
Manipulation Among Movable Objects

for Pick-and-Place Tasks in Cluttered

3D Workspaces

Dhruv Mauria Saxena

CMU-RI-TR-23-76

September 2023

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Maxim Likhachev, chair
Christopher G. Atkeson

Oliver Kroemer
Mehmet Dogar, University of Leeds

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Robotics.

Copyright © 2023 Dhruv Mauria Saxena. All rights reserved.

To the people that inspired this body of work, thank you for your genius.

Abstract

In cluttered real-world workspaces, simple pick-and-place tasks for robot
manipulators can be quite challenging to solve. Often there is no collision-
free trajectory that allows the robot to grasp and extract a desired object
from the scene. This requires motion planning algorithms to reason about
rearranging some of the “movable” clutter in the scene so as to make the
task feasible. Our work focuses on solving these pick-and-place tasks in
3D workspaces where objects may tilt, lean on each other, topple, and
slide. This problem setup can be used to describe common uses of robot
manipulators tasked with packing boxes in warehouses, assembling struc-
tures in manufacturing industries, and assisting humans inside households.
Robots operating in these environments will engage in contact-rich inter-
actions with objects in the environment, and must be able to model and
reason about the effect of these interactions on the environment. In this
thesis we develop motion planning algorithms for robotic manipulation
that make efficient use of a physics-based rigid-body simulator to solve
pick-and-place manipulation tasks while accounting for the configuration
of all objects in the environment and the effect that robot actions have
on them. In particular, we require our planning algorithms to compute
trajectories that satisfy all object-centric “interaction constraints”. In the
3D workspaces we care about, these encode properties of objects such as
whether the robot can make contact with an object, how far it can make
objects tilt, whether objects are allowed to topple over, how fast they can
be moved etc. The challenge in solving simple pick-and-place tasks in
these environments lies in finding a solution trajectory that satisfies these
constraints at all points in time.

In environments with relatively large object-free volumes, we show that
it suffices to only model robot-object and any resultant object-object
interactions near grasp poses given to the robot. These grasp poses are
specified as intermediate goals for the robot from where the desired object
may be grasped before being moved to its final goal (or “home”) config-
uration. Our intuition in these workspaces suggests that we can exploit
the large object-free volume to plan contact-free trajectories that get the
robot near the grasp pose. Once such a trajectory has been found, the
planner can forward simulate dynamically generated grasping primitives
in the physics-based simulator to ensure that interaction constraints are
not violated while grasping the target object.

With more clutter in the scene or in a more constrained workspace, we

cannot assume the existence of a contact-free trajectory that gets close
to the target object. In such cases, we have to reason about deliberately
rearranging any movable clutter so that the object-of-interest (OoI) can be
grasped and extracted. Such situations arise commonly when a robot must
reach inside a cluttered shelf to retrieve a desired object. Manipulation
planning algorithms for such scenes must be able to answer three fun-
damental questions – which movable objects should the robot rearrange,
where should they be moved, and how should the robot move them while
still satisfying all interaction constraints? This thesis presents a family
of algorithms that draw on a unique connection between Multi-Agent
Pathfinding (MAPF), the problem of finding paths for multiple robots
that need to get from their start states to some desired goal states, and
Manipulation Among Movable Objects (MAMO), solving manipulation
tasks in environments where the robot is allowed to rearrange movable
clutter. Our algorithms solve an appropriately constructed MAPF ab-
straction of MAMO to answer the first two questions of which objects
should be moved and where to. We then convert the MAPF solution into
rearrangement actions for the robot to rearrange movable objects and
make progress towards solving the MAMO problem of retrieving the OoI
from a cluttered shelf.

We test all algorithms developed as part of this thesis in the real-world
with the PR2 robot. We show that we can execute trajectories returned
by our algorithms on the PR2 to solve complex manipulation tasks that
require rearranging objects on a refrigerator shelf before reaching inside to
grasp and extract a desired object. Our work takes a step towards solving
MAMO problems in realistic real-world workspaces and we conclude this
thesis by discussing some possible directions for future work to develop
even more capable and versatile MAMO planning algorithms.

Acknowledgments

The work in this thesis is the result of several years of effort during which I was supported
by many exceptional people. My advisor, Maxim Likhachev, helped me find and refine the
problems that interested me. He gave me the time and space I needed to explore ideas that
sometimes led nowhere, put me in position to collaborate with other members of the lab on
exciting projects, encouraged me to keep up my extra-curricular pursuits to maintain a healthy
lifestyle, and most of all answered any questions I had and taught me the ins and outs of motion
planning for real robot systems. By all accounts Max is the best advisor I could have hoped for
for myself. He is super smart, very kind, and annoyingly funny. It was a pleasure working with
him for six years and I am forever grateful for his advice.

I want to thank my thesis committee, all of whom have quite literally laid the groundwork for
the work I did during my graduate studies. Chris Atkeson is a wealth of knowledge who always
asks the right questions. In all my meetings with Chris, within minutes he gave me insights into
the problem I had been working on for months. He is exceptional at helping you assess the utility
of systems and algorithms you develop when it comes to deploying them on real robots, taking
into account all the errors and uncertainties that show up in the real-world. Thank you Chris,
for making me think more critically about my work and explain it in terms that helped me
understand it better and improve it further. I first met Oliver Kroemer at a conference before he
started as faculty at CMU. His passion for making robot arms do quite possibly everything you
could imagine came through then as it does now. I was fortunate to have his advice throughout
my research, and he always helped me break down difficult manipulation problems into pieces
that I could feasibly solve. No research problem seems too daunting or too impossible to Oliver,
which is extremely reassuring to a young researcher trying to finish their graduate studies.
Thank you Oliver, for always reassuring me that I was capable of solving difficult problems.
Finally, not too long ago Mehmet Dogar was a graduate student like me working on solving
manipulation problems among movable objects. Mehmet has such great intuition about the
work in this thesis that I never needed to explain the setup and motivation for my research to
him. We were able to dive into the details of my algorithms and figure out both ways to address
corner cases and ways to improve general performance. Thank you Mehmet, for the work you
and your students have done that continues to inspire me, for believing in my work, and for
teaching me the value of incremental progress towards solving challenging problems.

I was fortunate to be part of the Search-Based Planning Laboratory for the last six years. My
time overlapped with many exceptional people and one Andrew Dornbush. I hope I have the
privilege of working with someone as intelligent, proficient, and humble as Andrew everywhere I

go. I want to thank Suhail in particular for sharing a lot of time, ideas, and meetings with me
over the years – you directly contributed to a fair bit of work in this thesis and for that you
forever have my gratitude. I want to thank Tushar, Shohin, Yash, and Oren for the work we did
together. Shohin and I had an excellent trip to Japan a few years ago and I fondly remember
all the food we ate, and also the cool work we did. To the other members of SBPL, old and
new, thank you for always keeping the lab a fun place to work in. Thank you Venkat, John,
Sung, Kalyan, Vinitha, Fahad, Anahita, Ishani, Aaron, Raghav, Wei, Allen, Aditya, Manash
and Jacky – you left the lab a better place. Thank you to Ram, Shivam, Rishi, Itamar, Yorai,
and Hanlan for giving me faith that the lab remains in good hands – my offer for a crash course
on working with the PR2 stands as long as I stay in Pittsburgh.

I want to give the PR2 its own moment of glory. Its a fantastic robot, a bit temperamental at
times, but I had a lot of fun working with it.

I feel an immense amount of gratitute and appreciation for all my friends who make me a better
person every day. Arjav, you are the closest friend I have and our lives have been intertwined
for over a decade at this point. I cannot thank you enough for the constant support you provide,
through all the ups and downs, I can always count on you being there for me. There are a few
friends that have been around since day one of grad school that I will always have a good time
with, regardless of whether we are sitting at home doing nothing but chit-chatting, or whether
we are out and about in the great outdoors, or whether we are out eating and drinking. Thank
you to Achal for asking me deep questions early on and for sharing your wit and joy at all times;
to Anirudh for always doing everything with a smile on your face, for answering many of my
research questions, and for always making sure everyone is having a good time; and to Rosario
for a seemingly infinite capacity of empathy, goodwill, humility and grace. I want to thank
Vishal, Xuning and Ankit for many of the most memorable moments early on in grad school and
many more times over the last decade. I want to thank Shaurya, Roberto and Alex for hours of
fun and camaraderie on and off the football/soccer field. I want to thank Pragna, Abhijat, and
Tanmay for giving me energy while I felt I was aging out of grad school. I want to thank the
Hidden Harbor crew – Nick, Emily, Rob, Jenny, and Roman – for the most interesting, varied
and informative topics of conversation, all while we drank many cups of rum week after week.

Finally I want to thank my love, Cara, for her support, encouragement, and love over so many
years, and for all the years to come. You kept me sane and you kept me happy, and I hope I
can make your life more joyful like you have mine. I would never have gotten this far if it was
not for my family – my parents and my brother. In more ways than I can enumerate, they
have allowed me to grow into the person I am today, they have inspired me to achieve more for
myself than I knew I was capable of, and they have always wanted the best for me no matter
the distance between us. I love you all very much.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Overview . 5

1.2.1 Simulation Constraints on Robot Actions 6
1.2.2 Abstracting MAMO Problems with Multi-Agent Pathfinding . 7
1.2.3 A Graph Search Formulation for MAMO 8
1.2.4 Solving MAMO Problems with Diverse Action Spaces and Ob-

ject Parameter Uncertainty 8
1.2.5 Discussion and Future Work 9

2 Background 11
2.1 Related Work . 11

2.1.1 Manipulation Planning Among Movable Obstacles 11
2.1.2 Non-prehensile Manipulation 12
2.1.3 Rearrangement Planning . 13
2.1.4 Simulation-based Planning . 14
2.1.5 Contact-Based Trajectory Optimisation 14
2.1.6 Learning-based Methods for Manipulation in Clutter 15

2.2 Discrete Graph Search . 16
2.3 Problem Formulation . 19

2.3.1 Search Space . 19
2.3.2 Object Constraints . 19
2.3.3 Problem Statement . 19

3 Planning with Physics-Based Adaptive Motion Primitives 21
3.1 Introduction . 22

3.1.1 Challenges . 22
3.1.2 Contribution . 23

3.2 Related Work . 24
3.3 Approach . 25

3.3.1 Graph Representation . 26
3.3.2 Action Evaluation . 26
3.3.3 Adaptive Motion Primitives 27
3.3.4 Assumptions . 28

xi

3.3.5 Subgoals . 31
3.3.6 Soft Duplicate Detection for Action Evaluation 32

3.4 Algorithm . 33
3.4.1 Multi-Heuristic Framework for MAMO 34
3.4.2 Planning Algorithm . 34

3.5 Experimental Results . 36
3.5.1 Comparative Quantitative Evaluation in Simulation 36
3.5.2 Runs on a Physical Robot . 38
3.5.3 In-Depth Analysis of SPAMP in Simulation 39

3.6 Discussion & Future Work . 41

4 Multi-Agent Pathfinding for Manipulation Among Movable Ob-
jects 43
4.1 Introduction . 44
4.2 Related Work . 47

4.2.1 Multi-Agent Pathfinding . 49
4.2.2 Abstract Planning . 50

4.3 Problem Setup . 50
4.3.1 Classical Multi-Agent Pathfinding 52

4.4 The M4M Planning Algorithm . 52
4.4.1 MAPF Abstraction for Manipulation 55
4.4.2 Generating Non-Prehensile Push Actions 56

4.5 Experimental Results . 57
4.5.1 Simulation Experiments . 57
4.5.2 Real-World Performance on the PR2 61
4.5.3 Comparison of MAPF Solvers 62

4.6 Conclusion and Discussion . 63

5 A Graph Search Formulation of Manipulation Among Movable
Objects 65
5.1 Introduction . 66
5.2 Related Work . 69
5.3 Problem Formulation . 71
5.4 E-M4M . 72

5.4.1 Main Algorithm . 73
5.4.2 MAPF Abstraction . 77
5.4.3 Non-prehensile Push Planner 78
5.4.4 What E-M4M Can and Cannot Solve 79

5.5 Speeding up the Algorithm . 80
5.5.1 Caching Unsuccessful Push Actions 80
5.5.2 Caching Successful Push Actions 81

5.5.3 Learned Priority Function . 83
5.6 Experimental Analysis . 83

5.6.1 Simulation Experiments Against MAMO Baselines 84
5.6.2 E-M4M Ablation Study . 87
5.6.3 Real-World Experiments . 88

5.7 Conclusion and Discussion . 89

6 Manipulation Among Movable Objects With Diverse Actions and
Parameter Uncertainty 91
6.1 Introduction . 92
6.2 Related Work . 95
6.3 Improvements to the E-M4M Algorithm 96

6.3.1 Addition of Prehensile Rearrangement Actions 97
6.3.2 Depth-First I-M4M . 97
6.3.3 Eagerly Lazy Evaluation of Rearrangement Actions 99
6.3.4 Parallelised Simulations for Robustness to Parameter Uncertainty 100

6.4 Experimental Results . 102
6.4.1 Simulation Study . 102
6.4.2 Real-World Experiments . 105

6.5 Conclusion and Discussion . 106

7 Discussion and Future Work 109
7.1 Discussion . 109

7.1.1 Theoretical Analysis on Completeness of Planning Algorithms 109
7.1.2 A Note for Practitioners . 111
7.1.3 Learning Predictive Models of Push Action Feasibility 113

7.2 Future Work . 117
7.2.1 Learning Heuristics for MAMO 117
7.2.2 Interleaving Planning and Execution 118
7.2.3 Model-Based Object-Centric Rearrangement Actions 118

7.3 Conclusion . 119

Bibliography 121

List of Figures

1.1 The goal is to retrieve the beer can (yellow outline). The yogurt and
almond beverage are movable objects (blue outlines). All other objects
in the scene are immovable obstacles (red outline). 2

1.2 (a) The scene prior to the robot pushing object A to the right. (b)
The resultant scene after the push. 4

1.3 A PR2 robot executing a solution trajectory found by M4M for a
real-world MAMO problem. 7

2.1 A high-level graphical illustration of a discrete graph search algorithm
(Algorithm 1). 18

3.1 Manipulation tasks in cluttered tabletop (left) or refrigerator (right)
workspaces require planners to account for complex multi-body in-
teractions between the robot and objects (blue movable objects and
red immovable obstacles). The goal is to pickup a randomly selected
immovable obstacle. 23

3.2 For a particular goal state configuration xG ∈ XR, we can generate
AMPs from several states xi within distance δ from it. This δ-sphere
in configuration space XR might be occupied by both movable (blue)
objects and immovable (red) obstacles. This can lead to invalid actions
a1, a2, valid action a3, and Phase 1 valid action a4 whose Phase 2
validity will be determined after simulation. 28

3.3 Consider planning between start and goal configurations shown on the
left. A “greedy” shortest-path search algorithm in the MAMO domain
would proceed along the dotted path, exploring states in the light blue
region, and spend a lot of time simulating interactions with object
O2 near the purple state v. Due to the assumptions we make, our
search algorithm SPAMP proceeds along the dashed path via orange
states u, and only starts simulating AMPs from states beyond u′ in
the δ-sphere around goal xG. 29

xiv

3.4 In case there is no interaction-free path between start state xS and the
δ-sphere around any goal state xG, our assumption of only simulating
terminal AMPs will cause our algorithm to not return a solution. A
greater value of δ in this case could make this problem solvable by our
algorithm. 30

3.5 If an AMP from any xl ∈ L is found to be invalid, we postpone the
simulation of AMPs from any other state x that is within β distance
from it by inflating the heuristic value of that action. 32

3.6 Experimental setup for a PR2 robot in front of a tabletop workspace
for MAMO. 39

4.1 (a) An example MAMO problem to retrieve the beer can (yellow
outline). Access is blocked by the movable box of milk and tub
of yogurt (blue outlines). In order to retrieve the can, they must
be rearranged out of the way without toppling them, and without
anything making contact with the glass of juice (red outline). (b) A
complex non-prehensile action that tilts the movable potted meat can
(blue outline) to rearrange it. 45

4.2 Sequence of images showing a solution found by our M4M algorithm
for a simple MAMO scene. From left to right : (a) initial scene, (b)
rearranged scene after one push action, (c) successful OoI retrieval.
Movable objects are blue, immovable obstacles are red, and the OoI is
yellow. 46

4.3 MAMO workspace (left) and its 2D projection labeled with movable
object IDs. Movable objects are in blue, immovable obstacles in red,
and the object-of-interest to be retrieved in yellow. 51

4.4 The negative goal region (NGR) V (π̂R) in gray for the MAMO problem
from Figure 4.3. (left) 3D volumes of the NGR and all objects at their
initial poses (we omit the shelf for ease of visualisation). (right) 2D
projection of the NGR and the workspace, overlayed with the solution
to the abstract MAPF problem from Section 4.4.1 formulated for this
scene. Objects A and B need to move outside the NGR, and object C
needs to move to allow A to reach its goal. MAPF solution paths are
shown in pink. 53

4.5 2D illustration of our push planner. Given a movable object om
(blue) and its MAPF solution path πom (pink), we shortcut πom while
accounting for immovable obstacles OI (red) to get the green path
of straight line segments. After computing xaabb by intersecting the−−−−→
(x2, x1) ray with the axis-aligned bounding box for om, the push action
(cyan) is computed via inverse kinematics between sampled points
xipush ∼ N (xi, σI), i = {0, . . . , n}, x0 := xaabb. 57

4.6 MAMO problems of differing complexity. From left to right, Levels 1,
2, and 3 have 5, 10, and 15 movable objects respectively. Each Level
has 1 OoI and 4 immovable obstacles. 60

4.7 A MAMO solution generated by M4M. The tomato soup can (yellow
outline) is the OoI, all other objects are movable. 60

4.8 Real-world setup for pick-and-place MAMO experiments with a PR2.
The tomato soup can (yellow outline) is the object-of-interest. 62

5.1 (a) The tomato soup can (yellow outline) is the object-of-interest (OoI)
to be retrieved. The potted meat can and coffee can in front of it must
be rearranged out of the way in order to retrieve the OoI and solve
the MAMO problem. (b) Trying to retrieve the beer can (OoI, yellow
outline) leads to a complex interaction with the movable potted meat
can being tilted by the robot arm. 67

5.2 (a) A MAMO problem with ten movable objects and four immovable
obstacles, (b) the initial NGR V(γOoI) found for this scene (in gray),
and (c) a 2D projection of the scene with the MAPF solution paths in
pink. This MAPF solution suggests that the objects labeled A and B
should be rearranged as per the pink paths to be outside V(γOoI). . . 73

5.3 The graph constructed by E-M4M to find a solution to the MAMO
problem from Figure 5.2. Within each graph vertex we show an image
of the 3D scene in simulation and its 2D projection to visualise the
MAPF solution found by CBS. 76

5.4 (a) A MAMO problem with five movable objects and four immovable
obstacles, (b) First MAPF solution that led to invalid pushes γA and
γB, (c) Adding the final states of πA and πB (colour coded stars) to κ
leads to a new MAPF solution. 78

5.5 2D illustration of our push planner. Movable object Om is blue, and
an immovable obstacle is drawn in red. The green path is obtained
after shortcutting the pink MAPF solution path πm. xaabb is the point-
of-intersection between the first segment (x1, x2) and the axis-aligned
bounding box for Om. The cyan segments depict the path along which
inverse kinematics is used to obtain γim. 78

5.6 (a) First MAPF solution that led to invalid pushes γA and γB, (b) Adding
the final states of πA and πB (colour coded stars) to κ leads to a new
MAPF solution. 82

5.7 Example Easy, Medium, and Hard scenes. 84

5.8 (a) Total planning time and (b) time spent querying a physics-based
simulator for MAMO planning algorithms across planning problems
with varying difficulty levels. 86

5.9 Median statistics for time spent calling the MAPF solver, push planner,
and simulator for different E-M4M ablations. 88

6.1 The goal is to retrieve the beer can (yellow outline). The yogurt and
almond beverage are movable objects (blue outlines). All other objects
in the scene are immovable obstacles (red outline). 93

6.2 (1) The initial scene; (2) Pushing the movable cylinder in the front to
the left; (3) Prehensile rearrangement of the movable cylinder in the
back; (4) Retrieving the OoI from the scene. 98

6.3 (a) If the robot end-effect pushes an object whose mass and coefficient
of friction is not known precisely, it may end up in one of many
different possible final poses. (b) A screenshot from our simulator
where multiple copies of an object with different parameters are being
pushed. Irrelevant colours have been desaturated for ease of viewing.
Different object copies can be seen in blue (opaque), and cyan and
magenta (partially transparent) . 101

6.4 Example Easy, Medium, and Hard scenes. 102
6.5 A real-world MAMO problem being solved by the PR2 using I-M4M-

PnP. The potted meat can is the OoI (outlined in yellow), all other
objects are movable. 106

7.1 A comparison of the work in this thesis based on the difficulty of the
workspace they solve problems in and the size of the space they find
solutions in. 112

7.2 Predicted probability of the existence of an inverse kinematics (IK)
solution between the current pose of an object (blue outline) and a
desired location for it (any point on the workspace shelf, 2D, top-down
view shown). 114

7.3 Predicted probability of the object (blue outline) achieving a pose
within 5 cm of a desired location on the workspace shelf (2D, top-down
view shown). 115

List of Tables

3.1 Quantitative evaluation of simulated tabletop MAMO experiments . . 36
3.2 Quantitative evaluation of simulated refrigerator MAMO experiments 37
3.3 Quantitative Performance for Real-World Experiments 39
3.4 Effect of Subgoals and Soft duplicate detection 40
3.5 Quantitative Performance of SPAMP Variants (Tabletop) 40

4.1 Simulation Study for MAMO Planning in Cluttered Scenes - success
rates and min/median/max planning and simulation times 59

5.1 Number of problems solved by various MAMO planning algorithms in
simulation experiments . 85

5.2 Number of problems solved E-M4M ablations 87

6.1 Quantitative Comparison between E-M4M and several I-M4M variants 104
6.2 Experiment Quantifying the Effect of Being Robust to Physics Param-

eter Uncertainty . 105

xviii

List of Algorithms

1 Discrete Graph Search . 16
2 Simulation-based Planning with AMPs (SPAMP) 33
3 SPAMP Planner . 35
4 Multi-Agent Pathfinding for Manipulation Among Movable Objects . 54
5 E-M4M . 74

xix

Chapter 1

Introduction

1.1 Motivation

Robots that manipulate objects in their environment are commonplace in industrial

and warehouse automation, and are expected to achieve similar levels of integration in

domestic scenarios. The core aspect of their deployments in these workspaces is that

they act upon the environment in which they operate by manipulating the objects

therein. This may happen in the form of a series of industrial arms assembling parts,

a mobile manipulator packing boxes to be shipped in a warehouse, or a home robot

retrieving cooking ingredients from pantry and refrigerator shelves. Manipulation

planning algorithms for these tasks must be capable of physics-based reasoning to

ensure safety and stability during robot operation. Intermediate sub-assemblies put

together by robots and objects packed in boxes should create stable structures, while

a home robot should be careful not to drop or break or tip over fragile containers.

Since the effect of robot actions on reconfigurable environments is tied to the task

at hand, planning algorithms must account for these effects to ensure the task is

completed safely.

In order for a robot to solve the fundamental task in robot manipulation of

pick-and-place – where the goal is for a robot to grasp a desired object and relocate

it to a specified location – it must be able to deal with obstructing clutter because it

is unrealistic to assume the robot will always have contact-free access to grasp the

desired object. In cluttered environments, access to the desired object may be blocked

1

1. Introduction

Figure 1.1: The goal is to retrieve the beer can (yellow outline). The yogurt and
almond beverage are movable objects (blue outlines). All other objects in the scene
are immovable obstacles (red outline).

by multiple other objects that need to be rearranged. The robot must reason about

how best to rearrange this obstructing clutter in order to complete the pick-and-place

task. Consider a robot that must extract the can of beer (outlined in yellow) from

the cluttered refrigerator shelf in Figure 6.1. The robot cannot reach the can without

moving aside a box of almond beverage and/or a tub of yogurt (both outlined in blue).

However, it must take care in doing so because the shelf also contains fragile objects

such as eggs, a glass of coffee, and two glass bottles (all outlined in red) that should

not be made contact with by either the robot or other objects. The simply stated

task of “retrieve the can of beer” suddenly becomes a lot more complex to solve. The

motion planning algorithm must find a delicate sequence of rearrangements to clear

enough room in the workspace to solve the task.

When robots make contact with their environment, they can do so via prehensile

or non-prehensile actions [14]. Prehensile contacts stabilise the contacted object

through the contact forces alone, independent of external forces like gravity. Grasping

and holding an object is perhaps the simplest example of prehensile interactions

with the environment. The physics of such interactions can be modeled accurately

under the assumption that the object model is known, and the contact is ‘rigid’, i.e.

2

1. Introduction

grasping an object rigidly attaches it to the robot arm at the point(s) of contact.

If a robot could complete all tasks assigned to it in a reasonable amount of time

via prehensile interactions only, existing planning algorithms for robot manipulation

would go a long way to enabling their deployment across all scenarios.

However robots, like humans, are limited in the variety of objects they can grasp.

Some objects may be too big or too bulky for a robot to interact with using only

prehensile actions. Moreover, in many cases it is more time- and energy-efficient to

manipulate objects in the environment via non-prehensile actions such as pushing

and sliding, tilting, pivoting etc. For example, it may be simpler to push an object

off to the side to reach another one than to grasp it, pick it up, move it elsewhere,

place it down, and release it before going back to reach the second object.

In the case of our example in Figure 6.1, a planning algorithm could compute a

sequence of pick-and-place rearrangements for the almond beverage and yogurt to

solve the task. However, this is only possible if we assume that both objects can

be grasped (i.e. fit inside the end-effector of the robot), we know good grasp poses

to grasp them both from, the robot can exert enough torque to lift them, and we

have knowledge of and access to stable locations to place the objects. Any of these

assumptions may easily be violated in real-world scenarios and in such cases we would

still like to be able to solve the problems of interest to us.

Instead of a sequence of prehensile rearrangements, our planners could alterna-

tively solve the problem by rearranging the scene via a sequence of pushing actions.

This requires us to be able to forward simulate the effect of robot actions on the

configurations of objects in the scene – we would not want to inadvertently push the

almond beverage into the glass bottles on the right or the yogurt into the coffee on

the left. The mechanics of such non-prehensile interactions is not well understood,

especially when we want to model complex multi-body interactions in 3D. There is

work on creating analytical models of planar pushing of objects with simple geome-

tries [97], but this becomes intractable for arbitrary 3D object models and multi-body

interactions (e.g. when an object being pushed by a robot pushes other objects in

turn).

It is still possible to use the simpler physics models to propagate the dynamics

of complex multi-body interactions. Physics-based simulators [27, 95, 153] do this

by maintaining a necessary set of physics parameters for all objects in the environ-

3

1. Introduction

Figure 1.2: (a) The scene prior to the robot pushing object A to the right. (b) The
resultant scene after the push.

ment. These parameters include the intrinsic object dynamics (e.g. mass, velocity,

acceleration, frictional forces) and extrinsic interaction dynamics (e.g. contacts and

contact forces). The complex multi-body interaction dynamics can then be simulated

by integrating all simple physics models with a sufficiently small discretisation of

time. This makes physics-based simulators computationally expensive to query and

thus their use within planning algorithms introduces a challenging bottleneck.

The planning algorithms we present in this thesis use a physics-based simulator

in-the-loop during planning to keep track of the state of the environment as the robot

acts in it. Figure 1.2 shows the result of simulating a push action – when the robot

decides to push object A towards the right, querying our physics-based simulator tells

us the result of that action will lead to object A leaning on object B which in turn

will lean on the right wall of the shelf. By keeping track of the state of all objects in

the scene, our planners can find an appropriate sequence of actions that rearrange

movable clutter and retrieve the object-of-interest (OoI) from the workspace. If the

planner needs to satisfy object-centric “interaction constraints” on whether the robot

can make contact with an object, how far it can make objects tilt, whether objects

are allowed to topple over, how fast they can be moved etc. it can determine the

validity of an action depending on the result obtained after querying the physics-based

simulator. In this way, the planner would be able to solve the problem in Figure 6.1

by carefully pushing aside the movable objects (outlined in blue) just enough to clear

up room to retrieve the OoI (outlined in yellow) without the movable objects or the

4

1. Introduction

robot making contact with “immovable” obstacles (outlined in red).

1.2 Thesis Overview

The algorithms we develop in this thesis attempt to solve exactly the kinds of problems

described above. We would like robots to solve manipulation planning tasks with a

physics-based simulator in-the-loop to forward simulate the environment dynamics.

Our model-based planning algorithms use a physics-based simulator in-the-loop to

propagate the multi-body interaction dynamics resulting from robot rearrangement

actions executed in the environment. In particular, we require our planning algorithms

to compute trajectories that satisfy all object-centric interaction constraints specified

as part of the problem. In the 3D workspaces we care about, these encode properties

of objects such as whether the robot can make contact with an object, how far it

can make objects tilt, whether objects are allowed to topple over, how fast they

can be moved etc. The challenge in solving simple pick-and-place tasks in these

environments lies in finding a solution trajectory that satisfies these constraints at

all points in time. This domain is called “Manipulation Planning Among Movable

Obstacles”, or MAMO [144, 165]. These algorithms must be efficient about when they

query the simulator since that is the computational bottleneck. Typical manipulation

planning problems may require the robot to evaluate hundreds of thousands of actions.

Simulating all of them in problems that we care about would take an inordinate

amount of time. We have developed algorithms that query simulators when absolutely

necessary, and do so by reducing the general problem statement to a more tractable

alternative, and adding constraints on which robot actions may be simulated.

We briefly state the contributions of the work included in this thesis in the

sections below, with detailed technical exposition in the chapters to follow. Chapter 2

provides information on prior work in robot manipulation planning, MAMO and its

predecessor “Navigation Among Movable Obstacles” (NAMO), and the use of physics-

based simulators for planning. It also provides a basic introduction to some of the

algorithmic techniques used in our work. Chapter 3 presents our work from [130] on

simulation-based planning with adaptive motion primitives. The work in Chapters 4–

6 relies on a connection between multi-agent pathfinding (MAPF) and MAMO to aid

the planning algorithms in deciding which objects should be rearranged and where

5

1. Introduction

they should be moved. We introduce this connection in Chapter 4 to present our M4M

algorithm from [128], use it to formulate a graph search-based solver E-M4M [127] for

MAMO in Chapter 5, and generalise this further by introducing the use of prehensile

rearrangements and object parameter uncertainty (imprecise knowledge of object

masses and coefficients of friction) in Chapter 6. Finally Chapter 7 presents a summary

of the ideas explored in this thesis and possible extensions to this line of work.

This thesis does not include details of two projects the author completed during

his doctoral studies. We exclude our work on developing a general anytime, multi-

heuristic, multi-resolution graph search algorithm AMRA* [131] from this thesis.

AMRA* generalises several existing search algorithms [3, 40, 50, 87, 106, 119] into

one unified algorithm. It is capable of searching a state space at multiple levels of

discretisation, share information between multiple heuristics, and improve the quality

of the solution found over time. We also exclude work done on learning autonomous

driving policies in dense traffic [7, 129]. These works are not related to the contents

of the thesis but were completed contemporaneously.

1.2.1 Simulation Constraints on Robot Actions

The first contribution of this thesis (Chapter 3) is to show that a large class of

MAMO problems is solved by only allowing physics-based simulations for adaptive

motion primitives. These actions are computed on-the-fly during the planning process

to achieve some desired goal (or intermediate subgoal). We develop a strategy to

leverage minimal precomputation prior to planning to reduce time spent querying

a physics-based simulator by up to two orders of magnitude over state-of-the-art

MAMO planning algorithms [130].

The class of MAMO problems solvable with this approach usually have a large

volume of object-free space in the workspace. This is true for all tabletop manipulation

scenes (since object-free volume above the table is unbounded), and also for shelves

that are quite tall or shallow relative to the objects kept in them. It is not necessary

to restrict ourselves to top-down grasps for pick-and-place tasks in these workspaces

and in fact our experimental setup limits the robot to perform side-on grasps. The

assumption about large object-free volume only helps avoid contact with objects until

the robot is “close enough” to the grasp pose. Adaptive motion primitives help the

6

1. Introduction

Figure 1.3: A PR2 robot executing a solution trajectory found by M4M for a
real-world MAMO problem.

robot achieve the grasp pose from such a configuration, and our work shows that it

suffices to restrict simulations to these actions only.

1.2.2 Abstracting MAMO Problems with Multi-Agent

Pathfinding

Multi-agent pathfinding (MAPF) algorithms attempt to solve the problem of finding

paths for a team of robots or ‘agents’ from their start locations to a set of goal

locations. Chapter 4 presents our work from [128] where we develop the key insight

that we can leverage existing MAPF solvers for the MAMO domain. This is done by

pretending that the objects the robot is allowed to move in a MAMO problem are

actuated agents themselves. We use MAPF solvers to compute a solution for this

abstracted version of the MAMO problem, and develop an algorithm that is capable

of ‘realising’ this solution in the real-world where only the robot is actuated.

The benefit of the MAPF abstraction is that – provided we can solve the abstract

problem – if the movable objects were truly actuated, the robot trajectory computed

prior to solving the MAPF problem solves the MAMO problem. In this way the

MAPF solution helps guide us toward a rearrangement of the scene that lets us

solve the MAMO problem. We present the Multi-Agent Pathfinding for Manipulation

Among Movable Objects algorithm (M4M), a greedy algorithm for solving MAMO

problems that uses the solution to an abstract MAPF problem to generate candidate

rearrangement actions. Figure 1.3 shows a sequence of images from the solution

trajectory found by M4M for the PR2 robot on a real-world MAMO problem.

7

1. Introduction

1.2.3 A Graph Search Formulation for MAMO

One of the main challenges in solving MAMO problems lies in the combinatorial

explosion of the search space with increasing numbers of movable objects in the scene.

Since MAMO solvers are required to keep track of the configuration that all movable

objects in the scene are in at any given point in time, the search space for solution

grow with each movable object added to the scene. Our work in Chapter 4 dealt with

this by “planning in the now” [65], an idea that commits to executing the first valid

action found. This makes the algorithm greedy with respect to successful pushing

actions that rearrange movable objects. However it precludes a systematic search

over different orderings of movable object rearrangements, different ways to rearrange

the same object, and different potential rearrangements of the same scene.

Chapter 5 addresses this issue by solving MAMO problems via a best-first graph

search. The Enhanced-M4M algorithm [127] (E-M4M) for MAMO problems searches

over orderings of object rearrangements, different rearrangements of the scene, and

different ways to rearrange each object. Additionally we describe algorithmic improve-

ments that help speed up the search by caching the result of all actions simulated

during planning.

1.2.4 Solving MAMO Problems with Diverse Action Spaces

and Object Parameter Uncertainty

The M4M and E-M4M algorithms as presented in Chapters 4 and 5 only make use

of non-prehensile or pushing actions to rearrange movable objects. They also assume

perfect knowledge of all object parameters, including their masses and coefficients of

friction, in an attempt to minimise the sim-to-real gap [18, 62], something commonly

encountered in works that try to use physics-based simulators as proxies for the

real-world.

Given the graph search formulation for MAMO used by E-M4M, it is relatively

straightforward to introduce a diverse action space that allows robots to rearrange the

environment in different ways such as pick-and-place actions or the use of additional

tools. Chapter 6 allows our robot to rearrange movable objects via prehensile actions

in addition to the pushes we considered hitherto. This increases the computational

8

1. Introduction

cost to solve the same problem by increasing the branching factor of the graph search.

We show that being “lazy” with respect to action simulations can help offset some of

these costs.

There has been a lot of advancement in localising objects in a scene with great

accuracy [155, 167], and some existing MAMO solvers are able to deal with localisation

inaccuracies [35]. Yet there is little work in addressing uncertain measurements

of physical properties of objects. In particular, we are interested in relaxing the

assumption on perfect knowledge of object masses and coefficients and friction. Object

masses are difficult to perceive and can change over time, while coefficients of friction

are difficult to measure accurately and change with every surface the object is placed

on. Our use of physics-based simulators allows us to simulate several actions in parallel

and the extension to E-M4M in Chapter 6 leverages this to instantiate several copies

of the same object with different sampled values for mass and coefficient of friction.

We can then validate/invalidate actions based on the number of samples for which

they succeed, thereby making us more robust to uncertain object parameters.

