
Continual Robot Learning: Benchmarks
and Modular Methods

Sam Powers

CMU-RI-TR-23-74

August 2023

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Thesis Committee
Abhinav Gupta Carnegie Mellon University (chair)
Chris Atkeson Carnegie Mellon University

Shubham Tulsiani Carnegie Mellon University
Chris Paxton Meta AI Research

Thesis submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in Robotics

© Sam Powers, 2023

Abstract
Humans adapt continuously to the world around us, allowing us to acquire

new skills and explore diverse environments seamlessly. Current AI methods,
however, cannot attain this versatility. Instead, they are typically trained with
vast datasets, and learn all tasks simultaneously. However, the trained models
have limited ability to adapt to changing contexts, and are limited by available
data. This challenge is particularly pronounced in robotics, where real world
interaction data is scarce.

Instead, we envision a robot capable of continuously learning from both
the environment and human interactions, quickly acquiring new information
without overwriting past knowledge, and capable of adapting to a user’s specific
needs.

In this thesis, we apply continual learning to robotics, with the goal of
enabling crucial capabilities, including: the ability to apply prior information
to new settings, maintain old information, sustain capacity for new skills, and
understand context. We explore these across two learning modes: continual
reinforcement learning (CRL), where the agent learns from experience, and
continual imitation learning (CIL), where it learns from demonstrations.

However, substantial barriers hinder progress, including limited open-source
resources, resource-intensive benchmarks, and impractical metrics for robotics.
To address these challenges, we present CORA (COntinual Reinforcement
Learning Agents), an open-source toolkit with benchmarks, baselines, and
metrics to enhance CRL accessibility. CORA extends beyond catastrophic
forgetting, evaluating models for forward transfer and generalization.

With this foundation, we introduce SANE (Self-Activating Neural Ensem-
bles) to create a dynamic library of adaptable skills. SANE’s ensemble of
independent modules learns and applies skills as needed, reducing forgetting.
We demonstrate this method on several Procgen reinforcement learning task
sets.

We then adapt SANE to a physical robot, the Stretch, with SANER (SANE
for Robotics) using CIL. Leveraging our novel Attention-Based Interaction
Policies (ABIP), SANER excels in few-shot learning, showcasing its effectiveness
at generalization across various tasks.

SANERv2 further advances this capability, integrating natural language
and achieving strong performance over a diverse set of 15 manipulation tasks
in a simulated environment, RLBench. Remarkably, SANERv2 was also able
to display the potential of independent modules, demonstrating that a node
could be moved between agents without loss of performance, promising possible
future composable ensembles.

I

Acknowledgments
First and foremost, I extend my earnest gratitude to my advisor, Abhinav

Gupta, whose guidance, support, and patience have been invaluable. Thank
you for enabling me to explore my offbeat research interests and encouraging
me to take risks. I’m also sincerely indebted to Chris Paxton for his help in
applying my research to real robots and for offering guidance regardless of the
domain: algorithms, hardware, and communication alike. I also wish to express
my appreciation to the other members of my committee, Chris Atkeson and
Shubham Tulsiani, whose feedback and insight helped shape the direction of
my research.

My sincere appreciation also goes to Eliot Xing for his myriad contributions
to this work, from ideation to code review to scaling up the experiments. This
work would not be what it is without you. I owe a debt of gratitude as well to
my labmates, especially Sudeep Dasari, Victoria Dean, Helen Jiang, Adithya
Murali, Lerrel Pinto, Senthil Purushwalkam, and Abhinav Shrivastava for their
assistance with compute, robots, and maintaining my sanity.

I’m immensely thankful for the mentorship and collaboration of those I had
the privilege of working with, including Tim Rocktäschel, Mikayel Samvelyan,
Priyam Parashar, Jay Vakil, Eric Kolve, and Roozbeh Mottaghi. My gratitude
extends to all the colleagues with whom I’ve exchanged ideas, received feedback,
or shared a dinner break during a tight deadline. This PhD is the culmination
of all those moments, as much as it is of the work itself.

Above all, I’d like to thank my cat, Loki, for her (mostly) unconditional
support and for being my steadfast companion. And, of course, my deep
gratitude goes to my friends and family for their unwavering support, which
means the world to me.

This work was supported by the CMU Presidential Fellowship, ONR MURI,
ONR Young Investigator Program, DARPA MCS, and Meta AI.

II

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Goals of the Work . 2
1.3 Outline . 3

2 Background 6
2.1 Definitions . 6
2.2 Continual Learning: Definition 7
2.3 Metrics . 9
2.4 Continual Reinforcement Learning 14
2.5 Continual Imitation Learning for Robotics 15
2.6 Baselines . 15

3 CORA: A Platform for Continual Reinforcement Learning
Agents 17
3.1 Introduction . 17
3.2 Related Work . 17
3.3 Task Sequences for Benchmarking CRL 20
3.4 CORA: A Platform for Continual Reinforcement Learning Agents 31
3.5 Experimental Results . 34
3.6 Summary . 40

4 SANE: Self-Activating Neural Ensembles 42
4.1 Introduction . 42
4.2 Related Work . 43
4.3 Background . 45
4.4 Self-Activating Neural Ensembles for Continual RL 47
4.5 Experiments . 51
4.6 Analysis of SANE . 55
4.7 Summary . 60

III

5 SANER: SANE for Robotics 61
5.1 Introduction . 61
5.2 Related Work . 63
5.3 Method . 64
5.4 Experimental Setup . 71
5.5 Experiments . 73
5.6 Summary . 76

6 Extending SANER 78
6.1 Introduction . 78
6.2 Method . 80
6.3 Experiments . 86
6.4 Results . 89
6.5 Summary . 91

7 Conclusion 92

Appendices 113
A Priority Reservoir Sampling Analysis 113

IV

List of Figures

1 Introduction

1.1 Overview of all environments. 3

3 CORA: A Platform for Continual Reinforcement Learning
Agents
3.1 Atari task images. 21
3.2 Procgen task images. 23
3.3 MiniHack task images. 24
3.4 CHORES task images. 25
3.5 CHORES example task trajectory. 29
3.6 Code architecture. 31
3.7 Atari continual evaluation results 35
3.8 Procgen continual evaluation results. 37
3.9 MiniHack continual evaluation results. 38
3.10 CHORES continual evaluation results. 40

4 SANE: Self-Activating Neural Ensembles

4.1 Architecture diagram. 44
4.2 Images for each task sequence. 52
4.3 Continual evaluation results for Climber. 54
4.4 Continual evaluation results for Miner. 56
4.5 Continual evaluation results for Fruitbot. 57
4.6 Example lineage plot. 58
4.7 Module ID plot: Climber. 58
4.8 Module count comparison on Fruitbot. 59
4.9 Module ID plot: Fruitbot. 60

V

5 SANER: SANE for Robotics

5.1 Stretch task variations for SANER. 62
5.2 ABIP network architecture. 65
5.3 Most relevant point visualization. 76

6 Extending SANER

6.1 RLBench task images . 79
6.2 RLBench camera views. 88

Appendices

A.1 Priority reservoir sampling task ratios. 116

VI

List of Tables

1 Introduction

1.1 Overview of methods and experiments. 4

3 CORA: A Platform for Continual Reinforcement Learning
Agents
3.1 CHORES benchmark summary. 27
3.2 Benchmark forgetting & transfer results. 34
3.3 Atari final performance results. 36

4 SANE: Self-Activating Neural Ensembles

4.1 Forgetting results. 55

5 SANER: SANE for Robotics

5.1 ABIP single task results. 74
5.2 ABIP ablation results. 75
5.3 Continual learning metric results. 76

6 Extending SANER

6.1 Language annotation examples. 86
6.2 Per-task continual learning metric results for RB15. 89
6.3 Metric results for RB15: tasks 0-5 vs 6+. 89
6.4 Final performance on 16-task sequence (augmented). 90

VII

VIII

Chapter 1

Introduction

1.1 Overview
From birth, humans receive a continuous stream of information from the world
around us. Remarkably, we are capable of responding reasonably in nearly every
circumstance, even in the presence of significant novelty. Consider, for instance,
visiting a foreign country for the first time: despite potentially stark differences,
we can still accomplish tasks like locating food or purchasing forgotten items.
Even in unfamiliar environments, we are able to recognize patterns that enable
us to leverage existing skills.

Critically, however, initial attempts at solving a problem are unlikely to be
optimal; learning and improvement will instead occur over time, in a variety of
ways. We might make mistakes and learn from them, or observe how others do
things, or consult a friend.

Similarly, a robot operating in the real world will encounter a continuous
stream of new situations it must be able to respond to and learn from. Being
able to adapt to new information presented over time is referred to as continual
learning (CL), in contrast with multi-task learning [33] where many tasks
are learned, but they are specified up-front and dynamic adaptation does not
occur. This work envisions a robot that can adapt as humans do, pursuing the
development of a robot capable of continual learning.

While the ultimate goal is to train a single agent that can learn in a variety of
ways, this work makes the problem more tractable by focusing on 1) continual
reinforcement learning (CRL), where skills are learned by trial and error,
and 2) continual imitation learning (CIL), where demonstrations of skills
are provided. These modes of learning are treated separately, though we discuss
in Chapter 7 how they can be combined into a dynamic learning system, and

1

extended to other forms of learning (e.g. instruction).
In the remainder of this chapter, I will discuss the specific challenges

addressed in this work, then discuss how the rest of the thesis addresses them.

1.2 Goals of the Work

Improved CL Capability. In this thesis, we say that a model is an effective
continual learner if it is capable of learning skills or representations that are:

1. Broadly useful (Transfer/Generalization) Skills should be effectively
leveraged in new situations, or enable new, related skills to be learned
more quickly.

2. Learnable at any Time (-Intransigence) [25] Prior continual learning
models, e.g. [86], struggled with this, becoming less capable of learning
new skills over time.

3. Maintained over time (-Forgetting) [112, 143] This was the initial
challenge that created the field of continual learning; it was observed that
when a neural net was presented with a new task, catastrophic forgetting
of its previous skills would occur.

A continual learning model that can achieve all of these will not only be
capable of learning new skills, but be able to do so increasingly effectively over
time, as more skills are learned on which new ones can build.

Additionally, I specify the following desirable abilities for a model, that
would considerably broaden the scope over which a model could be used:

1. Leverage rich context, e.g. language. Language provides a natural way
to specify goals, and can potentially provide information that helps the
model with skill transfer. For example, "put the fruit in the bowl" and
"put the carrot in the box" might contain information that indicate they
can leverage similar skills, even if they are not visually similar. Other
rich contexts, e.g. images, can provide transferable information as well.

2. Share information amongst models easily, without disrupting existing
information. This ability would ideally reduce data requirements for
individual robots to learn new skills.

2

Through the course of this work, we will demonstrate improvement on all
of these desired capabilities, via the development of a novel ensemble method,
SANE.

Accessibility. Unfortunately, continual learning has a number of significant
barriers to progress:

1. Missing code. Research code is not publicly available and reproducibility
remains difficult. This creates a high barrier to entry as any new entrant
must re-implement and tune baselines, in addition to designing their own
algorithm.

2. Benchmarking gaps. There are few benchmarks and metrics used for
evaluation, with no set standards.

3. High resource barrier. Existing baselines, benchmarks, and metrics
require extensive compute resources, limiting their accessibility. Since
continual learning scales all costs (time, compute, expense) by the number
of tasks, efficiency is particularly critical.

These issues have made continual policy learning broadly inaccessible. This
thesis attempts to mitigate them by providing new benchmarks, efficient metrics,
and open source baselines.

1.3 Outline
0-SpaceInvaders 1-Krull 2-BeamRider 3-Hero 4-StarGunner 5-MsPacman0-Climber 1-Dodgeball 2-Ninja 3-Starpilot 4-Bigfish 5-Fruitbot

1-Room-Dark 2-Room-Monster 3-Room-Trap 4-Room-Ultimate

5-Corridor-R2 6-Corridor-R3 7-KeyRoom 9-River-Narrow

10-River-Monster 11-River-Lava 12-HideNSeek 13-HideNSeek-Lava 14-CorridorBattle

0-Room-Random

8-KeyRoom-Dark

Figure 1.1: An example image from each of the settings used in this work.
Each represents a different suite of tasks; a total of 72 training tasks were used.

3

Chap. Method(s) Mode Seq # Tasks Metrics

context Gen? Z ∆R −F −I

3
CLEAR, EWC,
onl-EWC, P&C

[86, 150, 160]
CRL

Atari [16] 6 implicit ✗ ✓ ✗ ✓ ✗

Procgen [31] 6 implicit ✓ ✓ ✗ ✓ ✗

MiniHack [156] 15 implicit ✓ ✓ ✗ ✓ ✗

CHORES x4
(ALFRED) [168] 3x4 image ✓ ✓ ✗ ✓ ✗

4 SANE CRL Progcen x3 {4, 4, 5} implicit ✗ ✗ ✗ ✓ ✗

5 SANER CIL Stretch [81] 4 point
cloud ✓ ✓ ✓ ✓ ✓

6 SANERv2 CIL RB15
(RLBench [70] 15(+1) point

cloud ✓ ✓ ✓ ✓ ✓

Table 1.1: An at-a-glance overview of the work, summarizing what method(s)
the chapter focuses on, what learning mode it represents (CIL/CRL), task
sequence description, and for each task sequence: how many tasks it included,
whether it evaluated generalization, and what metrics were measured.

In the first part of this work, Chapters 2 & 3, I describe the progress made on
overcoming the barriers to progress, making continual learning more accessible,
with particular application to CRL. In the second part, Chapters 4- 6, I leverage
the improved accessibility to develop a novel continual learning method: SANE,
and its improved variants SANER & SANERv2.

A summary of the experiments presented in this work is provided in Ta-
ble 1.1.

1.3.1 Barriers

Metrics. In Chapter 2, I formalize an overall framework for continual policy
learning agents, based upon work done as part of both CORA and SANER,
and use this to define a set of metrics that is feasible to apply to real robots.
In particular, these new metrics are only O(n) in the number of tasks, whereas
the prior metrics were O(n2). Additionally, the new metrics enable researchers

4

to add more tasks dynamically. In the prior metrics, they would need to re-run
from the beginning.

Benchmarks, Baselines. In Chapter 3 we present a set of four reinforcement
learning benchmarks based upon the following environments, Atari [115], Proc-
gen [31], MiniHack [156], and ALFRED [168]. We additionally implemented
the baselines presented in Chapter 2.6, and evaluated them across all of the
benchmarks.

Between these, our aim was to select benchmarks that were less compu-
tationally intensive than than Atari, provide open source implementations of
several key continual learning methods, and evaluate

Sample Efficiency. Efficiency is particularly applicable to the robotics setting,
as collecting demonstrations is time-consuming. A novel architecture, Attention-
Based Interaction Policies (ABIP) is presented as part of Chapter 5. This
model is capable of learning robust policies from only two demonstrations,
making a larger number of tasks feasible.

1.3.2 Approach: SANE

Having provided a foundation for approaching continual learning in robotics,
the next step is to attempt a solution. I envision a home robot that learns
an ever-growing library of skills. These skills can then be expanded, built
upon, re-used, and even shared between robots in the future. They should be
automatically created and utilized, dynamically adapting over time as situations
arise.

Towards this goal, this work presents SANE, Self-Activating Neural En-
sembles. The core concept is the creation of an ensemble of independent,
"Self-Activating", modules. Every module is responsible for two things: know-
ing a skill, and knowing when to use it. Their independence not only allows for
the potential of a skill library, it also side-steps catastrophic forgetting, while
still enabling forward transfer.

The basic method for SANE is presented in Chapter 4; its ability to mitigate
forgetting in the reinforcement learning setting is demonstrated on three task
sequences. In Chapter 5, it is extended to the imitation learning setting and
applied to a real robot, demonstrating the capacity of the method for efficient
generalization; I refer to this version as SANER (SANE for Robotics). Finally,
in Chapter 6, SANER is applied to a longer sequence of tasks (RB15) that
utilizes language; this variant is referred to as SANERv2. This setting allows us
to evaluate several capabilities: 1) skill transfer, 2) plasticity, 3) language-based
contextualization, and 4) composing modules trained separately.

5

Chapter 2

Background

In this chapter, we formalize the concepts common to both continual reinforce-
ment learning and continual imitation learning, and develop them into a set of
metrics that can be effectively applied in both domains. We then discuss each
of CRL and CIL, with more details on how the general definitions are applied
to each. Finally, we give a brief overview of the baselines used throughout this
work.

2.1 Definitions

Task. Formally, we consider each task T as a finite, discrete-time Markov
decision process (MDP), represented by the tuple ⟨S,A, T, r, ρ0⟩, with state
space S, action space A, state transition probability function T , reward function
r (optional), and probability distribution ρ0 on the initial states S0 ⊂ S. The
goal is to learn a policy, π(a|s), that predicts an action, a ∈ A, given a state
s ∈ S [170].

Episode. A single complete execution of the policy for a particular task, which
occurs when s is a terminal state, is referred to as an episode; the trajectory of
(s, a) pairs produced is denoted τ . A score is provided per-episode to evaluate
the performance of the policy; we refer to this as the episode return, by
analogy to its usage in reinforcement learning. The return is indicated with
Rπ.This will be discussed more specifically in Sections 2.4 & 2.5.

It can be convenient to refer to an optimal policy, which we indicate with
π∗. This refers to a policy that always takes the correct action to maximize
the R it will obtain.

Context. A state s can be decomposed as (c, s′),where s′ ∈ S ′ is the underlying

6

state and c ∈ C is the context, such that S = C × S ′. We refer the reader
to [52, 85, 203] for further discussion of Contextual MDPs (CMDPs) [58].

The context c is information that remains fixed throughout an episode, and
provides context about the goals of the task. The context can be implicit in
the representation, as in a game of Pong, where an image-based s is sufficient
to understand the goal. It can be automatically captured from the observation
and maintained, as with a home robot that is cleaning a table: the context
might be the initial dirty table, allowing the agent to maintain focus even if
the table is not observable at a particular timestep. It can also be a language
specification, provided by the user, that indicates what is desired.

Distribution Shift. The initial contextual state distribution may be factorized
as ρ0(s) := p(c)ρ0(s

′|c), where p(c), the context distribution, can be used to
define collections of environments. These collections generally share a desired
behavior, but vary in dimensions we wish to evaluate generalization over.
Formally, we consider context sets Ctrain and Ctest, where the policy is trained
on training task set TCtrain

and evaluated on the testing task set TCtest .

2.2 Continual Learning: Definition
While the true test of a continual learning robot is for it to learn from the
natural interactions that occur while it inhabits a home, this is, for the moment,
infeasible.

Technically, the only strict requirement is that the environment can provide
a R of some nature that provides a signal for agent performance. Addition-
ally, if the environment can’t be run multiple times in almost a repeatable
configuration, Intransigence becomes infeasible.

However, the goal when defining a less-natural continual setup should ideally
be to adequately exercise the intended capabilities of an algorithm, as described
in Section 2.3. In particular, the setup should ideally possess the following
attributes:

1. Optimal policy shift. The optimal policy, π′, changes over time. Histor-
ically [86], this has usually co-occurred with domain shift, e.g. switching
video games, but this is not necessary. Policy shift without domain shift
occurs when doing the a different task in the same environment (e.g.
tasks in the same kitchen). This tends to elicits catastrophic forgetting,
as it drives the result of the neural net to new values.

2. Task similarity. Some tasks share similarities in the behavior desired,
for example learning to grasp a cup may aid in grasping a pitcher. This

7

can take the form of curriculum learning, where later skills build on
earlier ones. This is useful for evaluating forward transfer.

3. Multiple variations. The same task can be run in several variations,
ideally procedurally if simulated. Unlike in the natural setting, where
generalization is largely equivalent to performance, in the artificial setting
certain variations can be held out, so we can observe how a model’s
ability to generalize varies.

4. Numerous tasks. The task sequence should be as long as is feasible for
the setting, to evaluate intransigence.

5. Dimensional consistency. Tasks are drawn from some world collection
W , where the dimensions of the observation space and action space are
consistent across all tasks from W. This is desirable so that the same
networks can be used for all tasks.

There are a variety of paradigms that meet these criteria; for example [86]
defines a randomized (but fixed) schedule of 10 games, where games are seen
concurrently, for varying durations, and re-visited at varying intervals. [205]
defines a setting where the physics parameters underlying the tasks shift over
time. However, we have opted for the following approach, as in [150, 160],
which we see as a simple and effective way to induce a non-stationary learning
process:

Task Sequence. We assume N tasks are presented as a sequence SN :=
(T0 . . . TN−1), and each task Ti is given a budget of Bi timesteps. The agent
trains on task Ti at timesteps in the interval [Ai, Bi), where Ai and Bi are the
task boundaries denoting the start and end, respectively, of task Ti. We cycle
through the tasks M times, so the full task sequence SNM has length N ·M .

Offline evaluation. While a continual agent operating in the real world
would not pause for evaluation, offline evaluation is a useful tool enabled by
simulation to understand agent performance. Offline evaluation helps answer
questions such as: “How does the agent currently perform on tasks learned
in the past?”, “How does experience the agent has acquired help it learn new
tasks?”, or “How well would the agent generalize if it were asked to perform
the task in a unseen environment?”.

8

2.3 Metrics
In this section we first outline the specific metrics used, then provide definitions
and discuss a few considerations one should make when utilizing them. This
section attempts to unify the knowledge gained while doing the rest of the work
presented. As such, some specifics of the metrics used vary in future sections
from what is presented here, and differences will be noted as such.

2.3.1 Overview

We formalize the goals described in Chapter 1.2 into the following metrics:

1. Final performance (Rfinal: Eqn 2.1) The robot’s ability to perform
all tasks at the end of training.

2. Zero-Shot Forward transfer (ZC: Eqn 2.4) The agent’s ability to
leverage previous skills when learning a new one, before it has seen any
training data for the new task [105].

3. Performance Improvement (∆R: Eqn 2.5) How much the agent
learns on a given task, while training on it.

4. Forgetting (−FC: Eqn 2.7) Historically the original goal of continual
learning [112, 143], catastrophic forgetting occurs in neural networks
when they are trained sequentially. We report this as −F (see below).

5. Intransigence (−I: Eqn 2.8) Some models struggle to learn new skills
after many have already been learned, for example due to insufficient
model capacity or algorithm plasticity. This difficulty is referred to as
intransigence [25]. As with Forgetting, we report this as −I.

6. Generalization (Rgen: Eqn 2.2) The robot should be able to generalize
its abilities to unseen settings, for example variations of the environment.

7. Continual Evaluation (Sec 2.3.3) This metric evaluates performance
on all tasks periodically during training[160]. We make a few significant
alterations for more efficient use in the robotics setting.

We present Forgetting and Intransigence in their negated forms so that for
all metrics, a larger positive value is preferred. We do not change the wording
(e.g. "negative forgetting" could be "backwards transfer") as these terms are
standard.

9

2.3.2 Setup

We define here several expected episode returns and associated terms that will
be used when defining our metrics.

R(i,K) =
1

s

∑
s

R(s, i,K) Expected return on task Ti at timestep K

R∗(i) =
1

s

∑
s

R∗(s, i,K) Expected return on Ti for policy π∗ trained only on Ti

Rmax(i) := max
K∈[A0,BN)

R(i,K) Max return on Ti after all tasks, for the current run.

Rall,max(i) := max
π∈A

max
K∈[A0,BN)

Rπ(i,K) Max return on Ti, across all policies.

Where s represents the number of separate runs (seeds), and A indicates
the set of all agent policies, across all algorithms, including individually trained
policies.

Normalization. It can be advantageous to normalize the returns prior to
using them for computing certain metrics. Using the max for only the current
episode (Rmax(i)) has the benefit that it gives the metrics as a ratio of what
was achieved; for example, ZSFT communicates, of the total amount of skill
the agent achieved overall, how much of it was learned before the task was
started?

This is useful for understanding an algorithm, but does not always produce
easily intrepretable results when comparing against other agents. An agent
that learns very little will have likely learned much of it before training started,
making it, in that case, more a metric of the noise present than any true
learning. By contrast, normalizing with (Rall,max(i)), as in [25], can be seen
as simply bringing a variety of tasks, with differing reward scales or levels of
difficulty, into parity, to make aggregate metrics more sensible.

2.3.3 Continual Evaluation

Continual evaluation is the basic data collection strategy on which all other
metrics presented are built, providing insight into the performance over time
on all tasks, and is presented as a set of graphs, to observe how each task is
impacted by training on the others.

Standard Approach. The standard approach collects data every keval
timesteps while training. Training is paused, to ensure all evaluation hap-

10

pens on a consistent state, and all tasks are evaluated. Returns are estimated
by averaging over ne episodes.

Unseen Settings. Our first adaptation is to evaluate on environments drawn
from Ctest, which allows us to compare the generalization ability of various
methods.

Optimization for Robotics. The standard method grows in the number of
tasks as O(n2), which is only compounded by performing evaluation frequently
during each task. This volume of evaluation is infeasible for the robotics setting,
where an individual episode can take on the order of minutes for even the
simplest tasks.

We simplify our data collection for robotics by evaluating each task at
only three points: immediately before task i is trained: R(Ti, Ai); immediately
after the task is trained: R(Ti, Bi); and at the end of training: R(Ti, BN).
Our evaluation strategy now grows as O(n), which makes extending to longer
sequences significantly more viable.

It also has the benefit that new tasks can be readily added; in the standard
approach, if a new task is added, the experiment needs to be restarted from
the beginning. With our method, adding additional tasks requires only one
additional evaluation of the other tasks, at the new end. This enables training
to be dynamic, for example by adding more challenging tasks if the agent is
succeeding at easier ones, while still remaining quantitative.

We additionally train one agent on each task individually, π∗, which gives
us a reference point, used in measuring intransigence.

2.3.4 Robust Representation Metrics

The term "forward transfer" has been used to refer to several separate metrics:
1) the zero-shot capabilities of a model [105], 2) how learning speed (measured
as area under the learning curve) compares to a non-continual referent [186],
and 3) how easily a model’s representation can be used to learn a new task
using an independent, "probe", network [27].

The first is effectively a form of evaluating generalization. While in this work
we usually use "generalization" to refer to tasks where the agent is expected to
execute a known policy in a different domain, and "forward transfer" to refer
to tasks that require learning a new policy by leveraging prior experience, the
grey area between them is substantial.

A clear distinction does not need to be drawn; both are, fundamentally, two
forms of evaluating the same underlying capability of the robot: how robust
are the representations it has learned, and how capable is it of utilizing them?

11

Additionally, intransigence can be seen as equivalent to the second definition,
in the limit where only two data points for evaluation are collected. This metric,
too, contributes to our understanding of the utility prior tasks provided for
learning later ones.

Therefore, instead of seeing all three as strictly independent, we can see
them instead as windows into the underlying capability of interest.

2.3.5 Final Performance & Generalization (Rfinal,Rgen)

Final performance is given by the return for each task, after training is com-
pleted on all tasks:

Rfinal(i) =
R(i, BN)

|Rall,max(i)|
(2.1)

When evaluated on Ctest, this is also our generalization metric:

Rgen(i) =
R(i, BN , Ctest)

|Rall,max(i, Ctest)|
(2.2)

This metric can be thought of as aggregating several other factors being
measured: Rfinal,i = Z + PI − F .

Generalization can also be measure via R(Ctrain)−R(Ctest), which

2.3.6 Zero-Shot Forward Transfer (Z)

Isolated Zero-Shot Forward Transfer (ZI):
We begin with a partial simplification of the standard metric. In this

formulation, Z compares the expected return achieved for later task Ti before
and after training on earlier task Tj, where i >= j:

ZI(i, j) =
R(i, Bj)−Ri,Bj−1

|Rmax(i)|
(2.3)

When Zi,j > 0, the agent has become better at later task Ti having trained
on earlier task Tj, indicating forward transfer has occurred by zero-shot learn-
ing [105, 149]. When Zi,j < 0, the agent has become worse at task i, indicating
negative transfer has occurred. We normalize by the absolute value of the
maximum expected return observed for task Ti within the run.

