visual data, slight variations in lighting, camera pose, background variation, and

other factors can influence the predicted actions and negatively affect performance.

Prior cloth manipulation work has found that such a visuomotor policy for cloth

smoothing from RGB input generalizes poorly to new configurations [105]. Further,

the actions output by sensorimotor policies are often delta end-effector or delta joint

angle actions, which are low-level, robot-centric action spaces. Many of the actions

in these robot-centric action spaces lead to no improvement in the object-centric

and contact-centric tasks that we care about. Finally, sensorimotor policies lack

explainability as they do not produce any intermediate representations; raw sensor

data is processed directly into actions using a black-box neural network.

Due to the respective limitations of traditional state-based systems and senso-

rimotor policies, we consider alternatives. In this thesis, we focus on a class of

approaches based on visual action representations. These approaches redefine the

interface between perception and action, where the primary goal of perception is

no longer to estimate state, but rather to output potential actions grounded in a

2

1. Introduction

Figure 1.1: A summary of this thesis. Visual action representations can be used for object
grasping: (a) grasping transparent and specular objects, and (b) joint 6-DOF grasp and
motion optimization. Visual action representations are also presented for cloth manipulation:
(c) segmenting and grasping cloth hems, and (d) bimanual cloth folding. (e) Tactile sensing
is investigated as a complementary modality to vision for manipulating stacked layers of
cloth.

vision-based representation, i.e. a visual action representation. Examples of visual

action representations in prior literature include estimating interaction hotspots [135],

detecting visual affordances [34], and reasoning about contact locations and end

effector trajectories [194]. Visual action representations are suited to environments

with partial observability and circumvent the need for full state estimation, as actions

can be proposed just on the observable portions of the scene. Approaches using visual

action representations generalize better to unseen inputs than sensorimotor policies,

because perception and planning are still modularized. Further, due to being an-

chored to visual representations, the proposed actions are object- and contact-centric,

as opposed to the robot-centric actions output by sensorimotor policies. By using

object-centric actions, these approaches reason about where to make contact with

objects, how to approach contact locations, and how to manipulate objects once

contact is established. This new interface between perception and planning enables

the perception system to assist the planner by reasoning about potential actions,

which can then be used as a starting point for the planner to generate lower-level

actions and joint angle trajectories.

In this thesis, we demonstrate several approaches involving visual action represen-

tations for manipulating rigid and deformable objects (see Fig 1.1). However, they

all share the commonality that the visual output contains additional information

about potential actions in the perception output, which is used with planning to

improve manipulation in tasks with complex objects or other challenges, like joint

3

1. Introduction

grasping and motion planning. By redefining the perception-action interface to use

visual action representations, we enhance the capabilities of robot systems and enable

more challenging manipulation tasks.

1.2 Thesis Organization

The chapters of this thesis can be categorized into two parts. The first part presents

visual action representations for grasping. In these grasping problems, the objects are

assumed to be rigid, and the chapters address challenges such as predicting grasps

for objects with non-Lambertian reflectance (e.g. transparency and specularity) or

predicting a continuous, implicit grasp set on objects with non-convex geometry.

The chapters in the second portion of the thesis focus on cloth manipulation. Cloth

is deformable and has much greater degrees of freedom compared to rigid objects,

which complicates both perception and interaction. These degrees of freedom enable

a greater number of possible configurations, many of which have self-occlusions. The

dynamics of cloth are also more complex than rigid objects, and cannot be represented

by single rigid transformation. This thesis develops methods to semantically segment

regions of fabric for grasping, grasp a desired number of layers of cloth, and perform

bimanual cloth folding.

1.2.1 Visual Action Representations for Grasping

In Chapter 2, we address the task of grasping transparent and specular objects. State

of the art approaches for planar grasping typically use depth sensing to infer the

geometry of objects for grasp pose prediction. The depth image input is transformed

using a convolutional network into a visual action representation, or a per-point

“grasp quality” score of executing a grasp at that point. However, these networks fail

for transparent and specular objects because depth sensors poorly reconstruct objects

with non-Lambertian reflectance. To improve grasping performance for these objects,

we leverage the insight that such objects are more visible in the RGB modality than

in depth. We use cross-modal network distillation to transfer a trained depth-input

grasp network to a new RGB-input network. In the framework of the thesis, we take

a visual action representation network trained with depth and distill it to RGB to

4

1. Introduction

improve grasp success for transparent and specular objects. This transfer learning

approach requires only a pre-trained depth network and paired RGB-D images. Our

grasping experiments demonstrate that our method outperforms depth-only baselines

on transparent and reflective objects, while matching baseline performance for opaque

objects. This work was previously published in Weng et al. [187].

In Chapter 3, we address the task of joint six degree-of-freedom (DOF) grasp

prediction and motion planning. Whereas the previous chapter only considered where

to make contact with objects by predicting where to grasp, the method proposed

in this chapter reasons about both where to make contact and how to approach

with a smooth, collision-free trajectory. The dominant paradigm for grasp and

motion planning systems is to first predict candidate grasps without considering

whether feasible reaching trajectories exist. Motion planning is then performed for

each candidate until a feasible trajectory is found, resulting in brittle, multi-stage

pipelines. We represent 6-DOF grasps as a “Neural Grasp Distance Field” (NGDF),

a neural implicit function that estimates the pose distance between a 6-DOF end

effector pose and the manifold of stable grasp poses for an object. Our distance-to-

grasp representation is easily interpreted as a cost, where minimizing the distance to

the learned manifold achieves a stable grasp pose. By incorporating NGDF into a

trajectory optimizer, we optimize the distance-to-grasp cost along with other costs like

smoothness and collision avoidance. During optimization, the grasp location smoothly

varies in the continuous set of stable grasp poses, achieving both grasp and motion

planning in a single optimization, as opposed to previous multi-stage approaches.

The proposed NGDF is an implicit visual action representation, implicitly modeling

the distribution of valid grasps on objects. incorporating this implicit neural field

into a trajectory optimizer enables joint reasoning about where to make contact for

grasping and how to approach desired contact locations. This work was previously

published in Weng et al. [190].

1.2.2 Visual Action Representations for Cloth Manipulation

In Chapter 4, we address the task of grasping true edges and corners of cloth from

images. For many cloth manipulation tasks, it is important to grasp specific regions

of fabric to enable efficient downstream actions. Smoothing and folding cloth, for

5

1. Introduction

example, is more effective manipulating a true cloth edge or “hem”, as opposed to a

wrinkle. However, it is difficult to identify hems from wrinkles in images of crumpled

cloth using image processing techniques like edge detection. We train a segmentation

network to predict cloth edges and corners from depth images, using a ground-truth

labeling procedure that significantly reduces human time and effort. The output of

the segmentation network is treated as a visual action representation, reasoning about

where to make contact with the cloth and how to approach the contact location, as

the orientation of the cloth edge or corner is important for the task. For each pixel

in the segmentation, we estimate the orientation of the cloth hem to determine the

best grasp point, taking uncertainty into account. We execute a grasp at the location

with minimum orientation uncertainty and align the orientation of the grasp with the

estimated orientation of the hem. Our method outperforms baselines and ablations,

which either fail to distinguish between hems and wrinkles, or miss the grasp due

to incorrect orientation estimation. Our method is invariant to visual textures as it

only takes depth images as input, and it generalizes to unseen fabrics with varying

material texture. This work was previously published in Qian et al. [145].

In Chapter 5, we propose a closed-loop tactile sensing policy to grasp a target

number of stacked cloth layers. When manipulating cloth, grasping a specific number

of cloth layers is desirable; for example, it is necessary to grasp two layers of cloth when

folding a rectangular cloth in half twice, but when unfolding cloth, it is preferable to

grasp just the top layer. We train a classifier on magnetometer-based tactile sensor

data to predict the number of cloth layers that are grasped during a pinching action.

The contact information provided by the classifier is incorporated into a closed-loop

policy that adjusts the approach height until the desired number of layers is grasped.

Results show that our tactile-based method outperforms image-based approaches,

which are not robust to visual texture, viewpoint shift, or background distractors.

Methods that use tactile sensing as an input modality can be a suitable alternative

to vision-based approaches for similar lower-level, contact-rich subroutines, while

remaining compatible with approaches from other thesis chapters based on visual

action representations. This work was previously published in Tirumala et al. [173].

In Chapter 6, we present a method for bimanual cloth folding. One limitation of

grasping-focused work is that grasping is often a sub-task for a larger manipulation

task like cloth folding: optimizing just the grasping sub-task may not improve

6

1. Introduction

performance for the full task. To address this limitation, we present FabricFlowNet, a

policy that predicts both where to grasp and how to manipulate for goal-conditioned,

bimanual cloth folding. We adapted the concept of optical flow —a technique typically

used for motion estimation between video frames—to the problem of correspondence

estimation between images of observed cloth and desired cloth configurations: in other

words, our flow predicts where each observed cloth point must move to achieve the

desired configuration. We redefine this estimated flow as a visual action representation,

where each flow vector represents a pick and place action. FabricFlowNet learns to

select the best action for achieving the goal, reasoning about not just where to make

contact with the cloth, but how to manipulate it once contact is established. Our

approach easily transitions between one- and two-arm actions, to produce clean folds

for diverse set of goals. FFN significantly outperforms model-free and model-based

methods, and generalizes when trained on a single simulated cloth to real cloths such

as towels and T-shirts. This work was previously published in Weng et al. [188].

7

1. Introduction

8

Chapter 2

Multi-modal Transfer Learning for

Grasping Transparent and Specular

Objects

9

2. Multi-modal Transfer Learning for Grasping Transparent and Specular Objects

10

2. Multi-modal Transfer Learning for Grasping Transparent and Specular Objects

Abstract

State-of-the-art object grasping methods rely on depth sensing to plan

robust grasps, but commercially available depth sensors fail to detect

transparent and specular objects. To improve grasping performance on

such objects, we introduce a method for learning a multi-modal perception

model by bootstrapping from an existing uni-modal model. This transfer

learning approach requires only a pre-existing uni-modal grasping model

and paired multi-modal image data for training, foregoing the need for

ground-truth grasp success labels nor real grasp attempts. Our experi-

ments demonstrate that our approach is able to reliably grasp transparent

and reflective objects. Video and supplementary material are available at

https://sites.google.com/view/transparent-specular-grasping.

11

https://sites.google.com/view/transparent-specular-grasping

2. Multi-modal Transfer Learning for Grasping Transparent and Specular Objects

2.1 Introduction

Robotic grasping is a key prerequisite for a variety of tasks involving robot manip-

ulation. Robust object grasping would enable a wide range of applications in both

industrial and natural human environments. The challenge with grasping is that many

factors influence the effectiveness of a grasp, such as gripper and object geometries,

object mass distribution and friction, and environmental conditions like illumination.

Most state-of-the-art grasping methods rely on depth input from structured light

or time-of-flight sensors to determine the best grasp for an object [57, 132, 153].

Under normal operation, such devices emit light patterns onto a scene and use a

receiver to construct depth based on changes in the returned pattern. However, such

depth sensors fail to detect objects that are transparent, specular, refractive, or have

low surface albedo [71], causing depth-based grasp prediction methods to fail. These

failures can take the form of both missing depth readings, as is the case with specular

objects that deflect structured light patterns, and incorrect depth values, which occur

when the emitted light passes through transparent objects (see Fig. 2.1).

Transparent and specular objects are common in a range of environments, such as

in manufacturing facilities, retail spaces, and homes. Under certain lighting conditions

and object properties, even seemingly opaque objects can exhibit sensor noise similar

to transparency and specularity. The ubiquity of objects with these challenging

properties requires us to design methods capable of bridging the sensory gap so that

robots can robustly grasp a diverse set of objects.

Our contribution in this work is a method for learning to grasp transparent and

specular objects that leverages existing depth-based models. Transparent and specular

objects are more identifiable in RGB space, where transparencies and specularities

produce changes in coloration, rather than the inaccurate or missing values that occur

in depth space. Therefore, we make use of both color and depth modalities in our

approach. We first train a color-based grasp prediction model from a depth-based one

using supervision transfer [66], a technique for transferring a learned representation

from one modality to another. This transfer technique only requires paired RGB-D

images and an existing depth-based grasping method from which to transfer; our

method does not require robot grasp attempts nor human annotations.

We conduct real robot grasping experiments on both isolated objects and clutter to

12

2. Multi-modal Transfer Learning for Grasping Transparent and Specular Objects

Figure 2.1: Transparent and specular objects provide poor depth readings with conven-
tional depth sensors, posing a challenge for depth-based grasping techniques. (left) Robot
workspace with fixed overhead sensor for grasping. (top right) Color image of scene from
overhead sensor. (bottom right) Depth image of scene showing that most values in depth
image are close to the table.

show that (1) the RGB-only network produces better grasp candidates for transparent

and specular objects, compared to the depth-only network that it was trained from,

and (2) the RGB-only network is complementary to the original depth model, such that

combining the outputs of both models results in the best overall grasping performance

on all three object types. We conduct additional experiments to demonstrate the

robustness of our method against slight variations in illuminance, and we discuss

failure cases as part of our analysis.

2.2 Related Work

2.2.1 Sensing Transparent and Specular Objects

Sensing transparent and specular objects is a well-studied challenge in the computer

vision community. Ihrke et al. [71] provide a survey of recent approaches to transparent

13

2. Multi-modal Transfer Learning for Grasping Transparent and Specular Objects

and specular object reconstruction. Curless et al. [25] perform space-time analysis

on structured light sensing to achieve better triangulation on transparent objects.

Structured light sensing can also be paired with additional equipment like polarization

lenses, light fields, or immersion in fluorescent or refractive liquids to detect transparent

objects. While structured light sensing is the closest to commercial sensing, the

survey also presents methods that improve on multi-view stereo matching to detect

transparent and specular objects.

Light field photography for depth reconstruction is another direction for detecting

specular and transparent objects [115, 191]. Light field photography has been used in

robotics by Oberlin et al. [138] applied light field photography to robot manipulation

tasks like grasping non-Lambertian objects under running water. However, this

method requires capturing a dense set of images in a 3D volume over the scene of

interest at both training and test time to construct suitable synthetic images for

grasping. In comparison, our proposed method requires a single, static RGB-D sensor,

resulting in faster and simpler training and deployment.

Commercial RGB-D sensors (e.g., Intel RealSense, Microsoft Kinect, PrimeSense)

use structured-light or time-of-flight techniques to estimate depth. These techniques

fail on transparent and specular surfaces, either allowing light emitted by the sensor to

pass through or scattering it by reflection. IR stereo and cross-modal stereo techniques

have been used to improve depth reconstruction, but the reconstruction quality is

still not comparable to that of Lambertian, or diffusely reflective, objects [1, 23, 117].

Lysenkov et al. [109, 110] painted over transparent objects to create a dataset of

paired transparent and opaque objects, but this approach scales poorly for objects

with arbitrary geometries and material properties. Our proposed method is able to

use conventional RGB-D sensors without hardware and environmental modifications

by combining depth and color information.

2.2.2 Grasp Synthesis

Grasp synthesis refers to the problem of finding a stable robotic grasp for a given object

and is a longstanding research problem in robotics. Approaches to grasp synthesis

can be classified into analytic and empirical methods; see Bohg et al. [9] for a survey.

Analytic approaches use physics-based contact models to compute force closure on an

14

2. Multi-modal Transfer Learning for Grasping Transparent and Specular Objects

object, using the shape and estimated pose of the target object [125, 172, 186], but

work poorly in the real world due to noisy sensing, simplified assumptions of contact

physics, and difficulty in placing contact points accurately.

Empirical approaches, on the other hand, learn to predict the quality of grasp

candidates from data on a diverse set of objects, images, and grasp attempts collected

through human labeling [75, 97, 147, 154], self-supervision [99, 143], or simulated

data [33, 57, 116, 131, 153]. Saxena et al. [154] trained a classifier on human-

labeled RGB images to predict grasp points, triangulated the points on stereo RGB

images, and demonstrated successful grasps on a limited set of household objects,

including some transparent and specular objects. However, the predicted grasp points

for transparent and specular objects were limited to grasps on points where stereo

triangulation was successful. The Cornell Grasping Dataset [75], consisting of 1k RGB-

D images of objects and human-labeled grasps parameterized as an oriented bounding

box, has been used to train many deep learning-based grasping methods [97, 131, 147].

Self-supervised methods such as those by Pinto and Gupta [143] or Levine et al. [99]

forego the need for human labels by training a robot to grasp directly from real grasp

attempts, but these methods require tens of thousands of attempts to converge.

Recently, approaches trained on data gathered in simulation have demonstrated

state-of-the-art performance. The Jacquard dataset by Amaury et al. [33] uses a grasp

specification similar to the Cornell Grasping Dataset, contains simulated objects and

grasp attempts, and has been successfully used for training by Morrison et al. ’s

GG-CNN [131]. Mahler et al. [116] developed GQCNN, which was trained on a

dataset of simulated grasps generated using analytic model, representing a hybrid

empirical and analytic approach.

As we will show, these depth-only grasping approaches fail on transparent and

reflective objects. Note that GG-CNN could be modified to incorporate RGB images,

which could potentially be used to grasp transparent and specular objects after

training on simulated images (such as those in the Jacquard dataset [33]); however,

such performance has not been demonstrated; this method has only been demonstrated

for depth-based grasping of opaque objects. In this work, we build upon the fully

convolutional version of GQCNN (FC-GQCNN) proposed by Satish et al. [153], but

our method is agnostic to the specific network architecture used. Our method does

not require any real-world grasps or labeled data but instead relies on supervision

15

2. Multi-modal Transfer Learning for Grasping Transparent and Specular Objects

transfer from a pre-trained depth network to obtain a multi-modal grasping method.

The pre-trained depth network also may not require real-world grasps or human

labels; for example, FC-GQCNN is trained entirely on simulated grasps.

2.2.3 Cross-modal Transfer Learning

Supervision transfer has been explored in the past for tasks such as image classification

and object detection [59, 66, 100]. These approaches are typically used to transfer

image-based networks trained on ImageNet [32] to depth-based or RGB-D based

classification or detection networks. To our knowledge, such approaches have not

been used previously in the context of multi-modal grasping. We show that such

an approach can lead to greatly improved performance for grasping transparent and

reflective objects, and can even improve performance on some opaque objects.

2.3 Approach

Here we describe our approach for supervision transfer, which enables us to transfer

a grasping method trained in one modality Md to also incorporate an additional

modality Ms without needing any additional real grasp attempts, simulation, nor

human-labeled data (other than the data used to train the initial uni-modal grasping

method, which in our case is only simulated rendered depth data [153]).

2.3.1 Problem Statement

We assume that we initially have a grasping method that takes input from a given

modality Md, such as depth. Specifically, we assume that we have a grasping method

that, given a candidate grasp q and an image Id of modality Md (e.g., a depth

image), outputs a grasp score G(q, Id). We wish to transfer this scoring method to a

new input modality Ms (e.g., RGB). Ideally, this new modality Ms will allow our

grasping method to succeed in grasping certain types of objects (e.g. transparent and

specular) where the previous modality, Md, failed. In later sections, we will discuss

combining these modalities to create more robust grasping methods.

We assume access to a dataset of image pairs (Id, Is), where each pair consists

of one image from each modality. We assume that each pair of images was taken

16

2. Multi-modal Transfer Learning for Grasping Transparent and Specular Objects

at approximately the same time and thus represent images of the same scene under

the two modalities Md and Ms. Paired images for RGB and depth modalities

can be captured using commercially available RGB-D sensors (e.g., Intel RealSense,

Microsoft Kinect, PrimeSense).

Note that these paired images can be collected without needing to perform any

grasp attempts or human labeling, making the collection of this dataset very efficient.

Furthermore, because these paired images are collected in the real world, they contain

all of the real-world noise and artifacts that one would encounter in a realistic setting,

avoiding the need to create such artifacts in simulation.

2.3.2 Supervision Transfer for Multi-modal Perception

In attempting the modality transfer described above, we observe the following:

different input modalities (e.g., depth vs RGB) have complementary advantages. In

other words, data that is difficult for computing successful grasps in one modality

might not be as difficult for another modality, and vice versa. For example, transparent

and reflective objects are extremely difficult for depth-based grasping methods, due

to the resulting noise or missing data in the depth image. However, our experiments

show that RGB-based grasping methods have a much higher success rate for these

objects. On the other hand, highly textured objects may present difficulties for RGB

grasping methods, but these textures do not manifest in depth-based methods.

Based on this observation, we first filter our dataset D into a new dataset D′

for which we expect the grasping method of modality Md to perform well. In other

words, for images Id ∈ D′, the grasp score G(q, Id) should have a high correlation

with the success of an executed grasp. In our case, because Id is a depth image, our

filtered dataset D′ contains only images of opaque objects, for which depth-based

grasping methods typically perform well.

We then train a grasping method for modality Ms (e.g., RGB) using supervision

transfer [59, 66, 100] over dataset D′. For each paired image (Id, Is) in dataset D′,

we compute the grasping score G(q, Id) for the modality Md. Because of our filtering,

this grasp score is likely to be accurate. We then train a method for computing

the grasping score Gϕ(q, Is) of the second modality Ms using the grasp score from

17

2. Multi-modal Transfer Learning for Grasping Transparent and Specular Objects

Figure 2.2: We train a grasp quality CNN that takes RGB input by supervising the loss of
the network on the output of a trained depth model for paired, unlabeled RGB-D image
data.

modality Md as the grasp label; thus we define the loss to be

L(ϕ) = ||G(q, Id)−Gϕ(q, Is)||2 (2.1)

For paired images of dataset D′, we train the grasping method on the new modality

Ms (e.g., RGB) to output the same grasping score as the score output of the previous

grasping method on the original modality Md (e.g., depth). This procedure is shown

in Figure 2.2.

Because of the complementary nature of the two sensors, this grasping score

function will often perform well on data that was originally filtered out of D and not

included in D′, even though Gϕ(q, Is) was only trained on data from D′. Specifically,

we filter out transparent and reflective objects from D′ because depth-based grasping

methods perform poorly on these objects. Nonetheless, the image-based grasping

method Gϕ(q, Is) still performs well on images of transparent and reflective objects,

because the difference in appearance for these objects in the RGB modality is much

smaller than the difference in appearance for these objects in the depth modality.

Our experiments confirm this to be the case.

Further, because the modalities are complementary, we show that we can get the

best performance by combining the grasping scores from the two modalities. Although

18

2. Multi-modal Transfer Learning for Grasping Transparent and Specular Objects

there are many potential ways to do this, we evaluate two possibilities. The “early

fusion” approach for combining modalities is to transfer from a depth-based grasping

network to a RGB-D grasping network (“RGBD-ST”, see Fig. 2.3c). RGBD-ST takes

as input both depth and RGB modalities concatenated together. For our second,

“late-fusion” approach, we fuse the scores of each modality, averaging the outputs of

the depth-based grasping network with a RGB-based grasping network trained using

supervision transfer. We define the multi-modal grasping score as

Gϕ(q, Id, Is) =
1

2
· (G(q, Id) +Gϕ(q, Is)) (2.2)

This method is referred to below as “RGBD-M” (see Fig. 2.3d). Both of these

approaches share the benefits that they represent multi-modal grasping methods that

were trained from a depth-based grasping method only using paired RGB and depth

images, without requiring real grasp attempts or human labels.

2.3.3 Implementation of Supervision Transfer

Depth Input
(1 channel)

Depth Network
(Trained in sim)

Output
(x, y, θ)

(a) FC-GQCNN

RGB Input
(3 channels)

RGB Network
(Supervision Transfer)

Output
(x, y, θ)

(b) RGB-ST

RGB-D Input
(4 channels)

RGB-D Network
(Supervision Transfer)

Output
(x, y, θ)

(c) RGBD-ST

RGB Input
(3 channels)

RGB Network
(Supervision Transfer)

Output
(x, y, θ)

Depth Input
(1 channel)

Depth Network
(Trained in sim)

Output
(x, y, θ)

Final Output
(x, y, θ)

(d) RGBD-M

Figure 2.3: Diagrams of the four methods evaluated in this work. We compare against
FC-GQCNN [153], which takes a depth image as input and outputs dense grasp scores over
image coordinates x, y and rotation θ about the depth axis. RGB-ST and RGBD-ST are
both trained using supervision transfer, but differ in the input they accept (3-channel RGB
or 4-channel RGB-D input). RGBD-M takes the outputs of the RGB and Depth networks
and averages them to produce the final output.

19

2. Multi-modal Transfer Learning for Grasping Transparent and Specular Objects

Our supervision transfer formulation is agnostic to the specific grasping method

or representation we use for grasping in modality Md. For this work, we use the Fully

Convolutional Grasp Quality CNNs (FC-GQCNN) representation as the pre-trained

depth model from Satish et al. [153], although other depth-based grasping methods

could equivalently be used.

FC-GQCNN learns a function G(qd, Id) which predicts a grasp success rate for

each grasp qd based on a depth image Id. In FC-GQCNN, grasps qd are parameterized

as qd = (x, y, θ, z), where x and y are horizontal planar coordinates designating the

desired grasp point of the gripper, z is the grasp depth relative to the camera, and θ

is the clockwise rotation angle of the gripper about the vertical z axis. FC-GQCNN

takes as input just a single depth image Id and outputs a 4-dimensional tensor of

grasping scores, producing one score per binned (x,y,z) position as well as binned

orientation coordinates θ. FC-GQCNN is designed to be fully convolutional in order

to output dense predictions G(qd, Id) across the entire depth image. Our methods,

shown in Figure 2.3, use a similarly dense (x, y) output and the same output angular

encoding θ.

We wish to use the output of FC-GQCNN to train an image-based grasping method

G(q, Is). Because the image modality does not have access to depth information, for

image-based grasping we change the grasping parameterization to just q = (x, y, θ),

without including a parameter for the grasp depth z. With this specification, each

grasp starts at an approach height and moves down until it makes contact with either

the table or an object before closing the gripper. Due to the difference in grasp

representations, we modify our loss slightly, to be:

L(ϕ; q, Id, Is) = ||max
z

G((q, z), Id)−Gϕ(q, Is)||2 (2.3)

where (q, z) is the concatenation of z to a grasp q = (x, y, θ) to form the new grasp

representation (x, y, θ, z). In other words, to compute the target grasp score for

some grasp q = (x, y, θ), we append various depths z to form a depth-based grasp

parameterization (x, y, z, θ); for each of these grasp parameterizations we can compute

the depth-based grasping score G((q, z), Id) using our depth-based grasping method

(e.g. FC-GQCNN). We then compute the maximum grasp score over the values of z

to obtain maxz G((q, z), Id).

20

2. Multi-modal Transfer Learning for Grasping Transparent and Specular Objects

The network architecture that we use for image-based grasping is very similar to

the architecture used in FC-GQCNN for depth-based grasping (see Appendix A). The

only modification that we make is that we modify the first layer to accept a 3-channel

RGB input rather than a 1-channel depth input. This is accomplished by adding an

extra dimension to the first layer convolutional filters. In some of the experiments,

we will alternatively use an RGB-D grasping network (“RGBD-ST”), in which case

we modify the first layer to accept a 4-channel input, in a similar manner.

2.4 Experimental Setup

Following the reproducibility guidelines for grasping research as presented in [117],

we describe our experimental setup and protocols below.

2.4.1 Physical Components

We use an ASUS Xtion Pro Live RGB-D sensor, fixed 0.7 m above and pointing

down towards the workspace (see Fig. 2.4). Robot experiments were performed on a

7 DOF Rethink Robotics Sawyer robot equipped with an electric parallel jaw gripper,

though our method can be applied to other robots and end-effectors. The robot’s

workspace is an approximately 0.65 m × 0.38 m area that is reachable by the robot

with a vertical grasp. Aluminum extrusions enclose the workspace to prevent objects

from rolling or sliding out of the space.

All experiments and network training were performed on an Ubuntu 16.04 machine

with an NVIDIA GTX 1080 Ti GPU, a 2.1 GHz Intel Xeon CPU, and 32 GB RAM

allocated per job. Grasp planning was implemented using off-the-shelf MoveIt!

software.

2.4.2 Training the Network

We first collected a set of 100 opaque objects from home and office retail stores.

Using the ASUS Xtion Pro Live RGB-D sensor fixed above the workspace, we

captured 200 paired RGB-D training images and 50 paired validation images of

the objects in varying amounts of clutter and with lighting conditions ranging from

21

2. Multi-modal Transfer Learning for Grasping Transparent and Specular Objects

standard office illuminance (approx. 500 lux) to dimmed illuminance (approx. 175

lux). We resized the images to account for differences between our sensor’s intrinsic

parameters and those of the pretrained FC-GQCNN model. To increase the amount

of training data and improve domain robustness, we applied spatial augmentations

(e.g., random rotations and flips) and color-based augmentations (e.g., hue, brightness,

and contrast), generating approximately 20k paired training images. This image

dataset is available at the URL in the abstract.

The network architecture was implemented in Python using Tensorflow and Keras.

The RGB or RGB-D network’s weights were randomly initialized, and the model

was trained to convergence using an Adam optimizer with cross-entropy loss [78, 79].

We experimented with mean squared error loss, but it performed worse in initial

experiments. The loss was supervised from the output of FC-GQCNN, taking the

maximum over all values of z as discussed in Sec. 2.3.3. Hyperparameters are provided

in Appendix C.

2.4.3 Test Objects

We collected objects distinct from the training objects to form three sets of 15 test

objects each, one set per category (see Fig. 2.4). For the opaque object set, we

primarily use YCB [15] objects that fit within the 5 cm stroke width of our gripper.

We collected our own transparent and specular object sets due to the lack of existing

benchmark sets for these categories.

Following typical procedures for grasping evaluations [116, 180], we remove bias

related to object pose through the following procedure: objects are shaken in a box

and then emptied onto the robot’s workspace for each grasp attempt. This procedure

is used for both isolated object grasping as well as for grasping in clutter.

2.5 Experimental Results

We design experiments to answer the following questions:

• To what extent can supervision transfer be used to grasp objects from new

modalities (e.g. depth to RGB)?

22

2. Multi-modal Transfer Learning for Grasping Transparent and Specular Objects

Figure 2.4: Data collection setup and example images from the dataset of all three object
types.

• To what extent can supervision transfer from depth to RGB be used to learn to

grasp transparent and reflective objects?

• Do the depth and image modalities complement each other? That is, will

combining both modalities outperform either modality alone?

Note that grasping performance is not directly comparable with previous work

like FC-GQCNN [153] as we use a different robot, gripper, and depth sensor.

2.5.1 Multi-modal Perception

We evaluate whether multi-modal perception that combines depth and RGB data is

better than uni-modal perception using either depth or RGB data alone. We refer

to our method for Depth-to-RGB supervision transfer, described in Sections 2.3.2

and 2.3.3, as “RGB-ST” (see Fig. 2.3b).

We evaluate two approaches to multi-modal perception, both of which are described

in Sections 2.3.2 and 2.3.3. The first “early-fusion” approach uses supervision transfer

to directly train an RGB-D grasp prediction network from a depth-based network,

called “RGBD-ST” (see Fig. 2.3c). The second “late-fusion” approach involves

taking the mean of the outputs of an RGB-only network and a depth-based network.

Specifically, we take the mean of the RGB-ST and FC-GQCNN grasping networks;

we call this multi-modal method “RGBD-M” (see Fig. 2.3d).

The results are shown in Table 2.1. RGBD-ST and RGBD-M both significantly

outperform depth-only grasping (FC-GQCNN) on transparent and specular objects,

while maintaining comparable performance on opaque objects.

We also see that the multi-modal methods perform similarly to the RGB-based

grasping method (RGB-ST) on opaque and transparent objects, but outperform

this method on specular objects. These results support the notion that combining

23

2. Multi-modal Transfer Learning for Grasping Transparent and Specular Objects

RGB image Depth image

FC-GQCNN RGB-ST RGBD-ST

RGBD-M

Figure 2.5: Probability heatmaps of grasping across methods for the max grasp score of a
grasp with fingertips horizontal to the image, centered at the each pixel. Objects from each
set are arrayed horizontally such that the top row is opaque objects, the next transparent,
and the final one specular.

both RGB and depth modalities gives better grasping performance than using either

modality alone.