1.2.5 Discussion and Future Work

Chapter 7 includes a thorough discussion about the work in this thesis and tries to

provide some insight on how it can be extended. We discuss ideas on incorporating

heuristics into search algorithms for MAMO, interleaving planning and execution to

deal with real-world uncertainties such as occlusions and errors in sensing, execution,

and environment modeling, and finally on incorporating model-based rearrangement

actions designed for manipulation tasks in clutter.

9

1. Introduction

10

Chapter 2

Background

2.1 Related Work

The work in this thesis extends existing literature on “Manipulation Planning Among

Movable Obstacles”, a domain where a robot arm has to perform a manipulation

task (such as pick-and-place of a desired object) in a reconfigurable environment.

This domain is closely related to “Navigation Among Movable Obstacles”, where the

robot has to complete a navigation task in a reconfigurable environment. Several

approaches to both problem domains make use of a physics-based simulator in the

planning loop to keep track of the state of the environment. This section provides

information on prior work in these fields.

2.1.1 Manipulation Planning Among Movable Obstacles

Wilfong [165] showed that when goal positions for the reconfigurable objects are

specified, the MAMO problem is PSPACE-hard and is otherwise NP-hard. Much of the

early work in this domain [5, 114, 149, 165], restricted itself to planar environments

and geometric solutions. They relied on the ability to compute the joint configuration

space of the robot and the movable objects. Furthermore, planning problems were

intialised were known sets of grasp configuration for each object and restricted to

prehensile manipulation of movable objects.

More recently, Stilman et al. [143, 144] have solved manipulation and navigation

11

2. Background

problems in 3D workspaces with movable obstacles with prehensile rearrangements

only. These solvers search for solutions backwards from the goal state, and resolve

conflicts relating to obstructing objects by incorporating prehensile manipulation

plans for their rearrangement. When the robot has access to an intermediate “buffer”

location to relocate obstructing objects, pick-and-place rearrangement of movable

obstacles is possible [86, 163], however this is not always the case in the problems we

consider in our thesis.

Most work that uses non-prehensile actions limits interactions to a plane [35, 70,

159]. The solution trajectories computed for these planar problem usually only plan

for the robot end-effector. They are ‘lifted’ to a full joint-space trajectory by solving a

constrained inverse dynamics problem, where the constraint enforces the end-effector

move in a plane [15].

2.1.2 Non-prehensile Manipulation

Early work by Mason [97] on the mechanics of pushing established conditions for

the movement of objects in a plane subject to frictional and external (pushing)

forces. They showed that the direction of rotation of the object (clockwise or counter-

clockwise) is determined based on the ‘votes’ of the external force vectors and the

vectors that define the friction cone at the point of contact. This analysis was

extended in [93] where a search-based planner for pushing polygonal objects to a

goal configuration in a plane was introduced. Pivoting and toppling of objects in

order to orient them into a known and observable or desired pose was explored in the

context of automated parts feeding using conveyor belts or hoppers [4, 169] following

the analysis of toppling manipulation in [92].

Dynamic non-prehensile manipulation, where the motion of an pushed object is

not restricted to follow that of the object pushing it, can lead to complex behaviours

such as rolling, sliding, and throwing objects [94, 123, 166]. Although we do not utilise

such actions in our work, given accurate robot and object models, physics-based

simulators can forward simulate the effect of these actions, albeit to a lesser degree

of accuracy than quasi-static actions. Since we assume access to such models in our

work, such actions can be integrated into the algorithms we develop in this thesis.

The reliance on accurate models can be relaxed by model-free learning-based

12

2. Background

approaches that help planning algorithms predict the effect of non-prehensile ac-

tions [82, 90, 115]. The learned models can help close the loop when it comes to

planning a sequence of actions directly from sensor information, provided that they

generalise well across all possible scenes observed by these sensors.

2.1.3 Rearrangement Planning

Rearrangement of movable objects in the scene is a defining characteristic of MAMO

problems. In our work, we rearrange objects in the scene without any explicit

information about desired goal poses for these objects since they only act as obstructing

clutter for the pick-and-place style tasks we consider. However, the domain of

rearrangement planning focuses on problems where goal poses are specified for some

(or all) of the movable objects in the workspace [9, 78]. Given the right action

space, sampling-based planners have been shown to solve 2D rearrangement planning

problems while querying a physics-based simulator for the effects of non-prehensile

actions [54, 69]. The ability to sample multiple actions from a state and roll them

out in a simulator allows these algorithms to reason about modeling, sensing and

execution uncertainty as well [71, 76].

There is a rich body of work that uses model-free learning to solve the rearrange-

ment planning problem in different ways. A learned model can be used to determine

the feasibility of robot actions by predicting collisions [30, 121]. They are trained by

conditioning them on a specified goal configuration as input. Since these models are

fast to query, they can quickly help eliminate infeasible actions and select feasible

ones that help achieve the desired goal. Learned models have also been used to

directly [172] or indirectly [174, 175] predict robot actions for rearrangement planning.

Direct prediction of robot actions involves end-to-end learning of an execution policy

from sensory input [172]. This can be hard to generalise to a variety of workspaces,

objects, robots, and sensors. A more abstract learning model predicts parameters that

inform the selection of robot actions. These parameters can take the form of desired

displacements of specific objects in the scene [175], which may be achieved by local

controllers the robot has access to. Alternatively, a learned model can predict spatial

relations between the objects present in the scene as logical formulae [174] which can

be passed to a symbolic planning algorithm for actually planning the sequence of

13

2. Background

robot actions given a goal specification.

2.1.4 Simulation-based Planning

Simulators are used within planning algorithms for problems when the effect of

robot actions on the state of the environment cannot be computed easily. In such

cases, physics-based simulators are a useful tool as they encapsulate simple physics

models for all interactions between pairs of bodies in the scene. The notion of ‘push

grasping’ and ‘negative goal regions’ was introduced for these problems in a line

of work by Dogar et al. [33, 34, 35]. King studied rearrangement planning with

non-prehensile actions extensively in their thesis [68] with a 2D physics simulator

in their planning loop. Sucan and Kavraki [147] developed a randomised planning

algorithm for cases with a computationally expensive transition model (querying a

physics-based simulator is an example of such a model). This algorithm was extended

in [101] to deal with uncertainty in some model parameters. Computing robust

trajectories in the presence of parameter uncertainty has also been formulated as a

multi-armed bandit problem [76], and a convergent planning problem [2] borrowing

prior work from [64]. In other applications, simulators have been used to compute the

effect of higher-level and longer-horizon robot ‘skills’ [176], and to determine low-level

feasibility of a high-level discrete plan [118].

2.1.5 Contact-Based Trajectory Optimisation

Trajectory optimisation methods that are able to reason about contacts with the

environment have received a lot of attention when planning trajectories for humanoid

and quadruped robots [43, 99, 158]. These methods find a locally optimal solution

around an initial trajectory that satisfies constraints on the sequence of contacts to

be made and the forces applied through them while satisfying kinematic and dynamic

limits of the robot. Typically it can be computationally expensive for these methods

to converge to a solution since they require access to gradient-based information about

good ‘descent’ directions to reach the local optimum. Contacts are discrete events that

are difficult to detect for these continuous optimisation techniques and only help the

optimiser take gradient descent steps towards the optimum while the specific contact

is ‘active’. In practice, often a “soft”-contact model is used [107, 152] that provides

14

2. Background

information about virtual forces from a distance and can be used to converge to the

optimum faster. Other works include contacts as complementarity constraints [120]

which encode the property that contact forces between two bodies can be non-zero

only when the two bodies are in contact, or recently as pressure fields [81] where

contact forces are determined based on the volumetric overlap between rigid bodies

with hydro-elastic properties.

Contact-based optimisation of a robot arm trajectory for manipulation also

requires updating the state of other movable objects in the workspace and ensuring

any interaction constraints are satisfied. For simple planar applications, analytical

models describing the dynamics of contacts between a robot end-effector and a

single object being pushed can be used to compute pushing trajectories [57, 100].

Analytical models have also been used to optimise trajectories for dexterous in-hand

manipulation of objects [98], albeit at a high computational expense. If analytical

models are inadequate at describing the dynamics of complex multi-body interactions

in cluttered workspaces, an alternative approach numerically computes gradients via

finite differencing and often uses a physics-based simulator in-the-loop to observe the

state of the movable objects in the scene [73, 124].

2.1.6 Learning-based Methods for Manipulation in Clutter

The degree of difficulty in solving MAMO problems is dictated by the complex multi-

body interactions between the robot and objects in the workspace that make it hard to

find a valid rearrangement action that also satisfies all interaction constraints. Work

on using machine learning to train models suited for this task hopes to generalise over

the different configurations we might encounter in any MAMO problem. Existing work

on learning non-prehensile pushing policies has thus far been limited to planar robot-

object interactions [91, 117, 173] and does not capture the complexity of toppling

objects [92]. Learned models have also been employed to solve simulated task-and-

motion planning problems [112, 141] that require longer-horizon reasoning over both

discrete decisions about which objects to manipulate and continuous trajectories for

the robot.

Recent work has looked at solving more complicated rearrangement planning

problems on real robots over long horizons [88, 122]. These methods rely on prehensile

15

2. Background

or pick-and-place rearrangement actions only as that simplifies the learning problem

to one that need only figure out a good sequence of rearrangements and perhaps

predict good grasp and placement poses for objects. Given a desired object to be

rearranged, and grasp and placement poses for it, we can query a motion planner

for robot trajectories to carry out the rearrangement. For the MAMO problems we

consider in this thesis, we must reason about non-prehensile robot-object interactions

in the 3D workspace, long sequences of rearrangements, and complex multi-body

interactions, all while ensuring we do not violate interaction constraints. This is a

particularly challenging problem to model, even for learning-based methods with

powerful generalisation capabilities. However, the recent progress shown by methods

for rearrangement planning, especially those that use graph neural networks and

point clouds as input show promise for the complicated MAMO problems we target.

2.2 Discrete Graph Search

All of the algorithms used in this thesis are discrete search algorithms that find

solutions for planning problems on an appropriate discrete graph representation of the

search space. This section provides a brief overview of this category of algorithms at

a high-level. Interested readers are encouraged to look up a rich history of literature

in this field and details of many more discrete search algorithms in [41, 113].

Algorithm 1 Discrete Graph Search

1: procedure Search(vstart, Vgoal, f)
2: OPEN ← ∅
3: Insert vstart into OPEN with priority f(vstart)
4: while OPEN is not empty and time remains do
5: v ← OPEN.top()
6: if v ∈ Vgoal then
7: return ReconstructPath(v)

8: for v′ ∈ GetSuccessors(v) do
9: if EvaluateAction(v, v′) then

10: Insert/update v′ in OPEN with priority f(v′)

11: return ∅

Algorithm 1 contains a pseudocode for a discrete graph search algorithm. The

16

2. Background

Search method is a basic graph search over a discrete graph G = (V,E) where

vertices v ∈ V are search states (V is thus the search space) and edges e = (u, v) ∈ E
represent actions/transitions that take us from state u to state v. Search takes

three input arguments – vstart is the start state or root of the search tree from where

we would like to find a path, Vgoal ⊂ V is the set of goal states where a solution path

may terminate, and f is a priority function that preferentially selects more promising

states (usually in terms of “closeness” to Vgoal) to grow the graph from.

OPEN is a priority queue that contains states ordered according to the func-

tion f . The function GetSuccessors : V → P(V) returns the set of all states

that may be reached from the input state. As such, the set of states returned by

GetSuccessors(v) can be considered successors/neighbours of v in G. In order

to check whether the transition from v to one of its neighbours v′ is valid, we call

EvaluateAction(v, v′). If the transition is found to be valid, we may consider

further growing the graph (towards Vgoal) from v′. Once we reach a state in Vgoal, we

can backtrack from it to vstart along valid edges in the graph and return the solution

path found.

Figure 2.1 shows a graphical illustration of a discrete graph search in four steps.

Step (1) shows the graph G = (V,E) representing the problem we want to solve. The

search space V = {vstart}∪Vgoal ⊂ V ∪{vi}5i=1. Edge set E is shown as gray arrows in

the figure. In step (2) we evaluate edges to the successors of vstart and find both edges

are valid (represented by green arrows). Step (3) proceeds to evaluate the successors

of v1 (preferred over v2 due to the f -function) and finds two more valid edges, one

invalid edge to v5 (red arrow), and determines that the path to v2 via v1 is better

than directly going from vstart to v2 (indicated by the blue arrow −−−−−→vstart, v2). Finally in

step (4) we solve the problem by finding a path from vstart to Vgoal via v1 and v3.

17

2. Background

(1)

(2)

(3)

(4)

Figure 2.1: A high-level graphical illustration of a discrete graph search algorithm
(Algorithm 1).

18

2. Background

2.3 Problem Formulation

2.3.1 Search Space

In this thesis, we denote the robot manipulator asR, and XR ⊂ Rq as the configuration

space for a q degrees-of-freedom (DoFs) manipulator. The set of objects in the scene

is O = {O1, . . . , On}, and the configuration of any object XOi
∈ SE(3) includes its

3D position and orientation. The search space for a planning problem in the MAMO

domain is the Cartesian product of the robot and all object configuration spaces,

denoted as X = XR × XO1 × · · · × XOn . We denote movable objects by OM and

immovable obstacles by OI such that O = OM ∪ OI and OM ∩ OI = ∅.

2.3.2 Object Constraints

Each object is associated with a set of interaction constraints. For example, an

‘immovable’ obstacle (an object that cannot be interacted with, such as a wall) will

contain a constraint function which is satisfied so long as neither the robot nor any

other object makes contact with it. In our problems similar functions encode that

movable objects cannot fall off the shelf, tilt too far (beyond 25°), or move with a

high instantaneous velocity (above 1 m s−1). A state x ∈ X is valid if all constraints

for all objects are satisfied at that state1. We denote the space of valid states by XV .

2.3.3 Problem Statement

A MAMO planning problem can be defined with the tuple P = (X ,A, T , c, xS,XG).

A is the action space of the robot, T : X × A → X is a deterministic transition

function, c : X × X → R≥0 is a state transition cost function, xS ∈ XV is the start

state, and XG ⊂ X ,XG ∩ XV 6= ∅ is the set of goal configurations.

To solve MAMO problems, we would like to find the least-cost valid path π∗ from

start to goal i.e., a path made up of a sequence of valid states. Formally, we can write

1We omit the necessary robot kinematic and dynamic feasibility constraints from the definition
of state validity for brevity.

19

2. Background

this as:

find π∗ = argmin
π={x1,...,xT }

T−1∑
i=1

c(xi, xi+1)

s.t. x ∈ XV , ∀x ∈ π (path of valid states)

x1 = xS, xT ∈ XG (start, goal constraints)

xi+1 = T (xi, ai), ai ∈ A, ∀xi, xi+1 ∈ π

(transition dynamics)

The cost of robot actions c is proportional to the distance traveled in XR. The

start state xs includes a “home” robot configuration in XR and the initial poses of

all objects. We assume XG is defined in two parts – a grasp pose in SE(3) for the

OoI and a goal pose in SE(3) where it must end up (while grasped by the robot).

We will provide details about the action space A and transition function T as and

when appropriate for the algorithms we present in this thesis.

20

Chapter 3

Planning with Physics-Based

Adaptive Motion Primitives

Robot manipulation in cluttered scenes often requires contact-rich interactions with

objects. It can be more economical to interact via non-prehensile actions, for example,

push through other objects to get to the desired grasp pose, instead of deliberate

prehensile rearrangement of the scene. For each object in a scene, depending on its

properties, the robot may or may not be allowed to make contact with, tilt, or topple

it. To ensure that these constraints are satisfied during non-prehensile interactions,

a planner can query a physics-based simulator to evaluate the complex multi-body

interactions caused by robot actions. Unfortunately, it is infeasible to query the

simulator for thousands of actions that need to be evaluated in a typical planning

problem as each simulation is time-consuming. The first contribution of this thesis

shows that (i) manipulation tasks (specifically pick-and-place style tasks from a

tabletop or a refrigerator) can often be solved by restricting robot-object interactions

to adaptive motion primitives in a plan, (ii) these actions can be incorporated as

subgoals within a multi-heuristic search framework, and (iii) limiting interactions to

these actions can help reduce the time spent querying the simulator during planning

by up to 40× in comparison to baseline algorithms. Our algorithm is evaluated

in simulation and in the real-world on a PR2 robot using PyBullet as our physics-

based simulator. The work included in this chapter was published in [130], and the

accompanying video can be viewed at this link: https://youtu.be/ABQc7JbeJPM.

21

https://youtu.be/ABQc7JbeJPM

3. Planning with Physics-Based Adaptive Motion Primitives

3.1 Introduction

Manipulation planning problems in domestic households, industrial manufacturing

and warehouses require contact-rich interactions between a robot and the objects

in the environment. As the amount of clutter in a scene increases, the likelihood

of finding a completely collision-free trajectory for the manipulator decreases. This

does not mean the task is impossible since we might still be able to complete it by

moving the objects around. In these cases, non-prehensile interactions with objects

can be much faster than deliberately rearranging the scene via a sequence of slow

pick-and-place style prehensile maneuvers. In addition, each object in a cluttered

scene is associated with constraints that define how a robot can manipulate it. For

example, while we might be allowed to interact freely with a box of sugar, we might

not be allowed to tilt or topple a cup of coffee.

We want to enable robots to grasp in clutter by using non-prehensile actions to

interact with objects while satisfying any object-centric constraints, e.g. constraints

that dictate whether or not we can make contact with, tilt, or topple an object. This

domain of Manipulation Among Movable Obstacles (MAMO) [144] is derived from

prior work on Navigation Among Movable Obstacles (NAMO) [143, 165]. Planning

problems for NAMO aim to find a feasible path between start and goal states for a

mobile robot navigating in an environment with reconfigurable obstacles1. We focus

on the class of MAMO problems where the goal for the robot manipulator is a 6D

pre-grasp pose of an object in SE(3) without any constraints on the final poses of

the movable objects. The task of planning the grasp itself is not addressed by our

algorithm.

3.1.1 Challenges

Motion planning for MAMO is computationally costly because of two major challenges.

First, we need to accurately model the dynamics of the robot-object and object-object

interactions in the environment during planning. This requires the use of a high-

fidelity physics-based simulator since hand-designed analytical models are hard to

generalise for complex object geometries and cluttered scenes. The simulator is used

1In this work ‘objects’ may be movable, but ‘obstacles’ are immovable.

22

3. Planning with Physics-Based Adaptive Motion Primitives

Figure 3.1: Manipulation tasks in cluttered tabletop (left) or refrigerator (right)
workspaces require planners to account for complex multi-body interactions between
the robot and objects (blue movable objects and red immovable obstacles). The goal
is to pickup a randomly selected immovable obstacle.

to model the environment and predict the outcome of actions. The computational

cost associated with running a simulator is high, which makes it infeasible to query

the simulator for every action that needs to be evaluated. The second challenge is

associated with the search space of the problem. Since the robot may interact with

objects in the scene and reconfigure them, the search space needs to include the

configuration space of all these objects. This makes the search space for a planning

problem in this domain grow exponentially with the number of objects, and makes it

computationally hard to find a solution.

3.1.2 Contribution

In this chapter, we make an observation that many MAMO problems can be solved

effectively by restricting robot-object interactions to adaptive motion primitives and

show how this observation can be exploited to structure an efficient search for a

contact-rich motion. Adaptive motion primitives (AMPs, Section 3.3.3) are long-range

actions generated on-the-fly such that they terminate in a valid goal state [24]. In

our domain, they are straight lines in the configuration space of the robot, between

two states whose end-effector Cartesian coordinates are within δ of each other in

Euclidean norm. Since the goal in our domain is defined in the workspace of the

robot, an AMP is computed by linearly interpolating between a state that satisfies

23

3. Planning with Physics-Based Adaptive Motion Primitives

the δ threshold condition and an inverse kinematics (IK) solution of the goal pose.

Our central assumption in this chapter limits robot-object interactions to the final

action (an AMP) in a plan. This restriction limits the class of MAMO problems solvable

by our algorithm to ones that require at most one robot action near the goal to make

contact with the objects in the scene. We test our algorithm on random initialisations

of the cluttered tabletop and refrigerator scenes from Figure 3.1. Empirically our

results in Section 3.5 show that even with this restriction, our algorithm solves many

MAMO planning problems and is up to 40× faster than competitive baselines in our

experiments.

Our main contributions towards robot manipulation planning among movable

obstacles include:

� a two-stage planning approach where we first sample promising AMPs in parallel,

and then systematically use them in our planning algorithm to find a solution.

� the use of these AMPs as subgoals within a multi-heuristic search algorithm.

� an action evaluation scheme that minimises the time spent querying a simulator

during planning.

3.2 Related Work

The domain of Manipulation Among Movable Obstacles (MAMO) is closely tied to

prior work in the field of Navigation Among Movable Obstacles (NAMO) [143, 165].

Lynch and Mason [93] studied the mechanics of pushing maneuvers and used them in

a planner to solve early NAMO problems. Past works in the MAMO domain have

taken one of two popular approaches - either solving problems via a sequence of

pick-and-place style maneuvers [144], or limiting solutions to only planar robot-object

interactions [35, 70, 159]. The rearrangement planning problem was extensively

studied by King [68] in their thesis which focused on non-prehensile interactions.

Manipulation planning in clutter with non-prehensile interactions has also seen

solutions that make use of model predictive control [66], human guidance [110], and

reinforcement learning [116].

We use a physics-based simulator in-the-loop during planning to account for dy-

namics of robot-object and object-object interactions in the scene. Plaku et. al. [118]

24

3. Planning with Physics-Based Adaptive Motion Primitives

decompose the planning problem into a high-level discrete space, and a low-level

sampling-based planner with a complex dynamics model (physics-based simulator).

Zickler and Veloso [176] attempt to solve physics-based planning problems with the

help of high-level, long-range robot behaviours. Dogar et. al. [36] simulate and

cache multiple robot-object interactions, and use their result during planning to

find feasible solutions. However, they do not allow any object-object interactions,

which can be unavoidable in cluttered MAMO scenes. Similar to our work, the idea

of planning till the proximity of the goal and using a more expensive specialized

maneuver from within this proximity can be seen in [157] in the context of grasp

planning. Most relevant to our work in this paper are: a sampling-based planning

algorithm KPIECE [147] and a search-based planning algorithm Selective Simu-

lation [148]. Each uses different approaches to incorporate a simulator in-the-loop

during planning. KPIECE is a sampling-based planner for applications with com-

plex dynamics that uses an importance function over discretised cells of the robot

workspace to guide exploration, but calls the simulator for all action evaluations. This

is very computationally expensive for MAMO and in our experimental comparisons

with KPIECE we show that intelligently limiting the number of simulator queries

can improve quantitative performance. Selective Simulation iteratively plans with

simulations in a reduced search space (accounting for some objects) and executes

the plan in a simulator (with all objects). If any object constraints are violated

upon execution, it decides on one of these objects to be added to the search space

for the next planning iteration. However, in the original paper Selective Simulation

was evaluated for simple constraints of contact or toppling off the table. In addition

to these, we consider constraints on how far obstacles can be tilted and how much

velocity can be imparted to them. Selective Simulation is also prone to repeated

simulations of similar actions which is time consuming and something we explicitly

account for in our work with soft duplicate detection. Our experimental analysis also

includes comparison with Selective Simulation.

3.3 Approach

In this section we present our work on solving MAMO problems formulated in

Section 2.3. Our solution involves simulating only goal-directed AMPs, and deferring

25

3. Planning with Physics-Based Adaptive Motion Primitives

simulation of these actions until absolutely necessary.

3.3.1 Graph Representation

We solve MAMO planning problems using a search-based planning algorithm in X .

Our graph representation contains two types of actions in A - simple primitives and

adaptive motion primitives (AMPs). Each simple primitive changes one joint angle of

a robot by a small amount2. In comparison, an AMP is computed on the fly and can

change all coordinates in XR. A consequence of our core assumption (Section 3.3.4)

is that for simple primitives as ∈ A, a valid transition x′ = T (x, as) implies that the

state x and the successor state x′ only differ in the robot configuration (in XR). To

be precise, for x, x′ ∈ X , as ∈ A and x′ = T (x, as), x and x′ differ only in one robot

DoF in XR. For AMPs aAMP ∈ A, a valid transition x′ = T (x, aAMP) can lead to

differences in object configurations (XO1 × · · · × XOn) in addition to a difference in

all robot DoFs in XR.

We search over the graph G = (V,E) where the vertex set V ⊂ XR and edges

e = (xi, xj) ∈ E correspond to actions a ∈ A such that xj = T (xi, a). Let FK : XR →
SE(3) be the forward kinematics function for the robot. Similarly let IK : SE(3)→
XR be the inverse kinematics function. For x ∈ XR and some user-defined threshold

δ > 0, if the Cartesian end-effector distance to the goal ‖FK(x) − XG‖< δ, we add

AMP edges e = (x, IK(XG)) to our graph. All other edges correspond to simple motion

primitives as ∈ A.

3.3.2 Action Evaluation

Following the ideas outlined in [148], we decompose our action evaluation scheme into

a relatively fast collision checking routine and a much slower physics-based simulation.

Collision checking involves checking for volumetric overlaps between the collision

models of the robot and objects. This is computationally a relatively cheap operation

that can be easily implemented with the use of a distance field. If and when necessary,

an action that passes this collision checking phase might need to be simulated to

determine whether or not it violates any object constraints.

2In our implementation, 4◦ or 7◦ depending on the joint.

26

3. Planning with Physics-Based Adaptive Motion Primitives

The set of objects O in a scene can be separated into two subsets - movable objects

OM that the robot is allowed to interact with, and immovable obstacles OI = O\OM .

We assume that this separation is known a priori.

Definition 1 (Phase 1 validity). We say an action a ∈ A from state x ∈ XV is Phase

1 valid if it does not make contact with any immovable obstacle O ∈ OI .
Definition 2 (Phase 2 validity). We say an action a ∈ A from state x ∈ XV is Phase

2 valid if it is Phase 1 valid and it does not result in any object constraint violations.

The fast collision checking routine is used to determine Phase 1 validity of an

action as it can quickly detect overlaps with immovable obstacles. This can also

determine Phase 2 validity if there is no overlap with any object. Note that for

a ∈ A, x ∈ XV , x′ = T (x, a), we call the collision checking routine for all intermediate

states between x and x′, including x′ but not x. In the case when an action is Phase 1

valid, but also makes contact with some movable object(s), Phase 2 validity can only

be determined after simulating the action. This is because we need to account for the

complex multi-body interactions that might result upon executing the action. These

interactions might violate object constraints due to a movable object-immovable

obstacle contact, or the robot violating other movable object constraints such as

tilting or toppling. We emphasise that determining Phase 1 validity of an action

is computationally much cheaper (around 30ms per action evaluation for a 7 DoF

manipulator) than determining Phase 2 validity which requires simulating the action

(e.g., around 1.5s per action of a 7 DoF manipulator in PyBullet).

3.3.3 Adaptive Motion Primitives

Adaptive motion primitives (AMPs) are IK-based motion primitives that are generated

on-the-fly as part of our algorithm [24] and included in A. For any robot configuration

x ∈ XR, if the robot’s 3D Cartesian end-effector pose is within δ = 0.2m of the goal

end-effector pose XG, we generate an AMP that tries to connect x to XG. This is done

by obtaining an IK solution xG = IK(XG) ∈ XR, and linearly interpolating between

x and xG. We choose this value of δ based on basic domain knowledge like the size

of our workspaces and obstacles therein. We did not tune this value to improve

performance. The 3D Cartesian distance between end effector poses ‖FK(x)−XG‖ is

computed while accounting for immovable obstacles. This prevents AMPs from being

27

3. Planning with Physics-Based Adaptive Motion Primitives

Movable Object Immovable Obstacle

Figure 3.2: For a particular goal state configuration xG ∈ XR, we can generate AMPs
from several states xi within distance δ from it. This δ-sphere in configuration space
XR might be occupied by both movable (blue) objects and immovable (red) obstacles.
This can lead to invalid actions a1, a2, valid action a3, and Phase 1 valid action a4
whose Phase 2 validity will be determined after simulation.

generated from poses close to the goal that have an immovable obstacle in the way.

We refer to the set of robot configurations from which an AMP can be generated as

the “δ-sphere in configuration space” (around goal XG).

The validity of an AMP (Phase 1 or Phase 2) is dependent on checking all

interpolated states between x and xG. Figure 3.2 shows our action evaluation strategy

from Section 3.3.2 for AMPs. Since AMPs terminate in a goal state, they can only be

included in valid paths as the final action.

3.3.4 Assumptions

We make one assumption for solving MAMO planning problems in this chapter which

is closely related to AMPs and their use in our search algorithm. In this subsection

we hope to provide an intuitive justification for this assumption.

Assumption 1. We only need to simulate AMPs to find a valid solution for a MAMO

planning problem.

For grasping and reaching in cluttered scenes like those we consider in this chapter,

28

3. Planning with Physics-Based Adaptive Motion Primitives

Movable Object
Immovable Obstacle

Start

Goal

Figure 3.3: Consider planning between start and goal configurations shown on the
left. A “greedy” shortest-path search algorithm in the MAMO domain would proceed
along the dotted path, exploring states in the light blue region, and spend a lot of
time simulating interactions with object O2 near the purple state v. Due to the
assumptions we make, our search algorithm SPAMP proceeds along the dashed path
via orange states u, and only starts simulating AMPs from states beyond u′ in the
δ-sphere around goal xG.

there is a large volume of object-free space between the start configuration and goal

region. Interactions with objects are necessary when the robot is in a region with a

high degree of clutter. The tabletop and refrigerator workspaces we consider in this

chapter contain clutter near the goal which is often the most pertinent for finding a

feasible plan. Based on this observation we delay interacting with objects until the

robot reaches a configuration near the goal.

For a preset value of δ, we restrict robot-object interactions until the end-effector

is within δ of the goal pose. Since AMPs are long-range actions contained inside this

δ-sphere, interactions that are vital to the success of a plan are often the terminal

AMPs in a plan (in comparison to the short-range simple primitives which do not

lead to meaningful interactions). This leads us to Assumption 1. Consequently,

since AMPs are terminal actions, the valid solution paths we find only contain a

single action which interacts with obstacles. It is important to note that restricting

interactions to a single action does not limit the number of objects the robot can

interact with. We illustrate the effect of Assumption 1 in Figure 3.3 by comparing

29

3. Planning with Physics-Based Adaptive Motion Primitives

Movable Object

Immovable Obstacle

Figure 3.4: In case there is no interaction-free path between start state xS and the
δ-sphere around any goal state xG, our assumption of only simulating terminal AMPs
will cause our algorithm to not return a solution. A greater value of δ in this case
could make this problem solvable by our algorithm.

our algorithm against a naive search algorithm.

This assumption restricts the space of MAMO planning problems solvable by our

algorithm to those that require at most one AMP to interact with objects near the

goal configuration. Our success rates from Section 3.5 suggest that this assumption is

not restrictive for the scenes we consider in this chapter (Figure 3.1). In cases where

no such configuration near the goal is achievable by the manipulator as shown in

Figure 3.4, our algorithm will fail to find a solution. It might still be possible to find

solutions in these cases by dynamically changing δ to find a valid AMP, but we have

not explored this yet.

Assumption 1 helps us deal with the two major computational challenges for

MAMO:

1. The number of calls to the simulator go down significantly, as we now only

simulate terminal AMPs that interact with movable objects as opposed to any

action that interacts with movable objects.

2. Since only terminal AMPs might be simulated, we can plan from xS to inside

the δ-sphere around some goal configuration purely in XR. This means that

the search space for finding a path from xS to xT−1 (the penultimate state in a

solution path) reduces from X = XR×XO1 × · · · ×XOn to XR, thereby tackling

the issue of a prohibitively large search space in cluttered environments.

30

3. Planning with Physics-Based Adaptive Motion Primitives

3.3.5 Subgoals

We solve MAMO planning problems using a search-based planning algorithm. The

performance of these algorithms is dependent on the quality of the heuristic functions

used. As it is often infeasible to create a single heuristic that can perfectly guide the

search from start to goal in all scenarios, it is common practice in high-dimensional

spaces to use a multi-heuristic framework. Multiple heuristics guide the search along

multiple promising directions, which can help overcome local minima associated with

any one heuristic.

Given the fact that simulations are the computational bottleneck in our domain,

and the assumption that we only simulate AMPs, it is helpful to guide a search-based

planning algorithm to regions of the search space where a valid AMP likely exists.

Our two-stage planning approach discussed in Section 3.4 first finds AMPs that are

Phase 1 or Phase 2 valid, and generates heuristic functions that guide the search to

the beginning of these actions. For an AMP from state xT−1 ∈ XV , the corresponding

heuristic function is a simple Euclidean distance from xT−1 in XR3. This first stage

is run in parallel across multiple simulator instances, one per AMP sampled. The

second stage runs a multi-heuristic search to find a path from start state xS to a goal

state in XG.

The beginning of the AMP xT−1 can be thought of as a subgoal for the planner

since we guide the search towards it. While it is not necessary to reach the subgoal,

the use of a heuristic centered on the subgoal implies that exploring the search space

near it can help find a solution.

If an AMP aAMP is Phase 2 valid, and the subgoal xT−1 is reachable without

making contact with any object, we do not need to simulate actions on the way to

xT−1. It suffices to find a collision-free path in XR from start xS to xT−1, and append

xT = T (xT−1, aAMP) for a valid MAMO solution.

If we only have access to Phase 1 valid subgoals, we allow our planning algorithm

to simulate any Phase 1 valid AMPs that are generated during the search. To account

for the rare case when a subgoal is Phase 2 valid and unreachable (perhaps due to

kinematic limits or a scenario like Figure 3.4), we allow our planner to simulate Phase

3We refer to the start state of an AMP as xT−1 since AMPs are necessarily terminal actions in
any potential solution plan between xT−1 and xT ∈ XG

31

3. Planning with Physics-Based Adaptive Motion Primitives

Movable Object
Immovable Obstacle

Figure 3.5: If an AMP from any xl ∈ L is found to be invalid, we postpone the
simulation of AMPs from any other state x that is within β distance from it by
inflating the heuristic value of that action.

1 valid AMPs after time t has elapsed during planning (Algorithm 2, Line 3)4. This

is implemented by maintaining a priority queue of all Phase 1 valid AMPs generated

by the search, and simulating them in order after time t.

3.3.6 Soft Duplicate Detection for Action Evaluation

Assumption 1 states that we only simulate Phase 1 valid AMPs during planning.

However, since the number of such AMPs in cluttered environments can be very large,

we further optimise the calls to the simulator by employing a soft duplicate action

detection scheme [39].

Soft duplicate detection estimates the similarity between an action that needs

to be evaluated in simulation and an action that has already been simulated and

deemed invalid (one which violated object constraints). If they are very similar then

it is likely that the new action would also violate some of the same constraints and

be invalid. The idea of preferring promising actions based on the validity of similar

actions can also be found in [55].

4We set t = 30s for our experiments.

32

3. Planning with Physics-Based Adaptive Motion Primitives

We maintain a list of states L from which an AMP has been simulated and found

to be invalid. For any new state x ∈ XV from which we find a Phase 1 valid AMP, we

first compute its Euclidean distances in XR to states in L. Given a preset threshold

β, if ‖x− xl‖2< β for any xl ∈ L we postpone the simulation of the AMP from x by

artificially inflating the heuristic value of x and re-inserting it into the priority queue

it was expanded from. This ensures that x might be re-expanded from the same

priority queue at a later time, at which point we would simulate the AMP from it to

a goal configuration. Figure 3.5 shows how this process implicitly creates β-spheres

in configuration space around states that lead to invalid AMPs due to any constraint

violation.

3.4 Algorithm

Algorithm 2 Simulation-based Planning with AMPs (SPAMP)

Input: Planning problem P , number of AMP subgoals N , number of AMP samples
M , simulation start time tsim, planning timeout tmax

Output: solution path π

1: procedure SPAMP(P , N,M, tsim, tmax)
2: H ← GetValidSubgoals(N,M) . Phase 1 or Phase 2 valid subgoals.
3: t← tsim . Simulations are allowed starting from time t.
4: if |H|= 0 or |IsPhase2Valid(H)|= 0 then
5: t← 0 . |·| is the set cardinality operation.