12

Cumulative ZSFT (Zc):
We further simplify the metric, by accumulating the transfer metric across

all prior tasks, rather than separating them out per-task. From this we obtain
the cumulative version, that we use for robotics experiments:

Zc(i) =
Ri,i−1 −Ri,A0

|Rall,max(i)|
(2.4)

In this formulation, reward achieved at the very start of a task i, before any
explicit training on it is done, is compared to the score obtained by the fully
untrained agent. Additionally, for this formulation we scale by the maximum
observed over all agents, as discussed in Section 2.3.2, to prioritize comparison
between methods over algorithm analysis.

The former gives more insight, but scales as O(n2), so for the domain of
robotics we utilize the latter definition.

2.3.7 Performance Improvement (∆R)

Performance improvement (PI) represents how effectively the agent learned the
task due to training on it.

∆R(i) =
R(i, i)−R(i, i− 1)

|Rall,max(i)|
(2.5)

This metric is not always straightforward to interpret; if an agent experiences
significant ZSFT, there is simply less for the agent to learn and its PI will
consequently be lower.

2.3.8 Forgetting (−F)

Isolated Forgetting (FI):
Originally inspired by [105, 183], Isolated Forgetting represents how much

is forgotten from a learned task during later tasks. It compares the expected
return achieved for earlier task Ti before and after training on later task Tj,
where i < j:

−FI(i, j) =
R(i, Bj)−R(i, Bj−1))

|Rmax(i)|
(2.6)

When −F i,j < 0, the agent has become worse at past task Ti while training
on new task Tj , indicating forgetting has occurred. Conversely, when −F i,j > 0,

13

the agent has become better at task Ti, indicating backward transfer [105] has
been observed. We normalize by the absolute value of the maximum expected
return observed for task Ti within the run. Tasks can have varying reward
scales, and normalization helps for comparing between tasks, without the added
burden of your metric depending on others.

Cumulative Forgetting (−FC):
As with Z, we introduce a cumulative version of F , in addition to the

isolated version.

−FC(i) =
Ri,N −Ri,i

|Rall,max(i)|
(2.7)

This metric analyzes how much forgetting is induced cumulatively after the
time when it was trained. As we express it as −FC , it has the interpretation of
backwards transfer, as −FI does.

2.3.9 Intransigence (−I)
Intransigence is the relative inability to learn compared to a stand-alone
model [25]. We present its negative:

−I(i) = R(i, Bi)−R∗(i, Bi)

|Rall,max(i)|
(2.8)

which instead measures how much learning sequentially contributed to more
effectively learning the task.

2.4 Continual Reinforcement Learning
The key defining feature of the reinforcement learning setting is the availability
of a reward function during training. This indicates to the agent the utility of
the actions it has taken, which is then used to train the policy.

For the RL setting, we define the return used for evaluation, R, as the sum
of (undiscounted) rewards over a finite-length episode: R =

∑
i∈τ ri.

Artificial vs Natural. Continual reinforcement learning has adopted the
paradigm of standard reinforcement learning [86]; namely, that many parallel
environments are used in parallel for data collection. This has several benefits

14

that are not generally applicable to robotics: 1) the generation of a diversity
of data, which helps to stabilize training, 2) the ability to leverage existing
RL work, and 3) solving more challenging environments, as RL methods are
notoriously sample-inefficient.

While this assumption is unlikely to hold when applied to robots, all three
are significant advantages, allowing us to spend less time on a single task, and
more time on the continual aspect of the problem.

2.5 Continual Imitation Learning for Robotics
As reinforcement learning is defined by the existence of rewards, so imitation
learning is defined by the existence of demonstrations. The CIL setting is
established by defining tasks via the collection of kdemo demonstrations, where
each demonstration is given as a trajectory of state, action pairs: (⟨s, a⟩).

To allow us to assume the Markov property, we additionally augment s
with context c, taken either as the state of the environment at the beginning
of the episode (as in Chapter 5), or the language annotation provided (as in
Chapter 6). Each task is trained on this dataset for T timesteps, using samples
taken randomly from the demonstration trajectories. Evaluation is performed
by executing our learned policy on the robot, in kunseen settings.

For reinforcement learning, the sum of episode rewards is naturally utilized
for R. For imitation learning, however, the choice can be less clear. Simulated
environments, like that of Chapter 6, are often designed to determine rewards
for the actions the agent takes. For our experiments with the real robot,
however, we scored each run manually, based on pre-specified conditions.

2.6 Baselines
The continual learning methods selected for our baselines were chosen to cover
the categorizations described by [99, 118, 128]: regularization, architectural,
and rehearsal:

• CLEAR [150] is a replay buffer method that utilizes a large buffer size
and reservoir sampling, and consistently performs well across domains.

• Elastic Weight Consolidation (EWC) [86] is a regularization method
that uses the diagonal of the Fisher matrix to estimate the importance
of parameters for past tasks, and slows updates to those parameters
when learning new tasks. EWC uses task IDs to determine when to save
parameter information.

15

• Online EWC is a variant of EWC introduced by [160] which adapts it
into a task ID-free method.

• Progress & Compress (P&C) [160] is a dynamic architecture approach
that uses an online variant of EWC to consolidate learned behavior
between dual networks, after each task is learned. This method also uses
explicit task IDs.

16

Chapter 3

CORA: A Platform for Continual
Reinforcement Learning Agents

3.1 Introduction
In this chapter, we aim to democratize the field of continual RL by reducing
the barriers to entry and enable more research groups to develop algorithms
for continual RL. To this end, we introduce CORA, a platform that includes
benchmarks, baselines, and metrics for Continual Reinforcement Learning
Agents.

In this chapter, we first present a set of benchmarks, each tailored to
measure progress toward a different goal of continual learning. Our benchmarks
include task sequences designed to: test generalization to unseen environment
contexts (Procgen), evaluate scalability to the number of tasks being learned
(MiniHack), and exercise scalability in realistic settings (CHORES), in addition
to a standard, proven benchmark (Atari). Second, we release open-source
implementations of previously proposed continual RL algorithms in a shared
codebase, including CLEAR [150], a state-of-the-art method. We demonstrate
that while CLEAR outperforms other baselines in Atari and Procgen, there is
still significant room for methods to improve on our benchmarks.

3.2 Related Work

Evaluating continual reinforcement learning. While continual learning
is most commonly addressed in the context of supervised learning for image
classification such as in [62, 62, 72, 105, 108, 155], here we focus our discussion
on continual reinforcement learning, and as such, simulation environments and

17

tasks to benchmark RL agents. For an overview on continual learning applied
to neural networks in general, we refer the reader to [128] and [118].

With CORA, we introduce benchmarks designed to evaluate continual RL
algorithms that can be used in more challenging, realistic scenarios. Continual
RL for policies or robotic agents [99] is more nascent, although several bench-
marks have been proposed. As mentioned above, continual RL has typically
been evaluated on a sequence of Atari games [86, 150, 160] and we leverage
these prior results to validate our baselines. Other video game-like environ-
ments proposed to evaluate continual learning include StarCraft [159] and
VizDoom [103].

Procgen [31] and MiniHack [90, 156], two of our other benchmarks, are
procedurally-generated, like Jelly Bean World [134] which is a procedurally-
generated 2D gridworld proposed as a testbed for continual learning agents.
Beyond video game environments, [186] evaluate continual RL using task
boundaries in a multi-task robot manipulation environment, while [84] discuss
home simulations as a potentially suitable environment to benchmark continual
RL. In this work we present CHORES in AI2-THOR [87]: task sequences for
an agent in a home simulation to evaluate continual RL methods in the visually
realistic scenes offered.

Our work is conceptually similar to bsuite [123], which curates a collection
of toy, diagnostic experiments to evaluate different capabilities of a standard,
non-continual RL agent. Concurrent with our work, Sequoia [120] introduces a
software framework with baselines, metrics, and evaluations aimed at unifying
research in continual supervised learning and continual reinforcement learning.
While both are valuable benchmarking tools, they focus predominantly on
simpler tasks like MNIST and CartPole. The most complex environments that
Sequoia uses are Meta-World, with simple state-based manipulation tasks, and
MonsterKong, composed of 8 hand-designed platformer levels. In contrast to
both, CORA presents challenging task sequences for vision-based, procedurally-
generated environments that evaluate generalization and scability for continual
RL. Concurrent with our work, Avalanche RL [106] also introduces a library
for continual RL. However, Avalanche RL does not present any experimental
results on baseline methods. In this paper, we evaluate several continual RL
methods across four different environments.

Environments and tasks. Historically, RL agents were evaluated on simple
control tasks with state-based inputs from the OpenAI Gym [18] or DeepMind
Control Suite [174]. Some of these tasks have been shown to be easily solvable
by random search algorithms [111] and thus should not be considered as
sufficiently difficult for comparing algorithms. Leveraging physics simulators,

18

many environments have been proposed that involve robots, fixed in place,
for object manipulation tasks of varying complexity [55, 70, 76, 97, 121, 133,
142, 193, 197, 208]. Learning policies for robot manipulation is challenging,
compounded by the exploration difficulty of the task, continuous action spaces,
and the sample inefficiency of RL algorithms.

In this work, we choose environments with discrete action spaces, in order to
use a single output policy across multiple tasks, rather than use separate output
heads for different tasks. We make this decision considering the capabilities
of current methods. For environments with continuous action spaces, task-
agnostic single-headed architectures may be infeasible currently, as in [186], so
we leave this for future work. Furthermore, it is beneficial for continual RL
for tasks to share a consistent observation space, allowing for the creation of
common policies that can leverage task similarities. If environments rely on
state-based inputs such as the positions of objects, it is usually the case that
the state space changes for different tasks. To ensure a consistent observation
space, we pick environments which offer image-based observation spaces.

RL is also frequently evaluated on video game-like environments, most
commonly Atari [16], among others [14, 30, 31, 56, 73, 82, 90, 181].

In this work, we reproduce prior continual RL results on Atari [150, 160].
We also define new task sequences using Procgen [31] and MiniHack [156].
MiniHack is designed to isolate more tractable subproblems in the highly
challenging NetHack [90] environment. We believe Procgen and MiniHack,
with fast, procedurally-generated, stochastic environments to be better testbeds
for continual RL onwards.

Beyond video game environments, many home environment simulators have
been proposed recently [19, 49, 139, 157, 158, 195] which offer visually-realistic
scenes for evaluating Embodied AI. Among these types of environments, we
highlight AI2-THOR [87], Habitat 2.0 [172], iGibson [164], Sapien [190], and
ThreeDWorld [47], which feature a wide range of household objects and scene-
level interaction tasks. In particular, AI2-THOR, Habitat 2.0, and iGibson
provide multiple home scenes based on real-world data. These different scenes
are useful for applying realistic domain shift between tasks and evaluating for-
ward transfer when learning later tasks. We choose AI2-THOR as a simulation
environment in this benchmark because it offers a higher-level discrete action
space, compared to Habitat 2.0 or iGibson at the time of development, along
with a diverse set of demonstrations released in ALFRED [168].

We also note that recent work using AI2-THOR has done evaluations with
object manipulation tasks [13, 38, 168], paving the way for more complex action
spaces.

19

3.3 Task Sequences for Benchmarking CRL
The goal of continual reinforcement learning is to develop an agent that can
learn a variety of different tasks in non-stationary settings. To this end, prior
work has primarily focused on preventing catastrophic forgetting [86, 150, 160]
and maintaining plasticity [114] so that the agent can learn new tasks. While
simple tasks are useful for debugging, skill on them does not necessarily translate
to more complex tasks. In this chapter, we begin to address more ambitious
goals. In particular, we believe continual RL methods should address the
following problems: (a) showing positive forward transfer by leveraging past
experience; (b) generalizing to unseen environment contexts; (c) learning similar
tasks through provided goal specifications; (d) improving sample efficiency; in
addition to (e) mitigating catastrophic forgetting; and (f) maintaining plasticity
(mitigating intransigence).

While a single benchmarking environment that suitably deals with each
of these features may be ideal, over the course of development we have found
this to be impractical with the tools currently available. For example, visually-
realistic, physics-based environments are generally not fast enough for the longer
sequences of tasks that we use to test resilience to forgetting. Furthermore, it
may be overbearing for new algorithms to sufficiently address every continual
RL goal, whereas a modular set of evaluations allows for researchers to focus
on areas to best highlight particular contributions of their new methods.

Instead, we present four benchmarks which continual RL reseachers may
utilize:

• Atari [16], 6 task sequence: A standard, proven benchmark used by [160]
and [150], particularly to demonstrate resilience to catastrophic forgetting.

• Procgen [31], 6 task sequence: Designed to test resilience to forgetting
and in-distribution generalization to unseen contexts in procedurally-
generated, visually-distinct environments.

• MiniHack [90], 15 task sequence, based on NetHack [156]: Designed to
train agents on a long sequence of tasks in environments that are stochas-
tic, procedurally-generated, and visually-similar, in order to demonstrate
resilience to forgetting, maintenance of plasticity, forward transfer, and
out-of-distribution generalization (extrapolation along different environ-
ment factors).

• 4 different CHORES, utilizing ALFRED [168] and AI2-THOR [87]: De-
signed to test agents in a visually realistic domain where sample efficiency
is key. Unlike other environments where different tasks may be easily iden-
tified visually, CHORES tasks explicitly provide a goal image. CHORES

20

also present an opportunity to test forward transfer due to task similarity.
For example, the ability to pick up a hand towel ideally should transfer
from one bathroom to another.

We direct the reader to Chapter 2 for formalism and background on the
continual RL setting, including more precise definitions of generalization for
these benchmarks and how continual RL applies to these task sequences.

Our goals include reducing the compute costs of continual RL experiments
for the new benchmarks, as compared to the Atari experiments. Indeed, we
observed a speedup of 7x for MiniHack, 6x for Procgen, and 2x for CHORES.

3.3.1 Atari tasks

0-SpaceInvaders 1-Krull 2-BeamRider 3-Hero 4-StarGunner 5-MsPacman

0-SpaceInvaders 1-Krull 2-BeamRider 3-Hero 4-StarGunner 5-MsPacman

Figure 3.1: Examples of initial observations for each task in the 6 task Atari
sequence.

Building off the work of [86] that evaluated a random set of ten Atari [16]
games, recent work in continual reinforcement learning [150, 160] evaluates

21

continual learning on six Atari games: [0-SpaceInvaders, 1-Krull, 2-BeamRider,
3-Hero, 4-StarGunner, 5-MsPacman], as visualized in Figure 3.1. They train
agents on each of the six tasks for 50M frames, cycling through the sequence 5
times, for a total of 1500M frames seen. This results in 250M frames per task,
which is five times as many frames as is standard in the single task setting. The
primary focus of algorithms that were developed and evaluated on this Atari
task sequence was to reduce catastrophic forgetting. This setting is particularly
suitable for catastrophic forgetting due to the lack of overlap between tasks,
in regards to both observations and skills required. More details are given in
Section 3.5.1.

Following [86, 150, 160], we use the original Atari settings, meaning that
the games are deterministic. Modifications such as “sticky actions” [107] have
become more standard to overcome simulator determinism, and are an option for
increasing task difficulty in future work. In this work, we use Atari to validate
our baseline implementations, preferring procedurally-generated environments
(Procgen, MiniHack) to test generalization. We note that different Atari
game modes may also be used to produce variation and assess generalization
capability, as proposed by [41].

3.3.2 Procgen tasks

We use Procgen [31] to define a new sequence of video game tasks, with the
intention of replacing the Atari tasks used previously to evaluate continual
learning methods. We chose Procgen because its procedural generation allows
for evaluating generalization on unseen levels, unlike Atari. Like Atari how-
ever, the tasks are all visually distinct and the task sequence is well-suited to
evaluating catastrophic forgetting. As with Atari, this is due to a general lack
of overlap between tasks. From the full set of available Procgen environments,
the specific set of tasks was chosen by [65] to ensure the existence of a nontriv-
ial generalization gap and to ensure generalization actually improves during
training.

Procgen is also significantly faster to run (our experiments take several
days for Procgen vs. weeks on Atari). To improve sample efficiency and reduce
compute costs, we use the easy distribution mode for these Procgen games.
We use a sequence of six tasks [0-Climber, 1-Dodgeball, 2-Ninja, 3-Starpilot,
4-Bigfish, 5-Fruitbot], training for 5M frames on each task with 5 learning
cycles. This results in 25M frames per task and 125M frames total. Note that
we are not increasing the number of training frames per task compared to the
original paper, unlike the Atari task sequence.

The observation space is (64, 64) RGB images and is not framestacked.

22

0-Climber 1-Dodgeball 2-Ninja 3-Starpilot 4-Bigfish 5-Fruitbot

0-Climber 1-Dodgeball 2-Ninja 3-Starpilot 4-Bigfish 5-Fruitbot

Figure 3.2: Examples of initial observations for each task in the 6 task Procgen
sequence

The 15-dim action space is the same across Procgen tasks. As recommended
in the original paper, we train the agent on 200 levels, while evaluation uses
the full distribution of levels that Procgen can procedurally generate. What is
randomized varies depending on the game environment, but covers textures,
enemies, objects, and room layouts.

3.3.3 MiniHack’s NetHack tasks

Most prior continual RL work evaluates on a relatively small number of tasks,
but the recently introduced MiniHack [156] environment is fast enough to enable
scaling up. MiniHack is based on the NetHack Learning Environment [90], a
setting that is procedurally generated like Procgen and has stochastic dynamics
(such as when attacking monsters). As with Procgen, the variation over which
levels are randomized differs by environment, but includes objects, enemies,

23

1-Room-Dark 2-Room-Monster 3-Room-Trap 4-Room-Ultimate

5-Corridor-R2 6-Corridor-R3 7-KeyRoom 9-River-Narrow

10-River-Monster 11-River-Lava 12-HideNSeek 13-HideNSeek-Lava 14-CorridorBattle

0-Room-Random

8-KeyRoom-Dark

Figure 3.3: Examples of initial observations for each task in the 15 task
MiniHack sequence. Observations are shown for the training task of each pair.

start & goal locations, and room layouts. The larger number of tasks enables
MiniHack to more extensively test an agent’s ability to prevent forgetting
and to maintain plasticity. Additionally, while the Procgen tasks are easy to
tell apart visually, the MiniHack tasks use the same texture assets and are
more challenging to distinguish. This makes task identification and boundary
detection more difficult.

To create the MiniHack task sequence, we define 15 (train, test) task pairs
with a total of 27 different navigation-type tasks. The training environments
are the easier versions, and we evaluate the agent on the harder environment
variant. We select from the navigation-type tasks introduced by MiniHack,
ordering by how MiniHack presents their tasks, and only omit the tasks that
require episodic memory and deep exploration. Three evaluation environments
are each used twice, because each has two related training tasks, the impact of
which we discuss further in Section 3.5.3.

MiniHack also provides skill acquisition tasks, which could be used in future

24

work for an even more challenging task sequence.
When reporting results on this task sequence in Figure 3.9, we use the

training environment name to refer to each task. We use only the pixel-based
input for the agent. MiniHack renders an (80, 80) RGB image which we
zero-pad to (84, 84) for convenience. All tasks share an 8-dim action space.

3.3.4 CHORES benchmark suite using ALFRED and AI2-
THOR

Mem-VaryRoom Mem-VaryTaskMem-VaryRoom Mem-VaryTask Mem-VaryObject Gen-MultiTraj

Mem-VaryObject Gen-MultiTrajMem-VaryRoom Mem-VaryTask Mem-VaryObject Gen-MultiTraj

Figure 3.4: Examples for CHORES that show the variation within each task
sequence.

AI2-THOR [87] is a visually realistic simulation environment that provides
a variety of rooms for an agent to act in, with 30 layouts each of bedrooms,
living rooms, kitchens, and bathrooms. ALFRED [168] is a benchmark for em-
bodied vision-and-language agents which provides demonstrations for extended
sequences of complex, tool-based tasks defined using AI2-THOR.

Using the demonstration trajectories and task definitions from ALFRED,
we define a set of environments and task sequences for continual RL, which we
refer to as Continual Household Robot Environment Sequences (CHORES).
We do not provide ALFRED demonstration trajectories to the agent; instead,
we leverage the demonstration data to initialize an AI2-THOR environment
and generate subgoal images for the agent, which communicate the intended

25

task for the agent to perform. The initial state of the environment is set to the
initial state of the demonstration trajectory. The usage of these demonstrations
enables us to have a variety of initializations for robot location, object locations,
and room instance without explicitly setting the simulation parameters or hand-
defining distributions over these parameters. ALFRED also defines reward
functions for its tasks based on achieving its subgoals, which we use.

Our CHORES benchmark extends continual RL into a visually realistic
domain, where sample efficiency is key and where tasks bear similarities that
make forward transfer particularly useful. Sample efficiency is critical because
we designed CHORES to use a tight frame budget, as an initial attempt to
mirror what would be feasible in the real world.

We first define three CHORES that shift the environment context in well-
defined ways: Mem-VaryRoom changes the room scene, Mem-VaryTask
changes the task type, and Mem-VaryObject changes the object with which
the agent interacts. The fourth CHORES, Gen-VaryTraj, is considerably
harder than the first three: it varies both the object and the scene, in addition
to testing generalization on unseen contexts from heldout demo trajectories.
Figure 3.4 visualizes CHORES and shows examples of variation within each task
sequence. We note that the CHORES protocol is not exclusive to AI2-THOR
and can also be applied using any home simulation with a diverse dataset of
demonstrations.

We use an action space of 12 discrete actions (e.g. LookDown, MoveAhead,
SliceObject, PutObject, etc.). For an action that interacts with an object, we
take the action with the correct task-relevant object. Note that this differs
from agents evaluated in ALFRED originally, which generate interaction masks
to select one object from those in view to interact with. We use an observation
size of (64, 64, 6), with 3 channels for the current RGB image observation and
3 channels for an RGB goal image.

3.3.4.1 CHORES design objectives

Goal communication. All CORA benchmarks other than CHORES use
video game environments, where the visual differences between the tasks may
have been sufficient for the agent to know what they are supposed to do, in
order to receive reward. For instance in Atari, 0-SpaceInvaders is distinct
enough in appearance from 2-BeamRider that no further task specification is
required, Figure 3.1. However, since all CHORES take place in a fixed set
of rooms, the observation that the agent receives on its own is insufficient
to distinguish task boundaries with. In this work, we use subgoal images in
CHORES to communicate task intentions to the agent. In real-world settings,

26

Num traj.
Difficulty Test Type per task Scene Task Object

Mem-VaryScene easier memorize 1 ∆, bath put in bathtub hand towel
Mem-VaryTask easier memorize 1 bath, Room 402 ∆ toilet paper (TP)
Mem-VaryObject easier memorize 1 kitchen, Room 24 clean object ∆

Gen-MultiTraj harder generalize 3 ∆, kitchen cool & put in sink ∆

Task A Task B Task C

Mem-VaryScene Room 402 (r = 12) Room 419 (r = 12) Room 423 (r = 12)
Mem-VaryTask hang TP (r = 12) put 2 TP in cabinet (r = 24) put 2 TP on counter (r = 24)
Mem-VaryObject fork (r = 18) knife (r = 18) spoon (r = 18)
Gen-MultiTraj Room 19, cup (r = 18) Room 13, sliced potato (r = 31) Room 2, sliced lettuce (r = 31)

Table 3.1: Summary of the four CHORES benchmarks. The first three are
memorization tasks, and are evaluated on the training environment. The fourth
is a harder generalization task, with 3 trajectories per task to initialize the scene
and task parameters. We also summarize which scene each task is in, what
task it performs, and what objects it utilizes. We categorize each CHORES by
what the task sequences varies. The r values in parentheses show the minimum
return for solving the task.

this could be achieved by a human demonstrating a task and taking pictures
at critical points during the task to give to a robotic agent. Future work may
leverage the language annotations ALFRED provides with each demonstration
trajectory for alternate as more convenient forms of communication would be
useful for robotic agents to employ.

Task constraints. To make the benchmark as accessible for the community,
our aim was for each task used by CHORES to be individually solvable in
under five hours using a machine with 16 vCPUs, 64 GB of RAM, and a Titan
X GPU. Given the nature of simulating realistic environments, this corresponds
to a budget of around 1 million frames per task. Additionally, since continual
RL ultimately should be deployed onto robotic agents in the real world, modest
sample budgets align with what will likely be feasible with real world learning.

Most existing policies may not be sample efficient enough to learn complex
tasks in this amount of time. However, by providing sequences of simple tasks
that are at the edge of what is currently achievable, we hope to move beyond
this boundary and encourage the development of algorithms that are successful
under these conditions. We also provide one complex task as an example of
what is possible moving forward and for what we hope will be achievable in

27

future CHORES benchmarking.

Task selection. The CHORES tasks were (by necessity) somewhat more
hand-picked. These were selected in the following way:

1. We used ALFRED to generate a new set of trajectories for the latest
AI2-THOR version (needed for headless rendering to use on our cluster)
using ALFRED’s defined set of tasks.

2. Based on our defined axes of variation (e.g. varying objects), we filtered
successfully generated tasks into clusters that met our criteria.

3. From this filtered set, we selected tasks to maximize diversity (e.g. more
than just pick-and-place).

The selection process was born more out of necessity than the ideal, but we
believe the tasks cover the desired goals of the benchmark more than adequately.

3.3.4.2 CHORES details

To start, we propose three memorization-based CHORES, each of which tests an
agent’s robustness to a particular type of domain shift. Each task within these
three CHORES is intended to be relatively easy, using only one trajectory to set
the environment parameters and evaluating in the same scene as during training.
We additionally propose one harder CHORES to evaluate generalization. This
last CHORES has more complex tasks, with a set of three trajectories per
task to initialize the environment from, and evaluation is also done in unseen
settings from a different 3 trajectories. These benchmarks are summarized
in Table 3.1.In all cases, the locations of movable, interactable objects are
randomized between trajectories.

The first task sequence, which we refer to as Mem-VaryRoom, keeps the
task type and task object the same, while changing the room scene the agent
interacts in to different bathrooms. The agent is trained to find a hand towel
and place it in the bath tub of Room 402 for 1M steps, then in Room 419, then
in Room 423. We then cycle through the environments again, to evaluate how
much faster learning each environment is the second time.

The second task sequence, Mem-VaryTask, follows the same pattern but
holds the current room and object constant, while changing the task. The
agent is trained in the same bathroom to change a roll of toilet paper on a
hanger, then to put two rolls of toilet paper in the cabinet, and finally to place
two rolls on the countertop.

28

(a) Go to counter (b) Pick up knife (c) Slice potato (d) Go to sink

(e) Put knife in sink (f) Go to counter (g) Pick up potato (h) Go to fridge

(i) Cool potato (j) Go to sink (k) Put potato in
sink

Figure 3.5: Visualization of one ALFRED trajectory used to define a task in
CHORES.

The third task sequence, Mem-VaryObject, holds the current room and
task constant but changes the object. In kitchen 24 the agent is tasked to clean
a fork, then clean a knife, then clean a spoon. Cleaning is done by putting
an object under running water from a faucet. For the first two tasks, after
cleaning the agent must put the object on the counter top, and in the third it
must put it in the cabinet.

The fourth task sequence, Gen-MultiTraj, uses a task where an agent
takes an object, puts it in the fridge to cool it, removes it, and then places it
in the sink. With this base task, the task sequence is as follows: (a) in kitchen
19, the agent performs the task with a cup; (b) in kitchen 13, the agent must
slice a potato, then perform the task with the sliced potato; (c) in kitchen

29

2, the agent must slice lettuce, then perform the task with the sliced lettuce.
The key difference from the previous task sequences is that each task in the
fourth CHORES is evaluated on unseen settings initialized from three possible
heldout demonstrations trajectories, testing an agent’s ability to generalize.

