
Gaussian Representations for

Differentiable Rendering and

Optimization

Leonid Keselman

CMU-RI-TR-23-70

September 2023

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Martial Hebert (Chair)
Christopher G. Atkeson

Deva Ramanan
Jon Barron, Google

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Robotics.

Copyright © 2023 Leonid Keselman

Dedicated to my family.

Abstract

In this thesis, we explore some fast, robust and efficient methods that are
generally useful across many domains. Specifically, we explore the use
of Gaussian Representations in multiple application areas of computer
vision and robotics.

In the first part, we provide an alternative approach to the classic hidden
surface problem. In particular, we design a ray-based differentiable ren-
derer for 3D Gaussians that can be used to solve multiple classic computer
vision problems in a unified manner. For example, we can reconstruct
3D shapes from color, silhouette or optical flow, based solely on gradient-
based optimization; these reconstructions are robust to input errors and
reasonably fast (taking a few minutes on a laptop CPU). Similarly, we
can solve for precise camera pose estimates for known objects, comparable
to the quality given by classic methods. Our contributions include an
alternative formulation of the hidden surface problem that sacrifices fi-
delity for utility, thereby obtaining fast runtimes and high-quality gradient
information. We extend this renderer with differentiable optical flow and
show how to export colored meshes from the reconstructions. We show
examples on naturally collected videos of everyday objects.We will also
cover our work on obtaining 3D Gaussian representations directly from
meshes, without the need for sampling point sets.

In another line of our research, we show how Gaussian representations pro-
vide a powerful underlying representation for gradient-free optimization of
classic algorithms in robotics such as stereoscopic depth matching, motion
planning, visual odometry, and social navigation. We develop techniques
for performing optimization based on user preferences and based on dataset
variation. We show how Gaussian representations can be tuned directly
from user preferences, without the need for ground-truth collection or fine-
tuned metric design. Additionally, we show these optimizers can discover
multiple algorithm configurations for potentially different environments,
based solely on the algorithm responding to sampled configurations.

Lastly, we will touch on a novel regression-based, citation-free alternative
to citation metrics for analyzing academic contributions.

v

Acknowledgments

“It takes a village...”

First, a great thanks must be given to my thesis advisor, Martial Hebert.
Martial’s humor, wit, intellectual breadth and general tolerance for creative
work has greatly shaped me and this thesis. Despite his illustrious position
as the Director of the Robotics Institute (when I started) and Dean of the
School of Computer Science (as I write this), Martial has reliably made
time to meet with me, individually, nearly every single week of my thesis.
He has been patient, helpful, and listened to all comments and questions
I might have throughout my time at CMU. He has never forced me to
submit a deadline or work on any particular project. While his ability to
engage on nearly any technical material is exceptional, he has also been
the first to clearly say “I don’t get it” when my presentations were unclear.
Through this process, he has made me stronger technical communicator,
and helped me focus on technical clarity, while strengthening my academic
rigor.

Second, I have to thank Chris Atkeson, whose weekly lab meetings I’ve had
the fortune to attend my entire time at Carnegie Mellon. Chris’ charisma,
charm, and far-reaching technical breadth are aspirational to students in
the department, me among them. Chris introduced me to many technical
areas, and always encouraged me to think outside the box of traditional
academic projects. Chris’ interest in real robotics, actual demonstrations,
true impact, and the comfort in discarding apparent nonsense are traits I
wish my thesis could even better actualize. Chris taught me that individual
academic work can be thought of as art: material that shows one’s world
view and hopes that it can make others feel similarly, and perhaps gain
some insight or inspiration from it. I’ve come to see all my projects as
existing in this way: they are technical manifestations of a world view.

I’d like to thank the other members of my committee: Deva and Jon.
While both are excellent researchers, it is their character that I’ve come
to appreciate the most. Deva is patient, kind, and regularly willing to
deep dive into technical topics with insightful questions, with a clear
undercurrent of support throughout. Jon’s clarity of thought, and active
engagement, have made his time worth its weight in gold. His comments
have been immensely valuable in helping me strengthen my work. Both of
them embody being computer vision researchers, asking questions about
understanding images, scenes, and how to represent them.

vii

The community at The Robotics Institute has been wonderful and a
pillar of my time here. I’ve made countless friends and acquaintances
throughout my time here, and I’ve greatly appreciated being a part of
the culture here. Without the company of the people here, I doubt this
thesis would have been written. To list a few: Ankit, Ben, Thomas, Jono,
Alex, Arka, Kevin, Kevin, Hunter, Martin, Neehar, Kiyn, Jason, Sudeep,
Shivam, Nate, Jon, Victoria & Ben, Helen, Kayla, Simin, Maria, and
many others. Adam Harley has been an excellent friend, both personally
and for the frequent in-depth academic discussions. Mark Sheinin, Brian
Okorn and Roberto Shu have been wonderful for their frequent office
conversations. Humphrey Hu, Nick Gisolfi , Emily Simon, and Kate Shih
have been wonderful friends, who I could not thank enough.