6: OPEN ← InitialiseHeuristics(H)
7: π ← Plan(P , H,OPEN, t, tmax)
8: return π

Algorithm 2 is a high-level overview of our two-stage planning pipeline. We call

our algorithm Simulation-based Planning with AMPs (SPAMP). The GetValid-

Subgoals subroutine in Line 2 selects subgoals via rejection sampling. M Phase

1 valid AMPs are randomly sampled and simulated in parallel. N Phase 2 valid

subgoals are returned (if available), else a combination of Phase 1 and Phase 2 valid

make up the N returned subgoals (first stage). This section goes into more details

about our specific planning algorithm from Line 7 of Algorithm 2 (second stage).

33

3. Planning with Physics-Based Adaptive Motion Primitives

3.4.1 Multi-Heuristic Framework for MAMO

We use Multi-Heuristic A* (MHA*) [3] as our search algorithm in this work. MHA*

maintains multiple priority queues, one for each heuristic that is used. It was originally

developed under the assumption that all action evaluations take roughly the same

amount of time. This meant priority queues could be selected round robin for

state expansions to equitably distribute computational resources across the queues.

However, our action evaluations have varying time complexity (checking for Phase 1

vs. Phase 2 validity). Expanding a state from which an AMP has to be simulated is

far more expensive than expanding a state from which we do not have to simulate

any action. Since some queues might need many simulator calls, and some queues

might never query the simulator, a simple round robin strategy would lead to an

uneven distribution of computational resources across the queues. For this reason,

we prioritise state expansions from queues that the search has spent the least time

expanding states from thus far. This time-based prioritisation of queues in MHA*

leads to a much more equitable allocation of computational resources for MAMO.

3.4.2 Planning Algorithm

Algorithm 3 contains details from the preceding sections to provide a more in-depth

look at our planning algorithm. Details of the MHA* planning algorithm can be

found in the original publication [3]. In our algorithm, OPEN is a set of priority

queues, each of which is defined by a heuristic function. Following standard MHA*

terminology, our anchor heuristic is a 3D Breadth-First Search (BFS) heuristic

computed from the specified Cartesian goal end-effector position [23], taking into

account the immovable obstacles in the scene. Every other heuristic is defined by a

corresponding AMP subgoal as per Section 3.3.5. The action set A is made up of the

simple primitives and AMPs via the function GenerateAMP which can dynamically

generate AMPs if the requisite conditions are satisfied. Simple primitives and AMPs

are denoted by as and aAMP respectively (Section 3.3.1).

SPAMP terminates if the next-best state to expand x is in the goal set or we

have already found a Phase 2 valid AMP from it. For every other x, the Expand

function generates and evaluates all possible successor states of x. These necessarily

include successors x′ = T (x, as)∀ as ∈ A (Line 13). In addition, we may generate

34

3. Planning with Physics-Based Adaptive Motion Primitives

Algorithm 3 SPAMP Planner

1: procedure Plan(P , H,OPEN, t, tmax))
2: Insert(OPEN, xS) . Add to all queues.
3: while OPEN is not empty do
4: h← BestQueue(OPEN) . Time-based selection.
5: x← BestState(h) . Pop from all queues.
6: if x ∈ XG then
7: return ExtractPath(x)

8: if ∃ Phase 2 valid AMP from x ∈ H then
9: aAMP ← Phase 2 valid AMP from x ∈ H

10: return ExtractPath(x) ∪ {T (x, aAMP)}
11: Expand(x,OPEN, t)

12: procedure Expand(x,OPEN, t)
13: for as ∈ A do . Simple primitives only.
14: x′ ← T (x, a).
15: if x′ ∈ XV then
16: Insert(OPEN, x′)

17: if ‖FK(x)−XG‖≤ δ then . 3D end-effector poses.
18: if x has soft duplicate then
19: InflateHeuristic(x)
20: Insert(OPEN, x)
21: return
22: xG ← IK(XG) . Inverse kinematics.
23: aAMP ← GenerateAMP(x, xG)
24: if IsPhase1Valid(aAMP) then
25: if IsInteraction(aAMP) and telapsed > t then
26: x′ ← Simulate(aAMP)
27: if x′ ∈ XV then
28: Insert(OPEN, x′)
29: else
30: Insert(L, x)

31: else if not Interaction(aAMP) then
32: x′ ← T (x, aAMP).
33: Insert(OPEN, x′)

35

3. Planning with Physics-Based Adaptive Motion Primitives

Table 3.1: Quantitative evaluation of simulated tabletop MAMO experiments

Planning Algorithms

Metrics Scenario SPAMP K1 K2 K3 SS SS2

Success % Overall 99% 91% 92% 85% 87% 91%

Planning
Time (s)

Easy 5 ± 5 267 ± 301 339 ± 351 211 ± 369 6 ± 20 8 ± 26
Difficult 11 ± 16 318 ± 310 464 ± 416 210 ± 327 22 ± 41 38 ± 55

Simulation
Time (s)

Easy 0 ± 0 267 ± 301 339 ± 351 42 ± 88 4 ± 18 4 ± 14
Difficult 1 ± 7 318 ± 310 463 ± 415 90 ± 131 4 ± 14 16 ± 31

and evaluate an AMP from x to xG ∈ XR, an inverse-kinematics solution for XG
(Line 22). This evaluation (Line 23 onwards) occurs if x passes the end-effector

distance check (Line 17) and soft duplicate check (Line 18). The IsInteraction

function returns true if aAMP ‘collides’ with a movable object during the Phase 1

validity check (Line 24).

3.5 Experimental Results

We run all our experiments on the PR2 robot and use PyBullet [27] as our physics-

based simulator. We run experiments in two different workspaces - a tabletop and a

refrigerator. The objects in a scene are divided into immovable and movable subsets

prior to planning. The robot is allowed to interact with the movable objects but

cannot tilt them excessively, cause them to fall over or outside the workspace (table

or refrigerator), or impart high velocities. Neither the robot nor any movable object

can make contact with immovable obstacles.

3.5.1 Comparative Quantitative Evaluation in Simulation

We compare the performance of our algorithm Simulation-based Planning with AMPs

(SPAMP) against relevant state-of-the-art baseline algorithms that can be applied to

the MAMO domain - KPIECE [147] and Selective Simulation (SS) [148], which were

described in Section 3.2. Three variants of KPIECE were tested. The first two use

use the KPIECE implementation from OMPL [146], but differ in how goal biasing

is implemented. K1 precomputes a set of 3 valid goal configurations by running IK

36

3. Planning with Physics-Based Adaptive Motion Primitives

Table 3.2: Quantitative evaluation of simulated refrigerator MAMO experiments

Planning Algorithms

Metrics Scenario SPAMP K1 K2 K3 SS SS2

Success % Overall 93% 51% 38% 94% 87% 91%

Planning
Time (s)

Easy 3 ± 3 116 ± 293 210 ± 443 167 ± 222 7 ± 22 14 ± 57
Difficult 8 ± 13 58 ± 119 128 ± 335 249 ± 425 57 ± 126 63 ± 157

Simulation
Time (s)

Easy 0 ± 0 116 ± 293 208 ± 441 50 ± 89 3 ± 18 8 ± 35
Difficult 1 ± 6 57 ± 118 137 ± 334 44 ± 92 20 ± 82 24 ± 62

before planning. K2 runs IK online (with random seeds) every time the search tree

is grown towards the goal. K3 is our implementation of KPIECE5. The projective

space for all KPIECE algorithms is the 3D Cartesian coordinate for the end-effector

(via robot forward kinematics). In addition, we implemented a modified version of

Selective Simulation (SS2) which includes soft duplicate detection on top of SS.

A planning problem is initialised with objects selected at random from the YCB

Object Dataset [16]. Objects are placed in the workspace at random. The goal for

the PR2 is to reach a pre-grasp pose for an immovable obstacle. Object masses are

obtained from the YCB dataset, and their PyBullet friction coefficients are randomly

sampled from the interval [0.5, 1.1] as the dataset does not provide any friction

coefficient values. We run all planners on 180 randomly initialised planning problems

in both workspaces.

Tables 3.1 and 3.2 show quantitative results for all planners. We use 12 objects on

the tabletop (6 movable and 6 immovable), and 5 objects in the refrigerator (3 movable

and 2 immovable)6. Sample initialisations of these workspaces are shown in Figure 3.1.

SPAMP uses N = 3 subgoals from M = 8 samples in GetValidSubgoals. All

planners were given a maximum planning time of 1800s. We divide all planning

problems into two scenarios based on how long it takes a Naive planner (a vanilla

MHA* algorithm with only the 3D BFS heuristic to the goal) to solve them. Naive

uses the action evaluation scheme from Section 3.3.2 and simulates all Phase 1 valid

AMPs. Problems solved by Naive in less than 100s are ‘Easy’, and the rest are

5Per [147], we implement multiple levels of discretisation, goal biasing, and add all intermediate
states of ‘motions’ to the search tree (something OMPL does not do). Additionally, we only simulate
Phase 1 valid motions.

6The tabletop is 0.6m× 0.8m, and refrigerator is 0.6m× 0.6m× 0.6m.

37

3. Planning with Physics-Based Adaptive Motion Primitives

‘Difficult’.

SPAMP achieves the highest success rate across all algorithms which shows that

our assumption from Section 3.3.4 is not too restrictive for the MAMO domain. In

terms of planning times, SPAMP is 30 − 50× faster than KPIECE, and 2 − 8×
faster than Selective Simulation. SS is most competitive in terms of planning times,

but it is still 2− 7× slower than SPAMP for difficult planning problems. By design,

SPAMP spends most of the simulation time finding valid subgoals for the search

which is still comparable to SS, and one or two orders of magnitude less than the

other baseline algorithms.

KPIECE by default simulates all actions in the search tree, spends almost all of

its planning time in simulation, and in OMPL samples a random state in XR 95%

of the time (XR ⊂ R7 for a PR2 arm). Since each simulation takes around 1.5s,

and mostly random point-to-point exploration of XR (as implemented in OMPL) is

wasteful, planning times grow quickly with the number of actions KPIECE evaluates.

3.5.2 Runs on a Physical Robot

We setup the tabletop workspace experiment with the PR2 robot in our laboratory.

We also set up a rudimentary experiment to calculate the coefficient of static friction

as the tangent of the incline angle of the table at which the objects start sliding. We

used this friction coefficient in our simulator in an attempt to minimise the sim-to-real

gap. We selected 6 objects at random to initialise our scene and used a search-based

object localisation algorithm [1] on an NVidia TITAN X GPU to detect the object

poses for simulator initialisation. SPAMP was given a 30s planning timeout, and

objects were instantiated in the simulator as movable with 75% probability.

The quantitative data from execution of 39 plans on the physical robot is shown

in Table 3.3. A success rate of 82% means that in 7 out of 39 of the executions, the

robot violated an obstacle constraint in the real-world. Since the plan found by the

robot must have been valid in simulation, constraint violations in the real-world are

due to a mismatch between the simulator and the real-world. This could occur due to

modeling errors for the obstacles, execution errors on the robot, or perception errors

in object localisation.

A qualitative assessment of the 39 executions indicates that the two main sources

38

3. Planning with Physics-Based Adaptive Motion Primitives

Figure 3.6: Experimental setup for a PR2 robot in front of a tabletop workspace for
MAMO.

Table 3.3: Quantitative Performance for Real-World Experiments

Metrics

Algorithm Success Rate Planning Time (s) Simulation Time (s)

SPAMP 82% 2 ± 4 0.8 ± 0.6

of error in our experiment were inaccurate friction coefficients and object localisa-

tions. Figure 3.6 shows an image of our experimental setup. A supplemental video

(https://youtu.be/ABQc7JbeJPM) also includes successful executions by the PR2 in

a refrigerator and cabinet workspace.

3.5.3 In-Depth Analysis of SPAMP in Simulation

To get a better understanding of the quantitative performance of SPAMP, we

conducted experiments to highlight the effect of various components. For our first

experiment, we highlight the effect of subgoals and soft duplicate detection. We

consider four different planning algorithms - Naive is a vanilla MHA* algorithm with

only the 3D BFS heuristic to the goal; Naive+DD uses soft duplicate detection on

top of the Naive planner, everything else being the same; SubG uses one randomly

sampled Phase 1 valid AMP as a subgoal in MHA*; and SubG+DD uses soft duplicate

detection on top of the SubG planner. Problems in this experiment are initialised

39

https://youtu.be/ABQc7JbeJPM

3. Planning with Physics-Based Adaptive Motion Primitives

Table 3.4: Effect of Subgoals and Soft duplicate detection

Metrics Scenario
Planning Algorithms

Naive Naive+DD SubG SubG+DD

Success
Rate Overall 90% 92% 95% 96%

Planning
Time (s)

Easy 13 ± 22 9 ± 21 7 ± 14 6 ± 10
Difficult 433 ± 388 188 ± 264 58 ± 108 39 ± 97

Table 3.5: Quantitative Performance of SPAMP Variants (Tabletop)

Metrics Scenario
Planning Algorithms

Naive Naive+DD Phase1 SPAMP

Success
Rate Overall 85% 92% 97% 99%

Planning
Time (s)

Easy 16 ± 22 14 ± 37 13 ± 101 5 ± 5
Difficult 524 ± 439 379 ± 461 48 ± 218 11 ± 16

Simulation
Time (s)

Easy 7 ± 13 4 ± 7 5 ± 11 0 ± 0
Difficult 130 ± 292 63 ± 136 18 ± 62 1 ± 7

with 8 movable objects on the tabletop. Table 3.4 shows the quantitative benefits

of subgoals and soft duplicate detection individually, and that in tandem they can

greatly improve performance over the Naive planner, which can be considered a

lower-bound on performance for any planning algorithm in this domain.

In a second experiment, we compare the performance of SPAMP against three

related variants on the same tabletop workspace experiment from Section 3.5.1. We

compare against Naive, Naive+DD, and also a planner (Phase1) which randomly

samples N = 3 Phase 1 valid AMPs without simulation for use as subgoals. All three

of these baselines are allowed to simulate AMPs from within the δ-sphere of a goal

configuration from the outset. Table 3.5 shows that while simply using Phase 1 valid

subgoals has clear benefits over not using them, the necessary reliance on simulating

all Phase 1 valid AMPs leads to higher simulation times, and thereby higher planning

times, as compared to SPAMP.

All planners in this section utilise Assumption 1 from Section 3.3.4. If a planning

problem is unsolvable due to the assumption being violated, that failure is common to

all planners. All other failures for the experiments in this section are due to planners

40

3. Planning with Physics-Based Adaptive Motion Primitives

exceeding the timeout (1800s).

3.6 Discussion & Future Work

In this chapter we present SPAMP, an algorithm for Simulation-based Planning with

Adaptive Motion Primitives for the MAMO domain. We use AMPs as subgoals within a

multi-heuristic search framework to solve manipulation planning problems in cluttered

scenes. SPAMP improves planning times by up to 40− 80× over KPIECE, and

up to 2− 8× over Selective Simulation, two state-of-the-art baselines for the MAMO

domain. SPAMP also reduces simulation times by up to 20− 40× in comparison to

these baselines. We show that our assumption of restricting robot-object interactions

to terminal AMPs in a plan is not restrictive since we solve 93− 99% of all problems.

In ongoing and future work as part of this thesis, we relax our assumption that

interactions may only occur during terminal AMPs in order to solve all planning

problems in the MAMO domain.

41

3. Planning with Physics-Based Adaptive Motion Primitives

42

Chapter 4

Multi-Agent Pathfinding for

Manipulation Among Movable

Objects

The work in Chapter 3 of this thesis relied on the key insight that for a certain class

of MAMO problems, we can defer robot-object interactions until the robot is close

to the goal. The defining factor of this class of MAMO problems is a relatively high

volume of object-free space near the goal region. In such scenes it is possible for the

robot to get close to the goal (within the δ-sphere) without making contact with

any object. This assumption is easily violated when (i) there is significant clutter

between the robot and the goal, and (ii) a top-down grasp of the desired object is

impossible due to tight workspace constraints. Such situations can arise in cluttered

shelves in domestic refrigerators and cupboards, and warehouse bins as seen in the

Amazon Picking Challenge [26]. Together, these two conditions ensure that a robot

manipulator needs to reason about rearranging the clutter in the scene in order to

grasp and extract an object-of-interest. Our goal in this chapter is to build this

type of reasoning into a manipulation planning algorithm for pick-and-place tasks in

densely cluttered environments.

Real-world manipulation problems in heavy clutter require robots to reason about

potential contacts with objects in the environment. We focus on pick-and-place style

tasks to retrieve a target object from a shelf where some ‘movable’ objects must be

43

4. Multi-Agent Pathfinding for Manipulation Among Movable Objects

rearranged in order to solve the task. In particular, our motivation is to allow the

robot to reason over and consider non-prehensile rearrangement actions that lead to

complex robot-object and object-object interactions where multiple objects might be

moved by the robot simultaneously, and objects might tilt, lean on each other, or

topple. To support this, we query a physics-based simulator to forward simulate these

interaction dynamics which makes action evaluation during planning computationally

very expensive. To make the planner tractable, we establish a connection between

the domain of Manipulation Among Movable Objects and Multi-Agent Pathfinding

that lets us decompose the problem into two phases our M4M algorithm iterates over.

First we solve a multi-agent planning problem that reasons about the configurations

of movable objects but does not forward simulate a physics model. Next, an arm

motion planning problem is solved that uses a physics-based simulator but does

not search over possible configurations of movable objects. We run simulated and

real-world experiments with the PR2 robot and compare against relevant baseline

algorithms. Our results highlight that M4M generates complex 3D interactions, and

solves at least twice as many problems as the baselines with competitive performance.

This chapter was first published as a paper in [128].

4.1 Introduction

Manipulation Among Movable Objects (MAMO) [144] defines a broad class of problems

where a robot must complete a manipulation task in the presence of obstructing

clutter. In heavily cluttered scenes, there may be no collision-free trajectory that

solves the task. This does not make the problem unsolvable since MAMO allows

rearrangement of some objects a priori designated as ‘movable’. In addition, MAMO

may associate each object with constraints on how it can be interacted with – it is

undesirable to allow robots to carelessly push or throw objects around.

In this chapter, we consider MAMO problems for pick-and-place manipulation

tasks where the robot needs to retrieve a target object from a cluttered shelf, cabinet,

fridge, or a similar structure. Figure 4.1 (a) shows an example of such a scene where

two movable objects must be rearranged in order to retrieve the desired object, while

ensuring they do not topple and no contacts are made with an immovable obstacle.

Solving such MAMO problems requires answers to three difficult questions: which

44

4. Multi-Agent Pathfinding for Manipulation Among Movable Objects

(a) (b)

Figure 4.1: (a) An example MAMO problem to retrieve the beer can (yellow outline).
Access is blocked by the movable box of milk and tub of yogurt (blue outlines). In
order to retrieve the can, they must be rearranged out of the way without toppling
them, and without anything making contact with the glass of juice (red outline). (b)
A complex non-prehensile action that tilts the movable potted meat can (blue outline)
to rearrange it.

objects to move, where to move them, and how to move them. Thus MAMO problems

assign the robot a goal with respect to the overall task and object-of-interest (OoI),

without any additional goal specifications for other objects except for satisfying

their associated interaction constraints; while MAMO solutions exist in a composite

configuration space that includes the configuration of the robot arm and all objects

in the scene. The search for a solution is computationally challenging since the size

of this space grows exponentially with the number of objects.

We are interested in non-prehensile rearrangement actions since they allow robots

to manipulate objects that may be too big or too bulky or otherwise ungraspable.

In many cases it is more time- and energy-efficient to push an object off to the side

than to grasp it, pick it up, move it elsewhere, place it down, and release it before

proceeding. Furthermore, we allow the robot to move multiple objects simultaneously

with the same push action, and we allow objects to tilt, lean on each other, and

slide (an example is shown in Figure 4.1 (b)). Planning with these actions requires

the ability to predict the effect of robot actions on the configuration of objects,

typically through computationally expensive forward simulations of a rigid-body

45

4. Multi-Agent Pathfinding for Manipulation Among Movable Objects

(a) (b) (c)

Figure 4.2: Sequence of images showing a solution found by our M4M algorithm for
a simple MAMO scene. From left to right : (a) initial scene, (b) rearranged scene after
one push action, (c) successful OoI retrieval. Movable objects are blue, immovable
obstacles are red, and the OoI is yellow.

physics simulator.

Our key insight in this work draws a connection between the MAMO domain and

Multi-Agent Pathfinding (MAPF) to decompose the problem into two parts. First, we

treat the movable objects as artificially actuated agents tasked with avoiding collisions

with (i) our robot arm retrieving the OoI, (ii) each other, and (iii) immovable obstacles.

A solution to this abstract MAPF problem searches over potential rearrangements

of objects without the need to query a physics simulator. Next, we use the MAPF

solution to compute informed push actions to rearrange movable objects without

searching over their possible configurations. These actions are forward simulated with

a physics model to ensure validity. The decomposition helps us keep track of object

configurations in the full SE(3) space and generate informed push actions that lead

to realistic multi-body interactions in the 3D workspace as shown in Figure 4.1 (b).

Fig 4.2 shows a complex and interesting solution found by our algorithm for one of

the simpler scenarios in our test data.

The main contributions of our work in this chapter for solving MAMO planning

problems are:

� Enable reasoning over and usage of complex non-prehensile interactions that

may push multiple objects in tandem and produce object-object interactions

like leaning and toppling (Figure 4.1 (b)).

� MAPF abstraction for computing suitable rearrangements for MAMO planning

problems, without using a simulation-based model.

46

4. Multi-Agent Pathfinding for Manipulation Among Movable Objects

� An efficient algorithm to solve MAMO problems that iterates between calls to

an MAPF solver (to determine which objects to move where) and a push planner

(to verify how to move the objects).

� A thorough experimental evaluation of our approach in simulation and in the

real-world on a PR2 robot.

We provide details of relevant works from MAMO literature in Section 4.2. Sec-

tion 4.3 formalises the MAMO planning problem. Section 4.4 presents our iterative

planning algorithm M4M, including the abstraction from MAMO to MAPF (Sec-

tion 4.4.1) and a non-prehensile push planner (Section 4.4.2). We provide extensive

quantitative evaluation against relevant MAMO baselines in simulation in Section 4.5

along with real-world results of our algorithm on the PR2 robot. Section 4.6 discusses

the benefits, limitations, and future extensions of this work.

4.2 Related Work

MAMO generalises Navigation Among Movable Obstacles (NAMO) where a mobile

robot must navigate from start to goal in a reconfigurable environment [5, 143, 165].

It is also related to the rearrangement planning problem [12, 108] which explicitly

specifies desired goal configurations for movable objects. Latombe [83] provides

an excellent review of early work in these domains which were limited to planar

environments and geometric solutions. Wilfong [165] showed that rearrangement

planning is PSPACE-hard, and MAMO problems are NP-hard to solve. Non-prehensile

actions were introduced in MAMO planning algorithms [93] based on analysis done

by Mason [97] on the mechanics of pushing.

MAMO problems can be formulated as task and motion planning problems [20, 65,

67, 103] where a high-level search reasons about all allowed rearrangements of the

workspace such that the manipulation task of OoI retrieval may be completed. The

success of these methods depends on how the high-level actions are parameterised.

Parameterisations that include more information – such as stable configurations and

grasp poses of objects – potentially lead to easier motion planning problems, provided

the parameters are sampled intelligently. In contrast, we rely on a MAPF abstraction

to guide our search towards a suitable rearrangement for completing the manipulation

47

4. Multi-Agent Pathfinding for Manipulation Among Movable Objects

task, and dynamically generate push strategies based on the MAPF solution.

Many existing MAMO and rearrangement planning solvers make use of prehensile

actions [79, 80, 86, 135, 144, 163]. This simplifies planning since grasped objects

behave as rigid bodies attached to the robot, but assumes access to known stable

configurations of and grasp poses for objects [79, 80, 135, 144]. In some cases a

“buffer” location to place grasped objects is required [86, 163]. In particular, [80]

and [135] utilise the concept of “pebble graphs” [75, 140] from MAPF literature to find

prehensile actions for rearrangement planning. Their formulation restricts the motion

of the movable objects (pebbles) on a precomputed roadmap of robot arm trajectories

via prehensile actions. This limits the possible configurations of objects they consider

since motions are limited to poses from where they can be grasped and to those where

they can be stably placed. Since we utilise non-prehensile pushes for rearrangement

and a physics-based simulator for action validation, our planner explores a richer

space of robot-object and object-object interactions in the 3D workspace.

Allowing non-prehensile interactions with objects typically requires access to

a simulation model to obtain the result of complex interaction dynamics [35, 59,

70, 148, 159, 161]. Of these approaches, only Selective Simulation [148] considers

realistic interactions in the 3D workspace and is one of our comparative baselines in

Section 4.5. Others rely on planar robot-object interactions which fail to account for

object dynamics in SE(3) where they might tilt, lean, or topple. In Section 4.5, we

adapt the MAMO solver from [35] to use our push actions that lead to 3D robot-object

interactions and require a physics simulator during planning. Originally their work

was limited to interacting with a single object at a time, and used an analytical motion

model in SE(2) to propagate the effect of the push on the planar configuration of the

object being pushed (tilting and toppling was not considered in [35, 59, 70, 159, 161]).

Querying physics-based simulators for the result of an action is much more

expensive than collision checking it. KPIECE [147] is a randomised algorithm for

planning with a computationally expensive transition model (querying a physics-based

simulator is an example of such a model). We compare against KPIECE in our

experiments in Section 4.5. In our own prior work on MAMO planning [130] from

Chapter 3, we find a collision-free trajectory to a region near the OoI grasp pose, and

simulate goal-directed non-prehensile actions only within this region. The assumption

that such a collision-free trajectory exists is easily violated in the cluttered MAMO

48

4. Multi-Agent Pathfinding for Manipulation Among Movable Objects

workspaces we instantiate in our experiments (see Figs. 4.1 (a), 4.6, and 4.7 for

example).

4.2.1 Multi-Agent Pathfinding

Multi-agent Pathfinding is a family of planning problems that tries to find paths

for a team of robots from a set of start locations to a set of goal locations. This

general formulation can give rise to many different types of problems based on the

homogeneity of the robot team, a centralised or decentralised planning algorithm, the

number of robots in the team and the number of goals to be achieved, and whether

the goals are labeled (specific goals for specific robots) or not. Additional factors that

can be important to consider include whether the environment is static or dynamic,

known or unknown, and whether there are inter-robot communication latencies. A

general introduction to multi-agent pathfinding can be found in [84, 134, 142].

One class of algorithms that solve MAPF problems assigns priorities to the robots

and solves a sequence of single-agent planning problems based on this prioritisation [42,

137]. This prioritised planning scheme trades off algorithmic incompleteness and

solution suboptimality for practical efficiency. Turpin et al. [156] present a resolution

complete prioritised MAPF solver for the specific case when robots are interchangeable.

Conflict-based search (CBS) [132, 134] and M* [162] are complete and optimal

MAPF solvers that use different techniques to provide strong theoretical guarantees.

CBS searches a tree of all possible solutions in a best-first manner by resolving robot

conflicts into constraints on robot motion. For two robots that collide at any instant,

either one can be in that location in the final solution but not both. CBS enumerates

all such possibilities for all potential conflicts until a solution with no conflict is found.

M* resolves robot conflicts by combining two conflicting robots and treating them

as one agent until the conflict between them is resolved. This idea has also been

adopted in the CBS family of algorithms [133].

While the focus of MAPF is typically limited to finding paths on discrete graphs,

multi-robot motion planning tries to compute feasible trajectories for a team of robots.

This has been formulated as an integer program in prior work [171], and techniques

from sampling-based planning have been used to quickly search the continuous

composite space [32, 136]. However, in this work we solve an abstract MAPF problem

49

4. Multi-Agent Pathfinding for Manipulation Among Movable Objects

with artificially actuated agents that move on a discrete grid. This simplifies the

MAPF problem by discretising it, and we then attempt to realise the MAPF solution

in the continuous 3D workspace via our non-prehensile push planner.

4.2.2 Abstract Planning

Abstract search spaces or abstractions of planning problems refer to simpler, reduced

forms of the full space of the original problem. The use of these search abstractions

is related to the field of hierarchical planning [125] which attempts to use abstract

space solutions as partial plans or heuristics in the full space. Pearl [113] contains a

thorough review of these techniques. An abstract solution can sometimes be refined to

obtain a full solution by removing the simplifications used to construct the abstraction

hierarchy [6, 51]. Another common approach is to use abstract space distances to

abstract goals as a heuristic in the full space [17, 56, 58]. Pattern databases generalise

this idea for multiple abstract space states or “subgoals”, and store cost-to-subgoal

values for use as a heuristic in the full search [28]. Guided optimisation in the

computer graphics and animation community [158], postulates a “hand of god” which

applies an external balancing torque to help find a control trajectory for bipedal

locomotion. The work done by this “hand of god” is reduced over time to guide the

solver towards a good optimum. Philosophically this idea is the same as the artificial

actuation of movable objects in our work.

The idea of solving a simplified version of the planning problem as a means to

finding a solution in the full space is related to curriculum learning. Curriculum

learning was explored in the context of robotics by Sanger [126], and since then a

more formal theoretical basis for machine learning methods has been established [13].

A brief overview specifically for robot manipulation can be found in [77].

4.3 Problem Setup

The work in this chapter follows the general problem setup from Section 2.3.3. For

ease of readability, we will reiterate some of the salient aspects of our formulation.

A MAMO planning problem can be defined with the tuple P = (X ,A, T , c, xS,XG).

A is the action space of the robot, T : X × A → X is a deterministic transition

50

4. Multi-Agent Pathfinding for Manipulation Among Movable Objects

E

D

C

BA

Figure 4.3: MAMO workspace (left) and its 2D projection labeled with movable object
IDs. Movable objects are in blue, immovable obstacles in red, and the object-of-interest
to be retrieved in yellow.

function, c : X × X → R≥0 is a state transition cost function, xS ∈ XV is the start

state, and XG ⊂ X ,XG ∩ XV 6= ∅ is the set of goal configurations. For the work in

this chapter we discretise the action space of the robot A to include “simple motion

primitives” that independently change each robot joint angle by a fixed amount

(described in more detail earlier in Section 3.3.1) and dynamically generated “push

actions” described in Section 4.4.2. For transition xi+1 = T (xi, ai), action ai ∈ A
can affect object configurations between xi and xi+1 only if ai is a push action or

the OoI has been grasped. Our solution to MAMO problems is a sequence of arm

trajectories in the robot configuration space XR ⊂ Rq (q = 7 for the PR2 robot) that

(i) rearrange movable clutter and (ii) retrieve the OoI. Figure 4.3 shows an example of

the MAMO problems we consider in this chapter, along with its 2D projection. Red

objects are immovable obstacles OI , blue objects are initial movable objects Oinit
M ,

and the goal for the robot arm is to extract the yellow OoI from the shelf. There

is no collision-free trajectory for the arm to extract the OoI from the shelf. Upon

rearrangement of some movable objects (A and B in particular), such a trajectory

may be found.

51

4. Multi-Agent Pathfinding for Manipulation Among Movable Objects

4.3.1 Classical Multi-Agent Pathfinding

Classical MAPF planning problems seek to find non-conflicting paths for a set of

agents {r1, . . . , rn} on a discrete graph G = (V,E) in discrete time. Each robot ri has

a designated start state si ∈ V and a desired goal state gi ∈ V . Robot ri has access

to an action space Ai, which includes an action to wait at the current state. An edge

(v, v′) ∈ E implies that some action aj ∈ Ai takes robot ri from vertex v to v′. All

actions are assumed to take the same amount of time such that traversing an edge

(v, v′) ∈ E takes one unit of time. A single-agent solution path for ri is a sequence

of states πi = {v0 = si, . . . , vT = gi} where the subscripts denote time indices. Two

single-agent solution paths πi and πj are conflict-free if robots ri and rj never collide

as they traverse their respective paths. The solution to a MAPF problem with n

robots {r1, . . . , rn} is a set of n mutually conflict-free paths, i.e. πi and πj must be

conflict-free for any 1 ≤ i, j ≤ n , i 6= j.

Although a thorough review of MAPF literature is beyond the scope of this work,

we would like to highlight that the MAPF problem is NP-hard to solve optimally [170].

We use Conflict-Based Search (CBS) [134], a complete and optimal MAPF algorithm,

to solve our abstract MAPF problem formulated in Section 4.4.1.

4.4 The M4M Planning Algorithm

We call our algorithm M4M: Multi-Agent Pathfinding for Manipulation Among

Movable Objects. M4M is given access to a physics-based simulator (PyBullet [27])

to ensure that no interaction constraints defined in the MAMO problem are violated.

We note that a MAMO problem P to retrieve the OoI with OM 6= ∅ is solvable iff

the simpler problem P̂ without any movable objects i.e., OM = ∅ can be solved. We

denote a solution trajectory to P̂ as π̂R. Let V (π̂R) denote the volume occupied by

the robot arm in the workspace during execution of π̂R. V (π̂R) specifies a “negative

goal region” (NGR) [35] for the movable objects. A NGR is a sufficient volume of the

3D workspace which, if there are no objects inside it, allows the robot arm to retrieve

the OoI without other contacts. If all movable objects can be rearranged such that

they are outside V (π̂R), the robot can execute π̂R to retrieve the OoI. Figure 4.4

shows a NGR V (π̂R) for the problem from Figure 4.3.

52

4. Multi-Agent Pathfinding for Manipulation Among Movable Objects

E

D

BA

C

Figure 4.4: The negative goal region (NGR) V (π̂R) in gray for the MAMO problem
from Figure 4.3. (left) 3D volumes of the NGR and all objects at their initial poses
(we omit the shelf for ease of visualisation). (right) 2D projection of the NGR and
the workspace, overlayed with the solution to the abstract MAPF problem from
Section 4.4.1 formulated for this scene. Objects A and B need to move outside the
NGR, and object C needs to move to allow A to reach its goal. MAPF solution paths
are shown in pink.

Algorithm 4 contains the pseudocode for M4M. At a high-level, M4M first com-

putes π̂R (Line 4) and the NGR V (π̂R) (Line 5). It then iterates over two steps:

1. Section 4.4.1: Compute a solution to the abstract Multi-agent Pathfinding

(MAPF) problem where each movable object is treated as an agent that needs

to escape the NGR without colliding with other agents using Conflict-Based

Search (CBS) [134], a complete and optimal MAPF algorithm.

2. Section 4.4.2: Pick a movable object to be rearranged according to the MAPF

plan computed in 1 and find a valid non-prehensile push for it by forward

simulating potential pushes using a physics-based simulator.

Algorithm 4 uses replan to ensure CBS is only called to solve new MAPF problems.

After the first CBS call, replan triggers subsequent CBS calls once a valid push has

been found i.e., at least one object has been moved (Line 8). This leads to a different

MAPF problem with new object poses. Until a valid push is found, we sample and

simulate pushes for all objects that move in the MAPF solution. Only when we find a

valid push for an object that needs to move per the MAPF solution do we call the

53

4. Multi-Agent Pathfinding for Manipulation Among Movable Objects

MAPF solver again for the resulting scene. Until such time we sample and simulate

pushes for all objects that move as part of the MAPF solution. After successfully

moving an object, the next call to the MAPF solver can take this change in object

state into account to find a better solution for rearrangement. In this way M4M is

greedy with respect to valid pushes that it finds and plans “in the now” [65].

Algorithm 4 Multi-Agent Pathfinding for Manipulation Among Movable Objects

1: procedure M4M(Oinit
M ,OI)

2: OM ← Oinit
M . Rearranged object positions

3: Ψ← ∅ . Sequence of arm trajectories
4: π̂R ← PlanRetrieval(OI) . OoI retrieval trajectory
5: Compute V(π̂R)
6: replan ← true, done ← false

7: while time remains do
8: if replan then
9: πR ← PlanRetrieval(OI ∪ OM)

10: if πR exists then
11: Ψ← Ψ ∪ {πR}, done ← true

12: break
13: {πom}om∈OM

← CBS(OM ,OI ,V(π̂R))
14: replan ← false

15: for om ∈ OM do
16: if πom = ∅ then
17: continue
18: ψ ← PlanPush(om, πom ,OM ,OI)
19: (valid, o′m)← SimulatePush(ψ)
20: if valid then
21: Ψ← Ψ ∪ {ψ}, replan ← true

22: UpdatePose(OM , o′m)
23: break
24: if ¬done then
25: return ∅
26: return Ψ

The PlanRetrieval function takes as input a set of objects to be considered

as immovable obstacles for the robot and runs Multi-Heuristic A∗ [3] to find an arm

trajectory in XR to retrieve the OoI.