In Figure 3.5, we visualize all subgoal images for one trajectory of the
Gen-MultiTraj potato task (task 2).

Reward details. Unlike ALFRED which reports the number of subgoals
achieved, we report the episode returns for consistency with the other bench-
marks, clipped to a minimum value of -10. Extremely negative values occur
when the agent performs a particularly suboptimal action for the duration of
the episode, until the maximum step limit of 1000 is hit. Without clipping,
this occasional negative behavior completely drowns out the agent’s successes,
both in visualization and metrics.

3.3.5 Summary of Tasks

In Procgen, we consider in-distribution generalization on unseen environment
contexts, where Ctrain and Ctest are disjoint sets composed of i.i.d samples of
C. In particular, c is a random seed which determines how the game level
procedurally generates. For the easy difficulty setting of Procgen, Ctrain is
composed of 200 fixed seeds, while Ctest = C is uniform over all seeds.

In MiniHack, we consider out-of-distribution generalization, namely extrapola-
tion along different environment factors. In addition to a random seed, any
MiniHack environment instance is also determined by its des-file, which
controls map layout as well as placement of environment features, monsters,
and objects. For example, the MiniHack task Corridor-R5 has one des-file
associated with it, while KeyRoom-S5 has defined its own separate one. Thus,
each (train, test) task pair tests extrapolation along environment variations
such as room size, number of rooms, obstacles, or lighting. We refer the reader
to Appendix C of the MiniHack paper for further details on variation [156],
and the provided code for the full list of MiniHack task pairs we use. Similarly,
CHORES Gen-MultiTraj evaluates out-of-distribution generalization on unseen
factors such as room scene and object of interest.

30

Policy

get_environment_runner()
compute_action(observation)
train(storage_buffer)

Experiment

[Task1, Task2, ...]
run(policy,task)

1.<<create>>

Task

task_spec
run(policy)
continual_
eval(policy)

4.get_environment_
runner()

8.train(
 storage_buffer)EnvironmentRunner

policy
collect_data(task_spec)

<<iterate>>

6.compute_action(
 observation)

2.run(policy)

Environment

7. step(action)

3.run(policy,
task)

5.storage_buffer =
collect_data(
 task_spec)

python main.py --policy impala --experiment procgen_6_tasks_5_cycles

Figure 3.6: Sequence diagram representing the most basic flow of the
continual_rl package. Blue represents components defined by Experiment,
and green represents components defined by Policy.

3.4 CORA: A Platform for Continual Reinforce-
ment Learning Agents

3.4.1 Code Structure

3.4.1.1 Architecture diagram

An overview of our code package architecture can be seen in Figure 3.6. The
two fundamental components of the package are Experiment and Policy.
Experiment conceptually encapsulates everything that should remain the same
between runs, such as task specification, ordering, duration, and observation
dimensionality. Policy encapsulates everything an algorithm has control over
and can change as tasks are learned.

To train and evaluate agents on our benchmarks, these two things must be

31

specified. They may be specified either via command line, or by configuration
file, along with any hyperparameter changes from the defaults. We recommend
referring to the README provided with the source code for more details on
running experiments and implementing new policies and experiments.

3.4.1.2 Policies

Any Policy must implement: (i) computing an action given an observation
and (ii) training in response to collected experience. Any existing code that
does these can be integrated into the continual_rl package by implementing a
simple adapter wrapper. We provide an example of doing this for PPO based on
the pytorch-a2c-ppo-acktr repository [88]. This enables easier integration
of agents from outside our codebase, so the experiments and metrics provided
by continual_rl can be leveraged.

The other thing a Policy must specify is how it should be run (i.e. its
training loop), which we encapsulate in modules we refer to as Environmen-
tRunners. In most simple cases, an existing EnvironmentRunner will suffice,
such as EnvironmentRunnerBatch for standard, synchronous RL. However, in
highly asynchronous or distributed cases, a user of CORA may wish to write
their own. We provide more details on EnvironmentRunners in Section 3.4.1.3.

The final two steps to using a policy in CORA are the specification of
configuration parameters, by extending ConfigBase, and adding the new policy
to continual_rl/available_policies.py, so it can be used identically to
existing ones, either via config file or via command line.

Additionally, since the policies are independent modules, it is also easy
to use the provided policy implementations in a separate code base. The
framework is installable as a pip package, which can be imported directly.

3.4.1.3 EnvironmentRunners

EnvironmentRunners have one function they must implement: collect_data().
Given the task specification, the EnvironmentRunner must collect any number
of steps worth of data from the environment and return the results of what it
has collected. The function will be called repeatedly until the total number of
steps for the task have been satisfied. Data collection for continual evaluation
occurs between calls to collect_data(), so care should be taken when select-
ing how much data to collect at a time. If too many timesteps are collected at
once, the metrics will not be able to be computed as often as desired.

EnvironmentRunners can also be viewed as a higher-level API for more
advanced policies. One example of how this is useful is for IMPALA [39].

32

IMPALA’s key feature is how it learns asychronously by decoupling collect-
ing data with actors from training policies, so the simple Policy structure
of compute_action() and train() are insufficient. Instead, we define Im-
palaEnvironmentRunner and implement a custom collect_data() method
that returns new results that have accumulated every fixed number of seconds
to support the actors and learners working asynchronously.

3.4.1.4 Experiments

Any Experiment defines a sequence of tasks. Every task contains full specifica-
tions (available in continual_rl/task_spec.py) for what environment should
be created, how many frames it is given as a budget, and so on. Each task
also provides common preprocessing features for convenience. For instance, we
can define an ImageTask that scales the observation image, stacks frames, and
converts the observation to a PyTorch tensor.

Experiments use this sequence of tasks to handle collecting metrics such as
the Continual Evaluation metric described in Chapter 2.3. The Forgetting and
Transfer metrics are computed in a post-processing step using the collected
data from continual evaluation.

3.4.2 Baselines

We re-implemented four continual RL methods with baseline results on the
Atari sequence from Section 3.3.1, which are not publicly available to the best
of our knowledge. We prioritized methods which had been demonstrated on
Atari before, in order to reference such results and appropriately validate our
implementations. The methods are those described in Chapter 2.6: EWC,
online EWC, Progress & Compress (P&C), and CLEAR.

Our implementations of these baselines all build off the IMPALA [39]
architecture and use the open-source TorchBeast code [89]. In Section 3.5.1,
we validate the performance of our baseline implementations compared to that
of the original implementations on Atari.

3.4.3 Code package

We release our continual_rl codebase1 as a convenient way to run continual
RL baselines on the benchmarks we outlined in Section 3.3 and to use the
continual RL evaluation metrics we defined in Chapter 2.3. The package is
designed modularly, so any component may be used separately elsewhere, and

1Our code: https://github.com/AGI-Labs/continual_rl

33

https://github.com/AGI-Labs/continual_rl

new benchmarks or algorithms may be integrated in. Hyperparameters for all
experiments are made available as configuration files in the codebase.

Online
IMPALA EWC EWC P&C CLEAR

Atari -2.3 ± 0.1 -0.3 ± 0.3 -1.6 ± 0.1 -1.8 ± 0.1 -0.7 ± 0.1
Procgen -1.2 ± 0.0 -0.7 ± 0.0 -1.1 ± 0.0 -0.5 ± 0.0 -0.0 ± 0.0
MiniHack -0.3 ± 0.0 - - - -0.1 ± 0.0
C-VaryRoom - 0.6 ± 0.6 - 0.0 ± 0.0 1.7 ± 1.7
C-VaryTask - -2.1 ± 1.4 - 2.2 ± 2.2 -1.5 ± 0.2
C-VaryObj - 1.0 ± 1.1 - -2.0 ± 2.0 3.4 ± 0.2
C-MultiTraj - -0.7 ± 1.2 - 0.1 ± 0.1 0.3 ± 2.1

(a) Isolated Forgetting (−FI) summary statistics for all
experiments.

Online
IMPALA EWC EWC P&C CLEAR

Atari 0.1 ± 0.0 0.1 ± 0.2 -0.0 ± 0.0 -0.0 ± 0.1 0.0 ± 0.0
Procgen -0.1 ± 0.0 -0.2 ± 0.1 -0.1 ± 0.1 0.1 ± 0.1 -0.1 ± 0.0
MiniHack 0.6 ± 0.0 - - - 0.5 ± 0.1
C-VaryRoom - -0.0 ± 0.0 - 3.2 ± 1.9 -1.1 ± 1.1
C-VaryTask - -4.0 ± 2.6 - 0.2 ± 0.1 -3.2 ± 0.0
C-VaryObj - 2.6 ± 2.9 - 5.4 ± 1.3 -4.6 ± 0.8
C-MultiTraj - -4.0 ± 0.5 - 0.4 ± 0.1 -4.7 ± 0.7

(b) Transfer (Z) summary statistics for all experiments.

Table 3.2: Summary statistics for all benchmarks and for all methods evaluated
on them.

3.5 Experimental Results
In this section, we present results on Atari (Section 3.5.1), Procgen (Sec-
tion 3.5.2), MiniHack (Section 3.5.3), and CHORES (Section 3.5.4). Metric
summary statistics for all methods can be seen in Table 3.2. The final perfor-
mance table for Atari is shown in Table 3.3. All metric diagnostic tables and
other final performance tables are available in [138]. To estimate expected
return and compute metrics, we use the following values for parameters de-
scribed in Section 2.3: Procgen: N = 0.25e6, s = 20; MiniHack: N = 1e6,
s = 10; CHORES: N = 5e4, s = 3, Atari: N = 0.25e6, s = 5.

On the Continual Evaluation plots, solid lines represent evaluation on
unseen testing environments, while dashed lines show evaluation on the training

34

environments. Shaded grey rectangles are used to indicate which task is being
trained during the indicated interval. We plot the mean as each line and the
standard error as the surrounding, shaded region. For these experiments, we
used the negated isolated forgetting metric, as discussed in Chapter 2, to make
positive values imply the desirable outcome.

We proceed to discuss experimental results with CORA using two perspec-
tives. First, from the viewpoint of benchmark analysis, we empirically discuss
what each benchmark is evaluating and give examples of how the metric tables
may be used. Second, from the view of algorithm design, we examine the
performance of the baselines to identify axes which can be improved on by
future algorithms. We frame this section through these two lenses in order to
show how CORA may be used by end-users.

3.5.1 Atari results

Figure 3.7: Results for Continual Evaluation (C) on the 6 Atari task sequence
from [150, 160]. Due to compute constraints, we only train for 2 cycles
compared to the original experiments which used 5 learning cycles. IMPALA is
the baseline learning algorithm that the other methods for continual RL build
off. Gray shaded rectangles show when the agent trains on each task.

We include the standard, proven Atari task sequence as a benchmark, in
order to validate our baseline implementations on an existing standard. The

35

Task CLEAR P&C Online EWC EWC IMPALA

0-SpaceInvaders 1767± 89 209± 56 240.± 65 654± 134 248± 39

1-Krull 6543± 410. 157± 142 1714± 532 2211± 291 1250± 593

2-BeamRider 2003± 212 628± 36 492± 68 459± 110. 426± 108

3-Hero 33604± 1488 289± 289 0.00± 0.00 0.00± 0.00 0.00± 0.00

4-StarGunner 56366± 2882 37515± 3693 3422± 1453 140.± 87 3496± 1774

5-MsPacman 3536± 400. 996± 58 2172± 230. 202± 58 2104± 104

Table 3.3: Comparison of final performance (mean±SEM) between methods in
the environments for each Atari task.

reproduction of these Atari results were developed over hundreds of hours,
including time spent analyzing papers for algorithm details, corresponding with
the original authors, tuning hyperparameters, and running many seeds of Atari
experiments, each of which takes hundreds of millions of frames. These results
were reproduced using a university server cluster and several thousand dollars
of AWS credits, compared to the industry-level compute that the original
authors (from DeepMind) [160] and [150] had access to. This is one of the
primary reasons we are advocating for more compute-friendly continual RL
benchmarks. It is also the reason that we were only able to run 2 learning
cycles for these Atari results instead of the intended 5 cycles.

We use the full 18-dim action space for this task sequence. The observation
space is (84, 84) grayscale images, and the agent receives a framestack of 4.
The Atari games used are fully deterministic, and following the prior continual
RL work on Atari, we do not apply sticky actions [107].

Atari results are shown in Figure 3.7, and we compare them against the
results presented in [150]. Notably, on almost all Atari tasks, our implemen-
tations outperform the results reported in CLEAR. This may be because we
use the TorchBeast [89] implementation of IMPALA, while the results in [150]
and [160] use an earlier, pre-release version of IMPALA.

Benchmark analysis. Summary metrics are available in Table 3.2. From
these, we observe that Atari does effectively test for robustness to catastrophic
forgetting, but exhibits nearly no transfer. By looking at the diagnostic transfer
table for Atari, we observe no transfer, likely because the six Atari tasks used
are too distinct from each other.

Algorithm design. From the continual evaluation results in Figure 3.7, we
can see that CLEAR outperforms the other baselines at both at recall and
plasticity on Atari, which matches the original results by [150]. EWC maintains
a flat return curve for early tasks, which is consistent, losing plasticity and

36

failing to learn the later tasks. P&C largely maintains its plasticity, but we
observe considerably more forgetting than was reported.

3.5.2 Procgen results

Figure 3.8: Results for Continual Evaluation (C) on the 6 Procgen tasks, based
on recommendations by [65]. The solid line shows evaluation on unseen testing
environments; the dashed line shows evaluation on training environments. Gray
shaded rectangles show when the agent trains on each task.

Benchmark analysis. From the summary statistics in Table 3.2, we can see
that Procgen tests for catastrophic forgetting, but shows little forward transfer
overall, which aligns with our expectations for this benchmark. Using the
Transfer metric diagnostic tables for Procgen, we see that that forward transfer
is not uniform across tasks. For example, we observe that 0-Climber transfers
reasonably well to 2-Ninja and 4-Bigfish. Intuitively, as 0-Climber and 2-Ninja
are both platformer games, transfer is expected. Transfer to 4-Bigfish is less
obvious but may be explained by both games using side-view perspectives or
by sharing useful skills like object gathering. In particular, 0-Climber involves
collecting stars, while 4-Bigfish tasks the agent with eating other fish.

Algorithm design. From the Continual Evaluation results in Figure 3.8, we
observe that CLEAR is a strong baseline for avoiding catastrophic forgetting

37

on all tasks, reliably outperforming every other method. However, there is still
room for improvement: maximum scores obtained by CLEAR fall significantly
short of the maximum achievable scores reported in Appendix C of the Procgen
paper [31], particularly on 0-Climber (1 vs 12.6), 1-Dodgeball (2.5 vs 19),
2-Ninja (4 vs 10), and 4-Bigfish (18 vs 40). Additionally, by comparing the
training (dashed) and testing (solid) lines, we observe that CLEAR generalizes
well to unseen contexts on all tasks, except 1-Dodgeball. The summary statistics
in Table 3.2 show that transfer is overall low for Procgen. Using the more
detailed diagnostic tables, we can see that this varies by task. For instance
with EWC, training on 1-Dodgeball improves performance on 3-Starpilot but
reduces performance on all other tasks. CLEAR shows some transfer from
0-Climber to 2-Ninja, but essentially none anywhere else, even showing negative
transfer from 1-Dodgeball to 2-Ninja. These failures represent opportunities
for investigation and for new algorithms to improve on.

3.5.3 MiniHack results

0 130M 260M

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
CLEAR
IMPALA

0-Room-Random

Step

Ex
pe

ct
ed

 R
et

ur
n

0 130M 260M

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
CLEAR
IMPALA

1-Room-Dark

Step

Ex
pe

ct
ed

 R
et

ur
n

0 130M 260M

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
CLEAR
IMPALA

2-Room-Monster

Step

Ex
pe

ct
ed

 R
et

ur
n

0 130M 260M

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
CLEAR
IMPALA

3-Room-Trap

Step

Ex
pe

ct
ed

 R
et

ur
n

0 130M 260M

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
CLEAR
IMPALA

4-Room-Ultimate

Step

Ex
pe

ct
ed

 R
et

ur
n

0 130M 260M
−1

−0.5

0

0.5

1
CLEAR
IMPALA

5-Corridor-R2

Step

Ex
pe

ct
ed

 R
et

ur
n

0 130M 260M
−1

−0.5

0

0.5

1
CLEAR
IMPALA

6-Corridor-R3

Step

Ex
pe

ct
ed

 R
et

ur
n

0 130M 260M

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
CLEAR
IMPALA

7-KeyRoom

Step

Ex
pe

ct
ed

 R
et

ur
n

0 130M 260M

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
CLEAR
IMPALA

8-KeyRoom-Dark

Step

Ex
pe

ct
ed

 R
et

ur
n

0 130M 260M

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
CLEAR
IMPALA

9-River-Narrow

Step

Ex
pe

ct
ed

 R
et

ur
n

0 130M 260M

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
CLEAR
IMPALA

10-River-Monster

Step

Ex
pe

ct
ed

 R
et

ur
n

0 130M 260M

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
CLEAR
IMPALA

11-River-Lava

Step

Ex
pe

ct
ed

 R
et

ur
n

0 130M 260M

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
CLEAR
IMPALA

12-HideNSeek

Step

Ex
pe

ct
ed

 R
et

ur
n

0 130M 260M

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
CLEAR
IMPALA

13-HideNSeek-Lava

Step

Ex
pe

ct
ed

 R
et

ur
n

0 130M 260M

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
CLEAR
IMPALA

14-CorridorBattle

Step

Ex
pe

ct
ed

 R
et

ur
n

Figure 3.9: Results for Continual Evaluation (C) on the 15 MiniHack task pairs
sequence. The solid line shows evaluation on unseen testing environments; the
dashed line shows evaluation on training environments. Gray shaded rectangles
show when the agent trains on each task.

Benchmark analysis. From the summary statistics in Table 3.2, we observe
that IMPALA and CLEAR show minor transfer on MiniHack tasks compared

38

to Atari and Procgen. Looking at the Transfer metric diagnostic tables, we can
see that the first task 0-Room-Random transfers significantly to all other tasks,
which can be interpreted as the agent learning the basics of moving around a
MiniHack environment. Furthermore, we observe transfer from environments
to others of the same type. For example, the Room environments generally
positively transfer to each other, while mostly negatively transferring to the
later River and HideNSeek environments. When training tasks share the same
testing task, such as 12-HideNSeek and 13-HideNSeek-Lava, the transfer metric
is noticeably high, as expected. Finally, from the Continual Evaluation results
in Figure 3.9, we observe that MiniHack effectively tests for plasticity as well,
as later experiments fail to learn effectively.

Algorithm design. From the Continual Evaluation results in Figure 3.9,
we can see CLEAR generally performs well at learning tasks and mitigating
catastrophic forgetting for the first five tasks. However, we observe that the
agent struggles to learn later tasks (fails to maintain plasticity), and that there
is a significant out-of-distribution generalization gap, in performance on test
(solid) compared to train (dashed) environments for all tasks. Additionally,
inspecting the forgetting metric diagnostic tables, we see that the HideNSeek
tasks exhibit particularly high forgetting. These results and shortcomings
present important areas for new algorithms to pursue.

3.5.4 CHORES results

We show Continual Evaluation results for the four CHORES in Figure 3.10.
On the memorization sequences, the testing environment is the same as the
training environment, and evaluation is represented with a solid line. In
our generalization experiment, the solid line represents evaluation on held-out
testing environments, and the dotted line represents performance on the training
environments. We report 2 cycles for each of (a) Mem-VaryRoom and (b)
Mem-VaryTask, and 1 for each of (c) Mem-VaryObject and (d) Gen-MultiTraj,
due to time constraints.

Benchmark analysis. From the Continual Evaluation results, we can see
that CHORES are challenging, and current agents achieve low returns overall.
Some learning occurs for the first task of every sequence, but nearly none
in later tasks, with the exception of (a) Mem-VaryTask. We also observe
no generalization to unseen contexts from held-out demo trajectories in (d)
Gen-MultiTraj. The Transfer and Forgetting metrics are less meaningful with
low returns, but there is some indication of forward transfer, particularly on
(c) Mem-VaryObj. Taken together, we can see CHORES as the reach-goal; a

39

0 1M 2M 3M 4M 5M 6M
−15

−10

−5

0

5

10

15
P&C
EWC
CLEAR

Room 402

Step

R
ew

ar
d

0 1M 2M 3M 4M 5M 6M
−15

−10

−5

0

5

10

15
P&C
EWC
CLEAR

Room 419

Step

R
ew

ar
d

0 1M 2M 3M 4M 5M 6M
−15

−10

−5

0

5

10

15
P&C
EWC
CLEAR

Room 423

Step

R
ew

ar
d

(a) Mem-VaryRoom sequence
0 1M 2M 3M 4M 5M 6M

−15

−10

−5

0

5

10

15
P&C
EWC
CLEAR

Hang TP

Step

R
ew

ar
d

0 1M 2M 3M 4M 5M 6M
−15

−10

−5

0

5

10

15
P&C
EWC
CLEAR

Put TP on Counter

Step

R
ew

ar
d

0 1M 2M 3M 4M 5M 6M
−15

−10

−5

0

5

10

15
P&C
EWC
CLEAR

Put TP in Cabinet

Step

R
ew

ar
d

(b) Mem-VaryTask sequence

0 0.5M 1M 1.5M 2M 2.5M 3M
−15

−10

−5

0

5

10

15
P&C
EWC
CLEAR

Clean Fork

Step

R
ew

ar
d

0 0.5M 1M 1.5M 2M 2.5M 3M
−15

−10

−5

0

5

10

15
P&C
EWC
CLEAR

Clean Knife

Step

R
ew

ar
d

0 0.5M 1M 1.5M 2M 2.5M 3M
−15

−10

−5

0

5

10

15
P&C
EWC
CLEAR

Clean Spoon

Step

R
ew

ar
d

(c) Mem-VaryObject sequence
0 0.5M 1M 1.5M 2M 2.5M 3M

−15

−10

−5

0

5

10

15
P&C
EWC
CLEAR

Room 19, Cup

Step

R
ew

ar
d

0 0.5M 1M 1.5M 2M 2.5M 3M
−15

−10

−5

0

5

10

15
P&C
EWC
CLEAR

Room 13, Potato

Step

R
ew

ar
d

0 0.5M 1M 1.5M 2M 2.5M 3M
−15

−10

−5

0

5

10

15
P&C
EWC
CLEAR

Room 2, Lettuce

Step

R
ew

ar
d

(d) Gen-MultiTraj sequence

Figure 3.10: Results for Continual Evaluation (C) on the CHORES suite
of benchmarks. For (d) Gen-MultiTraj, the solid line shows evaluation on
unseen testing environments; the dashed line shows evaluation on training
environments. Gray shaded rectangles show when the agent trains on each
task.

set of tasks current methods cannot solve, and that will truly test the sample
efficiency of future methods.

Algorithm design. CLEAR achieves the highest returns overall, but there is
still significant room to improve in learning these tasks. We observe significant
Forgetting, particularly on (c) Mem-VaryObj, illustrating one such area for
improvement. Advances in sample efficiency and exploration are likely required
for agents to make progress on this challenge.

3.6 Summary
In this chapter, we presented CORA, a platform designed to reduce the barriers
to entry for continual reinforcement learning. CORA provides a set of bench-
marks, open-sourced implementations of several baselines, evaluation metrics,
and the modular continual_rl package to contain it all. Each benchmark
is designed to exercise different aspects of continual RL agents: a standard,
proven Atari benchmark for catastrophic forgetting and sample efficiency; a
Procgen benchmark to test forgetting and generalization to unseen environment
contexts; a MiniHack benchmark to test generalization, plasticity, and transfer;
and the new, challenging, CHORES benchmark to test capability in a visually-
realistic environment where sample-efficiency is key. With these benchmarks,
we demonstrate the strengths and weaknesses of the current state-of-the-art

40

continual RL method, CLEAR. While CLEAR generally outperforms the other
baselines at learning tasks and mitigating catastrophic forgetting, significant
improvements are needed for generalization, forward transfer, and maintaining
plasticity over a long sequence of tasks.

Limitations. We study task sequences that share a high-dimensional obser-
vation space (images) and have a discrete action space. These RL tasks are
finite-horizon, with episodic resets. In this work, we also primarily study video-
game environments, with procedurally-generated variation. These assumptions
are shaped by our perspective of the continual RL problem and current state
of the field. We acknowledge that different points of view exist, backed by
design choices which may differ from the conditions we study. For instance,
we consider task cycling in this work, which may favor replay-based methods
such as CLEAR that can retain data from all tasks in the sequence, after the
first cycle. This protocol does not apply to a pure online learning setup, where
no assumptions may be made on the structure and similarities of incoming
data. We intend to relax these assumptions as new methods are developed and
CORA evolves.

41

Chapter 4

SANE: Self-Activating Neural
Ensembles

4.1 Introduction
The core goal of continual learning is to learn new skills efficiently by leveraging
prior knowledge without forgetting old behaviors. However, when placed into
continual learning settings, current deep reinforcement learning approaches do
neither: the forward transfer properties of these systems are negligible, and
they suffer from catastrophic forgetting [44, 112].

The core issue of catastrophic forgetting is that a neural network trained
on one task starts to forget what it knows when trained on a second task, and
this issue only becomes exacerbated as more tasks are added. The problem
ultimately stems from sequentially training a single network in an end-to-end
manner. The shared nature of the weights and the use of backpropagation to
update them mean that later tasks overwrite earlier ones [112, 143].

To handle this, past approaches have proposed a wide variety of ideas:
from task-based regularization [86], to learning different sub-modules for dif-
ferent tasks [153], and dual-system slow/fast learners inspired by the human
hippocampus [160]. The fundamental problem of continual learning, which
few methods address, is that the agent should autonomously determine how
and when to adapt to changing environments, or stabilize existing knowledge,
without explicit task specification. It is infeasible for a human to indefinitely
provide agents with task-boundary supervision, and doing so side-steps the
core problem.

There are a few existing task-agnostic [201] methods, though most have
only been demonstrated on classification or behavior cloning: for example [7]

42

addresses the problem by detecting plateaus and using those as boundaries, [95]
adaptively creates new clusters using Dirichlet processes, and [180] replaces
backpropagation completely. Methods that have been demonstrated on rein-
forcement learning are rarer; exceptions include [150], which utilizes a large
replay buffer, and [103] which uses the error in the value estimate to determine
when to consolidate.

We approach the problem by introducing a system that continuously, dy-
namically adapts to changing environments. Our ensemble-based method,
Self-Activating Neural Ensembles (SANE), depicted in Figure 4.1, is the core of
our proposal. Each module in the ensemble is a separate, task-agnostic network.
Periodically, a single module from the ensemble is activated to determine which
policy to use. Only activated modules are updated, leaving unused modules
unchanged and therefore protected from catastrophic forgetting. Crucially,
our ensemble is dynamic: new modules are created when existing modules are
found to be insufficient. In this way, modules are created when novel scenarios
are encountered, preventing destructive updates to other modules. Additionally,
SANE is simple; modules control their own relevance, activating when the
situation to which they are specialized is encountered, and remaining untouched
the rest of the time. SANE provides the following desirable properties for
continual reinforcement learning: (a) It mitigates catastrophic forgetting by
only updating relevant modules; (b) Because of its task-agnostic nature, unlike
previous approaches, it does not require explicit supervision with task IDs;
(c) It achieves these targets with bounded resources and computation. We
demonstrate SANE on three visually rich, challenging level sequences based on
Procgen [31] environments. Additionally, we analyze the behavior of SANE at
a more fine-grained level on 2 individual runs, to gain more understanding into
the dynamics of training SANE.