2.5.2 Grasping in Clutter

We also evaluated our methods for grasping in clutter, as this is important for robots

in various cluttered environments like homes and warehouses. The same test objects

used in isolated object grasping were used for clutter experiments. Five trials of

grasping in clutter were conducted for each object category. Following the procedure

from Viereck et al. [180], a trial concluded after all objects were successfully grasped, 3

consecutive failed grasp attempts occurred, or all objects were outside the workspace.

To prevent a network from getting repeatedly stuck on attempting a bad but

24

2. Multi-modal Transfer Learning for Grasping Transparent and Specular Objects

Table 2.1: Isolated object grasping, averaged over five trials

Method Opaque Transparent Specular

FC-GQCNN∗ 0.92± 0.06 0.40± 0.08 0.48± 0.17
RGB-ST† 0.89± 0.04 0.79± 0.09 0.71± 0.04
RGBD-ST† 0.91± 0.06 0.77± 0.08 0.83± 0.04
RGBD-M† 0.91± 0.14 0.85± 0.06 0.81± 0.07

∗Trained on simulated grasps
†Trained on simulated grasps and opaque object images

highly rated grasp, we randomly sample a 0.2m square crop of the input image and

select the grasp location within that region with the maximum predicted success

probability. All methods including baselines performed similarly or worse without

this sampling (see Appendix B). Crops whose grasp probabilities all fall below below

a threshold are discarded and resampled to avoid attempting grasps based on noisy

sensor readings.

Table 2.2: Grasping in clutter, averaged over five trials

Method Opaque Transparent Specular

FC-GQCNN∗ 0.84± 0.06 0.23± 0.21 0.35± 0.16
RGB-ST† 0.77± 0.11 0.67± 0.10 0.68± 0.12
RGBD-ST† 0.86± 0.09 0.67± 0.27 0.35± 0.10
RGBD-M† 0.97± 0.15 0.51± 0.32 0.63± 0.12

∗Trained on simulated grasps
†Trained on simulated grasps and opaque object images

The results are shown in Table 2.2. The results from grasping in clutter corroborate

the result of isolated grasping. All methods perform well on opaque objects, although

RGBD-M (averaging the output of depth-only grasping and RGB-only grasping

networks) performs slightly better than the others. On non-opaque objects (e.g.

transparent and specular), FC-GQCNN (e.g. depth-only grasping) performs poorly.

Table 2.2 shows that RGB-ST (RGB-only grasping) and RGBD-M (averaging the

output of depth-only grasping and RGB-only grasping networks) perform well across

all three object categories. We note that, despite averaging across five trials, the

25

2. Multi-modal Transfer Learning for Grasping Transparent and Specular Objects

results of grasping in clutter have relatively high variance and should be considered

accordingly. Overall, our main conclusions are similar to that of isolated object

grasping from Section 2.5.1: depth-only grasping performs poorly on transparent and

specular objects; with supervision transfer, we can obtain a method that performs

much better on grasping transparent and specular objects while maintaining similar

performance on opaque objects. This method requires only paired RGB and depth

images for training and does not require any real grasp attempts or human annotations,

other than the simulated depth rendering data that was used to train the original

FC-GQCNN [153] depth-based grasping method.

2.5.3 Lighting Variation Experiments

We note that domain shifts like lighting can be a problem for RGB methods, as

mentioned in previous work [117]. To enable our method to be robust to lighting

variations, our training images were collected with slight lighting variations, and we

applied color-based augmentations like brightness and contrast.

We conducted experiments to evaluate the robustness of the trained networks

to lighting variations. We varied the lighting by moving a floor lamp around the

robot workspace as shown in Fig. 2.6a and performed the isolated object grasping

experiments for RGBD-M. The additional lighting increased illumination to between

750 and 950 lux. With this variation in lighting, the RGBD-M network performed

comparably, achieving grasp success rates of 0.81± 0.12 for transparent objects and

0.79± 0.09 for specular ones (compare with Table 2.1).

However, we found that the network performed poorly under more drastic lighting

changes, in which we turned off the overhead lights and reduced the height of the floor

light, dropping illumination to approx. 175 lux and causing long object shadows to

appear. In this case, grasp performance dropped to 0.52±0.18 on transparent objects

and 0.60± 0.12 for specular ones. In such extreme lighting conditions, we observed

the method predicting grasps on shadows for transparent objects (see Fig. 2.6b). Such

drastic lighting would not normally occur in structured applications like bin-picking.

26

2. Multi-modal Transfer Learning for Grasping Transparent and Specular Objects

(a) Lighting setup. (b) Extreme lighting.

Figure 2.6: (a) Setup for lighting variation experiments. Lighting is controlled using the
overhead lights and floor lamp. (b) Failure case in the extreme lighting condition. The
method predicts the best grasp to be on the object’s shadow.

2.5.4 Failure Cases

In this section we discuss the most frequent and notable failure cases from our

experiments. This section covers failures due to our approach, as well as external

factors. Some examples of failure cases discussed in this section can be seen in Fig. 2.7

and the supplementary video.

Methods that used the depth modality like RGBD-ST and RGBD-M at times

selected grasps that were highly rated by the depth network, but did not sufficiently

account for transparencies or specularities (Fig. 2.7, top left). Both the color-based

and depth-based networks at times failed to distinguish very transparent objects from

the workspace surface, though this was rare and occurred far less frequently than

with FC-GQCNN (Fig. 2.7, top right). Object mass distribution and deformability

were not accounted for by our methods (Fig. 2.7, bottom row).

A failure case external to the methods evaluated involved our gripper hardware.

Our parallel electric gripper has a relatively small stroke width, and is unable to

execute pinch grasps with a 5cm opening width. This limitation causes grasps on

thin parts of objects to fail, because the fingertips do not completely come together.

While it is possible to adjust the fingertips to be closer together to enable pinch

grasps, the opening width of the gripper would be reduced, which would prevent the

gripper from being able to grasp large objects. This issue reduced performance across

27

2. Multi-modal Transfer Learning for Grasping Transparent and Specular Objects

Figure 2.7: Examples of failure cases. (top left) Grasp does not account for transparent
part of sharpener. (top right) Gripper fails to detect transparent plastic cube and grasps at
table. (bottom left) Mass distribution of squeegee causes grasp to fail. (bottom right) Foil
on top of balloon weight appears graspable but the gripper passes through.

all methods and would likely be mitigated by other grippers.

Since our paper focused on static grasping, our method fails to grasp objects that

start rolling due to perturbation in clutter. Others have investigated ways to address

this issue using closed-loop control techniques like visual servoing [132].

2.6 Conclusion

We present an approach for improving grasping on transparent and specular objects,

for which existing depth-based grasping methods perform poorly. Our method

transfers information learned by a depth-based grasping network to RGB or RGB-D

networks, enabling multi-modal perception. Our method for supervision transfer

28

2. Multi-modal Transfer Learning for Grasping Transparent and Specular Objects

requires only real-world paired depth and RGB images, and does not require any

human labeling nor real-world grasp attempts. We explore two avenues to multi-modal

perception and demonstrate that making use of the RGB modality outperforms depth-

only grasping in isolated object grasping as well as grasping in clutter. The method

is extensible to other robots, environments, and end effectors. One potential direction

for future work may be to adaptively weight predictions from different modalities

instead of averaging them. Another is applying transfer learning techniques to other,

less similar modalities like haptics and tactile feedback. Combining different sensor

modalities might also be useful in determining the appropriate grasp height for each

object.

While we are able to get improved performance without using any real grasping

data, we believe that real grasps can be used to further improve the performance of

the network. We are also interested in extending this work to other types of grasping,

such as 6-DOF, multi-fingered, or suction grasping.

29

2. Multi-modal Transfer Learning for Grasping Transparent and Specular Objects

30

Chapter 3

Neural Grasp Distance Fields for

Robot Manipulation

31

3. Neural Grasp Distance Fields for Robot Manipulation

32

3. Neural Grasp Distance Fields for Robot Manipulation

Abstract

We formulate grasp learning as a neural field and present Neural Grasp

Distance Fields (NGDF). Here, the input is a 6D pose of a robot end

effector and output is a distance to a continuous manifold of valid grasps

for an object. In contrast to current approaches that predict a set of

discrete candidate grasps, the distance-based NGDF representation is

easily interpreted as a cost, and minimizing this cost produces a successful

grasp pose. This grasp distance cost can be incorporated directly into

a trajectory optimizer for joint optimization with other costs such as

trajectory smoothness and collision avoidance. During optimization,

as the various costs are balanced and minimized, the grasp target is

allowed to smoothly vary, as the learned grasp field is continuous. We

evaluate NGDF on joint grasp and motion planning in simulation and

the real world, outperforming baselines by 63% execution success while

generalizing to unseen query poses and unseen object shapes. Project page:

https://sites.google.com/view/neural-grasp-distance-fields.

33

https://sites.google.com/view/neural-grasp-distance-fields

3. Neural Grasp Distance Fields for Robot Manipulation

(a) Discrete Grasp Set (b) Continuous Grasp Manifold with NGDF

Figure 3.1: (a) Existing grasp estimation methods produce discrete grasp sets which do
not represent the true continuous manifold of possible grasps. (b) Our work, Neural Grasp
Distance Fields (NGDF), learns a continuous grasp manifold: given a query pose q and
an object shape embedding z, NGDF outputs the distance d between q and the closest
grasp. This distance can be leveraged as a cost for optimization, facilitating joint grasp
and motion planning.

3.1 Introduction

We present Neural Grasp Distance Fields (NGDF), which model the continuous

manifold of valid grasp poses as the level set of a neural implicit function. Given a

6D query pose, NGDF predicts the unsigned distance between the query and the

closest valid grasp on the manifold (see Fig. 3.1).

Neural implicit fields have driven recent advancements in novel view synthesis [124]

and 3D reconstruction [18, 19, 123, 140]. These approaches represent distributions

as continuous functions that take a query as input and predict its relationship to

the learned distribution. In 3D shape reconstruction, for instance, neural implicit

fields are used to represent the surface of a shape: 3D points are used as queries, and

the output is the distance to the surface, or occupancy at the query point. Unlike

explicit methods, neural implicit fields can encode complex topological distributions

and are not limited by resolution.

With NGDF, formulating grasp learning as a neural field allows us to interpret

the implicit function as a cost such that a query pose can be optimized to result in a

34

3. Neural Grasp Distance Fields for Robot Manipulation

Perception Grasp Estimation Grasp Selection Motion Planning

Object Pose
(Known Shape)

Point Cloud
(Unknown Shape)

Discrete Set, Known

Discrete Set, Predicted
[49, 104, 133, 137, 167]

Continuous Set, Known

Continuous Set, Predicted

Min. Distance

Max Score

Adaptive Cost

Sampling
[81, 91]

Optimization
[134, 214]

E
x
ecu

tio
n

OMG [183]

CBiRRT [4]

B1

NGDF (Ours)

Figure 3.2: Columns illustrate design decisions within grasp and motion planning
pipelines. The left-most column highlights representative pipelines like OMG-Planner [183],
CBiRRT [4], and baseline B1 from Table 3.2 which uses a SOTA grasp estimator [167]. The
respective design choices for these methods are traced through the columns. We identify
learned continuous representations as an under-explored option for grasp estimation, and
propose NGDF as a solution that does not require a heuristic grasp selection step since
the grasp pose is jointly optimized with motion planning.

grasp pose. Prior grasp estimation methods largely output a discrete set of candidate

grasps [49, 104, 133, 137, 167], from which one grasp must be selected to perform

downstream planning. Instead, we incorporate the grasp distance cost directly into

a gradient-based optimizer [214] to jointly optimize the grasp and reaching motion

from an initial trajectory. During each optimization iteration, NGDF estimates the

distance between the final gripper pose of the trajectory and the grasp level set. This

“grasp distance” is minimized as a cost, along with other trajectory costs such as

smoothness and collision avoidance. The gradient of the grasp cost for updating the

trajectory is computed through fully differentiable operations. This optimization

results in a smooth, collision-free trajectory that reaches a valid grasp pose.

In experiments, we find that NGDF learns the level set of valid grasp poses,

outperforms baselines by 63% execution success on simulated reaching and grasping,

and generalizes to unseen object shapes and poses in the real world. The key

contributions of this chapter are:

• Neural Grasp Distance Fields (NGDF), a neural implicit function that predicts

the distance between a query pose and the closest grasp, representing the

manifold of grasps as a continuous level set.

• A gradient-based optimization algorithm that incorporates NGDF for joint

reach and grasp planning.

35

3. Neural Grasp Distance Fields for Robot Manipulation

3.2 Related Work

While grasping and motion planning are well-studied topics in robotics, prior works

often propose different system designs with different assumptions, making comparison

and contextualization difficult. We summarize the most important design decisions for

6-DOF grasp and motion planning and trace the decisions in representative methods

(see Fig. 3.2).

3.2.1 6-DOF Grasp Estimation

6-DOF grasp estimation is a well-studied task [10, 89] that aims to predict successful

grasps in SE(3) for target objects; we focus here on recent, data-driven methods.

State-of-the-art methods take point clouds as input and output a discrete set of grasps,

representing only a subset of the true continuous grasp set [49, 104, 133, 137, 167].

Outputting a finer discretization comes with a cost of a greater computational

complexity for both grasp estimation as well as grasp selection: a final grasp must be

chosen from the predicted set. Because these methods only predict discrete grasp

sets, they necessitate a multi-stage approach, which can be brittle if any of the stages

(grasp estimation, selection, or motion planning) fails. Our single-stage approach

models grasps as the level set of a continuous implicit function to jointly optimize

grasping and motion planning.

3.2.2 Joint Grasp Selection and Motion Planning

Following the multi-stage paradigm above, several works assume a grasp set is

provided by an upstream method, and address the downstream task of planning a

reaching trajectory. Berenson et al. [4] model grasp sets as a continuous range of

poses called Task Space Regions, and use sampling-based planning to satisfy the

constraint. GOMP [70], uses sequential quadratic programming on discrete grasp sets

for fast bin picking. Goal-set CHOMP [41] incorporates hard constraints like goal

sets into trajectory optimization. The methods above do not address the problem of

switching between grasps during planning; OMG-Planner [183] therefore proposes

online learning to estimate goal costs and switch to the minimum cost grasp at every

optimization iteration. OMG-Planner used ground-truth grasp sets per object, though

36

3. Neural Grasp Distance Fields for Robot Manipulation

their method can use estimated grasp sets as well. Our approach does not assume

grasps are provided and does not require explicit grasp selection; instead, NGDF

estimates and updates the grasp pose during trajectory optimization itself.

Other works propose closed-loop methods for 6-DOF grasping. Wang et al. [184]

learn a latent space of trajectories for closed-loop grasping. Song et al. [164] learn a

closed-loop policy from human demonstrations. Temporal GraspNet [205] updates a

discrete grasp set over time by querying a grasp evaluator. In this work, we introduce

a novel implicit representation for the grasp manifold. We focus on open-loop planning

and leave closed-loop planning with NGDF as future work.

3.2.3 Implicit Neural Representations

Recent advances in vision and graphics research have used implicit neural representa-

tions to achieve impressive results on novel view synthesis [124] and 3D reconstruc-

tion [18, 19, 123, 140]. Karunratakul et al. [80] learn an implicit representation for

human grasp poses. Inspired by these works, we learn an implicit neural function to

predict distances between query gripper poses and grasp poses, and use this function

to optimize grasp trajectories.

The robotics community has also explored neural implicit functions for a variety

of manipulation tasks [42, 51, 69, 103, 162, 192, 213]. GIGA [76] proposed using

neural implicit functions to model both 3D shape and grasp quality. However, GIGA

predicts a single grasp parameterization per 3D location, and requires a sampling

procedure to select the final pose from the implicit set. Our approach predicts grasp

distance, allowing multiple grasp orientations per 3D location, and uses optimization

to minimize grasp distance and achieve the grasp pose.

Concurrent works have proposed continuous representations for dexterous hands [198]

and multiple grippers [84]. Urain et al. [179] represents grasps as diffusion fields,

framing joint grasp and motion planning as an inverse diffusion process. In this chap-

ter, we use an implicit function to represent grasp distance, and use gradient-based

trajectory optimization for joint grasp and motion planning.

37

3. Neural Grasp Distance Fields for Robot Manipulation

Neural Grasp
Distance Field

(NGDF)
Shape

embedding

Gripper
pose

Pose
Distance

Forward
Kinematics

Final
joint angles

Backpropagate loss to joint angles

Point cloud

Point
Encoder

Figure 3.3: We use NGDF as a goal cost function on the final state of a trajectory during
gradient-based optimization. Given the current robot joint configuration and a point cloud
of an object or scene, the current gripper pose and a shape embedding are computed as
inputs for NGDF. Then, NGDF predicts the distance of the current gripper pose to the
closest grasp (Sec. 3.4.1). The predicted distance is used as the cost and the gradient
with respect to the joint configuration is computed with backpropagation. This cost (with
gradient) is used with other costs like smoothness and collision avoidance to update the
trajectory (Sec. 3.4.2).

3.3 Background

Neural Implicit Functions. Neural implicit functions (NIFs) are neural networks

that take a query q ∈ Rd and optionally a context embedding z ∈ Z to output a scalar

value that represents a relationship to an underlying distribution: f(q, z) : Rd×Z 7→ R.
In the domain of 3D shape reconstruction, the context z is a latent shape embedding,

the query q is a 3D point, and the scalar output is either distance to the closest

surface [19, 140], or occupancy [18, 123]. The shape surface is represented by the zero

level set in distance-based methods, or the decision boundary in occupancy-based

methods. Unlike explicit functions, NIFs are not limited by resolution as they predict

a value at any query point, and also better represent underlying distributions that

are disjoint [51]. Our approach leverages both properties in learning a manifold of

grasps.

Gradient-based Trajectory Optimization. A mapping from time t to robot

joint configuration p is defined as a trajectory ξ : [0, T] → p. Trajectory optimization

aims to find the optimal trajectory given an objective functional U :

ξ∗ = argminξ U [ξ], s.t. ξ(0) = ps, ξ(T) = pg (3.1)

for a given start ps and goal pg configuration. In manipulation, the objective U

38

3. Neural Grasp Distance Fields for Robot Manipulation

contains cost terms for smoothness and collision avoidance. CHOMP [214] solves for

ξ∗ with functional gradient descent:

ξt+1 = ξt − ηA−1∇̄U(ξt) (3.2)

where A is an acceleration metric that helps propagate updates over the entire

trajectory.

3.4 Method

In this work, we represent a set of posesM ⊂ SE(3) as the level set of a neural implicit

function. This implicit function takes a query pose q as input and estimates its

distance to the learned level set. Sec. 3.4.1 describes how Neural Grasp Distance Fields

(NGDF) leverage this insight to learn the level set of valid grasp poses. Sec. 3.4.2

explains how to incorporate NGDF into a trajectory optimization framework to jointly

reason over smooth and collision-free reaching trajectories that end at a valid grasp

pose. Fig. 3.3 provides an overview of our method.

3.4.1 Neural Grasp Distance Fields

Given a query pose q ∈ SE(3) and a shape embedding z ∈ Z, NGDF defines an

implicit function: NGDF(q, z) = d, where d is the distance from q to the closest

valid grasp g ∈ M ⊂ SE(3) for an object in a scene. Valid grasps are poses where

a gripper can stably grasp an object by closing its fingers. For the distance metric

d we combine translation and orientation distances into a single “control points”

metric [133]:

di = ∥T (q; ci)− T (g; ci)∥1 , i = 0, . . . , N (3.3)

where T (·; ci) is the transformation of a predefined set of points {ci} on the gripper.

Since q and g belong to SE(3), the distance could be defined based on the manifold

geodesic distance between those poses, however we find that the control points based

distance metric balances the translation and rotation costs better in practice. NGDF

estimates the distance for each control point c0...N separately: d(q, g) =
[
d0, . . . , dN

]T
.

During training, the estimated distances d̂ are supervised with L1 loss: L = ∥d̂−d∥1.

39

3. Neural Grasp Distance Fields for Robot Manipulation

3.4.2 Optimization of Grasping Trajectories using NGDF

For a given query pose, NGDF outputs the distance to the closest grasp pose. We

now show how to enable joint optimization for reaching and grasping with NGDF.

We incorporate NGDF as a goal cost estimator within a gradient-based trajectory

optimizer that already has cost terms for smoothness and collision avoidance.

In this work, we combine NGDF with CHOMP [214] (described in Sec. 3.3),

though NGDF can be used in any gradient-based trajectory optimization algorithm.

Since CHOMP specifies a fixed goal pg, we modify CHOMP to include pg as a variable

in the optimization following Dragan et al. [41]. We then add our grasp cost Fgrasp

as the variable goal cost to the objective functional U :

U [ξ] = λ1Fgrasp[ξ]+ λ2Fsmooth[ξ] + λ3Fobs[ξ] (3.4)

where λi are cost weights.

Grasp Distance as a Goal Cost. We now define Fgrasp and derive its functional

gradient ∇̄Fgrasp for gradient-based optimization. For a trajectory (during any itera-

tion of optimization), we calculate the gripper pose from the final joint configuration

using forward kinematics: qT = FK(ξT). We then use NGDF to estimate the distance

of this gripper pose to a valid grasp: NGDF(qT , z) = d̂. The norm of this distance

becomes our grasp cost: Fgrasp[ξ] = ∥d̂∥1. We can compute the gradient of the grasp

cost with respect to the joint configuration ξT through backpropagation:

∂Fgrasp

∂ξT
=

∂Fgrasp

∂qT

∂qT

∂FK

∂FK

∂ξT
(3.5)

Since the grasp cost only applies to the final configuration in a trajectory, the

functional gradient ∇̄Fgrasp contains all zeros except for the last row: ∇̄Fgrasp =

[0,0, . . . , ∂Fgrasp

∂ξT
]T .

Joint Optimization of Trajectory Costs. Similar to the objective functional

(Eq. 3.4), the objective functional gradient ∇̄U is a weighted sum of gradients:

∇̄U [ξ] = λ1∇̄Fgrasp + λ2∇̄Fsmooth + λ3∇̄Fobs. At every optimization iteration, we

compute the costs and functional gradients as described above, then update the

trajectory according to the A-metric update rule (Eq. 3.2). Since our objective cost

40

3. Neural Grasp Distance Fields for Robot Manipulation

has terms for minimizing distance to a valid grasp, maintaining smoothness, and

avoiding collisions, our algorithm jointly optimizes all three to produce reaching and

grasping trajectories.

3.4.3 Implementation Details

Dataset. Training NGDF requires a dataset of point clouds, valid grasp poses, and

query poses. We use the ACRONYM [44] dataset, which contains object meshes

and successful grasp poses collected in NVIDIA FleX [113]. For grasp poses, our

evaluations in Sec. 3.5 are run in PyBullet [24], so we relabel the successful grasp

poses based on their success in PyBullet with the same linear and rotational shaking

parameters used in ACRONYM. In addition, we filter the positive grasp set to only

include grasps where the normals at the mesh and finger contact points are opposed

to each other (-0.98 cosine similarity). Our results in Sec. 3.5.2 show that this filtering

improves grasp performance. To collect query poses for the dataset, we sample 1

million random SE(3) poses within a 0.5m radius of the object mesh centroid. While

it is possible that some of the sampled poses could be positive grasps, we assume

they are few in number and do not run additional grasp evaluation to filter them.

For each sampled pose, we use distance to the closest grasp in the valid grasp set (see

Sec. 3.4.1) as our supervision.

Architecture. An input point cloud is converted into the shape embedding z

using a VN-OccNet [31] encoder pre-trained on 3D reconstruction [162]. The input to

NGDF is a concatenation of this shape embedding z with the input query q’s position

and quaternion. The NGDF network is based on DeepSDF [140] and consists of 8

MLP layers, 512 units each, and ReLU activations on the hidden layers. A softplus

activation on the output layer ensures positive outputs.

Training Procedure. We freeze the weights of the pre-trained point encoder

during training and only train the NGDF network. Each training sample consists of

a partial point cloud, a query pose, and the closest valid grasp. Similar to NDF [162],

the partial point cloud is merged together from 4 camera views and downsampled

to 1500 points using farthest point sampling. Random rotation augmentations are

applied to each sample with 70% probability. Finding the ground truth closest grasp

pose is computationally expensive and requires multiple simulated grasp attempts per

41

3. Neural Grasp Distance Fields for Robot Manipulation

query pose. Therefore, our supervision is pseudo-ground truth, as the closest grasp

pose comes from a large but discrete set of grasps [44]. We find that this discrete

grasp set is dense enough to train NGDF, while still representing unseen valid grasp

poses at or near the zero level set (Sec. 3.5.1).

Trajectory Optimization. CHOMP [214] uses a fixed or decaying step size for

functional gradient updates, which is sufficient for trajectories with fixed start and

goal joint configurations. However, with our modification of CHOMP in Sec. 3.4.2

to allow a variable goal configuration, we found that such simple step size strategies

resulted in poor convergence. We address this issue by using Adam [86] to adaptively

update the step size (“CHOMP-Adam”). We use differentiable SE(3) operations [142]

and a differentiable robot model [168] to backpropagate gradients from the output of

NGDF to the robot joint configuration (Eq. 3.5).

3.5 Experiments

We first evaluate how well NGDFs represent valid grasp manifolds as their zero

level sets (Sec. 3.5.1). Then we perform a full system evaluation with NGDFs on a

“reaching and grasping” task (Sec. 3.5.2), where an NGDF is used within a gradient-

based trajectory optimizer as a goal cost function. We evaluate generalization on

grasping intra-category unseen objects (Sec. 3.5.3), and demonstrate grasping on a

real robot system (Sec. 3.5.4).

3.5.1 NGDF Level Set Evaluation

First, we investigate whether the learned level set of an NGDF represents successful

grasps. Our evaluation procedure considers driving an initial query pose to the

learned level set. We use the distance output from NGDF as a loss, and update the

query pose with Adam [86] using backpropagated gradients. Note that this evaluation

optimizes just the gripper pose; full-arm trajectory optimization is considered in the

next subsection. We evaluate NGDF on three objects: Bottle, Bowl, and Mug. For

this evaluation, we train a single NGDF model for each object, and evaluate models

trained with and without the dataset filtering procedure described in Sec. 3.4.3. We

run the optimization for 3k steps with a learning rate of 1e-4. Since we represent

42

3. Neural Grasp Distance Fields for Robot Manipulation

Figure 3.4: Grasp Level Set Evaluation. Left: Final predicted pose (magenta) and its closest
grasp pose (green) in the training dataset. Right: Gripper path (teal) as it is optimized
from initial to final pose. Object meshes shown for visual clarity; our method takes point
clouds as input.

poses as positions and quaternions, we normalize the quaternion after each gradient

update to ensure valid rotations.

The quantitative results on grasp level set optimization are shown in Table 3.1.

We use two metrics for this evaluation. The “Train Set Error” metric is the minimum

control points distance (Eq. 3.3) between the optimized gripper pose and the closest

grasp pose in the discrete training set. Since NGDF should learn a continuous level

set and interpolate between grasps in the training set, we expect NGDF not to achieve

zero error on this metric, but it provides a good surrogate for comparing models. The

“Grasp Success” metric measures the grasp quality of the optimized gripper poses.

For each pose, we load the target object in PyBullet [24] and attempt a grasp at the

specified pose. The robot gripper is always initialized to the same position; the object

43

3. Neural Grasp Distance Fields for Robot Manipulation

Table 3.1: NGDF Grasp Level Set Results

Train Set Error (m) ↓ Grasp Success ↑

Bottle-NoFilter 0.023± 0.01 0.480
Bottle 0.029± 0.01 0.880

Bowl-NoFilter 0.036± 0.02 0.540
Bowl 0.033± 0.01 0.760

Mug-NoFilter 0.038± 0.01 0.680
Mug 0.035± 0.01 0.860

Results are averaged over 50 unseen query poses per object, sampled from within a 0.5m
radius of the object centroid.

Table 3.2: Reaching and Grasping Results

Method Perception Grasp Estimation Grasp Selection Goal Execution Success ↑

O1 (Oracle) Known Object Pose Known Discrete Grasps Min. Distance Fixed 0.96
OMG [183] (Oracle) Known Object Pose Known Discrete Grasps Adaptive Cost Variable 0.99

B1 Unknown Object Pose Predicted Discrete Grasps [167] Max Score Fixed 0.37
B2 Unknown Object Pose Predicted Discrete Grasps [167] Min. Distance Fixed 0.39
B3 Unknown Object Pose Predicted Discrete Grasps [167] Min. Distance Variable 0.38
B4 Unknown Object Pose Predicted Discrete Grasps [167] Adaptive Cost Variable 0.31

NGDF (Ours) Unknown Object Pose Predicted Continuous Grasps N/A Variable 0.61

Middle columns correspond to design decisions found in Fig. 3.2; color-coded methods also
correspond to those shown in the same figure.

is transformed relative to the gripper. Linear and rotational shaking are applied after

gripping the object [44], and the grasp is successful if the object is still gripped after

the shaking.

Our results show that while NGDFs trained on filtered and unfiltered data have

similar Train Set Error, the Grasp Success for filtered data models is much higher.

These results also indicate that NGDFs have learned continuous level sets, since the

mean distance predicted by NGDF after optimization is less than 1e-5, much lower

than the minimum distance to the training set of grasps. Fig. 3.4 shows examples of

the optimization path and achieved gripper pose.

3.5.2 Simulated Reaching and Grasping Evaluation

Next, we evaluate our method on a full reaching and grasping task, which requires

planning a smooth, collision-free grasping trajectory for the full robot arm starting

44

3. Neural Grasp Distance Fields for Robot Manipulation

from an initial robot joint configuration. This evaluates the full pipeline as opposed

to just the stand-alone gripper pose in the previous subsection. The task is considered

successful if the robot executes the trajectory, closes its fingers to grasp the object,

and lifts the object without losing it. We place Bottle, Bowl, and Mug objects in

simulation in 30 random orientations each (see Appendix Fig. B.2 in [189], left-most

column), thus 90 trials in total. Our results indicate that even in a seemingly simple

setting, randomly oriented objects present an overall challenging benchmark.

For this evaluation, we train a separate NGDF (similar to NeRF approaches [69,

124]) for each object, though our method can be extended to generalize across

objects like other shape-conditioned implicit approaches [140]. We also evaluate

intra-category (known class, unseen shape) generalization in the next subsection. We

run 500 iterations of CHOMP-Adam (see Sec. 3.4.3) with a learning rate of 3e-3. The

grasp cost is weighted heavily relative to the collision and smoothness costs. The

trajectory is initialized using inverse kinematics so the gripper pose of the final joint

configuration is within 0.3m of the center of the object point cloud; the rest of the

initial trajectory is interpolated between the start and end joint configurations.

The results are shown in Table 3.2. We compare against oracle methods that

provide upper-bound task performance, and against baselines that predict discrete

grasps. Oracle methods assume perfect object pose estimation and known discrete

grasp set. All discrete grasp methods run inverse kinematics over all discrete grasp

goals and discard infeasible grasps. For planning, methods use goal-set CHOMP [41]

or CHOMP [214], depending on whether the goal is fixed or can vary. “O1” selects

the goal with minimum distance to the initial joint configuration, and keeps it fixed

throughout planning. “OMG” [183] adaptively learns a cost for each grasp and selects

the grasp with minimum cost at every optimization iteration (Variable Goal).

The baselines that predict discrete grasps use Contact-Graspnet [167] as the grasp

estimator. We use weights (provided by the authors) that are trained on millions of

grasps and shapes. “B1” selects the grasp goal with the maximum score estimated

by Contact-GraspNet and keeps it fixed during planning. “B2” selects the grasp goal

with minimum distance to the initial joints and keeps it fixed during planning. “B3”

allows varying grasps during planning using the minimum distance metric. “B4” uses

the same adaptive cost from OMG [167] to select grasp goals during planning.

Our results show that while oracle methods perform well, methods that don’t

45

3. Neural Grasp Distance Fields for Robot Manipulation

assume known object pose and use predicted grasps have much lower Execution

Success. Of the predicted grasp methods, NGDF performs best. Surprisingly, the

B3 and B4 variable goal variants do not outperform fixed goal variants B1 and B2.