CBS is called in Line 13 with the latest known movable object poses in SE(3) to

54

4. Multi-Agent Pathfinding for Manipulation Among Movable Objects

obtain a set of paths that ensure they all satisfy the NGR V (π̂R). This searches over

all possible rearrangements of the scene from the current state, without ever querying

a physics simulator, by assuming that movable objects are artificially actuated agents

(Section 4.4.1).

We then loop over all objects that need to be rearranged (from Line 15) and

try and find a valid push for them (Section 4.4.2). Details of our push planner are

provided in Section 4.4.2. If a valid push is found (Line 20), it is added to the final

sequence of arm trajectories to be executed Ψ, and the pose of that object is updated

for future iterations.

M4M terminates either when the allocated planning budget expires, or we suc-

cessfully find a trajectory to retrieve the OoI in the presence of all objects (OI ∪OM)

as obstacles in Line 9. Although this trajectory πR may be different from π̂R (Line 4),

it will still retrieve the OoI successfully since it is guaranteed to not make contact

with any object (immovable or movable). The sequence of trajectories Ψ can then be

executed in order to rearrange the movable objects (if required) and finally ending in

successful OoI retrieval.

4.4.1 MAPF Abstraction for Manipulation

A fundamental challenge to solving MAMO problems requires determining which

objects need to be rearranged and where they should be moved. The key idea in

this chapter uses an existing MAPF solver to search over potential rearrangements

of the scene which lead to successful OoI retrieval. Importantly, the MAPF solver

does not require access to a physics simulator for this purpose – it only relies on

3D collision checking. Our MAPF abstraction includes all movable objects om ∈ OM
as agents. We check for collisions between agents in space and time in their full

SE(3) configuration space. All agents have a discrete action space corresponding to

a four-connected grid on the (x, y)−plane of the shelf. We assume each action takes

unit time and either the agent remains in place, or the x− or y−coordinate of the

agent pose changes by 1 cm.

Agent start configurations are determined by their latest pose in SE(3) prior to

the MAPF call (Algorithm 4, Line 13). Each agent om in the MAPF problem has a set

of possible goals that include all states where the agent satisfies the NGR by being

55

4. Multi-Agent Pathfinding for Manipulation Among Movable Objects

“outside” it. We call CBS to obtain a solution, shown in Figure 4.4, to this MAPF

abstraction. CBS runs a two-level search to solve MAPF problems. The high-level

of CBS searches a tree of all possible solutions in a best-first manner by resolving

agent conflicts into constraints on agent motion. For two agents that collide along

their paths, either one can be in the location where and when they collide in the final

solution but not both. The low-level of CBS runs single-agent searches for each agent

on a discrete graph GCBS = (V,E) where vertices V ⊂ SE(3) are object poses. The

solution returned by CBS is a set of paths for movable objects {πom}om∈OM
whose

final states πendom satisfy the NGR, and suggests a rearrangement strategy in terms of

which objects to move and where. If we can rearrange all om ∈ OM to their respective

πendom poses, we know that the trajectory π̂R will successfully retrieve the OoI, thereby

solving the MAMO problem.

4.4.2 Generating Non-Prehensile Push Actions

Given a path πom for om ∈ OM from the MAPF solution, PlanPush (Algorithm 4,

Line 18) determines how an object may be rearranged (Figure 4.5). We would like to

move the object to πendom , which is known to satisfy the NGR. To compute a push trajec-

tory, we first shortcut πom (taking into account collisions with immovable obstacles OI)
into a series of straight line segments defined by points {x1 = πstartom , . . . , xn = πendom }.
We also compute the point of intersection xaabb of the ray from x1 along the direction
−−−−→
(x2, x1) with the axis-aligned bounding box of om.

PlanPush computes a collision-free path between successive pushes by planning

in XR with all objects OI ∪ OM as obstacles to a point x0push sampled around xaabb1.

If this path is found, PlanPush similarly samples points xipush around each xi in the

shortcut path. It runs inverse kinematics (IK) in sequence for each segment of the

push action between points
(
xi−1push, x

i
push

)
, i = {1, . . . , n}. If all IK calls succeed, we

return the full push trajectory by concatenating π0 with all push action segments.

This push action, informed by the MAPF solution about which object to move

where, is forward simulated with a physics model to verify whether it satisfies all

interaction constraints for all objects. If so, it is queued into the sequence of

1We sample (x, y) coordinates for x0push from N (xaabb, σI), σ = 2.5 cm. The z−coordinate is
fixed at 3 cm above the shelf for the entire push action.

56

4. Multi-Agent Pathfinding for Manipulation Among Movable Objects

AABB

Figure 4.5: 2D illustration of our push planner. Given a movable object om (blue) and
its MAPF solution path πom (pink), we shortcut πom while accounting for immovable
obstacles OI (red) to get the green path of straight line segments. After computing

xaabb by intersecting the
−−−−→
(x2, x1) ray with the axis-aligned bounding box for om,

the push action (cyan) is computed via inverse kinematics between sampled points
xipush ∼ N (xi, σI), i = {0, . . . , n}, x0 := xaabb.

rearrangements that will be executed as part of the MAMO solution returned by

M4M (Algorithm 4, Line 20).

4.5 Experimental Results

4.5.1 Simulation Experiments

We run our simulation experiments in MAMO workspaces of three difficulty levels

shown in Figure 4.6. Each workspace has one OoI (yellow), four immovable obstacles

(red), and different numbers of movable objects (blue). Objects are cylinders and

cuboids with random sizes, initial poses, masses, and coefficients of friction. We

assume perfect knowledge of the initial workspace state and all object parameters.

We set a planning timeout of 120 s for 100 randomly generated MAMO problems

57

4. Multi-Agent Pathfinding for Manipulation Among Movable Objects

at each level. Our analysis includes two versions of our algorithm – M4M refers to

Algorithm 4, and M̂4M refers to a version which only calls CBS once (after Line 5)

and does not iterate between calling CBS and finding a valid push in simulation.

Baselines: We compare the performance of M4M against three types of baselines

for solving MAMO problems with non-prehensile interactions. The first is a standard

implementations of a sampling-based algorithm KPIECE [147] from OMPL [146]

that searches the entire MAMO state space X by randomly sampling robot motions.

The second baseline, Selective Simulation [148] (SelSim), is a search-based algo-

rithm that interleaves a ‘planning’ phase and a ‘tracking’ phase. The former queries

the physics-based simulator for interactions with a set of ‘relevant’ movable objects

identified so far. The latter executes the solution found by the planning phase in the

presence of all objects in simulation and, if any interaction constraints are violated,

it adds the ‘relevant’ object to the set. It only uses the simple motion primitives

described in Section 4.3.

Our final baseline is the work from Dogar et al. [35] (Dogar) which introduced

the idea of a negative goal region (NGR) we use in M4M. Dogar recursively searches

for a solution backwards in time, similar to [144]. It first finds an OoI retrieval

trajectory ignoring all movable objects. The NGR induced by this trajectory helps

identify a set of objects to be rearranged, and the OoI is added as an obstacle. If an

object is successfully rearranged, the NGR and set of objects still to be rearranged

are updated with the trajectory found, and the rearranged object is added as an

obstacle at its initial pose. This process continues until no further objects need to be

rearranged. Our implementation of Dogar finds the same OoI retrieval trajectory

as M4M, and uses the same push actions (Section 4.4.2) to try and rearrange objects.

Notably, Dogar only has information about which objects to move but not where

to move them. Our implementation finds the closest cell outside the latest NGR for

an object and samples points around this location to try to move the object towards.

58

4.
M

u
lti-A

gen
t

P
ath

fi
n
d
in

g
for

M
an

ip
u
lation

A
m

on
g

M
ovab

le
O

b
jects

Table 4.1: Simulation Study for MAMO Planning in Cluttered Scenes - success rates and min/median/max planning
and simulation times

Metrics Level
Planning Algorithms

M4M M̂4M Dogar [35] SelSim [148] KPIECE [147]

Success
Rate (%)

1 92 79 40 33 48
2 73 54 20 21 33
3 62 36 6 16 17

Total
Planning
Time (s)

1 1.0 / 2.6 / 102.5 1.0 / 2.4 / 103.8 0.1 / 0.9 / 115.3 0.004 / 0.02 / 0.03 7.4 / 23.4 / 117.8
2 1.2 / 6.6 / 115.4 1.3 / 2.6 / 100.3 0.3 / 0.5 / 113.5 0.002 / 0.008 / 0.2 9.3 / 28.2 / 112.0
3 1.3 / 7.2 / 116.1 1.6 / 2.4 / 72.6 0.2 / 0.4 / 55.0 0.004 / 0.01 / 0.03 10.6 / 32.0 / 98.5

Simulation
Time (s)

1 0 / 0 / 58.6 0 / 0 / 20.1 0 / 0 / 42.0 27.3 / 35.0 / 43.6 0 / 10.6 / 99.0
2 0 / 0.4 / 75.9 0 / 0 / 37.0 0 / 0 / 20.9 36.7 / 44.1 / 58.3 0 / 16.1 / 95.4
3 0 / 0.4 / 55.1 0 / 0 / 24.3 0 / 0 / 20.0 47.3 / 55.7 / 76.0 0 / 18.3 / 79.3

59

4. Multi-Agent Pathfinding for Manipulation Among Movable Objects

Level 1 Level 2 Level 3Level 1
(1, 4, 10) (1, 4, 15)(1, 4, 5)1 4 5 1 14 410 15

Figure 4.6: MAMO problems of differing complexity. From left to right, Levels 1, 2,
and 3 have 5, 10, and 15 movable objects respectively. Each Level has 1 OoI and 4
immovable obstacles.

Figure 4.7: A MAMO solution generated by M4M. The tomato soup can (yellow
outline) is the OoI, all other objects are movable.

Results: Table 4.1 shows the result of our experiments where we present the

min/median/max values for total planning time and simulation time of successful runs

only. Experiments were run on a 4 GHz Intel i7-4790K CPU with 28 GB 1600 MHz

DDR3 RAM.

Both versions of M4M solve the most problems across all difficulty levels. For

Levels 1, 2, and 3, the M4M solution successfully executed 0.8, 1.9, and 3.1 push

actions on average. The difference in performance between M4M and M̂4M highlights

the benefit of the iterative nature of M4M. Since MAPF paths are usually not precisely

replicated in simulation via pushes, querying the solver repeatedly with an updated

workspace configuration leads to more informed future paths for objects, instead of

trying to forcibly push them to the first goal configuration suggested by MAPF.

All baseline algorithms from Table 4.1 suffer due to poor exploration over the space

of rearrangements. Our approach benefits from the MAPF abstraction to produce

guidance on where to move each object to free up the NGR. The stochastic sampling

of push actions used by our push planner leads to complex, multi-body non-prehensile

60

4. Multi-Agent Pathfinding for Manipulation Among Movable Objects

interactions that satisfy interaction constraints in the final solution. In contrast

Dogar naively samples pushes to be simulated, and necessarily tries to ensure

there is no overlap between the NGR and movable objects, even if a slightly different

collision-free path can be found to retrieve the OoI (Algorithm 4, Line 9). This strategy

suffers when sampled points are near immovable obstacles, and limits the possible

rearrangements considered since movable objects that are rearranged successfully are

treated as immovable obstacles. Dogar also never executes a potential trajectory

until there is no overlap between the NGR and movable objects, unlike SelSim which

simulates all trajectories found during planning. In fact, all SelSim successes in

Table 4.1 correspond to scenes where the very first planned trajectory succeeds in OoI

retrieval in simulation. This is only true when there is minimal overlap between the

NGR and movable objects. When any movable object needs to be rearranged, SelSim

suffers from its poor action space – the simple motion primitives are ineffective at

causing meaningful robot-object interactions in the workspace. KPIECE benefits

significantly from goal biasing in simpler scenes where either little to no robot-object

interactions are required or the objects that need to be moved have nice physical

properties (large supporting footprint, low center-of-mass, low coefficient of friction).

4.5.2 Real-World Performance on the PR2

We ran M4M on a PR2 robot where we used a refrigerator compartment as our MAMO

workspace (Figure 4.7). We placed five objects from the YCB Object Dataset [16]

in the refrigerator. Four of these were movable and the tomato soup can was the

object-of-interest. Objects were localised using a search-based algorithm [1] run on a

NVidia Titan X GPU. Figure 4.8 shows an image of this setup in our lab. We gave

M4M a total planning timeout of 120 s.

Out of 16 perturbations of the initial scene from Figure 4.7, 12 runs successfully

retrieved the OoI. Across the successful runs the planner took 56.41 ± 27.29 s to

compute a plan of which 49.26± 24.21 s was spent simulating pushes. Failures were

due to interaction constraints being violated during execution by the PR2. Since

M4M returns a solution that does not violate constraints in simulation, failures

are due to modeling errors between the simulator and the real-world. Specifically,

accurately computing coefficients of friction is difficult and can lead to differing

61

4. Multi-Agent Pathfinding for Manipulation Among Movable Objects

Figure 4.8: Real-world setup for pick-and-place MAMO experiments with a PR2. The
tomato soup can (yellow outline) is the object-of-interest.

contact mechanics in simulation than the real-world. Figure 4.7 shows the solution to

a MAMO problem being executed by the PR2. It moves the coffee can out of the way,

pushes the potted meat can slightly aside, and finally the OoI (tomato soup can) is

extracted while also nudging the potted meat can.

4.5.3 Comparison of MAPF Solvers

M4M uses a resolution complete MAPF solver (CBS) to ensure it does not miss any

potential rearrangement of a scene (with respect to the graph GCBS of the low-level

CBS searches). Another class of MAPF solvers assigns priorities to agents and

solves a sequence of single-agent planning problems based on this prioritisation [42].

This prioritised planning (PP) scheme trades off algorithmic incompleteness and

solution suboptimality for practical efficiency. For all the problems solved by M4M

in Table 4.1, we compare the performance of CBS against PP in terms of success

rates for an initial solution and planning times.

Being provably complete, CBS succeeds in finding an MAPF solution 100% of

the time. Given the same 30 s timeout as CBS, PP failed to find solutions for 2

Level 1 problems, 9 Level 2 problems, and 9 Level 3 problems. The bottleneck for

MAPF is collision checking between objects in SE(3). CBS only collision checks

solution trajectories returned by the low-level searches of the corresponding agents. In

addition to being incomplete, PP turns out to also be much slower than CBS. This

is because PP collision checks every state expanded by the low-level search against

62

4. Multi-Agent Pathfinding for Manipulation Among Movable Objects

corresponding states of higher priority agents, which is slow when many agents collide

with each other along their solution paths. We compare the ratio of planning times

for CBS to those for PP across the three levels. The median value of this ratio

TCBS/TPP for Level 1 is 1.22 (PP is at least 22% faster in half the problems). For

Levels 2 and 3, this value is 0.89 (PP is at least 11% slower in half the problems)

and 0.63 (PP is at least 37% slower in half the problems). The ability to solve all

problems and in less time when the MAMO problem is more complicated highlights

the benefit of using CBS over PP.

4.6 Conclusion and Discussion

This chapter presents M4M: Multi-Agent Pathfinding for Manipulation Among Mov-

able Objects, an algorithm to plan for manipulation in heavy clutter that considers

complex interactions such as rearranging multiple objects simultaneously, and tilting,

leaning and sliding objects. These MAMO problems include interaction constraints

that define how the robot is allowed to interact with objects. M4M decouples the

search over all rearrangements of movable objects from the need to query a physics-

based simulator. It first constructs and solves an appropriate MAPF abstraction

for MAMO to search over all rearrangements without the need to query a physics-

based simulator. This MAPF solution helps the push planner generate informed

non-prehensile rearrangements that are simulated for interaction constraint verifica-

tion. We recognise that if we artificially actuate these movable objects and solve an

appropriately constructed abstract MAPF problem, the solution informs us of a suit-

able rearrangement for completing the original MAMO task. The MAPF formulation

searches over object configurations without a simulator, and upon returning a solution,

M4M computes non-prehensile push actions to realise the suggested rearrangement

within the simulator. Thus, M4M is able to find a suitable rearrangement of the

MAMO workspace without querying a physics-based simulator and attempts to rear-

range movable clutter without needing to search the space of all rearrangements of the

scene for an appropriate one to complete the MAMO task. It dramatically outperforms

alternative approaches that do not reason about such interactions efficiently.

The key contribution of this chapter, an application of MAPF solvers within MAMO,

leads to several distinct areas of future research. M4M greedily commits valid pushes

63

4. Multi-Agent Pathfinding for Manipulation Among Movable Objects

found to its sequence of rearrangement trajectories. This greedy behaviour makes

M4M incomplete (it may not find a solution to a MAMO problem even if one exists),

given that it has no ability to backtrack from this decision. It is important to address

this incompleteness of M4M by developing an algorithm that considers (i) all feasible

pushes for an object that needs to be rearranged to a specific location, (ii) all orderings

of all feasible push actions to realise a particular rearrangement for a set of objects,

and (iii) all possible rearrangements for a set of objects. Our work in Chapter 5

makes progress towards such an algorithm. Additionally, the MAPF solver used in

M4M should be modified to use a cost function which has information about robot

kinematics and pushing dynamics so as to compute and thus simulate better push

actions. Using a model-based push planner, even for simple straight-line pushes like

those used by M4M, will greatly reduce the time M4M currently spends stochastically

sampling and simulating valid pushes. M4M currently terminates with success when

it has found a complete sequence of rearrangement actions that help solve the MAMO

task. Modifying it to interleave planning and execution can help introduce robustness

by allowing M4M to replan from the current rearrangement of the scene. We can also

augment the MAPF solver with information from past execution steps that constrain

the motions of some movable objects.

64

Chapter 5

A Graph Search Formulation of

Manipulation Among Movable

Objects

In this thesis we are interested in pick-and-place style robot manipulation tasks in

cluttered and confined 3D workspaces among movable objects that may be rearranged

by the robot and may slide, tilt, lean or topple as the robot interacts with them. The

algorithm we presented earlier in Chapter 4, M4M, determines which objects need to

be moved and where by solving a Multi-Agent Pathfinding (MAPF) abstraction of

this problem. It then utilises a non-prehensile push planner to compute actions for

how the robot might realise these rearrangements and a rigid body physics simulator

to check whether the actions satisfy physics constraints encoded in the problem.

However, M4M greedily commits to valid pushes found during planning, and does

not reason about orderings over pushes if multiple objects need to be rearranged.

Furthermore, M4M does not reason about other possible MAPF solutions that lead

to different rearrangements and pushes. This chapter extends M4M and we present

Enhanced-M4M (E-M4M) – a systematic graph search-based solver that searches

over orderings of pushes for movable objects that need to be rearranged and different

possible rearrangements of the scene. We introduce several algorithmic optimisations

to circumvent the increased computational complexity, discuss the space of problems

solvable by E-M4M and show that experimentally, both on the real robot and in

65

5. A Graph Search Formulation of Manipulation Among Movable Objects

simulation, it significantly outperforms the original M4M algorithm, as well as other

state-of-the-art alternatives when dealing with complex scenes. To address the higher

computational complexity associated with searching for a solution in this much

larger space, E-M4M stores information about all successful and unsuccessful pushes

found during planning. The former are used to avoid simulations of similar pushes

seen previously, and the latter help us feedback information to the MAPF solver to

efficiently search the space of rearrangements of the scene. The work in this chapter

was first published in [127].

5.1 Introduction

Simple pick-and-place robot manipulation tasks can be difficult to solve for motion

planning algorithms that do not reason about how ‘movable’ objects in the confined

workspace might need to be rearranged in order to find a feasible solution path. Such

situations are commonly encountered when robot arms have to grasp and extract

desired objects from cluttered shelves or pack several objects in a box. Solving

these “Manipulation Among Movable Objects” (MAMO) problems [5, 144] requires

a planning algorithm to decide which objects should be moved [52], where to move

them, and how they may be moved. For the scene shown in Figure 5.1 (a), the tomato

soup can is the “object-of-interest” (OoI) to be retrieved. In order to do so, the PR2

robot must first move the coffee can and potted meat can out of the way so that the

grasp pose for the OoI becomes reachable.

Existing state-of-the-art approaches in literature commonly assume prehensile

(pick-and-place) rearrangement actions, e.g. Stilman et al. [144], Wang et al. [164]

and/or planar robot-object and object-object interactions, e.g. van den Berg et al.

[159], Vieira et al. [161]. Prehensile rearrangements not only preclude manipulation

of big, bulky and otherwise ungraspable objects, but also assume access to known

grasp poses for all movable objects and availability of stable placement locations for

them in a cluttered and confined workspace. The planar world assumption does not

account for realistic physics interactions between objects in a real-world scene. In

contrast to these, our emphasis is on solving MAMO problems (i) in a 3D workspace

where robot actions can lead to complex multi-body interactions where objects tilt,

lean on each other, slide, and topple (Figure 5.1 (b)); and (ii) with non-prehensile

66

5. A Graph Search Formulation of Manipulation Among Movable Objects

(a) (b)

Figure 5.1: (a) The tomato soup can (yellow outline) is the object-of-interest (OoI)
to be retrieved. The potted meat can and coffee can in front of it must be rearranged
out of the way in order to retrieve the OoI and solve the MAMO problem. (b) Trying
to retrieve the beer can (OoI, yellow outline) leads to a complex interaction with the
movable potted meat can being tilted by the robot arm.

push actions for rearranging the clutter in the scene. With this we allow for more

seamless and natural manipulation that rearranges objects aside without picking

them up while considering complicated toppling, sliding, and leaning effects.

The MAMO problem definition includes information about which objects are

movable and which are static or immovable obstacles. All objects have a set of

interaction constraints associated with them that define valid robot-object and object-

object interactions in the workspace. Interaction constraints encode that neither the

robot nor any other object can make contact with immovable obstacles (an object

that cannot be interacted with, such as a wall), and movable objects cannot fall off

the shelf, tilt too far (beyond 25°), or move with a high instantaneous velocity (above

1 m s−1). These constraints help model realistic and desirable robot-object interactions

since we want to prevent robots from carelessly hitting, pushing or throwing objects

around. In order to forward simulate the effect of non-prehensile robot pushes on the

objects, we use a rigid body physics simulator to evaluate the interaction constraints

and determine the resultant state of the workspace.

67

5. A Graph Search Formulation of Manipulation Among Movable Objects

In recent work [128], we proposed the M4M algorithm for MAMO to answer the

questions of which objects to move where, and how. M4M (“Multi-Agent Pathfinding

for Manipulation Among Movable Objects”) relies on an MAPF abstraction of MAMO

problems where the movable objects are artificially actuated agents with the goal

of avoiding collisions with (i) the robot arm as it retrieves the OoI, (ii) each other,

and (iii) immovable obstacles. A solution to this MAPF abstraction informs M4M of

which objects must be moved and where so that the OoI can be retrieved to solve

the MAMO problem. M4M then samples non-prehensile pushes to try and realise the

rearrangements suggested by the MAPF solution in the real-world, thereby addressing

the third question of how objects may be moved.

However, M4M is greedy and can fail to find solutions in many cases where one

may exist. It is greedy in three different ways. First, M4M does not search over all

possible orderings of object rearrangements if multiple movable objects need to be

moved. It greedily commits to the first valid push it finds and continues searching

for a solution from the resultant state of that push. Second, M4M never reconsiders

solving the MAPF problem again for a different solution that might require objects to

be rearranged differently. As such, it does not search over all possible rearrangements

of the scene. This is important because in cases where an object cannot be rearranged

successfully as per the MAPF solution (perhaps due to robot kinematic limits, the

presence of immovable obstacles, interaction constraint violations etc.), we must

replan the MAPF solution and consider a different way to rearrange the scene that

may indeed be feasible. Finally, even in cases where we successfully rearrange an

object to a particular location, M4M never reconsiders moving that object differently,

which may be required if no solution can be found from the resultant state of the

valid push.

This chapter extends M4M and presents Enhanced-M4M (E-M4M), an algorithm

that addresses all three shortcomings of M4M and does so by searching a much larger

space for solutions. It considers different orderings for rearranging objects, replans

MAPF solutions as and when required, and considers different ways to rearrange

any particular object. Although the search space for E-M4M grows tremendously

as a result, E-M4M exploits the information gained during its execution to reduce

redundant exploration of the solution space. There is redundancy in considering the

same or similar pushing actions for an object in different nodes of E-M4M search

68

5. A Graph Search Formulation of Manipulation Among Movable Objects

tree such that if one action succeeds or fails (i.e. its validity is determined by forward

simulating it for interaction constraint verification), it is likely that the other actions

will succeed or fail as well. We exploit this by introducing caching of positive and

negative simulation results and learning a probabilistic estimate of solving a particular

subtree of the search, and use these within E-M4M to bias its exploration. We make

the following contributions as part of our E-M4M algorithm:

1. A best-first graph search for MAMO problems that searches over orderings of

object rearrangements, different rearrangements of the scene, and different ways

to rearrange each object.

2. Caching results of successful (valid) pushes to avoid simulations of similar pushes

repeatedly.

3. Caching results of unsuccessful (invalid) pushes to feedback information to the

MAPF solver to efficiently search the space of rearrangements of the scene.

4. A learned probabilistic model for solving a particular subtree to bias exploration

of the best-first search.

5. Significant quantitative improvements over M4M and several other state-of-the-

art MAMO baselines.

5.2 Related Work

In recent years, MAMO planning algorithms have continued to rely on at least one of

two simplifying assumptions. The first limits the action space of the robot to prehensile

or pick-and-place rearrangements of movable objects [79, 80, 86, 103, 135, 144, 164].

This simplifies the planning problem as grasped objects behave as rigid bodies attached

to the robot end effector, and rearrangement paths can be computed by avoiding

collisions with other objects in the scene. It is important to note that these paths

can only be found if we assume (i) all objects that may need to be rearranged are

graspable by the robot, (ii) we have known grasp poses for all graspable objects,

(iii) the existence of stable placement locations for these objects in the cluttered

workspace, and (iv) a relatively large volume of object-free space so that collision-

and contact-free rearrangement paths with a grasped object exist. In our work, we

make none of these assumptions, instead relying on non-prehensile pushing actions to

69

5. A Graph Search Formulation of Manipulation Among Movable Objects

rearrange the scene. This allows us to manipulate a much larger set of objects, and

also lets us rearrange multiple objects simultaneously. However, using these actions

within a planning algorithm necessitates the ability to accurately predict their effect

on the configurations of movable objects in order to compute the resultant state of

the world after the push. In case the assumptions stated earlier are indeed true for

the problems being solved, the E-M4M algorithm can be easily modified to include

pick-and-place rearrangement actions as part of the action space of the robot within

its graph search, something we will include in E-M4M in Chapter 6.

The second simplification assumes planar robot-object and object-object inter-

actions, while allowing non-prehensile push actions for rearrangement. This planar

assumption halves the size of the configuration space of movable objects from SE(3)

to SE(2). To predict the effect of push actions on the scene, some existing algorithms

make use of simple analytical or learned physics models [35, 59, 159], while others use

computationally cheap 2D physics simulators [60, 68]. Assuming planar interactions

does not capture the complex multi-body physics of the 3D real-world where objects

may tilt, lean on each other, topple etc., something we account for in the E-M4M

algorithm. As part of our experiments, we compare against an implementation of the

algorithm from [35] that uses the same non-prehensile push planner as E-M4M in

conjunction with a 3D rigid body physics simulator. The original algorithm is not

viable for our MAMO problems as it uses a 2D analytical model to predict the result

of planar robot-object interactions, and only allows the robot to rearrange one object

at a time.

Existing work which uses a full 3D rigid body physics simulator to forward simulate

the effect of robot actions on the scene does not account for the difficult interaction

constraints we include in our MAMO problems which makes it harder to find a feasible

solution. Instead, they either only deal with simple constraints [130, 148] where

objects are not allowed to fall off the workspace shelf, or do not include any such

constraints [111, 161] and ignore cases where objects topple. We include a comparison

against [148] in our experiments, albeit with the full interaction constraint set that

E-M4M considers.

We also include comparisons against two general purpose sampling-based planning

algorithms, KPIECE [147] and RRT [85], and our own recent M4M algorithm

developed for this MAMO domain. KPIECE is a randomised algorithm developed for

70

5. A Graph Search Formulation of Manipulation Among Movable Objects

planning problems where it is expensive to determine the resultant state of an action

(like querying a physics-based simulator for the effect of robot pushes). M4M, as

discussed earlier, decouples the search for a solution to the MAMO problem between

solving an abstract MAPF problem that reasons about the configuration of movable

objects but does not require forward simulating a simulation-based model, and solving

a simulation-based arm motion planning problem that does not need to search over

the possible configurations of movable objects.

5.3 Problem Formulation

We are interested in solving MAMO problems with a q degrees-of-freedom robot

manipulator R whose configuration space XR ⊂ Rq. The workspace is populated with

objects O = {O1, . . . , On} whose configuration spaces XOk
≡ SE(3). We assume we

know which objects OM ⊂ O are movable and which objects OI ⊂ O are immovable.

Each object Ok is associated with interaction constraints described earlier that help

determine whether any state x in the search space X := XR×XO1×· · ·×XOn is valid

or not. The planning algorithm is provided the initial configurations of all movable

objects (denoted as Oinit
M) and immovable obstacles (OI), information about which

object is the “object-of-interest” (OoI), desired grasp pose for the OoI, and a “home”

configuration outside the workspace shelf where the OoI must be moved. Our goal

is to find a path of valid states in X that successfully retrieves the OoI from the

cluttered and confined workspace shelf.

Conceptually this path rearranges some movable objects if necessary and retrieves

the OoI while ensuring (i) neither the robot nor any movable object makes contact

with immovable ‘obstacles’, and (ii) movable objects are rearranged satisfactorily

(without making them topple, fall off the workspace shelf, move very fast etc.). We

make no assumptions about the MAMO problem being monotone where each movable

object may only be moved once, and we allow the robot to rearrange several movable

objects at the same time. We do assume access to a rigid body physics simulator to

evaluate the effect of robot actions on the states of the objects in the workspace.

71

5. A Graph Search Formulation of Manipulation Among Movable Objects

5.4 E-M4M

This chapter presents the E-M4M algorithm, an enhanced version of our previous

M4M algorithm. In this section we provide details about E-M4M, the MAPF

abstraction and non-prehensile push planner used within it, and discuss when and

why E-M4M will solve a MAMO problem (or not).

In order to solve the MAMO problems of interest to us, E-M4M must answer

questions about which objects should be moved, where they may be moved, and

how the robot can move them. Like M4M, it relies on two modules to answer these

questions – an MAPF solver [134] is used to answer the first two questions, while our

non-prehensile push planner uses the MAPF solution to try and answer the third.

The push planner also updates the feasible solution space for the MAPF solver if it

determines that certain rearrangements are infeasible due to interaction constraint

violations. Unlike M4M however, E-M4M runs a best-first search over a graph

G = (V,E) with the help of these two modules. The vertices v ∈ V represent a

set of configurations (alternatively a rearrangement) of the movable objects OM
in the scene. Since the configurations of immovable obstacles are known prior to

planning and cannot be changed by virtue of the definition of interaction constraints,

we do not explicitly store them in each vertex v. Edges e = (u, v) ∈ E represent a

successful rearrangement action changing the configuration of at least one Om ∈ OM
between u and v. If a rearrangement action from vertex v is unsuccessful due to

any interaction constraint violation or reachability constraint, E-M4M will use this

information to generate a different rearrangement action from v at a later point in

the search. Thus given enough time, for any vertex v ∈ V , E-M4M will evaluate all

possible rearrangement actions for all objects Om ∈ OM . The overall E-M4M search

expands vertices in an order dictated by some priority function f : V → R≥0. In

contrast M4M (i) greedily commits to the first valid push found (it does not search

over orderings of rearrangements of multiple movable objects like E-M4M), (ii) only

obtains a single MAPF solution for each rearrangement it sees (it never replans the

MAPF solution based on the result of push actions like E-M4M), and consequently

(iii) only tries to rearrange a movable object along a single MAPF solution path for

each rearrangement (it does not consider alternate ways to push an object for the

same rearrangement like E-M4M).

72

5. A Graph Search Formulation of Manipulation Among Movable Objects

(a) (b) (c)

Figure 5.2: (a) A MAMO problem with ten movable objects and four immovable
obstacles, (b) the initial NGR V(γOoI) found for this scene (in gray), and (c) a 2D
projection of the scene with the MAPF solution paths in pink. This MAPF solution
suggests that the objects labeled A and B should be rearranged as per the pink paths
to be outside V(γOoI).

5.4.1 Main Algorithm

Algorithm 5 contains the pseudocode for E-M4M. Initially, E-M4M computes a

trajectory γOoI ⊂ XR for the robot to grasp and extract the OoI while pretend-

ing no movable objects OM exist in the scene (Line 28). The argument for the

PlanRetrieval function is the set of objects to be considered as obstacles during

planning. The volume occupied by the robot arm and OoI during execution of γOoI,

written as V(γOoI), creates a negative goal region (NGR) [35]. We define an NGR

parameterised with a robot trajectory as some volume in the workspace that, if free

of all objects, will lead to successful retrieval of the OoI upon execution of that

robot trajectory. Note that if the trajectory γOoI cannot be found, the overall MAMO

problem as specified is unsolvable. It may be solvable given a different grasp pose for

the OoI, however grasp planning is beyond the scope of this work. Once the initial

NGR V(γOoI) has been computed (Line 29), E-M4M executes a best-first search

using a priority queue ordered by f . Figure 5.2 shows a simulated MAMO problem,

the initial NGR V(γOoI) for the scene, and a 2D projection of the scene which shows

the MAPF solution found.

Every time a vertex v is expanded from this queue during the search (Line 36),

E-M4M calls an MAPF solver (Line 14). The set of solution paths returned by

the MAPF solver is then used by our non-prehensile push planner to generate and

evaluate successor rearrangement states (the loop from Line 18). For each object Om

that “moves” in the MAPF solution, our push planner tries to compute a trajectory

73

5. A Graph Search Formulation of Manipulation Among Movable Objects

Algorithm 5 E-M4M
1: procedure CreateVertex(OM , v, γ)
2: v′.OM ← OM , v′.parent← v, v′.γ ← γ
3: return v′

4: procedure Done(v)
5: if v.OM ∩ V(γOoI) = ∅ then
6: return true
7: γ̂OoI ← PlanRetrieval(v.OM ∪ OI)
8: if γ̂OoI exists then
9: γOoI ← γ̂OoI

10: return true
11: return false
12: procedure ExpandState(v)
13: κ← InvalidGoals(v)
14: v.{πm}m∈OM

← RunMAPF(v, κ,V(γOoI))
15: if MAPF failed then
16: Remove v from OPEN
17: return
18: for m ∈ v.OM do
19: if v.πm 6= ∅ then
20: γm ← PlanPush(v.πm, v.OM)
21: O′M , valid← IsValid(γm)
22: if valid then
23: v′ ← CreateVertex(O′M , v, γm)
24: Insert v′ into OPEN with priority f(v′)
25: else
26: Add final state in v.πm to InvalidGoals(v)

27: procedure Main(Oinit
M ,OI)

28: γOoI ← PlanRetrieval(OI)
29: Compute V(γOoI)
30: OPEN ← ∅, vstart ← CreateVertex(Oinit

M , ∅, ∅)
31: Insert vstart into OPEN with priority f(vstart)
32: while OPEN is not empty and time remains do
33: v ← OPEN.top()
34: if Done(v) then
35: return ExtractRearrangements(v)

36: ExpandState(v)

37: return ∅

74

5. A Graph Search Formulation of Manipulation Among Movable Objects

γm ⊂ XR to push Om along its MAPF solution path πm (Line 20). If γm is found,

it is forward simulated in a rigid body physics simulator for interaction constraint

verification (Line 21). If γm successfully rearranges the scene, i.e. at least one object

is moved and no constraints are violated, E-M4M generates a successor state v′ with

the resultant rearrangement and adds it to the queue (Lines 23 and 24).

A vertex v is closed in Line 16 and never re-expanded again iff the MAPF solver

fails to return a solution in Line 14 as this implies there are no more rearrangement

actions for us to try given the configurations of movable objects in that vertex v.

Otherwise when a vertex v is re-expanded, we ensure that the MAPF solver returns a

different solution than one obtained during any previous expansion of v by including

a set κ of invalid goals (Line 13). κ contains configurations for each movable object

Om ∈ v.OM that cannot be the final state in the path πm found by the MAPF solver.