4.2 Related Work

Continual learning. Any continually learning system must balance stability
(the extent to which existing knowledge is retained) and plasticity (how readily
new knowledge is acquired) [2, 54, 114]. Stability has posed a substantial
challenge due to catastrophic forgetting, by which neural networks trained by
backpropagation abruptly forget learned behavior for solving old tasks when
presented with new tasks [44, 80, 100, 112, 143]. Broadly, methods for continual
learning can be categorized under Regularization, Rehearsal, or Architectural
approaches, as well as combinations of them. We refer the reader to the survey
papers by [99, 118, 128], and review methods for continual learning relevant to

43

Figure 4.1: The overall structure of the SANE system. Each module contains an
actor and a critic. Upon activation, collection occurs from several environments
in parallel.

discussion of our approach.
Recent strategies for mitigating catastrophic forgetting such as Elastic

Weight Consolidation (EWC) [86], among other Regularization approaches [4, 7,
25, 60, 69, 94, 101, 130, 147, 162, 200], constrain updates to network parameters
important for past tasks when learning new tasks. However, these methods
fundamentally run into the stability-plasticity dilemma, as over-constraining
updates can hinder the learning of new tasks. To improve plasticity, dynamic
architectures [146, 153, 176, 206] incorporate additional network parameters
to help learn new tasks. Furthermore, to prevent model size from growing
unbounded, such approaches [32, 77, 109, 110, 160, 178, 192, 194, 196] use
distillation [22, 61, 152, 175], pruning, and related techniques to consolidating
learned behavior while reducing parameter count. Similarly, Rehearsal and
(generative) memory-based approaches [5, 23, 24, 26, 37, 43, 46, 51, 66, 75, 79,
98, 105, 129, 144, 145, 148, 165, 169, 179, 188, 191] must also balance data
storage and memory network constraints when determining which examples
are needed to preserve previously learned behavior. We build our ensemble
approach off of CLEAR [150], a state-of-the-art asynchronous continual RL
method which uses Rehearsal, by maintaining a replay buffer that uniformly
preserves past experience via reservoir sampling [66], along with Regularization,
via behavioral cloning and a KL penalty to preserve prior learned behavior.

Ensemble methods. Falling under Architectural approaches, aggregation

44

ensembles [29, 180, 185] combine predictions from multiple models to produce a
final output. These types of ensembles are also commonly used for uncertainty
estimation [91], exploration [131], or reducing overestimation bias such as in
double Q-learning [45, 59]. In contrast, modular ensembles [6, 42, 83, 95, 125]
use a subset of the entire ensemble’s parameters to select an appropriate expert
model for the task presented. Selectively updating a subset of parameters or
specific modules instead of the entire ensemble can circumvent catastrophic
forgetting while bounding compute costs; this is a feature we utilize in SANE,
which is a type of modular ensemble rather than the former, aggregation
ensemble. Our method is similar to Multiple Choice Learning [57, 93, 96,
161], which chooses and updates only the best expert from an ensemble,
encouraging specialization. However, Multiple Choice Learning uses fixed-
size static ensembles, while SANE is a dynamic ensemble that merges similar
modules and works with a given resource budget. For supervised continual
learning, LMC [124] also proposes a modular ensemble approach, although
LMC assumes access to task IDs at training time and can only add modules,
meaning that its computational footprint is linear relative to the number of
tasks learned. In contrast, SANE is completely task-agnostic at train and test
time, while also creating and merging modules to meet a given compute budget.

Hierarchical RL can be seen as a hierarchy of meta-policies that control
access to an ensemble of (often hand-designed) sub-policies that act at differing
temporal resolutions [21, 171, 177, 204]. Analogous to our own value-based
activation score, some hierarchical RL methods use predicted Q-values to select
amongst their ensemble, as in [34, 36]. [53] demonstrates the utility of avoiding
meta-policies, instead relying on primitives that independently determine their
own relevance, similar to self-activation in our approach. However, their
primitives distinguish themselves by factorizing a state space, placing strong
assumptions on the learnable policies. Additionally, their primitives are not
created over time, so the method relies on regularization to ensure primitives
in their ensemble are used.

4.3 Background
Traditional neural networks suffer from catastrophic forgetting because weights
in the network are changed by backpropagation every update [112], causing
information learned in a new scenario to overwrite prior behavior. Instead
of learning and updating a single neural network for policy π across multiple
tasks, we propose using an dynamic ensemble of self-activating modules. Our
approach partitions, allocates, and manages parameters for separate modules,

45

so that each module may handle different situations without interfering with
others.

If a module is relevant to the current situation, it activates during inference
and is updated during training. If a module is irrelevant, it is unused and
remains unchanged. One way of viewing these modules is as latent behaviors,
each specialized to a particular circumstance. For example, if in one context
an agent must carefully wait to allow an enemy to pass, we don’t want this to
disrupt a behavior where moving quickly to dodge an enemy is the best action.

How may we know when to use which module, when task boundaries are
ambiguous and not given by human supervision? Each module in our ensemble
predicts an activation score, which estimates the relevancy of a given module’s
behavior to the current situation, and the module with the highest activation
score is selected from the ensemble. An appropriate activation score will protect
modules against catastrophic forgetting, and can also enable forward transfer,
by activating modules with prior learned behaviors that are advantageous in
new settings.

How should such an ensemble be structured? Pre-defining a static fixed-size
ensemble will be ineffective for module-based behavior specialization. In such
a static ensemble, one module will tend to perform well at a task, leading to
that module being chosen as the starting point for future tasks which results in
catastrophic forgetting. Regularizing with additional losses would be necessary
to distribution activation across the ensemble’s experts, as in [53, 68, 163].
Instead, we design SANE as a dynamic ensemble, in which modules are created
and merged together as necessary. Intuitively, modules are created when existing
latent behaviors fail to perform as expected, and the ensemble determines that
a new latent behavior is needed. Modules may also be merged to conserve
resource consumption and meet a given compute budget.

Bringing self-activating modules and a dynamic ensemble together, we
present Self-Activating Neural Ensembles (SANE). To summarize, our approach
differs from traditionally-used ensembles in two ways: (i) We do not aggregate
results across modules, in order to keep modules isolated from one another.
This circumvents catastrophic forgetting, by not backpropogating through the
entire ensemble. (ii). The ensemble itself is dynamic, in that modules are being
created and merged throughout training.

46

4.4 Self-Activating Neural Ensembles for Con-
tinual RL

We now proceed to formally describe SANE in full detail. SANE is a dynamic
collection of modules {M1, . . . ,Mk} where, based the context, one module
Mt activates and is used for inference. Subsequently, given transitions from
collected episodes, only the selected moduleMt is updated. We describe an
individual SANE module in Section 4.4.1, including how activation scores are
computed to determine which module to use. We present the learning process
to manage a dynamic ensemble in Section 4.4.2. Pseudocode is provided in
Algorithm 1.

Algorithm 1 SANE
Require: timestep t, total task timesteps T , state at episode start s0, max allowed module count N , modules

M = {M1, . . . ,Mk} where Mi contains actor πi, critic Vi, static anchor critic ai, and replay buffer Ri.
1: while t < T do
2: Mmax = argmaxi(vUCB,i(s0)) ▷ select active module
3: Collect tnew timesteps of data using Mmax

4: t := t+ tnew

5: if vUCB,Mmax (s) < va(s) then ▷ negative drift detected, so add module
6: Mnew := clone(Mmax)
7: anew := clone(Vmax)
8: M := {M1, ...,Mk,Mnew}
9: else if vLCB,m(s) > va(s) then ▷ positive drift detected, so update module
10: amax := clone(Vmax)
11: end if
12: if |M | > N then ▷ merge modules
13: gi := avg(batch(Ri)[

′observation′]) ▷ compute an avg observation for each module
14: Mi, Mj = argmini,j ||gi, gj ||2
15: Mkeep, Mremove = which of Mi or Mj has been used more and fewer times, respectively
16: Rkeep = {Ri, Rj}
17: M = M−Mremove

18:
19: end if
20: end while

4.4.1 Self-Activating Module

Every moduleMi is an actor-critic algorithm represented by: a policy πi(a|s),
a critic Vi(v, u|s), as well as a replay buffer Bi that holds experience transitions.
We modify the critic Vi from the standard formulation in the following way.
Given a state s at timestep t, the critic Vi predicts two scalars: vi(s), the value
estimate of the return Rt received if module Mi is activated, and ui(s), an
uncertainty estimate of the absolute error:

ui(s) ≈ |Rt − vi(s)| (4.1)

47

We proceed by defining an optimistic estimate vUCB
i (upper confidence

bound) and a pessimistic estimate vLCB
i (lower confidence bound) for the

return that the moduleM⟩ can achieve from state s:

vUCB
i (s) = vi(s) + αu ∗ ui(s) (4.2)

vLCB
i (s) = vi(s)− αl ∗ ui(s) (4.3)

where αu, αl > 0 are hyperparameters which represent how wide a margin
around the expected value to allow. We use these margins to: (i) choose which
module to activate during inference; (ii) decide when to create a new module
during Structure Update (Section 4.4.2).

In all, each module Mi can be considered as a tuple ⟨πi, Vi,Bi, V i, Ai⟩,
where V i and Ai are two other versions of the critic Vi, which we proceed to
describe.

The target network V i is used for the confidence bounds estimates (Equa-
tion 4.2 and 4.3) instead of Vi. Target networks are commonly used in Q-
learning [8, 45, 102, 116] to stabilize training by reducing variance from ap-
proximation error. Similarly, we update V i with an exponential moving aver-
age [67, 135, 151]. Denote Vi’s parameters by θi, V i’s parameters by θ′i, and
the update rate by τV ; we use the update: θ′i ← τV θi + (1− τV)θ

′
i.

The anchor Ai is a frozen instance of the critic Vi from when the module
Mi was created. We describe how we use the anchor Ai to measure drift in
Section 4.4.2.1.

Module update. SANE can be applied to any actor-critic algorithm; we
describe specifics of our implementation in Section 4.4. Let LMi

denote the
loss function of the active SANE module and Lrl be the loss of the actor-critic
RL algorithm, with components associated with module Mi. We perform a
module update by optimizing LMi

= Lrl + µLue, where Lue is MSE loss to
estimate uncertainty from Equation 4.1.

Inference (Self-Activation). SANE consists of several modules where each
module represents the behavior for a particular situation. Activating the right
module for the right situation is key to the success of the SANE method. In an
RL setting, the critic predicts a value estimate, which can serve as an effective
proxy for how successful a moduleMi may be in obtaining high return. At the
beginning of the episode, we compute vUCB

i for each module in the ensemble
{M1, . . . ,Mk} using the target network critic V i. Then, we greedily select the
module whose critic predicts the highest such value, and use that module for
the whole episode.

48

4.4.2 Dynamic Ensemble

We propose a process to dynamically update the structure of the ensemble in
SANE. If the current set of modules behave in an expected manner (returns
are within the expected range) then the current set is sufficient. However at
some point in training, if the returns are outside the expected range, then we
know the current set of modules is insufficient. We create new modules to
handle the new situation, and merge modules together to stay within a given
compute budget.

4.4.2.1 Measuring drift

The key to successfully updating the SANE structure lies in our ability to detect
that we have moved outside this expected range. Our main assumption here
is that the change in rewards received is sufficient for distinguishing relevant
changes in setting. Therefore, we detect change in setting by measuring drift in
rewards. Drift describes when an environment is non-stationary, e.g. when the
reward distribution or the state transition distribution is changing over time.
Often where drift occurs, catastrophic forgetting follows because networks
update to the new setting, forgetting the old.

To recognize drift with SANE, at the time of their creation modules have
their critic cloned and frozen, creating a static critic called the anchor. We
compare the prediction of a module’s critic to the prediction of its anchor. We
say that sufficient change has occurred when the bounds of the expected return,
as defined in Section 4.4.1, predicted by a module’s critic do not include the
value predicted by its anchor, which serves as a static baseline.

Let vAi
denote the value estimate of the anchor Ai. Formally, we say that

sufficient change has occurred when for a given state s, critic Vi, and anchor
Ai, either of the following inequalities hold:

vUCB
i (s) < vAi

(s) (4.4)
vLCB
i (s) > vAi

(s) (4.5)

In practice, we use the target network critic V i to predict vUCB
i (s) and

vLCB
i (s), instead of Vi.

4.4.2.2 Creating a new module

When drift occurs such that the returns are better than anticipated, we expect
that this corresponds to the case that the policy has simply improved in
the current setting, as intended by standard module policy training. In this

49

setup, we just update the anchor to improve expectation. However, the case of
negative drift, where the UCB falls below the estimate of the anchor, requires
a different strategy. This situation occurs when the behavior (policy) starts
under-performing expectation, which can occur when the task has been changed
and the old policy is no longer as effective as it had been. What we do in this
case is create a new module that is a clone of the one that was activated. We
empty the replay buffer and update the anchor at the time of creation of the
new module. The goal is for the new module to be activated by the new setting
while the old one continues to be activated by the old setting, splitting the
input space to more effectively handle the two desired behaviors that are not
well handled by a single policy.

4.4.2.3 Merging modules

To prevent unlimited memory consumption, we limit the the total number of
modules in our ensemble by merging modules. To execute a merge, we start by
finding the two modules in the ensemble that are closest by the L2 distance
between frames averaged from a sample of trajectories from the replay buffers.
We then keep the more frequently used module and drop the less frequent
module from the ensemble. Before dropping, we combine the replay buffer of
the two modules and run a module update (Section 4.4.1) on the combined
module.

Note that in combining the replay buffers of the two modules we use the
reservoir sampling technique from CLEAR [150]. We maintain a reservoir value
for each trajectory, defined as a random value between 0 and 1, that allows
every trajectory to have an equal chance of being stored in the buffer, regardless
of when it was collected. The trajectories from the module being dropped are
added to the replay buffer of the module being kept using the reservoir values
that were originally generated.

4.4.3 Implementation Details

Leveraging CLEAR and IMPALA. We have chosen to base our modules
on IMPALA-based CLEAR as implemented in CORA, as it allows us to get
several useful features for free: a. Learning is done efficiently, in a highly
parallel manner. b. The policy is updated using vtrace, an effective credit
assignment method, as described in [39]. c. The CLEAR replay buffers are
maintained using reservoir sampling. d. CLEAR provides auxiliary losses that
maintain consistency of both the policy and critic with the replay buffer.

50

Model Architecture. The base implementation uses the Nature CNN model
from [116]. We augment the baseline network with 2 hidden linear layers of
dimension 32 with ReLU nonlinearities to increase its representational capacity.
All other hyperparameters for the experiments are provided in the available
code.

Parallelism. By collecting data from multiple environments in parallel, train-
ing is considerably faster, but it requires us to make one key assumption: the
activated module must be guaranteed to be applicable to all actors being run
at the same time. This requires that all actors be running the same task.

4.5 Experiments

Task sequences. We choose three procedurally-generated game environments
(Climber, Miner, Fruitbot) from Procgen [31]. We construct three task se-
quences using each of these game environments, by isolating sequences of levels
that are likely to cause catastrophic forgetting and where approaches like
CLEAR would perform poorly on. We selected four levels for Climber and
Miner. For Fruitbot, we added an easier fifth level at the start as a simple
curriculum. We run each set of levels for three cycles, to see how learning
evolves as the levels are seen again. The first frame of the selected levels are
visualized in Figure 4.2.

Baselines. We compare our approach to three of the baselines described
in Chapter 2.6. We also perform an ablation showing the importance of the
dynamic ensemble compared to a static set. The baselines we selected are:

• CLEAR In addition to comparing to CLEAR with the default number
of parameters (the same as each module in the SANE ensemble), we also
compare to a version of CLEAR with as many total parameters as we
use in our SANE ensemble. We refer to this as “CLEAR 8x”.

Worth noting is that while SANE takes around 14 hours to run our
Fruitbot sequence and standard CLEAR takes around 10 hours, these
larger models take longer to run: CLEAR 8x took 4.5 days. We would
have liked to compare to a CLEAR 32x as well, but such an experiment
was on track to take more than 2 weeks. This exemplifies another benefit
of SANE: the effective usage of more parameters without such a dramatic
increase in runtime.

• Elastic Weight Consolidation (EWC)

51

(a) Climber Levels

(b) Miner Levels

(c) Fruitbot Levels

Figure 4.2: The first frame of each sequence of levels used in our experiments.

• Progress & Compress (P&C)

• Static SANE Ensemble To validate the utility of our dynamic SANE
ensemble, we compare to a SANE ensemble that is static: all modules
are initialized upfront, and no creation or merging occur.

• SANE Oracle We also compare against an Oracle version of SANE,
where each task has its own pre-specified module, which is looked up by
task ID.

Experimental Setup and Metric. All implementations for baselines are
based on those described in Chapter 3. We use Continual Evaluation to generate
plots for each task in the task sequence, which show how well each task was
learned and how well each task was remembered. For fairness of comparison we
hold constant the number of replay frames each method has access to in total,
at 400k frames. Every method was run for 5 seeds, and the mean and standard

52

error of the mean are shown in the graphs. Gray shaded rectangles show when
the agent trains on each task. We also report the Forgetting metric introduced
in Chapter 2.3. Hyperparameters and further details for the methods used are
given in [137].

We compute the Isolated Forgetting statistic for each seed and take the
average across tasks, multiplied by 10 for readability. We report the average and
standard error of the mean across seeds for the Forgetting summary statistic.
See Chapter 2.3 for more details.

4.5.1 Results

We present the Forgetting summary statistics for all methods in Table 4.1 and
the Continual Evaluation graphs, which present the average and standard error
of the mean of the returns received from the environment versus steps taken in
the environment, in each section.

Climber. First we demonstrate SANE on Climber, a side-view task where
the agent must ascend a series of platforms while collecting coins and dodging
bats. The selected levels are particularly challenging because avoiding the bats
requires relatively precise timing; a slight decay in policy performance results
in significantly reduced reward.

We start by analyzing the Continual Evaluation results in Figure 4.3. SANE
and Static SANE both learn the tasks, but we can see that our dynamic model
consistently learns and remembers, while Static SANE overall shows more
inconsistent performance, doing particularly poorly on Envs 0 and 2. Both
versions of CLEAR learn the tasks but readily forget them, indicating that
SANE is not improving by merely adding more parameters. EWC has mixed
results; it does worse than SANE uniformly on all cycles of Env 0 and the first
cycle of the other Envs, but approximately ties it on the other cycles of Envs 2
and 3, and exceeds it on the other cycles of Env 1. P&C largely fails to learn
the tasks at all, with some exception on Env 2.

These results are further validated by looking at the Forgetting summary
statistics presented in Table 4.1. By this metric EWC does the best, likely aided
by poorer learning during the first cycle of Envs 0 and 1 and the particularly
good later performance on Env 1. Of the four methods that learned all tasks
immediately (SANE, Static SANE, CLEAR, and CLEAR 8x), SANE exhibits
the least forgetting.

Miner. We additionally demonstrate SANE on Miner, a task where the agent
must dig through dirt in two dimensions, collecting diamonds and going to a
specified end-goal without getting crushed by rocks.

53

Figure 4.3: Results for Continual Evaluation on the Climber sequence of tasks.
We observe that SANE consistently learns and recalls the tasks. Gray shaded
rectangles show when the agent trains on each task.

Continual Evaluation results are shown in Figure 4.4. SANE overall outper-
forms the baselines on the first three environments; we see CLEAR and EWC
learning and forgetting, static SANE showing more recall than CLEAR but
less than SANE, and largely little learning from P&C with the exception of
Env 1. However, on Env 2 one of SANE’s seeds fails to learn the task, and on
Env 3 all seeds did. Perhaps CLEAR’s larger buffer effectively provides more
exploration, as there is more randomness amongst the batches selected to be
trained upon.

Table 4.1 again demonstrates numerically these qualitative results. We see
that of the methods that learned the tasks, SANE not only did the best, it
also exhibited some backwards transfer (negative forgetting).

Fruitbot. The final Procgen sequence we use is based on Fruitbot, where the
environment continuously scrolls and the agent must move left and right to
collect fruit, avoid vegetables, and make it through gaps in the wall. Continual
Evaluation results, shown in Figure 4.5, are less clear-cut than the previous two

54

SANE Static SANE CLEAR CLEAR 8x EWC 8x P&C 8x SANE Oracle

Climber -2.2 ± 0.7 -2.5 ± 0.7 -5.6 ± 0.2 -5.4 ± 0.4 2.4 ± 0.1 -1.2 ± 1.1 0.5 ± 0.1
Miner 1.1 ± 0.4 -0.4 ± 0.6 -3.5 ± 0.4 -3.9 ± 0.3 -2.5 ± 1.1 0.0 ± 0.2 1.5 ± 0.2
Fruitbot -2.7 ± 0.3 -4.0 ± 0.2 -5.5 ± 0.5 -4.5 ± 0.4 -3.3 ± 0.8 -1.7 ± 0.3 0.1 ± 0.2

Table 4.1: Isolated Forgetting (−FI) summary statistics for all experiments.
EWC and P&C exhibit little forgetting because they also exhibit little learning.
Of the methods that learned the tasks, we see SANE performs best.

experiments. SANE clearly exceeds baselines on recall on Envs 1 and 3, but
remains comparable to the CLEAR 8x baseline on Envs 2 and 4, and struggles
on Env 0, only exceeding the baseline in the final cycle. Furthermore for the
most part SANE receives a lower maximum score than the CLEAR baselines,
with the exception of Env 3. Table 4.1 shows that despite the mixed qualitative
results, SANE again exceeds baselines quantitatively.

4.6 Analysis of SANE
We generate two additional types of plot to help us analyze our SANE ensembles.
The first is a "Module ID" plot. On creation we assign every module a unique
identifier: an integer that increases per module created. This ID is constant
through the lifetime of the module, including when other modules get merged
into it. We can plot what module is active by plotting its module ID. This
allows us to see when there are periods of rapid creation (steep regions of the
graph), when older modules are re-used, and when modules are being stably
activated.

The second plot is a lineage plot, showing a graph that represents the
history of the ensemble, with each node in the graph representing a module. A
blue line indicates that one module spawned another, and a red line indicates
that a module was merged into another. Light blue nodes represent modules
that are current available to be activated at the current time. An example
lineage plot is shown in Figure 4.6.

4.6.1 Single Run: Climber

We start by analyzing a single (non-hand-picked) run of SANE in Climber, to
demonstrate the dynamics of learning in a simple environment where behaviors
are readily separable. In Figure 4.7 we’ve aligned a graph of the ID of the
currently active module with the reward received at that time.

55

Figure 4.4: Results for Continual Evaluation on the Miner task sequence. We
again observe that SANE improves on the baselines at recall across the tasks.
Gray shaded rectangles show when the agent trains on each task.

We can see the desired behavior in this case: several new modules are
created (a sharp increase in module ID is observed) as performance successively
fails to meet expectation, until a suitable module is created. Additionally,
we can observe that before a task is trained upon, it is likely to use the best
module for the current task. E.g. Env 3 uses Env 0’s active module (module 0)
for the first 3M steps, then Env 1’s module (15) for most of the next 3M, then
Env 2’s module (18) for the next 3M, until during its own training period drift
is detected and a custom module is created.

It is also worth remarking on the decline in Env 3’s performance, which
occurs particularly while the task is being trained. It occurs while a consistent
module is being activated, so is not related to the ensembling behaviors of
module creation or merging. Observing the behavior indicates that the agent is
jumping into a bat rather than avoiding it, so it would seem it is overfitting to
the jumping behavior, possibly as a result of the decreased replay buffer size.

56

Figure 4.5: Results on the Fruitbot sequence. SANE performs particularly well
on Envs 1 and 3, comparable to CLEAR 8x on Envs 2 and 4, and struggles
some with Env 0. Gray shaded rectangles show when the agent trains on each
task.

4.6.2 Fruitbot Analysis

Fruitbot performed least well of our experiments, so we dive in further to
understand the dynamics at play.

Module Count Ablation. We first discuss the difference in expected return
when we vary the number of modules for SANE, as visualized in Figure 4.8.
Overall, we observe that the fewer the modules, the higher the maximum
scores received. The one exception is Env 3, where 8 and 16 modules both
receive comparable scores. However, in general the fewer the modules the more
forgetting is observed as well. This is particularly noticeable on Envs 0, 1, and
4, with more ambiguity on Envs 2 and 3.

As we observed in the analysis of Climber, when a new task is switched
to, we don’t create just a single module. Rather, the critic steadily learns to
adapt to the new task; each time it passes the vLCB threshold, a new module is
created. Once the maximum number of modules has been reached, this triggers
a merge. Since a merge combines the replay buffers of the two modules, when

57

0 500k 1M 1.5M 2M 2.5M 3M
0

5

10

15

20
SANE (8)

Fruitbot: Env 0

Step

M
od

ul
e

ID
Figure 4.6: An example Lineage plot, showing how nodes are created and
merged while training on Env 0 of Fruitbot.

0 5M 10M 15M 20M 25M 30M 35M
0

10

20

30

40

50
SANE

Climber: Env 0

Step

M
od

ul
e

ID

0 5M 10M 15M 20M 25M 30M 35M
0

10

20

30

40

50
SANE

Climber: Env 1

Step

M
od

ul
e

ID

0 5M 10M 15M 20M 25M 30M 35M
0

10

20

30

40

50
SANE

Climber: Env 2

Step

M
od

ul
e

ID

0 5M 10M 15M 20M 25M 30M 35M
0

10

20

30

40

50
SANE

Climber: Env 3

Step

M
od

ul
e

ID

0 5M 10M 15M 20M 25M 30M 35M
0

2

4

6

8

10

12
SANE

Climber: Env 0

Step

Ex
pe

ct
ed

 R
et

ur
n

0 5M 10M 15M 20M 25M 30M 35M
0

2

4

6

8

10

12

14

16
SANE

Climber: Env 1

Step

Ex
pe

ct
ed

 R
et

ur
n

0 5M 10M 15M 20M 25M 30M 35M
0

2

4

6

8

10

12
SANE

Climber: Env 2

Step

Ex
pe

ct
ed

 R
et

ur
n

0 5M 10M 15M 20M 25M 30M 35M
0

2

4

6

8

10
SANE

Climber: Env 3

Step

Ex
pe

ct
ed

 R
et

ur
n

Figure 4.7: Module ID plot and Expected return plots aligned by timestep, to
show module activation during a single run of Climber. Gray shaded rectangles
show when the agent trains on each task.

two "compatible" modules are merged, the resulting policy is more robust
than that of the individual modules. However when two modules representing
conflicting behaviors are merged, we see a reduction in performance. Taken
together, this means that as merging is occurring, more modules in the ensemble
will generally be more stable over time, but might be slower to learn. We see a
concrete example of this in Section 4.6.2.1 below.

58

0 10M 20M 30M 40M

−4

0

4

8

12

16

20
SANE (8)
SANE (16)
SANE (32)

Fruitbot: Env 0

Step

Ex
pe

ct
ed

 R
et

ur
n

0 10M 20M 30M 40M
−4

0

4

8

12

16 SANE (8)
SANE (16)
SANE (32)

Fruitbot: Env 1

Step

Ex
pe

ct
ed

 R
et

ur
n

0 10M 20M 30M 40M
−4

0

4

8

12

16

20 SANE (8)
SANE (16)
SANE (32)

Fruitbot: Env 2

Step

Ex
pe

ct
ed

 R
et

ur
n

0 10M 20M 30M 40M
−4

0

4

8

12

16

20 SANE (8)
SANE (16)
SANE (32)

Fruitbot: Env 3

Step

Ex
pe

ct
ed

 R
et

ur
n

0 10M 20M 30M 40M
−4

0

4

8

12

16

20
SANE (8)
SANE (16)
SANE (32)

Fruitbot: Env 4

Step
Ex

pe
ct

ed
 R

et
ur

n

Figure 4.8: Comparison of SANE variations on the Fruitbot task sequence.
The number in parentheses indicates the number of modules in the ensemble,
ie. SANE (8) has 8 modules. Gray shaded rectangles show when the agent
trains on each task.