The professors at the RI are open, friendly, and engage with many of
the students. For example, the three ‘Matt’s have always been generous
with their time when crossing paths (O’Toole, Johnson-Roberson, Mason).
Kris Kitani was an excellent faculty to be a TA for. I’d also like to thank
Katerina, Zeynep, Henny, Oliver, Jim, David, Simon, Yannis, Srinivasa,
Aaron, Sarah, and Fernando for being friendly, kind, and supportive of
me and my work. Friendly administrators such as Lynetta, Nichole, Jean
and Suzanne have also made me feel welcome here.

Outside the halls of CMU and the RI, this thesis would not exist if not
for a long line of people who have pushed me in my life. Brian Bruno
for pushing me to take a summer programming class in middle school.
Carly, Katie and Alexis for teaching me to pay it forward. Kevinjeet Gill
for helping me through life, including pushing me to major in Computer
Science. S-K., who taught me too much about life, what it can be and
how fragile it is; who truly believed I could (and should) be an academic,
pushed me to do a PhD, and without whom this entire journey never
would have started. Kris Pister, Ankur Mehta, and Anita Flynn, who
helped me learn what research could be. Stan Melax and Sterling Orsten,
for being wonderful people, and close friends, who helped teach me about
computer graphics, good software, and generously helping me first appear
in the peer-reviewed literature. Anders and Achin, for giving me the space
to grow into my own doing computer vision. John Iselin Woodfill, for
being equal parts role model, friend, and kind collaborator. Blake Lucas
and Peter Henry, who taught me about 3D Computer Vision, and that you
can mix fun times with hard work. Jamie Gabriel for staying late, asking
good questions, and for always staying so calm. Justin Johnson, Ranjay
Krishna and Ben Poole, who taught me about the high standards of being

viii

a good teacher. Timnit for helping me think about how we think. Silvio
and Fei-Fei for all the opportunities they gave me. Vincent Sitzmann,
Vaggos Chatziafratis for being wonderful friends, while never shying from
technical topics, and helping through tough times. Zayd Enam, Dillon
Huff, Paris Syminelakis for being good friends. Ryan Julian, for being a
generous friend through the years. Ermal Dreshaj, for being like family.

And lastly, I’d like to thank my parents, who helped make the person I
am today.

ix

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Hidden Surface Problem . 3

2 Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering 5
2.1 Introduction . 6
2.2 Related Work . 8
2.3 Fuzzy Metaballs . 9
2.4 Approximate Differentiable Rendering 11

2.4.1 Intersecting Gaussians . 11
2.4.2 Blending intersections . 13
2.4.3 Obtaining Fuzzy Metaballs . 14

2.5 Data . 14
2.6 Comparing Representations . 15
2.7 Experiments . 16

2.7.1 Pose Estimation . 17
2.7.2 3D Reconstruction . 20

2.8 Discussion . 22
2.9 Conclusion . 23
2.10 Video Results . 24

2.10.1 Video Result Analysis . 24
2.11 Hyper-parameters . 27
2.12 Exclusion of gear model . 27
2.13 Pose Estimation Details . 28

2.13.1 Noise Free . 28
2.13.2 Noisy Depth Images . 28

2.14 SoftRasterizer performance . 32
2.14.1 Pulsar performance . 34

2.15 Exporting Fuzzy Metaballs . 35
2.16 Fuzzy Metaballs as Surface or Volume GMMs 35

3 Flexible Uses of 3D Gaussians 43
3.1 Introduction . 43
3.2 Related Work . 46

x

3.3 Ray-Shape Intersections . 47
3.3.1 Weighted Blending . 47
3.3.2 Two Parameter Model . 49
3.3.3 Zero Parameter Model . 49

3.4 Shape Reconstruction . 50
3.5 Reconstructing with Optical Flow . 52
3.6 Exporting Meshes . 55
3.7 Interoperability . 57
3.8 Splitting Gaussians . 61
3.9 Discussion . 63
3.10 Conclusion . 64