This helps E-M4M search over different MAPF solutions for the same rearrangement

v.OM , thereby helping it search over different ways to rearrange v.OM . Invalid goals

are populated in κ in two ways – all push actions γm found to be invalid lead to the

final state of the corresponding πm being included as an invalid goal for Om (Line 26);

additionally if no such invalid pushes remain to be added to κ, the final states of

valid pushes found previously from v are “hallucinated” as invalid goals.

E-M4M terminates with v as the goal state when the OoI can be successfully

retrieved given the rearrangement v.OM . This may be achieved in one of two ways.

If the movable objects OM in v have been successfully rearranged to be outside the

initial NGR V(γOoI), we know the robot can execute γOoI to retrieve the OoI (Line 6).

Alternatively, if a different trajectory γ̂OoI (and therefore its NGR V(γ̂OoI)) can be

found in the presence of all objects (movable and immovable) as obstacles, the robot

can execute γ̂OoI to retrieve the OoI without making contact with any other object

(Line 10). Thus E-M4M, like M4M, implicitly makes the assumption that the OoI

retrieval trajectory will only make contact with the OoI.

Figure 5.3 shows the entire graph constructed by E-M4M to solve the problem

from Figure 5.2. E-M4M finds a sequence of four pushes to rearrange the scene in

order to retrieve the OoI. Note that in the solution both pushes that were computed

to rearrange object B also move object C. This is allowed since E-M4M places no

restriction on the number of movable objects that may be moved during a pushing

action.

75

5. A Graph Search Formulation of Manipulation Among Movable Objects

Push object A

Push object B

Push object BPush object A

Push object A

Figure 5.3: The graph constructed by E-M4M to find a solution to the MAMO
problem from Figure 5.2. Within each graph vertex we show an image of the 3D
scene in simulation and its 2D projection to visualise the MAPF solution found by
CBS.

76

5. A Graph Search Formulation of Manipulation Among Movable Objects

5.4.2 MAPF Abstraction

E-M4M relies on the same key observation as M4M (Section 4.4.1) that by solving a

carefully constructed MAPF problem with movable objects as agents, we can obtain

information about which objects our MAMO planner should consider rearranging and

where. As before, we use Conflict-Based Search (CBS) [134] as the solver for our

abstract MAPF problem. For a vertex v in E-M4M, we include all movable objects

as agents in CBS starting at their current poses in v.OM . Each agent is assigned

a goal of being outside the initial NGR V(γOoI), while avoiding collisions with each

other and all immovable obstacles OI . Although agent states in CBS specify their

configuration in XOm ≡ SE(3), agents use a 2D action space on a four-connected grid

in the MAPF abstraction that only changes the x− or y−coordinates of their state.

The CBS solution for this MAPF problem is a set of paths {πm}m∈OM
such that Om

ends up outside V(γOoI) after following πm.

In order to search over all possible ways to rearrange v.OM , E-M4M includes a

set of invalid goals κ when it calls CBS in Line 14. For each vertex v, κ includes

information about where each object Om ∈ v.OM cannot end up in any future CBS

solution. During a previous expansion of v, if path πm led to an invalid push γm, the

final state of πm is added as an invalid goal for Om ∈ v.OM since we failed to rearrange

Om along πm (Line 26). As a result, the next solution from CBS would return a new

path π′m 6= πm which in turn would cause our push planner to consider a different

rearrangement action. When all invalid pushes from v have been included in the

previous call to CBS, we also include the final states of valid pushes found previously

as invalid goals in κ so as to ensure we consider all possible ways to rearrange v.OM .

If CBS fails to find a solution, or if no new invalid goals can be added to κ from

the last call to CBS, we close vertex v and stop it from being re-expanded (Line 16)

since no new way to rearrange v.OM can be found. Figure 5.4 (a) shows another

simulated MAMO problem and the effect that invalid goals κ can have on the MAPF

solution – when both pushes γA and γB computed as per the MAPF solution in (b)

failed, adding the final states of πA and πB to κ results in a different MAPF solution

in (c).

77

5. A Graph Search Formulation of Manipulation Among Movable Objects

(b)(a)

Figure 5.4: (a) A MAMO problem with five movable objects and four immovable
obstacles, (b) First MAPF solution that led to invalid pushes γA and γB, (c) Adding
the final states of πA and πB (colour coded stars) to κ leads to a new MAPF solution.

AABB AABB
(1) (2)

Figure 5.5: 2D illustration of our push planner. Movable object Om is blue, and an
immovable obstacle is drawn in red. The green path is obtained after shortcutting
the pink MAPF solution path πm. xaabb is the point-of-intersection between the first
segment (x1, x2) and the axis-aligned bounding box for Om. The cyan segments depict
the path along which inverse kinematics is used to obtain γim.

5.4.3 Non-prehensile Push Planner

The goal for our push planner is to find robot trajectories γm ⊂ XR that rearrange a

movable object along the path πm returned by our MAPF solver. If we are able to

precisely rearrange each Om to the final state of πm, we know the robot can execute

γOoI to solve the MAMO problem. In order to do so, we assume the push planner is

provided a shortcut path πm (accounting for immovable obstacles OI) in Line 20.

Each call to PlanPush stochastically generates a robot trajectory γm, as discussed

earlier in Section 4.4.2. For ease of understanding, Figure 5.5 shows a simplified,

deterministic version of our push planner. The push planner first tries to compute

a trajectory to a end-effector pose in SE(3) from where we would like to push

the intended object. In the simplest version of our push planner, the push start

78

5. A Graph Search Formulation of Manipulation Among Movable Objects

pose is the point of intersection xaabb between the axis-aligned bounding box of Om

and the ray
−−−−→
(x1, x0) (from the final state in πm to the initial state). If the motion

planner for the robot arm succeeds in finding this trajectory γ0m ⊂ XR to xaabb in

the presence of all objects (movable and immovable) as obstacles – depicted by Step

(1) in Figure 5.5 – we will go on to compute the pushing action in Step (2). We

use an inverse kinematics solver for our robot R to compute a sequence of joint

configurations that take the end-effector of R in a straight-line from xaabb to x1. If

we succeed in computing the pushing action γ1m in this way, we append it to γ0m to

obtain the full pushing trajectory. However, since γ0m is known to be contact-free by

construction, we only forward simulate γ1m in our physics-based simulator to detect if

any interaction constraints are violated during its execution and get the resultant

rearrangement of the scene. In addition, by ensuring that we retract the robot arm

to the final configuration in γ0m after executing the push action γ1m, we can guarantee

that the robot can move from one push to the next entirely in free space without

making contact with any object.

5.4.4 What E-M4M Can and Cannot Solve

Solutions to MAMO problems lie in a space X = XR ×XO1 × · · · × XOn that grows

exponentially with the number of movable objects. There are several subtle reasons

due to which E-M4M might fail to find solutions to complicated MAMO problems in

this space. A rigorous theoretical analysis of E-M4M requires careful consideration

of three different graphs that it searches – the high-level graph G with vertices that

denote rearrangements of movable objects and edges that encode rearrangement

actions from our non-prehensile push planner, the graphs with vertices in SE(3)

with edges corresponding to a 2D action space on a four-connected grid used by the

single-agent searches within our MAPF solver CBS, and finally a graph with vertices

in XR and edges representing changes in one of the q degrees-of-freedom that is used

when computing any robot trajectory (within the PlanRetrieval and PlanPush

functions in Algorithm 5).

When trying to rearrange an object to a specific location, E-M4M only considers

moving it along the particular path πm found by CBS and not along all such paths.

E-M4M does not compute all ways to push an object to a particular location, i.e.

79

5. A Graph Search Formulation of Manipulation Among Movable Objects

it does not compute all paths (and by extension pushes) that end in the same final

state, instead only computing a push γm for the particular πm found by CBS. Its

reliance on CBS and our push planner also means that E-M4M might fail to find

interesting non-monotone solutions where it must rearrange an object Oa partially

along its solution path πa before moving Ob along πb and finally going back to move

Oa the remainder of the way along πa. The MAPF abstraction itself uses a simple

2D action space which fails to capture all possible rearrangements of the scene in

XO1 × · · · × XOn . Finally, E-M4M does not actively search over all OoI retrieval

trajectories γOoI ⊂ XR, and consequently the same NGR is used to specify goals for

movable objects in all MAPF calls.

Despite these limitations, by relying on our MAPF abstraction and non-prehensile

push planner, E-M4M does search over ‘allowed’ (i) orderings of movable object

rearrangements, (ii) potential rearrangements for the set of movable objects, and

(iii) ways to rearrange the same movable object. In doing so it makes progress

towards a complete MAMO planning algorithm that uses non-prehensile actions

for rearrangement in a 3D workspace with complex multi-body interactions where

movable objects may tilt, lean, topple etc. Our quantitative analysis shows that

E-M4M performs better than many state-of-the-art planning algorithms for these

MAMO problems.

5.5 Speeding up the Algorithm

This section discusses three algorithmic optimisations we propose as part of E-M4M

that significantly improve its quantitative performance. We discuss caching informa-

tion from successful and unsuccessful rearrangement actions to speed up the E-M4M

search, and a data-driven priority function that learns a naive probabilistic estimate

of the subtree at a vertex v in the E-M4M graph being solvable based on features of

the rearrangement v.OM .

5.5.1 Caching Unsuccessful Push Actions

The goal set for movable objects in the MAPF abstraction includes any configuration

outside the initial NGR V(γOoI) that is free of collision from all other objects. Given

80

5. A Graph Search Formulation of Manipulation Among Movable Objects

vertex v, consider an object Om in v.OM and its corresponding path πm which achieves

this goal. If the resulting push γm is invalid, the next call to CBS from v will lead to

a path π′m 6= πm. However, naively including the last state in πm as an invalid goal

state for CBS will likely lead to the new path π′m ending in a neighbouring state of

the invalid goal (since CBS is an optimal MAPF solver). This in turn will lead to a

push γ′m ≈ γm that is also likely to be invalid.

To mitigate this, for every CBS call from a vertex v, for each object Om, E-M4M

caches the goals that were previously determined to be invalid in a nearest neighbour

data structure. We use this cached information to bias the solutions produced by

CBS to avoid moving objects to states close to known invalid goals for the respective

objects. This biasing is done by assigning penalties to each potential goal location

for each object Om, and then during each low-level search within CBS finding the

solution that minimises the summation of getting to a goal plus the penalty associated

with the goal. This can be done by introducing one single ‘pseudogoal’ that the search

searches towards and connecting all the potential goal locations to this ‘pseudogoal’

with edges whose cost is proportional to the respective penalty. This helps penalise

paths to states close to known invalid goals, and lets E-M4M search the space of

allowed rearrangements of v.OM more efficiently. For the same MAMO problem as in

Figure 5.4, Figure 5.6 (a) shows the new MAPF solution when we include invalid goals

naively – the new paths π′A and π′B are very similar to πA and πB (from Figure 5.4

(b)) and end in final states very close to the invalidated goals. However, using the

above explained approach that modifies the single-agent search to use our nearest

neighbour data structure for invalid goals, we get a very different MAPF solution in

Figure 5.6 (b). This allows us to search the space of possible rearrangements much

more efficiently.

5.5.2 Caching Successful Push Actions

During the search, CBS solutions in different vertices of the graph E-M4M may

contain the same path πm for object Om. This can occur if the best rearrangement

for Om is unaffected by the different configurations of other objects in these vertices.

In such cases, if we have computed the push γm in one of these vertices and found

it to be valid in simulation while generating the successor rearrangement state, we

81

5. A Graph Search Formulation of Manipulation Among Movable Objects

Figure 5.6: (a) First MAPF solution that led to invalid pushes γA and γB, (b) Adding
the final states of πA and πB (colour coded stars) to κ leads to a new MAPF solution.

would like to reuse this result whenever possible since simulating a push action is

computationally expensive (around 2 − 6s per action simulation). This reuse of

successful push actions is enabled by storing the successful pushes in a database.

If a push γm from path πm for object Om rearranged the scene from v.OM to v′.OM ,

we index into this database with the key (Om, πm). While any push is simulated, we

keep track of objects that are relevant for that push – these are all objects whose

configurations are changed between v.OM and v′.OM . For each (Om, πm) tuple, the

database stores the value (v.OM , v′.OM , γm, relevant objects). During the expansion

of some other vertex u, if CBS returns the same path πm for Om, we try to reuse

the result of the stored push γm to generate the successor state u′ corresponding to

rearranging Om. However, this reuse is only possible if all relevant objects are in the

same configurations in v.OM and u.OM , and all other ‘irrelevant’ objects in u.OM are

in configurations that will not be affected by γm. If both these conditions are true,

we can simply reuse the result of γm stored in the database to say that the relevant

objects in u.OM will be rearranged to their respective configurations v′.OM , and the

‘irrelevant’ objects will remain unaffected.

82

5. A Graph Search Formulation of Manipulation Among Movable Objects

5.5.3 Learned Priority Function

E-M4M searches an extremely large space for MAMO solutions since it searches

over orderings of object rearrangements, different rearrangements of the scene, and

different ways to rearrange each object. In an attempt to focus its search effort

on more promising vertices of the search tree, we learn to predict the probability

of a particular vertex leading to a solution for the MAMO problem. The learned

function is used as the priority function f in the best-first E-M4M search. We

predict the probability of a vertex v leading to a solution based on features of the

rearrangement v.OM – the percentage volume of the initial NGR V(γOoI) occupied

by movable objects (φ1), the number of movable objects inside the NGR (φ2), and

for each such object the product of its mass, coefficient of friction and percentage

volume inside the NGR (φ3). These features indicate how difficult it is to clear the

NGR and therefore solve the MAMO problem. Our predictive model f makes the

Naive Bayes assumption [63] that these features are conditionally independent of the

others. Thus if E is the event that vertex v leads to a MAMO solution,

f(v) = P (E)× P (φ1 |E)× P (φ2 |E)

× ΠOm∈V(γOoI)P (φ3 |E)

We model P (φ1 |E) as a beta distribution, and P (φ2 |E) and P (φ3 |E) are both

exponential distributions. Their parameters are estimated via maximum likelihood

estimation from a dataset of self-supervised MAMO problems. We generate this set

of problems by running E-M4M breadth-first on 20 MAMO scenes with a 10 min

planning timeout. We store each vertex generated during these E-M4M runs as a

separate MAMO problem, and then run E-M4M depth-first with a 60 s timeout on

these problems to get our training dataset of 2400 datapoints.

5.6 Experimental Analysis

This section compares the performance of E-M4M against several MAMO baselines,

studies the effect of the algorithmic improvements we propose in an ablation study,

and provides results from real-world experiments on a PR2 robot.

83

5. A Graph Search Formulation of Manipulation Among Movable Objects

Easy Medium Hard

Figure 5.7: Example Easy, Medium, and Hard scenes.

5.6.1 Simulation Experiments Against MAMO Baselines

Our simulation experiments randomly generate MAMO workspaces with one OoI, four

immovable obstacles, and five, ten or fifteen movable objects. All object properties

(shapes, sizes, mass, coefficient of frictions, initial poses) are randomised and known

to each planner prior to planning. We categorise these workspaces into three difficulty

levels based on the number of movable objects inside the initial NGR V(γOoI). Prob-

lems are Easy, Medium, or Hard depending on whether there are one, two, or more

than two movable objects overlapping with the initial NGR. Figure 5.7 shows sample

MAMO workspaces of each difficulty level. We test the performance of all algorithms

on 98 Easy, 63 Medium, and 39 Hard problems with a 5 min planning timeout.

In addition to (1) M4M, we compare the performance of E-M4M against four

other baselines. (2) We re-implement Dogar [35] to use our push planner with

a physics-based simulator. It recursively searches backwards in time for objects

that need to be rearranged outside the most recent NGR. If it rearranges an object

successfully, the volume spanned by the rearrangement trajectory is added to the

previous NGR and the recursion continues. However, Dogar only has information

about which objects need to be rearranged but not where they should be moved. Our

implementation randomly samples points outside the latest NGR as goal locations for

our push planner. (3) SelSim [148] interleaves planning a trajectory while simulating

interactions with ‘relevant’ objects with tracking the found trajectory in the presence

of all objects. If tracking violates interaction constraints, the ‘culprit’ object is

identified and added to the set of relevant objects for the next iteration. SelSim uses

simple motion primitives that change only one of the q degrees-of-freedom of the robot,

84

5. A Graph Search Formulation of Manipulation Among Movable Objects

Table 5.1: Number of problems solved by various MAMO planning algorithms in
simulation experiments

Difficulty
Planning Algorithm

E-M4M M4M Dogar SelSim RRT KPIECE

Easy (98) 97 78 7 16 33 16
Medium (63) 45 25 0 8 7 1
Hard (39) 15 7 0 1 1 0

which does not lead to meaningful robot-object interactions in this domain. Finally,

we compare against the standard OMPL [146] implementations of general-purpose

sampling-based planning algorithms (4) RRT [85] and (5) KPIECE [147].

Table 5.1 contains the number of problems solved by each planning algorithm for

the different difficulty levels. It is apparent that E-M4M far outperforms all other

algorithms, and that all baselines struggle to solve Medium and Hard problems.

The quantitative performance of all algorithms in terms of total planning time

and time spent simulating robot actions is shown in Figure 5.8. E-M4M is able to

achieve a good balance of time spent computing robot actions (with the MAPF solver

and push planner) and forward simulating them for interaction constraint verification.

Since M4M never replans the MAPF solution, it spends most of its time trying to

sample push actions to be simulated. Dogar repeatedly fails to find solutions, even

for simple problems, because it (i) has no information about where objects should

move, choosing to randomly sample uninformed pushes instead, (ii) only considers

pushes to be successful if they rearrange an object to be completely outside the NGR,

and (iii) never considers rearranging an object more than once. The performance

of SelSim is particularly interesting. It is only able to solve problems where the

first planned path succeeds when tracked without any interaction constraints being

violated, resulting in negligible planning times for its successes (and no time spent

in simulation). Otherwise, owing to its primitive action space, it spends most of

its planning budget in simulation trying to rearrange the scene with small robot

actions that are incapable of significantly changing object configurations. RRT

and KPIECE perform well as they are able to sample long robot motions that can

rearrange objects with favourable physical properties (low masses and coefficients of

friction) with high likelihood.

85

5. A Graph Search Formulation of Manipulation Among Movable Objects

(b)

Figure 5.8: (a) Total planning time and (b) time spent querying a physics-based
simulator for MAMO planning algorithms across planning problems with varying
difficulty levels.

86

5. A Graph Search Formulation of Manipulation Among Movable Objects

Table 5.2: Number of problems solved E-M4M ablations

Difficulty
Ablation

E-M4M Neg-DB Pos-DB No-DB Tiebreak

Easy (98) 97 87 86 82 85
Medium (63) 45 24 29 25 36
Hard (39) 15 7 8 7 13

5.6.2 E-M4M Ablation Study

To study the effect of the algorithmic improvements we propose as part of E-M4M,

we compare four different versions of E-M4M. Neg-DB only caches information from

unsuccessful push actions to modify the low-level CBS single-agent search; Pos-DB

only caches information from successful push actions and tries to reuse their results

whenever possible; No-DB does not cache any information from push actions; and

Tiebreak assigns priorities by lexicographically tiebreaking E-M4M vertex feature

vectors (φ1, φ2,
∑

Om∈V(γOoI)
φ3). Neg-DB, Pos-DB, and No-DB all use the learned

priority function like E-M4M, while Tiebreak caches information from unsuccessful

and successful push actions like E-M4M.

Table 5.2 shows that each of these E-M4M ablations solve fewer MAMO problems

in comparison to E-M4M which combines all of them. Quantitatively, their perfor-

mance can be compared from the plots in Figure 5.9. While there is no significant

difference between the different ablations for Easy problems, for Medium and Hard

problems we can see that performance degrades as we remove cached information.

Pos-DB performs worse than Neg-DB since it is not as likely for E-M4M to find

the same push multiple times during a search as it is for it to require several different

MAPF solutions. Finally, even with a naive tiebreaking based priority function,

Tiebreak performs only slightly worse than E-M4M for Hard problems. This sug-

gests that the learned priority function (using the Naive Bayes assumption) is not

as useful for these problems, perhaps due to the 60 s timeout imposed during data

collection being insufficient to result in a rich set of datapoints for Hard problems.

87

5. A Graph Search Formulation of Manipulation Among Movable Objects

Figure 5.9: Median statistics for time spent calling the MAPF solver, push planner,
and simulator for different E-M4M ablations.

5.6.3 Real-World Experiments

We ran experiments with the PR2 robot with a refrigerator compartment as our

MAMO workspace (Figure 5.1). Problems were initialised with five objects from

the YCB Object Dataset [16]. The tomato soup can was always our OoI, while all

other objects were initialised as movable. Their initial poses were localised with a

search-based algorithm [1] run on a NVidia Titan X GPU.

We ran E-M4M on 20 perturbations of the scenes in Figure 5.1 with a 5 min

planning timeout. 15 runs resulted in successful OoI retrieval, with the others

failing due to unforeseen discrepancies between simulated and real-world robot-object

interactions. Four failures were due to inaccurate computation of coefficients of

friction of movable objects. One failure was the result of an object getting stuck in

ridges in the real-world refrigerator shelf that were not modeled in simulation. These

discrepancies highlight the sim-to-real gap that E-M4M can suffer from, since it

blindly relies on the result of the physics based simulator used in the algorithm. On

average, for the 15 successful retrievals, E-M4M took a total time of 39.3± 28.2 s of

which 0.9± 1.2 s was spent calling the MAPF solver, 33.5± 25.8 s was spent planning

pushes, and 7.1± 5.3 s was spent simulating them.

88

5. A Graph Search Formulation of Manipulation Among Movable Objects

5.7 Conclusion and Discussion

The Enhanced-M4M algorithm presented in this chapter builds upon our prior work

on Multi-Agent Pathfinding for Manipulation Among Movable Objects [128]. E-M4M

utilises an MAPF abstraction of MAMO, a non-prehensile push planner, and a rigid

body physics simulator within a best-first graph search for solving MAMO problems

that require determining which movable objects should be moved, where to move

them, and how they can be moved. E-M4M searches over different orderings of

object rearrangements, different rearrangements of the workspace, and different ways

to rearrange the same object.

Formulating a graph search for MAMO allows us to lean on a rich history of

literature on improving the efficacy of search-based planning algorithms [113]. First

and foremost, it becomes trivial to expand the action space A available to the robot for

rearrangement of movable objects. In theory we can add any number of rearrangement

actions to this action space – prehensile or pick-and-place style rearrangements, use

of tools accessible by the robot, full-body and/or bi-manual manipulation capabilities

etc. In practice however, each additional action provided to the robot increases the

branching factor of the graph we implicitly construct as part of E-M4M, which in

turn can increase the computational burden on the planning algorithm as it would

need to evaluate more actions per state. Evaluating these edges (Algorithm 1, Line 9)

is more often than not the most time consuming step of a graph search-based planning

algorithm [22, 102, 105]. In Chapter 6, we will introduce the use of prehensile or

pick-and-place style rearrangements in addition to the non-prehensile pushing actions

we have focused on thus far.

We can offset some of the computational burden introduced by increasing the

branching factor by making our graph search “eagerly lazy” [25]. This is the idea

that we only need to evaluate edges (u, v) to vertex v (for any u such that (u, v) ∈ E),

when we want to grow the graph beyond vertex v. In our case, this would let us defer

running expensive arm motion planning queries and even more expensive forward

simulations in our physics-based simulator until absolutely necessary. We modify

E-M4M to exploit this idea in Chapter 6.

Finally, the work in this thesis until now has assumed that prior to planning we

have perfect knowledge of all object parameters – their poses in the environment,

89

5. A Graph Search Formulation of Manipulation Among Movable Objects

dimensions, masses, and coefficients of friction. This is an unrealistic assumption to

make for real-world deployment of the algorithms we have developed. In Chapter 6

we will relax the assumption on perfect knowledge of object masses and coefficients

of friction in particular as this has received relatively little attention in literature

and is extremely important for algorithms that utilise non-prehensile rearrangements.

Relaxing this assumption complements ongoing work on accurate localisation of

objects in the environment [155, 167] and allowing MAMO solvers to be robust in

any errors in object localisation [35].

90

Chapter 6

Manipulation Among Movable

Objects With Diverse Actions and

Parameter Uncertainty

In Chapter 5 we introduced E-M4M [127], a graph search-based solver for solving

Manipulation tasks Among Movable Objects (MAMO). We focused on rearrangement

by non-prehensile or pushing actions in 3D workspaces where objects may tilt,

topple, lean etc. The E-M4M algorithm searches over different orderings of object

rearrangements, different rearrangements of the workspace, and different ways to

rearrange the same object. In this chapter we make several improvements to E-M4M –

we introduce the use of prehensile or pick-and-place rearrangement actions in addition

to pushes; we show that by running it as a depth-first search improves performance

and alleviates the shortcomings of the learned heuristic function used by E-M4M;

we show how the search can be run “eagerly lazily” to only simulate actions in a

physics-based simulator when necessary; finally we relax the assumption that we

require perfect knowledge of the physical properties of objects (mass and coefficient

of friction in particular) and leverage parallelised simulations to make E-M4M robust

to uncertainty in these parameters. The improved version of E-M4M presented in

this chapter, I-M4M, is a faster and more versatile MAMO solver with a rich action

space. We discuss the impact of the improvements we make in an extensive simulation

study and show previously unachievable results on a real-world PR2 robot.

91

6. Manipulation Among Movable Objects With Diverse Actions and Parameter
Uncertainty

6.1 Introduction

“Manipulation Among Movable Objects” (MAMO) [5, 144] defines a class of hybrid

or multi-modal planning problems [53, 138]. The difficulty in solving multi-modal

planning problems arises from the need to jointly optimise over discrete decisions

(which objects to rearrange) and continuous trajectories (for the robot arm to rearrange

objects) in a search space that grows with the number of movable objects in the

workspace of the robot. In our work, the configuration space of the robot XR ⊂ R7

since we use the 7 degree-of-freedom manipulator on a PR2 robot. The configuration

space of each movable object Oi is XOi
≡ SE(3) since we keep track of their 3D pose

(position and orientation). The search space for MAMO solutions in a workspace

with n movable objects is the cross-product space X = XR ×XO1 × · · · × XOn . As an

example, Figure 6.1 shows a MAMO problem a robot may be asked to solve. The

task can be stated very simply – retrieve the can of beer (object-of-interest or OoI,

outlined in yellow) from the refrigerator shelf. The complexity in solving this problem

arises from the fact that the robot is only allowed to move the yogurt and almond

beverage (movable objects outlined in blue). Furthermore, the solution must not

violate object-centric “interaction constraints” specified in the problem. These may

encode properties desired in the MAMO solution such as whether the robot is allowed

to make contact with certain objects, how far it can tilt them, whether they can

topple, and how fast they can be moved at all times along the solution trajectory.

In the problems we consider, the robot cannot make movable objects tilt beyond

25◦ along any axis, topple, or make contact with the (fragile) immovable obstacles

outlined in red in Figure 6.1 (eggs, cup of coffee, and glass bottles).

There are several approaches to make it computationally tractable to solve such

problems. Task and motion planning (TAMP) [31, 47, 65] decomposes the MAMO

problem to first compute a sequence of abstract, high-level, symbolic actions that

solve the problem (without taking into account any kinematic or dynamic constraints

of the problem). Using this “task plan” as guidance, they try and solve for a sequence

of robot trajectories in the continuous space that does take all necessary constraints

of the problem. Other solvers compute solution trajectories in the joint space X
either by sampling random control sequences and validating them by taking into

account all problem constraints [8, 69, 160] or using a discretised robot action space

92

6. Manipulation Among Movable Objects With Diverse Actions and Parameter
Uncertainty

Figure 6.1: The goal is to retrieve the beer can (yellow outline). The yogurt and
almond beverage are movable objects (blue outlines). All other objects in the scene
are immovable obstacles (red outline).

in a graph search [35, 144].

These methods however usually simplify the MAMO problem further to make it

easier to find solutions. In some cases the robot is allowed to only rearrange the scene

via prehensile or pick-and-place actions [79, 80, 86, 103, 135, 164]. This simplifies

motion planning as we can rely on collision-free motion planning to find prehensile

rearrangement trajectories by assuming that once an object is grasped it becomes

rigidly attached to the robot kinematic chain. Other approaches allow non-prehensile

rearrangement actions such as pushing, but only consider non-prehensile interactions in

a planar world where objects do not tilt, topple, lean etc. [35, 59, 60, 68, 111, 159, 161].

Often MAMO solvers will make additional assumptions about access to intermediate

or “buffer” locations where objects may be rearranged [86, 163], or that the robot

can only interact with and rearrange one object at a time and that an object may

not be rearranged more than once [35, 144, 160].

In prior work [127, 128] we have developed the E-M4M algorithm – a solver for

MAMO problems that draws a connection between the MAMO domain and Multi-

Agent Pathfinding (MAPF). E-M4M first solves an MAPF abstraction of the MAMO

problem to determine which rearrangement actions it should generate as candidates

from a particular state. These are then converted into robot trajectories for validation

93

6. Manipulation Among Movable Objects With Diverse Actions and Parameter
Uncertainty

in a physics-based simulator. Unlike TAMP solvers, E-M4M does not need access

to a prescribed set of parameterised abstract/symbolic actions. Instead it generates

these on-the-fly by solving the MAPF problem. E-M4M formulates a graph search

for MAMO problems and searches over different rearrangements of the scene, different

orderings of rearrangements for movable objects in a scene, and different ways to

rearrange a movable object. However E-M4M is limited to the use of non-prehensile

or pushing actions to rearrange movable objects, uses a learned heuristic function

that does not capture the complexity of difficult-to-solve problem instances1, and

assumes accurate estimates of movable object masses and coefficients of friction in

order to minimise the sim-to-real gap [18, 62].

In this chapter we make several changes to E-M4M and present an Improved

version of the algorithm, I-M4M. Each of the modifications are intended to create a

more versatile and/or efficient solver for MAMO problems. To be precise, we make

the following contributions with the I-M4M algorithm:

1. We introduce the use of prehensile rearrangement actions to allow the robot

to deliberately pick up objects and place them down elsewhere. This makes

significant progress towards the MAMO solution that may otherwise have

required multiple pushes.

2. We implement I-M4M as a depth-first search with respect to valid rearrange-

ment actions found. In doing so we are able to address inaccuracies in the

learned heuristic function used by E-M4M that would lead to re-expansions of

states from which the algorithm had already made progress.

3. With the inclusion of prehensile rearrangements I-M4M uses a richer action

space that increases the branching factor of the search and hence the computa-

tional complexity. We propose an “eagerly lazy” version of I-M4M that only

validates rearrangement actions when necessary.

4. We parallelise simulations across multiple instances of the physics-based sim-

ulator to relax the assumption of accurate estimates of object masses and

coefficients of friction that make I-M4M more robust to modeling errors in the

real-world.

1Problems that are difficult to solve typically require the robot to rearrange many objects, each
with multiple actions.

94

6. Manipulation Among Movable Objects With Diverse Actions and Parameter
Uncertainty

Section 6.2 of this chapter contains a review of work related to MAMO. Section 6.3

contains technical details of the major improvements we incorporate in the I-M4M

algorithm. These are thoroughly evaluated in simulation and on real-world runs on

the PR2. The results of these experiments are presented in Section 6.4. Section 6.5

provides a discussion about the work in this chapter and how it can be extended in

future work.

6.2 Related Work

There are two broad categories of MAMO solvers that can be differentiated by whether

they use a discretised action space or whether they search for solutions in the joint

configuration space of the robot and all movable objects.

Task and motion planning (TAMP) solvers [20, 31, 46, 47, 65, 67] use a discrete

set of parameterised symbolic actions to compute “task plans” – abstract, high-level

action sequences that solve the MAMO problem but need to be refined into continuous

trajectories executable by a robot. They differ in whether a complete task plan to

the goal state is refined or whether each abstract action the algorithm considers

adding to the task plan is verified by a motion planner when generated. In our

work, we present an algorithm that implicitly generates these high-level actions by

solving an appropriately constructed MAPF abstraction to MAMO and does not rely

on a predefined set of symbolic actions. Other MAMO solvers and algorithms for

rearrangement planning keep track of object configurations as part of the search graph

they construct with a discrete set of rearrangement actions. To avoid an exhaustive

search over the entire configuration space X , these algorithms restrict themselves to

the use of prehensile or pick-and-place style rearrangement actions that change the

configuration of at most one object at a time [79, 80, 86, 103, 135, 144, 159, 163, 164].

Pick-and-place rearrangement actions can be computed with collision-free motion

planning where the robot grasps an object, rigidly attaching the object to its kinematic

chain, and relocates it to the desired location. This does not require querying a

computationally expensive model (such as a physics-based simulator in our case)

to forward simulate the effect of robot actions on the configurations of all other

movable objects, something typical of algorithms that use non-prehensile robot-object

interactions.

95

6. Manipulation Among Movable Objects With Diverse Actions and Parameter
Uncertainty

Since non-prehensile robot-object interactions can change the configuration of

several movable objects during the same action, usually a physics-based simulator

is integrated into the motion planning algorithm. The simulator is used to forward

simulate the effect of robot actions on the configuration of objects in the environment.

Since querying such a simulator is computationally expensive, existing literature

limits non-prehensile interactions to a planar world [59, 60, 68, 69, 111, 161]. This

makes it easier to find valid pushing actions as the only interaction constraint to be

satisfied is ensuring objects remain within workspace bounds. Our work does not

make the planar world assumption and keeps track of object configurations in SE(3)

(3D position and orientation) and satisfies a more challenging but realistic set of

interaction constraints – neither the robot nor movable objects can make contact with

immovable obstacles ; movable objects cannot be tilted beyond 25◦ along any axis, they

cannot be toppled or leave workspace bounds, and they cannot be moved faster than

1 m s−1. There is existing work that allows the robot to manipulate objects in the

workspace via both prehensile and non-prehensile rearrangement actions [8, 35, 45].

However they also limit non-prehensile interactions to a planar world and only allow

the robot to manipulate a single object at a time. We do not impose these restrictions

in our work, nor do we limit each object to be rearranged once.

The second category of algorithms that search the joint configuration space of the

robot and all objects are able to rely on sampling algorithms to generate candidate

robot actions [8, 10, 44, 69, 72, 150, 151, 160]. They are aided by additional guidance or

biased sampling that provides heuristic guidance to the algorithm about which (if any)

object should be manipulated and how. Additionally they may rely on constrained

projections of robot motions to ensure that the robot maintains appropriate contacts

when evaluating actions.

6.3 Improvements to the E-M4M Algorithm

This chapter introduces several improvements to the E-M4M that contribute to a

faster MAMO solver with a richer action space. We call this improved version of the

algorithm Improved-M4M or I-M4M. This section discusses four improvements we

introduce in this chapter.

96

6. Manipulation Among Movable Objects With Diverse Actions and Parameter
Uncertainty

6.3.1 Addition of Prehensile Rearrangement Actions

Given the structure of the E-M4M graph search, it is straightforward to extend

it to obtain a richer MAMO solver with a diverse action space.In this chapter we

introduce the use of pick-and-place rearrangement actions as part of the I-M4M

algorithm. For objects that are “graspable”, i.e. those that will fit inside the end-

effector of our robot, we generate two outgoing edges from vertex v to vertices v′1 and

v′2 in I-M4M corresponding to rearranging an object by a push and pick-and-place

action respectively. The edge (v, v′1) corresponding to a push action is evaluated as

described in Section 5.4.3. To validate edges (v, v′2) corresponding to pick-and-place

rearrangement, we first compute a pick-and-place trajectory, and if one is found,

validate it in the simulator.

We assume access to known grasp poses for each object. While the MAPF solution

contains entire paths for objects to be rearranged as shown in Figure 5.2, if we want

to rearrange an object with a pick-and-place action we select the final state in its

MAPF solution path as the placement pose and discard the rest. The rearrangement

action can be broken down into four parts – a trajectory to reach the grasp pose, the

grasp maneuver, a trajectory to reach the placement pose, and the placement action.

Grasping and placement actions are hard-coded movements of the end-effector relative

to the object from the grasp pose and placement pose respectively. The trajectories

to the grasp and placement poses are computed in XR by calling a motion planner

for the robot arm. For prehensile rearrangements, we impose the restriction that the

entire trajectory must be collision-free with all objects (movable and immovable).