4.6.2.1 Single Run

Here we analyze a single run of Fruitbot, which allows us to see in more detail
the dynamics of SANE. We use an ensemble with 8 modules to simplify analysis.
We focus on three important points, labeled A, B, and C in Figure 4.9. In all
three cases the module the Environment is using switches to an older module.

At A (21M timesteps), Env 1 switches from using Module 193 to Module
10. By analyzing the Lineage plot (not shown here due to its large size) we see
that 193 merged into Module 150, which then merged into Module 10. Thus
the continued high performance on this task can be explained by a successful
sequence of merges.

At B (27M timesteps), Env 2 switches from using Module 252 to Module 9.
In this case, Module 252, which is a direct descendent of Module 9, merged
into Module 197. Module 197 is at this point still a module available in the
ensemble, meaning Env 2 began to activate a high-performing previous module
(Module 9) instead of the result of the merge, implying that the critic value of

59

252 decayed as a result of its merger into Module 197. However, performance
was rescued by return to a previous module and performance remains high.

At C (30M timesteps), Env 4 switches from using Module 261 to Module 10.
Module 10, as we saw in case A, is a module that is well-suited for Env 1. In
this case, Module 261 merged into Module 262, a descendent of Module 9, which
as we saw in case B is well-suited for Env 2. Essentially, our 8 module ensemble
lacks the capacity to adequately represent all of the behaviors necessary for
this sequence of tasks, and start combining policies destructively, resulting in
forgetting. This is mitigated, as we saw in Figure 4.8 by introducing more
modules into our ensemble.

0 10M 20M 30M 40M
0

50

100

150

200

250

300

350

400
SANE (8)

Fruitbot: Env 0

Step

M
od

ul
e

ID

0 10M 20M 30M 40M
0

50

100

150

200

250

300

350

400
SANE (8)

Fruitbot: Env 1

Step

M
od

ul
e

ID A

0 10M 20M 30M 40M
0

50

100

150

200

250

300

350

400
SANE (8)

Fruitbot: Env 2

Step

M
od

ul
e

ID B

0 10M 20M 30M 40M
0

50

100

150

200

250

300

350

400
SANE (8)

Fruitbot: Env 3

Step
M

od
ul

e
ID

0 10M 20M 30M 40M
0

50

100

150

200

250

300

350

400
SANE (8)

Fruitbot: Env 4

Step

M
od

ul
e

ID

C

0 10M 20M 30M 40M

−5

0

5

10

15

20

25
SANE (8)

Fruitbot: Env 0

Step

Ex
pe

ct
ed

 R
et

ur
n

0 10M 20M 30M 40M

−5

0

5

10

15

20

25
SANE (8)

Fruitbot: Env 1

Step

Ex
pe

ct
ed

 R
et

ur
n

0 10M 20M 30M 40M

−5

0

5

10

15

20

25
SANE (8)

Fruitbot: Env 2

Step

Ex
pe

ct
ed

 R
et

ur
n

0 10M 20M 30M 40M

−5

0

5

10

15

20

25
SANE (8)

Fruitbot: Env 3

Step

Ex
pe

ct
ed

 R
et

ur
n

0 10M 20M 30M 40M

−5

0

5

10

15

20

25
SANE (8)

Fruitbot: Env 4

Step

Ex
pe

ct
ed

 R
et

ur
n

Figure 4.9: The Module ID and Expected Return plots for a single run of
Fruitbot, aligned by timestep to see how modules are getting used and created
while Fruitbot is training.

4.7 Summary
Inspired by the fact that catastrophic forgetting is caused by updating all
neurons in a network for all tasks, we propose the creation of self-activating
modules to break up a network into modular components that only get updated
when they are used. Our experimental results suggest that a dynamic ensemble,
which creates modules as necessary and merges them to conserve resources,
performs better than a static ensemble where all modules are created up-front.
By combining these two novel features, we present SANE (Self-Activating
Neural Ensembles) for continual reinforcement learning. We demonstrate
SANE on sequences of Procgen levels that prove particularly challenging for the
current state-of-the-art (CLEAR), showing that our method reliably improves
the mitigation of catastrophic forgetting. Furthermore, we present a thorough
analysis of SANE, showing how modules are created, used, and merged on
individual runs of Climber and Fruitbot, to provide a more comprehensive view
into the system.

60

Chapter 5

SANER: SANE for Robotics

5.1 Introduction
Robotics is a challenging field for even a single task, as collecting data is
time-intensive, supervision is costly [127], and significant randomness can cause
undesirable damage to both the home and the robot. Additionally, large
amounts of resetting would be a burden in a home setting [40, 207]. Finally,
the ability to generalize is critical since real-world settings are never exactly
the same; sensor noise, error in robot control, shifts in lighting, and more all
result in variation, even in otherwise static scenes. As a result, learning on a
real robot for a large enough set of tasks to validate new continuous learning
methods has been out of reach. Existing work in the continual learning setting
for robotics is limited and largely speculative [99].

To resolve these issues, we propose SANER 1, an adaptation of the SANE
algorithm for the robotics imitation setting, which can be used to learn an
ensemble of new skills given a handful of unstructured demonstrations of
different tasks. To be sufficiently general for robotics, SANER must use a
policy that is sample-efficient and robust to noise. Additionally, SANER
introduces several significant modifications to enable learning from imitation.

The policy we introduce with SANER is a simple, highly sample-efficient
point-cloud-based policy network we call Attention-Based Interaction Policies
(ABIP). ABIP is based on PointNet++ [140], and was designed to efficiently
learn via imitation. ABIP takes inspiration from prior work on perceptually-
grounded action spaces for robots [71, 117, 167, 189, 198, 199], which has shown
better data efficiency and robustness than directly learning to predict motor
commands. Using ABIP, our agents are capable of acquiring new skills with only

1Code is available at https://github.com/AGI-Labs/continual_rl

61

https://github.com/AGI-Labs/continual_rl

Figure 5.1: On the left we show the entire set of training settings for four tasks:
picking and placing a bottle into and out of a sink, and opening and closing
an oven. On the right are our evaluation settings. We show how continuous
learning techniques like CLEAR [150] and SANE can be extended to a low-data,
learning-from-demonstration setting on a real robot, and can succeed on tasks
that vary considerably from the original demonstrations.

two demonstrations, minimizing burden on the end-user and robot alike. While
we present ABIP as part of SANER, we believe that its sample efficiency and
generalization capacity make it a useful component of any continual learning
system for use with robotics.

We evaluate SANER on four kitchen tasks using a low-cost mobile robot:
two pick-and-place tasks and two tasks manipulating an articulated object.
We demonstrate our method’s ability to generalize to unseen object locations,
unseen object types, and to clutter, all with very little data. We compare our
new method to two other continual learning methods, modified to use ABIP:
CLEAR [150] and EWC [86]. We demonstrate that SANER is more effective at
both learning without forgetting and forward transfer in the robotics domain,
and that ABIP is a useful component for learning general interaction policies
from a small number of examples.

To summarize, in this paper we show for the first time how to modify
existing state-of-the-art continual learning methods to a few-shot, real robot
imitation learning domain, and describe the necessary algorithmic changes and
evaluations. We also describe the requirements on a policy architecture which
will make these experiments feasible, and provide a first version of such an
architecture in ABIP.

62

5.2 Related Work
Relevant prior work spans several fields, including continual learning [128],
robotics, and imitation learning. We look both at prior work in continuous
learning, reinforcement learning, and in learning generalizable robot policies.

Continual learning for robotics. Continual learning began as the study
and mitigation of catastrophic forgetting [143, 148]. It has since expanded
to include forward transfer [105] and maintaining plasticity [114], and more
recently, generalization and sample efficiency [138]. In this work, we focus
on generalization and sample efficiency in the context of visuomotor policy
learning, in addition to forgetting, as these are critical pieces for robotics.

While a significant amount of work has focused on continual learning for
supervised image classification [92], this too has expanded with time to include
unsupervised learning [11] and reinforcement learning [86]. Continual learning
in robotics has received some attention [99], but while there have been a
few works in simulation [50, 186, 202], little has been put into practice. Key
exceptions include work by [154], which uses Progressive Networks [153] to
apply continual learning to the sim2real problem; [48] utilize deep generative
replay for the domain of continual imitation learning for robotics, using 15
demonstrations per real-world task, but their method requires using generative
models to create whole new datasets in the new environment in order to avoid
forgetting. [28] propose an approach which constructs policy mixtures for
continuous control tasks, but can’t learn visuomotor policies or generalize to
different scenes.

One other route to continual learning for robotics would be, instead of
learning visuomotor skills, to focus on grasp estimation and planning. In
general, this sort of pipelined approach is brittle, failing due to occlusions
or interference [78], and existing open-set grasp estimation methods do not
do task-oriented grasping [119]. [104] proposed a continuous object detection
dataset, which could have some overlap for our methods, but uses only RGB
data, which is far less useful for robust grasping [119]. Others have used
continuous learning for object detection on real robots [9, 10], but have not
looked into reactive skill learning. However, ideas from continuous learning for
object detection could be used in conjunction with SANER in the future to
improve semantic learning and generalization.

Modular RL for robotics. SANE, on which SANER is based, is an ensemble
method based on the idea that having separate modules side-steps the problem
of catastrophic forgetting. The idea of re-usable robotic skill libraries from
demonstrations has been seen in [15, 35, 132, 173], amongst many others [202].

63

Additionally, there has been work to apply modular methods to the continual
robotics domain, such as in [113], which looks at modular reinforcement
learning in the simulated RoboSuite [208] environment, and [17], which looks
at lifelong reinforcement learning in a variety of simulated environments. These
are relevant but not directly comparable to our work because much more data
is available to train policies in these settings. Others have noted zero-shot
generalization as an important problem for RL, for example [85] looks at
avoiding overfitting to training environments through various means. In our
case, we avoid overfitting through a mixture of augmentation and design of an
attention-based, perception-driven robot policy.

Perception-driven robot learning. Recent work in robot learning focuses
on building general, multi-purpose policies which can scale to a variety of
scenarios based on sensor data. Much of this work has likewise focused on
big-data settings. In Say-Can [3] and RT-1 [20], for example, the authors use a
large dataset to train a multi-task, language-conditioned transformer model.
Given that these works require large amounts of data to train, they are not
necessarily suitable for online teaching of robot skills in a home environment.

Conversely, there is a thread of work which functions on much smaller
amounts of data but still achieves strong performance [63, 71, 166, 167, 198, 199].
These works focus on a perceptual action space, where actions taken directly
correlate with visual features, but often focus on a 2D vision of the world as a
result [63, 166, 198, 199].

Recent work extended this sort of approach to deal with 3D environments
more suitable for robotics tasks [167], but still uses very large transformer
models that take a long time to train. An alternative is proposed by work
like Where2Act [117] and VAT-Mart [189], which learn a point-cloud based
policy which predicts an interaction point and a corresponding trajectory.
These are based on the powerful Pointnet++ [140] backbone, which provides
convolutional-equivalent operators that work in 3d space. However, these
policies are open-loop, meaning that they cannot recover from failures. We
build off this work, using a similar representation but modified to be slightly
more general.

5.3 Method
One goal of this thesis is to empower robots with a growing library of skills,
where modules can be easily created and learned. To achieve this, we propose
SANER, an adaptation of SANE for Robotics.

64

RGB, Depth

XYZ

MRP

XYZ.cat(EE Pose)

XYZ -= MRP

MRP + Offset

EE pose

Embed

MLP
Offset

Action

Attention-Based Interaction Policy (ABIP)

Offset streamMRP stream

Locality

Locality

Locality Loss

APN

APN

Set Abstraction (SA) module

Attention
a

SA module

sum(a * XYZ) sum(a * dist(XYZ, MRP))

RGB, XYZ

Embed Locality lossMRP

Attention-based PointNet (APN)

sum(a * embed)

Figure 5.2: Attention-based interaction policies (ABIP). We build an architec-
ture which ignores variations and distractors by first predicting a Most Relevant
Point (MRP), then predicting an offset from this point. ABIP is trained with
a locality loss which penalizes attending to points far from the robot’s current
position.

SANE is an algorithm for the automatic creation and re-use of skill mod-
ules; we provide an overview in Section 5.3. To be suitable in the imitation
learning setting, SANER makes several key changes. We break the necessary
modifications up as follows: first, we discuss the new policy architecture used
by each module, Attention-Based Interaction Policies (ABIP), in Section 5.3.2;
second, we discuss changes to the critic in Section 5.3.3; and third, we discuss
changes to module creation in Section 5.3.4. Additionally, we modify two other
continual learning methods, CLEAR and EWC, to use ABIP as well. We
describe these adaptations in Section 5.3.5.

5.3.1 Preliminaries

For the experiments presented in this paper, the state is composed of
an RGB-D image and the robot joint state, and the action is specified as
the position and orientation (as a quaternion) of the end effector in world
coordinates, plus the state of the gripper as a continuous variable in the range
(-0.2, 0.2). Additionally, we include the fraction of the task completed in the
action, which is used to determine the end of the episode. Refer to Chapter 2.3.2
for more details. use N = 4, kdemo = 2, kunseen, and T = 10000.

65

5.3.2 Attention-Based Interaction Policy (ABIP)

Intuitively, in a cluttered and constantly changing setting like a human home,
there will be many irrelevant details in the background of any demonstration
that a user provides to SANER. Therefore, we split the action prediction
problem into two steps: (1) we predict a Most Relevant Point, or MRP, which
tells us which region of the world the policy must attend to; and (2) we
reactively predict actions which determine where the robot should move in
relation to that MRP: for example, how to approach the handle of an oven and
when to close the gripper to grasp it.

These two operations are performed sequentially using a modified Point-
Net++ [140] model that we refer to as Attention-based PointNet (A-PointNet),
shown in Figure 5.2. The MRP Predictor can then be agnostic to the position
of the robot, instead focusing on the features of the object relevant to the
overall task, while the Action Predictor can learn to focus on features relevant
just to what the next action should be. For example, the MRP Predictor might
learn to focus on the handle while the Action Predictor focuses on the angle of
the oven door.

Image Pre-Processing. First we convert the RGB and depth images into
a point cloud. We augment the point cloud of the current timestep with our
context c, the point cloud from the beginning of the episode. This aids both in
combating occlusion, as well as in disambiguating between similar observations
that occur during different trajectories. To reduce compute, we crop the
working area to 1m, and down-sample using grid pooling, with a resolution of
1cm for the current timestep and 2.5cm for the context. Specifically, we select
a random point in each voxel, to reduce overfitting.

5.3.2.1 Attention-Based PointNet (A-PointNet)

Our Attention-Based PointNet module (A-PointNet), a core component of
both our MRP and Action Prediction streams, augments PointNet++ via the
addition of an attention mechanism, allowing us to learn to ignore irrelevant
details of the scene.

In more detail, A-PointNet passes the point cloud through two set aggrega-
tion modules that process information at different scales, as in PointNet++ [140].
This allows us to harness both structural information from the scene as well as
the finer details necessary for manipulation.

The output from the second set aggregation module [140] is a reduced point
cloud P . We concatenate the embedding, mi, and position, pi, of each point
i and pass these into an attention network, which is an MLP with output

66

dimension 1, and softmax the resulting values to compute the attention value,
ai. This attention is then used to produce both a weighted average position,
p̄ =

∑
i∈P aipi and a weighted average embedding, m̄ =

∑
i∈P aimi.

This version of attention can be seen as analogous to the spatial atten-
tion maps used by CBAM [187], using set aggregation modules in place of
convolution. The context of each point, which determines its importance, is
determined by the structure of points in its neighborhood.

5.3.2.2 Dual-Stream Architecture

Most Relevant Point (MRP) Prediction. Ideally, finding the most relevant
point for a particular task would allow us to focus only on high-level task relevant
information, ignoring background objects and distractors. To encourage this,
we remove points from the point cloud in a rectangular prism surrounding the
known location of the end-effector. Due to the fact that when using only a
small number of demonstrations the current position of the end-effector is a
highly accurate signal for the next position; as discussed in Sec. 5.5.2, an MRP
predictor without this augmentation tends to overfit to these points. This
point cloud is then passed into an A-PointNet module to compute a weighted
average position, our Most Relevant Point (MRP).

Action Prediction. We then predict actions relative to the MRP. In this case
the position of the end-effector is highly relevant to the computation of the next
desired action. Therefore, we again remove the points around the end-effector,
but now we add a rectangular prism in the position and orientation of the
end-effector. This is because the end-effector is often occluded, and here we
want to ensure it’s available for use.

As before, this point cloud is then passed into a separate A-PointNet module.
The resulting p̄ and m̄ are concatenated, along with the current state of the
gripper, then passed into four separate MLPs, which compute the position
offset (∆p), rotation (as a quaternion), and gripper state of the end-effector, as
well as a prediction for the fraction of the task completed. The offset is added
to the MRP to compute the final end-effector position.

5.3.2.3 Training ABIP

Imitation Loss. To train the policy, we use the action from the demonstration
to supervise the position, gripper state, and completion fraction using a mean-
squared error loss. We represent orientation as a quaternion and use 1− (qtrue ·
qpred)

2 as the loss, based on [64].

67

Offset Loss. We additionally compute a loss that drives the computed offset
toward 0, to further encourage the MRP to encode information relevant to the
interaction: Loffset = ||p̄off ||2
Locality Loss. We encourage generalization with a locality loss which encour-
ages relevant points to be close together, defined in Equation 5.1:

Llocal =
∑
i∈P

ai||pi, p̄i||2 (5.1)

Since these points must also contain information relevant to the task, this
allows for a natural convergence of attention around a salient point in the
observed point cloud. In effect, this allows us to more quickly learn to ignore
irrelevant features of the environment, such as walls or the table surface,
allowing for improved generalization.

Removal of Cloning Losses. While SANE uses the policy and value cloning
losses from CLEAR, which help maintain old behavior in the presence of new
data, with SANER this is unnecessary, as we are already training on the true
actions observed from the demonstrations.

Removal of Policy Augmentation. Unlike in SANE, SANER trains the
policy only on new data (Bnew), not a batch augmented from the replay buffer
(Baug). This allows the module to specialize the new policy to the new setting
as quickly as possible. This is related to policy freezing, discussed in Section
5.3.4.

5.3.3 Critic

SANE uses a reinforcement learning critic to estimate two values, a score and
an uncertainty, that are used to determine which module to activate and to
detect when drift has occurred. For SANER, both of these need to be changed
to work in the imitation learning setting.

Critic Architecture. In addition to the ABIP policy network, SANER uses
a separate A-PointNet encoder for the critic, plus a 3 layer MLP with hidden
dimension 64 to predict the value and uncertainty. Unlike in SANE, SANER
does not share weights between the actor and the critic. Note that the critic
does not utilize a locality loss; we found that earlier tasks might focus too
strongly on features that were insufficient signals for future tasks, and the
critic’s performance would suffer.

Activation Score. Conceptually, the goal of SANE’s activation score is to
evaluate how well each module will perform in the current context. When

68

applied to the reinforcement learning setting, the standard critic is a natural
choice, as it is already designed for that purpose. However, in the imitation
learning setting, the choice is less clear.

An activation score should: (1) always be greater than 0, to minimize
unnecessary module creation at the beginning of training; (2) have a consistent
maximum value, for consistency between tasks and to make hyperparameter
selection easier – we choose a maximum of about 3; and (3) be highly sensitive
to policy errors on about the same scale as the hardware and tasks permit, and
less sensitive to the difference between large errors in action prediction.

Our last criteria is both the most important and the least trivial. Say
we have a module that succeeds at a particular task with an error in the
predicted-end effector position of about 1cm. If updates to the policy that
induce an error of 2cm would cause the module to start failing at the task,
then the score function should drop considerably. However for the same task,
if a different module has a policy error of, say, 18cm, then an increase to 20cm
should have little effect on the score; both are clear failures, and should be
near 0.

While there are a number of options for functions that meet this criteria,
we found it most straightforward to compute a target score based on the
distance between the true action and the predicted action. Specifically, we use:
starget = softplus(β)(a||ptrue, ppred||2) + b, where ptrue is the true end-effector
position, ppred is the current prediction of the policy, and a, b, and β are
constants. We use essentially this same metric for the orientation and gripper
pose as well, and sum the results to achieve our final score. More details on
the selection of these constants is described in [136]. We then train the critic
to predict this target score using an L1 loss.

Uncertainty Estimation. In imitation learning, the policy learns much more
quickly than in reinforcement learning, due to the fact that RL relies upon
credit assignment instead of direct supervision, causing learning to take orders
of magnitude more time. While faster training is generally beneficial, we found
that our prediction of uncertainty tended to lag behind the performance of
the policy, particularly at the beginning of a task when the policy is changing
rapidly. To resolve this, we introduce a multiplicative factor on the uncertainty,
for both the new node and the source node, that increases when drift is detected,
and decays as the module is used. This gives the uncertainty estimator more
time to converge accurately.

More specifically, we defined our modified uncertainty as u′ = (1 + f) ∗ u,
where u is the standard uncertainty predicted by SANE, and f is our uncertainty
factor. When a drift event is detected and a node is created, f is incremented

69

by ks for the source node and kn for the new node. When a node is activated,
its f decays according to: ft+n = ft ∗ γn, where n is the number of timesteps
seen by the module during activation.

In SANE, uncertainty is used for node activation and upper bound estima-
tion. We can therefore define fact and fub separately, with separate k and γ
values for each. This is useful because, for example, while we want the source
node’s uncertainty to be reflected in its upper bound to mitigate unnecessary
node creation, we do not need the source node to be more likely activate.
Uncertainty is also used for lower bound estimation; however, a sensitive lower
bound poses little issue, and we therefore neglect f for this case.

Replay augmentation. In reinforcement learning it is not feasible to mine
negative examples for one module from the others, because it is challenging to
estimate what outcome a policy will have in an environment without actually
doing it. However, with imitation learning, mining negative examples is trivial.
We leverage this advantage by, at each activation step, giving the active module
a 10% chance to exchange a few samples with each other module.

Handling noisy predictions. While ABIP is training, the point cloud
augmentations, particularly the random downsampling before the first set
aggregation module, can result in critic predictions with significant noise. We
found that the slow critic SANE uses to smooth training did little to impact
this source of noise. We opt to remove the slow critic, and instead average all
critic computations over 5 runs of the same observation.

5.3.4 Module Creation

The main way that catastrophic forgetting is mitigated in SANE is by the
creation of new modules, as described in Chapter 4, which allows one to persist
prior behavior, while the other learns the new task. Creation occurs when an
active module’s critic predicts an upper bound on predicted value that is lower
than the prediction of its anchor. With imitation learning however, once that
has happened, the policy has already changed considerably, and significant
forgetting has already occurred.

We mitigate this issue in SANER with a naïve strategy: once a module
is cloned, we reset both the policy and the critic to their states at the last
time the anchor was updated, which is effectively our last known good state.
Furthermore, we freeze the policy, preventing it from training further.

70

5.3.5 Adapting Existing Baselines

Existing continual-learning methods require a few changes to be applied to
the learning-from-demonstration context we want to use for our home robotics
setting. In particular, we adapted CLEAR and EWC using same change in loss
made for SANER: using the changes to the loss from Section 5.3.2.3 in place
of V-trace, with the exception that we do not remove policy augmentation for
CLEAR, and it is not applicable for EWC.

5.4 Experimental Setup
We demonstrate continual learning in robotics in a kitchen environment by
doing the following 4 tasks: picking up a bottle and putting it in the sink,
taking a bottle out of the sink, opening a toaster oven, and closing a toaster
oven. For each task we collected and train on only two demonstrations. Further
details on the experiments are provided in [136].

We perform three evaluations: first, we demonstrate the generalization
ability of ABIP on each task independently, second we ablate our key novel
contributions on ABIP, and finally we evaluate our continual learning methods
on the tasks trained in sequence.

Robotic platform. We utilize the Hello Robot Stretch2 [81] in all our
experiments, shown in Figure 5.1. The Stretch robot is a “low cost” robot,
composed of an arm that can independently move vertically and horizontally, a
wrist with 3 rotational degrees of freedom, and a pinching gripper. The base is
also capable of motion, but for our experiments we keep the robot stationary,
leaving this for future work. The camera used to collect observation data is a
RealSense D435 mounted on the head of the robot, and remained stationary
during all episodes. Demonstration collection, training, and inference were
done off-robot on a dedicated desktop, and communication with the robot was
done via ROS.

Task selection. The tasks were chosen to highlight a variety of kitchen-
relevant sub-skills, under the constraint that there are 5 degrees of freedom
in the motion of the arm. The two primary skills exercised are pick-and-place
and manipulation of an articulated object. The entirety of our train and test
settings can be seen in Figure 5.1, where the opening and closing of the oven are
two tasks using the same settings. Notice that with only small perturbations
of the object of interest, we observe significant ability to generalize.

2hello-robot.com/

71

hello-robot.com/

Specifically, picking the bottle from the sink requires a precise approach,
as pushing the bottle is risky and may tip the bottle. During our evaluations,
we move the bottle in all three dimensions, to evaluate the agent’s ability
to generalize accurately. The choice of a bottle partially filled with water is
convenient, as it allows for tuning the task’s sensitivity to imprecise actions.
Picking the bottle from the counter is easier in both these respects, allowing
us to use this setting to test more significant displacements in all dimensions,
as well as robustness to clutter.

The toaster oven, by contrast, requires learning the curved trajectory of a
closing door. An agent that cannot execute the oven interactions accurately
will often get stuck, and will need to retreat and re-grasp.We train on two
different ovens, and demonstrate generalization using an unseen oven in differing
positions, and in the presence of clutter.

Beyond evaluating these specific sub-skills, the tasks we have chosen provide
an efficient test-bed for continual learning specifically: multiple interactions
with the same object provides opportunity for forward transfer, while similar
observations with conflicting behaviors is an efficient way to elicit catastrophic
forgetting.

We collected two demonstrations for each task, and execute 3 out-of-
distribution trials. While training the agent on a task, we sample transitions
randomly from both demonstrations.

Collecting demonstrations. We guided the robot through the trajectory
using a controller, recording actions at critical points (key points) as in prior
work [167]. At each key point, we collect the RGB and depth images, as well
as the robot’s joint states. The joint states are converted into end-effector
position and orientation using forward kinematics.

Implementation Details. SANER is based on an implementation of SANE
utilizing IMPALA [39], as provided by CORA.Each module has a replay buffer
size of 625. Since four modules were created during training, SANER uses a
total number of 2500 stored frames. CLEAR and EWC were also implemented
using IMPALA. For consistency we set CLEAR’s total number of replay frames
to be 2500.

EWC. Unfortunately, while we tried training EWC using λ in [1000, 10000,
100000], we found no value that worked reasonably in our setting, and opted
not to run EWC on the robot.

72

5.4.1 Evaluation

Evaluation was run by randomly selecting one of the two demonstrations, and
initializing the robot to its starting configuration. We scored performance
according to a rubric, with partial task completion earning partial credit.
Roughly speaking, the robot earns a higher reward the more of the trajectory
it successfully executes.

For ABIP performance and ablations, we present the mean of reward over
three trials. For the continual learning results presented in Section 5.5.3, we
captured performance data before and after training on each task, as well
as final performance at the end of each run. While it might be preferred to
collect data for all tasks at the end of each task, or even significantly more
frequently as per [86], this is infeasible due to the time-consuming nature
of real-robot experiments. Additionally, we never test in comparison with
a randomly-initialized policy as in [25], to avoid damage to the robot or
environment.