Failure cases for all methods are largely due to collisions between the gripper fingers

and the object, which are a relatively small obstacle cost and may be difficult for

the planner to balance with the other costs. Appendix Fig. B.2 in [189] contains

qualitative NGDF results, and App. B.1 contains additional ablation experiments.

3.5.3 Intra-Category Generalization

To evaluate whether our method can generalize to shapes in the same object category,

we train an NGDF model on 7 shapes in the “Bottle” category from ACRONYM [44].

Training samples are generated from the meshes using the same data collection

procedure described in Sec. 3.4.3. We evaluate performance on a held-out Bottle

instance, the same instance used in the previous evaluations. The intra-category

model achieves 0.63 execution success on 30 Bottle trials for the reaching and grasping

evaluation, which is comparable with the single-object NGDF results from Table 3.2,

demonstrating intra-category generalization without loss of performance.

3.5.4 Real Robot Reaching and Grasping Evaluation

Finally, we test our method’s reaching and grasping performance on a real robot

system. At the start of each trial, an object is placed in a random stable pose. A

partial point cloud of the scene is obtained from four Azure Kinect depth sensors

(Fig. 3.5b), similar to NDF [162]. The object point cloud is segmented via plane

fitting, then passed as input to NGDF models from Sec. 3.5.1, which are trained

on one instance per category in simulation. The cloud is also converted to a signed

distance field to enable computing collision costs with CHOMP [214]. The optimized

trajectory is executed on a Franka Panda robot with impedance control, and the trial

is considered successful if the object is grasped and lifted without being dropped

(Fig. 3.5c). 9 test objects were evaluated, 3 from each shape category (Fig. 3.5d). 3

grasp attempts were performed per object for a total of 27 trials. See App. B.3 in [189]

for additional details.

Our overall grasp success rate was 81%, with success per category being 7/9

46

3. Neural Grasp Distance Fields for Robot Manipulation

Figure 3.5: Real System Evaluation. (a) Visualizing the plan and imperfect object point
cloud; (b) executing the plan on hardware (cameras highlighted with red boxes); (c) lifting
the object. (d) The nine objects used for testing. (e) Additional successful grasps.

Bottles, 9/9 Bowls, and 6/9 Mugs. Our system successfully grasped every object,

despite many of them being outside of its training distribution in terms of size and

shape. The method also demonstrated robustness to noisy perception and execution

with impedance control. Failure cases were due to slight collisions between the fingers

and objects, similar to what we observed in simulation.

3.6 Discussion

Neural implicit functions have been widely explored for 3D vision tasks such as

shape reconstruction. NGDF extends this concept to grasp estimation, using 6D

poses as queries on grasp manifolds. Our work differs from existing work on 3D

reconstruction, not only due to the higher dimensionality of our problem, but also

because of the challenge in acquiring ground truth labels. The ground truth grasp

distance between an arbitrary query pose and the corresponding closest grasp is

47

3. Neural Grasp Distance Fields for Robot Manipulation

expensive to compute. Instead, we train on large-scale discrete grasp sets [44] as

near-ground truth supervision. Our experiments in Sec. 3.5.1 show that NGDF is

able to learn the continuous grasp manifold as the level set of the neural field from

this discrete supervision.

NGDF decouples the problem of learning a grasp manifold representation from

the problem of finding a good grasp pose. For the latter, we formulate the distance

output of NGDF as a cost to be minimized. For the full robot motion planning

regime, we jointly optimize the grasp cost with smoothness and collision costs. We

outperform baselines in Sec. 3.5.2 that represent what a practitioner would implement

for a reaching and grasping task. While the performance of oracle methods indicate

room for improvement, our results show that joint optimization with NGDF is a

promising direction for manipulation. We also demonstrate scalability with intra-

category generalization results in Sec. 3.5.3, and deploy our method on real hardware

in Sec. 3.5.4.

In terms of limitations, NGDF is trained on a gripper-specific dataset; NGDF for

other grippers may require different datasets. The method also depends on upstream

object segmentation. Further, the cost weights are fixed during optimization in the

reach and grasp planning task; learning to adjust the weights each iteration could

improve performance.

3.7 Conclusion

We propose Neural Grasp Distance Fields (NGDF), which represent the continuous

manifold of grasps as the zero-level set of a neural field. We formulate the estimated

distance as a cost for a gradient-based trajectory optimizer to jointly optimize with

other trajectory costs such as smoothness and collision avoidance to perform reach

and grasp planning. Our results show that NGDF outperforms existing methods,

while generalizing to unseen poses and unseen objects.

48

Chapter 4

Cloth Region Segmentation for

Robust Grasp Selection

49

4. Cloth Region Segmentation for Robust Grasp Selection

50

4. Cloth Region Segmentation for Robust Grasp Selection

Abstract

Cloth detection and manipulation is a common task in domestic and

industrial settings, yet such tasks remain a challenge for robots due to

cloth deformability. Furthermore, in many cloth-related tasks like laundry

folding and bed making, it is crucial to manipulate specific regions like

edges and corners, as opposed to folds. In this work, we focus on the

problem of segmenting and grasping these key regions. Our approach

trains a network to segment the edges and corners of a cloth from a

depth image, distinguishing such regions from wrinkles or folds. We also

provide a novel algorithm for estimating the grasp location, direction,

and directional uncertainty from the segmentation. We demonstrate our

method on a real robot system and show that it outperforms baseline

methods on grasping success. Video and other supplementary materials

are available at: https://sites.google.com/view/cloth-segmentation.

51

https://sites.google.com/view/cloth-segmentation

4. Cloth Region Segmentation for Robust Grasp Selection

4.1 Introduction

Manipulating and interacting with cloth is a key part of daily life, yet cloth manip-

ulation by robots remains a challenging problem. Cloth is difficult to perceive and

manipulate because its deformable nature breaks the rigid-body assumptions of many

algorithms. For example, most pose estimation algorithms assume that objects can

only transform in 6 degrees of freedom (translation and rotation). However, cloth can

deform at any location and thus has nearly an infinite number of degrees of freedom.

(a) Initial Setup (b) Input Depth Image

(c) Cloth Segmentation and Grasp
Selection

(d) Execute Sliding Grasp

Figure 4.1: Grasping using cloth region segmentation: Robot with depth sensor (a) captures
depth image of test cloth (b). Depth image is segmented into outer edges (yellow),
inner edges (green) and corners (blue) using our cloth region segmentation network (c).
Ambiguous regions are colored in orange. Our method selects a grasp location and direction,
shown as a magenta arrow. The robot executes a sliding grasp and successfully grips the
cloth by its edge.

In cloth-based tasks like laundry folding and textile manufacturing, it is important

to detect and grasp specific regions of cloth, e.g. corners and edges, for downstream

52

4. Cloth Region Segmentation for Robust Grasp Selection

manipulation like folding or smoothing. These edges and corners are distinct from

wrinkles and folds, which are less useful for downstream tasks.

In order to grasp the cloth along an edge or corner, we must not only detect

the cloth edges and corners but also estimate the appropriate grasping direction.

Given a grasp position, the grasp direction specifies the approach vector the gripper

follows towards this point. Although estimating the grasping direction would be

relatively simple if the cloth were lying flat on the table, it is much more challenging in

crumpled configurations. Much work has been done for perception and manipulation

of cloth in both randomized and predefined cloth configurations, yet cloth-related

tasks like laundry folding and assisted dressing remain challenging due to the inherent

complexity of cloth dynamics.

In this thesis chapter, we present an approach for segmenting these key regions

of cloth, even in highly crumpled configurations. To achieve this, we train a neural

network to predict cloth edges and corners from a depth image. We also train the

network to predict the inner edges, the region interior to the cloth’s true edges, for

grasp direction estimation. The network is trained on a dataset of RGB-D images

extracted from 8 minutes of video of a human manipulating the cloth. The ground-

truth for the network is provided by color-labeling the cloth (see Fig. 4.1), forgoing

the need for expensive human annotations.

The segmentation output of our network allows us to quickly and robustly estimate

the appropriate position and grasp direction from a crumpled cloth. It also allows

us to estimate the grasp directional uncertainty for every edge/corner pixel. This

estimation is important for grasping the cloth, as mis-estimating the grasp direction

and approaching at an angle not orthogonal to the cloth edge is more likely to fail.

Using a dense estimate of grasp directional uncertainty, we can choose the grasp point

most likely to succeed.

We implement our method on a real robot system and evaluate its performance on

grasp success metrics against a number of baselines; this evaluation demonstrates the

strength of our system in estimating cloth edge and corner positions, grasp direction,

and grasp uncertainty.

Our contributions include:

• A method to segment regions of cloth critical for downstream manipulation

tasks.

53

4. Cloth Region Segmentation for Robust Grasp Selection

• An algorithm to determine a robust grasp configuration accounting for uncer-

tainty about the cloth direction.

• An evaluation of our method against baselines on a real robot system for

grasping edges and corners of cloth in crumpled configurations.

4.2 Related Work

4.2.1 Cloth Perception

Robotic cloth manipulation is a well-studied domain with a variety of unsolved tasks,

including laundry folding [5, 119], laundry unfolding or smoothing [38, 61, 176, 177,

193, 201], bed making [94, 156], and grasping [28, 130, 195].

Many of these approaches use traditional computer vision algorithms to detect

cloth regions for various downstream tasks: [193] chooses candidate grasp points by

using Harris corner detection and discontinuity checks on the depth image for peak

ridges and peak corners. [176] uses a pre-task manipulation, lifting the towel into

the air and shaking it to remove wrinkles before returning it to the table. Canny

edge detection is then used to compute contours for interior and exterior corner

classification. [119] performs background subtraction and uses stereo images to select

a centered point in a pile of towels. They grasp the towel from a central point and and

rotate it to obtain a sequence of images. Towel corners are fit to these images using

RANSAC. These perception algorithms usually require significant pre-manipulations

to get a more structured configuration of the cloth, thus they are more time consuming

than many learning-based methods. Furthermore, without these pre-manipulations,

these methods are likely to fail under difficult initial configurations, such as highly

crumpled cloth. We will show in Sec. 4.4.2 that our method is much more robust to

these crumpled cloth configurations compared to these traditional methods.

Another group of methods apply learning-based algorithms for image feature

extraction. [28] uses the YOLO detection network to detect the thickest folded edge

and grasp a folded towel from a stack. [201] uses an autoencoder network to predict

the real edges of towels. This is similar to our approach; however, their method trains

a network to output latent features and performs nearest-neighbor classification on

input features to predict good grasp points, whereas our network directly outputs

54

4. Cloth Region Segmentation for Robust Grasp Selection

segmentation masks of grasp regions and also determines good grasp directions. Their

method also operates on RGB images and requires a human-annotated dataset of

corners, whereas our method takes depth images as input to be invariant to changes

in visual texture, and does not require human labeling.

The most similar method to ours is [156] which learns to identify a corner of a bed

sheet by painting the corner red. Our method expands upon this work by estimating

a dense segmentation of multiple real edges, inner edges, and corners, as opposed

to regressing to a single corner position. Furthermore, our method outputs dense

grasp direction proposals as well as their corresponding uncertainty estimates. As

we will show in Sec. 4.4.2, the grasp direction proposals and uncertainty estimates

are crucial for our performance on our grasping evaluation. Specifically, these two

outputs enable us to handle challenging crumpled cloth configurations.

4.2.2 Cloth Grasping

Although the focus of our work is on perception rather than grasping, we review prior

work on cloth grasping strategies. A simple top-down or angled grasp is commonly

used once a grasp point has been selected [156, 193]. A top-down grasp followed

by a 6DOF grasping on detected corners of the the hanging cloth has also been

studied [119].

Other prior works learn a policy for grasping. [130] learns parameters for motion

and grasp primitives to grasp a folded towel. [28] uses Q-learning to train a policy

for grasping a folded towel from a stack. [195] uses Soft-Actor-Critic to train a policy

for rope and cloth manipulation.

In our work, we identify the real corners and edges of the cloth and select a robust

grasping point. Then we execute a hand-designed sliding grasp policy on the selected

grasping point in order to pick up the cloth by a single edge or corner.

55

4. Cloth Region Segmentation for Robust Grasp Selection

4.3 Approach

4.3.1 Problem Statement

In cloth manipulation tasks such as laundry folding, it is important that the robot be

able to identify and grasp key regions of the cloth. These regions typically include the

“real edges” or corners of a cloth. By “real edges,” we mean the edges of the cloth

in the unfolded configuration, as opposed to any folds or creases that may appear

as edges in a particular configuration. If the robot grasps a cloth fold or crease and

attempts to use such a grasp to neatly fold the cloth, the result likely will not end

up as expected. Thus, failing to grasp the cloth along the real edges could lead to

failures for many downstream tasks.

As we will show, traditional computer vision algorithms fail to distinguish the

difference between a real cloth edges and apparent edges created by creases or folds.

In addition, the robot must also determine the appropriate grasping direction along

the cloth edge, which is non-trivial if the cloth is in a crumpled configuration; we will

show that simple heuristics frequently fail at this task. In this section, we provide a

method that identifies edges and corners of a cloth, predicts grasp directions, and

estimates the uncertainty of these directions. These predictions will then be used to

quickly and reliably grasp the cloth along its edges and corners, even from crumpled

configurations.

4.3.2 Method Overview

Figure 4.2: Pipeline for our method. Cloth region segmentation takes a depth image and
outputs segmentation masks for cloth edges and corners. Grasp selection uses the masks to
compute a grasp point and direction in the camera frame. Grasp execution transforms the
grasp configuration into the robot frame and executes the grasp.

Fig. 4.2 provides the overall pipeline of our method. First, our segmentation

56

4. Cloth Region Segmentation for Robust Grasp Selection

network takes in a depth image and predicts the outer edges, inner edges and

corners. Based on the segmentation, we estimate the grasp direction by computing

a correspondence between outer edge and inner edge points. Next, we compute

the grasp direction estimation and select a grasp point based on our uncertainty

estimate U(p) for an outer edge point p. Finally, we estimate the 6D robot pre-grasp

pose based on the grasp point selected and execute our sliding grasp policy. These

components are explained in greater detail in the following sections.

4.3.3 Cloth Region Segmentation

We frame the problem of identifying important regions cloth as semantic segmentation.

We train a neural network which receives as input a depth image of the scene containing

the cloth. The network predicts semantic labels for each pixel, giving the probability

that the pixel contains a cloth outer edge, inner edge, corner, or none of these. We

can then threshold this probability to obtain a semantic segmentation mask for the

cloth edge and corner locations. Fig. 4.1c shows an example output of our network.

Figure 4.3: Training the segmentation network. The network receives a depth image as
input. A paired RGB image supervises the network through the color labels of the cloth.
Different colors are used to label the corners, outer edges, and inner edges. The ground-truth
color for corner labels was changed from red to blue in the outputs to be color-blind friendly.

57

4. Cloth Region Segmentation for Robust Grasp Selection

To train such a network, we need ground-truth labels for the cloth edges and

corners. Unfortunately, these are difficult to obtain in images with crumpled cloth,

as this would require a large amount of human annotation effort. Instead, we adopt

an approach similar to that of [156], in which they mark a single corner of a cloth

with a red marker, and train a network to regress to the single corner location. In

our case, we mark all edges and corners with different colors of paint and set up the

problem as semantic segmentation, to estimate the position of all cloth edges and

corners in the image (other differences from [156] are explained in Sec. 4.2).

As we will show, these labels will allow our network to differentiate between real

edges or corners of the cloth from cloth folds, which may appear similar to edges in

an image. Fig. 4.3 is a visualization of our training method.

To train the segmentation network parameters θ using these labels, we define the

loss L to be the mean of the pixel-wise binary cross-entropy loss ℓk for each class

k ∈ K:

L(θ) = 1

K

K∑
k

ℓk (4.1a)

ℓk = −
∑
i∈I

wk(yi log ŷi) + (1− yi) log(1− ŷi) (4.1b)

where i is a pixel in the input depth image I, wk is a per-class weight to handle the

imbalanced distribution between positive and negative labels, yi is the binary pixel

label, and ŷi is the network prediction for pixel i.

4.3.4 Grasp Configuration Selection

Grasp Direction Estimation

Once the edges and corners are estimated, the next step is to determine the appropriate

grasp direction. To achieve this, we augment the above pipeline by also predicting

the cloth “inner edges.” We define the cloth outer edge as the region within 1.5 cm of

the cloth edge, the cloth corners as the region within 3×3 cm of the corner, and the

inner edge as a 1.5 cm region interior to the cloth outer edge. The inner edge labels

are shown in green in Fig 4.3. As before, we obtain cloth inner edge ground-truth

labels using another color to paint the inner edge of a cloth, and we train a neural

58

4. Cloth Region Segmentation for Robust Grasp Selection

Figure 4.4: Illustration of grasp configuration selection. Corners are labeled in blue, outer
edges in yellow , inner edges in green. Overlapping outer edge and inner edge segmentations
are in orange; After obtaining the cloth region segmentation, (b) shows the cropped section
in (a); (c) shows a subsample of grasp direction proposals for each outer edge points; (d)
shows the grasp directional uncertainty for each outer edge points.

network to predict the cloth inner edge from a depth image.

Given the predicted segmentation for these cloth regions, we now select a grasp

point and direction. We want to select the direction that allows our sliding grasp

policy to most easily grasp the cloth. A sliding grasp that starts with the gripper

59

4. Cloth Region Segmentation for Robust Grasp Selection

oriented towards a cloth edge as in Fig. 4.5 will intercept the edge upon translation.

However, a grasp oriented parallel to the edge or approaching from the reverse

direction will not intercept the edge and will fail to grasp. Grasp direction is similarly

important for corners, as sliding grasps that approach the corner head-on or aligned

with the edge of the cloth are more likely to succeed than other orientations.

The following is our procedure for computing the appropriate grasp direction. We

first threshold the output of the network described in Sec. 4.3.3 to obtain a set of

points estimated to belong to the outer edge EO and a set of points that belong to

the inner edge EI. Then, for each outer edge point p = [px, py] ∈ EO, we find the

closest inner edge point q∗ = [qx, qy]. More formally, we define q∗ to be

q∗ = argmin
q∈EI

∥p− q∥2 (4.2)

With the correspondence between p and q∗, we further define the grasp direction at

point p to be the direction along the vector from p to q∗. Fig. 4.4c shows a subset of

those grasp directions. The vector from p to q∗ often defines an appropriate grasp

direction at point p. This direction can be used by the robot to grasp the cloth.

Directional Uncertainty Estimation

Fig. 4.4c also shows a few cases where, due to the complex folds of the cloth, the

vector from p to q∗ does not indicate an appropriate grasp direction. Thus, for robust

grasping, we also compute a measure of the uncertainty in this grasp direction.

We define the uncertainty of the grasp direction for a single point p to be the

variance of the grasp directions predicted by its neighbours. To compute this variance,

let Nk(p) be the set of k closest pixel points in EO of p in Euclidean distance; let α

be the angle between
»
pq∗ and a unit vector along the horizontal x axis. Formally we

can define the cosine and sine of the grasp direction at p as

fcos(p) = cos(α) =
qx − px

∥q∗ − p∥2
(4.3)

fsin(p) = sin(α) =
qy − py

∥q∗ − p∥2
(4.4)

We can then define observation vectors x0(p) and x1(p) to contain the cosine and

60

4. Cloth Region Segmentation for Robust Grasp Selection

sine of the grasp direction of all points in Nk(p):

x0(p) =
{
fcos(n) | n ∈ Nk(p)

}
(4.5)

x1(p) =
{
fsin(n) | n ∈ Nk(p)

}
(4.6)

Next, we define the sample covariance matrix K(p) in the usual manner from the

observations x0(p) and x1(p)

Kij(p) =
1

N − 1

N∑
k=1

(xik(p)− x̄i(p)) (xjk(p)− x̄j(p)) (4.7)

where xij(p) is the jth element of xi(p), and x̄i(p) is the mean of xi(p).

Finally, we define the uncertainty of our grasp direction prediction to be the

sum of the variances of the individual dimensions, or the trace of K: Tr(K(p)) =

V ar(x0(p))+V ar(x1(p)), where V ar(xi(p)) is the variance of xi(p). Since the trace

of a matrix is equal to the sum of its eigenvalues, this means that Tr(K) measures

the summation of the uncertainty in the principal directions for the covariance matrix

K. The trace therefore captures the uncertainty of the grasp direction while being

invariant to axis transformations. Fig. 4.4d shows an example of our uncertainty

estimate.

Grasp Point Selection

Finally, we describe our method for grasp point selection, which considers the outer

edge predictions of Sec. 4.3.3 and the directional uncertainty estimates of Sec. 4.3.4.

For each outer edge point p ∈ EO, we compute an uncertainty estimate U(p) =

Tr(K(p)) as described above. Finally, for grasp point selection, we pick the outer

edge point p that has the lowest uncertainty:

p = argmin
p∈EO

U(p) (4.8)

61

4. Cloth Region Segmentation for Robust Grasp Selection

45˚

(a) Pre-slide pose. (b) Post-slide pose. (c) Pinch grasp.

Figure 4.5: Sequence of poses for the sliding grasp policy. The sliding action is a translation
from the pre-slide to post-slide pose. The slide intercepts the target grasp point on the
cloth.

4.3.5 Grasp Execution

Once a grasp configuration with point and direction is chosen, we execute a hand-

designed grasping policy to slide one of the gripper’s fingertips under the cloth for a

pinch grasp. We use this sliding grasp policy instead of a simpler top-down grasping

routine, because top-down pinch grasps on edges and corners that are folded over

(and hence overlap parts of the cloth) often result in grasping multiple layers of the

cloth. A tilted sliding grasp can separate one layer of cloth from another.

The configuration (p, α) specifies the grasp point on the cloth and the direction for

the sliding grasp. This configuration is specified in image coordinates; to transform it

into the world frame, we perform a 2D-to-3D projection using known camera intrinsics

and extrinsics. This provides an intermediate 6D pre-grasp pose g̃ consisting of the 3D

position of the target cloth point (corresponding to p in 2D), and the 3D orientation

of the end-effector (corresponding to α in 2D). The intermediate pre-grasp pose g̃ is

oriented top-down and rotated about the z-axis in the world frame. We apply a final

transformation that tilts the grasp pose about the horizontal x-axis by 45-degrees to

obtain a new pre-grasp pose g. This pose allows one of the fingertips to get under the

cloth during the slide action. This transformation also includes a z-offset to account

for the z-height of the gripper tip lowering due to the rotation. Finally, we compute

offsets to g in the xy plane parallel to the workspace to get pre-slide and post-slide

poses. As shown in Fig. 4.5, the sliding grasp policy moves to the pre-slide pose,

translates to the post-slide pose, then pinches to grasp the cloth.

62

4. Cloth Region Segmentation for Robust Grasp Selection

4.3.6 Implementation Details

Network Implementation Details

To train our segmentation network, we collected a dataset of paired RGB-D images.

The images were extracted from RGB-D video of a human manipulating a cloth with

regions of interest labeled using acrylic paint. The cloth was square, 12 inches each

side, and painted with red 3×3 cm corners, yellow 1.5 cm thick outer edges, and

green 1.5 cm thick inner edges. See Fig. 4.3 for an image of the labeled cloth.

The human manipulated this semantically labeled cloth in the robot’s workspace

by folding it, dropping it, bunching it up, etc. We collected 8 minutes of video

for a total of about 6700 RGB-D images. These images were split into 4:1:1 train,

validation, and test sets.

Our segmentation network is based on U-Net [148]. We augmented the data during

training with random image flips and rotations to improve robustness. Additional

details on training and the network architecture are provided in the appendix. All

training was performed on an Ubuntu 16.04 machine with an NVIDIA GTX 1080 Ti

GPU, a 2.1 GHz Intel Xeon CPU, and 32 GB RAM.

Physical Implementation Details

All experiments were performed on a 7 DOF Rethink Robotics Sawyer Robot with a

Weiss WSG-32 parallel-jaw gripper. The robot’s workspace was a 0.6×0.6 m area. A

Microsoft Azure Kinect sensor was mounted 0.7 m above the workspace to provide

RGB-D images. Our test cloth is a white, unlabeled cloth with the same dimensions

as the labeled one used for training. See Fig. 4.1a for the complete workspace setup.

The default fingertips of the Weiss gripper were too thick to get under the cloth

during the sliding maneuver, so we 3D-printed and attached thinner fingertips (see

Fig. 4.5).

4.4 Experiments

Our experiments are designed to answer the following questions:

63

4. Cloth Region Segmentation for Robust Grasp Selection

• How does our learned method for finding cloth edges and corners compare to

non-learned baselines?

• How does our method for estimating the grasp direction compare to non-learned

baselines?

• Do we obtain more robust grasps using our method for estimating grasp direc-

tional uncertainty?

4.4.1 Experimental Design

We designed two experiments to evaluate our method against various baselines. The

first experiment evaluated performance for grasping cloth edges (as opposed to creases

or folds), and the second evaluated grasping cloth corners. In both experiments, each

grasping trial starts with a randomly crumpled cloth in the center of the robot’s

workspace. To enable reproducibility of our results, we used the following protocol in

all of our experiments to generate the initial cloth configuration for each trial: at the

beginning of each trial, a human grasps the square cloth at the midpoint of an edge.

They then hold the cloth at a height such that the lowest point of the cloth is 0.1

m from the workspace surface. Finally, they let go of the cloth from this height to

obtain a randomly crumpled cloth pose. This initialization procedure is based on the

protocol from [55], adapted for our cloth grasping task.

(a) No fold. (b) Single fold. (c) Multiple folds.

Figure 4.6: Examples of cloth grasps. Folds longer than 2cm from edge to fold are considered
grasp failures; of these three, only (a) is considered a success.

We define success metrics for grasping the cloth at edges and corners. A grasp

is considered a success if it pinches a cloth edge or corner and lifts it 30 cm above

the workspace. The flexible and deformable nature of cloth can cause pinch grasps

64

4. Cloth Region Segmentation for Robust Grasp Selection

on edges and corners to fold over some of the material. Fig. 4.6 shows examples of

grasps with flat and folded cloth. For grasping edges, we consider a grasp with cloth

folded over to be a success if the fold is less than or equal to 2 cm at its maximum

length. For grasping corners, we use a threshold of 5 cm from the corner to the fold.

These thresholds apply when there is a single cloth fold pinched; if multiple folds are

held within the pinch grasp, the grasp is considered a failure.

4.4.2 Experimental Results

We evaluate whether our learned method performs better than baselines for identifying

cloth edges and corners (as opposed to wrinkles and folds). Our method consists of

the cloth region segmentation network, grasp direction estimation, grasp directional

uncertainty estimation, and grasp selection, as described in Sec. 4.3.

Grasping Cloth Edges

(a) Cloth Pose (for
reference).

(b) Segment-Edge. (c) Canny-
Depth [16].

(d) Canny-
Color [16].

(e) Our Method.

Figure 4.7: Segmentation and selected grasp point for edge grasping methods. (b)-(e)
visualize the output of each method on top of the reference image (a). Note that the
color image is only provided as input to Canny-Color (d); all other methods take the
corresponding depth image as input. As shown in (e), our method correctly identifies most
of the apparent edges of the cloth as folds, whereas the other methods fail to make this
distinction.

For the task of identifying cloth edges, we evaluate against three baselines:

• “Segment-Edge” segments the cloth from the table using RANSAC plane fitting.

A grasp point is randomly selected from the edge pixels of the segmentation.

The grasp direction is determined by the direction of the depth gradient at the

selected grasp point.

65

4. Cloth Region Segmentation for Robust Grasp Selection

• “Canny-Depth” applies Canny edge detection [16] to the depth image. The

grasp point is sampled uniformly from the set of edge points above an intensity

threshold. The grasp direction is determined by the depth gradient direction,

as in the above.

• “Canny-Color” is the same as Canny-Depth, except it applies Canny edge

detection to the gray-scaled color image. The grasp direction is determined by

the color gradient direction instead of depth.

See Fig. 4.7 for visualizations of these methods.

The results are shown in Table 4.1. We performed 3 trials with 10 grasps each to

estimate a mean and variance for each method. Our method significantly outperforms

the baselines in terms of grasp success. The network is largely able to correctly

distinguish between edges and folds, determine an appropriate grasp configuration

direction, and execute a successful grasp. Averaging over the trials, there were an

average of 2.7 failures out of 10 grasps due to misdetection, meaning that the grasp

point selected was not a real edge. There was an average of 0.3 failures out of 10

grasps due to failed grasping. See Sec. 4.4.2 for more details on failure cases.

The baselines perform poorly largely due to an inability to distinguish between

real cloth edges versus folds. Canny-Depth relies on the intensity of depth gradients

to find cloth edges, but depth gradients occur for both cloth edges and large folds.

Segment-Edge fails due to noisy segmentation; because the cloth is thin, parts of

the cloth can fall within the inlier threshold of the RANSAC table segmentation,

despite careful parameter tuning. Still, even with a clean segmentation, grasping at

an edge point on the segmentation mask often results in grasping a cloth fold for

our highly crumpled cloth configurations. Canny-Color uses color gradients to find

edges. It is less affected by noise compared to the depth-based baselines, as the white

cloth stands out from the darker background of the table, resulting in strong edges.

However, this method is still unable to discriminate between real cloth edges from

folds, resulting in failure in a majority of grasp attempts.

Our network is able to perform better than all of these baselines by using a learned

segmentation. The successful grasps are also of higher quality, meaning that the

grasps are more often flat with no folding of the cloth, and the edge is horizontal

to the gripper tip. In terms of execution time, the perception component of our

66

4. Cloth Region Segmentation for Robust Grasp Selection

method runs in approximately 0.25s, with the segmentation network contributing

approximately 0.14s to that total. Grasp execution is a larger bottleneck and requires

approximately 15s for all methods.

Table 4.1: Grasping Cloth Edges

Method Grasp Success

Canny-Depth 0.20± 0.00
Segment-Edge 0.30± 0.00
Canny-Color 0.33± 0.12
Our Method 0.70± 0.20

3 trials per method, 10 grasp attempts per trial

Grasping Cloth Corners

We also evaluated our method on grasping corners. Our method remains the same,

except that corners are used for grasp point selection instead of edges. The corners

still use correspondence with inner edges to determine grasp direction, as well as our

method for estimating grasp directional uncertainty described in Sec. 4.3.

For this task, we evaluated against the following baselines:

• “Harris-Depth” applies Harris corner detection [63] to the depth image. The

maximum intensity value is selected as the grasp point. The depth gradient

direction at the grasp point is used to determine the grasping direction, as in

the edge grasping experiments.

• “Harris-Color” takes a grayscaled RGB image as input and uses color gradients

to determine the grasping direction, but is otherwise the same as the above.

The results are shown in Table 4.2. Our method outperforms the baselines on

corner grasping, being able to more reliably detect corners in any cloth configuration.

Averaging over the trials, there were an average of 3 failures out of 10 grasps due to

misdetection. There were an average of 1.3 failures out of 10 grasps due to grasping

error. Our method performs worse on corners than on edges. Fewer regions of

the image are corners compared to edges, so false positives are more problematic.

Sec. 4.4.2 for details on failure cases.

67

4. Cloth Region Segmentation for Robust Grasp Selection

The baselines perform poorly for largely the same reason of misdetection as with

the edge experiments. The Harris-Depth baseline performs poorly because it looks

for large changes in the gradient in all directions, which could result in false positives

instead of real corners. Most of the grasp point selections from this baseline were

on wrinkles and folds than on the cloth. The Harris-Color baseline performs better

than depth, possibly because there are fewer false positives given the white on black

input images. White cloth corners against the darker workspace surface can be easily

detected; however, corners lying on top of the cloth are less likely to be detected.

For our difficult randomly crumpled cloth configurations, the corners are not always

cleanly visible against the surface, and often lie in configurations that are difficult to

discriminate in 2D.