If such a collision-free trajectory is found, we simulate the grasping and placement

actions in the simulator to ensure that no interaction constraints are violated. We

do not need to simulate any other parts of the trajectory since by construction they

are collision-free. Figure 6.2 shows a MAMO solution found by I-M4M with one

non-prehensile and one prehensile rearrangement.

6.3.2 Depth-First I-M4M

E-M4M was proposed as a prioritised best-first search on graph G described in

Section 5 where the priority function was learned offline to predict the likelihood

a particular state lay on a path to the goal state for the MAMO problem. This

97

6. Manipulation Among Movable Objects With Diverse Actions and Parameter
Uncertainty

Figure 6.2: (1) The initial scene; (2) Pushing the movable cylinder in the front to the
left; (3) Prehensile rearrangement of the movable cylinder in the back; (4) Retrieving
the OoI from the scene.

was shown to be particularly ineffective in disambiguating between, i.e. accurately

prioritising, scenes in which several objects overlap with the negative goal region.

This leads to E-M4M (re-)expanding vertices in the graph from which it is difficult

to make further progress.

Instead I-M4M is run as a depth-first search to continue the search for solutions

from states which we have reached via valid rearrangement actions. This is closely

related to the work of Garrett et al. [45] which proposes a hill-climbing solver for

TAMP problems, and that of Stilman et al. [144] and Dogar et al. [35] who propose a

depth-first solver for MAMO problems that searches backwards from the goal state.

However all of these works are restricted to manipulating a single object at a time,

98

6. Manipulation Among Movable Objects With Diverse Actions and Parameter
Uncertainty

and limit all non-prehensile interactions to a plane so that objects do not tilt, topple

or lean. We still allow I-M4M to re-expand states if it is unsuccessful in validating

rearrangement actions, and it can backtrack to other vertices in the graph as and

when necessary.

I-M4M orders the priority queue lexicographically based on the pair (actions,

reexpands) where actions is the number of valid rearrangement actions found on

the partial path to a vertex and reexpands is the number of times that vertex has

been re-expanded. We preferentially prioritise greater values of actions and lesser

values of reexpands. Thus if u ≺ v implies that u appears in the priority queue

ahead of v, and consequently u will be expanded before v, I-M4M will contain the

following ordering of states: (3, 0) ≺ (3, 1) ≺ (2, 4) ≺ (1, 0) ≺ (0, 2).

6.3.3 Eagerly Lazy Evaluation of Rearrangement Actions

The virtue of lazy search algorithms is well-understood [49, 96, 102]. Laziness in the

property where the evaluation of an edge is postponed until it becomes necessary. For

MAMO problems edge-evaluations require computing a robot arm trajectory in XR and

in some cases simulating it in a physics-based simulator if such a trajectory is found.

This is a particularly time-consuming operation executed for every rearrangement

action we evaluate during the search (taking on average 3 − 4s per action). Lazy

I-M4M can thus save considerable computational effort by evaluating actions as and

when required.

Conventional lazy search algorithms assume that during the search the existence

of an edge (v, v′), and by extension that of the successor state v′, cannot be refuted

and only its validity is determined upon evaluation. However in our domain the edge

is generated as an abstract action based on the MAPF solution that when evaluated

will almost surely achieve a successor state v′′ 6= v′ if valid. This leads to a slightly

modified implementation of the Lazy Weighted A∗ (LwA∗) algorithm from [25] that

we propose in this chapter.

Until an edge (v, v′) has been evaluated, we say that v′ is an “unevaluated” state

and afterwards it is a “fully evaluated” state. LwA∗ maintains duplicates of all

states in the priority queue with different parents. When unevaluated states are

expanded, LwA∗ evaluates the edge from its best parent. When fully evaluated states

99

6. Manipulation Among Movable Objects With Diverse Actions and Parameter
Uncertainty

are expanded2 LwA∗ grows the graph by adding unevaluated successor states. To

deal with the fact that evaluating an edge to an unevaluated state can lead to a

different fully evaluated state in Lazy I-M4M, our priority queue is allowed to contain

duplicates of unevaluated states with different parents but not of fully evaluated

states. This is because we cannot discard any unevaluated state on the basis of a

different edge to it having been evaluated before and we need only keep track of the

best parent/path to fully evaluated states. To implement this we store fully evaluated

states in a hash table, and we do not hash unevaluated states.

6.3.4 Parallelised Simulations for Robustness to Parameter

Uncertainty

E-M4M assumes that prior to planning we can perfectly localise all objects in the

scene and we know their respective masses and coefficients of friction. This is difficult

to satisfy in the real-world even with accurate localisation algorithms [155, 167]

since masses can change over time and cannot be perceived by vision sensors, while

coefficients of friction are difficult to compute accurately and change with the surface

an object is placed on. If we do not know one or both of these parameters accurately,

even with the use of a physics-based simulator, we cannot accurately simulate the

result of a pushing action. Figure 6.3 (a) shows a graphical 2D illustration of the

potential results of pushing an object whose mass and coefficient of friction are not

known accurately. At the end of the push, it may end up in a different configuration

depending on the value of these parameters.

Fortunately, our use of a physics-based simulator for action evaluation makes

it easy to make E-M4M (or any modified version of it) robust to these uncertain

parameters. Taking inspiration from existing work [2, 64?], we utilise parallelised

simulations of the same trajectory in scenes where each object is instantiated with

different values of their mass and coefficient of friction. We assume known, bounded

uncertainty on each of these parameters and given some budget on the number of

parallelised simulators we are allowed to launch, we instantiate multiple copies of

each object within each simulator. For each object copy, we sample its mass and

coefficient of friction from within the known bounded uncertainty we assumed for

2Unevaluated copies of this state can be ignored/discarded in the future.

100

6. Manipulation Among Movable Objects With Diverse Actions and Parameter
Uncertainty

Figure 6.3: (a) If the robot end-effect pushes an object whose mass and coefficient of
friction is not known precisely, it may end up in one of many different possible final
poses. (b) A screenshot from our simulator where multiple copies of an object with
different parameters are being pushed. Irrelevant colours have been desaturated for
ease of viewing. Different object copies can be seen in blue (opaque), and cyan and
magenta (partially transparent)

that parameter. If the true mass and coefficient of friction for an object are m and µ

respectively, for each object copy we sample:

m̂ = min
(

2m,max
(m

2
, N (m, 0.2m)

))
µ̂ = min

(
2µ,max

(µ
2
, N (µ, 0.5µ)

))
. N (x, y) represents a sample from a 1D Gaussian distribution with mean x and

standard deviation y.

We ensure that contacts and collisions within the simulator are computed appro-

priately – object copies do not collide with each other, but they do collide with one

copy each of all other objects. An action is said to be valid or not based on some

user-defined threshold δ ∈ (0, 1] for success. Given N parallel simulators and M

copies of each object, we say that an action is valid if max(1, bδNMc) samples are

valid in simulation. Figure 6.3 (b) shows a screenshot of a push being evaluated in

our physics-based simulator with multiple object copies. Each copy of the objects

being moved by this push can be seen behaving differently than the others with two

out of three copies on the verge of interaction constraint violation by toppling.

101

6. Manipulation Among Movable Objects With Diverse Actions and Parameter
Uncertainty

Figure 6.4: Example Easy, Medium, and Hard scenes.

6.4 Experimental Results

6.4.1 Simulation Study

We ran all algorithms on 75 randomly generated MAMO problems categorised into

three difficulty levels. Problems are Easy, Medium, or Hard depending on whether

there are one, two, or more than two movable objects overlapping with the initial

NGR. Each problem has 1 OoI, 4 immovable obstacles, and 5, 10, or 15 movable

objects. Objects are randomly generated as cuboids or cylinders and their dimensions,

mass, coefficient of friction, and initial configuration are all randomly initialised.

Figure 6.4 shows sample MAMO workspaces of each difficulty level. We test the

performance of all algorithms on 25 Easy, 25 Medium, and 25 Hard problems with a

5 min planning timeout and use PyBullet [27] as our physics-based simulator.

Tables 6.1 and 6.2 contain the number of problems solved by all algorithms, and

for solved problems only the minimum/median/maximum total planning time and

time spent simulating actions. The first experiment (Table 6.1) compares performance

of E-M4M against: (i) I-M4M – depth-first search with pushing actions only, (ii)

I-M4M-PnP – I-M4M with pick-and-place actions, (iii) Lazy I-M4M – eagerly

lazy version with pushes only, and (iv) Lazy I-M4M-PnP – eagerly lazy version

with pick-and-place actions added. The second experiment (Table 6.2) compares the

performance of Robust I-M4M that uses parallelised simulations against ̂I-M4M –

a version of I-M4M that instantiates a single copy of each object with mass and

coefficient of friction sampled as described in Section 6.3.4. For this experiment a

problem is successfully solved if the solution trajectory found by the planner does

102

6. Manipulation Among Movable Objects With Diverse Actions and Parameter
Uncertainty

not violate any interaction constraints when executed in simulation with the true

parameters for all objects. We only used pushing actions for this experiment since

they are acutely affected by parameter uncertainty. Robust I-M4M used N = 6

parallel simulators each with M = 2 object copies and with δ = 0.9 an action must

be valid for 10 samples to be added to the graph.

All I-M4M versions solve more problems than E-M4M. Basic I-M4M solves

problems faster and spends less time in simulation than E-M4M. This is because the

planner tries to exploit the “goal-directed” rearrangement actions suggested by our

MAPF solver that make deliberate progress towards clearing the NGR and solving the

MAMO problem. The addition of prehensile rearrangement actions in I-M4M-PnP

increases the branching factor of the search which increases planning and simulation

times when compared against E-M4M. The major difference between the solutions

found by I-M4M and I-M4M-PnP is observed in the number of rearrangement

actions in their solution. I-M4M solves problems with 1.8± 0.8 (Easy), 2.9± 1.3

(Medium), and 6.2± 3.0 (Hard) pushes while I-M4M-PnP requires 1.7± 1.1 (Easy),

2.4± 0.9 (Medium), and 4.5± 1.8 (Hard) rearrangement actions in comparison. This

is because if we find a valid pick-and-place rearrangement action, given the strict

conditions required of it (Section 6.3.1), we exactly achieve the desired configuration

of a movable object as suggested by our MAPF solver. This results in much greater

progress towards the goal of solving the MAMO problem in comparison to a push

action which is subject to the complex multi-body contact dynamics that are not

modeled by the MAPF solver and can lead to a successor state much different than

the one the MAPF solver wanted to achieve. As expected, Lazy I-M4M and Lazy

I-M4M-PnP outperform their non-lazy versions in all metrics (the statistics for the

length of the solution found remain similar in comparison). Laziness is particularly

effective in combating the computational overhead of a greater branching factor

caused by adding prehensile actions as the median planning time is almost halved

between I-M4M-PnP and Lazy I-M4M-PnP.

103

6.
M

an
ip

u
lation

A
m

on
g

M
ovab

le
O

b
jects

W
ith

D
iverse

A
ction

s
an

d
P

aram
eter

U
n
certain

ty

Table 6.1: Quantitative Comparison between E-M4M and several I-M4M variants

Metrics Difficulty
Planning Algorithms

E-M4M I-M4M I-M4M-PnP Lazy I-M4M Lazy I-M4M-PnP

Solved
Problems

Easy 22 23 23 25 24
Medium 20 24 22 25 23
Hard 17 22 21 23 22

Total
Planning
Time (s)

Easy 0.5 / 18.6 / 79.3 0.5 / 12.1 / 46.3 15.8 / 27.3 / 279.0 0.4 / 9.9 / 53.6 6.2 / 11.6 / 266.7
Medium 0.5 / 41.4 / 195.7 0.4 / 21.1 / 84.4 0.6 / 47.2 / 221.0 0.5 / 20.8 / 179.9 0.4 / 24.7 / 132.1
Hard 9.8 / 55.3 / 188.5 13.8 / 35.6 / 212.0 9.6 / 61.2 / 206.2 9.3 / 29.7 / 144.6 12.0 / 40.9 / 187.7

Simulation
Time
(s)

Easy 0 / 6.4 / 58.0 0 / 5.9 / 28.0 0 / 15.8 / 196.5 0 / 5.9 / 40.5 0 / 6.5 / 119.7
Medium 0 / 23.5 / 82.8 0 / 13.4 / 46.7 0 / 30.1 / 71.6 0 / 10.6 / 70.8 0 / 11.2 / 58.3
Hard 11.3 / 34.9 / 154.9 6.8 / 25.8 / 139.9 5.2 / 36.6 / 120.4 12.5 / 21.5 / 98.5 5.7 / 23.1 / 76.1

104

6. Manipulation Among Movable Objects With Diverse Actions and Parameter
Uncertainty

Table 6.2: Experiment Quantifying the Effect of Being Robust to Physics Parameter
Uncertainty

Metrics Difficulty
Planning Algorithms

Robust I-M4M ̂I-M4M

Solved
Problems

Easy 23 18
Medium 23 17
Hard 22 11

Total
Planning
Time (s)

Easy 8.1 / 11.3 / 284.9 7.4 / 14.3 / 177.1
Medium 1.1 / 60.3 / 216.7 1.9 / 54.3 / 128.8
Hard 19.2 / 83.6 / 295.9 22.9 / 104.7 / 257.4

Simulation
Time
(s)

Easy 0 / 6.2 / 253.8 0 / 5.4 / 77.3
Medium 0 / 29.8 / 127.2 0 / 20.8 / 64.7
Hard 10.5 / 51.5 / 200.5 8.6 / 41.9 / 138.1

The timing statistics for Robust I-M4M and ̂I-M4M are comparable. However

Robust I-M4M solves many more problems than ̂I-M4M., i.e. the solution found

by Robust I-M4M does not violate any interaction constraint when executed in

simulation with the true object masses and coefficients of friction. Robust I-M4M

ensures that each action is considered valid only if it is valid for 90% of the samples

which makes the solution more likely to be valid for the true parameters as opposed

to ̂I-M4M which hopes to get lucky during execution because the solution found by

the planner was only valid for one sampled value of all parameters.

6.4.2 Real-World Experiments

We solved 10 MAMO problems in the real-world with our PR2 robot using I-M4M-

PnP. Figure 6.5 shows the robot executing a solution where the PR2 first pushes the

coffee can aside, then moves the tomato soup can via a prehensile action, before finally

retrieving the OoI potted meat can. We used objects from the YCB dataset [16]

for our experiments and they were localised using PERCH 2.0 [1]. We initialised

each MAMO problem with either the tomato soup can or the potted meat can as the

OoI and 2− 4 other movable objects. Although I-M4M-PnP found solutions to all

problems, 3 out of 10 executions failed. In two of the runs, the sim-to-real gap led to

105

6. Manipulation Among Movable Objects With Diverse Actions and Parameter
Uncertainty

Figure 6.5: A real-world MAMO problem being solved by the PR2 using I-M4M-PnP.
The potted meat can is the OoI (outlined in yellow), all other objects are movable.

discrepancies between the result of a pushing action. In one case an object toppled

over when it did not in simulation, and another time an object was pushed into the

OoI which is an interaction constraint violation that did not occur during planning.

The third failure was due to the robot failing to grasp an object during a prehensile

rearrangement action. This could be due to either small object localisation errors or

due to trajectory execution errors.

6.5 Conclusion and Discussion

This chapter extends [127] and presents I-M4M, a fast and versatile MAMO solver

– it utilises a diverse action space consisting of both non-prehensile and prehensile

106

6. Manipulation Among Movable Objects With Diverse Actions and Parameter
Uncertainty

rearrangement actions, can be run lazily, and can leverage parallelised simulations

to make it robust to inaccurate estimates of physics parameters of objects – for

solving manipulating tasks among movable objects in cluttered and constrained 3D

workspaces where these objects tilt, topple, and lean on each other.

I-M4M spends the majority of its time simulating actions since it is difficult to

satisfy all interaction constraints on contact, tilting, toppling etc. in our domain. To

improve performance, we would like to incorporate learned rearrangement skills that

are aware of the physical properties of all objects in the scene. We are also interested

in extending I-M4M to deal with occlusions in the scene while maintaining the

property that the solution will satisfy all interaction constraints at all times.

107

6. Manipulation Among Movable Objects With Diverse Actions and Parameter
Uncertainty

108

Chapter 7

Discussion and Future Work

This chapter concludes the work in this thesis by discussing some directions for future

work to develop even more capable MAMO solvers that we can deploy on robots in

the real-world.

7.1 Discussion

7.1.1 Theoretical Analysis on Completeness of Planning

Algorithms

A motion planning algorithm is considered complete if it is guaranteed to find a

solution when one exists, and return failure in finite time otherwise [48]. In the case of

discrete search algorithms like the ones we propose as part of this thesis, we typically

want algorithms to be resolution complete, i.e. they will find a solution, if one exists,

given a particular discretisation scheme [21]. In this section we hope to provide a

discussion about the theoretical properties of algorithms we propose in this thesis.

We discuss why or why not various algorithms are resolution complete, under what

conditions we can obtain a theoretically complete version of the algorithm, and the

computational expense associated with this.

The first two planning algorithms in this thesis – SPAMP from Chapter 3 and

M4M from Chapter 4 – deliberately ignore or prune away states that may lead

to solutions. SPAMP never considers finding a solution that includes an action

109

7. Discussion and Future Work

that changes the configuration of movable objects until within a δ-sphere of the

goal configuration. Even though SPAMP will search over all solution trajectories

that satisfy this property and return one as the solution in finite time (as long as

all interaction constraints are satisfied), by construction it does not search over all

solution trajectories for the problem which include those that do not satisfy the

property. Thus, SPAMP is incomplete for the MAMO problems it tries to solve.

Similarly, even though M4M relaxes the assumption made by SPAMP and allows a

solution trajectory to change the configuration of movable objects at any point, it is

greedy with respect to valid rearrangement actions and therefore prunes away part

of the search space with every valid rearrangement action found. With every valid

rearrangement action found by M4M, the algorithm commits to finding a solution

trajectory that necessarily includes (begins with) the partial path up to the resultant

state of that action. A simple hypothetical example can be constructed to illustrate

the incompleteness of M4M. Consider a problem where a robot must first rearrange

an object B before an object A in order to retrieve the object-of-interest from the

workspace. If M4M finds any action that rearranges A before it finds one to rearrange

B, it will fail to solve the problem.

Since the I-M4M algorithm from Chapter 6 includes improvements to E-M4M

from Chapter 5 without fundamentally changing the algorithm, we will present a

theoretical analysis for E-M4M in this section, with the same results being applicable

for I-M4M. E-M4M further generalises M4M by systematically constructing a

discrete graph over the MAMO search space X = XR ×XO1 × · · · × XOn whose edges

correspond to one of a discrete set of rearrangement actions made available to the

robot. However, the rearrangement actions used by E-M4M are directly informed by

the negative goal region (NGR) it computes at the outset of planning (Section 5.4.1),

and this region is never re-computed. If in case E-M4M cannot find a solution with

the first NGR it computes, it will fail to find any solution altogether. Although

this failure mode will only be detected after all permutations of all rearrangement

actions for a given NGR are evaluated by E-M4M, it can be averted by then allowing

E-M4M to compute a different NGR from a different robot trajectory. In this way,

provided the MAPF solver used by E-M4M and the non-prehensile push planner are

themselves complete, we can obtain a theoretically resolution complete version of

E-M4M by allowing it to search over all possible robot trajectories in XR that avoid

110

7. Discussion and Future Work

collisions with immovable obstacles and each generate a different NGR.

The MAPF solver used by E-M4M, Conflict-Based Search (CBS) [134], is provably

resolution complete. The non-prehensile push planner used by E-M4M, described

in Section 5.4.3, queries a complete motion planner [3] to find a trajectory to the

start pose for a push. It then samples waypoints to compute the pushing action with

inverse kinematics. A deterministic version of this planner, without any sampling,

is complete with respect to the discrete graph it searches for pushing trajectories1

since the two pieces (a motion planner to find a trajectory to the start pose and

an inverse kinematics solver) are individually complete. In this thesis we included

stochastic sampling for waypoints to generate a variety of different pushes which in

turn cause a variety of robot-object interactions. The stochastic push planner can

be shown to be probabilistically complete if the number of those samples goes to

infinity in the limit of infinite time. To summarise, if we allow E-M4M to search over

all robot trajectories and consequently all NGRs, the version of the algorithm that

uses a deterministic push planner can be shown to be resolution complete and the

version of the algorithm that uses stochastic sampling within the push planner can be

shown to be probabilistically complete. Finally, the only different between E-M4M

and I-M4M is a prehensile or pick-and-place rearrangement planner (Section 6.3.1).

This queries a complete motion planner [3] twice (once for the trajectory to the grasp

pose, and again for the trajectory to the placement pose) and inverse kinematics

twice (once for the grasping action, and again for the placement action). Thus, since

all pieces are resolution complete, the prehensile or pick-and-place rearrangement

planner is resolution complete.

7.1.2 A Note for Practitioners

We present several algorithms in this thesis for solving MAMO problems of varying

complexity. Figure 7.1 shows a graph comparing the contributions in this thesis

along two axes – the complexity of the workspace we can solve MAMO tasks in

(“Workspace Difficulty”) and the size of the search space an algorithm tries to find a

solution in (“Search Space”). The SPAMP algorithm from Chapter 3 was designed

1Note that even though this push planner does not search over all possible ways to push an
object to a particular pose, it is resolution complete with respect to the graph it constructs.

111

7. Discussion and Future Work

Workspace
Di culty

Search
Space

Chapter 3

Chapter 4

Chapter 5, 6

Figure 7.1: A comparison of the work in this thesis based on the difficulty of the
workspace they solve problems in and the size of the space they find solutions in.

for “open” workspaces with considerable object-free volume so that we can resort to

collision-free motion planning purely in the configuration space of the robot arm XR
(without accounting for configurations of movable objects in XO1×· · ·×XOn) until we

reach a state close to the desired goal/grasp pose. This assumption is easily violated

in more cluttered and constrained workspace. Even if it is possible to reach close

to the goal without collisions, heavy clutter in a constrained workspace can cause

grasping actions to fail, and even if those succeed, we can still violate interaction

constraints while trying to retrieve the object-of-interest. M4M from Chapter 4

is able to relax this assumption and solve MAMO problems in heavily cluttered

and constrained workspaces while keeping track of movable object configurations in

XO1 × · · · × XOn . However, since M4M is greedy with respect to valid rearrangement

actions that it finds, it can fail to find solutions in the full MAMO search space

X = XR × XO1 × · · · × XOn . Chapters 5 and 6 present the E-M4M and I-M4M

algorithms that systematically search for solutions in X by building a graph over

different rearrangements of the scene (MAMO states in X) and connecting them via

edges that correspond to rearrangement actions. E-M4M and I-M4M only differ in

terms of the edges they add to the graph – the latter uses prehensile or pick-and-place

112

7. Discussion and Future Work

rearrangement actions in addition to the non-prehensile pushes used by the former.

7.1.3 Learning Predictive Models of Push Action

Feasibility

While developing the I-M4M algorithm, we explored the idea of incorporating a

non-uniform cost function within the MAPF solver to bias solutions towards paths

that were likely to lead to valid pushing actions. Our hypothesis was that part of the

reason E-M4M spends the majority of its time inside the push planner (Section 5.6.2)

is because it tries to compute pushing trajectories informed by “bad” MAPF solutions

that lead to (i) bad initial poses for the push (unreachable due to clutter, outside the

reachable workspace, near singular configurations of the robot arm etc.), (ii) joint

limit violations and collisions with immovable obstacles while querying the inverse

kinematics (IK) solver for a pushing action, and/or (iii) near immediate interaction

constraint violations when simulated. If we are able to bias the MAPF solver towards

solution paths that are aware of the geometry and physics properties (mass and

coefficient of friction) of movable objects, we would be able to alleviate the poor

performance of E-M4M within the push planner by allowing it to compute pushes

less susceptible to the three failure cases we described earlier.

To this end, we collected data from over 100, 000 simulations of our robot arm

pushing a single randomly generated object (randomised geometry, mass, and coef-

ficient of friction). Given a randomly sampled desired displacement of the object,

we collected data about (i) whether a trajectory to the push start pose exists, (ii)

whether the IK calls for the pushing action succeeds, and (iii) whether the push

violates interaction constraints when simulated.

Figures 7.2 and 7.3 show two different results from the model we learn to predict

the feasibility of pushing actions [109]. Each corresponding sub-figure in Figures 7.2

and 7.3 shows the result for the same randomly generated object (visualised as a blue

outline). We are showing a 2D, top-down view of the workspace shelf on which these

objects are placed (rotated 90◦) – the “front” of the shelf facing the robot is the left

edge of each sub-figure, the “back” of the shelf is the right edge, the left wall of the

edge is the top edge, and the right wall of the shelf is the bottom edge. Each point

within the workspace shelf is coloured according to the output of the learned model.

113

7. Discussion and Future Work

Figure 7.2: Predicted probability of the existence of an inverse kinematics (IK)
solution between the current pose of an object (blue outline) and a desired location
for it (any point on the workspace shelf, 2D, top-down view shown).

Specifically, the value/colour of a point on the shelf corresponds to the output of

the model assuming that we would like to translate the object (no rotation) from its

current pose (blue outline) to that point with a pushing action.

Figure 7.2 shows the probability of IK finding a solution along the straight line

from the current object location to the desired location. It shows that it is easier for

the robot to push objects towards the back-left and front-right of the shelf which is

to be expected since we are using the right arm of the PR2 robot. It also shows that

it is difficult for the robot to move any object towards itself since that would require

reaching a start pose behind the object, something usually kinematically infeasible.

Figure 7.3 shows the probability that, when pushed, the object ends at a location

114

7. Discussion and Future Work

Figure 7.3: Predicted probability of the object (blue outline) achieving a pose within
5 cm of a desired location on the workspace shelf (2D, top-down view shown).

within 5 cm of the desired location on the shelf. The model predicts that in order

to achieve a 5 cm tolerance around the desired pose, we should not push objects too

far from their current pose and we should try to push cuboids along their longer

dimension. The result in Figure 7.3 is explicitly taking into account the output of

the model from Figure 7.2 – they are in fact the same neural network models with

multiple output heads that predict the probability of IK success and probability of

reaching a pose within 5 cm of the desired pose.

We can incorporate the predictions shown in Figure 7.3 as a non-uniform cost

function for the MAPF solver in order to bias the solution towards paths that lead to

“successful” pushes – those for which we can find an IK solution and have the object

115

7. Discussion and Future Work

reach close to the desired pose. In practice using this non-uniform cost function

within the MAPF solver yielded no overall computational benefit in terms of the total

time required to solve MAMO planning problems. The only significant difference

we observed was an increase in the time spent solving MAPF problems by 10× as

more object-object conflicts are encountered by the MAPF solver (median solve time

increases from 0.04 s, 0.2 s, and 0.3 s for Easy, Medium, and Hard problems respectively

to 0.7 s, 1.6 s, and 3.7 s). In terms of time spent planning pushes, these numbers are

0.5 s, 4.9 s, and 6.8 s without the learned cost function and 0.4 s, 5.6 s, and 7.0 s with

the non-uniform cost function for the MAPF solver. In terms of time spent simulating

pushes, these numbers are 4.0 s, 16.4 s, and 21.2 s without the learned cost function

and 4.4 s, 15.5 s, and 21.8 s with the non-uniform cost function for the MAPF solver.

There is a small amount of overhead in querying the learned model (once per MAPF

problem solved), but overall it offers no computational benefit regardless of whether it

is used as the cost function for the MAPF problem or a heuristic within it. We believe

that the reason why we obtain no computational benefit from these models is because

they fail to account for the multi-body interactions that make our MAMO problems

difficult to solve. Notably, these models have no information whatsoever about any

other objects in the scene. Thus they are unable to account for robot-object and

object-object interactions that lead to constraint violations such as the forearm or

upper arm of the robot hitting an immovable obstacle, or a movable object pushing

a different movable object into an immovable obstacle. It is exactly these kinds of

multi-body interactions that make it difficult to find valid rearrangement actions for

the MAMO problems we solve in this thesis, and by extension make it difficult to find

a solution to them. Extending the literature on predicting action feasibility for such

MAMO problems or learning heuristics for them is important and difficult. At the

same time, if we are able to account for the combinatorics of MAMO problems that

grow with the number of objects in the scene, the variety of interactions they can

lead to, and the ways in which they can affect the validity of robot actions, we can

hope to learn models that benefit our planning algorithms. Advances in the use of

graph neural networks [61, 89] for manipulation problems is a step towards modeling

such complex interactions. These models are capable of capturing the effect of robot

actions on inter-object relations, for scenes with varying numbers of objects. It should

be possible for us to collect a vast amount of data across MAMO problems to try and

116

7. Discussion and Future Work

predict the feasibility of robot actions for a new MAMO scene, or even to generate a

good candidate set of actions to rearrange the current scene.

7.2 Future Work

7.2.1 Learning Heuristics for MAMO

We showed in Section 6.3.2 that the performance of E-M4M suffered from an

inaccurate heuristic function which caused it to re-expand states from which it was

difficult to make progress instead of continuing to grow the graph from states it had

reached via valid rearrangement actions. The quality of solutions found by E-M4M

and I-M4M is heavily dependent on the states that they explore during planning.

This is governed in part by the heuristic or prioritisation function they use, and in

part by the trajectories these algorithms (and M4M) generate to refine high-level

rearrangements suggested by the MAPF solution. In order to learn a good heuristic

function for MAMO planners, we must take into account the configuration of all

objects in the scene along with their physical properties. Existing work on learning

appropriate high-level abstractions for such problems [74] or predicting the value of

states encountered during planning [20] are effective in small state spaces. For MAMO

problems however, the dimensionality of the state space changes with the number of

objects in the scene which makes it difficult to learn good heuristics. In addition to

the number and types of objects in the scene, the heuristic value of a MAMO state

can be affected by the physics properties of movable objects (dimensions, masses,

coefficients of friction), their proximity to immovable obstacles, and the ability and

necessity of the robot to manipulate them.

It is possible to learn predictors of action feasibility and success [109, 145] and to

predict the effect of robot actions on the state of objects in the world [139]. Once

again these approaches were developed in small state spaces with a single object in

the scene. But they offer a promising direction for research on learning similar models

for MAMO problems that are capable of predicting the feasibility and probability

of success of rearrangement actions given the current scene, and the configuration

of objects in the resultant scene. This information can be aggregated into a value

function that can be used as heuristic guidance for MAMO planning algorithms

117

7. Discussion and Future Work

to preferentially grow the graph using likely successful actions to like ‘valid’ (and

valuable) states.

7.2.2 Interleaving Planning and Execution

This thesis assumes that prior to planning, we are able to accurately localise all objects

in the workspace. It is difficult to satisfy this assumption in the real-world where

occlusions make it difficult to even detect the existence of, let alone accurately localise,

some objects. It is important for our algorithms to be capable of reasoning about

occlusions amongst clutter and be careful when potentially manipulating objects

towards unobservable areas of the workspace. We would like to avoid inadvertently

violating interaction constraints associated with unseen objects. This can be done by

interleaving planning and execution where we always try and manipulate objects into

known, visible areas in an attempt to get more sensory information about the scene

and update our model of the workspace.

Work on mechanical search [29] and occlusion-aware object retrieval [11, 37, 104]

has addressed this issue in the past. For the M4M family of algorithms presented in

this thesis we can impose restrictions within the MAPF solver on where visible movable

objects can move. Unseen areas of the workspace can be optimistically considered

occupied by immovable obstacles so that we only try to generate rearrangement actions

that manipulate objects into visible areas. To interleave planning and execution,

we will also need to specify intermediate goal states that determine when we can

terminate planning with a partial path to be executed. This can be done in an

‘anytime’ fashion [87] where we return the best sequence of rearrangement actions

found for the currently visible workspace given a planning time budget. After

execution of this partial sequence of rearrangements, we can update our workspace

model with new sensed information and continue planning.

7.2.3 Model-Based Object-Centric Rearrangement Actions

The degree of difficulty in solving the MAMO problems we consider in this thesis is

dictated by our ability to find valid rearrangement actions (with respect to interaction

constraints). Our non-prehensile push planner from Section 4.4.2 in particular

geometrically computes a pushing action for each object without taking into account

118

7. Discussion and Future Work

any information about the contact made with the object, forces applied on the object

during pushing, or the physical properties of the object (other than its geometry).

Incorporating more informed, object-centric rearrangement actions into the planning

algorithms developed in this thesis will improve the versatility of the planners and

also the likelihood of these actions being valid. We can leverage work on planning

rearrangement actions by explicitly modeling the contacts between the robot and

object [19, 38] or by using learned policies [168] or by allowing robots to use additional

tools [154] to manipulate objects to desired configurations. It is important to keep

in mind that the computational performance of the planning algorithms developed

in this thesis is limited by how computationally cheap it is to generate and evaluate

actions that make up the action space made available to them. When considering

the addition of new actions to the action space or replacing existing ones, we must

evaluate the trade-off between constructing a more capable and versatile planner, and

increasing the computational burden on it to find solutions.

7.3 Conclusion

This thesis adds to the body of work on “Manipulation Planning Among Movable

Obstacles” or MAMO by developing algorithms capable of solving challenging, long-

horizon tasks in 3D workspaces where objects tilt, topple, lean etc. The work in

this thesis highlights the importance of developing algorithms for realistic scenarios

robots may be expected to solve and giving them the tools to be able to do so.

The algorithms we present in this thesis – SPAMP (Chapter 3), M4M (Chapter 4),

E-M4M (Chapter 5), and I-M4M (Chapter 6) – use a physics-based simulator

in-the-loop during planning to account for complex interaction constraints to ensure

desirable properties in the solution found. We are able to allow objects to tilt and slide

(within acceptable limits), lean on each other, and move other objects in turn. Our

use of a novel multi-agent pathfinding (MAPF) abstraction to MAMO highlights the

importance of decoupling the search over rearrangements of objects in the scene from

evaluating actions to achieve those rearrangements. The MAPF abstraction is only one

way to generate candidate rearrangement actions for MAMO problems. Regardless,

it is capable of easily capturing interdependence between object rearrangements in

case the robot is required to rearrange one before being able to successfully rearrange

119

7. Discussion and Future Work

another. Our work leaves open the door for incorporating techniques that have been

developed for prehensile, non-prehensile and dexterous robot manipulation under

uncertainty in the real-world to long-horizon tasks in 3D workspaces like the MAMO

problems we consider with the complex multi-body interactions involved therein.