5.5 Experiments

5.5.1 Evaluating Attention-Based Interaction Policies

First, we examined the ability of ABIP to generalize to out-of-distribution
variations of each task. We trained on each task separately using CLEAR [150],
and then evaluated on each of the training settings, as well as in the out-of-
distribution generalization settings visualized in Figure 5.1. Results are shown
in Table 5.1.

Our specific goal is to demonstrate that this model is sufficiently capable
of learning skills in the few-shot setting, in order to be useful as a building
block of a continual learning system. For this to be the case: (1) ABIP must
learn well enough that catastrophic forgetting would be observable, (2) the
domain must be challenging enough for forward transfer to be meaningful, and
(3) general representations and policies must be attainable, so that the skills
learned are practical.

We see generally high performance across both in-distribution and out-of-
distribution settings, with a few exceptions. While performance is not directly
comparable, we see that our method compares favorably to similar settings
presented by other work using the Stretch in the home environment [12, 126, 127]
As discussed above, ABIP’s performance on each task highlights different
strengths and weaknesses of the method. The method performs well on the
Bottle To Sink task, particularly on the unseen settings, which indicates that

73

Task In Distribution: Demo 0 In Distribution: Demo 1 Out of Distribution

Bottle To Sink 0.80± 0.34 0.87± 0.23 1.0± 0.0

Bottle From Sink 0.60± 0.40 1.0± 0.0 0.47± 0.23

Open Oven 0.20± 0.20 0.80± 0.20 0.87± 0.11

Close Oven 0.53± 0.50 0.33± 0.12 1.0± 0.0

Average 0.53 0.75 0.83

Table 5.1: Performance of CLEAR [150] on “in distribution” and “out of
distribution” tasks, using ABIP as the underlying policy representation. We
observe significant generalization ability.

the method is robust to significant displacements of the target object, and to
distractors – key features of our MRP-based method. It suffers a bit on the
Bottle From Sink generalization task, however. This task is highly sensitive to
small errors in grasp trajectory, which indicates that while the MRP is capable
of identifying our object, the action prediction is an area of improvement.

Overall, it is clear that ABIP can capture our task, and that the task is
challenging enough to be interesting. Additionally, we specifically demonstrated
both that the method is capable of generalizing to objects in unseen, out-of-
distribution positions, as well as to unseen objects. Our policies were able to
adapt to significant shifts in position and scene composition, including being
able to open and close an unseen oven.

5.5.2 ABIP Ablations

Having demonstrated that ABIP is a capable building block for continual
learning, we proceed to analyze the effects of the design decisions made in its
creation. In particular, we ablate by comparing the ABIP to methods that:
1) remove the locality loss for the MRP, 2) remove the locality loss for the
offset, 3) use a single-stream variant of the model where the MRP is predicted
in the same stream as the offset, 4) use a version with no MRP at all. Results
are shown in Table 5.2. All results are provided as the average over three
generalization trials.

ABIP outperforms the ablations significantly, with three of the four failing
to achieve anything better than a partial grasp. When trained without the
locality loss on the offset-prediction head, by contrast, the model succeeded in
completing two full trajectories, but failed entirely at the third. However, the
case where it failed is informative: it was the setting with distractor objects.

In summary, ABIP has qualitatively better representations for generalization,
finds the object of interest more reliably, and is more capable of executing

74

ABIP No MRP Locality No Offset Locality Single Stream No MRP

Bottle to Sink 1.0± 0.0 0.0± 0.0 0.67± 0.57 0.0± 0.0 0.067± 0.12

Table 5.2: Ablation experiments on the generalization (out-of-distribution)
setting. ABIP provides better generalization from very few examples, including
robustness to unseen, out-of-distribution object poses and new objects.

trajectories to completion.

5.5.3 Sequential Tasks

We compared the performance of SANER and CLEAR in our continual learning
setting, where we train sequentially on 4 tasks. We evaluate only on the
generalization settings; results are given in Table 5.3. While CLEAR tends to
learn more via direct task training (∆R), it also exhibited significant forgetting,
particularly on the bottle tasks By contrast, SANER uniformly maintains what
it has learned, even exhibiting increased performance on the “Open Oven” task
after training on later tasks.

Additionally, whereas CLEAR observed some zero-shot forward transfer,
SANER experienced a considerable amount, on the “Close Oven” task in
particular. This likely contributes to SANER’s lower ∆R score, as it was
largely capable of solving the task prior to training on it. Due to SANER’s
ensemble nature, it is likely that the separation of representations enabled a
more seamless transfer than was possible with CLEAR’s single network.

Qualitatively, CLEAR’s behavior was somewhat erratic, tending to first
approach every object as if it were an oven. In one instance, it executed a
seamless oven opening trajectory against the side of a toaster, and in another
it grabbed the handle of the bottle and pulled it down in a similar way.
SANER’s behavior, while imperfect, is more consistent and interpretable. Since
SANER modularizes its behaviors, one can roughly know what SANER will
do by observing which module it activated. However, the generally lower
performance as compared to the single task setting indicates significant room
for improvement. We show an example failure in Fig. 5.3. Its attention shifts
first to the edge of the sink, then to the bottle itself as it attempts a grasp.
The grasp, however, fails, due to inaccurate timing of gripper closure. Similar
grasp-timing related issues were seen in many of the failures in other tasks as
well.

The issue may come down to the fact that CLEAR trains on effectively
seven times as much data as SANER. SANER only trains the active module’s

75

Single CLEAR SANERv2

Ri Ri, N ∆R ZSFT -F -I Ri, N ∆R ZSFT -F -I
Bot To Sink 1.0 0.067 0.87 — -0.80 -0.13 0.33 0.33 — 0 -0.67
Bot From Sink 0.47 0.13 0.067 0.20 -0.13 -0.33 0.13 -0.067 0.13 0.067 -0.40
Open Oven 0.87 0.33 0.20 0.0 0.13 -0.60 0.33 0.33 0.0 0.0 -0.53
Close Oven 1.0 0.87 0.73 0.13 0.0 0.13 0.87 0.20 0.67 0.0 -0.13
Average 0.84 0.35 0.47 0.11 -0.20 -0.30 0.42 0.20 0.26 0.017 -0.44

Table 5.3: Comparison of two methods for continual learning: CLEAR and
SANER, as demonstrated on our setting given only a handful of demonstrations,
across a number of different metrics. We have negated Forgetting (F) and
Intransigence (I) so that in all cases a larger number is preferred. "Ind."
indicates the task score when trained individually.

actor on the current batch of data, instead of an augmented batch, as SANER’s
critics and CLEAR both do. As such, we see that after training the first task,
SANER’s loss is twice CLEAR’s, giving further support to this hypothesis.
We will investigate solutions in future work. Overall, however, SANER has
demonstrated utility in the robotics setting, by being able to learn general
behavior from only two examples, with essentially no forgetting and a non-trivial
amount of forward transfer.

Figure 5.3: Visualization of the attention for the MRP for SANER as it evolves
over the episode, showing convergence to the object of interest. The MRP is
represented, where visible, with a blue sphere.

5.6 Summary
In order to enable robots to operate in the home setting, they need to be able
to learn continually from small amounts of data. To this end, we proposed
SANER, an ensemble method adapted to the robotics setting. We demonstrated,
on a set of 4 kitchen skills, utilizing a Stretch robot, that it is capable of
learning new skills and generalizing to unseen settings with forward transfer
and while mitigating the effects of catastrophic forgetting, out-performing a

76

strong baseline on these metrics. SANER is built on top of ABIP, which can
function as a simple building block capable of learning highly useful, very
generalizable interaction policies. Finally, we presented the fundamentals of
our environment design and a set of continual learning metrics simplified to be
viable for the robotics case. In conclusion, we demonstrate how we can deploy
continuous learning techniques like SANE and CLEAR [150] to a limited-data
robotics context.

77

Chapter 6

Extending SANER

6.1 Introduction
The ability to learn and adapt to changing circumstances over an extended
period of time is the most fundamental goal of continual learning. All of the
challenges focused on so far have been necessary sub-problems towards this end,
but the true measure of a continual learning algorithm is in its effectiveness
over time.

SANE has so far only been demonstrated on relatively short task sequences,
primarily to evaluate its ability to mitigate forgetting. In this chapter, we
extend it to a longer sequence to analyze its behavior as we scale up; this
allows us to more effectively analyze other attributes, such as intransigence
and forward transfer. We utilize a robotics simulator, RLBench [70], to learn
15 manipulation tasks, as shown in Figure 6.1.

The tasks, described further in Section 6.3, require grasping and manipu-
lating a wide variety of objects: umbrellas, shoes, drawers and more. However,
the tasks also share similarities, allowing for learning previous tasks to aid in
accomplishing later ones. While we did not select the sequence to be an explicit
curriculum, later tasks are generally more challenging, requiring a combination
of the skills learned in previous tasks. We refer to the task sequence used as
RB15.

Additionally, in all previous experiments, the agent has been able to under-
stand what is desired from visual observation alone. However, this will often
not be viable; instead, the user may want to specify what it is they need done
via natural language. We have thus included language descriptions, which give
the robot additional necessary information. Tasks were also selected to require
using this information: several are visually indistinguishable from each other

78

(1) Open: btm (2) Open: mid (3) Open: top (4) Close: btm

(5) Close: mid (6) Close: top (7) Put money (8) Take money

(9) Grill meat (10) Take meat (11) Put umbrella (12) Take umbrella

(13) Put TP on (14) Take TP off (15) Put shoe (16) Take shoe

Figure 6.1: Images on each of the 16 tasks, demonstrating the spectrum of
skills necessary: opening different drawers (tasks 1-3), closing them (tasks 6-9),
and placing objects and retrieving them. The box image was not used in initial
training, but used for ensemble-composition

(opening/closing different drawers from the same dresser).
As with SANER, we utilize imitation learning to efficiently learn the tasks.

We train on 10 demonstrations per task, and evaluate its generalization capa-
bilities on a set of 10 random variations.

Improving over Reservoir Sampling. During the course of this work, a
number of improvements to SANER have been made. The primary concept
that underlies the SANE approach is that if modules learn to specialize, they
can learn more efficiently than both 1) multi-task models, as different skills
compete for model weights, and 2) single-task models, where common structure
cannot be discovered. While multi-task learning has proven effective in some

79

areas [122, 141], it requires a vast quantity of data. Significant investment is
required to apply it to robotics, and even then the task diversity has been
limited [74].

One of the ways SANE-based models accomplish this goal is by the distri-
bution of data in the modules’ replay buffers. In previous chapters, a favorable
distribution was readily achieved, due to the limited number of tasks. However,
the probability of a new sample being added to a replay buffer using reservoir
sampling decreases over time as 1

/
t, and the ratio of samples for a given task

similarly decreases as new tasks are added, as 1
|T | . Both of these work against

us: the former means that new information will be slow to enter the buffer,
and the latter means little of it will be present in our batches. We present
Priority Reservoir Sampling (PRS) instead, which guarantees new samples
will be added immediately, but with limited disruption of prior samples. We
additionally present an analysis of the method in Appendix A.

6.2 Method
For all SANE-based methods, the more accurate each critic is, the better the
ensemble performs. We are thus constantly making improvements to that end.
The other changes for SANERv2 largely fall into two categories: 1) general
improvements, which we believe SANE-based methods in general would benefit
from; and 2) improvements specifically for the imitation learning from language
setting.

Impact of Environment. However, there is one aspect to using the envi-
ronment that catalyzed some of these changes. The workspace is relatively
large, and cannot be effectively clipped due to high utilization. However, due
to compute limitations, the number of points that can be reasonably used is
relatively small (3500).

The result is that the same point cloud can produce significantly different
results. This is a problem for the critic in particular. Some of the changes
made were to stabilize network predictions, while others were to make the
ensemble itself more robust.

From our experience with SANER and the initial RB15 experiments, we
have made several observations that we believe result in general improvements:

1. Replay Buffer Improvements. Both the actor and the critic must have
access to the information necessary. However, their goals are contrary:
non-relevant samples negatively impact the actor, but are necessary for
the critic. Additionally, both, at certain points, strongly benefit from

80

having a high density of new samples. We therefore introduce changes
that improve the circumstances of both networks.

2. Global state awareness. The ensemble, as a collective, can experience
two types of event based on information received from the environment:
that a node has been activated, and that drift has been detected.

Thus far in the development of SANER, modules have been treated
entirely separately. However, neither of these two events are truly isolated
to a particular node. As the ensemble together forms a unified agent,
if one experiences drift, they have all experienced drift. And if one is
activated, that means the others were not.

3. In drift, activation should not be overly optimistic. In SANER,
we increased the amount by which a node can be optimistic, to stabilize
training when a critic is most likely to be producing inaccurate values.
However, when drift has occurred, optimism is undesirable; it will cause
nodes to be created based on modules other than the one best-suited
for the new circumstance. Modules must, therefore, be unbiased during
determination of node duplication.

6.2.1 Replay Buffer Enhancements

Two changes were made to our handling of the replay buffer that dramatically
improve its behavior over long task sequences: 1) labeling samples in the replay
buffer with a "negative example" label, and 2) modifying the reservoir sampling
algorithm we use.

6.2.1.1 Negative Examples

Negative example labeling is used to extract non-negative entries from the
replay buffer for two purposes: 1) augmenting the actor batch, and 2) triggering
drift detection based on both current samples and non-negative samples from
the replay buffer.

Effectively, these examples are entries that are valid for use by the critic,
but invalid for use by the policy or to detect drift. Note that negative examples
are not used in any special way other than to filter them out in those specific
use cases.

Samples in the replay buffer are labeled as "negative" in the following
critical cases:

81

1. Samples from the source node get copied over to the new node as negative
examples.

2. When a node has been activated, but is currently marked "inactive", the
data it collects during training are marked as negative examples.

In SANER, when a module encountered drift, its policy would freeze.
SANERv2 no longer requires this; instead, modules are now marked "inactive"
instead of "frozen". Unlike frozen nodes, inactive nodes still train; however, they
do not train on the current batch being observed, only on batches composed of
non-negative samples from the buffer.

When a new node is created, all nodes are marked inactive. For the source
node, this is permanent; for all others it is temporary. This gives them an
opportunity, since they are in the presence of drift, to collect negative examples
to keep their critics accurate.

There is one other case that results in node inactivation: with probability
kdeact at the start of a training cycle, active node selection is based on the raw
value predicted by the critic, with no uncertainty estimation augmentation
at all. This is based on observation #3. If the current best module by raw
activation is not the same as the one by augmented activation, then one of
the two is possibly incorrect, and they both need to train on more data points.
Node duplication is unavailable during this time as well.

Additionally, since raw activation scores are used during evaluation, if
there’s a discrepancy during training, that increases the likelihood that the
wrong module will be used during evaluation.

6.2.1.2 Priority Reservoir Sampling (PRS)

Problem: new samples are insufficiently represented.. When a module
experiences drift, it is advantageous for both the source node and the new
node to store relevant samples immediately. If the new node does not, it
will learn inefficiently. If the source node does not (but the new node does),
then as the new node’s critic adjusts to the true value (which is low until the
actor improves), the source node will be activated too often; in the worst case,
another new node will be created and the process repeats.

One of the main causes of this problem is the use of reservoir sampling for
the replay buffer, which maintains samples with equal probability, regardless of
when they were collected [182]. With the current hyperparameters, if standard
reservoir sampling were used (and replay buffers inherit in full from the source,
as we did with SANER), the chance of any individual sample being added is

82

about 3% after two tasks. If a consistent buffer lineage is maintained, at the
end of the 15th experiment the probability is about 0.5%.

We propose a simple modification more suited for this use-case. Specifically,
we desire the diversity of data that comes from random replacement, as well as
reasonable maintenance of old samples, while also having a way to ensure that
new nodes are guaranteed to be significantly represented.

Proposed Solution. Our simple solution to this problem was to, when
drift is detected, remove fraction f samples from the buffer, uniformly. For
convenience, we refer to this variant as Priority Reservoir Sampling (PRS).
We model and analyze its behavior in a simple setting in Appendix A, but
essentially by removing this fraction of entries, we effectively create a partition
in the buffer. Newly added entries will continue replacing only each other until
they attain the reservoir value used by the remainder of the buffer. Thus we
get a minimum of fB new samples (for buffer size B), without disrupting old
entries, until equilibrium is reached. However, this comes at the cost of the
inexorable decay of old entries, as shown in Figure A.1.

For SANERv2, this is a beneficial trade-off. No individual buffer should,
if the ensemble is working as intended, need to maintain samples from the
entirety of training. However, it is likely there are future improvements to be
made, perhaps by utilizing the negative example concept.

In SANERv2, this removal occurs in both the source node and the new
node created when a duplication occurs, to make room for negative examples
(in the former case), and policy-relevant samples (in the latter case).

6.2.2 Module-Level Changes

Driven by observations 2 & 3, modules in the ensemble now have states that
can determine aspects of their behavior. In particular:

1. Activated nodes are more likely to be re-activated; as variance in
critic estimates is high, this ensures two or more nodes are not competing
without a clear winner, which distributes the training inefficiently between
them.

2. Nodes can be ineligible for duplication. This temporary state occurs
when the added activation factor fa exceeds some threshold (ka,max); or
in other words, the amount they were aided is too large for the activation
to have been in parity with the rest.

3. If a node encounters drift, but is ineligible for duplication, all
nodes have their uncertainty factors set to 0 to level the playing field.

83

Thus, often, duplication happens in a 2-step process: 1) drift is detected
and uncertainties are reset, 2) all nodes are eligible, so the next one to
activate is truly the best in the setting; either it will be used, or it will
detect drift and be duplicated.

4. After duplication, the new node’s activation is increased, and
the source node’s decreased; since they begin as clones, we want
the new one to succeed. Both upper bounds are also increased; drift is
known, so re-detecting it is unnecessary. Additionally, the new node’s
prototype is permitted to update with the main network, to establish a
better baseline for performance.

Pseudo-code for most of the updates to SANERv2 are summarized in
Algorithm 2.

6.2.3 Improvements for Imitation Learning

We additionally make the following improvements for the continual imitation
learning setting, with language:

1. Bootstrapping R. During training, SANER used a unroll length of 1
to optimize for randomness. However, that meant there was no ability
too bootstrap a full-episode value estimate for the critic, so activation,
particularly during evaluation, would be rather myopic. In SANERv2,
we use a rollout of length 2, and estimate bootstrapped value estimates.
decay = 1.

2. Rollout. Related to the above, we sample 2 steps from the environment,
and adjust sampling from the environment to unsure all points in the
trajectory are still selected with uniform distribution.

3. A new value estimate for the critic. We use softplus(B) = (a+ bx)
for the critic value estimate, as in SANER, but we changed the parameters
to have a thicker tail (B = 0.05, a = −58, b = −595).

4. Language. SANERv2 uses natural language to contextualize the task
for the agent. See below.

5. Uncertainty L1. We additionally switched from L2 to L1 for uncertainty.

84

Algorithm 2 SANERv2 Module: state update
Require: On self: UB factor self.fUB , Activation factor self.fa, Inactive self.inactive, temporarily inactive

self.temp_inactive
Require: Ensemble-level: event received, set of all nodes N
1: if event.node_activated then ▷ When any node is activated...
2: fa = fa + kact ▷ Active node gets act boost
3: else
4: fa = 0 ▷ Other nodes get reset
5: end if

6: if self.detected_drift then ▷ When drift is detected...
7: eligible_for_duplication = self.inactive or fa < ka,max

8: if eligible_for_duplication then ▷ If the node is eligible, duplicate it
9: self.duplicate()
10: self.fire(event.new_created)
11: else
12: for node ∈ {N} do ▷ Otherwise, level the field for all
13: node.fa = 0
14: node.fUB = 0
15: end for
16: self.reset_to_prototype() ▷ Reset actor & critic to prototype either way
17: end if
18: end if

19: if event.new_created then ▷ When any node is created...
20: if event.is_new then ▷ New node: UB & act boosts, knew replay removed
21: self.fa = fa + ka,new

22: self.fUB = fUB + kUB,new

23: self.remove_replay(knew)
24: else if event.duplicated then ▷ Source: -act, +UB boost, deactivated, kdupe replay removed
25: self.fa = fa − ka,dupe
26: self.fUB = fUB + kkUB,dupe

27: self.inactive = true
28: self.remove_replay(kdupe)
29: else ▷ Other nodes: UB boost, temporarily deactivated
30: self.fUB = fUB + kother,dupe
31: self.temp_inactive = true
32: end if
33: end if
34: fUB∗ = γUB

35: fa∗ = γa

Incorporating Language. We embedded the phrases (examples given in Ta-
ble 6.1) using chatGPT’s "text-embedding-ada-002" [1] model, which produces
an embedding size of 1536.

The attention module in the APN has been modified to output an embedding
with the language embedding dimension. During use, the dot product is taken
with the language embedding, to produce a language-conditioned attention
over the points in the point cloud. The intention is for this to align the point
cloud representation with the language embedding.

85

Algorithm 3 SANERv2 Ensemble: Node activation
Require: set of all nodes N , observation s
1: max_node, max_activation = ⊘, 0
2: deactivate_all = random.uniform() < kdeact ▷ Run raw-best node kdeact frac of time
3: train_policy = true
4: for node ∈ N do
5: raw_act, raw_unc = node.critic(s)
6: if deactivate_all then ▷ If all nodes are deactivated, use raw act alone
7: act_score = raw_act
8: train_policy = false
9: else if node.inactive or node.temp_inactive then ▷ If node is inactive, → fa = 0 & fUB = 0
10: act_score = raw_act + raw_unc
11: train_policy = false
12: else
13: act_score = (1+node.fa) raw_act + (1+node.func) raw_unc
14: end if
15: if act_score > max_activation then
16: max_activation,max_node = act_score, node
17: end if
18: end for
19: max_node.collect_data(train_policy)

"open the shoe box and take the shoes out"
"set the shoes down on the table"

Table 6.1: Example language examples for Task 15.

6.3 Experiments
The RLBench [70] robotics simulation environment provides 100 tasks across a
wide variety of interaction tasks, using the Franka Panda Arm. Additionally, it
provides the ability to generate trajectories and language descriptions for the
tasks. The number of language descriptions per task ranges between 3 and 8.

Tasks were selected to leverage visual similarity in the observations, to
verify the network’s successful use of leverage language, and for behavioral
similarity, to provide an opportunity for transfer. The selected tasks are shown
in Figure 6.1.

We generated 10 demonstrations per task, and evaluated over 10 episodes
with randomly seeded task settings. Tasks randomization varies by task, but
generally varies the position and orientation of furniture involved (e.g. drawer,
grill), and often the movement of the smaller objects (e.g. money, toilet paper).
Evaluation episodes end if: 1) the agent succeeds, 2) the max steps is reached,
or 3) the agent predicts an invalid action (e.g. would cause collision).

The difficulty of the task can vary by seed, so to make the results more
representative of a model’s true ability, we fixed the set of seeds used for
evaluation for the runs presented in this paper. Results are presented over 3

86

model training seeds.

Observation/Action Spaces. We used the default image size of 128x128,
collected across three cameras (front, overhead, wrist), as shown in Figure 6.2.
The environment also provides left and right views, but we found that including
these increased processing times and did not significantly impact performance.
These images were processed, as in SANER, into a point cloud. We used
random down-sampling to reduce the number of points to 3500. We did not
include a contextual point cloud (as we did in SANER), instead utilizing
language.

The action space is the same as in SANER, representing a position and
orientation for the gripper, plus gripper state and an estimate of the fraction
of the task completed.

Keypoints. As in SANER, we used keypoints for learning the trajectory.
These were automatically extracted from the full trajectory based on gripper
state change and joint acceleration, as well as the first and last timesteps. The
number of keypoints for all drawer and pick-and-place tasks is between 2 and 5.
For opening the box and removing/placing shoes, there are about 14 keypoints.
During evaluation, the robot was given a budget of train_keypoints ∗ 1.5
timesteps in which to complete the task.

SANERv2 Details. SANERv2 uses the same architecture and hyperparame-
ters as SANER, with the exception of the adjustments mentioned above. PRS
uses a removal fraction of 0.3 (for both source and new), and the chance of eval-
uating activation with all modules "temporarily deactivated" is kdeact = 0.25.

Baselines. We compare against CLEAR [150], which has consistently shown
the best performance across the baselines used in this work (see Chapter 2.6).
All hyperparameters are the same between the two methods; CLEAR uses a
replay buffer of 20,000, and SANERv2 has a maximum of 32 modules, each
with a replay buffer of size 625.

We also compare performance with CLEAR trained individually on each
task; this can alternatively be seen as a SANERv2 ensemble where the modules
are pre-created, 1 per task, and activation occurs perfectly.

6.3.1 Experiments

RB15.
The 15 tasks selected for this experiment are shown in Figure 6.1, and

include all tasks but the one in blue, which is used for the next experiment.
The first several tasks involve interacting with an articulated object (a chest of

87

Figure 6.2: Visualization of the three views used in this set of tasks: front, top,
and wrist-mounted.

drawers), the next several are pick-and-place tasks, and the last one combines
both skills.

We evaluated on all of the metrics presented in Chapter 2.3. Rewards
have been normalized by the maximum value observed for a task across all
algorithms; this effectively scales each task by difficulty.

RB15+1: Composable modules.
In this experiment, we selected one SANERv2 agent from RB15 and trained

it on a 16th task, shown in blue in Figure 6.1. We then took the module that
it used at the end of training, and added it to the ensembles from all runs
trained only on RB15. When SANERv2 agents are checkpointed, each module
is saved separately, and there is one metadata file that associates them into
the ensemble. Adding the module simply entails: copying the module folder
into the new ensemble, and updating the metadata file.

We evaluated final performance on all tasks, including the new one, to
evaluate how adding a new module impacts performance. In particular, this
experiment was looking to evaluate whether: 1) the existing modules, which
had seen no negative examples from the new task, would mis-activate, and 2)
whether the training dynamics of a SANERv2 ensemble create modules that
are only calibrated against each other.

We compare the SANERv2 ensembles that were augmented via composition
(SANERv2-Aug) to the original performance of the ensemble from which the
module was taken (SANERv2-S, 1 seed), as well as with CLEAR trained on
all 16 tasks.

It is worth noting that this is more of a probing experiment than a full
analysis. A more complete analysis would include composing in new modules
that had not been trained on the same set of tasks as the ensemble.

88

6.4 Results

Single CLEAR SANERv2

i Ri,0 Ri Ri, N ∆R ZC −FC -I Ri, N ∆R ZC −FC -I
0: Open, btm 0.00 0.62 0.90 0.71 - 0.19 0.29 0.62 0.62 - 0.00 0.00
1: Open, mid 0.00 0.70 0.70 0.41 0.00 0.30 0.00 0.30 0.67 0.00 -0.37 -0.41
2: Open, top 0.00 0.67 0.73 0.83 0.00 -0.10 0.07 0.63 0.80 0.00 -0.17 -0.03
3: Close, btm 0.10 0.83 0.80 0.27 0.40 0.03 -0.03 0.93 0.67 0.17 0.00 0.10
4: Close, mid 0.13 1.00 0.97 0.20 0.57 0.07 -0.03 0.97 0.07 0.77 0.00 -0.03
5: Close, top 0.13 1.00 1.00 0.10 0.73 0.03 0.00 0.90 0.30 0.57 -0.10 -0.10
6: Put money
in safe 0.00 0.61 0.44 0.56 0.00 -0.11 -0.17 0.39 0.44 0.00 -0.06 -0.22

7: Take money
from safe 0.00 0.71 0.33 0.67 0.00 -0.33 -0.38 0.67 0.43 0.00 0.24 -0.05

8: Put meat
on grill 0.00 0.97 0.90 0.63 0.00 0.27 -0.07 0.93 0.90 0.00 0.03 -0.03

9: Take meat
off grill 0.00 0.73 0.60 0.57 0.00 0.03 -0.13 0.87 0.83 0.00 0.03 0.13

10: Put umbrella
in box 0.00 0.33 0.00 0.33 0.00 -0.33 -0.33 0.00 0.33 0.00 -0.33 -0.33

11: Take umbrella
from box 0.03 0.37 0.60 0.47 0.30 -0.20 0.23 0.43 0.33 0.00 0.07 0.07

12: Put TP
on stand 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.33 0.33

13: Take TP
off stand 0.00 0.33 0.22 0.11 0.22 -0.11 -0.11 0.78 0.22 0.11 0.44 0.44

14: Open box &
Put shoes
in box

0.00 1.00 0.67 0.33 0.00 - -0.33 0.67 0.33 0.00 - -0.33

Avg 0.03 0.66 0.59 0.41 0.16 -0.02 -0.07 0.63 0.46 0.12 0.01 -0.03

Table 6.2: The per-task average results over 3 seeds, for CLEAR and SANERv2.
We have indicated via shading green any values that are > 0.2 larger than the
other’s. In addition to the standard metrics, we provide the average return
before and after training on each task.