Table 4.2: Grasping Cloth Corners

Method Grasp Success

Harris-Depth 0.05± 0.07
Harris-Color 0.33± 0.15
Our Method 0.57± 0.06

3 trials per method, 10 grasp attempts per trial

Ablations

We perform ablations on our method to determine the relative contribution of the

different components of our method to grasp success. Our full method consists of

segmenting cloth regions using a neural network (Sec. 4.3.3), determining the grasp

direction for all segmented edge/corner pixels using their nearest segmented inner

edge pixels (Sec. 4.3.4), and selecting a grasp point with the lowest grasp directional

uncertainty (Sec. 4.3.4).

We perform the following ablations of our method:

• “No-Direction-Prediction” still uses the cloth segmentation network of Sec. 4.3.3.

However, rather than determining the grasp direction using the methods of

Sec. 4.3.4 and Sec. 4.3.4, this ablation determines the grasp direction by fitting a

bounding box around the segmented outer edge pixels and setting the direction

to be the vector pointing to the center of the box. Instead of using the point

68

4. Cloth Region Segmentation for Robust Grasp Selection

with minimum directional uncertainty, it randomly selects the grasp point from

the set of outer edge pixels.

• “No-Directional-Uncertainty” still uses the cloth segmentation network of Sec. 4.3.3

as well as the method of Sec. 4.3.4 for determining the grasp direction. However,

rather than computing the grasp directional uncertainty to choose a grasp point

as in Sec. 4.3.4, this ablation chooses a grasp point randomly.

The results are shown in Table 4.3. The ablations under-perform the full method,

demonstrating that our method for estimating the grasp direction (Sec. 4.3.4) as well

as our method for estimating directional uncertainty (Sec. 4.3.4) help to choose more

robust grasps. We observe No-Direction-Prediction selecting grasp directions near-

parallel to real edges instead of orthogonally, because it always chooses directions

toward the center of the segmentation bounding box. The performance of No-

Directional-Uncertainty vs. No-Direction-Prediction provides evidence that using the

inner edge segmentation to determine the grasp direction improves grasp success.

Comparing our full method with No-Directional-Uncertainty shows that selecting the

grasp point with minimal directional uncertainty outperforms random grasp point

selection.

Table 4.3: Ablations on Grasping Cloth Edges

Method Grasp Success

No-Direction-Prediction 0.2
No-Directional-Uncertainty 0.4
Our Method 0.7± 0.20

1 trial per ablation, 10 grasp attempts in trial

Failure Cases

In this section we discuss the most frequent and notable failure cases. Examples of

these cases are in Fig. 4.8 and the supplementary video.

Failures occurred when the segmentation produced by our method contained errors.

Because the cloth is very thin and the depth images captured from our sensor are

noisy, the network can fail to get accurate segmentation at cloth edges (see Fig. 4.8,

69

4. Cloth Region Segmentation for Robust Grasp Selection

top row). This issue causes both false positives, in which pixels close to real edges

are included in the segmentation, and false negatives, in which the segmentation

does not include valid pixels. These segmentation errors affect the grasp selection

component that takes the segmentation as input. As a result, we sometimes observed

our method selecting grasp points on false positives, which were more likely to result

in grasp failures.

Failures also occurred due to grasping areas with valid edges but problematic

nearby cloth configurations. For example, overlapping edges can create the appearance

of a continuous segmentation, and a grasp on that area will result in grasping both

edges (see Fig. 4.8, bottom row). Developing a policy that can adapt to such

challenging configurations is an area of future work.

Failures due to motion planning to reach commanded poses happened infrequently,

such as when a selected grasp is in an unreachable robot configuration. These failures

are easily detected, so we re-execute our method to choose a different grasp point in

such cases.

(a) RGB Image. (b) Segmentation and Grasp
Prediction.

(c) Grasp execution.

Figure 4.8: Failure cases. (top row) Segmentation bleeds over real cloth edge, leading to
poor estimation of grasp height. (bottom row) Grasp fails to avoid grasping nearby folds
and edges (note that misdetection has also occurred).

70

4. Cloth Region Segmentation for Robust Grasp Selection

Robustness

We demonstrate that our network is robust to variations in visual texture and cloth

size by grasping other cloths (see Fig. 4.9 and supplementary video). Our network

can segment cloth with different colors and patterns because it only takes depth as

input. It can also segment cloths of different dimensions due to its fully convolutional

architecture.

(a) RGB Image. (b) Segmentation and Selected Grasp.

Figure 4.9: Our network is able to segment cloths of various sizes and visual texture. See
the supplementary video for grasping demonstrations on these cloths.

4.5 Conclusion

We present a method to segment real edges and corners of cloth (as opposed to creases

or folds) from depth images. Our method also determines a grasp configuration from

these segmentations that accounts for directional uncertainty. We demonstrate a

system that implements our approach to grasp cloths in crumpled configurations, and

we show that our method outperforms various baselines in terms of grasp success rate

71

4. Cloth Region Segmentation for Robust Grasp Selection

on grasping success.

72

Chapter 5

Learning to Singulate Layers of

Cloth based on Tactile Feedback

73

5. Learning to Singulate Layers of Cloth based on Tactile Feedback

74

5. Learning to Singulate Layers of Cloth based on Tactile Feedback

Abstract

Robotic manipulation of cloth has applications ranging from fabrics

manufacturing to handling blankets and laundry. Cloth manipulation

is challenging for robots largely due to their high degrees of freedom,

complex dynamics, and severe self-occlusions when in folded or crumpled

configurations. Prior work on robotic manipulation of cloth relies primar-

ily on vision sensors alone, which may pose challenges for fine-grained

manipulation tasks such as grasping a desired number of cloth layers

from a stack of cloth. In this thesis, we propose to use tactile sensing

for cloth manipulation; we attach a tactile sensor (ReSkin) to one of

the two fingertips of a Franka robot and train a classifier to determine

whether the robot is grasping a specific number of cloth layers. During

test-time experiments, the robot uses this classifier as part of its policy to

grasp one or two cloth layers using tactile feedback to determine suitable

grasping points. Experimental results over 180 physical trials suggest

that the proposed method outperforms baselines that do not use tactile

feedback and has better generalization to unseen cloth compared to meth-

ods that use image classifiers. Code, data, and videos are available at

https://sites.google.com/view/reskin-cloth.

75

https://sites.google.com/view/reskin-cloth

5. Learning to Singulate Layers of Cloth based on Tactile Feedback

5.1 Introduction

Cloth manipulation remains an active research area in robotics with significant real

world applications, including folding laundry [39, 119], assistive dressing [45, 46,

47, 207], bed-making [155], and manufacturing fabrics [175]. Cloth manipulation is

challenging because it is difficult to infer the complete configuration of the cloth from

robot observations when the cloth is in a crumpled or folded state, due to the high

degrees of freedom and self-occlusions [12, 151].

In light of these challenges, researchers have recently proposed numerous data-

driven methods for canonical cloth manipulation tasks such as smoothing [158, 197]

and folding [95, 122, 188]. While showing promising results, many prior works focus

on top-down grasping of one cloth. Such grasping may be ineffective for manipulation

tasks involving multiple cloths, such as picking a desired number of layers of a stack

of cloth, because performance is extremely sensitive to the height of the gripper when

it grasps. Indeed, a common failure case reported in prior work [54, 188] is picking

the wrong number of layers. Yet, manipulating a specific number of cloth layers

is common in daily life, such as in folding and unfolding tasks, or handling piles

of stacked clothing in stores. How, then, can robots achieve accurate grasping of

multiple layers of cloth?

Incorporating tactile sensing is an under-explored direction for deformable object

manipulation. While there has been recent work on optical-based tactile sensors such

as GelSight [208] and DIGIT [93], these sensors have primarily been applied to cloth

perception [108, 210] instead of cloth manipulation. Recent work on magnetometer-

based sensors such as ReSkin [8] have benefits over optical sensors, such as lower-

dimensional sensor readings, more direct measurements of normal and shear forces, and

a compact form factor. However, research into the applications of magnetometer-based

sensors for deformable object manipulation is currently limited.

In this thesis, we study the application of magnetometer-based tactile sensing for

deformable cloth manipulation. We focus on precisely grasping and lifting layers of

stacked cloth; due to the flexibility of cloth and unpredictable crumpling behavior,

this task is challenging while being a well-defined manipulation problem. Furthermore,

precise grasping of layers of cloth is a prerequisite for many downstream manipulation

tasks (e.g., folding cloth in half twice).

76

5. Learning to Singulate Layers of Cloth based on Tactile Feedback

Figure 5.1: We present a tactile-based cloth manipulation system. The robot utilizes a
ReSkin [8] sensor attached to the lower one of its two fingertips, which is visualized in more
detail in the upper right inset. We train a classifier to distinguish among grasping different
numbers of cloth layers from tactile feedback (no images are provided as input). The robot
then uses this classifier at test time to determine suitable grasping points for obtaining a
desired number of cloth layers.

We present a robotic system consisting of a 7-DOF Franka arm, a mini-Delta

gripper [120], and a Reskin [8] sensor on the gripper finger to perform precise

cloth grasping (see Fig. 5.1). The system uses a tactile classifier as feedback for a

grasping policy. We show that simple approaches to both classifying tactile data

and incorporating feedback into the policy (e.g., as a termination condition) work

surprisingly well.

This thesis chapter makes the following contributions:

1. A robot hardware system which incorporates ReSkin tactile sensors for cloth

manipulation.

2. A training procedure for developing a classifier based on this hardware to use

in a grasping policy.

3. Experiments showing success on the task of grasping a desired number of cloth

layers.

77

5. Learning to Singulate Layers of Cloth based on Tactile Feedback

5.2 Related Work

Manipulation of deformable objects such as cloth has a long history in robotics;

see Yin et al. [206] and Zhu et al. [212] for representative surveys.

5.2.1 Cloth Manipulation Policies

In early research on cloth manipulation, a common strategy was to utilize a bimanual

robot to grip cloth in midair to smooth it using gravity. This standardizes the configu-

ration of cloth and exposes its corners, which can then facilitate planning subsequent

manipulation tasks such as smoothing and folding [39, 119]. Other researchers have

relied on using geometric features of cloth, such as by fitting polygon contours to

clothing [127]. While these works showed impressive results, such approaches may be

time-consuming or require strong assumptions on cloth configurations.

With the rise of deep learning, researchers have recently employed data driven

techniques to obtain large amounts of interaction data with cloth to learn manipulation

policies using powerful function approximators, often with the help of simulators [105,

174]. These works tend to learn quasi-static pick-and-place policies, which allow the

cloth to settle between robot actions [54, 68, 106, 112, 144, 158, 159, 188, 197, 204].

Other researchers have learned continuous servoing policies [122], dynamic policies [60]

or have explored learning cloth manipulation from purely real world interaction [95].

In contrast to these works which employ vision-manipulation policies, we focus on

tactile sensing for cloth grasping.

5.2.2 Grasping for Cloth Manipulation

Perhaps the most important part of cloth manipulation tasks is cloth grasping, since a

suitable grasp is necessary for subsequent actions such as dragging or lifting. Defining

and identifying ideal cloth grasps remains challenging and is the subject of extensive

research [12]. Early cloth manipulation research focused on vertically smoothing via

gravity. A common such grasping strategy to reliably standardize cloth was to hold it

with one gripper while iteratively grasping the lowest hanging corner with the other

gripper [27, 87, 88, 119].

78

5. Learning to Singulate Layers of Cloth based on Tactile Feedback

Other cloth grasping techniques do not require assuming that the cloth is lifted

in midair. For example Ramisa et al. [146] and Sun et al. [165] determine suitable

grasping points for cloth on a flat table by detecting wrinkles and edges using depth

and classical computer vision techniques. Other applications of cloth manipulation

may utilize specialized gripper designs [90] or may simplify the process by assuming

that cloth is gripped in advance of the task [74].

Recently, Qian et al. [145] study how to robustly grasp cloth using dense segmen-

tation of images to distinguish between edges and interior creases. Their method

involves a self-supervised labeling procedure and a sliding grasp. Nonetheless, robustly

grasping cloth remains challenging, particularly when the goal is to generalize to

a wide variety of types and configurations of cloth. Prior work has reported that

a typical failure cases is grasping the wrong number of cloth layers, particularly

when unfolding [122, 158, 188]. Furthermore, many works employ heuristics such as

hand-tuning the gripper design and grasp depth [54].

Prior work has also investigated learning to grasp one cloth from a stack using

grasping and scooping actions from vision input only [29], as well as designing a robot

system to turn a single book page using vision and force sensing [58]. In this work, we

consider the novel task of grasping more than one cloth layer, and show the benefits

of tactile sensing without requiring vision.

5.2.3 Tactile Sensor Hardware

The robotics community has developed numerous tactile sensors. Examples of sensors

include the class of optical-based sensors such as GelSight [208], GelSlim [36], and

DIGIT [93], which have been used for cloth perception. For example, Yuan et al.

[210] demonstrate how to use active learning to identify where to grasp a garment

to classify it among several categories of clothing, and Yuan et al. [209] and Luo

et al. [108] study how to combine tactile information with vision to infer properties of

cloth. Similarly, Khan et al. [82, 83] use tactile information to classify single fabrics

into different material and clothing types using piezoelectric pressure sensors [30].

In addition, von Drigalski et al. [182] use tactile sensing and rubbing behavior to

classify textiles into one of 18 categories, and can distinguish between 1 or 2 layers.

In contrast to these works, we focus on cloth manipulation instead of pure perception,

79

5. Learning to Singulate Layers of Cloth based on Tactile Feedback

Figure 5.2: The proposed tactile-based cloth manipulation pipeline. A 7-DOF Franka robot
uses a mini-Delta [120] gripper with two finger tips, the lower one of which has a ReSkin [8]
sensor (see yellow circle and zoomed-in inset). Using this gripper, we collect tactile data
from the ReSkin by performing grasps of different categories: grasping nothing, or pinching
1, 2, or 3 cloth layers (see Fig. 5.3 for more examples). The graphs above visualize the
tactile time series data. At test time, the robot uses the trained tactile-based classifier to
grasp a desired number of cloth layers.

and additionally focus on fine-grained manipulation which may be challenging with

sensors such as the GelSight due to their relatively large size.

Other types of robotic tactile sensors include BioTac [166] and stretchable piezore-

sistive [7] sensors. These sensors are durable, but remain expensive and may not

be easily replaceable. Research teams have also explored tactile sensing using a

customized force-torque sensor [129] for manipulating deformable blocks [152]. To

our knowledge, none of these sensors have been used for cloth manipulation tasks.

Recently, Bhirangi et al. [8] proposed the ReSkin, a class of magnetic sensors which

is well suited to machine learning due to its low cost, durability, form factor, ability

to cover a large area, and ease of replacement. The researchers demonstrate ReSkin

on robotic grasping tasks that involve handling delicate objects such as blueberries

and grapes. Due to these advantages and existing applications, we use the ReSkin for

novel cloth manipulation tasks that involve fine-grained manipulation of cloth layers.

5.3 Problem Statement

We study the task of grasping a desired number of layers from a stack of cloths.

Given a set of at least 3 cloth layers stacked on each other, the goal is to grasp the

80

5. Learning to Singulate Layers of Cloth based on Tactile Feedback

top k ∈ {1, 2} cloth layers. For each trial (a given instance of the task), we specify

a target value for k. We assume a robot has a two-finger gripper where one of the

gripper tips is equipped with a tactile sensor. We assume each trial begins with the

robot’s tactile sensor facing a set of edges from a stack of cloth layers, as shown in

Fig. 5.1. A trial is a success when the robot grasps exactly k cloth layers and is able

to lift its gripper upwards by 4 cm while preserving its grasp of the k layers.

5.4 Approach

This proposed system for tactile sensing involves designing hardware with tactile

data (Sec. 5.4.1), training a classifier to distinguish grasping cloth layers (Sec. 5.4.1),

then using this classifier for a grasping policy (Sec. 5.4.2). See Fig. 5.2 for the overall

pipeline.

5.4.1 Hardware

The proposed system uses a ReSkin [8] sensor, which comprises of a soft magnetized

skin and a circuit board with a 5-magnetometer array (see bottom-left inset of Fig. 5.2).

The board sits beneath the skin, and any deformations caused by normal/shear forces

are read via distortions in magnetic fields. For each of the 5 magnetometers, 3

magnetic flux values ⟨BX , BY , BZ⟩ are reported, corresponding to flux in the X-, Y-,

and Z- magnetometer coordinate axes. Concatenating these values for a single time

step t results in a 15-dim vector B(t) ∈ R15. ReSkin publishes these values at up to

400Hz.

We attach ReSkin to a finger on a mini-Delta gripper [120]. We use the mini-Delta

largely due to its length and form factor, since it facilitates grasping a layered stack

of cloth folds by approaching it from the side, instead of top-down. The mini-Delta

has 3 DOFs for each finger, and is compliant due to the 3D-printed soft links (blue

component in Fig. 5.1), though in this work, we do not rely on the additional DOFs

or on compliance. Our contribution centers on tactile sensing for grasping of cloth

layers, and we leave investigation of exploiting additional DOFs and compliance for

future work. The gripper and attached sensor are mounted on a 7-DOF Franka robot.

81

5. Learning to Singulate Layers of Cloth based on Tactile Feedback

Figure 5.3: Examples of collecting data for tactile-based classification, with the ReSkin
attached to the bottom gripper finger tip. From left to right, we show two examples each
of collecting data with (1) contact, but without cloth, (2) 1 cloth layer, (3) 2 cloth layers,
and (4) 3 cloth layers. The classifier only takes as input the data collected from the ReSkin
sensor B(t) at any give time step. As a baseline for comparison, we also train an image-based
classifier which uses the RGB images above, which are collected with a webcam. See Sec. 5.4
for further details.

Grasp Classifier Training

We train a classifier to predict the number of cloth layers grasped to use as part of the

grasp policy (Sec. 5.4.2). The classifier takes as input a tactile reading from a single

time step B(t). While analyzing sensory data across a time series seems natural for

the tactile modality, we find that predictions based on point estimates are surprisingly

effective, as we later show in Sec. 5.6. We do not take proprioceptive data as input,

as this modality is not currently available with the mini-Delta gripper: the compliant

links can bend from their commanded position given sufficiently high external force,

and estimating proprioception for these types of compliant links is an area of active

research.

The classifier uses the tactile readings to predict how the gripper is interacting

with the cloth, among 4 classes: (1) pinching with no cloth between the fingers, (2)

pinching 1 cloth layer, (3) pinching 2 cloth layers, and (4) pinching 3 cloth layers.

82

5. Learning to Singulate Layers of Cloth based on Tactile Feedback

We limit the number of cloth layers under consideration to 3 to make classification

tractable, while also allowing feedback-based policies to recover if they overshoot

when grasping two layers. We leave classifying an arbitrary number of layers to future

work.

We collect training data in the real world for the classifier due to the lack of a

suitable simulator.1 We define a single “training episode” as the process of getting

a set of tactile data from one grasp. First, a human stacks several layers of cloth

with edges facing the gripper. The height at which the robot approaches the cloth is

uniformly sampled per attempt within a ±2mm range to collect a variety of grasps.

The robot then approaches the cloth, closes its fingertips to grasp firmly, records

ReSkin data during the grasp, then releases. Each training episode lasts roughly 5

seconds and produces approximately 350 sensor readings of 15 values each (3 per

magnetometer). We visually inspect videos from the recorded data to determine the

number of grasped cloth layers, and we label all points from a training episode with

the same label, speeding up annotation time and effort. See Fig. 5.3 for example

visualizations of training episodes for all classes.

We then use this collected data to train a classifier to distinguish the numbers

of layers grasped from the tactile readings. We experimented with various types

of classifiers, including k-Nearest Neighbor (kNN), SVM, Logistic Regression, and

Random Forests, and we found the performance to be fairly similar across classifiers.

For simplicity, we use a k-Nearest Neighbor (kNN) classifier with k = 10 neighbors.

5.4.2 Proposed Grasp Policy

Next we describe how we use the above trained classifier to enable the robot to grasp

the desired number of layers. We divide the robot trajectory into three parts. First,

the gripper moves vertically down by a distance dvert, then horizontally towards the

cloth stack by a distance dslide, then lifts up by a distance dlift, then closes its gripper

tips (see Fig. 5.4 for a visualization). At this point, we record tactile data and classify

the number of layers that are grasped. If the predicted number of grasped layers

(according to the classifier) matches the target number of grasped layers, it lifts the

1While there has been progress in developing high-fidelity simulators for tactile sensors [161, 185]
and for deformables [105, 114], simulating both is challenging and to our knowledge has not yet
been shown.

83

5. Learning to Singulate Layers of Cloth based on Tactile Feedback

Figure 5.4: The proposed grasp policy parameterization (described in Sec. 5.4.2), visualized
with a frame-by-frame overview of an example trial from the experiments. Each row,
consisting of four frames, shows one action. The first part of an action (shown in frames
1 and 5) adjusts the initial gripper height by dvert, possibly from prior tactile feedback.
The second part of an action (shown in frames 2 and 6) moves towards the cloth stack
by some distance dslide. Then, the third part (frames 3 and 7) lifts upwards by dlift and
closes the grippers. At this point, the robot queries the classifier and may decide to release
and re-attempt the grasp (frames 4 and 5) or the robot concludes that it has grasped the
correct number of layers and further lifts the cloth to end the trial (frame 8).

gripper further by 4 cm to indicate the end of the trial; otherwise, it resets the gripper

back to the starting position and tries again (see below for details). The values of

dslide and dlift are tuned and fixed ahead of time by a human operator, while dvert is

determined by the policy, as explained below.

The grasping policy uses the output of the grasp classifier (Sec. 5.4.1) to determine

the vertical distance that the gripper lowers before grasping, dvert. For a target number

of layers k to grasp, the robot begins at some height with the grippers open, moves

towards the cloth stack, and attempts a grasp. If the grasp classifier determines that

it has not grasped the correct number of layers, then the robot releases, moves back,

and adjusts the gripper height (dvert). If the classifier predicts that it has grasped

too many layers, dvert is decremented by a small value to decrease the grasp height; if

it has grasped too few, dvert is incremented by a small value. The policy continues

until either the classifier determines that it has grasped the desired number of layers

and ends the trial, or until the maximum number of grasp attempts is reached.

During each grasp attempt on the physical system, the classifier starts predicting

84

5. Learning to Singulate Layers of Cloth based on Tactile Feedback

the class once the gripper closes, and stops predicting after the robot lifts by dvert.

This results in a set of about 160 separate predictions. We use the mode of all the

predictions as the final prediction to determine whether to raise or lower the grasp

height.

5.5 Physical Experiments

We evaluate the methods using the physical system described in Sec. 5.4.1. The

experiments are designed to answer the following questions:

• Can magnetometer-based tactile sensing with ReSkin sensors provide sufficient

information about grasping a target number of cloth layers?

• What are the benefits of the proposed method that uses tactile-based feedback

to adjust the gripper height?

• Can a classifier trained on tactile feedback generalize to different cloths?

5.5.1 Experiment Protocol

We train our tactile classifier on a gray cloth; we then evaluate our system on the

gray training cloth and on two other unseen cloths to measure the generalization of

our method to new cloths (see Fig. 5.6). We use the same training data from the gray

cloth for all of the tactile-based method variations described in Sec. 5.5.2. The tactile

data collection results in a total of 18,838 such B(t) readings. We train a classifier on

95% of the training episodes (to allow for a small validation set). We normalize the

tactile data so that each of the 15 features has mean 0 and variance 1 in the training

set.

We perform two sets of experiments, in which we set the desired number of cloth

layers to grasp as one layer and two layers, respectively. Each trial begins with a

human arranging folded cloths on the workspace with edges exposed and facing the

robot gripper. The number of folded cloths is the same across trials, but variations

in the depth of the layers up to 1.5mm can occur due to slight differences in the

initial cloth configuration. We initialize the robot’s gripper at an angle (30°) which
increases the likelihood that a horizontal motion can slide the robot finger tips in

between layers of cloth.

85

5. Learning to Singulate Layers of Cloth based on Tactile Feedback

Figure 5.5: An example grasping failure case of the task. Due to an insufficiently robust
grasp when lifting (left), the layers may slip out of the robot’s control during the lifting
portion (right).

Each experiment set consists of comparing several grasping methods (see Sec. 5.5.2).

When running experiments, we randomly sample the method to run in the given trial

after the cloths have been set, to reduce potential human bias in the data initialization.

The robot employs the selected method to grasp the appropriate number of cloth

layers. The robot is allowed up to T = 10 actions per trial, though it can terminate

earlier if the classifier estimates that it has grasped the appropriate number of layers.

Upon termination, the robot lifts the gripper by 4 cm and a human measures this as

a success if the correct number of layers are still grasped. All other cases result in

the trial as a failure.

We categorize failures into two types, prediction and grasping failures. Prediction

failures are a result of mis-predictions by the trained classifier, where it either: (1)

incorrectly predicts that the robot has grasped the desired number of layers and

terminates the trial prematurely, or (2) the classifier incorrectly predicts that the

robot has grasped the wrong number of layers, causing unnecessary regrasps and

leading to the robot reaching the max number of attempts for the trial. Grasping

failures are due to either failing to grasp the desired number of layers at the last time

step in a trial, or failing to robustly grasp the cloth, such that cloth layers slip out of

the robot’s control when lifting (see Fig. 5.5).

86

5. Learning to Singulate Layers of Cloth based on Tactile Feedback

Figure 5.6: The cloths we use for experiments. We use the gray towel (left) for training, and
test on all 3 cloths for evaluation. The white towel and patterned cloth test generalizing to
novel cloths. The cloths have thicknesses between 3-5 mm and variation in surface texture
and stiffness.

5.5.2 Methods and Baselines

We evaluate the following methods for grasping 1 and 2 cloth layers:

1. Fixed-Open-Loop: Initialize the gripper at a fixed height, manually tuned for

grasping 1 or 2 cloth layers: d
(1)
vert and d

(2)
vert respectively. This method terminates

after a single trial as it has no access to feedback.

2. Random-Tactile: Randomly try different gripper heights within the range[
d
(2)
vert − 2mm, d

(1)
vert + 2mm

]
until the tactile classifier determines that the cor-

rect number of layers have been grasped.

3. Random-Image: Same as Random-Tactile, but uses an image classifier (instead

of a tactile classifier) to determine when the correct number of layers has been

grasped. The image classifier is an 18-layer ResNet [64] pre-trained on ImageNet

and finetuned on the images from the same training episodes used to train the

tactile classifier.

4. Feedback-Image: Same as Feedback-Tactile (our method, below) except with

the image classifier.

5. (Ours) Feedback-Tactile: Initialize the gripper height to d
(1)
vert + 2mm; use

the grasp policy described in Sec. 5.4.2 to adjust the height per grasp (±2mm)

based on the tactile classifier predictions.

87

5. Learning to Singulate Layers of Cloth based on Tactile Feedback

Class \Prediction 0 1 2 3

0 (0 Layers) 1.000 0.000 0.000 0.000
1 (1 Layer) 0.000 0.999 0.000 0.001
2 (2 Layers) 0.030 0.003 0.866 0.100
3 (3 Layers) 0.128 0.256 0.138 0.478

Table 5.1: The average normalized confusion matrix from the cross-validation training
results for the k-nearest neighbor classifier we use for tactile-based experiments.

5.6 Results

We first present results from training a classifier on ReSkin data followed by physical

experiment results in which we run 10 trials for each method and condition.

5.6.1 The Tactile Classifier

To better understand the kNN performance, we perform 100 folds of cross-validation

and average the validation performance. Each entire training episode is assigned to

either the training or validation set.

Table 5.1 demonstrates the average normalized confusion matrix obtained from

these 100 cross-validation runs, and also reports the average per-class accuracy.

We also computed the average balanced accuracy metric [181] to consider the data

imbalance and obtain 0.84± 0.06. Inspecting the confusion matrix, we find that

the tactile classifier can classify classes 0 (i.e., pinching with no cloth between the

fingers) and 1 (i.e., pinching 1 cloth layer) with extremely high effectiveness. Results

for classes 2 and 3 suggest that identifying 2 and 3 cloth layers is more challenging.

5.6.2 Grasping 1 Cloth Layer

In the first set of physical experiments, we report the success and failures of methods

on grasping and lifting the top layer of cloth from a stack. See Table 5.2 for results.

Our method, Feedback-Tactile, succeeds at grasping one layer of cloth in all 10 trials,

whereas all competing ablations have lower success rates. Methods with the tactile

classifier outperform those using the image classifier, with most failures attributed to

mis-prediction rather than poor grasping.

88

5. Learning to Singulate Layers of Cloth based on Tactile Feedback

Cloth Type Method
Success Prediction Grasp

Attempts ↓
Rate ↑ Failure Failure

Gray Towel (Train)

Fixed-Open-Loop 6/10 - 4/10 1 (fixed)
Random-Image 5/10 5/10 0/10 1.8±0.7
Random-Tactile 6/10 3/10 1/10 4.8±2.8
Feedback-Image 8/10 2/10 0/10 2.3±0.8
Feedback-Tactile 10/10 0/10 0/10 3.1±1.0

White Towel (Generalization)
Feedback-Image 3/10 5/10 2/10 1.6±0.5
Feedback-Tactile 8/10 0/10 2/10 2.3±0.8

Patterned Cloth (Generalization)
Feedback-Image 2/10 8/10 0/10 5.1±4.3
Feedback-Tactile 7/10 2/10 1/10 4.6±3.2

Table 5.2: Results for the first set of physical experiments described in Sec. 5.6.2 with
grasping at 1 cloth layer. We run all methods for 10 trials each and report the success
rate, the failure types (grasping and prediction failures), and the average number of grasp
attempts per trial.

The fixed-height open loop method (Fixed-Open-Loop) poorly handles variations

in the initial cloth configuration. There can be up to 1.5mm variation in the height

of the cloth stack based on how they are placed at the start of the trial, which

can lead to failures in the open loop grasping method. Both random grasping

approaches, Random-Image (5/10) and Random-Tactile (6/10) have lower success

rates compared to using feedback-based height adjustment with Feedback-Image

(8/10) and Feedback-Tactile (10/10).

For testing generalization, Feedback-Tactile significantly outperforms Feedback-

Image on the white towel and patterned cloth. Feedback-Tactile obtains 8/10 and 7/10

success rates for the white towel and patterned cloth, respectively, while Feedback-

Image only succeeds in 3/10 and 2/10 trials.

We have analyzed the failure types of each method in Table 5.2. Grasping failures

are rare for most methods on 1-layer grasping; grasping failures can occur if the robot

does not robustly grip the cloth, and cloth slips out of the grasp when the robot lifts

it (see Fig. 5.5). Our method (Feedback-Tactile), also has few prediction failures

when generalizing to unseen cloths compared to Feedback-Image.

89

5. Learning to Singulate Layers of Cloth based on Tactile Feedback

Cloth Type Method
Success Prediction Grasp

Attempts ↓
Rate ↑ Failure Failure

Gray Towel (Train)

Fixed-Open-Loop 7/10 - 3/10 1 (fixed)
Random-Image 6/10 1/10 3/10 5.3±3.0
Random-Tactile 4/10 4/10 2/10 6.0±3.0
Feedback-Image 9/10 0/10 1/10 4.7±0.9
Feedback-Tactile 7/10 1/10 2/10 6.4±2.6

White Towel (Generalization)
Feedback-Image 0/10 8/10 2/10 9.2±1.8
Feedback-Tactile 4/10 2/10 4/10 5.0±3.4

Patterned Cloth (Generalization)
Feedback-Image 0/10 10/10 0/10 10.0±0.0
Feedback-Tactile 1/10 3/10 6/10 6.4±3.6

Table 5.3: Experimental results for grasping at the top 2 cloth layers as described in
Sec. 5.6.3. Besides the change of 1 to 2 layers, the results are formatted in the same way as
in Table 5.2.

5.6.3 Grasping 2 Cloth Layers

In the next set of experiments, we evaluate grasping and lifting the top two layers of

cloth. The results in Table 5.3 suggest that the methods achieve success rates similar

to 1-layer grasping (Table 5.2) for the gray towel, but performance is lower on the

unseen cloths. While Feedback-Image performs slightly better than Feedback-Tactile

on the gray towel, Feedback-Tactile performs slightly better on unseen cloths.