120

Bibliography

[1] Aditya Agarwal, Yupeng Han, and Maxim Likhachev. Perch 2.0 : Fast and
accurate gpu-based perception via search for object pose estimation. In IROS,
2020. 3.5.2, 4.5.2, 5.6.3, 6.4.2

[2] Wisdom C. Agboh and Mehmet R. Dogar. Robust physics-based manipulation
by interleaving open and closed-loop execution, 2021. 2.1.4, 6.3.4

[3] Sandip Aine, Siddharth Swaminathan, Venkatraman Narayanan, Victor Hwang,
and Maxim Likhachev. Multi-heuristic A*. Int. J. Robotics Res., 35(1-3):
224–243, 2016. doi: 10.1177/0278364915594029. 1.2, 3.4.1, 3.4.2, 4.4, 7.1.1

[4] Y. Aiyama, M. Inaba, and H. Inoue. Pivoting: A new method of graspless
manipulation of object by robot fingers. In Proceedings of 1993 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS ’93), volume 1,
pages 136–143 vol.1, 1993. doi: 10.1109/IROS.1993.583091. 2.1.2

[5] Rachid Alami, Thierry Simeon, and Jean-Paul Laumond. A geometrical
approach to planning manipulation tasks. The case of discrete placements
and grasps. In Hirofumi Miura, editor, The fifth international symposium
on Robotics research , pages 453–463. MIT Press, 1990. URL https://hal.

archives-ouvertes.fr/hal-01309950. 2.1.1, 4.2, 5.1, 6.1

[6] Fahiem Bacchus and Qiang Yang. The downward refinement property. In John
Mylopoulos and Raymond Reiter, editors, Proceedings of the 12th International
Joint Conference on Artificial Intelligence. Sydney, Australia, August 24-30,
1991, pages 286–293. Morgan Kaufmann, 1991. URL http://ijcai.org/

Proceedings/91-1/Papers/045.pdf. 4.2.2

[7] Sangjae Bae, Dhruv Saxena, Alireza Nakhaei, Chiho Choi, Kikuo Fujimura,
and Scott J. Moura. Cooperation-aware lane change maneuver in dense traffic
based on model predictive control with recurrent neural network. In 2020
American Control Conference, ACC 2020, Denver, CO, USA, July 1-3, 2020,
pages 1209–1216. IEEE, 2020. doi: 10.23919/ACC45564.2020.9147837. URL
https://doi.org/10.23919/ACC45564.2020.9147837. 1.2

[8] Jennifer L. Barry, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. A hierarchi-

121

https://hal.archives-ouvertes.fr/hal-01309950
https://hal.archives-ouvertes.fr/hal-01309950
http://ijcai.org/Proceedings/91-1/Papers/045.pdf
http://ijcai.org/Proceedings/91-1/Papers/045.pdf
https://doi.org/10.23919/ACC45564.2020.9147837

Bibliography

cal approach to manipulation with diverse actions. In 2013 IEEE International
Conference on Robotics and Automation, Karlsruhe, Germany, May 6-10,
2013, pages 1799–1806. IEEE, 2013. doi: 10.1109/ICRA.2013.6630814. URL
https://doi.org/10.1109/ICRA.2013.6630814. 6.1, 6.2

[9] Dhruv Batra, Angel X Chang, Sonia Chernova, Andrew J Davison, Jia Deng,
Vladlen Koltun, Sergey Levine, Jitendra Malik, Igor Mordatch, Roozbeh Mot-
taghi, et al. Rearrangement: A challenge for embodied ai. arXiv preprint
arXiv:2011.01975, 2020. 2.1.3

[10] Servet B. Bayraktar, Andreas Orthey, Zachary K. Kingston, Marc Toussaint, and
Lydia E. Kavraki. Solving rearrangement puzzles using path defragmentation
in factored state spaces. IEEE Robotics Autom. Lett., 8(8):4529–4536, 2023.
doi: 10.1109/LRA.2023.3282788. 6.2

[11] Wissam Bejjani, Wisdom C. Agboh, Mehmet Remzi Dogar, and Matteo Leonetti.
Occlusion-aware search for object retrieval in clutter. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, IROS 2021, Prague,
Czech Republic, September 27 - Oct. 1, 2021, pages 4678–4685. IEEE, 2021.
doi: 10.1109/IROS51168.2021.9636230. URL https://doi.org/10.1109/

IROS51168.2021.9636230. 7.2.2

[12] Ohad Ben-Shahar and Ehud Rivlin. Practical pushing planning for rear-
rangement tasks. IEEE Trans. Robotics Autom., 14(4):549–565, 1998. doi:
10.1109/70.704220. 4.2

[13] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston.
Curriculum learning. In Andrea Pohoreckyj Danyluk, Léon Bottou, and
Michael L. Littman, editors, Proceedings of the 26th Annual International
Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada,
June 14-18, 2009, volume 382 of ACM International Conference Proceed-
ing Series, pages 41–48. ACM, 2009. doi: 10.1145/1553374.1553380. URL
https://doi.org/10.1145/1553374.1553380. 4.2.2

[14] Ian M. Bullock and Aaron M. Dollar. Classifying human manipulation behavior.
In 2011 IEEE International Conference on Rehabilitation Robotics, pages 1–6,
2011. doi: 10.1109/ICORR.2011.5975408. 1.1

[15] Samuel R. Buss. Introduction to inverse kinematics with jacobian transpose,
pseudoinverse and damped least squares methods. Technical report, IEEE
Journal of Robotics and Automation, 2004. 2.1.1

[16] Berk Çalli, Arjun Singh, James Bruce, Aaron Walsman, Kurt Konolige, Sid-
dhartha S. Srinivasa, Pieter Abbeel, and Aaron M. Dollar. Yale-cmu-berkeley
dataset for robotic manipulation research. Int. J. Robotics Res., 36(3):261–268,
2017. doi: 10.1177/0278364917700714. 3.5.1, 4.5.2, 5.6.3, 6.4.2

122

https://doi.org/10.1109/ICRA.2013.6630814
https://doi.org/10.1109/IROS51168.2021.9636230
https://doi.org/10.1109/IROS51168.2021.9636230
https://doi.org/10.1145/1553374.1553380

Bibliography

[17] Ishani Chatterjee, Maxim Likhachev, Ashwin Khadke, and Manuela Veloso.
Speeding up search-based motion planning via conservative heuristics. In
J. Benton, Nir Lipovetzky, Eva Onaindia, David E. Smith, and Siddharth
Srivastava, editors, Proceedings of the Twenty-Ninth International Conference
on Automated Planning and Scheduling, ICAPS 2018, Berkeley, CA, USA, July
11-15, 2019, pages 674–679. AAAI Press, 2019. URL https://aaai.org/ojs/

index.php/ICAPS/article/view/3535. 4.2.2

[18] Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk, Miles Macklin, Jan Issac,
Nathan D. Ratliff, and Dieter Fox. Closing the sim-to-real loop: Adapting sim-
ulation randomization with real world experience. In International Conference
on Robotics and Automation, ICRA 2019, Montreal, QC, Canada, May 20-24,
2019, pages 8973–8979. IEEE, 2019. doi: 10.1109/ICRA.2019.8793789. URL
https://doi.org/10.1109/ICRA.2019.8793789. 1.2.4, 6.1

[19] Xianyi Cheng, Eric Huang, Yifan Hou, and Matthew T. Mason. Contact
mode guided motion planning for quasidynamic dexterous manipulation in 3d.
In 2022 International Conference on Robotics and Automation, ICRA 2022,
Philadelphia, PA, USA, May 23-27, 2022, pages 2730–2736. IEEE, 2022. doi: 10.
1109/ICRA46639.2022.9811872. URL https://doi.org/10.1109/ICRA46639.

2022.9811872. 7.2.3

[20] Rohan Chitnis, Dylan Hadfield-Menell, Abhishek Gupta, Siddharth Srivastava,
Edward Groshev, Christopher Lin, and Pieter Abbeel. Guided search for task
and motion plans using learned heuristics. In Danica Kragic, Antonio Bicchi,
and Alessandro De Luca, editors, 2016 IEEE International Conference on
Robotics and Automation, ICRA 2016, Stockholm, Sweden, May 16-21, 2016,
pages 447–454. IEEE, 2016. doi: 10.1109/ICRA.2016.7487165. 4.2, 6.2, 7.2.1

[21] Howie Choset, Kevin M Lynch, Seth Hutchinson, George A Kantor, and Wolfram
Burgard. Principles of robot motion: theory, algorithms, and implementations.
MIT press, 2005. 7.1.1

[22] Sanjiban Choudhury, Siddhartha S. Srinivasa, and Sebastian A. Scherer.
Bayesian active edge evaluation on expensive graphs. In Jérôme Lang, ed-
itor, Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pages
4890–4897. ijcai.org, 2018. doi: 10.24963/ijcai.2018/679. 5.7

[23] Benjamin J. Cohen, Sachin Chitta, and Maxim Likhachev. Search-based
planning for manipulation with motion primitives. In IEEE International
Conference on Robotics and Automation, ICRA 2010. IEEE, 2010. 3.4.2

[24] Benjamin J. Cohen, Gokul Subramania, Sachin Chitta, and Maxim Likhachev.
Planning for manipulation with adaptive motion primitives. In IEEE Interna-
tional Conference on Robotics and Automation, ICRA 2011. IEEE, 2011. 3.1.2,

123

https://aaai.org/ojs/index.php/ICAPS/article/view/3535
https://aaai.org/ojs/index.php/ICAPS/article/view/3535
https://doi.org/10.1109/ICRA.2019.8793789
https://doi.org/10.1109/ICRA46639.2022.9811872
https://doi.org/10.1109/ICRA46639.2022.9811872

Bibliography

3.3.3

[25] Benjamin J. Cohen, Mike Phillips, and Maxim Likhachev. Planning single-
arm manipulations with n-arm robots. In Levi Lelis and Roni Stern, edi-
tors, Proceedings of the Eighth Annual Symposium on Combinatorial Search,
SOCS 2015, 11-13 June 2015, Ein Gedi, the Dead Sea, Israel, pages 226–
227. AAAI Press, 2015. URL http://www.aaai.org/ocs/index.php/SOCS/

SOCS15/paper/view/10876. 5.7, 6.3.3

[26] Nikolaus Correll, Kostas E. Bekris, Dmitry Berenson, Oliver Brock, Albert J.
Causo, Kris Hauser, Kei Okada, Alberto Rodriguez, Joseph M. Romano, and
Peter R. Wurman. Analysis and observations from the first amazon picking
challenge. IEEE Trans Autom. Sci. Eng., 15(1):172–188, 2018. doi: 10.1109/
TASE.2016.2600527. URL https://doi.org/10.1109/TASE.2016.2600527.
4

[27] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning. http://pybullet.org,
2016–2019. 1.1, 3.5, 4.4, 6.4.1

[28] Joseph C. Culberson and Jonathan Schaeffer. Pattern databases. Comput.
Intell., 14(3):318–334, 1998. doi: 10.1111/0824-7935.00065. URL https://doi.

org/10.1111/0824-7935.00065. 4.2.2

[29] Michael Danielczuk, Andrey Kurenkov, Ashwin Balakrishna, Matthew Matl,
David Wang, Roberto Mart́ın-Mart́ın, Animesh Garg, Silvio Savarese, and
Ken Goldberg. Mechanical search: Multi-step retrieval of a target object
occluded by clutter. In International Conference on Robotics and Automation,
ICRA 2019, Montreal, QC, Canada, May 20-24, 2019, pages 1614–1621. IEEE,
2019. doi: 10.1109/ICRA.2019.8794143. URL https://doi.org/10.1109/

ICRA.2019.8794143. 7.2.2

[30] Michael Danielczuk, Arsalan Mousavian, Clemens Eppner, and Dieter Fox.
Object rearrangement using learned implicit collision functions. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pages 6010–6017,
2021. doi: 10.1109/ICRA48506.2021.9561516. 2.1.3

[31] Neil T. Dantam, Zachary K. Kingston, Swarat Chaudhuri, and Lydia E. Kavraki.
Incremental task and motion planning: A constraint-based approach. In David
Hsu, Nancy M. Amato, Spring Berman, and Sam Ade Jacobs, editors, Robotics:
Science and Systems XII, University of Michigan, Ann Arbor, Michigan, USA,
June 18 - June 22, 2016, 2016. doi: 10.15607/RSS.2016.XII.002. URL http:

//www.roboticsproceedings.org/rss12/p02.html. 6.1, 6.2

[32] Dror Dayan, Kiril Solovey, Marco Pavone, and Dan Halperin. Near-optimal
multi-robot motion planning with finite sampling. In 2021 IEEE International

124

http://www.aaai.org/ocs/index.php/SOCS/SOCS15/paper/view/10876
http://www.aaai.org/ocs/index.php/SOCS/SOCS15/paper/view/10876
https://doi.org/10.1109/TASE.2016.2600527
http://pybullet.org
https://doi.org/10.1111/0824-7935.00065
https://doi.org/10.1111/0824-7935.00065
https://doi.org/10.1109/ICRA.2019.8794143
https://doi.org/10.1109/ICRA.2019.8794143
http://www.roboticsproceedings.org/rss12/p02.html
http://www.roboticsproceedings.org/rss12/p02.html

Bibliography

Conference on Robotics and Automation (ICRA), pages 9190–9196, 2021. doi:
10.1109/ICRA48506.2021.9561009. 4.2.1

[33] Mehmet Dogar. Physics-Based Manipulation Planning in Cluttered Human
Environments. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, July
2013. 2.1.4

[34] Mehmet Remzi Dogar and Siddhartha S. Srinivasa. A framework for push-
grasping in clutter. In Hugh F. Durrant-Whyte, Nicholas Roy, and Pieter Abbeel,
editors, Robotics: Science and Systems VII, University of Southern California,
Los Angeles, CA, USA, June 27-30, 2011, 2011. doi: 10.15607/RSS.2011.VII.
009. URL http://www.roboticsproceedings.org/rss07/p09.html. 2.1.4

[35] Mehmet Remzi Dogar and Siddhartha S. Srinivasa. A planning framework for
non-prehensile manipulation under clutter and uncertainty. Auton. Robots, 33
(3):217–236, 2012. doi: 10.1007/s10514-012-9306-z. URL https://doi.org/

10.1007/s10514-012-9306-z. 1.2.4, 2.1.1, 2.1.4, 3.2, 4.2, 4.4, 4.5.1, 4.1, 5.2,
5.4.1, 5.6.1, 5.7, 6.1, 6.2, 6.3.2

[36] Mehmet Remzi Dogar, Kaijen Hsiao, Matei T. Ciocarlie, and Siddhartha S.
Srinivasa. Physics-based grasp planning through clutter. In Robotics: Science
and Systems VIII, 2012, 2012. 3.2

[37] Mehmet Remzi Dogar, Michael C. Koval, Abhijeet Tallavajhula, and Sid-
dhartha S. Srinivasa. Object search by manipulation. Auton. Robots, 36(1-2):
153–167, 2014. doi: 10.1007/s10514-013-9372-x. URL https://doi.org/10.

1007/s10514-013-9372-x. 7.2.2

[38] Neel Doshi, Orion Taylor, and Alberto Rodriguez. Manipulation of unknown
objects via contact configuration regulation. In 2022 International Conference
on Robotics and Automation, ICRA 2022, Philadelphia, PA, USA, May 23-27,
2022, pages 2693–2699. IEEE, 2022. doi: 10.1109/ICRA46639.2022.9811713.
URL https://doi.org/10.1109/ICRA46639.2022.9811713. 7.2.3

[39] Wei Du, Sung-Kyun Kim, Oren Salzman, and Maxim Likhachev. Escaping
local minima in search-based planning using soft duplicate detection. In 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS.
IEEE, 2019. 3.3.6

[40] Wei Du, Fahad Islam, and Maxim Likhachev. Multi-Resolution A*. In Daniel
Harabor and Mauro Vallati, editors, Proceedings of the Thirteenth International
Symposium on Combinatorial Search, SOCS 2020, Online Conference [Vienna,
Austria], 26-28 May 2020, pages 29–37. AAAI Press, 2020. URL https:

//aaai.org/ocs/index.php/SOCS/SOCS20/paper/view/18515. 1.2

[41] Stefan Edelkamp, Stefan Schroedl, and Sven Koenig. Heuristic Search: Theory
and Applications. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

125

http://www.roboticsproceedings.org/rss07/p09.html
https://doi.org/10.1007/s10514-012-9306-z
https://doi.org/10.1007/s10514-012-9306-z
https://doi.org/10.1007/s10514-013-9372-x
https://doi.org/10.1007/s10514-013-9372-x
https://doi.org/10.1109/ICRA46639.2022.9811713
https://aaai.org/ocs/index.php/SOCS/SOCS20/paper/view/18515
https://aaai.org/ocs/index.php/SOCS/SOCS20/paper/view/18515

Bibliography

2010. ISBN 0123725127. 2.2

[42] Michael A. Erdmann and Tomás Lozano-Pérez. On multiple moving objects.
Algorithmica, 2:477–521, 1987. doi: 10.1007/BF01840371. URL https://doi.

org/10.1007/BF01840371. 4.2.1, 4.5.3

[43] Tom Erez and Emanuel Todorov. Trajectory optimization for domains with
contacts using inverse dynamics. In 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS 2012, Vilamoura, Algarve, Portugal,
October 7-12, 2012, pages 4914–4919. IEEE, 2012. doi: 10.1109/IROS.2012.
6386181. URL https://doi.org/10.1109/IROS.2012.6386181. 2.1.5

[44] Caelan Reed Garrett. Sampling-Based Robot Task and Motion Planning in the
Real World. PhD thesis, Massachusetts Institute of Technology, USA, 2021. 6.2

[45] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling.
Backward-forward search for manipulation planning. In 2015 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, IROS 2015, Ham-
burg, Germany, September 28 - October 2, 2015, pages 6366–6373. IEEE,
2015. doi: 10.1109/IROS.2015.7354287. URL https://doi.org/10.1109/

IROS.2015.7354287. 6.2, 6.3.2

[46] Caelan Reed Garrett, Toms Lozano-Prez, and Leslie Pack Kaelbling. FFRob:
Leveraging symbolic planning for efficient task and motion planning. The
International Journal of Robotics Research, 37(1):104–136, 2018. doi: 10.1177/
0278364917739114. 6.2

[47] Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom
Silver, Leslie Pack Kaelbling, and Toms Lozano-Prez. Integrated task and motion
planning. Annual Review of Control, Robotics, and Autonomous Systems, 4
(1):265–293, 2021. doi: 10.1146/annurev-control-091420-084139. URL https:

//doi.org/10.1146/annurev-control-091420-084139. 6.1, 6.2

[48] Ken Goldberg. Completeness in robot motion planning. In Workshop on
Algorithmic Foundations of Robotics, pages 419–429. Citeseer, 1994. 7.1.1

[49] Nika Haghtalab, Simon Mackenzie, Ariel D. Procaccia, Oren Salzman, and
Siddhartha S. Srinivasa. The provable virtue of laziness in motion planning.
In Sarit Kraus, editor, Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16,
2019, pages 6161–6165. ijcai.org, 2019. doi: 10.24963/ijcai.2019/855. 6.3.3

[50] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci.
Cybern., 4(2):100–107, 1968. doi: 10.1109/TSSC.1968.300136. URL https:

//doi.org/10.1109/TSSC.1968.300136. 1.2

[51] Patrik Haslum. Reducing accidental complexity in planning problems. In

126

https://doi.org/10.1007/BF01840371
https://doi.org/10.1007/BF01840371
https://doi.org/10.1109/IROS.2012.6386181
https://doi.org/10.1109/IROS.2015.7354287
https://doi.org/10.1109/IROS.2015.7354287
https://doi.org/10.1146/annurev-control-091420-084139
https://doi.org/10.1146/annurev-control-091420-084139
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136

Bibliography

Manuela M. Veloso, editor, IJCAI 2007, Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence, Hyderabad, India, January
6-12, 2007, pages 1898–1903, 2007. URL http://ijcai.org/Proceedings/

07/Papers/306.pdf. 4.2.2

[52] Kris K. Hauser. The minimum constraint removal problem with three
robotics applications. Int. J. Robotics Res., 33(1):5–17, 2014. doi: 10.1177/
0278364913507795. URL https://doi.org/10.1177/0278364913507795. 5.1

[53] Kris K. Hauser and Jean-Claude Latombe. Multi-modal motion planning
in non-expansive spaces. Int. J. Robotics Res., 29(7):897–915, 2010. doi:
10.1177/0278364909352098. 6.1

[54] Joshua A. Haustein, Jennifer King, Siddhartha S. Srinivasa, and Tamim Asfour.
Kinodynamic randomized rearrangement planning via dynamic transitions
between statically stable states. In 2015 IEEE International Conference on
Robotics and Automation (ICRA), pages 3075–3082, 2015. doi: 10.1109/ICRA.
2015.7139621. 2.1.3

[55] Juan David Hernández, Mark Moll, and Lydia E Kavraki. Lazy evaluation of
goal specifications guided by motion planning. In 2019 International Conference
on Robotics and Automation (ICRA), pages 944–950. IEEE, 2019. 3.3.6

[56] Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan
generation through heuristic search. J. Artif. Intell. Res., 14:253–302, 2001.
doi: 10.1613/jair.855. URL https://doi.org/10.1613/jair.855. 4.2.2

[57] François Robert Hogan and Alberto Rodriguez. Feedback control of the pusher-
slider system: A story of hybrid and underactuated contact dynamics. In Ken
Goldberg, Pieter Abbeel, Kostas E. Bekris, and Lauren Miller, editors, Algorith-
mic Foundations of Robotics XII, Proceedings of the Twelfth Workshop on the
Algorithmic Foundations of Robotics, WAFR 2016, San Francisco, California,
USA, December 18-20, 2016, volume 13 of Springer Proceedings in Advanced
Robotics, pages 800–815. Springer, 2016. doi: 10.1007/978-3-030-43089-4\ 51.
URL https://doi.org/10.1007/978-3-030-43089-4_51. 2.1.5

[58] Robert C. Holte, T. Mkadmi, Robert M. Zimmer, and Alan J. MacDonald.
Speeding up problem solving by abstraction: A graph oriented approach. Artif.
Intell., 85(1-2):321–361, 1996. doi: 10.1016/0004-3702(95)00111-5. URL https:

//doi.org/10.1016/0004-3702(95)00111-5. 4.2.2

[59] Baichuan Huang, Shuai D. Han, Jingjin Yu, and Abdeslam Boularias. Visual
foresight trees for object retrieval from clutter with nonprehensile rearrangement.
IEEE Robotics Autom. Lett., 7(1):231–238, 2022. doi: 10.1109/LRA.2021.
3123373. 4.2, 5.2, 6.1, 6.2

[60] Eric Huang, Zhenzhong Jia, and Matthew T. Mason. Large-scale multi-object

127

http://ijcai.org/Proceedings/07/Papers/306.pdf
http://ijcai.org/Proceedings/07/Papers/306.pdf
https://doi.org/10.1177/0278364913507795
https://doi.org/10.1613/jair.855
https://doi.org/10.1007/978-3-030-43089-4_51
https://doi.org/10.1016/0004-3702(95)00111-5
https://doi.org/10.1016/0004-3702(95)00111-5

Bibliography

rearrangement. In 2019 International Conference on Robotics and Automation
(ICRA), pages 211–218, 2019. doi: 10.1109/ICRA.2019.8793946. 5.2, 6.1, 6.2

[61] Yixuan Huang, Adam Conkey, and Tucker Hermans. Planning for multi-
object manipulation with graph neural network relational classifiers. In IEEE
International Conference on Robotics and Automation, ICRA 2023, London, UK,
May 29 - June 2, 2023, pages 1822–1829. IEEE, 2023. doi: 10.1109/ICRA48891.
2023.10161204. URL https://doi.org/10.1109/ICRA48891.2023.10161204.
7.1.3

[62] Nick Jakobi, Phil Husbands, and Inman Harvey. Noise and the reality gap:
The use of simulation in evolutionary robotics. In Federico Morán, Alvaro
Moreno, Juan Julián Merelo Guervós, and Pablo Chacón, editors, Advances
in Artificial Life, Third European Conference on Artificial Life, Granada,
Spain, June 4-6, 1995, Proceedings, volume 929 of Lecture Notes in Computer
Science, pages 704–720. Springer, 1995. doi: 10.1007/3-540-59496-5\ 337. URL
https://doi.org/10.1007/3-540-59496-5_337. 1.2.4, 6.1

[63] George H. John and Pat Langley. Estimating continuous distributions in
bayesian classifiers. In Philippe Besnard and Steve Hanks, editors, UAI ’95:
Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial
Intelligence, Montreal, Quebec, Canada, August 18-20, 1995, pages 338–345.
Morgan Kaufmann, 1995. 5.5.3

[64] Aaron M Johnson, Jennifer E King, and Siddhartha Srinivasa. Convergent
planning. IEEE Robotics and Automation Letters, 1(2):1044–1051, 2016. 2.1.4,
6.3.4

[65] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hierarchical task and motion
planning in the now. In IEEE International Conference on Robotics and
Automation, ICRA 2011, Shanghai, China, 9-13 May 2011, pages 1470–1477.
IEEE, 2011. doi: 10.1109/ICRA.2011.5980391. URL https://doi.org/10.

1109/ICRA.2011.5980391. 1.2.3, 4.2, 4.4, 6.1, 6.2

[66] Marc D. Killpack, Ariel Kapusta, and Charles C. Kemp. Model predictive
control for fast reaching in clutter. Auton. Robots, 2016. 3.2

[67] Beomjoon Kim, Luke Shimanuki, Leslie Pack Kaelbling, and Toms Lozano-
Prez. Representation, learning, and planning algorithms for geometric task
and motion planning. The International Journal of Robotics Research, 41(2):
210–231, 2022. doi: 10.1177/02783649211038280. 4.2, 6.2

[68] Jennifer E. King. Robust Rearrangement Planning Using Nonprehensile In-
teraction. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, December
2016. 2.1.4, 3.2, 5.2, 6.1, 6.2

[69] Jennifer E. King, Joshua A. Haustein, Siddhartha S. Srinivasa, and Tamim

128

https://doi.org/10.1109/ICRA48891.2023.10161204
https://doi.org/10.1007/3-540-59496-5_337
https://doi.org/10.1109/ICRA.2011.5980391
https://doi.org/10.1109/ICRA.2011.5980391

Bibliography

Asfour. Nonprehensile whole arm rearrangement planning on physics manifolds.
In 2015 IEEE International Conference on Robotics and Automation (ICRA),
pages 2508–2515, 2015. doi: 10.1109/ICRA.2015.7139535. 2.1.3, 6.1, 6.2

[70] Jennifer E. King, Marco Cognetti, and Siddhartha S. Srinivasa. Rearrangement
planning using object-centric and robot-centric action spaces. In 2016 IEEE
International Conference on Robotics and Automation, ICRA. IEEE, 2016.
2.1.1, 3.2, 4.2

[71] Jennifer E. King, Vinitha Ranganeni, and Siddhartha S. Srinivasa. Unobservable
monte carlo planning for nonprehensile rearrangement tasks. In 2017 IEEE
International Conference on Robotics and Automation (ICRA), pages 4681–4688,
2017. doi: 10.1109/ICRA.2017.7989544. 2.1.3

[72] Zachary K. Kingston, Mark Moll, and Lydia E. Kavraki. Sampling-based
methods for motion planning with constraints. Annu. Rev. Control. Robotics
Auton. Syst., 1:159–185, 2018. doi: 10.1146/annurev-control-060117-105226.
6.2

[73] Nikita Kitaev, Igor Mordatch, Sachin Patil, and Pieter Abbeel. Physics-based
trajectory optimization for grasping in cluttered environments. In IEEE In-
ternational Conference on Robotics and Automation, ICRA 2015, Seattle, WA,
USA, 26-30 May, 2015, pages 3102–3109. IEEE, 2015. doi: 10.1109/ICRA.2015.
7139625. URL https://doi.org/10.1109/ICRA.2015.7139625. 2.1.5

[74] George Dimitri Konidaris, Leslie Pack Kaelbling, and Tomás Lozano-Pérez.
From skills to symbols: Learning symbolic representations for abstract high-level
planning. J. Artif. Intell. Res., 61:215–289, 2018. doi: 10.1613/jair.5575. URL
https://doi.org/10.1613/jair.5575. 7.2.1

[75] Daniel Kornhauser, Gary L. Miller, and Paul Spirakis. Coordinating pebble
motion on graphs, the diameter of permutation groups, and applications. In
FOCS25, pages 241–250, Florida, October 1984. IEEE. 4.2

[76] Michael C. Koval, Jennifer E. King, Nancy S. Pollard, and Siddhartha S. Srini-
vasa. Robust trajectory selection for rearrangement planning as a multi-armed
bandit problem. In 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2015, Hamburg, Germany, September 28 - October
2, 2015, pages 2678–2685. IEEE, 2015. doi: 10.1109/IROS.2015.7353743. 2.1.3,
2.1.4

[77] Oliver Kroemer, Scott Niekum, and George Konidaris. A review of robot learning
for manipulation: Challenges, representations, and algorithms. J. Mach. Learn.
Res., 22:30:1–30:82, 2021. URL http://jmlr.org/papers/v22/19-804.html.
4.2.2

[78] Athanasios Krontiris and Kostas Bekris. Dealing with difficult instances of

129

https://doi.org/10.1109/ICRA.2015.7139625
https://doi.org/10.1613/jair.5575
http://jmlr.org/papers/v22/19-804.html

Bibliography

object rearrangement. In Proceedings of Robotics: Science and Systems, Rome,
Italy, July 2015. doi: 10.15607/RSS.2015.XI.045. 2.1.3

[79] Athanasios Krontiris and Kostas E. Bekris. Dealing with difficult instances
of object rearrangement. In Lydia E. Kavraki, David Hsu, and Jonas Buchli,
editors, Robotics: Science and Systems XI, Sapienza University of Rome, Rome,
Italy, July 13-17, 2015, 2015. doi: 10.15607/RSS.2015.XI.045. 4.2, 5.2, 6.1, 6.2

[80] Athanasios Krontiris, Rahul Shome, Andrew Dobson, Andrew Kimmel, and
Kostas E. Bekris. Rearranging similar objects with a manipulator using pebble
graphs. In 14th IEEE-RAS International Conference on Humanoid Robots,
Humanoids 2014, Madrid, Spain, November 18-20, 2014, pages 1081–1087.
IEEE, 2014. doi: 10.1109/HUMANOIDS.2014.7041499. 4.2, 5.2, 6.1, 6.2

[81] Vince Kurtz and Hai Lin. Contact-implicit trajectory optimization with hy-
droelastic contact and ilqr. In IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, IROS 2022, Kyoto, Japan, October 23-27, 2022,
pages 8829–8834. IEEE, 2022. doi: 10.1109/IROS47612.2022.9981686. URL
https://doi.org/10.1109/IROS47612.2022.9981686. 2.1.5

[82] Kyo Kutsuzawa, Sho Sakaino, and Toshiaki Tsuji. Sequence-to-sequence model
for trajectory planning of nonprehensile manipulation including contact model.
IEEE Robotics and Automation Letters, 3(4):3606–3613, 2018. doi: 10.1109/
LRA.2018.2854958. 2.1.2

[83] Jean-Claude Latombe. Robot motion planning, volume 124 of The Kluwer
international series in engineering and computer science. Kluwer, 1991. ISBN
978-0-7923-9206-4. doi: 10.1007/978-1-4615-4022-9. URL https://doi.org/

10.1007/978-1-4615-4022-9. 4.2

[84] Steven M. LaValle. Planning Algorithms. Cambridge University Press,
2006. ISBN 9780511546877. doi: 10.1017/CBO9780511546877. URL http:

//planning.cs.uiuc.edu/. 4.2.1

[85] Steven M. LaValle and Jr. James J. Kuffner. Randomized kinodynamic planning.
The International Journal of Robotics Research, 20(5):378–400, 2001. doi:
10.1177/02783640122067453. 5.2, 5.6.1

[86] Jinhwi Lee, Younggil Cho, Changjoo Nam, Jonghyeon Park, and ChangHwan
Kim. Efficient obstacle rearrangement for object manipulation tasks in cluttered
environments. In International Conference on Robotics and Automation, ICRA
2019, Montreal, QC, Canada, May 20-24, 2019, pages 183–189. IEEE, 2019.
doi: 10.1109/ICRA.2019.8793616. 2.1.1, 4.2, 5.2, 6.1, 6.2

[87] Maxim Likhachev, Geoffrey J. Gordon, and Sebastian Thrun. ARA*: Anytime
A* with provable bounds on sub-optimality. In Sebastian Thrun, Lawrence K.
Saul, and Bernhard Schölkopf, editors, Advances in Neural Information Process-

130

https://doi.org/10.1109/IROS47612.2022.9981686
https://doi.org/10.1007/978-1-4615-4022-9
https://doi.org/10.1007/978-1-4615-4022-9
http://planning.cs.uiuc.edu/
http://planning.cs.uiuc.edu/

Bibliography

ing Systems 16 [Neural Information Processing Systems, NIPS 2003, December
8-13, 2003, Vancouver and Whistler, British Columbia, Canada], pages 767–
774. MIT Press, 2003. URL https://proceedings.neurips.cc/paper/2003/

hash/ee8fe9093fbbb687bef15a38facc44d2-Abstract.html. 1.2, 7.2.2

[88] Weiyu Liu, Chris Paxton, Tucker Hermans, and Dieter Fox. Structformer:
Learning spatial structure for language-guided semantic rearrangement of
novel objects. In 2022 International Conference on Robotics and Automa-
tion, ICRA 2022, Philadelphia, PA, USA, May 23-27, 2022, pages 6322–
6329. IEEE, 2022. doi: 10.1109/ICRA46639.2022.9811931. URL https:

//doi.org/10.1109/ICRA46639.2022.9811931. 2.1.6

[89] Xibai Lou, Yang Yang, and Changhyun Choi. Learning object relations with
graph neural networks for target-driven grasping in dense clutter. In 2022 Inter-
national Conference on Robotics and Automation, ICRA 2022, Philadelphia, PA,
USA, May 23-27, 2022, pages 742–748. IEEE, 2022. doi: 10.1109/ICRA46639.
2022.9811601. URL https://doi.org/10.1109/ICRA46639.2022.9811601.
7.1.3

[90] Kendall Lowrey, Svetoslav Kolev, Jeremy Dao, Aravind Rajeswaran, and
Emanuel Todorov. Reinforcement learning for non-prehensile manipulation:
Transfer from simulation to physical system. In 2018 IEEE International
Conference on Simulation, Modeling, and Programming for Autonomous Robots
(SIMPAR), pages 35–42, 2018. doi: 10.1109/SIMPAR.2018.8376268. 2.1.2

[91] Kendall Lowrey, Svetoslav Kolev, Jeremy Dao, Aravind Rajeswaran, and
Emanuel Todorov. Reinforcement learning for non-prehensile manipulation:
Transfer from simulation to physical system. In Hanna Kurniawati, Evan M.
Drumwright, Bruce A. MacDonald, Thierry Fraichard, and Nan Ye, editors, 2018
IEEE International Conference on Simulation, Modeling, and Programming
for Autonomous Robots, SIMPAR 2018, Brisbane, Australia, May 16-19, 2018,
pages 35–42. IEEE, 2018. doi: 10.1109/SIMPAR.2018.8376268. URL https:

//doi.org/10.1109/SIMPAR.2018.8376268. 2.1.6

[92] Kevin M. Lynch. Toppling manipulation. In 1999 IEEE International Confer-
ence on Robotics and Automation, Marriott Hotel, Renaissance Center, Detroit,
Michigan, USA, May 10-15, 1999, Proceedings, pages 2551–2557. IEEE Robotics
and Automation Society, 1999. doi: 10.1109/ROBOT.1999.773981. 2.1.2, 2.1.6

[93] Kevin M. Lynch and Matthew T. Mason. Stable pushing: Mechanics, control-
lability, and planning. The International Journal of Robotics Research, 1996.
2.1.2, 3.2, 4.2

[94] Kevin M. Lynch and Matthew T. Mason. Dynamic nonprehensile manipula-
tion: Controllability, planning, and experiments. The International Journal of
Robotics Research, 18(1):64–92, 1999. doi: 10.1177/027836499901800105. URL

131

https://proceedings.neurips.cc/paper/2003/hash/ee8fe9093fbbb687bef15a38facc44d2-Abstract.html
https://proceedings.neurips.cc/paper/2003/hash/ee8fe9093fbbb687bef15a38facc44d2-Abstract.html
https://doi.org/10.1109/ICRA46639.2022.9811931
https://doi.org/10.1109/ICRA46639.2022.9811931
https://doi.org/10.1109/ICRA46639.2022.9811601
https://doi.org/10.1109/SIMPAR.2018.8376268
https://doi.org/10.1109/SIMPAR.2018.8376268

Bibliography

https://doi.org/10.1177/027836499901800105. 2.1.2

[95] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier
Storey, Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur
Handa, and Gavriel State. Isaac gym: High performance GPU based physics
simulation for robot learning. In Joaquin Vanschoren and Sai-Kit Yeung, editors,
Proceedings of the Neural Information Processing Systems Track on Datasets
and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021,
virtual, 2021. 1.1

[96] Aditya Mandalika, Sanjiban Choudhury, Oren Salzman, and Siddhartha S.
Srinivasa. Generalized lazy search for robot motion planning: Interleaving search
and edge evaluation via event-based toggles. In J. Benton, Nir Lipovetzky, Eva
Onaindia, David E. Smith, and Siddharth Srivastava, editors, Proceedings of the
Twenty-Ninth International Conference on Automated Planning and Scheduling,
ICAPS 2019, Berkeley, CA, USA, July 11-15, 2019, pages 745–753. AAAI Press,
2019. URL https://ojs.aaai.org/index.php/ICAPS/article/view/3543.
6.3.3

[97] Matthew T. Mason. Mechanics and planning of manipulator pushing operations.
The International Journal of Robotics Research, 5(3):53–71, 1986. doi: 10.1177/
027836498600500303. URL https://doi.org/10.1177/027836498600500303.
1.1, 2.1.2, 4.2

[98] Igor Mordatch, Zoran Popovic, and Emanuel Todorov. Contact-invariant op-
timization for hand manipulation. In Jehee Lee and Paul G. Kry, editors,
Proceedings of the 2012 Eurographics/ACM SIGGRAPH Symposium on Com-
puter Animation, SCA 2012, Lausanne, Switzerland, 2012, pages 137–144.
Eurographics Association, 2012. doi: 10.2312/SCA/SCA12/137-144. URL
https://doi.org/10.2312/SCA/SCA12/137-144. 2.1.5

[99] Igor Mordatch, Emanuel Todorov, and Zoran Popovic. Discovery of complex
behaviors through contact-invariant optimization. ACM Trans. Graph., 31(4):
43:1–43:8, 2012. doi: 10.1145/2185520.2185539. URL https://doi.org/10.