Drawer Tasks (0-5) Other Tasks (6+)

CLEAR SANERv2 ∆ CLEAR SANERv2 ∆

Rfinal 0.85 0.72 -0.13 0.42 0.56 0.14
∆R 0.42 0.52 0.10 0.41 0.43 0.02
ZC 0.34 0.30 -0.04 0.06 0.01 -0.05
−FC 0.09 -0.11 -0.19 -0.10 0.10 0.19
−I 0.05 -0.08 -0.13 -0.14 0.00 0.14

Table 6.3: Results for the RB15 experiments, clustered over the first six tasks,
and over the remainder, to see the performance gap between the methods
in each case. The ∆ (S − C) is provided for convenience; green indicates
SANERv2’s results exceeded CLEAR’s, and red indicates the opposite.

89

6.4.1 RB15

We present the results across all tasks in Table 6.2. Overall we observe
that while CLEAR performs better in earlier tasks, it struggles by the end,
particularly on the interactions with the toilet paper. SANERv2, on the other
hand, performs less well in earlier tasks, but is capable of learning tasks as the
sequence proceeds.

We can further observe the models’ transfer abilities, by observing the
cases where each model beats the individually trained one (−I > 0): CLEAR
exceeds it on tasks (0, 2, 11), and SANERv2 exceeds it on (3, 9, 11, 12, 13),
indicating representations previously learned aided performance. While CLEAR
demonstrates zero-shot forward transfer (Zc) somewhat more consistently than
SANERv2, it only demonstrates it on one task that SANERv2 did not: taking
the umbrella from the box.

We split the task results into the first 6 tasks and the remainder of the
tasks, shown in Table 6.3, to more clearly highlight the difference. We believe
the effect is not incidental: CLEAR experiences positive backwards transfer
(−FC) on the earlier tasks, as it is continuing to sample from a replay buffer
that contains at least as many instances of the earlier tasks as the later ones.
This likely also contributes to its poorer performance on later tasks. SANERv2,
on the other hand, does not get the benefit of continuing to train on earlier
tasks, but is instead more able to focus on the challenging later ones.

6.4.2 RB15 +1

Task 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
SANERv2-Aug 0.81 0.41 0.77 1.00 0.97 0.93 0.33 0.62 0.87 0.80 0.00 0.40 0.33 0.33 0.83 0.78
SANERv2-Source 0.86 0.22 0.60 1.00 1.00 1.00 0.33 0.57 0.80 1.00 0.00 0.10 0.00 0.50 1.00 0.67
CLEAR (16 task) 0.67 0.83 0.73 0.90 0.87 1.00 0.72 0.67 0.90 0.70 0.33 0.87 0.00 0.33 0.17 0.11
Individual 0.62 0.79 0.67 0.83 1.00 1.00 0.61 0.71 0.97 0.73 0.33 0.37 0.00 0.50 0.50 0.11

Table 6.4: Final performance results for the 16 task sequence, where SANERv2-
Aug is the average over the 3 augmented ensembles, SANERv2-Source is the
single ensemble from which the node was extracted, and CLEAR (16 task)
and Individual are for comparison, also over 3 seeds. In particular, note that
though the ensembles in SANERv2-Aug were not trained on task 15, they still
achieve high scores.

We present our results on the composition experiment in Table 6.4. We
observe that the augmented ensemble maintains its performance on earlier
tasks, and gains the skill present in the new module, even slightly exceeding

90

performance on the ensemble from which it was drawn, and significantly
exceeding both CLEAR and the individually trained model.

One of the motivations for this experiment was to begin to answer the
question of whether modules in the ensemble are merely calibrated to perform
well against each other, but the scores estimated by the critic are not usable
outside of the ensemble in which it was created. We have found evidence
that this is not the case, suggesting SANERv2 is suited to being used for a
composable library of skills.

6.5 Summary
In this chapter, we present SANERv2, a modification of SANER that performs
well on longer sequences of tasks, showing increased performance on later tasks
over both CLEAR and individual-task modules, as demonstrated on a sequence
of 15 robotics tasks in simulation.

A key factor in SANERv2’s success is that it is designed to partition the
input space, creating more specialized modules that work well in particular
domains. This can be contrasted with CLEAR, which is designed to have an
even ratio of samples across all tasks. We have demonstrated experimentally
that an even distribution results in a model that struggles to learn later tasks
in a long sequence.

One of the key insights during development of SANERv2 is that the replay
buffer should be modified to take a more active approach to ensuring it contains
necessary samples. We did this in two ways: 1) by introducing Priority Reservoir
Sampling, and 2) by labeling samples as "negative", the actor can continue to
be trained on replay buffer samples in perpetuity.

Additionally, we experimented with transferring a module into a different
ensemble, which had not been trained on the skill for which the module was
proficient. We demonstrate that the augmented ensemble was capable of the
new skill, and had not lost capability on any existing behaviors.

91

Chapter 7

Conclusion

The vision presented in this thesis is that of an adaptable home robot, capable
of learning from both the needs of its users and the environment it lives in.
Such a robot would need to learn in a variety of ways, including through its
own experiences and through examples provided by others.

Capabilities. In this thesis, I approach this problem through the lens of
continual learning, which aims to solve the difficulties that neural networks
encounter when learning over time, from shifting data. An ideal continual
learner will be capable of: leveraging prior experience, continuing to learn well
over time, and not forgetting previous experiences. I additionally aimed to
accomplish two other goals: being able to leverage language, and for agents to
be able to share learned skills.

Settings. This work explores the problem specifically in two settings: continual
reinforcement learning, where the agent learns from its own experiences, and
continual imitation learning, where the agent learns from demonstrations.
Experiments were conducted across both simulation environments, and with
real robots.

Contributions: Accessibility. A number of barriers have made continual
learning inaccessible, including: inefficient metrics, computationally expensive
benchmarks, and closed-source baselines. In this work I have developed a
set of more efficient metrics for robotics, presented in Chapter 2, as well as
work establishing a faster set of benchmarks, and open source baselines (in
Chapter 3.

Contributions: SANE. Leveraging these improvements to accessibility, this
thesis presents a modular method, SANE, that is capable of learning specialized
modules, in a dynamic ensemble. In Chapter 4, SANE was demonstrated to
mitigate forgetting on several RL environments. In Chapter 5, SANER was

92

demonstrated to generalize to significant variation in setting, on a real robot.
Finally, in Chapter 6, SANERv2 was evaluated on an extended series of 15
tasks, using language. SANERv2 proved capable of not only being able to
continue to learn new skills, which the baseline struggled with, but to improve
on the performance of an individually trained model, demonstrating forward
transfer.

Additionally, a pilot experiment showed that a module from one ensemble
could be readily transplanted into another; prior skills were maintained, and a
new task, unseen to the ensemble, was successfully accomplished.

Diversity of Setting. This thesis utilizes the modes of reinforcement learning
and imitation learning to advance the field of continual policy learning, but
the question bears asking: how extensible is this work to other settings?

SANE can, in principle, be applied to anything where a score (i.e. return,
R) can be defined, measuring the agent’s success. This is easiest to see in
settings where there is a source of truth, as the reward from the environment is
in RL, or the demonstrations are in IL. However, it could also be improving an
internal metric, as in self-supervised learning: for example, the return could be
high if the agent correctly predicted some subsequent observation, as in [184].

There are many possibilities for this direction, and many challenges as well,
but a composable skill library comprised of independent modules seems a a
promising direction.

93

Bibliography

[1] Text embedding by text-embedding-ada-002. https://api.openai.com/v1/
embeddings, 2023. 85

[2] W. C. Abraham and A. Robins. Memory retention–the synaptic stability versus
plasticity dilemma. Trends in neurosciences, 28(2):73–78, 2005. 43

[3] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn,
K. Gopalakrishnan, K. Hausman, A. Herzog, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691,
2022. 64

[4] R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars. Memory
aware synapses: Learning what (not) to forget. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 139–154, 2018. 44

[5] R. Aljundi, E. Belilovsky, T. Tuytelaars, L. Charlin, M. Caccia, M. Lin, and
L. Page-Caccia. Online continual learning with maximal interfered retrieval. In
Advances in Neural Information Processing Systems (NeurIPS), pages 11849–
11860, 2019. 44

[6] R. Aljundi, P. Chakravarty, and T. Tuytelaars. Expert gate: Lifelong learning
with a network of experts. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3366–3375, 2017. 45

[7] R. Aljundi, K. Kelchtermans, and T. Tuytelaars. Task-free continual learning.
In Proceedings of the CVPR Workshop on Continual Learning in Computer
Vision, pages 11254–11263, 2019. 42, 44

[8] O. Anschel, N. Baram, and N. Shimkin. Averaged-dqn: Variance reduction and
stabilization for deep reinforcement learning. In International conference on
machine learning, pages 176–185. PMLR, 2017. 48

[9] A. Ayub and C. Fendley. Few-shot continual active learning by a robot. arXiv
preprint arXiv:2210.04137, 2022. 63

94

https://api.openai.com/v1/embeddings
https://api.openai.com/v1/embeddings

[10] A. Ayub and A. R. Wagner. Tell me what this is: Few-shot incremental object
learning by a robot. In 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 8344–8350. IEEE, 2020. 63

[11] B. Bagus, A. Gepperth, and T. Lesort. Beyond supervised continual learning:
a review, 2022. 63

[12] S. Bahl, A. Gupta, and D. Pathak. Human-to-robot imitation in the wild, 2022.
73

[13] D. Batra, A. X. Chang, S. Chernova, A. J. Davison, J. Deng, V. Koltun,
S. Levine, J. Malik, I. Mordatch, R. Mottaghi, et al. Rearrangement: A
challenge for embodied ai. arXiv preprint arXiv:2011.01975, 2020. 19

[14] C. Beattie, J. Z. Leibo, D. Teplyashin, T. Ward, M. Wainwright, H. Küttler,
A. Lefrancq, S. Green, V. Valdés, A. Sadik, et al. Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016. 19

[15] S. Behbahani, S. R. Chhatpar, S. Zahrai, V. Duggal, and M. Sukhwani. Episodic
memory model for learning robotic manipulation tasks. CoRR, abs/2104.10218,
2021. 63

[16] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial
Intelligence Research (JAIR), 47:253–279, 2013. 4, 19, 20, 21

[17] E. Ben-Iwhiwhu, S. Nath, P. K. Pilly, S. Kolouri, and A. Soltoggio. Lifelong
reinforcement learning with modulating masks, 2022. 64

[18] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016. 18

[19] S. Brodeur, E. Perez, A. Anand, F. Golemo, L. Celotti, F. Strub, J. Rouat,
H. Larochelle, and A. Courville. Home: A household multimodal environment.
arXiv preprint arXiv:1711.11017, 2017. 19

[20] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakr-
ishnan, K. Hausman, A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for
real-world control at scale. arXiv preprint arXiv:2212.06817, 2022. 64

[21] E. Brunskill and L. Li. Pac-inspired option discovery in lifelong reinforcement
learning. In International conference on machine learning, pages 316–324.
PMLR, 2014. 45

95

[22] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil. Model compression. In
Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 535–541, 2006. 44

[23] L. Caccia, E. Belilovsky, M. Caccia, and J. Pineau. Online learned continual
compression with adaptive quantization modules. In International Conference
on Machine Learning, pages 1240–1250. PMLR, 2020. 44

[24] H. Caselles-Dupré, M. Garcia-Ortiz, and D. Filliat. S-trigger: Continual state
representation learning via self-triggered generative replay. In 2021 International
Joint Conference on Neural Networks (IJCNN), pages 1–7. IEEE, 2021. 44

[25] A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In
Proceedings of the European Conference on Computer Vision (ECCV), pages
532–547, 2018. 2, 9, 10, 14, 44, 73

[26] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny. Efficient lifelong
learning with a-gem. In International Conference on Learning Representations,
2018. 44

[27] J. Chen, T. Nguyen, D. Gorur, and A. Chaudhry. Is forgetting less a good
inductive bias for forward transfer?, 2023. 11

[28] L. Chen, S. Jayanthi, R. Paleja, D. Martin, V. Zakharov, and M. Gombolay.
Scalable lifelong learning from heterogeneous demonstrations. IROS Workshop
on Lifelong Robot Learning, 2022. 63

[29] B. Cheung, A. Terekhov, Y. Chen, P. Agrawal, and B. Olshausen. Superposition
of many models into one. Advances in neural information processing systems,
32, 2019. 45

[30] M. Chevalier-Boisvert, L. Willems, and S. Pal. Minimalistic gridworld environ-
ment for openai gym. https://github.com/maximecb/gym-minigrid, 2018.
19

[31] K. Cobbe, C. Hesse, J. Hilton, and J. Schulman. Leveraging procedural
generation to benchmark reinforcement learning. In International conference
on machine learning, pages 2048–2056. PMLR, 2020. 4, 5, 18, 19, 20, 22, 38,
43, 51

[32] C. Cortes, X. Gonzalvo, V. Kuznetsov, M. Mohri, and S. Yang. Adanet:
Adaptive structural learning of artificial neural networks. In International
conference on machine learning, pages 874–883. PMLR, 2017. 44

96

https://github.com/maximecb/gym-minigrid

[33] M. Crawshaw. Multi-task learning with deep neural networks: A survey. CoRR,
abs/2009.09796, 2020. 1

[34] P. Dayan and G. E. Hinton. Feudal reinforcement learning. In Advances in
Neural Information Processing Systems 5, [NIPS Conference], page 271–278,
San Francisco, CA, USA, 1992. Morgan Kaufmann Publishers Inc. 45

[35] C. Devin, A. Gupta, T. Darrell, P. Abbeel, and S. Levine. Learning mod-
ular neural network policies for multi-task and multi-robot transfer. CoRR,
abs/1609.07088, 2016. 63

[36] T. G. Dietterich. Hierarchical reinforcement learning with the maxq value
function decomposition. Journal of artificial intelligence research, 13:227–303,
2000. 45

[37] T. J. Draelos, N. E. Miner, C. C. Lamb, J. A. Cox, C. M. Vineyard, K. D.
Carlson, W. M. Severa, C. D. James, and J. B. Aimone. Neurogenesis deep
learning: Extending deep networks to accommodate new classes. In 2017
International Joint Conference on Neural Networks (IJCNN), pages 526–533.
IEEE, 2017. 44

[38] K. Ehsani, W. Han, A. Herrasti, E. VanderBilt, L. Weihs, E. Kolve, A. Kemb-
havi, and R. Mottaghi. Manipulathor: A framework for visual object manipu-
lation. In CVPR, 2021. 19

[39] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron,
V. Firoiu, T. Harley, I. Dunning, et al. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. In International Conference
on Machine Learning, pages 1407–1416. PMLR, 2018. 32, 33, 50, 72

[40] B. Eysenbach, S. Gu, J. Ibarz, and S. Levine. Leave no trace: Learning to reset
for safe and autonomous reinforcement learning. CoRR, abs/1711.06782, 2017.
61

[41] J. Farebrother, M. C. Machado, and M. Bowling. Generalization and regular-
ization in dqn. arXiv preprint arXiv:1810.00123, 2018. 22

[42] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A. A. Rusu, A. Pritzel,
and D. Wierstra. Pathnet: Evolution channels gradient descent in super neural
networks. arXiv preprint arXiv:1701.08734, 2017. 45

[43] R. M. French. Pseudo-recurrent connectionist networks: An approach to
the’sensitivity-stability’dilemma. Connection science, 9(4):353–380, 1997. 44

[44] R. M. French. Catastrophic forgetting in connectionist networks. Trends in
cognitive sciences, 3(4):128–135, 1999. 42, 43

97

[45] S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation error
in actor-critic methods. In International conference on machine learning, pages
1587–1596. PMLR, 2018. 45, 48

[46] T. Furlanello, J. Zhao, A. M. Saxe, L. Itti, and B. S. Tjan. Active long term
memory networks. arXiv preprint arXiv:1606.02355, 2016. 44

[47] C. Gan, J. Schwartz, S. Alter, D. Mrowca, M. Schrimpf, J. Traer, J. D.
Freitas, J. Kubilius, A. Bhandwaldar, N. Haber, M. Sano, K. Kim, E. Wang,
M. Lingelbach, A. Curtis, K. T. Feigelis, D. Bear, D. Gutfreund, D. D. Cox,
A. Torralba, J. J. DiCarlo, J. B. Tenenbaum, J. Mcdermott, and D. L. Yamins.
ThreeDWorld: A platform for interactive multi-modal physical simulation. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 1), 2021. 19

[48] C. Gao, H. Gao, S. Guo, T. Zhang, and F. Chen. CRIL: continual robot
imitation learning via generative and prediction model. CoRR, abs/2106.09422,
2021. 63

[49] X. Gao, R. Gong, T. Shu, X. Xie, S. Wang, and S.-C. Zhu. Vrkitchen: an
interactive 3d virtual environment for task-oriented learning. arXiv preprint
arXiv:1903.05757, 2019. 19

[50] J.-B. Gaya, T. Doan, L. Caccia, L. Soulier, L. Denoyer, and R. Raileanu.
Building a subspace of policies for scalable continual learning, 2022. 63

[51] A. Gepperth and C. Karaoguz. A bio-inspired incremental learning architecture
for applied perceptual problems. Cognitive Computation, 8(5):924–934, 2016.
44

[52] D. Ghosh, J. Rahme, A. Kumar, A. Zhang, R. P. Adams, and S. Levine.
Why generalization in rl is difficult: Epistemic pomdps and implicit partial
observability. Advances in Neural Information Processing Systems, 34, 2021. 7

[53] A. Goyal, S. Sodhani, J. Binas, X. B. Peng, S. Levine, and Y. Bengio. Re-
inforcement learning with competitive ensembles of information-constrained
primitives. In International Conference on Learning Representations, 2019. 45,
46

[54] S. Grossberg. How does a brain build a cognitive code? In Studies of mind
and brain, pages 1–52. Springer, 1982. 43

[55] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning.
In Conference on Robot Learning, pages 1025–1037. PMLR, 2020. 19

98

[56] W. H. Guss, C. Codel, K. Hofmann, B. Houghton, N. Kuno, S. Milani, S. Mo-
hanty, D. P. Liebana, R. Salakhutdinov, N. Topin, et al. The minerl 2019
competition on sample efficient reinforcement learning using human priors.
arXiv preprint arXiv:1904.10079, 2019. 19

[57] A. Guzman-Rivera, D. Batra, and P. Kohli. Multiple choice learning: Learn-
ing to produce multiple structured outputs. Advances in neural information
processing systems, 25, 2012. 45

[58] A. Hallak, D. Di Castro, and S. Mannor. Contextual markov decision processes.
arXiv preprint arXiv:1502.02259, 2015. 7

[59] H. v. Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double
q-learning. In Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, AAAI’16, page 2094–2100. AAAI Press, 2016. 45

[60] X. He and H. Jaeger. Overcoming catastrophic interference using conceptor-
aided backpropagation. In International Conference on Learning Representa-
tions, 2018. 44

[61] G. Hinton, O. Vinyals, J. Dean, et al. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2(7), 2015. 44

[62] Y.-C. Hsu, Y.-C. Liu, A. Ramasamy, and Z. Kira. Re-evaluating continual
learning scenarios: A categorization and case for strong baselines. arXiv preprint
arXiv:1810.12488, 2018. 17

[63] A. Hundt, B. Killeen, N. Greene, H. Wu, H. Kwon, C. Paxton, and G. D. Hager.
“good robot!”: Efficient reinforcement learning for multi-step visual tasks with
sim to real transfer. IEEE Robotics and Automation Letters, 5(4):6724–6731,
2020. 64

[64] D. Q. Huynh. Metrics for 3d rotations: Comparison and analysis. Journal of
Mathematical Imaging and Vision, 35:155–164, 2009. 67

[65] M. Igl, G. Farquhar, J. Luketina, W. Boehmer, and S. Whiteson. Transient non-
stationarity and generalisation in deep reinforcement learning. In International
Conference on Learning Representations, 2021. 22, 37

[66] D. Isele and A. Cosgun. Selective experience replay for lifelong learning. In
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence
and Thirtieth Innovative Applications of Artificial Intelligence Conference and
Eighth AAAI Symposium on Educational Advances in Artificial Intelligence,
AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018. 44

99

[67] P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. G. Wilson. Av-
eraging weights leads to wider optima and better generalization. In 34th
Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018, pages
876–885. Association For Uncertainty in Artificial Intelligence (AUAI), 2018.
48

[68] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures
of local experts. Neural computation, 3(1):79–87, 1991. 46

[69] H. Jaeger. Using conceptors to manage neural long-term memories for temporal
patterns. The Journal of Machine Learning Research, 18(1):387–429, 2017. 44

[70] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning
benchmark & learning environment. IEEE Robotics and Automation Letters,
5(2):3019–3026, 2020. 4, 19, 78, 86

[71] S. James, K. Wada, T. Laidlow, and A. J. Davison. Coarse-to-fine q-attention:
Efficient learning for visual robotic manipulation via discretisation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 13739–13748, 2022. 61, 64

[72] K. Javed and M. White. Meta-learning representations for continual learning.
In Advances in Neural Information Processing Systems (NeurIPS), pages 1820–
1830, 2019. 17

[73] A. Juliani, A. Khalifa, V.-P. Berges, J. Harper, E. Teng, H. Henry, A. Crespi,
J. Togelius, and D. Lange. Obstacle tower: A generalization challenge in vision,
control, and planning. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, 2019. 19

[74] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski, C. Finn,
S. Levine, and K. Hausman. Mt-opt: Continuous multi-task robotic reinforce-
ment learning at scale. CoRR, abs/2104.08212, 2021. 80

[75] N. Kamra, U. Gupta, and Y. Liu. Deep generative dual memory network for
continual learning. arXiv preprint arXiv:1710.10368, 2017. 44

[76] H. Kannan, D. Hafner, C. Finn, and D. Erhan. Robodesk: A multi-task
reinforcement learning benchmark. https://github.com/google-research/
robodesk, 2021. 19

[77] C. Kaplanis, M. Shanahan, and C. Clopath. Policy consolidation for continual
reinforcement learning. In Proceedings of the International Conference on
Machine learning (ICML), pages 3242–3251, 2019. 44

100

https://github.com/google-research/robodesk
https://github.com/google-research/robodesk

[78] K. Kase, C. Paxton, H. Mazhar, T. Ogata, and D. Fox. Transferable task
execution from pixels through deep planning domain learning. In 2020 IEEE
International Conference on Robotics and Automation (ICRA), pages 10459–
10465. IEEE, 2020. 63

[79] R. Kemker and C. Kanan. Fearnet: Brain-inspired model for incremental
learning. In International Conference on Learning Representations, 2018. 44

[80] R. Kemker, M. McClure, A. Abitino, T. Hayes, and C. Kanan. Measuring
catastrophic forgetting in neural networks. In Proceedings of the Conference on
Artificial Intelligence (AAAI), 2018. 43

[81] C. C. Kemp, A. Edsinger, H. M. Clever, and B. Matulevich. The design
of stretch: A compact, lightweight mobile manipulator for indoor human
environments. CoRR, abs/2109.10892, 2021. 4, 71

[82] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski. Vizdoom:
A doom-based ai research platform for visual reinforcement learning. In 2016
IEEE Conference on Computational Intelligence and Games (CIG), pages 1–8.
IEEE, 2016. 19

[83] S. Kessler, J. Parker-Holder, P. Ball, S. Zohren, and S. J. Roberts. Same state,
different task: Continual reinforcement learning without interference. arXiv
preprint arXiv:2106.02940, 2021. 45

[84] K. Khetarpal, S. Sodhani, S. Chandar, and D. Precup. Environments for
lifelong reinforcement learning. arXiv preprint arXiv:1811.10732, 2018. 18

[85] R. Kirk, A. Zhang, E. Grefenstette, and T. Rocktäschel. A survey of zero-shot
generalisation in deep reinforcement learning. Journal of Artificial Intelligence
Research, 76:201–264, 2023. 7, 64

[86] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu,
K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the National Academy
of Sciences of the United States of America, 114(13):3521–3526, 2017. 2, 4, 7,
8, 14, 15, 18, 20, 21, 22, 42, 44, 62, 63, 73

[87] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti, D. Gordon,
Y. Zhu, A. Gupta, and A. Farhadi. Ai2-thor: An interactive 3d environment
for visual ai. arXiv preprint arXiv:1712.05474, 2017. 18, 19, 20, 25

[88] I. Kostrikov. Pytorch implementations of reinforcement learning algorithms.
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail, 2018. 32

101

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail

[89] H. Küttler, N. Nardelli, T. Lavril, M. Selvatici, V. Sivakumar, T. Rocktäschel,
and E. Grefenstette. TorchBeast: A PyTorch Platform for Distributed RL.
arXiv preprint arXiv:1910.03552, 2019. 33, 36

[90] H. Küttler, N. Nardelli, A. H. Miller, R. Raileanu, M. Selvatici, E. Grefenstette,
and T. Rocktäschel. The nethack learning environment. In Proceedings of the
Conference on Neural Information Processing Systems (NeurIPS), 2020. 18, 19,
20, 23

[91] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable pre-
dictive uncertainty estimation using deep ensembles. Advances in neural
information processing systems, 30, 2017. 45

[92] M. D. Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. G.
Slabaugh, and T. Tuytelaars. Continual learning: A comparative study on how
to defy forgetting in classification tasks. CoRR, abs/1909.08383, 2019. 63

[93] K. Lee, C. Hwang, K. Park, and J. Shin. Confident multiple choice learning.
In International Conference on Machine Learning, pages 2014–2023. PMLR,
2017. 45

[94] S.-W. Lee, J.-H. Kim, J. Jun, J.-W. Ha, and B.-T. Zhang. Overcoming
catastrophic forgetting by incremental moment matching. Advances in neural
information processing systems, 30, 2017. 44

[95] S. Lee, J. Ha, D. Zhang, and G. Kim. A neural dirichlet process mixture
model for task-free continual learning. In International Conference on Learning
Representations, 2019. 43, 45

[96] S. Lee, S. Purushwalkam Shiva Prakash, M. Cogswell, V. Ranjan, D. Crandall,
and D. Batra. Stochastic multiple choice learning for training diverse deep
ensembles. Advances in Neural Information Processing Systems, 29, 2016. 45

[97] Y. Lee, E. S. Hu, and J. J. Lim. IKEA furniture assembly environment for
long-horizon complex manipulation tasks. In IEEE International Conference
on Robotics and Automation (ICRA), 2021. 19

[98] T. Lesort, H. Caselles-Dupré, M. Garcia-Ortiz, A. Stoian, and D. Filliat. Gener-
ative models from the perspective of continual learning. In 2019 International
Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2019. 44