Table 5.3 shows that both prediction and grasping failures lead to errors for our

method (Feedback-Tactile), though grasping failures are more common (accounting

for 2/3 of our total failures). The higher incidence of grasp failures by our method in

this experiment suggests that 2-layer grasping is more difficult than 1-layer grasping.

Fig. 5.7 highlights some challenges with grasping two layers; for example, we observe

that failures tend to occur due to crumpling the fabric when attempting to grasp 2

layers. Furthermore, the top layer of cloth can push downwards on the layer below

it, which reduces the gap between the second and third layers; this reduced gap can

make it difficult to grasp 2 layers. These observations and results suggest that further

innovation on grasp policies may be necessary to improve 2-layer grasp performance

on unseen cloths.

90

5. Learning to Singulate Layers of Cloth based on Tactile Feedback

Figure 5.7: A qualitative example of how the task is challenging, particularly with grasping
two layers. Because of the horizontal motion of the gripper, layers of cloth can be pushed
apart (left), creating air pockets between the top and second layer after the action has
finished (right). This gap makes it easier to grasp the top layer but harder to grasp the top
two layers, due to a smaller gap between the second and third layers (see overlaid yellow
circle).

5.7 Conclusion

In this thesis chapter, we present a robotic system that uses magnetometer-based

tactile sensing for precisely grasping layers of cloth. We train a classifier on tactile

sensor readings from a ReSkin sensor. At test time, the classifier determines the

number of layers of cloth grasped, which informs the policy to adjust the height of

the gripper for subsequent grasp attempts. The system obtains strong results with

grasping the top 1 or 2 cloth layers out of a stack of cloth, and generalizes to unseen

cloth. We hope this work motivates future research on tactile-based robotic policies

that can manipulate a wide variety of complex objects.

91

5. Learning to Singulate Layers of Cloth based on Tactile Feedback

92

Chapter 6

FabricFlowNet: Bimanual Cloth

Manipulation with a Flow-based

Policy

93

6. FabricFlowNet: Bimanual Cloth Manipulation with a Flow-based Policy

94

6. FabricFlowNet: Bimanual Cloth Manipulation with a Flow-based Policy

Abstract

We address the problem of goal-directed cloth manipulation, a chal-

lenging task due to the deformability of cloth. Our insight is that optical

flow, a technique normally used for motion estimation in video, can also

provide an effective representation for corresponding cloth poses across

observation and goal images. We introduce FabricFlowNet (FFN), a

cloth manipulation policy that leverages flow as both an input and as

an action representation to improve performance. FabricFlowNet also

elegantly switches between dual-arm and single-arm actions based on

the desired goal. We show that FabricFlowNet significantly outperforms

state-of-the-art model-free and model-based cloth manipulation policies.

We also present real-world experiments on a bimanual system, demon-

strating effective sim-to-real transfer. Finally, we show that our method

generalizes when trained on a single square cloth to other cloth shapes,

such as T-shirts and rectangular cloths. Video and other supplementary

materials are available at: https://sites.google.com/view/fabricflownet.

95

https://sites.google.com/view/fabricflownet

6. FabricFlowNet: Bimanual Cloth Manipulation with a Flow-based Policy

6.1 Introduction

Cloth manipulation has a wide range of applications in domestic and industrial

settings. However, it has posed a challenge for robot manipulation: compared to

rigid objects, fabrics have a higher-dimensional configuration space, can be partially

observable due to self-occlusions in crumpled configurations, and do not transform

rigidly when manipulated. Early approaches for cloth manipulation relied on scripted

actions; these policies are typically slow and do not generalize to arbitrary cloth goal

configurations [6, 40, 118].

Recently, learning-based approaches have been explored for cloth manipulation [67,

136, 157, 158, 203], including model-free reinforcement learning to obtain a policy [96,

196]. For a cloth manipulation policy to be general to many different objectives, it

must receive a representation of the current folding objective. A standard approach

for representing a goal-conditioned policy is to input an image of the current cloth

configuration together with an image of the goal [96, 157].

We will show a number of downsides to such an approach when applied to cloth

manipulation. First, the policy must learn to reason about the relationship between

the current observation and the goal, while also reasoning about the action needed to

obtain that goal. These are both difficult learning problems; requiring the network

to reason about them jointly exacerbates the difficulty. Additionally, previous work

has used reinforcement learning (RL) to try to learn such a policy [96, 196]; however,

a reward function is a fairly weak supervisory signal, which makes it difficult to

learn a complex cloth manipulation policy. Finally, while many desirable folding

actions are more easily and accurately manipulated with bimanual actions, previous

learning-based methods for goal-conditioned cloth manipulation have been restricted

to single-arm policies.

In this thesis, we introduce FabricFlowNet (FFN), a goal-conditioned policy for

bimanual cloth manipulation that uses optical flow to improve policy performance

(see Fig. 6.1). Optical flow has typically been used for video-related tasks such as

object tracking and estimating camera motion. We demonstrate that flow can also

be used in the context of policy learning for cloth manipulation; we use an optical

flow-type network to estimate the relationship between the current observation and a

sub-goal. We use flow in two ways: first, as an input representation to our policy;

96

6. FabricFlowNet: Bimanual Cloth Manipulation with a Flow-based Policy

second, after estimating the pick points for a pick-and-place policy, we query the flow

image to determine the place actions. Our method is learned entirely with supervised

learning, leveraging ground truth particles from simulation. Our method learns purely

from random actions without any expert demonstrations during training and without

reinforcement learning.

Our learned policy can perform bimanual manipulation and switches easily between

dual and single-arm actions, depending on what is most suitable for the desired goal.

Our approach significantly outperforms our best efforts to extend recent single-arm

cloth manipulation approaches to bimanual manipulation tasks [67, 96]. We present

experiments on a dual-arm robot system and in simulation evaluating our method’s

cloth manipulation performance. FabricFlowNet outperforms state-of-the-art model-

based and model-free baselines, and we provide extensive ablation experiments to

demonstrate the importance of each component of our method to the achieved

performance. Our method also generalizes with no additional training to other cloth

shapes and colors. This thesis chapter contributes:

• A novel flow-based approach for learning goal-conditioned cloth manipulation

policies that can perform dual-arm and single-arm actions.

• A test suite for benchmarking goal-conditioned cloth folding algorithms encom-

passing and expanding on goals used in previous literature [53, 67, 96]; we perform

extensive experiments using this test suite to evaluate FabricFlowNet (FFN),

baselines [67, 96], and ablations, demonstrating that FFN outperforms previous

approaches.

• Experiments to demonstrate that FFN generalizes to other cloth colors and shapes,

even without training on such variations.

6.2 Related Work

Bimanual Manipulation. A large body of research exists on dual-arm, or bimanual,

manipulation [163]. Dual-arm systems allow for more complex behaviors than single-

arm systems at the cost of greater planning complexity [43, 160], leading to research

on closed kinematic chain planning [11, 169], composable skill learning [20, 200],

and rewarding synergistic behavior [21]. Prior work has also explored bimanual

97

6. FabricFlowNet: Bimanual Cloth Manipulation with a Flow-based Policy

Figure 6.1: FabricFlowNet (FFN) overview. We collect a dataset of random actions and
ground truth flow to train FFN. FFN learns to predict flow and uses it as both an input
and action representation in a manipulation policy. FFN successfully performs single and
dual-arm folding in the real world.

cloth manipulation [150], including establishing a diverse set of benchmark tasks [56].

Cloth manipulation is a highly underactuated task, and bimanual manipulation

enables controlling multiple cloth points [13]. A common approach for cloth flattening

is to lift a cloth with one arm and regrasp it with the other arm until it reaches

the flattened configuration [6, 26, 40, 102, 118]. Previous work in this direction

uses hard-coded policies [6, 40, 118], whereas we learn to achieve arbitrary folded

configurations. Tanaka et al. [170] learn bimanual actions for goal-conditioned folding,

using a voxel-based dynamics model to predict how actions will change the cloth state.

However, optimizing this dynamics model can slow down inference time compared to

our model-free approach. Dynamic bimanual manipulation has also been explored

in simulation from ground-truth keypoints [73] and for unfolding cloth in the real

world [60]; we perform real-world bimanual folding using depth image observations.

Learning for Cloth Manipulation. Prior works have proposed various hand-

defined representations for cloth manipulation, such as parameterized shape mod-

els [126] or binary occupancy features [101]. Recent approaches use contrastive

learning to learn pixel-wise latent embeddings for cloth [17, 53]. Both contrastive

learning [53] and goal-conditioned transporter networks [157] have been applied to

imitate expert demonstrations. Our approach doesn’t require expert actions, just

sub-goal states provided at test-time to define the task. In contrast to these previous

representations, our method uses a flow-based representation, which we found to

significantly outperform previous methods for goal-based cloth manipulation.

98

6. FabricFlowNet: Bimanual Cloth Manipulation with a Flow-based Policy

Other approaches have applied policy learning techniques to single-arm cloth

smoothing [158, 196]. In contrast, we learn a policy that performs either single and

dual-arm cloth manipulation; further, our focus is on goal-conditioned cloth folding,

rather than smoothing. For cloth manipulation, Lee et al. [96] learns a model-free

value function, but is limited by its discrete action space, and further, they do not use

a flow-based representation, which we show leads to large benefits. Prior methods for

learning goal-conditioned policies have used self-supervised learning to learn an inverse

dynamics model for rope [136, 141] but such approaches have not been demonstrated

for cloth manipulation. Lippi et al. [107] plan cloth folding actions in latent space,

but do not demonstrate generalization to unseen cloth shapes. Other papers use an

online simulator [102], or learn a cloth dynamics model in latent space [203], pixel-

space [67], or over a graph of keypoints [111]. Unlike these model-based methods,

our method is model-free and does not require online simulation or time-expensive

CEM planning, leading to much faster inference. Further, we compare our approach

to state-of-the-art approaches for cloth manipulation [67, 96] and show significantly

improved performance.

Optical Flow for Policy Learning. Optical flow is the task of estimating

per-pixel correspondences between two images, typically for video-related tasks

such as object tracking and motion estimation. State-of-the-art approaches use

convolutional neural networks (CNN) to estimate flow [37, 72, 171]. Optical flow

between successive observations has previously been used as an input representation

to capture object motion for peg insertion [35] or dynamic tasks [2]. Within the

domain of cloth manipulation, Yamazaki et al. [202] similarly use optical flow on

successive observations to identify failed actions. We use flow not to represent motion

between successive images, but to correspond the cloth pose between observation and

goal images, and to determine the placing action for folding. Argus et al. [3] use flow

in a visual servoing task to compute residual transformations between images from a

demonstration trajectory and observed images. In contrast, we learn a policy with

flow to determine what cloth folding actions to take, not how to servo to a desired

pose.

99

6. FabricFlowNet: Bimanual Cloth Manipulation with a Flow-based Policy

6.3 Learning a Goal-Conditioned Policy for

Bimanual Cloth Manipulation

6.3.1 Problem Definition

Our objective is to enable a robot to perform cloth folding manipulation tasks. Let

each task be defined by a sequence of sub-goal observations G : {xg
1, x

g
2, . . . , x

g
N}, each

of which can be achieved by a single (possibly bimanual) pick-and-place action from

the previous sub-goal. We require sub-goals, rather than a single goal, because a

folded cloth can be highly self-occluded such that a single goal observation fails to

describe the full goal state. Defining a task using a sequence of sub-goals is found in

other recent work [141]. Similar to prior work [136, 141], even if the sub-goals are

obtained from an expert demonstration, we nonetheless do not assume access to the

expert actions; this is a realistic assumption if the sub-goals are obtained from visual

observations of a human demonstrator.

We assume that the agent does not have access to the sub-goal sequence G during

training that it must execute during inference. Thus, the agent must learn a general

goal-conditioned policy at = π(xt,G), where xt is the current observation of the cloth

and at ∈ A is the action selected by the policy. In our approach, we input each

sub-goal xg
i sequentially to our policy: at = π(xt, x

g
i). A goal recognizer [141] can

also be used to decide which sub-goal observation to input at each timestep. For

convenience, we will interchangeably refer to xg
i as a goal or sub-goal.

6.3.2 Overview

A common approach for a goal-conditioned policy is to input the current observation

xt and the goal observation xg
i directly into to a neural network representation of

a policy [96, 141] or a Q-function [96, 196]. However, the network must reason

simultaneously about the relationship between the observation and the goal, as well

as the correct action to achieve that goal. Our first insight is that we can improve

performance by separating these two components: we will learn to reason about the

relationship between the observation and the goal, and separately use this relationship

to reason over actions. Specifically, we represent this relationship using a “flow image”

100

6. FabricFlowNet: Bimanual Cloth Manipulation with a Flow-based Policy

(a) Naive system (b) FabricFlowNet (FFN)

Figure 6.2: (a) A naive approach to goal-conditioned policy learning is to input observation
and goal images directly to the policy and predict the action. (b) FabricFlowNet separates
representation learning from policy learning; it first estimates the correspondence between
the observation and goal as a flow image. The flow is then used as the input to PickNet for
pick point prediction, and as a way to compute place points without requiring additional
learning.

f , which indicates the correspondence between the current observation xt and sub-goal

xg
i . Thus we propose using the flow image f as an improved input representation of

the policy, rather than directly inputting the observation xt and goal observation xg
i .

Our second insight is that we can also use flow in the output representation of

the policy. We use a pick and place action space; prior methods that learn pick and

place policies for deformable object manipulation predict place points using the policy

network, either explicitly [136, 141, 157, 158, 196, 203] or implicitly by transforming

the inputs to a Q-function [96]. Instead, we simplify the problem by leveraging flow:

our policy network only learns to predict the pick points. For the place point, we

query the flow image f for the flow vector starting at the predicted pick location, and

use the endpoint of that vector as the place point.

We demonstrate that using flow in the two ways described above for our policy

achieves significantly improved performance compared to prior work. Furthermore,

our approach extends naturally to dual-arm manipulation, allowing us to easily

transition between single and dual-arm actions.

A schematic overview of our system can be found in Fig. 6.2b. We first compute

the flow f between the current observation xt and goal xg
i . Next, we input the flow f

to a policy network (PickNet), which outputs pick points pi. We then query the flow

image f(pi) to determine the place points for each robot arm. Further details of our

approach are described below.

101

6. FabricFlowNet: Bimanual Cloth Manipulation with a Flow-based Policy

6.3.3 Estimating Flow between Observation and Goal

Images

We learn flow to use it as an input representation to our pick prediction network,

and as an action representation for computing place points. Given an observed depth

image xt and desired goal depth image xg
i , we estimate the flow f = (f 1, f 2), mapping

each pixel (u, v) in xt to its corresponding coordinates (u′, v′) = (u+ f 1(u), v+ f 2(v))

in xg
i . This task formulation differs from standard optical flow tasks as the input

image pairs (xt, x
g
i) are not consecutive images from video frames.

To capture the complex correspondences between xt and xg
i , we train a convo-

lutional neural network to estimate the flow image f (see Appendix for details).

The training loss we use to supervise the network is endpoint error (EPE), the

standard error for optical flow estimation. EPE is the Euclidean distance between

the predicted flow vectors f and the ground truth f ∗, averaged over all pixels:

LEPE = 1
N

∑N
i=1 ∥f ∗ − f∥2. We use a cloth simulation to collect training examples

with ground truth flow. The simulator provides the ground-truth correspondence

between the particles of the cloth in different poses. The simulation cloth particles

are not as dense as the depth image pixels; as a result, we only have ground-truth

flow supervision for a sparse subset of the pixels that align with the cloth particles.

Thus, we mask the loss to only supervise the flow for the pixels that align with the

location of the cloth particles. We train the flow network using data collected from

random actions. See Sec. 6.3.6 for more details on the simulator, data collection, and

network training.

6.3.4 Learning to Predict Pick Points

Our bimanual action space A consists of actions a = (p1, p2, q1, q2), where p and q

are the pick and place points respectively, paired according to the subscripts. We

train a neural network called PickNet to estimate the pick points p1, p2. Crucially,

the input to PickNet is a flow image f , estimated between the current depth image xt

and the desired goal depth image xg
i , as described in the previous section. The flow

image indicates, for each pixel (u, v) in the current observation, the location f(u, v)

that the pixel has moved to in the goal observation. Our flow network (Sec. 6.3.3

102

6. FabricFlowNet: Bimanual Cloth Manipulation with a Flow-based Policy

Figure 6.3: PickNet architecture. We utilize a two-network architecture for bimanual
manipulation, where the second pick point is conditioned on the prediction of the first pick
point.

above) reasons about the observation-goal relationship, so that the policy network

(PickNet) only needs to reason about the action, specifically the two pick points (p1,

p2); computing the place points is described in Sec. 6.3.5.

For dual-arm actions, the pick points must be estimated conditionally, as the

location of pick point p1 on the cloth influences the optimal location of pick point

p2, and vice versa. To decouple this conditional estimation problem, we propose a

two-network architecture, PickNet1 and PickNet2, to estimate the pick points (see

Fig. 6.3). This architecture was inspired by Wu et al. [196], which used two networks

for pick-conditioned placing; we instead use two networks to condition dual-arm

picking. PickNet1 is a fully convolutional network that receives flow image f as input

and outputs a single heatmap H1 estimating the optimal pick points for arm 1. We

compute the first pick point as p1 = argmaxpH1(p). The second network, PickNet2,

predicts the second arm’s pick point p2 conditioned on p1; PickNet2 takes as input

both the flow image f and an additional image with a 2D Gaussian centered on p1,

and is otherwise identical to PickNet1. PickNet2 outputs heatmap H2, from which we

compute the second pick point: p2 = argmaxpH2(p). The two-network architecture

decouples the conditionally dependent pick point predictions and does not require us

to resort to heuristics to extract two pick points from a single heatmap. We refer to

PickNet1 and PickNet2 together as “PickNet.”

To train PickNet, we collect a dataset of random actions (see Sec. 6.3.6 for details)

and record the current observation xt, the bimanual action a = (p1, p2, q1, q2), and

the next observation xt+1. We also estimate the flow f from xt to xt+1, as explained

103

6. FabricFlowNet: Bimanual Cloth Manipulation with a Flow-based Policy

in Sec. 6.3.3. We create ground truth pick heatmaps H∗
i for arm i using the recorded

random action a, by placing a 2D Gaussian N (pi, σ) on each ground truth pick

location pi. We then supervise PickNet using the binary cross-entropy (BCE) loss

between predicted heatmaps H1, H2 and ground truth heatmaps H∗
1 , H

∗
2 . However,

it might be unclear to the network which pick point should be output by PickNet1

and which should be output by PickNet2. We compute the loss for both possible

correspondences and use the minimum:

lBCE(Hi, Hj, H
∗
i , H

∗
j) = BCE(Hi, H

∗
i) + BCE(Hj, H

∗
j)

LPick = min[lBCE(H1, H2, H
∗
1 , H

∗
2), lBCE(H2, H1, H

∗
1 , H

∗
2)]

(6.1)

At inference time, PickNet outputs the pick points p1, p2, computed from the argmax

of H1, H2 respectively, as described above.

6.3.5 Estimating the Place Points from Flow

After estimating the pick points p1, p2 from flow, the remaining step to predict a

bimanual pick and place action a = (p1, p2, q1, q2) is to estimate the place points q1, q2.

A straightforward approach would be to train the network to predict place points

q1, q2, similar to the pick points p1, p2 as described above (see Fig. 6.2a). Instead, our

approach uses the flow image to find the place points, so that the place points do not

have to be learned separately.

Our approach makes the assumption that, to achieve a desired subgoal configura-

tion, the point picked on the cloth should be moved to its corresponding position in

the goal image (which is estimated by the flow). This is a simplifying assumption,

since it is possible that the picked point will shift slightly after it is released by the

gripper; our method does not take into account such small movements. Using this

assumption, to compute the place points q1, q2, we query the flow f at each pick point

p1, p2 to estimate the delta between the pick point location in the observation image

and the corresponding location of the pick points in the goal image. We use these

predicted correspondences as the place points: qi = f(pi) + pi, for each arm i.

Action predictions estimated by our approach can produce nearly overlapping

pick and place points, indicating that arm 1 and arm 2 should perform identical

actions. We observe this behavior from PickNet when the goal is best achieved with a

104

6. FabricFlowNet: Bimanual Cloth Manipulation with a Flow-based Policy

single-arm action, rather than a bimanual one. On a real robot, grippers are likely to

collide if grasping points that are too close. Therefore, to switch between executing

a single-arm or bimanual action, we compute the L2 pixel distance between pick

points dpick = ∥p1 − p2∥2 and place points dplace = ∥q1 − q2∥2. We use a single-arm

action when either distance is smaller than a threshold α, which we set to 30 for all

experiments.

6.3.6 Implementation Details

We use SoftGym [105], an environment for cloth manipulation built on the particle-

based simulator Nvidia Flex, to collect training datasets. The simulator models

cloth as particles connected by springs. We use pickers that simulate a grasping

action by binding to the nearest cloth particle within a threshold to execute pick

and place actions in SoftGym. We collect data by taking random actions, biased

towards grasping corners of the cloth. We demonstrate that we are able to train our

method in SoftGym and then transfer the policy to the real world. Details on the

data collection, as well as the network architecture and training details, can be found

in Appendix Sec. D.1.1.

6.4 Experiments

6.4.1 Simulation Experiments

Experiment Setup. We evaluate FabricFlowNet (FFN) and compare to state-of-

the-art baselines in the SoftGym [105] simulator; real-world evaluations are below

in Sec. 6.4.2. Our experiments focus on folding tasks, and we assume that a cloth

smoothing method (e.g., [60, 158]) is used to flatten the cloth before folding is

executed. Our error metric is the average particle position error between the achieved

and goal cloth configuration. We evaluate on two sets of goals: 40 one-step goals that

can be achieved with a single fold action, and 6 multi-step goals that require multiple

folding actions. The multi-step goals each consist of a sequence of sub-goal images,

with the next sub-goal presented after each action. This protocol follows from our

problem formulation in Sec. 6.3.1, and is similar to the protocol in Nair et al. [136].

105

6. FabricFlowNet: Bimanual Cloth Manipulation with a Flow-based Policy

Our goals include test goals from Ganapathi et al. [53] and Lee et al. [96] that are

achievable with one arm, as well as additional goals more suitable for two-arm actions

(see Appendix Fig. D.2 for the full set of goals).

We compare our method to Fabric-VSF [67], which learns a visual dynamics model

and uses CEM to plan using the model. We only use Fabric-VSF with RGB-D input,

as depth-only input performs poorly for folding tasks [67]. FabricFlowNet only uses

depth and does not rely on RGB, which enables our method to transfer easily to

the real world without extensive domain randomization. We also compare to Lee et

al. [96], a model-free approach. We extend the the original single-arm method to a

dual-arm variant and compare against both. For both our method and the baselines,

we only allow each method to perform one pick-and-place action for each subgoal

(e.g. one pick and place action for each single-step goals). Additional baseline details

can be found in the Appendix.

Simulation Results

Table 6.1 contains our simulation results for all methods. We report average particle

distance error (in mm) for one-step goals only, multi-step goals only, and over both

one-step and multi-step goals. Our results show that FFN achieves the lowest error

over all goals and has the fastest inference time.

Table 6.1: Mean Particle Distance Error (mm) and Inference Time (sec) on Cloth Folding
Goals

Method One Step (n=40) Multi Step (n=6) All (n=46) Inference Time

Lee et al., 1-Arm [96] 16.18± 08.38 26.20± 16.31 17.49± 10.10 ∼ 0.04
Lee et al., 2-Arm 36.62± 14.51 47.71± 21.95 38.07± 15.82 ∼ 0.04
Fabric-VSF [67] 6.31± 06.55 21.33±11.20 8.27± 08.90 ∼ 420
FabricFlowNet (Ours) 4.46±02.62 25.04± 22.88 7.14±11.06 ∼ 0.007

We also investigate whether using flow as a goal recognizer improves performance.

When an observation closely matches the goal, the flow for all points is close to

zero. We leverage this fact by evaluating FFN with “iterative refinement”: we allow

the policy to take multiple actions per subgoal to try to further minimize the flow

between the observation and subgoal. When the average flow between observation

and current subgoal reaches a minimum threshold, the policy moves forward to the

106

6. FabricFlowNet: Bimanual Cloth Manipulation with a Flow-based Policy

next subgoal. FFN with iterative refinement achieves a mean error of 6.62 over all

goals vs. 7.14 without refinement. Additional details on iterative refinement can be

found in the Appendix, along with additional results from baseline variants, crumpled

initial configurations, and end-to-end training.

Ablations

We run series of ablations to evaluate the importance of the components of our system;

results averaged over all 46 goals are in Table 6.2. Additional details and results are

in Appendix Sec. D.4. Our ablations are designed to answer the following questions:

What is the benefit of using flow as input? We modify PickNet to receive

depth images of the observation and goal as input to the network (“NoFlowIn”), as is

commonly done in previous work on goal-conditioned RL [96, 157]. In this ablation,

the PickNet needs to reason about both the relationship between the observation

and the goal, as well as the action. In contrast, our method uses the flow network to

compare the observation and goal; the picknet separately reasons about the action.

What is the benefit of using flow to choose the place point? In this ablation,

we train a network to predict the place points directly (“NoFlowPlace”). This is in

contrast to our approach where we use the flow field, evaluated at the pick point f(pi),

to compute the place point qi for arm i. Our approach leads to a 32.4% improvement,

showing the benefit to using flow as an action representation.

What is the performance with no flow? We combine the above two ablations

and remove flow entirely, (“NoFlow”; ours has 60.4% improvement). The above

ablations all indicate the strong benefit of using flow as both an input and action

representation for cloth manipulation.

What is the benefit of biasing the data collection to grasp corners? Our

method uses prior knowledge about cloth folding tasks to bias the training data

and pick at corners of the cloth. In this ablation, we choose pick points randomly

(“NoCornerBias”, ours has 35.5% better performance).

What is the performance with a simpler architecture? We also compare our

architecture for PickNet (Sec. 6.3.4) to a simpler architecture that takes as input the

flow image If and outputs a two heatmaps, one for each pick point (“NoSplitPickNet”;

ours has 2.1% better performance).

107

6. FabricFlowNet: Bimanual Cloth Manipulation with a Flow-based Policy

Does the loss formulation in Eq. 6.1 improve performance? We compare our

method to an ablation where the first ground-truth heatmap is used to supervise Pick-

Net1 and similarly for the second, i.e. LPick = lBCE(H1, H2, H
∗
1 , H

∗
2). (”NoMinLoss”;

ours has similar performance).

Table 6.2: Mean Particle Distance Error (mm) for Ablations over All Goals (n=46)

NoFlowIn NoFlowPlace NoFlow NoCornerBias NoSplitPickNet NoMinLoss FFN (Ours)

9.37 10.56 18.02 11.07 7.29 7.15 7.14

6.4.2 Real World Experiments

We evaluate FabricFlowNet in the real world and demonstrate that our approach

successfully manipulates cloth on a real robot system.

Experiment Setup. Our robot system consists of two 7-DOF Franka Emika

Panda arms and a single wrist-mounted Intel RealSense D435 sensor (See Fig. 6.1). We

plan pick and place trajectories using MoveIt! [22]. We evaluate on a 30x30 cm towel,

using 6 single-step and 5 multi-step goals (see Fig. 6.4) that form a representative

subset of our simulation test goals.

To transfer from simulation to the real world, we align the depth between real

and simulated images by subtracting the difference between the average depth of the

real support surface (i.e. the table) and the simulated surface. We mask the cloth by

color-thresholding the background; see Appendix for details. We found that these

simple techniques were sufficient to transfer the method trained entirely in simulation

to the real world, because we use only depth images as input. Simulated depth images

match reasonably well to real depth images, unlike RGB images.

Real World Results

Fig. 6.4 provides qualitative real world results, showing that we successfully achieve

many of the goals. Our website (link in abstract) contains videos of these trials.

We compare FabricFlowNet to the NoFlow ablation from Sec. 6.4.1. Both methods

used the same sim-to-real techniques described in the previous section. While we do

not have access to the true cloth position error in the real world, Intersection-over-

Union (IoU) on the achieved cloth masks serves as a reasonable proxy metric [96].

108

6. FabricFlowNet: Bimanual Cloth Manipulation with a Flow-based Policy

(a) One-step Square Cloth (b) Multi-step Square Cloth

Figure 6.4: Qualitative results for FFN on real world experiments. FFN only takes depth
images as input, allowing it to easily transfer to cloth of different colors.

FFN achieves 0.80 mean IoU over 3 trials for the square cloth, compared to 0.53 for

NoFlow. See the Appendix for additional details.

(a) Rectangular Cloth (b) Printed T-shirt

Figure 6.5: Generalization to new cloth shapes for FFN trained only on a square cloth in
simulation. FFN achieves single and multi-step goals for rectangular fabric and a printed
T-shirt.

Generalization. In addition to evaluating the folding policy on square cloth for

various goal configurations, we also test the generalization of our method to other

shapes of cloth. We evaluate the performance of FFN trained only on a square cloth

on folding goals for a rectangular cloth as well as a T-shirt. These fabrics are also

thinner than the square blue towel used in the real world experiments above. Fig. 6.5

shows that FFN trained on a square yellow cloth in simulation is able to generalize to

other cloth shapes, textures, and colors (FFN only receives depth images as input).

See Appendix for additional details.

6.5 Conclusion

In this work we present FabricFlowNet, a method which utilizes flow to learn goal-

conditioned fabric folding. We leverage flow to represent the correspondence between

109

6. FabricFlowNet: Bimanual Cloth Manipulation with a Flow-based Policy

observations and goals, and as an action representation. The method is trained

entirely using random data in simulation. Our results show that separating the

correspondence learning and the policy learning can improve performance on an

extensive suite of single- and dual-arm folding goals in simulated and real environments.

Our experiments also demonstrate generalization to different fabric shapes, textures,

and colors. Future work on flow-based fabric manipulation could incorporate actions

beyond pick and place, such as parameterized trajectories or dynamic actions.

110

Chapter 7

Conclusions

This thesis presents visual action representations for manipulation tasks including

grasping objects with non-Lambertian reflectance, manipulating fabric, and joint

6-DOF grasp and motion planning. Visual action representations enable manipulation

under partial observability, without reconstructing the full state of the target object.

These visual action representations forego explicit state estimation by grounding

predicted actions on robot-object contact locations. The proposed methods then

use these representations to reason about where to make contact, how to approach

the desired contact location, and how to interact with an object after establishing

contact.

7.1 Future Directions

The methods proposed in this thesis can be expanded upon to improve manipulation for

tasks involving deformability, non-Lambertian reflectance, object shape generalization,

and other challenges.

Volumetric Action Representations. Compared to 2D image-based repre-

sentations, 3D volumetric representations are better able to reason about occlusions.

Occlusions exist in nearly every scene due to limited camera views, object self-

occlusions, or due to a robot’s own embodiment. Research on manipulation under

occlusion can potentially improve performance across many tasks.

Online Replanning with Multi-Modal Sensing. In this thesis, predicted

111

7. Conclusions

actions are executed without online replanning. Policies use closed-loop feedback, but

feedback is provided only after the completion of each action. While executing actions

without online replanning performed suitably for our task settings, manipulation

in more dynamic environments will require online control. As robots often occlude

objects once a manipulation action begins, the visual action representations proposed

in this thesis can be extended to incorporate additional modalities such as haptic,

tactile, and audio sensing to provide feedback when vision alone fails.

Reasoning about Robot Embodiment. The visual action representations

proposed in this thesis assume that the robot used a parallel-jaw gripper to manipulate

its environment. However, other robotic end-effectors exist, such as suction grippers

and dexterous hands. Further, manipulation solely using the end-effector is overly

restrictive, as a robot could use other parts of its embodiment to interact with

the environment. We can extend policies and action representations to explicitly

account for robot embodiment. Approaches that reason about robot morphology and

geometry could perform non-prehensile manipulation actions like closing a door with

an intermediate link of a robot arm instead of using an end-effector.