1145/2185520.2185539. 2.1.5

[100] João Moura, Theodoros Stouraitis, and Sethu Vijayakumar. Non-prehensile
planar manipulation via trajectory optimization with complementarity con-
straints. In 2022 International Conference on Robotics and Automation, ICRA
2022, Philadelphia, PA, USA, May 23-27, 2022, pages 970–976. IEEE, 2022.
doi: 10.1109/ICRA46639.2022.9811942. URL https://doi.org/10.1109/

ICRA46639.2022.9811942. 2.1.5

[101] Muhayyuddin, Mark Moll, Lydia Kavraki, and Jan Rosell. Randomized physics-
based motion planning for grasping in cluttered and uncertain environments.
IEEE Robotics and Automation Letters, 3(2):712–719, 2018. doi: 10.1109/LRA.

132

https://doi.org/10.1177/027836499901800105
https://ojs.aaai.org/index.php/ICAPS/article/view/3543
https://doi.org/10.1177/027836498600500303
https://doi.org/10.2312/SCA/SCA12/137-144
https://doi.org/10.1145/2185520.2185539
https://doi.org/10.1145/2185520.2185539
https://doi.org/10.1109/ICRA46639.2022.9811942
https://doi.org/10.1109/ICRA46639.2022.9811942

Bibliography

2017.2783445. 2.1.4

[102] Shohin Mukherjee, Sandip Aine, and Maxim Likhachev. epa*se: Edge-based
parallel a* for slow evaluations. In Lukás Chrpa and Alessandro Saetti, editors,
Proceedings of the Fifteenth International Symposium on Combinatorial Search,
SOCS 2022, Vienna, Austria, July 21-23, 2022, pages 136–144. AAAI Press,
2022. 5.7, 6.3.3

[103] Changjoo Nam, Jinhwi Lee, SangHun Cheong, Brian Y. Cho, and ChangHwan
Kim. Fast and resilient manipulation planning for target retrieval in clutter. In
2020 IEEE International Conference on Robotics and Automation, ICRA 2020,
Paris, France, May 31 - August 31, 2020, pages 3777–3783. IEEE, 2020. doi:
10.1109/ICRA40945.2020.9196652. 4.2, 5.2, 6.1, 6.2

[104] Changjoo Nam, SangHun Cheong, Jinhwi Lee, Dong Hwan Kim, and ChangH-
wan Kim. Fast and resilient manipulation planning for object retrieval in
cluttered and confined environments. IEEE Trans. Robotics, 37(5):1539–1552,
2021. doi: 10.1109/TRO.2020.3047472. URL https://doi.org/10.1109/TRO.

2020.3047472. 7.2.2

[105] Venkatraman Narayanan and Maxim Likhachev. Heuristic search on graphs
with existence priors for expensive-to-evaluate edges. In Laura Barbulescu,
Jeremy Frank, Mausam, and Stephen F. Smith, editors, Proceedings of the
Twenty-Seventh International Conference on Automated Planning and Schedul-
ing, ICAPS 2017, Pittsburgh, Pennsylvania, USA, June 18-23, 2017, pages
522–530. AAAI Press, 2017. 5.7

[106] Ramkumar Natarajan, Muhammad Suhail Saleem, Sandip Aine, Maxim
Likhachev, and Howie Choset. A-MHA*: Anytime multi-heuristic A*. In
Pavel Surynek and William Yeoh, editors, Proceedings of the Twelfth In-
ternational Symposium on Combinatorial Search, SOCS 2019, Napa, Cali-
fornia, 16-17 July 2019, pages 192–193. AAAI Press, 2019. URL https:

//aaai.org/ocs/index.php/SOCS/SOCS19/paper/view/18383. 1.2

[107] Ramkumar Natarajan, Garrison L. H. Johnston, Nabil Simaan, Maxim
Likhachev, and Howie Choset. Torque-limited manipulation planning through
contact by interleaving graph search and trajectory optimization. In IEEE In-
ternational Conference on Robotics and Automation, ICRA 2023, London, UK,
May 29 - June 2, 2023, pages 8148–8154. IEEE, 2023. doi: 10.1109/ICRA48891.
2023.10161297. URL https://doi.org/10.1109/ICRA48891.2023.10161297.
2.1.5

[108] Jun Ota. Rearrangement planning of multiple movable objects by a mobile
robot. Adv. Robotics, 23(1-2):1–18, 2009. doi: 10.1163/156855308X392654. 4.2

[109] Robert Paolini, Alberto Rodriguez, Siddhartha S. Srinivasa, and Matthew T.

133

https://doi.org/10.1109/TRO.2020.3047472
https://doi.org/10.1109/TRO.2020.3047472
https://aaai.org/ocs/index.php/SOCS/SOCS19/paper/view/18383
https://aaai.org/ocs/index.php/SOCS/SOCS19/paper/view/18383
https://doi.org/10.1109/ICRA48891.2023.10161297

Bibliography

Mason. A data-driven statistical framework for post-grasp manipulation. Int.
J. Robotics Res., 33(4):600–615, 2014. doi: 10.1177/0278364913507756. URL
https://doi.org/10.1177/0278364913507756. 7.1.3, 7.2.1

[110] R. Papallas, A. G. Cohn, and M. R. Dogar. Online replanning with human-in-
the-loop for non-prehensile manipulation in clutter a trajectory optimization
based approach. IEEE Robotics and Automation Letters, 2020. 3.2

[111] Sangbeom Park, Yoonbyung Chai, Sunghyun Park, Jeongeun Park, Kyungjae
Lee, and Sungjoon Choi. Semi-autonomous teleoperation via learning non-
prehensile manipulation skills. In IEEE International Conference on Robotics
and Automation (ICRA), 2022. 5.2, 6.1, 6.2

[112] Chris Paxton, Yotam Barnoy, Kapil D. Katyal, Raman Arora, and Gregory D.
Hager. Visual robot task planning. In International Conference on Robotics
and Automation, ICRA 2019, Montreal, QC, Canada, May 20-24, 2019, pages
8832–8838. IEEE, 2019. doi: 10.1109/ICRA.2019.8793736. URL https://doi.

org/10.1109/ICRA.2019.8793736. 2.1.6

[113] Judea Pearl. Heuristics - intelligent search strategies for computer problem
solving. Addison-Wesley series in artificial intelligence. Addison-Wesley, 1984.
ISBN 978-0-201-05594-8. 2.2, 4.2.2, 5.7

[114] Michael A. Peshkin. Planning Robotic Manipulation Strategies for Sliding
Objects. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 1986. 2.1.1

[115] Lerrel Pinto, Aditya Mandalika, Brian Hou, and Siddhartha Srinivasa. Sample-
efficient learning of nonprehensile manipulation policies via physics-based in-
formed state distributions. arXiv preprint arXiv:1810.10654, 2018. 2.1.2

[116] Lerrel Pinto, Aditya Mandalika, Brian Hou, and Siddhartha S. Srinivasa. Sample-
efficient learning of nonprehensile manipulation policies via physics-based in-
formed state distributions. CoRR, abs/1810.10654, 2018. 3.2

[117] Lerrel Pinto, Aditya Mandalika, Brian Hou, and Siddhartha S. Srinivasa.
Sample-efficient learning of nonprehensile manipulation policies via physics-
based informed state distributions. CoRR, abs/1810.10654, 2018. URL
http://arxiv.org/abs/1810.10654. 2.1.6

[118] Erion Plaku, Lydia E. Kavraki, and Moshe Y. Vardi. Motion planning with
dynamics by a synergistic combination of layers of planning. IEEE Trans.
Robotics, 2010. 2.1.4, 3.2

[119] Ira Pohl. Heuristic search viewed as path finding in a graph. Artif. Intell., 1(3):
193–204, 1970. doi: 10.1016/0004-3702(70)90007-X. URL https://doi.org/

10.1016/0004-3702(70)90007-X. 1.2

[120] Michael Posa, Cecilia Cantu, and Russ Tedrake. A direct method for trajectory

134

https://doi.org/10.1177/0278364913507756
https://doi.org/10.1109/ICRA.2019.8793736
https://doi.org/10.1109/ICRA.2019.8793736
http://arxiv.org/abs/1810.10654
https://doi.org/10.1016/0004-3702(70)90007-X
https://doi.org/10.1016/0004-3702(70)90007-X

Bibliography

optimization of rigid bodies through contact. Int. J. Robotics Res., 33(1):69–
81, 2014. doi: 10.1177/0278364913506757. URL https://doi.org/10.1177/

0278364913506757. 2.1.5

[121] Ahmed H Qureshi, Arsalan Mousavian, Chris Paxton, Michael Yip, and
Dieter Fox. NeRP: Neural Rearrangement Planning for Unknown Objects.
In Proceedings of Robotics: Science and Systems, Virtual, July 2021. doi:
10.15607/RSS.2021.XVII.072. 2.1.3

[122] Ahmed Hussain Qureshi, Arsalan Mousavian, Chris Paxton, Michael C. Yip,
and Dieter Fox. Nerp: Neural rearrangement planning for unknown objects. In
Dylan A. Shell, Marc Toussaint, and M. Ani Hsieh, editors, Robotics: Science
and Systems XVII, Virtual Event, July 12-16, 2021, 2021. doi: 10.15607/RSS.
2021.XVII.072. URL https://doi.org/10.15607/RSS.2021.XVII.072. 2.1.6

[123] Fabio Ruggiero, Vincenzo Lippiello, and Bruno Siciliano. Nonprehensile dynamic
manipulation: A survey. IEEE Robotics and Automation Letters, 3(3):1711–
1718, 2018. doi: 10.1109/LRA.2018.2801939. 2.1.2

[124] David Russell, Rafael Papallas, and Mehmet Remzi Dogar. Adaptive ap-
proximation of dynamics gradients via interpolation to speed up trajec-
tory optimisation. In IEEE International Conference on Robotics and Au-
tomation, ICRA 2023, London, UK, May 29 - June 2, 2023, pages 10160–
10166. IEEE, 2023. doi: 10.1109/ICRA48891.2023.10161090. URL https:

//doi.org/10.1109/ICRA48891.2023.10161090. 2.1.5

[125] Earl D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artif. Intell.,
5(2):115–135, 1974. doi: 10.1016/0004-3702(74)90026-5. URL https://doi.

org/10.1016/0004-3702(74)90026-5. 4.2.2

[126] Terence D. Sanger. Neural network learning control of robot manipulators
using gradually increasing task difficulty. IEEE Trans. Robotics Autom., 10(3):
323–333, 1994. doi: 10.1109/70.294207. URL https://doi.org/10.1109/70.

294207. 4.2.2

[127] Dhruv Saxena and Maxim Likhachev. Planning for manipulation among movable
objects: Deciding which objects go where, in what order, and how. Proceedings
of the International Conference on Automated Planning and Scheduling, 33(1):
668–676, Jul. 2023. doi: 10.1609/icaps.v33i1.27249. URL https://ojs.aaai.

org/index.php/ICAPS/article/view/27249. 1.2, 1.2.3, 5, 6, 6.1, 6.5

[128] Dhruv Mauria Saxena and Maxim Likhachev. Planning for complex non-
prehensile manipulation among movable objects by interleaving multi-agent
pathfinding and physics-based simulation. In IEEE International Conference
on Robotics and Automation, ICRA 2023, London, UK, May 29 - June 2, 2023,
pages 8141–8147. IEEE, 2023. doi: 10.1109/ICRA48891.2023.10161006. URL

135

https://doi.org/10.1177/0278364913506757
https://doi.org/10.1177/0278364913506757
https://doi.org/10.15607/RSS.2021.XVII.072
https://doi.org/10.1109/ICRA48891.2023.10161090
https://doi.org/10.1109/ICRA48891.2023.10161090
https://doi.org/10.1016/0004-3702(74)90026-5
https://doi.org/10.1016/0004-3702(74)90026-5
https://doi.org/10.1109/70.294207
https://doi.org/10.1109/70.294207
https://ojs.aaai.org/index.php/ICAPS/article/view/27249
https://ojs.aaai.org/index.php/ICAPS/article/view/27249

Bibliography

https://doi.org/10.1109/ICRA48891.2023.10161006. 1.2, 1.2.2, 4, 5.1, 5.7,
6.1

[129] Dhruv Mauria Saxena, Sangjae Bae, Alireza Nakhaei, Kikuo Fujimura, and
Maxim Likhachev. Driving in dense traffic with model-free reinforcement
learning. In 2020 IEEE International Conference on Robotics and Automation,
ICRA 2020, Paris, France, May 31 - August 31, 2020, pages 5385–5392. IEEE,
2020. doi: 10.1109/ICRA40945.2020.9197132. URL https://doi.org/10.

1109/ICRA40945.2020.9197132. 1.2

[130] Dhruv Mauria Saxena, Muhammad Suhail Saleem, and Maxim Likhachev.
Manipulation planning among movable obstacles using physics-based adaptive
motion primitives. In 2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 6570–6576, 2021. doi: 10.1109/ICRA48506.2021.
9561221. 1.2, 1.2.1, 3, 4.2, 5.2

[131] Dhruv Mauria Saxena, Tushar Kusnur, and Maxim Likhachev. Amra*: Anytime
multi-resolution multi-heuristic a*. In 2022 International Conference on Robotics
and Automation (ICRA), pages 3371–3377, 2022. doi: 10.1109/ICRA46639.
2022.9812359. 1.2

[132] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. Meta-
agent conflict-based search for optimal multi-agent path finding. In Daniel
Borrajo, Ariel Felner, Richard E. Korf, Maxim Likhachev, Carlos Linares
López, Wheeler Ruml, and Nathan R. Sturtevant, editors, Proceedings of
the Fifth Annual Symposium on Combinatorial Search, SOCS 2012, Niagara
Falls, Ontario, Canada, July 19-21, 2012. AAAI Press, 2012. URL http:

//www.aaai.org/ocs/index.php/SOCS/SOCS12/paper/view/5402. 4.2.1

[133] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. Meta-
agent conflict-based search for optimal multi-agent path finding. In Daniel
Borrajo, Ariel Felner, Richard E. Korf, Maxim Likhachev, Carlos Linares
López, Wheeler Ruml, and Nathan R. Sturtevant, editors, Proceedings of the
Fifth Annual Symposium on Combinatorial Search, SOCS 2012, Niagara Falls,
Ontario, Canada, July 19-21, 2012. AAAI Press, 2012. 4.2.1

[134] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. Conflict-
based search for optimal multi-agent pathfinding. Artif. Intell., 219:40–66, 2015.
doi: 10.1016/j.artint.2014.11.006. URL https://doi.org/10.1016/j.artint.

2014.11.006. 4.2.1, 4.3.1, 1, 5.4, 5.4.2, 7.1.1

[135] Rahul Shome and Kostas E. Bekris. Synchronized multi-arm rearrangement
guided by mode graphs with capacity constraints. In Steven M. LaValle,
Ming Lin, Timo Ojala, Dylan A. Shell, and Jingjin Yu, editors, Algorithmic
Foundations of Robotics XIV, Proceedings of the Fourteenth Workshop on the
Algorithmic Foundations of Robotics, WAFR 2021, Oulu, Finland, June 21-23,

136

https://doi.org/10.1109/ICRA48891.2023.10161006
https://doi.org/10.1109/ICRA40945.2020.9197132
https://doi.org/10.1109/ICRA40945.2020.9197132
http://www.aaai.org/ocs/index.php/SOCS/SOCS12/paper/view/5402
http://www.aaai.org/ocs/index.php/SOCS/SOCS12/paper/view/5402
https://doi.org/10.1016/j.artint.2014.11.006
https://doi.org/10.1016/j.artint.2014.11.006

Bibliography

2021, volume 17 of Springer Proceedings in Advanced Robotics, pages 243–260.
Springer, 2021. doi: 10.1007/978-3-030-66723-8\ 15. 4.2, 5.2, 6.1, 6.2

[136] Rahul Shome, Kiril Solovey, Andrew Dobson, Dan Halperin, and Kostas E
Bekris. drrt*: Scalable and informed asymptotically-optimal multi-robot motion
planning. Autonomous Robots, 44(3):443–467, 2020. 4.2.1

[137] David Silver. Cooperative pathfinding. In R. Michael Young and John E. Laird,
editors, Proceedings of the First Artificial Intelligence and Interactive Digital
Entertainment Conference, June 1-5, 2005, Marina del Rey, California, USA,
pages 117–122. AAAI Press, 2005. 4.2.1

[138] Thierry Siméon, Jean-Paul Laumond, Juan Cortés, and Anis Sahbani. Manip-
ulation planning with probabilistic roadmaps. Int. J. Robotics Res., 23(7-8):
729–746, 2004. doi: 10.1177/0278364904045471. URL https://doi.org/10.

1177/0278364904045471. 6.1

[139] Anthony Simeonov, Yilun Du, Beomjoon Kim, Francois Robert Hogan, Joshua B.
Tenenbaum, Pulkit Agrawal, and Alberto Rodriguez. A long horizon planning
framework for manipulating rigid pointcloud objects. In Jens Kober, Fabio
Ramos, and Claire J. Tomlin, editors, 4th Conference on Robot Learning, CoRL
2020, 16-18 November 2020, Virtual Event / Cambridge, MA, USA, volume 155
of Proceedings of Machine Learning Research, pages 1582–1601. PMLR, 2020.
URL https://proceedings.mlr.press/v155/simeonov21a.html. 7.2.1

[140] Kiril Solovey and Dan Halperin. k-color multi-robot motion planning. In
Emilio Frazzoli, Tomas Lozano-Perez, Nicholas Roy, and Daniela Rus, editors,
Algorithmic Foundations of Robotics X, pages 191–207, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg. 4.2

[141] Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea
Finn. Universal planning networks: Learning generalizable representations for
visuomotor control. In Jennifer G. Dy and Andreas Krause, editors, Proceed-
ings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Pro-
ceedings of Machine Learning Research, pages 4739–4748. PMLR, 2018. URL
http://proceedings.mlr.press/v80/srinivas18b.html. 2.1.6

[142] Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma,
Thayne T. Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar,
Roman Barták, and Eli Boyarski. Multi-agent pathfinding: Definitions, variants,
and benchmarks. In Pavel Surynek and William Yeoh, editors, Proceedings of
the Twelfth International Symposium on Combinatorial Search, SOCS 2019,
Napa, California, 16-17 July 2019, pages 151–159. AAAI Press, 2019. URL
https://aaai.org/ocs/index.php/SOCS/SOCS19/paper/view/18341. 4.2.1

137

https://doi.org/10.1177/0278364904045471
https://doi.org/10.1177/0278364904045471
https://proceedings.mlr.press/v155/simeonov21a.html
http://proceedings.mlr.press/v80/srinivas18b.html
https://aaai.org/ocs/index.php/SOCS/SOCS19/paper/view/18341

Bibliography

[143] Mike Stilman and James J. Kuffner. Navigation among movable obstacles:
Real-time reasoning in complex environments. Int. J. Humanoid Robotics, 2(4):
479–503, 2005. doi: 10.1142/S0219843605000545. 2.1.1, 3.1, 3.2, 4.2

[144] Mike Stilman, Jan-Ullrich Schamburek, James Kuffner, and Tamim Asfour.
Manipulation planning among movable obstacles. In 2007 IEEE International
Conference on Robotics and Automation, ICRA. IEEE, 2007. 1.2, 2.1.1, 3.1,
3.2, 4.1, 4.2, 4.5.1, 5.1, 5.1, 5.2, 6.1, 6.1, 6.2, 6.3.2

[145] Freek Stulp, Andreas Fedrizzi, Lorenz Mösenlechner, and Michael Beetz. Learn-
ing and reasoning with action-related places for robust mobile manipula-
tion. J. Artif. Intell. Res., 43:1–42, 2012. doi: 10.1613/jair.3451. URL
https://doi.org/10.1613/jair.3451. 7.2.1

[146] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The Open Motion Planning
Library. IEEE Robotics & Automation Magazine, 19(4):72–82, December 2012.
doi: 10.1109/MRA.2012.2205651. https://ompl.kavrakilab.org. 3.5.1, 4.5.1,
5.6.1

[147] Ioan Alexandru Sucan and Lydia E. Kavraki. A sampling-based tree planner
for systems with complex dynamics. IEEE Trans. Robotics, 2012. 2.1.4, 3.2,
3.5.1, 5, 4.2, 4.5.1, 4.1, 5.2, 5.6.1

[148] Muhammad Suhail Saleem and Maxim Likhachev. Planning with selective
physics-based simulation for manipulation among movable objects. In 2020
IEEE International Conference on Robotics and Automation (ICRA), pages
6752–6758, 2020. doi: 10.1109/ICRA40945.2020.9197451. 3.2, 3.3.2, 3.5.1, 4.2,
4.5.1, 4.1, 5.2, 5.6.1

[149] Russell H. Taylor, Matthew T. Mason, and Kenneth Y. Goldberg. Sensor-
based manipulation planning as a game with nature. In Proceedings of the 4th
International Symposium on Robotics Research, page 421429, Cambridge, MA,
USA, 1988. MIT Press. ISBN 0262022729. 2.1.1

[150] Wil Thomason, Marlin P. Strub, and Jonathan D. Gammell. Task and motion
informed trees (tmit*): Almost-surely asymptotically optimal integrated task
and motion planning. IEEE Robotics Autom. Lett., 7(4):11370–11377, 2022.
doi: 10.1109/LRA.2022.3199676. 6.2

[151] Wil B. Thomason and Ross A. Knepper. A unified sampling-based approach
to integrated task and motion planning. In Tamim Asfour, Eiichi Yoshida,
Jaeheung Park, Henrik Christensen, and Oussama Khatib, editors, Robotics
Research - The 19th International Symposium ISRR 2019, Hanoi, Vietnam,
October 6-10, 2019, volume 20 of Springer Proceedings in Advanced Robotics,
pages 773–788. Springer, 2019. doi: 10.1007/978-3-030-95459-8\ 47. 6.2

[152] Emanuel Todorov. Convex and analytically-invertible dynamics with contacts

138

https://doi.org/10.1613/jair.3451
https://ompl.kavrakilab.org

Bibliography

and constraints: Theory and implementation in mujoco. In 2014 IEEE Interna-
tional Conference on Robotics and Automation, ICRA 2014, Hong Kong, China,
May 31 - June 7, 2014, pages 6054–6061. IEEE, 2014. doi: 10.1109/ICRA.2014.
6907751. URL https://doi.org/10.1109/ICRA.2014.6907751. 2.1.5

[153] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for
model-based control. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5026–5033. IEEE, 2012. doi: 10.1109/IROS.2012.
6386109. 1.1

[154] Marc Toussaint, Kelsey R. Allen, Kevin A. Smith, and Joshua B. Tenen-
baum. Differentiable physics and stable modes for tool-use and manipulation
planning. In Hadas Kress-Gazit, Siddhartha S. Srinivasa, Tom Howard, and
Nikolay Atanasov, editors, Robotics: Science and Systems XIV, Carnegie Mel-
lon University, Pittsburgh, Pennsylvania, USA, June 26-30, 2018, 2018. doi:
10.15607/RSS.2018.XIV.044. URL http://www.roboticsproceedings.org/

rss14/p44.html. 7.2.3

[155] Jonathan Tremblay, Thang To, Balakumar Sundaralingam, Yu Xiang, Dieter
Fox, and Stan Birchfield. Deep object pose estimation for semantic robotic
grasping of household objects. In 2nd Annual Conference on Robot Learning,
CoRL 2018, Zürich, Switzerland, 29-31 October 2018, Proceedings, volume 87 of
Proceedings of Machine Learning Research, pages 306–316. PMLR, 2018. URL
http://proceedings.mlr.press/v87/tremblay18a.html. 1.2.4, 5.7, 6.3.4

[156] Matthew Turpin, Kartik Mohta, Nathan Michael, and Vijay Kumar. Goal
assignment and trajectory planning for large teams of interchangeable robots.
Auton. Robots, 37(4):401–415, 2014. doi: 10.1007/s10514-014-9412-1. URL
https://doi.org/10.1007/s10514-014-9412-1. 4.2.1

[157] Nikolaus Vahrenkamp, Martin Do, Tamim Asfour, and Rüdiger Dillmann.
Integrated grasp and motion planning. In 2010 IEEE International Conference
on Robotics and Automation, pages 2883–2888. IEEE, 2010. 3.2

[158] Michiel van de Panne and Alexis Lamouret. Guided optimization for balanced
locomotion. In Demetri Terzopoulos and Daniel Thalmann, editors, Computer
Animation and Simulation ’95, pages 165–177, Vienna, 1995. Springer Vienna.
ISBN 978-3-7091-9435-5. 2.1.5, 4.2.2

[159] Jur P. van den Berg, Mike Stilman, James Kuffner, Ming C. Lin, and Dinesh
Manocha. Path planning among movable obstacles: A probabilistically complete
approach. In Eighth International Workshop on the Algorithmic Foundations
of Robotics, WAFR 2008. 2.1.1, 3.2, 4.2, 5.1, 5.2, 6.1, 6.2

[160] William Vega-Brown and Nicholas Roy. Asymptotically optimal planning under
piecewise-analytic constraints. In Ken Goldberg, Pieter Abbeel, Kostas E.

139

https://doi.org/10.1109/ICRA.2014.6907751
http://www.roboticsproceedings.org/rss14/p44.html
http://www.roboticsproceedings.org/rss14/p44.html
http://proceedings.mlr.press/v87/tremblay18a.html
https://doi.org/10.1007/s10514-014-9412-1

Bibliography

Bekris, and Lauren Miller, editors, Algorithmic Foundations of Robotics XII,
Proceedings of the Twelfth Workshop on the Algorithmic Foundations of Robotics,
WAFR 2016, San Francisco, California, USA, December 18-20, 2016, volume 13
of Springer Proceedings in Advanced Robotics, pages 528–543. Springer, 2016.
doi: 10.1007/978-3-030-43089-4\ 34. 6.1, 6.2

[161] E Vieira, D Nakhimovich, K Gao, R Wang, J Yu, and K E Bekris. Persistent
homology for effective non-prehensile manipulation. In IEEE International
Conference on Robotics and Automation (ICRA), 2022. 4.2, 5.1, 5.2, 6.1, 6.2

[162] Glenn Wagner and Howie Choset. M*: A complete multirobot path planning
algorithm with performance bounds. In 2011 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, IROS 2011, San Francisco, CA, USA,
September 25-30, 2011, pages 3260–3267. IEEE, 2011. doi: 10.1109/IROS.2011.
6095022. URL https://doi.org/10.1109/IROS.2011.6095022. 4.2.1

[163] Rui Wang, Kai Gao, Daniel Nakhimovich, Jingjin Yu, and Kostas E. Bekris.
Uniform object rearrangement: From complete monotone primitives to efficient
non-monotone informed search. In International Conference on Robotics and
Automation (ICRA) 2021, 2021. 2.1.1, 4.2, 6.1, 6.2

[164] Rui Wang, Kai Gao, Jingjin Yu, and Kostas Bekris. Lazy rearrangement
planning in confined spaces. Proceedings of the International Conference on
Automated Planning and Scheduling, 32(1):385–393, Jun. 2022. doi: 10.1609/
icaps.v32i1.19824. URL https://ojs.aaai.org/index.php/ICAPS/article/

view/19824. 5.1, 5.2, 6.1, 6.2

[165] Gordon T. Wilfong. Motion planning in the presence of movable obstacles. Ann.
Math. Artif. Intell., 1991. 1.2, 2.1.1, 3.1, 3.2, 4.2

[166] J. Zachary Woodruff and Kevin M. Lynch. Planning and control for dynamic,
nonprehensile, and hybrid manipulation tasks. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages 4066–4073, 2017. doi:
10.1109/ICRA.2017.7989467. 2.1.2

[167] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox. Posecnn:
A convolutional neural network for 6d object pose estimation in cluttered
scenes. In Hadas Kress-Gazit, Siddhartha S. Srinivasa, Tom Howard, and
Nikolay Atanasov, editors, Robotics: Science and Systems XIV, Carnegie
Mellon University, Pittsburgh, Pennsylvania, USA, June 26-30, 2018, 2018. doi:
10.15607/RSS.2018.XIV.019. 1.2.4, 5.7, 6.3.4

[168] Kechun Xu, Hongxiang Yu, Renlang Huang, Dashun Guo, Yue Wang, and
Rong Xiong. Efficient object manipulation to an arbitrary goal pose: Learning-
based anytime prioritized planning. In 2022 International Conference on
Robotics and Automation, ICRA 2022, Philadelphia, PA, USA, May 23-27,

140

https://doi.org/10.1109/IROS.2011.6095022
https://ojs.aaai.org/index.php/ICAPS/article/view/19824
https://ojs.aaai.org/index.php/ICAPS/article/view/19824

Bibliography

2022, pages 7277–7283. IEEE, 2022. doi: 10.1109/ICRA46639.2022.9811547.
URL https://doi.org/10.1109/ICRA46639.2022.9811547. 7.2.3

[169] A. Yamashita, T. Arai, Jun Ota, and H. Asama. Motion planning of
multiple mobile robots for cooperative manipulation and transportation.
IEEE Transactions on Robotics and Automation, 19(2):223–237, 2003. doi:
10.1109/TRA.2003.809592. 2.1.2

[170] Jingjin Yu and Steven M. LaValle. Structure and intractability of optimal
multi-robot path planning on graphs. In Marie desJardins and Michael L.
Littman, editors, Proceedings of the Twenty-Seventh AAAI Conference on
Artificial Intelligence, July 14-18, 2013, Bellevue, Washington, USA. AAAI
Press, 2013. 4.3.1

[171] Jingjin Yu and Steven M. LaValle. Optimal multirobot path planning on graphs:
Complete algorithms and effective heuristics. IEEE Transactions on Robotics,
32(5):1163–1177, 2016. doi: 10.1109/TRO.2016.2593448. 4.2.1

[172] Weihao Yuan, Johannes A. Stork, Danica Kragic, Michael Y. Wang, and
Kaiyu Hang. Rearrangement with nonprehensile manipulation using deep
reinforcement learning. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 270–277, 2018. doi: 10.1109/ICRA.2018.8462863.
2.1.3

[173] Weihao Yuan, Johannes A. Stork, Danica Kragic, Michael Yu Wang, and
Kaiyu Hang. Rearrangement with nonprehensile manipulation using deep
reinforcement learning. In 2018 IEEE International Conference on Robotics
and Automation, ICRA 2018, Brisbane, Australia, May 21-25, 2018, pages
270–277. IEEE, 2018. doi: 10.1109/ICRA.2018.8462863. URL https://doi.

org/10.1109/ICRA.2018.8462863. 2.1.6

[174] Wentao Yuan, Chris Paxton, Karthik Desingh, and Dieter Fox. SORNet:
Spatial object-centric representations for sequential manipulation. In 5th Annual
Conference on Robot Learning, 2021. URL https://openreview.net/forum?

id=mOLu2rODIJF. 2.1.3

[175] Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien,
Maria Attarian, Travis Armstrong, Ivan Krasin, Dan Duong, Vikas Sindhwani,
and Johnny Lee. Transporter networks: Rearranging the visual world for robotic
manipulation. Conference on Robot Learning (CoRL), 2020. 2.1.3

[176] Stefan Zickler and Manuela M. Veloso. Efficient physics-based planning: sam-
pling search via non-deterministic tactics and skills. In 8th International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009).
IFAAMAS, 2009. 2.1.4, 3.2

141

https://doi.org/10.1109/ICRA46639.2022.9811547
https://doi.org/10.1109/ICRA.2018.8462863
https://doi.org/10.1109/ICRA.2018.8462863
https://openreview.net/forum?id=mOLu2rODIJF
https://openreview.net/forum?id=mOLu2rODIJF

	1 Introduction
	1.1 Motivation
	1.2 Thesis Overview
	1.2.1 Simulation Constraints on Robot Actions
	1.2.2 Abstracting MAMO Problems with Multi-Agent Pathfinding
	1.2.3 A Graph Search Formulation for MAMO
	1.2.4 Solving MAMO Problems with Diverse Action Spaces and Object Parameter Uncertainty
	1.2.5 Discussion and Future Work

	2 Background
	2.1 Related Work
	2.1.1 Manipulation Planning Among Movable Obstacles
	2.1.2 Non-prehensile Manipulation
	2.1.3 Rearrangement Planning
	2.1.4 Simulation-based Planning
	2.1.5 Contact-Based Trajectory Optimisation
	2.1.6 Learning-based Methods for Manipulation in Clutter

	2.2 Discrete Graph Search
	2.3 Problem Formulation
	2.3.1 Search Space
	2.3.2 Object Constraints
	2.3.3 Problem Statement

	3 Planning with Physics-Based Adaptive Motion Primitives
	3.1 Introduction
	3.1.1 Challenges
	3.1.2 Contribution

	3.2 Related Work
	3.3 Approach
	3.3.1 Graph Representation
	3.3.2 Action Evaluation
	3.3.3 Adaptive Motion Primitives
	3.3.4 Assumptions
	3.3.5 Subgoals
	3.3.6 Soft Duplicate Detection for Action Evaluation

	3.4 Algorithm
	3.4.1 Multi-Heuristic Framework for MAMO
	3.4.2 Planning Algorithm

	3.5 Experimental Results
	3.5.1 Comparative Quantitative Evaluation in Simulation
	3.5.2 Runs on a Physical Robot
	3.5.3 In-Depth Analysis of SPAMP in Simulation

	3.6 Discussion & Future Work

	4 Multi-Agent Pathfinding for Manipulation Among Movable Objects
	4.1 Introduction
	4.2 Related Work
	4.2.1 Multi-Agent Pathfinding
	4.2.2 Abstract Planning

	4.3 Problem Setup
	4.3.1 Classical Multi-Agent Pathfinding

	4.4 The M4M Planning Algorithm
	4.4.1 MAPF Abstraction for Manipulation
	4.4.2 Generating Non-Prehensile Push Actions

	4.5 Experimental Results
	4.5.1 Simulation Experiments
	4.5.2 Real-World Performance on the PR2
	4.5.3 Comparison of MAPF Solvers

	4.6 Conclusion and Discussion

	5 A Graph Search Formulation of Manipulation Among Movable Objects
	5.1 Introduction
	5.2 Related Work
	5.3 Problem Formulation
	5.4 E-M4M
	5.4.1 Main Algorithm
	5.4.2 MAPF Abstraction
	5.4.3 Non-prehensile Push Planner
	5.4.4 What E-M4M Can and Cannot Solve

	5.5 Speeding up the Algorithm
	5.5.1 Caching Unsuccessful Push Actions
	5.5.2 Caching Successful Push Actions
	5.5.3 Learned Priority Function

	5.6 Experimental Analysis
	5.6.1 Simulation Experiments Against MAMO Baselines
	5.6.2 E-M4M Ablation Study
	5.6.3 Real-World Experiments

	5.7 Conclusion and Discussion

	6 Manipulation Among Movable Objects With Diverse Actions and Parameter Uncertainty
	6.1 Introduction
	6.2 Related Work
	6.3 Improvements to the E-M4M Algorithm
	6.3.1 Addition of Prehensile Rearrangement Actions
	6.3.2 Depth-First I-M4M
	6.3.3 Eagerly Lazy Evaluation of Rearrangement Actions
	6.3.4 Parallelised Simulations for Robustness to Parameter Uncertainty

	6.4 Experimental Results
	6.4.1 Simulation Study
	6.4.2 Real-World Experiments

	6.5 Conclusion and Discussion

	7 Discussion and Future Work
	7.1 Discussion
	7.1.1 Theoretical Analysis on Completeness of Planning Algorithms
	7.1.2 A Note for Practitioners
	7.1.3 Learning Predictive Models of Push Action Feasibility

	7.2 Future Work
	7.2.1 Learning Heuristics for MAMO
	7.2.2 Interleaving Planning and Execution
	7.2.3 Model-Based Object-Centric Rearrangement Actions

	7.3 Conclusion

	Bibliography