[99] T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, and N. Díaz-
Rodríguez. Continual learning for robotics: Definition, framework, learning
strategies, opportunities and challenges. Information Fusion, 58:52–68, 2020.
15, 18, 43, 61, 63

102

[100] S. Lewandowsky and S.-C. Li. Catastrophic interference in neural networks:
Causes, solutions, and data. In Interference and inhibition in cognition, pages
329–361. Elsevier, 1995. 43

[101] Z. Li and D. Hoiem. Learning without forgetting. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 40(12):2935–2947, 2017. 44

[102] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra. Continuous control with deep reinforcement learning. In
International Conference on Learning Representations, 2016. 48

[103] V. Lomonaco, K. Desai, E. Culurciello, and D. Maltoni. Continual reinforcement
learning in 3D non-stationary environments. In Proceedings of the CVPR
Workshop on Continual Learning in Computer Vision, pages 248–249, 2020. 18,
43

[104] V. Lomonaco and D. Maltoni. Core50: a new dataset and benchmark for
continuous object recognition. In Conference on Robot Learning, pages 17–26.
PMLR, 2017. 63

[105] D. Lopez-Paz and M. Ranzato. Gradient episodic memory for continual learning.
In Advances in Neural Information Processing Systems (NIPS), pages 6467–
6476, 2017. 9, 11, 12, 13, 14, 17, 44, 63

[106] N. Lucchesi, A. Carta, and V. Lomonaco. Avalanche rl: a continual reinforce-
ment learning library. arXiv preprint arXiv:2202.13657, 2022. 18

[107] M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness, M. Hausknecht, and
M. Bowling. Revisiting the arcade learning environment: Evaluation protocols
and open problems for general agents. Journal of Artificial Intelligence Research,
61:523–562, 2018. 22, 36

[108] Z. Mai, R. Li, J. Jeong, D. Quispe, H. Kim, and S. Sanner. Online con-
tinual learning in image classification: An empirical survey. arXiv preprint
arXiv:2101.10423, 2021. 17

[109] A. Mallya, D. Davis, and S. Lazebnik. Piggyback: Adapting a single network
to multiple tasks by learning to mask weights. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 67–82, 2018. 44

[110] A. Mallya and S. Lazebnik. Packnet: Adding multiple tasks to a single network
by iterative pruning. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 7765–7773, 2018. 44

103

[111] H. Mania, A. Guy, and B. Recht. Simple random search of static linear policies is
competitive for reinforcement learning. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems, pages 1805–1814, 2018.
18

[112] M. McCloskey and N. J. Cohen. Catastrophic interference in connectionist
networks: The sequential learning problem. In Psychology of learning and
motivation, volume 24, pages 109–165. Elsevier, 1989. 2, 9, 42, 43, 45

[113] J. A. Mendez, H. van Seijen, and E. Eaton. Modular lifelong reinforcement
learning via neural composition, 2022. 64

[114] M. Mermillod, A. Bugaiska, and P. BONIN. The stability-plasticity dilemma:
investigating the continuum from catastrophic forgetting to age-limited learning
effects. Frontiers in Psychology, 4:504, 2013. 20, 43, 63

[115] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller. Playing atari with deep reinforcement learning. In Proceedings
of the NIPS Workshop on Deep Learning, 2013. 5

[116] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.
48, 51

[117] K. Mo, L. J. Guibas, M. Mukadam, A. Gupta, and S. Tulsiani. Where2act: From
pixels to actions for articulated 3d objects. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 6813–6823, 2021. 61, 64

[118] M. Mundt, Y. W. Hong, I. Pliushch, and V. Ramesh. A wholistic view of
continual learning with deep neural networks: Forgotten lessons and the bridge
to active and open world learning. arXiv preprint arXiv:2009.01797, 2020. 15,
18, 43

[119] R. Newbury, M. Gu, L. Chumbley, A. Mousavian, C. Eppner, J. Leitner,
J. Bohg, A. Morales, T. Asfour, D. Kragic, et al. Deep learning approaches to
grasp synthesis: A review. arXiv preprint arXiv:2207.02556, 2022. 63

[120] F. Normandin, F. Golemo, O. Ostapenko, P. Rodriguez, M. D. Riemer, J. Hur-
tado, K. Khetarpal, D. Zhao, R. Lindeborg, T. Lesort, et al. Sequoia: A
software framework to unify continual learning research. arXiv preprint
arXiv:2108.01005, 2021. 18

[121] OpenAI. Robogym. https://github.com/openai/robogym, 2020. 19

[122] OpenAI. Gpt-4 technical report, 2023. 80

104

https://github.com/openai/robogym

[123] I. Osband, Y. Doron, M. Hessel, J. Aslanides, E. Sezener, A. Saraiva, K. McK-
inney, T. Lattimore, C. Szepesvári, S. Singh, B. V. Roy, R. S. Sutton, D. Sil-
ver, and H. van Hasselt. Behaviour suite for reinforcement learning. CoRR,
abs/1908.03568, 2019. 18

[124] O. Ostapenko, P. Rodriguez, M. Caccia, and L. Charlin. Continual learning via
local module composition. Advances in Neural Information Processing Systems,
34, 2021. 45

[125] G. Parascandolo, N. Kilbertus, M. Rojas-Carulla, and B. Schölkopf. Learning
independent causal mechanisms. In International Conference on Machine
Learning, pages 4036–4044. PMLR, 2018. 45

[126] P. Parashar, J. Vakil, S. Powers, and C. Paxton. Spatial-language attention
policies for efficient robot learning, 2023. 73

[127] J. Pari, N. M. Shafiullah, S. P. Arunachalam, and L. Pinto. The surprising effec-
tiveness of representation learning for visual imitation. CoRR, abs/2112.01511,
2021. 61, 73

[128] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 113:54–71,
2019. 15, 18, 43, 63

[129] G. I. Parisi, J. Tani, C. Weber, and S. Wermter. Lifelong learning of spatiotem-
poral representations with dual-memory recurrent self-organization. Frontiers
in neurorobotics, page 78, 2018. 44

[130] D. Park, S. Hong, B. Han, and K. M. Lee. Continual learning by asymmetric loss
approximation with single-side overestimation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 3335–3344, 2019. 44

[131] D. Pathak, D. Gandhi, and A. Gupta. Self-Supervised exploration via dis-
agreement. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the
International Conference on Machine Learning (ICML), 2019. 45

[132] X. B. Peng, M. Chang, G. Zhang, P. Abbeel, and S. Levine. MCP: learning
composable hierarchical control with multiplicative compositional policies.
CoRR, abs/1905.09808, 2019. 63

[133] M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker, G. Powell,
J. Schneider, J. Tobin, M. Chociej, P. Welinder, V. Kumar, and W. Zaremba.
Multi-goal reinforcement learning: Challenging robotics environments and
request for research. CoRR, abs/1802.09464, 2018. 19

105

[134] E. A. Platanios, A. Saparov, and T. Mitchell. Jelly bean world: A testbed for
never-ending learning. In International Conference on Learning Representations,
2020. 18

[135] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by
averaging. SIAM journal on control and optimization, 30(4):838–855, 1992. 48

[136] S. Powers, A. Gupta, and C. Paxton. Evaluating continual learning on a home
robot, 2023. 69, 71

[137] S. Powers, E. Xing, and A. Gupta. Self-activating neural ensembles for continual
reinforcement learning. In S. Chandar, R. Pascanu, and D. Precup, editors,
Proceedings of The 1st Conference on Lifelong Learning Agents, volume 199 of
Proceedings of Machine Learning Research, pages 683–704. PMLR, 22–24 Aug
2022. 53

[138] S. Powers, E. Xing, E. Kolve, R. Mottaghi, and A. Gupta. Cora: Benchmarks,
baselines, and metrics as a platform for continual reinforcement learning agents.
In S. Chandar, R. Pascanu, and D. Precup, editors, Proceedings of The 1st
Conference on Lifelong Learning Agents, volume 199 of Proceedings of Machine
Learning Research, pages 705–743. PMLR, 22–24 Aug 2022. 34, 63

[139] X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler, and A. Torralba. Vir-
tualhome: Simulating household activities via programs. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages
8494–8502, 2018. 19

[140] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. CoRR, abs/1706.02413, 2017.
61, 64, 66

[141] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning transfer-
able visual models from natural language supervision. CoRR, abs/2103.00020,
2021. 80

[142] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and
S. Levine. Learning Complex Dexterous Manipulation with Deep Reinforcement
Learning and Demonstrations. In Proceedings of Robotics: Science and Systems
(RSS), 2018. 19

[143] R. Ratcliff. Connectionist models of recognition memory: Constraints imposed
by learning and forgetting functions. Psychological Review, 97(2):285–308, 1990.
2, 9, 42, 43, 63

106

[144] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. icarl: Incremental
classifier and representation learning. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, pages 2001–2010, 2017. 44

[145] M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, and G. Tesauro.
Learning to learn without forgetting by maximizing transfer and minimizing
interference. In International Conference on Learning Representations, 2018.
44

[146] M. B. Ring. CHILD: A first step towards continual learning. In Learning to
learn, pages 261–292. Springer, 1998. 44

[147] H. Ritter, A. Botev, and D. Barber. Online structured laplace approxima-
tions for overcoming catastrophic forgetting. Advances in Neural Information
Processing Systems, 31, 2018. 44

[148] A. Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection
Science, 7(2):123–146, 1995. 44, 63

[149] N. D. Rodríguez, V. Lomonaco, D. Filliat, and D. Maltoni. Don’t forget,
there is more than forgetting: new metrics for continual learning. CoRR,
abs/1810.13166, 2018. 12

[150] D. Rolnick, A. Ahuja, J. Schwarz, T. Lillicrap, and G. Wayne. Experience
replay for continual learning. In Advances in Neural Information Processing
Systems, volume 32, pages 350–360, 2019. 4, 8, 15, 17, 18, 19, 20, 21, 22, 35,
36, 43, 44, 50, 62, 73, 74, 77, 87, 113

[151] D. Ruppert. Efficient estimations from a slowly convergent robbins-monro
process. Technical report, Cornell University Operations Research and Industrial
Engineering, 1988. 48

[152] A. A. Rusu, S. G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirkpatrick,
R. Pascanu, V. Mnih, K. Kavukcuoglu, and R. Hadsell. Policy distillation. In
International Conference on Learning Representations (ICLR), 2015. 44

[153] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell. Progressive neural networks.
arXiv preprint arXiv:1606.04671, 2016. 42, 44, 63

[154] A. A. Rusu, M. Večerík, T. Rothörl, N. Heess, R. Pascanu, and R. Hadsell.
Sim-to-real robot learning from pixels with progressive nets. In S. Levine,
V. Vanhoucke, and K. Goldberg, editors, Proceedings of the 1st Annual Con-
ference on Robot Learning, volume 78 of Proceedings of Machine Learning
Research, pages 262–270. PMLR, 13–15 Nov 2017. 63

107

[155] P. Ruvolo and E. Eaton. ELLA: An efficient lifelong learning algorithm. In
Proceedings of the International Conference on Machine learning (ICML), pages
507–515, 2013. 17

[156] M. Samvelyan, R. Kirk, V. Kurin, J. Parker-Holder, M. Jiang, E. Hambro,
F. Petroni, H. Kuttler, E. Grefenstette, and T. Rocktäschel. Minihack the planet:
A sandbox for open-ended reinforcement learning research. In Thirty-fifth
Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 1), 2021. 4, 5, 18, 19, 20, 23, 30

[157] M. Savva, A. X. Chang, A. Dosovitskiy, T. Funkhouser, and V. Koltun. Minos:
Multimodal indoor simulator for navigation in complex environments. arXiv
preprint arXiv:1712.03931, 2017. 19

[158] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain, J. Straub,
J. Liu, V. Koltun, J. Malik, et al. Habitat: A platform for embodied ai research.
In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 9339–9347, 2019. 19

[159] J. Schwarz, D. Altman, A. Dudzik, O. Vinyals, Y. W. Teh, and R. Pascanu.
Towards a natural benchmark for continual learning. In Proceedings of the
NeurIPS Workshop on Continual Learning, 2018. 18

[160] J. Schwarz, W. Czarnecki, J. Luketina, A. Grabska-Barwinska, Y. W. Teh,
R. Pascanu, and R. Hadsell. Progress & compress: A scalable framework for
continual learning. In International Conference on Machine Learning, pages
4528–4537, 2018. 4, 8, 9, 16, 18, 19, 20, 21, 22, 35, 36, 42, 44

[161] Y. Seo, K. Lee, I. Clavera Gilaberte, T. Kurutach, J. Shin, and P. Abbeel.
Trajectory-wise multiple choice learning for dynamics generalization in re-
inforcement learning. Advances in Neural Information Processing Systems,
33:12968–12979, 2020. 45

[162] J. Serra, D. Suris, M. Miron, and A. Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In International Conference on
Machine Learning, pages 4548–4557. PMLR, 2018. 44

[163] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean.
Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. In International Conference on Learning Representations, 2017. 46

[164] B. Shen, F. Xia, C. Li, R. Martín-Martín, L. Fan, G. Wang, S. Buch,
C. D’Arpino, S. Srivastava, L. P. Tchapmi, et al. igibson, a simulation
environment for interactive tasks in large realistic scenes. arXiv preprint
arXiv:2012.02924, 2020. 19

108

[165] H. Shin, J. K. Lee, J. Kim, and J. Kim. Continual learning with deep generative
replay. Advances in neural information processing systems, 30, 2017. 44

[166] M. Shridhar, L. Manuelli, and D. Fox. Cliport: What and where pathways
for robotic manipulation. In Conference on Robot Learning, pages 894–906.
PMLR, 2022. 64

[167] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-actor: A multi-task transformer
for robotic manipulation. arXiv preprint arXiv:2209.05451, 2022. 61, 64, 72

[168] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi, L. Zettle-
moyer, and D. Fox. Alfred: A benchmark for interpreting grounded instructions
for everyday tasks. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10740–10749, 2020. 4, 5, 19, 20, 25

[169] A. Soltoggio, K. O. Stanley, and S. Risi. Born to learn: the inspiration, progress,
and future of evolved plastic artificial neural networks. Neural Networks, 108:48–
67, 2018. 44

[170] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The
MIT Press, March 1998. 6

[171] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence,
112(1-2):181–211, 1999. 45

[172] A. Szot, A. Clegg, E. Undersander, E. Wijmans, Y. Zhao, J. Turner, N. Maestre,
M. Mukadam, D. Chaplot, O. Maksymets, et al. Habitat 2.0: Training home
assistants to rearrange their habitat. arXiv preprint arXiv:2106.14405, 2021.
19

[173] D. Tanneberg, K. Ploeger, E. Rueckert, and J. Peters. Skid raw: Skill discovery
from raw trajectories. IEEE Robotics and Automation Letters, 6(3):4696–4703,
2021. 63

[174] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden,
A. Abdolmaleki, J. Merel, A. Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018. 18

[175] Y. Teh, V. Bapst, W. M. Czarnecki, J. Quan, J. Kirkpatrick, R. Hadsell,
N. Heess, and R. Pascanu. Distral: Robust multitask reinforcement learning.
Advances in neural information processing systems, 30, 2017. 44

[176] A. V. Terekhov, G. Montone, and J. K. O’Regan. Knowledge transfer in deep
block-modular neural networks. In Conference on Biomimetic and Biohybrid
Systems, pages 268–279. Springer, 2015. 44

109

[177] C. Tessler, S. Givony, T. Zahavy, D. J. Mankowitz, and S. Mannor. A deep
hierarchical approach to lifelong learning in minecraft. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17, page
1553–1561. AAAI Press, 2017. 45

[178] R. Traoré, H. Caselles-Dupré, T. Lesort, T. Sun, N. Díaz-Rodríguez, and
D. Filliat. Continual reinforcement learning deployed in real-life using policy
distillation and sim2real transfer. arXiv preprint arXiv:1906.04452, 2019. 44

[179] G. M. Van de Ven and A. S. Tolias. Generative replay with feedback connections
as a general strategy for continual learning. arXiv preprint arXiv:1809.10635,
2018. 44

[180] J. Veness, T. Lattimore, D. Budden, A. Bhoopchand, C. Mattern, A. Grabska-
Barwinska, E. Sezener, J. Wang, P. Toth, S. Schmitt, and M. Hutter. Gated
linear networks. Proceedings of the AAAI Conference on Artificial Intelligence,
35(11):10015–10023, May 2021. 43, 45

[181] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo,
A. Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser, et al. Starcraft ii: A
new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782,
2017. 19

[182] J. S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw.,
11(1):37–57, mar 1985. 82

[183] J. Wang, X. Wang, Y. Shang-Guan, and A. Gupta. Wanderlust: Online
continual object detection in the real world. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 10829–10838, 2021. 13

[184] X. Wang and A. Gupta. Unsupervised learning of visual representations using
videos. CoRR, abs/1505.00687, 2015. 93

[185] Y. Wen, D. Tran, and J. Ba. Batchensemble: an alternative approach to
efficient ensemble and lifelong learning. In International Conference on Learning
Representations, 2020. 45

[186] M. Wolczyk, M. Zajac, R. Pascanu, L. Kucinski, and P. Milos. Continual
world: A robotic benchmark for continual reinforcement learning. CoRR,
abs/2105.10919, 2021. 11, 18, 19, 63

[187] S. Woo, J. Park, J. Lee, and I. S. Kweon. CBAM: convolutional block attention
module. CoRR, abs/1807.06521, 2018. 67

110

[188] C. Wu, L. Herranz, X. Liu, J. van de Weijer, B. Raducanu, et al. Memory
replay gans: Learning to generate new categories without forgetting. Advances
in Neural Information Processing Systems, 31, 2018. 44

[189] R. Wu, Y. Zhao, K. Mo, Z. Guo, Y. Wang, T. Wu, Q. Fan, X. Chen, L. Guibas,
and H. Dong. Vat-mart: Learning visual action trajectory proposals for
manipulating 3d articulated objects. arXiv preprint arXiv:2106.14440, 2021.
61, 64

[190] F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang, Y. Yuan,
H. Wang, et al. Sapien: A simulated part-based interactive environment. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11097–11107, 2020. 19

[191] Y. Xiang, Y. Fu, P. Ji, and H. Huang. Incremental learning using conditional
adversarial networks. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 6619–6628, 2019. 44

[192] T. Xiao, J. Zhang, K. Yang, Y. Peng, and Z. Zhang. Error-driven incremental
learning in deep convolutional neural network for large-scale image classification.
In Proceedings of the 22nd ACM international conference on Multimedia, pages
177–186, 2014. 44

[193] E. Xing, A. Gupta, S. Powers, and V. Dean. Kitchenshift: Evaluating zero-
shot generalization of imitation-based policy learning under domain shifts.
In NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods and
Applications, 2021. 19

[194] J. Xu and Z. Zhu. Reinforced continual learning. In Advances in Neural
Information Processing Systems (NeurIPS), pages 899–908, 2018. 44

[195] C. Yan, D. Misra, A. Bennnett, A. Walsman, Y. Bisk, and Y. Artzi. Chalet:
Cornell house agent learning environment. arXiv preprint arXiv:1801.07357,
2018. 19

[196] J. Yoon, E. Yang, J. Lee, and S. J. Hwang. Lifelong learning with dynamically
expandable networks. In International Conference on Learning Representations,
2018. 44

[197] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-
world: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Conference on Robot Learning, pages 1094–1100. PMLR, 2020. 19

[198] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Arm-
strong, I. Krasin, D. Duong, V. Sindhwani, et al. Transporter networks:

111

Rearranging the visual world for robotic manipulation. In Conference on Robot
Learning, pages 726–747. PMLR, 2021. 61, 64

[199] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser. Learning
synergies between pushing and grasping with self-supervised deep reinforcement
learning. In 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 4238–4245. IEEE, 2018. 61, 64

[200] F. Zenke, B. Poole, and S. Ganguli. Continual learning through synaptic
intelligence. In Proceedings of the International Conference on Machine Learning
(ICML), pages 3987–3995, 2017. 44

[201] C. Zeno, I. Golan, E. Hoffer, and D. Soudry. Task agnostic continual learning
using online variational bayes. arXiv: Machine Learning, 2018. 42

[202] K. R. Zentner, R. Julian, U. Puri, Y. Zhang, and G. S. Sukhatme. A sim-
ple approach to continual learning by transferring skill parameters. CoRR,
abs/2110.10255, 2021. 63

[203] C. Zhang, O. Vinyals, R. Munos, and S. Bengio. A study on overfitting in deep
reinforcement learning. arXiv preprint arXiv:1804.06893, 2018. 7

[204] J. Zhang, H. Yu, and W. Xu. Hierarchical reinforcement learning by discovering
intrinsic options. arXiv preprint arXiv:2101.06521, 2021. 45

[205] T. Zhang, Z. Lin, Y. Wang, D. Ye, Q. Fu, W. Yang, X. Wang, B. Liang,
B. Yuan, and X. Li. Dynamics-adaptive continual reinforcement learning via
progressive contextualization, 2023. 8

[206] G. Zhou, K. Sohn, and H. Lee. Online incremental feature learning with
denoising autoencoders. In Artificial intelligence and statistics, pages 1453–
1461. PMLR, 2012. 44

[207] H. Zhu, J. Yu, A. Gupta, D. Shah, K. Hartikainen, A. Singh, V. Kumar, and
S. Levine. The ingredients of real-world robotic reinforcement learning. CoRR,
abs/2004.12570, 2020. 61

[208] Y. Zhu, J. Wong, A. Mandlekar, and R. Martín-Martín. robosuite: A modular
simulation framework and benchmark for robot learning. In arXiv preprint
arXiv:2009.12293, 2020. 19, 64

112

Appendices

A Priority Reservoir Sampling Analysis
The replay buffer method used by SANE and SANER uses reservoir sam-
pling [150], which has the property that all samples are maintained with equal
probability regardless of when they were collected. While developing SAN-
ERv2, we realized this was not sufficient for longer task sequences. We therefore
created a modified version, which we call Priority Reservoir Sampling (PRS).

Specifically, we adapted reservoir sampling by uniformly removing a fraction
f of samples when drift is detected, to ensure the buffer has a ratio of at least
f entries. PRS effectively partitions the buffer: new entries will only compete
amongst themselves, leaving previous entries untouched, until the minimum
reservoir value equalizes. Thus we still get the benefits of reservoir sampling
for the new entries (more diversity than, say, a FIFO buffer), but with a bias
towards newer samples.

A.1 Initial Tasks

We begin by walking through the behavior on two sequential tasks, analyzed in
the simple case where the same node is activated for all tasks, and entries are
removed from its replay buffer at task boundaries. We use maximum reservoir
instead of minimum, to make the math slightly clearer.

We define B as the per-node size of our replay buffer, and N as the number
of timesteps per task, and assume that B < N . Additionally, given some task
t, we define mt as the reservoir value after training on t, and rt,s as the ratio of
samples from task s in the buffer at that point (prior to removal).

Since reservoir sampling is uniform, after the first task (t = 0) is complete,
m is given by:

m0 =
B

N

113

On node creation, we remove fraction f of replay entries, leaving our node
with (1− f)B task 0 entries. During task 1, those empty entries will tend to
fill up, replacing each other, until the maximum of our new entries equals the
maximum of our old entries, which we’ll call timestep t∗1:

B

N
=

fB

t∗1

t∗1 = fN

For the rest of training task 1, all entries have an equal chance of being
replaced, as though no replacement occurred. This is represented by what we
refer to as an "effective timestep", te,1 = N + (N − t∗1) timesteps. It follows
that:

m1 =
B

te,1
=

B

(2− f)N

We can now analyze the ratio of task 0 in the node’s buffer, based on the
known bounding minimum values and initial fraction in the buffer:

r1,0 = (1− f)
m1

m0

=
1− f

2− f

And thus:
r1,1 = 1− r1,0 =

1

2− f

A.2 General Solution

We assume that T tasks have been seen. We thus know t∗T , te,T ,mT , {rT,0...rT,T}
and our goal is to determine t∗T+1,mT+1, {rT+1,0...rT+1,T}.

First, we’ll define the reservoir value for task T : mT . Based on our
observations above, we know that it is equivalent to a standard reservoir
sampling value, only sampled at an effective time, instead of the true number
of timesteps:

mT =
B

te,T
(1)

where the effective timestep, te,T , is defined as:

te,T = te,T−1 +N − t∗T (2)

114

As before, after we begin training on T + 1, we remove fraction f . New
samples will equalize with the old ones at the time t∗T+1:

mT (te,T) = mT+1(t
∗
T+1)

t∗T+1 = fte,T

We combine this with Equation 2 to obtain the effective time recurrent
equation:

te,T+1 = (1− f)te,T +N (3)

We can solve this recurrent function to obtain the non-recurrent effective
time equation, te,T (T):

te,T (T) = t∅ + (1− f)T+1N
T∑
i=0

1

(1− f)i

= (1− f)T+1Ng(T) (4)

Where t∅ = 0, and we define g(T) ≡
∑T

i=0
1

(1−f)i
for convenience. We

can now compute the fraction of samples from task s present in the buffer at
subsequent task boundaries:

rT+1,s = (1− f)rT,s
mT+1

mT

Using Equations 1 and 4, we obtain our replay ratio equation:

rT,s(T) = rs,s(T)
T−1∏
i=s

(g(i)

g(i+ 1)

)
The replay ratio equation can only be used for tasks whose samples already

exist in the replay buffer, i.e. where rs,s(T) is known; when samples are added
for a new task, they are initialized according to:

rT+1,T+1 = 1−
T∑
i=0

rT+1,i(T)

Essentially after the reduction in replay ratio is accounted for, for all existing
tasks’ samples, the new samples fill the remainder of the buffer. We assume
that r0,0 = 1.

Putting all of these together, we now have a way to predict the ratios of
samples from each task in our buffer.

115

0 5 10
Sampled Task ID (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Ra

tio
 o

f B
uf

fe
r

Ratio of Entries in Buffer (T=15)
f=0.0
f=0.1
f=0.2
f=0.3

0 5 10
Task ID (T=s)

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f B

uf
fe

r

Ratio of New Task Entries
f=0.0
f=0.1
f=0.2
f=0.3

Figure A.1: Visualization of (left) the ratio of replay entries for each task at
the end of training, and (right) the ratio of replay entries for the task just
trained upon.

A.3 Model Properties

In Figure A.1 we can visualize two key properties: 1) the ratio in the replay
buffer of each task s, at the end of training on 15 tasks (T = 15); and 2) the
ratio for a given task, right after training on it. We can observe that PRS
enables the designer to trade-off between ensuring that new tasks will always
be represented with at least a ratio of f , and having more samples from old
tasks.

Steady-state. Steady-state behavior occurs when the entire duration of
training a single task is exactly required to match the prior reservoir value. At
this point the buffer has "stabilized"; the minimum reservoir value won’t be
driven up significantly. However, older replay buffer ratios decay by f , which
is significantly more removal than they would otherwise experience.

116

	Introduction
	Overview
	Goals of the Work
	Outline

	Background
	Definitions
	Continual Learning: Definition
	Metrics
	Continual Reinforcement Learning
	Continual Imitation Learning for Robotics
	Baselines

	CORA: A Platform for Continual Reinforcement Learning Agents
	Introduction
	Related Work
	Task Sequences for Benchmarking CRL
	CORA: A Platform for Continual Reinforcement Learning Agents
	Experimental Results
	Summary

	SANE: Self-Activating Neural Ensembles
	Introduction
	Related Work
	Background
	Self-Activating Neural Ensembles for Continual RL
	Experiments
	Analysis of SANE
	Summary

	SANER: SANE for Robotics
	Introduction
	Related Work
	Method
	Experimental Setup
	Experiments
	Summary

	Extending SANER
	Introduction
	Method
	Experiments
	Results
	Summary

	Conclusion
	Appendices
	Priority Reservoir Sampling Analysis