112

Appendix A

Chapter 2 Appendix

A.1 Network Architecture

RGB or RGB-D
Input

3 or 4 channels

16 filters
Conv (9x9)

ReLU

16 filters
Conv (5x5)

ReLU

16 filters
Conv (5x5)

ReLU

16 filters
Conv (5x5)

ReLU

128 filters

Conv (17x17) ReLU

128 filters

Conv (1x1) ReLU

16 filters

Conv (1x1) Sigmoid

θ (16 dims)
x

y

Output

Figure A.1: Architecture diagram for supervision transfer networks, adapted from the
FC-GQCNN [153] architecture. The input can be either 3-channel RGB input or 4-channel
RGB-D input. The output is a 3D array of grasp quality scores over image coordinates
x, y and rotation θ about the depth axis, discretized into 16 bins. The orange color accents
correspond to ReLU activations and purple corresponds to sigmoid activation. The red
layers are max pooling layers.

Fig. A.1 illustrates the architecture of the networks trained with supervision

transfer.

113

A. Chapter 2 Appendix

A.2 Evaluations without random cropping

Table A.1 provides results for grasping in clutter without random cropping.

Table A.1: Performance on grasping in clutter by method without random cropping,
averaged over five trials

Method Opaque Transparent Specular

FC-GQCNN∗ 0.95± 0.05 0.26± 0.25 0.35± 0.23

RGB-ST† 0.77± 0.10 0.77± 0.15 0.68± 0.15
RGBD-ST† 0.62± 0.26 0.67± 0.19 0.75± 0.08
RGBD-M† 0.75± 0.13 0.60± 0.18 0.47± 0.28

∗Trained on simulated grasps
†Trained on simulated grasps and opaque object images

Random cropping refers to sampling a 0.2m square crop from the input image and

choosing the grasp with the highest probability from within the crop. Crops which

have do not have any objects in them, as determined by whether the max grasp

probability within the crop falls below a hand-defined threshold, are discarded and a

new crop is sampled. This procedure helps prevent networks from repeatedly choosing

highly rated false positive grasps. However, the cropping threshold must be tuned

based on the performance of the grasping network. For our experiments, we used a

threshold of 0.4.

114

A. Chapter 2 Appendix

A.3 Hyperparameters

Hyperparameters for networks trained with supervision transfer are:

• Learning rate: 1e-05

• Batch size: 64

• Number of rotation augmentations per image: 32

• Loss: Binary cross-entropy

The FC-GQCNN model we evaluated against was a pre-trained model from https:

//berkeleyautomation.github.io/gqcnn/.

115

https://berkeleyautomation.github.io/gqcnn/
https://berkeleyautomation.github.io/gqcnn/

A. Chapter 2 Appendix

116

Appendix B

Chapter 3 Appendix

B.1 Ablations for Neural Grasp Distance Fields

We perform ablation experiments for our trajectory optimizer (Table B.1). We

compare using Adam [86] vs. a fixed step size (“No-Adam”) for functional gradient

descent. Unlike our method, CHOMP [214] originally uses a fixed or decaying step

size, in the setting where the start and end trajectory configurations are not optimized

(Sec. 3.4.2). In our setting, the end configuration is variable to allow optimization

of the grasp pose. No-Adam converges slowly when the trajectory is far from a

valid grasp pose, and overshoots when near the level set. We also evaluated using a

decaying step size; while this mitigated the overshooting issue, convergence was still

much slower, and the decay rate required tuning.

“No-Initial-IK” initializes the configuration at every timestep in the trajectory

to the starting joint configuration, instead of using IK to initialize the trajectory

as described in Sec. 3.5.2. We observe worse performance with No-Initial-IK as the

initial trajectory is farther from the desired grasp trajectory, making it harder to

plan.

117

B. Chapter 3 Appendix

Table B.1: Optimizer Ablation Results

Grasp Execution ↑

NGDF, No-Adam 0.18
NGDF, No-Initial-IK 0.44
NGDF (Ours) 0.61

No-Adam uses CHOMP [214] with a fixed step size instead of Adam [86] optimization for
the functional gradient update. No-Initial-IK initializes the trajectory so all steps in the
plan start at the initial joint configuration. NGDF uses Adam and initializes the endpoint
of the trajectory using inverse kinematics to achieve the best performance. 90 trials were
performed as in Table 3.2.

B.2 Simulation Experiment Details

B.2.1 Camera Position in Simulation

Fig. B.1 shows the position of the four cameras in simulation.

Figure B.1: Camera poses in simulation visualized as axes. The negative z axis (in blue) is
the camera optical axis and points toward the robot workspace.

118

B. Chapter 3 Appendix

B.2.2 Qualitative Results

Fig. B.2 visualizes successful grasp trajectories in simulation for the reaching and

grasping task from Sec. 3.5.1.

Figure B.2: Successful grasp trajectories (left-to-right) planned by our method for the bowl
(top) and mug (bottom).

B.3 Real System Experiment Details

This section provides system implementation details for our real world experiments

in Sec. 3.5.4. Our system consists of a 7-DOF Franka Panda robot and four Azure

Kinect cameras (Fig. 3.5b), a similar setup to NDF [162].

B.3.1 Calibration

The Azure Kinect cameras were extrinsically calibrated using ColoredICP [139]. For

camera intrinsics, the factory calibration was used. Robot-camera extrinsic calibration

was performed using Tsai-Lenz [178]. The calibrated cameras produce a combined

scene point cloud in the robot base frame.

B.3.2 Point Cloud Processing

To segment the object point cloud from the scene point cloud, we fit a table plane

using RANSAC and remove points belonging to the plane. Outlier removal and

DBScan [48] are used to refine the object point cloud. Our planner requires a signed

distance field (SDF) of the object for collision avoidance, so we construct a mesh

119

B. Chapter 3 Appendix

from the object point cloud, then compute the SDF from the mesh using the tools

provided in Wang et al. [183].

Even with four cameras, careful calibration, and point cloud processing, we

recover partial point clouds with inaccuracies and noise (see Fig. B.3). Despite

these deficiencies, our method achieves a high success rate on real objects in various

configurations (Sec. 3.5.4), demonstrating robustness to perceptual errors.

B.3.3 Control

The output of the planner is a joint angle trajectory consisting of 30 timesteps. In

order to execute the trajectory on the Franka Panda, the total duration of trajectory

execution is set to 5 seconds, and the trajectory is interpolated using cubic spline

interpolation to provide joint angles at 1Hz. Impedance control [211] is then used to

execute the high-frequency trajectory.

B.4 Experimental Setup

Table B.2: Real Object Pose Configurations

Sampled Pose Configurations

Bottle 1 (Protein Drink) Upright, Sideways
Bottle 2 (Mustard Bottle) Upright
Bottle 3 (Coconut Water) Upright, Sideways
Bowl 1 (YCB Bowl) Upright
Bowl 2 (White Bowl) Upright
Bowl 3 (Square Bowl) Upright
Mug 1 (Black Mug) Upright, Sideways, Upside Down
Mug 2 (YCB Mug) Upright, Sideways, Upside Down
Mug 3 (Large Mug) Upright, Sideways, Upside Down

The sampled pose configurations for objects in the real system evaluation. Objects are
numbered left to right according to Fig. 3.5d. Some stable poses did not permit grasping
and were omitted; for example, the mustard bottle cannot be grasped lying sideways as it
is too wide.

Several of the test objects could be grasped via multiple stable pose configurations.

For example, a mug can be grasped while upright, on its side, or upside down. For

120

B. Chapter 3 Appendix

objects with multiple graspable pose configurations, the configuration was randomly

sampled for each trial. The 9 test objects (see Fig. 3.5d) had graspable stable pose

configurations shown in Table B.2.

121

B. Chapter 3 Appendix

(a) Bottle (b) Reconstructed Bottle Mesh,
View 1

(c) Reconstructed Bottle Mesh,
View 2

(d) Bowl (e) Reconstructed Bowl Mesh,
View 1

(f) Reconstructed Bowl Mesh,
View 2

(g) Mug (h) Reconstructed Mug Mesh,
View 1

(i) Reconstructed Mug Mesh,
View 2

Figure B.3: Meshes reconstructed during system evaluations. The first column shows the
placement of the objects in each trial, along with a close-up image of the object itself. The
second column shows the meshes reconstructed from the four depth cameras according to
the procedure in Sec. B.3.2, posed roughly as they appear in the first column. The third
column shows the back of each mesh. Note that these meshes and images are magnified for
visual clarity and are not consistently scaled. Even with outlier removal and other mesh
processing techniques, we observe inaccuracies in the reconstruction; however, our method
is robust to these inaccuracies as demonstrated by our results in Sec. 3.5.4.

122

Appendix C

Chapter 4 Appendix

C.1 Network Architecture

Our network architecture is based on U-Net [148]. It consists of a downsampling

part and an upsampling part. In the downsampling path, a step consists of two 3x3

unpadded convolutions, each with batch normalization and a rectified linear unit,

followed by a 2x2 max pooling layer with stride 2. We apply four of these steps,

doubling the number of feature channels each time. For the upsampling path, a

step consists of a 2x2 up-convolution that halves the number of feature channels,

a concatenation with a cropped feature map from the corresponding downsampled

path, and two 3x3 convolutions, each followed by batch normalization and ReLU. A

final 1x1 convolution is used to turn the feature map into 3 classes for corners, outer

edges, and inner edges respectively.

The differences between our network and U-Net are that we add batch normaliza-

tion, and our network takes a single channel depth image as input.

C.2 Network Training

We implemented the network in PyTorch. We use the Adam optimizer with a learning

rate of 1e-5. We use a batch size of 8. To augment our data, we flip the image with

50 percent chance, and also rotate the image with 50 percent chance, sampling within

123

C. Chapter 4 Appendix

[-30 degrees, 30 degrees].

In our loss function, we set the per-class (corners, outer edges, and corners) weight

wk for balancing the loss on positive and negative predictions to 20 for all classes.

C.3 Grasp Direction Uncertainty Estimation

As described in Sec. 4.3.4.2, the uncertainty of the grasp direction for a single outer

edge point p is the variance of the grasp directions predicted by its neighbors. Each

neighbor is an outer edge pixel with its own grasp direction vector, computed as

described in Sec. 4.3.4.1. We form the neighborhood by taking the k outer edge pixel

points closest to p, and set k = 100.

124

Appendix D

Chapter 6 Appendix

D.1 Additional Details and Results for

FabricFlowNet

D.1.1 FabricFlowNet Implementation Details

Data Collection. We collect data in SoftGym by taking random pick and place

actions on the cloth. The random actions are biased to pick corners of the cloth mask

(detected using Harris corner detection [62]) 45% of the time, and “true” corners of

the square cloth 45% of the time. If the true corners are occluded then Harris corners

are used instead. For the remaining 10%, the pick actions are uniformly sampled over

the visible cloth mask. After the pickers grasp the cloth, they lift to a fixed height of

7.5 cm.

We constrain the place points of the action so that both place points are offset in

the same direction and distance from their respective pick points. The direction is

orthogonal to the segment connecting the two pick points, and points towards the

center of the image, so the cloth does not move out of the frame (similar to Lee et

al. [96]). The distance between the pick point and the place point along this direction

is uniformly sampled between [25, 150] px. The distance is truncated if it exceeds a

margin of 20 px from the image edge, again to prevent moving the cloth out of the

frame. While these heuristics may seem to overly constrain the data we collect, we

125

D. Chapter 6 Appendix

observe that our data still contains highly diverse cloth configurations, as shown in

Fig. D.1.

For each sample, we save the initial depth observation image, the dual-arm pick

and place pixel locations of the action, the next depth observation resulting from the

executed action, and the cloth particle positions of both observations (See Fig. D.1).

The camera for capturing depth observations is fixed at 65 cm above the support

surface. We mask the depth observations to only include the cloth by setting all

background pixels to zero. The dataset for training both the flow and pick networks

consists of 20k samples from 4k episodes, where each episode consists of five dual-arm

pick and place actions.

Flow Network Training. We use FlowNet [37] as our flow network architecture.

The input to FlowNet is the initial and next depth image from a sample in our

dataset, stacked channel-wise. The ground truth flow for supervising FlowNet comes

from the cloth particles used by the simulator to model the cloth’s dynamics: we

collect the cloth particle positions for each observation in our dataset and correspond

them across observations to get flow vectors (See Fig. D.1). The ground truth flow is

sparse because the cloth particles are sparse, so we train FlowNet using a masked

loss that only includes pixels with corresponding ground truth flow. Similar to Lee et

al. [96], we apply spatial augmentation of uniform random translation (up to 5 px)

and rotation (up to 5 degrees) to augment the training data. We train the network

using the dataset of 20k random actions described above. We use the Adam [85]

optimizer, learning rate 1e-4, weight decay 1e-4, and batch size 8.

PickNet Network Training. PickNet1 and PickNet2 are fully-convolutional

network architectures based on Lee et al. [96], with 4 convolutional layers in the

encoder, each with 32 filters of size 5. The first three layers of the encoder have stride

2 and the last one has stride 1. The decoder consists of 2 interleaved convolutional

layers and bilinear upsampling layers.

The input to the PickNet1 is a 200 × 200 flow image. PickNet2 receives the first

pick point location (the argmax of the Picknet1 output, as described in the main

text) as an additional input, represented as a 2D Gaussian N (p1, σ) (where σ = 5).

Similar to Nair et al. [136], the output of both networks is a 20 x 20 spatial grid. If

the pick points predicted by PickNet are not on the cloth mask, we project them to

the closest pixel on the mask using an inverse distance transform. In practice, we find

126

D. Chapter 6 Appendix

that the predictions are usually either on the cloth mask or very close to the mask.

To train PickNet1 and PickNet2, we use the same dataset of 20k random actions

described above. We use the Adam [85] optimizer, learning rate 1e-4, and batch size

10.

Figure D.1: Training data for FFN.

D.1.2 Additional Simulation Results for FabricFlowNet

Fig. D.2b and Fig. D.2f show the cloth configurations achieved by FabricFlowNet

for each of the one-step goals (Fig. D.2a) and multi-step goals (Fig. D.2e). Fig. D.1

provides examples of the data used to train FFN. Our policy is deterministic and the

simulation is near-deterministic, so we only need 1 trial for our simulation experiments

(unlike our real world experiments which use 3 trials).

D.1.3 Additional Real World Details and Results for

FabricFlowNet

Cloth Masking. In simulation, we can obtain a perfect cloth mask. In the real world,

we first obtain a background mask of the table using color-based HSV thresholding,

which we can determine before the cloth is placed on the table. We then use the

inverse of this background mask to obtain a mask of the cloth. Note that while we

use background color of the table for cloth masking, the network itself only takes

127

D. Chapter 6 Appendix

(a) One-step goals (b) One-step FFN performance

(c) One-step Fabric-VSF performance (d) One-step Lee et al. performance

(e) Multi-step goals (f) Multi-step FFN per-
formance

(g) Multi-step Fabric-
VSF performance

(h) Multi-step Lee et al.
performance

Figure D.2: Goal configurations, achieved configurations, and training data in simulation.
Arrows indicate the executed action. Fabric-VSF uses a lower camera height than FFN (45
cm vs. 65 cm), thus the cloth looks slightly larger.

128

D. Chapter 6 Appendix

depth input, allowing the network to be robust to colors and patterns on the cloth

itself.

Results on Real Cloth Folding. Table D.1 provides mean IOU (mIOU)

performance for NoFlow and FFN on real cloth goals. The NoFlow ablation performs

considerably worse compared to FFN on real cloth folding. Qualitative results and

the complete set of real square cloth goals are in Fig. D.3; the complete set of real

rectangle and T-shirt goals are in the main text. We found that for FFN, using

FlowNet weights from epochs at the start of convergence transferred better to the

real world than using weights from epochs long after convergence.

Table D.1: mIOU for Folding Square Towel, Rectangular Cloth, and T-shirt

Method 1-Step Sq. ↑ Multi-Step Sq. ↑ All Sq. ↑ Rect. ↑ T-shirt ↑
(n = 6) (n = 5) (n = 11) (n = 3) (n = 3)

NoFlow 0.59± 0.04 0.45± 0.01 0.53± 0.02 0.65± 0.07 0.61± 0.06
FFN (Ours) 0.89± 0.01 0.69± 0.04 0.80± 0.03 0.81± 0.04 0.82± 0.02

Average of 3 rollouts. Higher mIOU scores are better; the max achievable score is 1.0.

Failure Cases. This work focused on high level actions with fixed primitives

for picking and placing that may not be ideal for all cloth types, sizes, or folds.

Causes of failures include the grasped portion of the cloth “flopping back” against

the folding direction, undoing small folding actions or causing unwanted secondary

folds (Fig. D.4a). Potential future work is to learn better pick and place primitives.

Another source of failure was over- or under-estimating the fold distance due to

slight inaccuracies in the flow prediction (Fig. D.4b). We also see some failures

during multi-step folding; since we provide sub-goals in sequence and allow only one

action per sub-goal, the discrepancy between the starting image of the demonstration

and the observed image can result in poor predictions (Fig. D.4c). Allowing the

policy to take multiple actions to achieve a sub-goal before proceeding may improve

performance. For example, the flow can be recalculated after each action to determine

if the observation is sufficiently close to the desired sub-goal configuration before

proceeding to the next sub-goal.

129

D. Chapter 6 Appendix

D.2 Additional Details and Results for

Fabric-VSF [67]

D.2.1 Fabric-VSF [67] Implementation Details

The original Fabric-VSF [67] paper uses single arm actions and a top-down close

camera view such that the cloth covers the whole image. To match the camera view,

we set the camera height to be 45 cm above the table in our case. The training

dataset consists of 7115 trajectories, each with 15 random pick-and-place actions,

totaling 106725 data points. Note that this dataset is 5x larger than the 20k samples

we train FFN on. During training, Fabric-VSF takes as input 3 context frames and

predicts the next 7 target frames.

We trained 8 variants of Fabric-VSF. Each variant differs in the following aspects:

1) whether it uses single arm or dual arms; 2) during data collection, whether the

pick-and-place actions are randomly sampled, or use the corner biasing sampling

strategy as described in Sec. D.1.1, and 3) whether it uses the original small action

size (“Small Action”, bounded to half of the cloth width) or a larger action size

(“Large Action”, bounded to the diagonal length of the cloth). Other than these three

changes, we set all other parameters to be the same as in the original paper. Therefore,

the variant with single arm actions, no corner biasing during data collection, and

small action size is exactly how Fabric-VSF is trained in the original paper.

After the training, we plan with cross-entropy method (CEM) to find actions for

achieving a given goal image. We use the exact same CEM parameters as in the

original paper, i.e., we run CEM for 10 iterations, each with a population size of 2000

and elite size of 400.

D.2.2 Additional Fabric-VSF [67] Results

The results for the Fabric-VSF variants are summarized in Table D.2. We note that

the variant using single arm actions, corner biasing for data collection, and large

action size performs the best out of all variants. This variant outperforms FFN on

overall error and one-step error, but performs slightly worse than FFN on multi-step

error (See Fig. D.2c and Fig. D.2g for qualitative results). However, we note that

130

D. Chapter 6 Appendix

Fabric-VSF was trained on 5x more data than FFN. Additionally, Fabric-VSF takes

much longer to run at inference time, requiring ∼7 minutes of CEM iterations to

compute a single action compared to ∼0.007 seconds for a forward pass through

FFN. 7 minutes of CEM planning time is impractical for real-world folding. We

also demonstrate in the following section that FFN generalizes to other cloth shapes

better than Fabric-VSF.

Analyzing the performance between different Fabric-VSF variants, for single-arm

actions, using large actions instead of small actions always leads to better performance.

However, this is not true for the dual arm variants. Interestingly, we find that using

dual arms tends to result in worse performance compared with using a single arm.

The reason for this could be that during CEM planning, dual-arm variants double

the action dimension, which increases complexity for CEM and makes it difficult to

find optimal actions.

Table D.2: Mean Particle Distance Error (mm) and Inference Time (sec) for Fabric-VSF
Variants

Baseline 1-Step (n=40) Multi-Step (n=6) All (n=46) Inf. Time

1-Arm, No CB, Sm. Action 12.92± 13.00 46.05± 48.07 17.24± 23.93 ∼420s
1-Arm, No CB, Lg. Action 10.13± 07.33 33.06± 12.46 13.12± 11.25 ∼420s
1-Arm, CB, Sm. Action 14.09± 11.36 38.68± 27.72 17.30± 16.76 ∼420s
1-Arm, CB, Lg. Action 6.30± 06.55 21.33±11.20 8.27± 08.90 ∼420s
2-Arm, No CB, Sm. Action 24.60± 14.69 50.26± 27.54 27.94± 19.00 ∼420s
2-Arm, No CB, Lg. Action 10.98± 05.80 40.92± 18.06 14.89± 13.17 ∼420s
2-Arm, CB, Sm. Action 16.21± 13.81 36.42± 26.51 18.84± 17.43 ∼420s
2-Arm, CB, Lg. Action 15.58± 10.88 54.06± 26.68 20.60± 19.07 ∼420s

FFN (Ours) 4.46±02.62 25.04± 22.88 7.14±11.06 ∼0.007s

CB: Corner Bias Sm. Action: Small Action Lg. Action: Large Action

131

D. Chapter 6 Appendix

D.3 Additional Details and Results for Lee et

al. [96]

D.3.1 Lee et al. [96] Implementation Details

Lee et al. [96] learns a fabric folding policy for a discrete action space using a fully

convolutional state-action value function, or Q-network. Observation and goal images

are stacked channel-wise, then duplicated and transformed to form a batch of m

image rotations and n scales to represent different pick and place directions and

action lengths. The whole batch is input to the Q-network to compute the Q-value

of executing an action for each rotation and scale at every point on the image. The

action corresponding to the max Q-value from the outputs is executed. The discrete

action space of m rotations and n action lengths for Lee et al. [96] enables efficient

policy learning, but greatly limits the actions of the learned policy compared to FFN.

We extend Lee et al. [96] from a single-arm approach to a dual-arm one. To

represent two pickers instead of one, we input two pairs of observation and goal

images to the Q-network. When rotating and scaling the images to represent different

actions, the images are constrained to have the same rotation, but are allowed to be

scaled differently. In other words, the dual-arm actions are constrained to execute

pick and place actions in the same direction, but can have different pick and place

lengths. The Q-network outputs a pair (one for each arm) of Q-value heatmaps for

every action in the discrete action space (i.e., every rotation and scale). The max

Q-value in each of the two heatmaps is averaged, and the heatmap pair with the

highest averaged Q-value is selected from the set of all discrete rotations and scales.

The picker action corresponding to the argmax of each heatmap is executed.

We train each Lee et al. variant below using hyperparameters similar to the

original paper [96], training for 25k steps with learning rate 1e-4, batch size 10, and

evaluating performance on test goals every 500 steps to find the best performing step.

D.3.2 Additional Lee et al. [96] Results

We trained variants of Lee et al. to compare single-arm vs. dual-arm performance,

depth input vs. RGB input, collecting data with corner bias similar to FFN vs.

132

D. Chapter 6 Appendix

without bias, and using the original close-up image of the cloth (“Low Cam”) vs.

images from further away (“High Cam”). All variants were trained with 20k training

examples. We also provide results for two variants of FFN trained on the same amount

of data, one where actions are sampled from the discrete action space (i.e., discretized

action angles and lengths) in Lee et al. [96] (“Discrete Actions”), and the other where

actions are sampled using our continuous action space described in Sec. D.1.1 (“Cont.

Actions”). Lee et al. [96] is an inherently discrete approach and cannot be trained to

output continuous actions, nor can it be trained on data with actions outside of its

discrete action space.

Table D.3 shows that the performance of all Lee et al. variants is poor compared

to FFN, particularly on 1-step goals (see Appendix Fig. D.2d and Appendix Fig. D.2h

for qualitative results). FFN outperforms Lee et al. when trained on either the

discrete action dataset or the continuous one. Training FFN on continuous actions

results in better performance for 1-step goals, but the discrete action dataset also

performs fairly well. These results indicate that the improved performance of FFN vs.

Lee et al. cannot be solely explained by training on continuous vs. discrete action

data, though other factors like outputting continuous actions instead of discrete ones

may still play significant role in FFN’s improved performance.

Table D.3: Mean Particle Distance Error for Lee et al. on 20k Training Examples

Baseline 1-Step (40) Multi Step (6) All (46)

Lee et al., 1-Arm, D, No CB, LC 18.94± 16.43 24.18± 17.75 19.62± 16.49
Lee et al., 1-Arm, D, No CB, HC 16.18± 08.38 26.20± 16.31 17.49± 10.10
Lee et al., 1-Arm, D, CB, LC 20.99± 18.88 34.61± 31.35 22.77± 20.97
Lee et al., 1-Arm, D, CB, HC 19.70± 09.37 38.91± 24.05 22.20± 13.53
Lee et al., 1-Arm, RGB, No CB, LC 49.29± 18.10 52.03± 33.62 49.65± 20.26
Lee et al., 1-Arm, RGB, No CB, HC 47.12± 21.04 64.48± 29.85 49.38± 22.75
Lee et al., 1-Arm, RGB, CB, LC 33.89± 19.01 58.90± 43.34 37.15± 24.38
Lee et al., 1-Arm, RGB, CB, HC 39.01± 25.36 55.46± 38.38 41.15± 27.43
Lee et al., 2-Arm, D, No CB, LC 36.62± 14.51 47.72± 21.95 38.07± 15.82
Lee et al., 2-Arm, D, No CB, HC 40.75± 13.22 52.88± 19.03 42.33± 14.45
Lee et al., 2-Arm, D, CB, LC 47.18± 18.60 57.29± 28.65 48.50± 20.07
Lee et al., 2-Arm, D, CB, HC 35.98± 24.60 64.75± 51.76 39.73± 30.30
FFN, 2-Arm, D, CB, HC, Discrete Actions 9.57± 06.07 10.15±07.20 10.17± 07.34

FFN, 2-Arm, D, CB, HC, Cont. (Ours) 4.46±02.62 25.04± 22.88 7.14±11.06

D: Depth CB: Corner Bias LC: Low Camera HC: High Camera Cont: Continuous Actions

133

D. Chapter 6 Appendix

Lee et al. with and without Subgoals. FFN uses subgoals at inference time

in order to fully specify the task; many cloth folding goals have final goal configurations

in which large portions of the cloth are self-occluded. Subgoals are required to ensure

the task is completed correctly and that the cloth is correctly folded. Lee et al. [96]

demonstrated cloth folding without subgoals at inference time by relying on a learned

Q-value heatmap to select actions toward a final end goal. We compare the perfor-

mance of the best Lee et al. variant with and without subgoals at test-time. The

results of this experiment are in Table D.4. While the performance on 1-step goals

are similar because those tasks do not have subgoals, performance on multi-step goals

is worse without subgoals.

Table D.4: Mean Particle Distance Error for Lee et al. With and Without Subgoals

Method 1-Step (40) Multi Step (6) All (46)

Lee et al. 16.92± 9.28 37.74± 38.99 19.71± 20.27
Lee et al., With Subgoals 16.18±8.38 26.20±16.31 17.49±10.10

D.4 Additional Details and Results for Ablations

D.4.1 Ablation Implementation Details

NoFlowIn The architecture for this ablation is identical to our main method, except

that it takes depth images instead of flow images as input. We use a conditioned

architecture with two PickNets; PickNet1 receives the observation and goal depth

images as input both of size 200× 200. The place point is computed by querying the

flow image similar to our main method.

NoFlowPlace We predict the place points similarly to the pick points by using

an additional place network. The place network architecture is identical to PickNet.

The input is a flow image and the output is the place point predictions.

NoFlow This ablation is a combination of NoFlowIn and NoFlowPlace, where

PickNet and PlaceNet both take observation and goal depth images as input.

NoCornerBias This ablation is the same as our main method except for the

training dataset. We use a dataset that does not bias the data to pick corners (See

134

D. Chapter 6 Appendix

Sec. D.1.1). Instead, the pick actions are always uniformly sampled over the visible

cloth mask. We still constrain the folding actions for both arms to be in the same

direction and distance from their respective pick points and point towards the center

of the frame.

NoSplitPickNet The architecture of PickNet is modified so that we only have

one PickNet for both arms instead of the conditioned architecture used in our main

method. The PickNet takes as input the flow image and outputs two heatmaps

corresponding to the two pick points.

NoMinLoss The loss in Eq. 1 is replaced with the following:

LNoMin = BCE(H1, H
∗
1) + BCE(H2, H

∗
2) (D.1)

D.4.2 Additional Ablation Results

We provide ablation results in Table D.5 grouped by single-step, multi-step, and all

goals.

Table D.5: Mean Particle Distance Error for Ablations

Ablation One Step (n=40) Multi Step (n=6) All (n=46)

NoFlowIn 5.14± 3.62 24.63± 21.30 9.37± 12.20
NoFlowPlace 7.61± 5.44 30.25± 17.62 10.56± 11.15
NoFlow 8.97± 7.45 28.79± 19.33 18.02± 20.34
NoCornerBias 9.79± 5.57 19.61±17.52 11.07± 8.83
NoSplitPickNet 4.87± 2.61 23.41± 18.87 7.29± 9.56
NoMinLoss 5.10± 4.04 20.81± 17.57 7.15± 9.08

FFN (Ours) 4.46±02.62 25.04± 22.88 7.14±11.06

D.5 Additional Results on Unseen Cloth Shapes

We also evaluate Fabric-VSF and Lee et al. on generalization to unseen cloth shapes.

FFN generalizes well to new shapes, as shown in the main text (see Fig. 5 and

Sec. 4.2.1). Table D.6 provides quantitative results on the rectangle cloth and T-shirt

for the best Fabric-VSF method and best Lee et al. method compared to FFN. FFN

135

D. Chapter 6 Appendix

outperforms both methods by a large margin. Fabric-VSF generalizes poorly, likely

because it relies on planning with a learned visual dynamics model. Lee et al. also

does not generalize well compared to FFN. Fig. D.5 provides a qualitative comparison.

Table D.6: Mean Particle Distance for Folding Unseen Cloth Shapes in Simulation

Method Rectangle (n=6) T-Shirt (n=3)

Lee et al. , 1-Arm, No Corner Bias, High Cam, 20k Actions 31.63± 18.04 86.65± 34.67
Fabric-VSF, 1-Arm, Corner Bias, Large Action 25.68± 11.21 45.25± 13.83
FFN (Ours) 10.70±08.54 20.91±11.28

D.6 End-to-End Variants of FFN

We investigate the effect of training our FFN architecture end-to-end. First, we train

the FFN architecture with pick losses as well as the flow loss; all losses are allowed to

backpropagate through the entire combined network, including through the FlowNet

layers. The results on the square towel are presented in Table D.7 (“JointFFN”).

This variant performs significantly worse than FFN (9.28 vs. 7.14 on all goals).

Table D.7: Mean Particle Distance Error (mm) for End-to-End Variants of FFN

Method 1-Step (n=40) Multi-Step (n=6) All (n=46)

JointFFN 07.60± 05.62 17.53±15.56 09.28± 09.39
JointPredictPlace 12.90± 11.67 35.25± 19.22 22.88± 23.24
JointFFN, No Flow Loss 32.41± 22.61 68.17± 50.35 37.07± 30.34
JointPredictPlace, No Flow Loss 16.31± 22.73 50.27± 31.44 24.39± 29.77

FFN (Ours) 4.46±02.62 25.04± 22.88 7.14±11.06

We also trained another variant which consists of a FlowNet, a PickNet, and a

PlaceNet, trained end-to-end (“JointPredictPlace” in Table D.7). This is similar to

our ablation “PredictPlace” in Table 6.2, which uses the same architecture but is not

trained end-to-end. JointPredictPlace performs significantly worse than FFN (22.88

vs. 7.14 on all goals) and also underperforms compared to PredictPlace (10.56 on

all goals). Overall, this result, as well as the one in the paragraph above, indicate

that end-to-end training leads to significantly worse performance for this task. Our

136

D. Chapter 6 Appendix

intuition for this is that the flow network should be trained only with the flow loss,

and that backpropagating the gradients from the pick loss into the flow network adds

noise and reduces its performance.

Lastly, we evaluated variants of the above two architectures with the flow loss

removed, to see if we could train these architectures end-to-end with just a single

loss at the end, instead of using an intermediate flow loss. The results, shown in

Table D.7, are worse for both variants, showing the importance of the intermediate

flow loss.

D.7 FFN Performance with Crumpled Starting

Configurations

Our experiments focused on folding tasks, and we assume that a previous method was

used to flatten the cloth before our method is executed. To evaluate the robustness

of our method to imperfect smoothing, we evaluate the performance of FFN in

simulation on slightly crumpled initial cloth configurations. We generated crumpled

configurations by taking the flat cloth and executing a random pick and place action

with a maximum translation of 10 pixels. The three configurations used in our

experiments are shown in Fig. D.6.

For each crumpled configuration, we evaluated FFN on the full set of 46 evaluation

goals, where the starting configuration of the cloth was set to the given crumpled

configuration. The results of these evaluations are in Table D.8. The particle distance

error is slightly higher with the crumpled starting configurations, but the qualitative

results in Fig. D.7 show that FFN still produces actions that are very close to the

intended goals.

Table D.8: Mean Particle Distance Error (mm) for FFN with Different Start Configurations

Starting Config 1-Step (n=40) Multi-Step (n=6) All (n=46)

FFN, Crumpled 0 12.40± 4.82 24.82± 24.81 14.01± 10.86
FFN, Crumpled 1 10.68± 2.89 23.54± 22.56 12.36± 9.61
FFN, Crumpled 2 10.68± 4.29 21.05±14.70 12.03± 7.51
FFN, Flat 4.46±2.62 25.04± 22.88 7.14±11.06

137

D. Chapter 6 Appendix

D.8 FFN Performance with Iterative Refinement

Table D.9: Mean Particle Distance Error (mm) for FFN with Iterative Refinement

Starting Config 1-Step (n=40) Multi-Step (n=6) All (n=46)

FFN, No Refinement 4.46±2.62 25.04± 22.88 7.14± 11.06
FFN, Iterative Refinement 4.54± 2.58 20.47±19.49 6.62±9.17

In our normal evaluations, each goal or subgoal is attempted only once by each

method. With a single attempted action for each subgoal, FFN is able to achieve

a diverse set of goals, as demonstrated in this work. However, we find that FFN

can achieve even better performance when attempting goals multiple times, using

the flow to compare the current observation with the goal and taking actions that

move the observation closer to the goal if it has not yet been reached. We evaluate

the benefit of using this “iterative refinement” procedure in simulation. FFN moves

to the next subgoal when a minimum threshold for the average flow is achieved, so

the flow acts as a goal recognizer. The policy is allowed a maximum of 3 iterative

actions per subgoal to limit potential divergence. The results in Table D.9 show that

iterative refinement can improve performance, particularly on multi-step goals, where

reaching the current subgoal accurately is important for achieving subsequent goals.

D.9 FlowNet Performance

FlowNet achieves an average endpoint error (EPE) of 1.0268 on the set of simulated

test goals. The test goals are not seen during training. Fig. D.8 provides qualitative

examples of FlowNet performance on simulated test goals.

138

D. Chapter 6 Appendix

Single-step Square Towel

Multi-step Square Towel

Rectangular Cloth T-shirt

Figure D.3: Qualitative performance of FFN and NoFlow on real cloth. The trial corre-
sponding to the best achieved IOU is shown for each example. For multi-step goals, only the
final goal is shown. FFN only takes depth images as input, allowing it to easily transfer to
cloths of different colors. Contrast and brightness have been adjusted to enhance visibility.

139

D. Chapter 6 Appendix

(a) Flopping back (b) Undershooting (c) Poor prediction

Figure D.4: Examples of failure cases

(a) Rect. cloth goals (b) FFN achieved (c) Fabric-VSF achieved (d) Lee et al. achieved

Figure D.5: Qualitative performance of FFN, Fabric-VSF, and Lee et al. on rectangular
cloth.

140

D. Chapter 6 Appendix

(a) Crumpled 0 (b) Crumpled 1 (c) Crumpled 2

Figure D.6: Crumpled initial cloth configurations

(a) Crumpled one-step FFN performance (b) Crumpled Multi-step FFN
performance

Figure D.7: Configurations achieved by FFN when starting from the “Crumpled 1” configu-
ration for each attempt (compare with Fig. D.2)

141

D. Chapter 6 Appendix

Figure D.8: FlowNet Qualitative Performance. Two types of visualizations are provided:
representing the flow vector as arrows, and representing the flow vector using RGB channels.
FlowNet outputs a dense flow image but is trained on sparse ground truth flow. FlowNet
takes only depth images as input; RGB images are shown as a visual aid only.

142

Bibliography

[1] Faraj Alhwarin, Alexander Ferrein, and Ingrid Scholl. Ir stereo kinect: improving
depth images by combining structured light with ir stereo. In Pacific Rim
International Conference on Artificial Intelligence, pages 409–421. Springer,
2014. 14

[2] Artemij Amiranashvili, Alexey Dosovitskiy, Vladlen Koltun, and Thomas Brox.
Motion perception in reinforcement learning with dynamic objects. In Confer-
ence on Robot Learning, pages 156–168. PMLR, 2018. 99

[3] Max Argus, Lukas Hermann, Jon Long, and Thomas Brox. Flowcontrol: Optical
flow based visual servoing. arXiv preprint arXiv:2007.00291, 2020. 99

[4] Dmitry Berenson, Siddhartha Srinivasa, and James Kuffner. Task space regions:
A framework for pose-constrained manipulation planning. The International
Journal of Robotics Research, 30(12):1435–1460, 2011. xvi, 35, 36

[5] C. Bersch, B. Pitzer, and S. Kammel. Bimanual robotic cloth manipulation for
laundry folding. In 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1413–1419, Sep. 2011. 54

[6] Christian Bersch, Benjamin Pitzer, and Sören Kammel. Bimanual robotic
cloth manipulation for laundry folding. In 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1413–1419, 2011. doi:
10.1109/IROS.2011.6095109. 96, 98

[7] Tapomayukh Bhattacharjee, Advait Jain, Sarvagya Vaish, Marc D. Killpack,
and Charles C. Kemp. Tactile Sensing over Articulated Joints With Stretchable
Sensors. In World Haptics Conference (WHC), 2013. 80

[8] Raunaq Bhirangi, Tess Hellebrekers, Carmel Majidi, and Abhinav Gupta.
ReSkin: versatile, replaceable, lasting tactile skins. In Conference on Robot
Learning (CoRL), 2021. xviii, 76, 77, 80, 81

[9] Jeannette Bohg, Antonio Morales, Tamim Asfour, and Danica Kragic. Data-
driven grasp synthesis—a survey. IEEE Transactions on Robotics, 30(2):289–309,
2013. 1, 14

143

Bibliography

[10] Jeannette Bohg, Antonio Morales, Tamim Asfour, and Danica Kragic. Data-
driven grasp synthesis—a survey. IEEE Transactions on Robotics, 30(2):289–309,
2014. doi: 10.1109/TRO.2013.2289018. 36

[11] Ricard Bordalba, Llúıs Ros, and Josep M Porta. A randomized kinodynamic
planner for closed-chain robotic systems. IEEE Transactions on Robotics, 2020.
97

[12] Julia Borras, Guillem Alenya, and Carme Torras. A Grasping-centered Analysis
for Cloth Manipulation. arXiv preprint arXiv:1906.08202, 2019. 76, 78

[13] Júlia Borràs, Guillem Alenyà, and Carme Torras. A grasping-centered analysis
for cloth manipulation. IEEE Transactions on Robotics, 36(3):924–936, 2020.
98

[14] Eric Brachmann, Alexander Krull, Frank Michel, Stefan Gumhold, Jamie
Shotton, and Carsten Rother. Learning 6d object pose estimation using 3d object
coordinates. In Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part II 13, pages
536–551. Springer, 2014. 1

[15] Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha Srinivasa, Pieter Abbeel,
and Aaron M Dollar. Benchmarking in manipulation research: The ycb object
and model set and benchmarking protocols. arXiv preprint arXiv:1502.03143,
2015. 22

[16] John Canny. A computational approach to edge detection. IEEE Transactions
on pattern analysis and machine intelligence, (6):679–698, 1986. 65, 66

[17] Cheng Chi and Shuran Song. Garmentnets: Category-level pose estima-
tion for garments via canonical space shape completion. arXiv preprint
arXiv:2104.05177, 2021. 98

[18] Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll. Implicit functions in
feature space for 3d shape reconstruction and completion. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE, jun 2020. 34, 37,
38

[19] Julian Chibane, Aymen Mir, and Gerard Pons-Moll. Neural unsigned dis-
tance fields for implicit function learning. In Advances in Neural Information
Processing Systems (NeurIPS), December 2020. 34, 37, 38

[20] Rohan Chitnis, Shubham Tulsiani, Saurabh Gupta, and Abhinav Gupta. Ef-
ficient bimanual manipulation using learned task schemas. In 2020 IEEE
International Conference on Robotics and Automation (ICRA), pages 1149–
1155. IEEE, 2020. 97

[21] Rohan Chitnis, Shubham Tulsiani, Saurabh Gupta, and Abhinav Gupta. Intrin-

144

Bibliography

sic motivation for encouraging synergistic behavior. International Conference
on Learning Representations, 2020. 97

[22] Sachin Chitta, Ioan Sucan, and Steve Cousins. Moveit![ros topics]. IEEE
Robotics & Automation Magazine, 19(1):18–19, 2012. 108

[23] Walon Wei-Chen Chiu, Ulf Blanke, and Mario Fritz. Improving the kinect by
cross-modal stereo. Citeseer. 14

[24] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning. http://pybullet.org,
2016–2021. 41, 43

[25] Brian Curless and Marc Levoy. Better optical triangulation through spacetime
analysis. In Proceedings of IEEE International Conference on Computer Vision,
pages 987–994. IEEE, 1995. 14

[26] Marco Cusumano-Towner, Arjun Singh, Stephen Miller, James F. O’Brien,
and Pieter Abbeel. Bringing clothing into desired configurations with limited
perception. In 2011 IEEE International Conference on Robotics and Automation,
pages 3893–3900, 2011. doi: 10.1109/ICRA.2011.5980327. 98

[27] Marco Cusumano-Towner, Arjun Singh, Stephen Miller, James F O’Brien, and
Pieter Abbeel. Bringing Clothing Into Desired Configurations with Limited
Perception. In IEEE International Conference on Robotics and Automation
(ICRA), 2011. 78

[28] Satonori Demura, Kazuki Sano, Wataru Nakajima, Kotaro Nagahama, Keisuke
Takeshita, and Kimitoshi Yamazaki. Picking up one of the folded and stacked
towels by a single arm robot. In 2018 IEEE International Conference on
Robotics and Biomimetics (ROBIO), pages 1551–1556. IEEE, 2018. 54, 55

[29] Satonori Demura, Kazuki Sano, Wataru Nakajima, Kotaro Nagahama, Keisuke
Takeshita, and Kimitoshi Yamazaki. Picking up One of the Folded and Stacked
Towels by a Single Arm Robot. In IEEE International Conference on Robotics
and Biomimetics (ROBIO), 2018. 79

[30] Simone Denei, Perla Maiolino, Emanuele Baglini, and Giorgio Cannata. On the
Development of a Tactile Sensor for Fabric Manipulation and Classification for
Industrial Applications. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2015. 79

[31] Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi,
and Leonidas J Guibas. Vector neurons: A general framework for so (3)-
equivariant networks. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 12200–12209, 2021. 41

[32] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

145

http://pybullet.org

Bibliography

A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee, 2009. 16

[33] Amaury Depierre, Emmanuel Dellandréa, and Liming Chen. Jacquard: A large
scale dataset for robotic grasp detection. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3511–3516. IEEE,
2018. 15

[34] Thanh-Toan Do, Anh Nguyen, and Ian Reid. Affordancenet: An end-to-end deep
learning approach for object affordance detection. In 2018 IEEE international
conference on robotics and automation (ICRA), pages 5882–5889. IEEE, 2018.
3

[35] Siyuan Dong, Devesh K Jha, Diego Romeres, Sangwoon Kim, Daniel Nikovski,
and Alberto Rodriguez. Tactile-rl for insertion: Generalization to objects of
unknown geometry. arXiv preprint arXiv:2104.01167, 2021. 99

[36] Elliott Donlon, Siyuan Dong, Melody Liu, Jianhua Li, Edward Adelson, and
Alberto Rodriguez. GelSlim: A High-Resolution, Compact, Robust, and Cal-
ibrated Tactile-sensing Finger. In IEEE Robotics and Automation Letters
(RA-L), 2018. 79

[37] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas,
Vladimir Golkov, Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox.
Flownet: Learning optical flow with convolutional networks. In Proceedings of
the IEEE international conference on computer vision, pages 2758–2766, 2015.
99, 126

[38] Andreas Doumanoglou, Andreas Kargakos, Tae-Kyun Kim, and Sotiris Malas-
siotis. Autonomous active recognition and unfolding of clothes using random
decision forests and probabilistic planning. 2014 IEEE International Conference
on Robotics and Automation (ICRA), pages 987–993, 2014. 54

[39] Andreas Doumanoglou, Andreas Kargakos, Tae-Kyun Kim, and Sotiris Malassi-
otis. Autonomous Active Recognition and Unfolding of Clothes Using Random
Decision Forests and Probabilistic Planning. In IEEE International Conference
on Robotics and Automation (ICRA), 2014. 76, 78

[40] Andreas Doumanoglou, Jan Stria, Georgia Peleka, Ioannis Mariolis, Vladimı́r
Petŕık, Andreas Kargakos, Libor Wagner, Václav Hlaváč, Tae-Kyun Kim, and
Sotiris Malassiotis. Folding clothes autonomously: A complete pipeline. IEEE
Transactions on Robotics, 32(6):1461–1478, 2016. doi: 10.1109/TRO.2016.
2602376. 96, 98

[41] Anca D. Dragan, Nathan D. Ratliff, and Siddhartha S. Srinivasa. Manipulation
planning with goal sets using constrained trajectory optimization. In 2011
IEEE International Conference on Robotics and Automation, pages 4582–4588,

146

Bibliography

2011. doi: 10.1109/ICRA.2011.5980538. 36, 40, 45

[42] Danny Driess, Jung-Su Ha, Marc Toussaint, and Russ Tedrake. Learning models
as functionals of signed-distance fields for manipulation planning. In Conference
on Robot Learning, pages 245–255. PMLR, 2022. 37

[43] Aaron Edsinger and Charles C Kemp. Two arms are better than one: A
behavior based control system for assistive bimanual manipulation. In Recent
progress in robotics: Viable robotic service to human, pages 345–355. Springer,
2007. 97

[44] Clemens Eppner, Arsalan Mousavian, and Dieter Fox. ACRONYM: A large-
scale grasp dataset based on simulation. In IEEE International Conference on
Robotics and Automation (ICRA), 2021. 41, 42, 44, 46, 48

[45] Zackory Erickson, Henry Clever, Greg Turk, C. Karen Liu, and Charles Kemp.
Deep Haptic Model Predictive Control for Robot-Assisted Dressing. In IEEE
International Conference on Robotics and Automation (ICRA), 2018. 76

[46] Zackory Erickson, Maggie Collier, Ariel Kapusta, and Charles Kemp. Tracking
Human Pose During Robot-Assisted Dressing using Single-Axis Capacitive
Proximity Sensing. In IEEE Robotics and Automation Letters (RA-L), 2018. 76

[47] Zackory Erickson, Vamsee Gangaram, Ariel Kapusta, C. Karen Liu, and
Charles C. Kemp. Assistive Gym: A Physics Simulation Framework for Assis-
tive Robotics. In IEEE International Conference on Robotics and Automation
(ICRA), 2020. 76

[48] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-
based algorithm for discovering clusters in large spatial databases with noise.
In kdd, volume 96, pages 226–231, 1996. 119

[49] Hao-Shu Fang, Chenxi Wang, Minghao Gou, and Cewu Lu. Graspnet-1billion:
A large-scale benchmark for general object grasping. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),
pages 11444–11453, 2020. 35, 36

[50] Kuan Fang, Yuke Zhu, Animesh Garg, Andrey Kuryenkov, Viraj Mehta, Li Fei-
Fei, and Silvio Savarese. Learning task-oriented grasping for tool manipulation
from simulated self-supervision. Robotics: Science and Systems (RSS), 2018. 1

[51] Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid,
Laura Downs, Adrian Wong, Johnny Lee, Igor Mordatch, and Jonathan Tomp-
son. Implicit behavioral cloning. In Conference on Robot Learning, pages
158–168. PMLR, 2022. 37, 38

[52] Peter Florence, Lucas Manuelli, and Russ Tedrake. Self-supervised correspon-
dence in visuomotor policy learning. IEEE Robotics and Automation Letters, 5

147

Bibliography

(2):492–499, 2019. 2

[53] Aditya Ganapathi, Priya Sundaresan, Brijen Thananjeyan, Ashwin Balakrishna,
Daniel Seita, Jennifer Grannen, Minho Hwang, Ryan Hoque, Joseph E Gonzalez,
Nawid Jamali, et al. Learning dense visual correspondences in simulation to
smooth and fold real fabrics. arXiv preprint arXiv:2003.12698, 2020. 97, 98,
106

[54] Aditya Ganapathi, Priya Sundaresan, Brijen Thananjeyan, Ashwin Balakrishna,
Daniel Seita, Jennifer Grannen, Minho Hwang, Ryan Hoque, Joseph Gonzalez,
Nawid Jamali, Katsu Yamane, Soshi Iba, and Ken Goldberg. Learning Dense
Visual Correspondences in Simulation to Smooth and Fold Real Fabrics. In
IEEE International Conference on Robotics and Automation (ICRA), 2021. 76,
78, 79

[55] Irene Garcia-Camacho, Martina Lippi, Michael C Welle, Hang Yin, Rika
Antonova, Anastasiia Varava, Julia Borras, Carme Torras, Alessandro Marino,
Guillem Alenyà, et al. Benchmarking bimanual cloth manipulation. IEEE
Robotics and Automation Letters, 5(2):1111–1118, 2020. 64

[56] Irene Garcia-Camacho, Martina Lippi, Michael C. Welle, Hang Yin, Rika
Antonova, Anastasiia Varava, Julia Borras, Carme Torras, Alessandro Marino,
Guillem Alenyà, and Danica Kragic. Benchmarking bimanual cloth manip-
ulation. IEEE Robotics and Automation Letters, 5(2):1111–1118, 2020. doi:
10.1109/LRA.2020.2965891. 98

[57] Marcus Gualtieri, Andreas Ten Pas, Kate Saenko, and Robert Platt. High
precision grasp pose detection in dense clutter. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 598–605. IEEE,
2016. 12, 15

[58] Yuhao Guo, Xin Jiang, and Yunhui Liu. Deformation Control of a Deformable
Object Based on Visual and Tactile Feedback. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2021. 79

[59] Saurabh Gupta, Judy Hoffman, and Jitendra Malik. Cross modal distillation
for supervision transfer. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2827–2836, 2016. 16, 17

[60] Huy Ha and Shuran Song. Flingbot: The unreasonable effectiveness of dynamic
manipulation for cloth unfolding. arXiv preprint arXiv:2105.03655, 2021. 78,
98, 105

[61] Kyoko Hamajima and Masayoshi Kakikura. Planning strategy for task of
unfolding clothes. Robotics Auton. Syst., 32:145–152, 1997. 54

[62] C. G. Harris and M. Stephens. A combined corner and edge detector. In Alvey
Vision Conference, 1988. 125

148

Bibliography

[63] Christopher G Harris, Mike Stephens, et al. A combined corner and edge
detector. In Alvey vision conference, volume 15, pages 10–5244. Citeseer, 1988.
67

[64] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016. 87

[65] Tomas Hodan, Frank Michel, Eric Brachmann, Wadim Kehl, Anders GlentBuch,
Dirk Kraft, Bertram Drost, Joel Vidal, Stephan Ihrke, Xenophon Zabulis, et al.
Bop: Benchmark for 6d object pose estimation. In Proceedings of the European
conference on computer vision (ECCV), pages 19–34, 2018. 1

[66] Judy Hoffman, Saurabh Gupta, Jian Leong, Sergio Guadarrama, and Trevor
Darrell. Cross-modal adaptation for rgb-d detection. In 2016 IEEE International
Conference on Robotics and Automation (ICRA), pages 5032–5039. IEEE, 2016.
12, 16, 17

[67] Ryan Hoque, Daniel Seita, Ashwin Balakrishna, Aditya Ganapathi, Ajay Tan-
wani, Nawid Jamali, Katsu Yamane, Soshi Iba, and Ken Goldberg. VisuoSpa-
tial Foresight for Multi-Step, Multi-Task Fabric Manipulation. In Proceedings
of Robotics: Science and Systems, Corvalis, Oregon, USA, July 2020. doi:
10.15607/RSS.2020.XVI.034. xiv, 96, 97, 99, 106, 130

[68] Ryan Hoque, Daniel Seita, Ashwin Balakrishna, Aditya Ganapathi, Ajay Tan-
wani, Nawid Jamali, Katsu Yamane, Soshi Iba, and Ken Goldberg. VisuoSpatial
Foresight for Multi-Step, Multi-Task Fabric Manipulation. In Robotics: Science
and Systems (RSS), 2020. 78

[69] Jeffrey Ichnowski*, Yahav Avigal*, Justin Kerr, and Ken Goldberg. Dex-NeRF:
Using a neural radiance field to grasp transparent objects. In Conference on
Robot Learning (CoRL), 2020. 37, 45

[70] Jeffrey Ichnowski, Michael Danielczuk, Jingyi Xu, Vishal Satish, and Ken
Goldberg. Gomp: Grasp-optimized motion planning for bin picking. In Proc.
IEEE Int. Conf. Robotics and Automation (ICRA), pages 5270–5277. IEEE,
2020. 36

[71] Ivo Ihrke, Kiriakos N Kutulakos, Hendrik PA Lensch, Marcus Magnor, and
Wolfgang Heidrich. Transparent and specular object reconstruction. In Com-
puter Graphics Forum, volume 29, pages 2400–2426. Wiley Online Library, 2010.
12, 13

[72] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy,
and Thomas Brox. Flownet 2.0: Evolution of optical flow estimation with
deep networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2462–2470, 2017. 99

149

Bibliography

[73] Rishabh Jangir, Guillem Alenyà, and Carme Torras. Dynamic cloth manipula-
tion with deep reinforcement learning. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 4630–4636. IEEE, 2020. 98

[74] Biao Jia, Zhe Hu, Jia Pan, and Dinesh Manocha. Manipulating Highly De-
formable Materials Using a Visual Feedback Dictionary. In IEEE International
Conference on Robotics and Automation (ICRA), 2018. 79

[75] Yun Jiang, Stephen Moseson, and Ashutosh Saxena. Efficient grasping from
rgbd images: Learning using a new rectangle representation. In 2011 IEEE
International Conference on Robotics and Automation, pages 3304–3311. IEEE,
2011. 15

[76] Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, and Yuke Zhu. Syn-
ergies between affordance and geometry: 6-dof grasp detection via implicit
representations. 2021. 37

[77] Licheng Jiao, Fan Zhang, Fang Liu, Shuyuan Yang, Lingling Li, Zhixi Feng,
and Rong Qu. A survey of deep learning-based object detection. IEEE access,
7:128837–128868, 2019. 1

[78] Gregory Kahn, Adam Villaflor, Bosen Ding, Pieter Abbeel, and Sergey Levine.
Self-supervised deep reinforcement learning with generalized computation graphs
for robot navigation. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 1–8. IEEE, 2018. 22

[79] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog,
Eric Jang, Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Van-
houcke, et al. Qt-opt: Scalable deep reinforcement learning for vision-based
robotic manipulation. arXiv preprint arXiv:1806.10293, 2018. 22

[80] Korrawe Karunratanakul, Jinlong Yang, Yan Zhang, Michael J Black, Krikamol
Muandet, and Siyu Tang. Grasping field: Learning implicit representations for
human grasps. In 2020 International Conference on 3D Vision (3DV), pages
333–344. IEEE, 2020. 37

[81] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Transactions on Robotics and Automation, 12(4):566–580, 1996. doi: 10.1109/
70.508439. 35

[82] A. A. Khan, M. Hassan Tanveer, Tahir Rasheed, and Abdul Azees Ajmal.
Tactile Discrimination of Fabrics Using Machine Learning Techniques. In IEEE
3rd International Conference on Engineering Technologies and Social Sciences
(ICETSS), 2017. 79

[83] A.A. Khan, M. Khosravi, S. Denei, P. Maiolino, W. Kasprzak, F. Mastrogio-
vanni, and G. Cannata. A Tactile-based Fabric Learning and Classification

150

Bibliography

Architecture. In IEEE International Conference on Information and Automation
for Sustainability (ICIAfS), 2016. 79

[84] Ninad Khargonkar, Neil Song, Zesheng Xu, Balakrishnan Prabhakaran, and
Yu Xiang. Neuralgrasps: Learning implicit representations for grasps of multiple
robotic hands. Conference on Robot Learning, 2022. 37

[85] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014. 126, 127

[86] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. CoRR, abs/1412.6980, 2015. 42, 117, 118

[87] Yasuyo Kita, Toshio Ueshiba, Ee Sian Neo, and Nobuyuki Kita. Clothes State
Recognition Using 3D Observed Data. In IEEE International Conference on
Robotics and Automation (ICRA), 2009. 78

[88] Yasuyo Kita, Toshio Ueshiba, Ee Sian Neo, and Nobuyuki Kita. A Method For
Handling a Specific Part of Clothing by Dual Arms. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2009. 78

[89] Kilian Kleeberger, Richard Bormann, Werner Kraus, and Marco F Huber. A
survey on learning-based robotic grasping. Current Robotics Reports, 1(4):
239–249, 2020. 36

[90] Panagiotis N. Koustoumpardis, Kostas X. Nastos, and Nikos A. Aspragathos.
Underactuated 3-finger Robotic Gripper for Grasping Fabrics. In International
Conference on Robotics in Alpe-Adria-Danube Region (RAAD), 2014. 79

[91] J.J. Kuffner and S.M. LaValle. Rrt-connect: An efficient approach to single-
query path planning. In Proceedings 2000 ICRA. Millennium Conference. IEEE
International Conference on Robotics and Automation. Symposia Proceedings
(Cat. No.00CH37065), volume 2, pages 995–1001 vol.2, 2000. doi: 10.1109/
ROBOT.2000.844730. 35

[92] Tejas D Kulkarni, Ankush Gupta, Catalin Ionescu, Sebastian Borgeaud, Mal-
colm Reynolds, Andrew Zisserman, and Volodymyr Mnih. Unsupervised learning
of object keypoints for perception and control. Advances in neural information
processing systems, 32, 2019. 1

[93] Mike Lambeta, Po-Wei Chou, Stephen Tian, Brian Yang, Benjamin Maloon,
Victoria Rose Most, Dave Stroud, Raymond Santos, Ahmad Byagowi, Gregg
Kammerer, Dinesh Jayaraman, and Roberto Calandra. DIGIT: A Novel Design
for a Low-Cost Compact High-Resolution Tactile Sensor with Application to
In-Hand Manipulation. In IEEE Robotics and Automation Letters (RA-L),
2020. 76, 79

[94] Michael Laskey, Chris Powers, Ruta Joshi, Arshan Poursohi, and Kenneth Y.

151

Bibliography

Goldberg. Learning robust bed making using deep imitation learning with dart.
ArXiv, abs/1711.02525, 2017. 54

[95] Robert Lee, Daniel Ward, Akansel Cosgun, Vibhavari Dasagi, Peter Corke, and
Jurgen Leitner. Learning Arbitrary-Goal Fabric Folding with One Hour of Real
Robot Experience. In Conference on Robot Learning (CoRL), 2020. 76, 78

[96] Robert Lee, Daniel Ward, Akansel Cosgun, Vibhavari Dasagi, Peter Corke, and
Jurgen Leitner. Learning arbitrary-goal fabric folding with one hour of real
robot experience. Conference on Robot Learning, 2020. xiv, 96, 97, 99, 100,
101, 106, 107, 108, 125, 126, 132, 133, 134

[97] Ian Lenz, Honglak Lee, and Ashutosh Saxena. Deep learning for detecting
robotic grasps. The International Journal of Robotics Research, 34(4-5):705–
724, 2015. doi: 10.1177/0278364914549607. URL https://doi.org/10.1177/

0278364914549607. 15

[98] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end
training of deep visuomotor policies. The Journal of Machine Learning Research,
17(1):1334–1373, 2016. 2

[99] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen.
Learning hand-eye coordination for robotic grasping with deep learning and
large-scale data collection. The International Journal of Robotics Research, 37
(4-5):421–436, 2018. 15

[100] Guanbin Li, Yukang Gan, Hejun Wu, Nong Xiao, and Liang Lin. Cross-modal
attentional context learning for rgb-d object detection. IEEE Transactions on
Image Processing, 28(4):1591–1601, 2018. 16, 17

[101] Yinxiao Li, Yan Wang, Michael Case, Shih-Fu Chang, and Peter K. Allen.
Real-time pose estimation of deformable objects using a volumetric approach.
In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1046–1052, 2014. doi: 10.1109/IROS.2014.6942687. 98

[102] Yinxiao Li, Danfei Xu, Yonghao Yue, Yan Wang, Shih-Fu Chang, Eitan Grin-
spun, and Peter K. Allen. Regrasping and unfolding of garments using predictive
thin shell modeling. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2015. 98, 99

[103] Yunzhu Li, Shuang Li, Vincent Sitzmann, Pulkit Agrawal, and Antonio Torralba.
3d neural scene representations for visuomotor control. In Conference on Robot
Learning, pages 112–123. PMLR, 2022. 37

[104] Hongzhuo Liang, Xiaojian Ma, Shuang Li, Michael Görner, Song Tang, Bin Fang,
Fuchun Sun, and Jianwei Zhang. Pointnetgpd: Detecting grasp configurations
from point sets. In 2019 International Conference on Robotics and Automation
(ICRA), pages 3629–3635. IEEE, 2019. 35, 36

152

https://doi.org/10.1177/0278364914549607
https://doi.org/10.1177/0278364914549607

Bibliography

[105] Xingyu Lin, Yufei Wang, Jake Olkin, and David Held. SoftGym: Benchmark-
ing Deep Reinforcement Learning for Deformable Object Manipulation. In
Conference on Robot Learning (CoRL), 2020. 2, 78, 83, 105

[106] Xingyu Lin, Yufei Wang, Zixuan Huang, and David Held. Learning visible
connectivity dynamics for cloth smoothing. In Conference on Robot Learning,
2021. 78

[107] Martina Lippi, Petra Poklukar, Michael C Welle, Anastasiia Varava, Hang Yin,
Alessandro Marino, and Danica Kragic. Latent space roadmap for visual action
planning of deformable and rigid object manipulation. In 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
5619–5626. IEEE, 2020. 99

[108] Shan Luo, Wenzhen Yuan, Edward Adelson, Anthony G Cohn, and Raul Fuentes.
Vitac: Feature Sharing Between Vision and Tactile Sensing for Cloth Texture
Recognition. In IEEE International Conference on Robotics and Automation
(ICRA), 2018. 76, 79

[109] Ilya Lysenkov and Vincent Rabaud. Pose estimation of rigid transparent objects
in transparent clutter. In 2013 IEEE International Conference on Robotics and
Automation, pages 162–169. IEEE, 2013. 14

[110] Ilya Lysenkov, Victor Eruhimov, and Gary Bradski. Recognition and pose
estimation of rigid transparent objects with a kinect sensor. Robotics, 273, 2013.
14

[111] Xiao Ma, David Hsu, and Wee Sun Lee. Learning latent graph dynamics for
deformable object manipulation. arXiv preprint arXiv:2104.12149, 2021. 99

[112] Xiao Ma, David Hsu, and Wee Sun Lee. Learning Latent Graph Dynamics
for Deformable Object Manipulation. In IEEE International Conference on
Robotics and Automation (ICRA), 2022. 78

[113] Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim.
Unified particle physics for real-time applications. ACM Trans. Graph., 33
(4), jul 2014. ISSN 0730-0301. doi: 10.1145/2601097.2601152. URL https:

//doi.org/10.1145/2601097.2601152. 41

[114] Miles Macklin, Matthias Muller, Nuttapong Chentanez, and Tae-Yong Kim.
Unified Particle Physics for Real-Time Applications. ACM Trans. Graph., 33
(4), July 2014. 83

[115] K. Maeno, H. Nagahara, A. Shimada, and R. Taniguchi. Light field distor-
tion feature for transparent object recognition. In 2013 IEEE Conference on
Computer Vision and Pattern Recognition, pages 2786–2793, June 2013. doi:
10.1109/CVPR.2013.359. 14

153

https://doi.org/10.1145/2601097.2601152
https://doi.org/10.1145/2601097.2601152

Bibliography

[116] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan,
Xinyu Liu, Juan Aparicio Ojea, and Ken Goldberg. Dex-net 2.0: Deep learning
to plan robust grasps with synthetic point clouds and analytic grasp metrics.
arXiv preprint arXiv:1703.09312, 2017. 15, 22

[117] Jeffrey Mahler, Rob Platt, Alberto Rodriguez, Matei Ciocarlie, Aaron Dollar,
Renaud Detry, Maximo A Roa, Holly Yanco, Adam Norton, Joe Falco, et al.
Guest editorial open discussion of robot grasping benchmarks, protocols, and
metrics. IEEE Transactions on Automation Science and Engineering, 15(4):
1440–1442, 2018. 14, 21, 26

[118] Jeremy Maitin-Shepard, Marco Cusumano-Towner, Jinna Lei, and Pieter Abbeel.
Cloth grasp point detection based on multiple-view geometric cues with applica-
tion to robotic towel folding. In 2010 IEEE International Conference on Robotics
and Automation, pages 2308–2315, 2010. doi: 10.1109/ROBOT.2010.5509439.
96, 98

[119] Jeremy Maitin-Shepard, Marco Cusumano-Towner, Jinna Lei, and Pieter Abbeel.
Cloth grasp point detection based on multiple-view geometric cues with ap-
plication to robotic towel folding. In 2010 IEEE International Conference on
Robotics and Automation, pages 2308–2315. IEEE, 2010. 54, 55, 76, 78

[120] Pragna Mannam, Avi Rudich, Kevin Zhang, Manuela Veloso, Oliver Kroemer,
and F. Zeynep Temel. A Low-Cost Compliant Gripper Using Cooperative Mini-
Delta Robots for Dexterous Manipulation. In Robotics: Science and Systems
(RSS), 2021. xviii, 77, 80, 81

[121] Lucas Manuelli, Yunzhu Li, Pete Florence, and Russ Tedrake. Keypoints
into the future: Self-supervised correspondence in model-based reinforcement
learning. Conference on Robot Learning, 2020. 1

[122] Jan Matas, Stephen James, and Andrew J. Davison. Sim-to-Real Reinforcement
Learning for Deformable Object Manipulation. Conference on Robot Learning
(CoRL), 2018. 76, 78, 79

[123] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and
Andreas Geiger. Occupancy networks: Learning 3d reconstruction in function
space. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4460–4470, 2019. 34, 37, 38

[124] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron,
Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance
fields for view synthesis. In ECCV, 2020. 34, 37, 45

[125] Andrew T Miller, Steffen Knoop, Henrik Iskov Christensen, and Peter K Allen.
Automatic grasp planning using shape primitives. 2003. 15

[126] S. Miller, J. V. D. Berg, Mario Fritz, Trevor Darrell, Ken Goldberg, and

154

Bibliography

P. Abbeel. A geometric approach to robotic laundry folding. The International
Journal of Robotics Research, 31:249 – 267, 2012. 98

[127] Stephen Miller, Jur van den Berg, Mario Fritz, Trevor Darrell, Ken Goldberg,
and Pieter Abbeel. A Geometric Approach to Robotic Laundry Folding. In
International Journal of Robotics Research (IJRR), 2012. 78

[128] Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtarnavaz,
and Demetri Terzopoulos. Image segmentation using deep learning: A survey.
IEEE transactions on pattern analysis and machine intelligence, 44(7):3523–
3542, 2021. 1

[129] K. Mohy el Dine, J. Sanchez, J. A. Corrales, Y. Mezouar, and J.-C. Fau-
roux. Force-torque Sensor Disturbance Observer Using Deep Learning. In
International Symposium on Experimental Robotics (ISER), 2018. 80

[130] Yusuke Moriya, Daisuke Tanaka, Kimitoshi Yamazaki, and Keisuke Takeshita.
A method of picking up a folded fabric product by a single-armed robot.
ROBOMECH Journal, 5:1–12, 2018. 54, 55

[131] Douglas Morrison, Peter Corke, and Jürgen Leitner. Learning robust, real-time,
reactive robotic grasping. The International Journal of Robotics Research, 0
(0):0278364919859066, 0. doi: 10.1177/0278364919859066. URL https://doi.

org/10.1177/0278364919859066. 15

[132] Douglas Morrison, Juxi Leitner, and Peter Corke. Closing the loop for robotic
grasping: A real-time, generative grasp synthesis approach. In Proceedings
of Robotics: Science and Systems, Pittsburgh, Pennsylvania, June 2018. doi:
10.15607/RSS.2018.XIV.021. 12, 28

[133] Arsalan Mousavian, Clemens Eppner, and Dieter Fox. 6-dof graspnet: Vari-
ational grasp generation for object manipulation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 2901–2910,
2019. 35, 36, 39

[134] Mustafa Mukadam, Jing Dong, Xinyan Yan, Frank Dellaert, and Byron Boots.
Continuous-time gaussian process motion planning via probabilistic inference.
The International Journal of Robotics Research, 37(11):1319–1340, 2018. 35

[135] Tushar Nagarajan, Christoph Feichtenhofer, and Kristen Grauman. Grounded
human-object interaction hotspots from video. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 8688–8697, 2019. 3

[136] Ashvin Nair, Dian Chen, Pulkit Agrawal, Phillip Isola, Pieter Abbeel, Jitendra
Malik, and Sergey Levine. Combining self-supervised learning and imitation
for vision-based rope manipulation. In 2017 IEEE international conference on
robotics and automation (ICRA), pages 2146–2153. IEEE, 2017. 96, 99, 100,
101, 105, 126

155

https://doi.org/10.1177/0278364919859066
https://doi.org/10.1177/0278364919859066

Bibliography

[137] Peiyuan Ni, Wenguang Zhang, Xiaoxiao Zhu, and Qixin Cao. Pointnet++
grasping: Learning an end-to-end spatial grasp generation algorithm from
sparse point clouds. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 3619–3625, 2020. doi: 10.1109/ICRA40945.2020.
9196740. 35, 36

[138] John Oberlin and Stefanie Tellex. Time-lapse light field photography for
perceiving transparent and reflective objects. 14

[139] Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Colored point cloud registration
revisited. In Proceedings of the IEEE international conference on computer
vision, pages 143–152, 2017. 119

[140] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven
Lovegrove. Deepsdf: Learning continuous signed distance functions for shape
representation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 165–174, 2019. 34, 37, 38, 41, 45

[141] Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian
Chen, Yide Shentu, Evan Shelhamer, Jitendra Malik, Alexei A. Efros, and
Trevor Darrell. Zero-shot visual imitation. In ICLR, 2018. 99, 100, 101

[142] Luis Pineda, Taosha Fan, Maurizio Monge, Shobha Venkataraman, Paloma
Sodhi, Ricky Chen, Joseph Ortiz, Daniel DeTone, Austin Wang, Stuart Ander-
son, et al. Theseus: A library for differentiable nonlinear optimization. arXiv
preprint arXiv:2207.09442, 2022. 42

[143] Lerrel Pinto and Abhinav Gupta. Supersizing self-supervision: Learning to
grasp from 50k tries and 700 robot hours. In 2016 IEEE international conference
on robotics and automation (ICRA), pages 3406–3413. IEEE, 2016. 15

[144] Kavya Puthuveetil, Charles C. Kemp, and Zackory Erickson. Bodies Uncovered:
Learning to Manipulate Real Blankets Around People via Physics Simulations.
In IEEE Robotics and Automation Letters (RA-L), 2022. 78

[145] Jianing Qian, Thomas Weng, Luxin Zhang, Brian Okorn, and David Held. Cloth
Region Segmentation for Robust Grasp Selection. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2020. 6, 79

[146] Arnau Ramisa, Guillem Alenya, Francesc Moreno-Noguer, and Carme Tor-
ras. Using Depth and Appearance Features for Informed Robot Grasping of
Highly Wrinkled Clothes. In IEEE International Conference on Robotics and
Automation (ICRA), 2012. 79

[147] J. Redmon and A. Angelova. Real-time grasp detection using convolutional
neural networks. In 2015 IEEE International Conference on Robotics and
Automation (ICRA), pages 1316–1322, May 2015. doi: 10.1109/ICRA.2015.
7139361. 15

156

Bibliography

[148] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention, pages 234–241.
Springer, 2015. 63, 123

[149] Caner Sahin, Guillermo Garcia-Hernando, Juil Sock, and Tae-Kyun Kim. A
review on object pose recovery: From 3d bounding box detectors to full 6d pose
estimators. Image and Vision Computing, 96:103898, 2020. 1

[150] J. Sanchez, J. Corrales, B. Bouzgarrou, and Y. Mezouar. Robotic manipulation
and sensing of deformable objects in domestic and industrial applications: a
survey. The International Journal of Robotics Research, 37:688 – 716, 2018. 98

[151] Jose Sanchez, Juan-Antonio Corrales, Belhassen-Chedli Bouzgarrou, and Youcef
Mezouar. Robotic Manipulation and Sensing of Deformable Objects in Domestic
and Industrial Applications: a Survey. In International Journal of Robotics
Research (IJRR), 2018. 76

[152] Jose Sanchez, Kamal Mohy El Dine, Juan Antonio Corrales, Belhassen-Chedli
Bouzgarrou, and Youcef Mezouar. Blind Manipulation of Deformable Objects
Based on Force Sensing and Finite Element Modeling. In Frontiers in Robotics
and AI, 2020. 80

[153] Vishal Satish, Jeffrey Mahler, and Ken Goldberg. On-policy dataset synthesis
for learning robot grasping policies using fully convolutional deep networks.
IEEE Robotics and Automation Letters, 4(2):1357–1364, 2019. xv, xx, 12, 15,
16, 19, 20, 23, 26, 113

[154] Ashutosh Saxena, Justin Driemeyer, and Andrew Y Ng. Robotic grasping of
novel objects using vision. The International Journal of Robotics Research, 27
(2):157–173, 2008. 15

[155] Daniel Seita, Nawid Jamali, Michael Laskey, Ron Berenstein, Ajay Kumar
Tanwani, Prakash Baskaran, Soshi Iba, John Canny, and Ken Goldberg. Deep
Transfer Learning of Pick Points on Fabric for Robot Bed-Making. In Interna-
tional Symposium on Robotics Research (ISRR), 2019. 76

[156] Daniel Seita, Nawid Jamali, Michael Laskey, Ajay Kumar Tanwani, Ron Beren-
stein, Prakash Baskaran, Soshi Iba, John Canny, and Ken Goldberg. Deep
Transfer Learning of Pick Points on Fabric for Robot Bed-Making. In Interna-
tional Symposium on Robotics Research (ISRR), 2019. 54, 55, 58

[157] Daniel Seita, Pete Florence, Jonathan Tompson, Erwin Coumans, Vikas Sind-
hwani, Ken Goldberg, and Andy Zeng. Learning to rearrange deformable cables,
fabrics, and bags with goal-conditioned transporter networks. arXiv preprint
arXiv:2012.03385, 2020. 96, 98, 101, 107

[158] Daniel Seita, Aditya Ganapathi, Ryan Hoque, Minho Hwang, Edward Cen,

157

Bibliography

Ajay Kumar Tanwani, Ashwin Balakrishna, Brijen Thananjeyan, Jeffrey Ich-
nowski, Nawid Jamali, Katsu Yamane, Soshi Iba, John Canny, and Ken Gold-
berg. Deep Imitation Learning of Sequential Fabric Smoothing From an Al-
gorithmic Supervisor. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2020. 76, 78, 79, 96, 99, 101, 105

[159] Daniel Seita, Pete Florence, Jonathan Tompson, Erwin Coumans, Vikas Sind-
hwani, Ken Goldberg, and Andy Zeng. Learning to Rearrange Deformable
Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. In
IEEE International Conference on Robotics and Automation (ICRA), 2021. 78

[160] Ruhizan Liza Ahmad Shauri and Kenzo Nonami. Assembly manipulation of
small objects by dual-arm manipulator. Assembly Automation, 2011. 97

[161] Zilin Si and Wenzhen Yuan. Taxim: An example-based Simulation Model for
GelSight Tactile Sensors. In IEEE Robotics and Automation Letters (RA-L),
2022. 83

[162] Anthony Simeonov, Yilun Du, Andrea Tagliasacchi, Joshua B. Tenenbaum,
Alberto Rodriguez, Pulkit Agrawal, and Vincent Sitzmann. Neural descriptor
fields: Se(3)-equivariant object representations for manipulation. arXiv preprint
arXiv:2112.05124, 2021. 37, 41, 46, 119

[163] Christian Smith, Yiannis Karayiannidis, Lazaros Nalpantidis, Xavi Gratal, Peng
Qi, Dimos V. Dimarogonas, and Danica Kragic. Dual arm manipulation—a
survey. Robotics and Autonomous Systems, 60(10):1340–1353, 2012. ISSN
0921-8890. doi: https://doi.org/10.1016/j.robot.2012.07.005. 97

[164] Shuran Song, Andy Zeng, Johnny Lee, and Thomas Funkhouser. Grasping
in the wild: Learning 6dof closed-loop grasping from low-cost demonstrations.
IEEE Robotics and Automation Letters, 5(3):4978–4985, 2020. 37

[165] Li Sun, Gerardo Aragon-Camarasa, Simon Rogers, and J. Paul Siebert. Accurate
Garment Surface Analysis using an Active Stereo Robot Head with Application
to Dual-Arm Flattening. In IEEE International Conference on Robotics and
Automation (ICRA), 2015. 79

[166] Balakumar Sundaralingam, Alexander Lambert, Ankur Handa, Byron Boots,
Tucker Hermans, Stan Birchfield, Nathan Ratliff, and Dieter Fox. Robust
Learning of Tactile Force Estimation through Robot Interaction. In IEEE
International Conference on Robotics and Automation (ICRA), 2019. 80

[167] Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, and Fox Dieter.
Contact-graspnet: Efficient 6-dof grasp generation in cluttered scenes. IEEE
International Conference on Robotics and Automation (ICRA), 2021. xvi, 35,
36, 44, 45

[168] Giovanni Sutanto, Austin Wang, Yixin Lin, Mustafa Mukadam, Gaurav

158

Bibliography

Sukhatme, Akshara Rai, and Franziska Meier. Encoding physical constraints in
differentiable newton-euler algorithm. volume 120 of Proceedings of Machine
Learning Research, pages 804–813, The Cloud, 10–11 Jun 2020. PMLR. URL
http://proceedings.mlr.press/v120/sutanto20a.html. 42

[169] Raúl Suárez, Jan Rosell, and Néstor Garćıa. Using synergies in dual-arm
manipulation tasks. In 2015 IEEE International Conference on Robotics and
Automation (ICRA), pages 5655–5661, 2015. doi: 10.1109/ICRA.2015.7139991.
97

[170] Daisuke Tanaka, Solvi Arnold, and Kimitoshi Yamazaki. Emd net: An en-
code–manipulate–decode network for cloth manipulation. IEEE Robotics and
Automation Letters, 3(3):1771–1778, 2018. doi: 10.1109/LRA.2018.2800122. 98

[171] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for
optical flow. In European Conference on Computer Vision, pages 402–419.
Springer, 2020. 99

[172] Andreas ten Pas, Marcus Gualtieri, Kate Saenko, and Robert Platt. Grasp
pose detection in point clouds. The International Journal of Robotics Research,
36(13-14):1455–1473, 2017. 15

[173] Sashank Tirumala, Thomas Weng, Daniel Seita, Oliver Kroemer, Zeynep Temel,
and David Held. Learning to singulate layers of cloth using tactile feedback. In
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 7773–7780. IEEE, 2022. 6

[174] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A Physics Engine for
Model-Based Control. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2012. 78

[175] Eric Torgerson and Fanget Paul. Vision Guided Robotic Fabric Manipulation
for Apparel Manufacturing. In IEEE International Conference on Robotics and
Automation (ICRA), 1987. 76

[176] Dimitra Triantafyllou and Nikos A. Aspragathos. A vision system for the
unfolding of highly non-rigid objects on a table by one manipulator. In Sabina
Jeschke, Honghai Liu, and Daniel Schilberg, editors, Intelligent Robotics and Ap-
plications, pages 509–519, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.
ISBN 978-3-642-25486-4. 54

[177] Dimitra Triantafyllou, Ioannis Mariolis, Andreas Kargakos, Sotiris Malassiotis,
and Nikos A. Aspragathos. A geometric approach to robotic unfolding of
garments. Robotics Auton. Syst., 75:233–243, 2016. 54

[178] Roger Y Tsai, Reimar K Lenz, et al. A new technique for fully autonomous
and efficient 3 d robotics hand/eye calibration. IEEE Transactions on robotics
and automation, 5(3):345–358, 1989. 119

159

http://proceedings.mlr.press/v120/sutanto20a.html

Bibliography

[179] Julen Urain, Niklas Funk, Georgia Chalvatzaki, and Jan Peters. Se (3)-
diffusionfields: Learning cost functions for joint grasp and motion optimization
through diffusion. arXiv preprint arXiv:2209.03855, 2022. 37

[180] Ulrich Viereck, Andreas ten Pas, Kate Saenko, and Robert Platt. Learning
a visuomotor controller for real world robotic grasping using simulated depth
images. arXiv preprint arXiv:1706.04652, 2017. 22, 24

[181] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson,
K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert
Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake
VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen,
E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro,
Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python. Nature Methods,
17:261–272, 2020. doi: 10.1038/s41592-019-0686-2. 88

[182] Felix von Drigalski, Marcus Gall, Sung-Gwi Cho, Ming Ding, Jun Takamatsu,
Tsukasa Ogasawara, and Tamim Asfour. Textile Identification Using Fingertip
Motion and 3D Force Sensors in an Open-source Gripper. In IEEE International
Conference on Robotics and Biomimetics (ROBIO), 2017. 79

[183] Lirui Wang, Yu Xiang, and Dieter Fox. Manipulation trajectory optimization
with online grasp synthesis and selection. In Robotics: Science and Systems
(RSS), 2020. xvi, 35, 36, 44, 45, 120

[184] Lirui Wang, Xiangyun Meng, Yu Xiang, and Dieter Fox. Hierarchical policies
for cluttered-scene grasping with latent plans. IEEE Robotics and Automation
Letters, 7(2):2883–2890, 2022. doi: 10.1109/LRA.2022.3143198. 37

[185] Shaoxiong Wang, Mike Lambeta, Po-Wei Chou, and Roberto Calandra. TACTO:
A Fast, Flexible, and Open-source Simulator for High-Resolution Vision-based
Tactile Sensors. In IEEE Robotics and Automation Letters (RA-L), 2022. 83

[186] David Watkins-Valls, Jacob Varley, and Peter Allen. Multi-modal geometric
learning for grasping and manipulation. arXiv preprint arXiv:1803.07671, 2018.
15

[187] Thomas Weng, Amith Pallankize, Yimin Tang, Oliver Kroemer, and David
Held. Multi-modal transfer learning for grasping transparent and specular
objects. IEEE Robotics and Automation Letters, 5(3):3791–3798, 2020. doi:
10.1109/LRA.2020.2974686. 5

[188] Thomas Weng, Sujay Bajracharya, Yufei Wang, Khush Agrawal, and David
Held. FabricFlowNet: Bimanual Cloth Manipulation with a Flow-based Policy.

160

Bibliography

In Conference on Robot Learning (CoRL), 2021. 7, 76, 78, 79

[189] Thomas Weng, David Held, Franziska Meier, and Mustafa Mukadam. Neural
grasp distance fields for robot manipulation. arXiv preprint arXiv:2211.02647,
2022. 45, 46

[190] Thomas Weng, David Held, Franziska Meier, and Mustafa Mukadam. Neural
grasp distance fields for robot manipulation. 2023. 5

[191] Gordon Wetzstein, Ramesh Raskar, and Wolfgang Heidrich. Hand-held schlieren
photography with light field probes. In 2011 IEEE International Conference
on Computational Photography (ICCP), pages 1–8. IEEE, 2011. 14

[192] Youngsun Wi, Pete Florence, Andy Zeng, and Nima Fazeli. Virdo: Visio-tactile
implicit representations of deformable objects. 2022. 37

[193] B. Willimon, S. Birchfield, and I. Walker. Model for unfolding laundry us-
ing interactive perception. In 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 4871–4876, Sep. 2011. 54, 55

[194] Ruihai Wu and Yan Zhao. Vat-mart: Learning visual action trajectory proposals
for manipulating 3d articulated objects. In International Conference on Learning
Representations (ICLR), 2022, 2022. 3

[195] Yilin Wu, Wilson Yan, Thanard Kurutach, Lerrel Pinto, and Pieter Abbeel.
Learning to manipulate deformable objects without demonstrations. ArXiv,
abs/1910.13439, 2019. 54, 55

[196] Yilin Wu, Wilson Yan, Thanard Kurutach, Lerrel Pinto, and Pieter Abbeel.
Learning to Manipulate Deformable Objects without Demonstrations. In
Proceedings of Robotics: Science and Systems, Corvalis, Oregon, USA, July
2020. doi: 10.15607/RSS.2020.XVI.065. 96, 99, 100, 101, 103

[197] Yilin Wu, Wilson Yan, Thanard Kurutach, Lerrel Pinto, and Pieter Abbeel.
Learning to Manipulate Deformable Objects without Demonstrations. In
Robotics: Science and Systems (RSS), 2020. 76, 78

[198] Yueh-Hua Wu, Jiashun Wang, and Xiaolong Wang. Learning generalizable
dexterous manipulation from human grasp affordance. Conference on Robot
Learning, 2022. 37

[199] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox. Posecnn:
A convolutional neural network for 6d object pose estimation in cluttered scenes.
Robotics: Science and Systems, 2018. 1

[200] Fan Xie, Alexander Chowdhury, M. Clara De Paolis Kaluza, Linfeng Zhao, Law-
son Wong, and Rose Yu. Deep imitation learning for bimanual robotic manipula-
tion. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 2327–

161

Bibliography

2337. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/

paper/2020/file/18a010d2a9813e91907ce88cd9143fdf-Paper.pdf. 97

[201] K. Yamazaki. Gripping positions selection for unfolding a rectangular cloth
product. In 2018 IEEE 14th International Conference on Automation Science
and Engineering (CASE), pages 606–611, Aug 2018. 54

[202] Kimitoshi Yamazaki, Ryosuke Oya, Kotaro Nagahama, Kei Okada, and
Masayuki Inaba. Bottom dressing by a dual-arm robot using a clothing state
estimation based on dynamic shape changes. International Journal of Advanced
Robotic Systems, 13(1):5, 2016. doi: 10.5772/61930. 99

[203] Wilson Yan, Ashwin Vangipuram, Pieter Abbeel, and Lerrel Pinto. Learning
predictive representations for deformable objects using contrastive estimation.
Robotics: Science and Systems, 2020. 96, 99, 101

[204] Wilson Yan, Ashwin Vangipuram, Pieter Abbeel, and Lerrel Pinto. Learning Pre-
dictive Representations for Deformable Objects Using Contrastive Estimation.
In Conference on Robot Learning (CoRL), 2020. 78

[205] Wei Yang, Chris Paxton, Arsalan Mousavian, Yu-Wei Chao, Maya Cakmak,
and Dieter Fox. Reactive human-to-robot handovers of arbitrary objects. IEEE
International Conference on Robotics and Automation (ICRA), 2021. 37

[206] Hang Yin, Anastasia Varava, and Danica Kragic. Modeling, Learning, Per-
ception, and Control Methods for Deformable Object Manipulation. Science
Robotics, 6(54), 2021. 78

[207] Wenhao Yu, Ariel Kapusta, Jie Tan, Charles C. Kemp, Greg Turk, and C. Karen
Liu. Haptic Simulation for Robot-Assisted Dressing. In IEEE International
Conference on Robotics and Automation (ICRA), 2017. 76

[208] Wenzhen Yuan, Siyuan Dong, and Edward H. Adelson. GelSight: High-
Resolution Robot Tactile Sensors for Estimating Geometry and Force. Sensors,
17(12), 2017. URL https://www.mdpi.com/1424-8220/17/12/2762. 76, 79

[209] Wenzhen Yuan, Shaoxiong Wang, Siyuan Dong, and Edward Adelson. Connect-
ing Look and Feel: Associating the Visual and Tactile Properties of Physical
Materials. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017. 79

[210] Wenzhen Yuan, Yuchen Mo, Shaoxiong Wang, and Edward Adelson. Active
Clothing Material Perception using Tactile Sensing and Deep Learning. In
IEEE International Conference on Robotics and Automation (ICRA), 2018. 76,
79

[211] Kevin Zhang, Mohit Sharma, Jacky Liang, and Oliver Kroemer. A modular
robotic arm control stack for research: Franka-interface and frankapy. arXiv

162

https://proceedings.neurips.cc/paper/2020/file/18a010d2a9813e91907ce88cd9143fdf-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/18a010d2a9813e91907ce88cd9143fdf-Paper.pdf
https://www.mdpi.com/1424-8220/17/12/2762

Bibliography

preprint arXiv:2011.02398, 2020. 120

[212] Jihong Zhu, Andrea Cherubini, Claire Dune, David Navarro-Alarcon, Farshid
Alambeigi, Dmitry Berenson, Fanny Ficuciello, Kensuke Harada, Jens Kober,
Xiang Li, Jia Pan, Wenzhen Yuan, and Michael Gienger. Challenges and
Outlook in Robotic Manipulation of Deformable Objects. arXiv preprint
arXiv:2105.01767, 2021. 78

[213] Luyang Zhu, Arsalan Mousavian, Yu Xiang, Hammad Mazhar, Jozef van
Eenbergen, Shoubhik Debnath, and Dieter Fox. Rgb-d local implicit function
for depth completion of transparent objects. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 4649–4658,
2021. 37

[214] Matt Zucker, Nathan Ratliff, Anca D Dragan, Mihail Pivtoraiko, Matthew
Klingensmith, Christopher M Dellin, J Andrew Bagnell, and Siddhartha S
Srinivasa. Chomp: Covariant hamiltonian optimization for motion planning.
The International Journal of Robotics Research, 32(9-10):1164–1193, 2013. 35,
39, 40, 42, 45, 46, 117, 118

163

	1 Introduction
	1.1 Motivation
	1.2 Thesis Organization
	1.2.1 Visual Action Representations for Grasping
	1.2.2 Visual Action Representations for Cloth Manipulation

	2 Multi-modal Transfer Learning for Grasping Transparent and Specular Objects
	2.1 Introduction
	2.2 Related Work
	2.2.1 Sensing Transparent and Specular Objects
	2.2.2 Grasp Synthesis
	2.2.3 Cross-modal Transfer Learning

	2.3 Approach
	2.3.1 Problem Statement
	2.3.2 Supervision Transfer for Multi-modal Perception
	2.3.3 Implementation of Supervision Transfer

	2.4 Experimental Setup
	2.4.1 Physical Components
	2.4.2 Training the Network
	2.4.3 Test Objects

	2.5 Experimental Results
	2.5.1 Multi-modal Perception
	2.5.2 Grasping in Clutter
	2.5.3 Lighting Variation Experiments
	2.5.4 Failure Cases

	2.6 Conclusion

	3 Neural Grasp Distance Fields for Robot Manipulation
	3.1 Introduction
	3.2 Related Work
	3.2.1 6-DOF Grasp Estimation
	3.2.2 Joint Grasp Selection and Motion Planning
	3.2.3 Implicit Neural Representations

	3.3 Background
	3.4 Method
	3.4.1 Neural Grasp Distance Fields
	3.4.2 Optimization of Grasping Trajectories using NGDF
	3.4.3 Implementation Details

	3.5 Experiments
	3.5.1 hLNGDF Level Set Evaluation
	3.5.2 hLSimulated Reaching and Grasping Evaluation
	3.5.3 Intra-Category Generalization
	3.5.4 hLReal Robot Reaching and Grasping Evaluation

	3.6 Discussion
	3.7 Conclusion

	4 Cloth Region Segmentation for Robust Grasp Selection
	4.1 Introduction
	4.2 Related Work
	4.2.1 Cloth Perception
	4.2.2 Cloth Grasping

	4.3 Approach
	4.3.1 Problem Statement
	4.3.2 Method Overview
	4.3.3 Cloth Region Segmentation
	4.3.4 Grasp Configuration Selection
	4.3.5 Grasp Execution
	4.3.6 Implementation Details

	4.4 Experiments
	4.4.1 Experimental Design
	4.4.2 Experimental Results

	4.5 Conclusion

	5 Learning to Singulate Layers of Cloth based on Tactile Feedback
	5.1 Introduction
	5.2 Related Work
	5.2.1 Cloth Manipulation Policies
	5.2.2 Grasping for Cloth Manipulation
	5.2.3 Tactile Sensor Hardware

	5.3 Problem Statement
	5.4 Approach
	5.4.1 Hardware
	5.4.2 Proposed Grasp Policy

	5.5 Physical Experiments
	5.5.1 Experiment Protocol
	5.5.2 Methods and Baselines

	5.6 Results
	5.6.1 The Tactile Classifier
	5.6.2 Grasping 1 Cloth Layer
	5.6.3 Grasping 2 Cloth Layers

	5.7 Conclusion

	6 FabricFlowNet: Bimanual Cloth Manipulation with a Flow-based Policy
	6.1 Introduction
	6.2 Related Work
	6.3 Learning a Goal-Conditioned Policy for Bimanual Cloth Manipulation
	6.3.1 Problem Definition
	6.3.2 Overview
	6.3.3 Estimating Flow between Observation and Goal Images
	6.3.4 Learning to Predict Pick Points
	6.3.5 Estimating the Place Points from Flow
	6.3.6 Implementation Details

	6.4 Experiments
	6.4.1 Simulation Experiments
	6.4.2 Real World Experiments

	6.5 Conclusion

	7 Conclusions
	7.1 Future Directions

	A Chapter 2 Appendix
	A.1 Network Architecture
	A.2 Evaluations without random cropping
	A.3 Hyperparameters

	B Chapter 3 Appendix
	B.1 Ablations for Neural Grasp Distance Fields
	B.2 hLSimulation Experiment Details
	B.2.1 Camera Position in Simulation
	B.2.2 Qualitative Results

	B.3 hLReal System Experiment Details
	B.3.1 Calibration
	B.3.2 Point Cloud Processing
	B.3.3 Control

	B.4 Experimental Setup

	C Chapter 4 Appendix
	C.1 Network Architecture
	C.2 Network Training
	C.3 Grasp Direction Uncertainty Estimation

	D Chapter 6 Appendix
	D.1 Additional Details and Results for FabricFlowNet
	D.1.1 FabricFlowNet Implementation Details
	D.1.2 Additional Simulation Results for FabricFlowNet
	D.1.3 Additional Real World Details and Results for FabricFlowNet

	D.2 Additional Details and Results for Fabric-VSF Hoque-RSS-20
	D.2.1 Fabric-VSF Hoque-RSS-20 Implementation Details
	D.2.2 Additional Fabric-VSF Hoque-RSS-20 Results

	D.3 Additional Details and Results for Lee et al. lee2020learning
	D.3.1 Lee et al. lee2020learning Implementation Details
	D.3.2 Additional Lee et al. lee2020learning Results

	D.4 Additional Details and Results for Ablations
	D.4.1 Ablation Implementation Details
	D.4.2 Additional Ablation Results

	D.5 Additional Results on Unseen Cloth Shapes
	D.6 End-to-End Variants of FFN
	D.7 FFN Performance with Crumpled Starting Configurations
	D.8 FFN Performance with Iterative Refinement
	D.9 FlowNet Performance

	Bibliography