4 Direct Fitting of Gaussian Mixture Models to Meshes 66
4.1 Introduction . 66
4.2 Method . 68

4.2.1 Gaussian Mixture Models . 68
4.2.2 Geometric Objects in a Probability Distribution 68

4.3 Modifying EM maximization to account for triangles 70
4.3.1 Evaluating the derived loss function 72

4.4 Results . 72
4.4.1 Mesh Input Data . 73
4.4.2 Mesh Decimation . 73
4.4.3 Discussion . 74

4.5 Extensions . 74
4.5.1 Generalization to other primitives 74
4.5.2 Number of Mixtures . 75

4.6 Applications . 76
4.6.1 Mesh Registration . 76
4.6.2 Analysis of Mesh Registration 77
4.6.3 Other 3D Models . 78
4.6.4 Visual Odometry . 78

4.7 Conclusion . 79

5 Discovering Multiple Algorithm Configurations 86
5.1 Introduction . 86
5.2 Related Work . 88
5.3 Method . 89

5.3.1 Partitioning . 89
5.3.2 Black Box Optimizer . 90
5.3.3 Post hoc Partitioning . 90
5.3.4 Staged Partitioning . 91

xi

5.3.5 Online Partitioning . 91
5.4 Experimental Results . 91

5.4.1 Synthetic Function . 93
5.4.2 Dense Stereo Matching . 94
5.4.3 Differentiable Rendering . 94
5.4.4 Motion Planning . 95
5.4.5 Visual Odometry . 96
5.4.6 Commercial Depth Sensor . 96

5.5 Discussion . 97
5.6 Conclusion . 97

6 Optimizing From Pairwise User Preferences 108
6.1 Method . 109
6.2 Tuning a Stereoscopic Depth Sensor 110

6.2.1 Sensor Setup . 111
6.2.2 Visual Tuning Results . 111

6.3 Conclusion . 112

7 Learning the Value of Academic Venues 114
7.1 Introduction . 115
7.2 Related Work . 116

7.2.1 Venue Metrics . 117
7.3 Data . 118
7.4 Method . 120

7.4.1 Formal Setup . 121
7.4.2 Metrics of Interest . 123
7.4.3 Modeling Change Over Time 123
7.4.4 Normalizing Differences Across Years 124
7.4.5 Normalizing Differences In Venue Size 127
7.4.6 Modeling Author Position . 127
7.4.7 Combining Models . 128

7.5 Results . 129
7.6 Evaluation . 130

7.6.1 PageRank Baseline . 131
7.6.2 University Ranks . 131
7.6.3 Journal-level metrics . 133
7.6.4 Author-level Metrics . 133

7.7 Discussion . 134
7.8 Similarity Metrics . 136
7.9 Conclusion . 140
7.10 Credit Assignment . 140

xii

7.11 Aging Curve . 142

8 Additional Results 147
8.1 Alternative Rendering Formulations 147

8.1.1 Multivariate Logistic . 148
8.2 Sonar Results . 150

9 Conclusions 151
9.1 Bootstrapping Solutions . 152
9.2 Better Applications . 152

Bibliography 154

xiii

Chapter 1

Introduction

In general, this thesis studies some fast, efficient and robust algorithms in computer

vision and robotics. Of note, these methods are designed to work well in general,

and experiments were constructed to validate and test their effectiveness in multiple

areas. None of them were designed to maximize performance on a specific dataset or

evaluation metric. Hopefully, this ensures a level of generality, flexibility and general

interest to these approaches that extends past their good empirical performance

on current evaluations and experimental designs. Additionally, most results in this

thesis were obtained on my 2017 personal laptop, without the need for large-scale

computational resources.

The bulk of this thesis is covered in several separate publications, all of which I

am the first author of. My advisor is a co-author on most of them due to our weekly

conversations and his helpful feedback. Curious readers may instead prefer to directly

read a particular paper, which may be more neatly formatted.

• Chapter 2: Differentiable Rendering with 3D Gaussians [KH22]

• Chapter 3: Flexible Extensions to Rendering with 3D Gaussians [KH23b]

• Chapter 4: Direct Fitting of Gaussians to Meshes [KH19]

• Chapter 5: Discovering Multiple Algorithm Configurations [KH23a]

• Chapter 6: Optimizing Algorithms Based on User Preferences [Kes+23]

• Chapter 7: Learning a Citation-Free Academic Metric [Kes19]

1

1. Introduction

1.1 Motivation

This thesis was motivated by a search for a better representation for three-dimensional

objects. Early computer scientists explored many representations, including gener-

alized cylinders [Agi72], curved patches [Coo66], and polygons [Cat72]. However,

notions of what representation is better are usually shaped by the task at hand.

Navigation for a wheeled robot [Mor83] might prefer a 2D occupancy grid [Fox01],

while dense reconstruction might prefer a signed distance field [RHL02]. What repre-

sentation is better in general may not be well defined. In this thesis, we explore how a

particular representation can enable fast, robust, and simple differentiable rendering.

We show how differentiable rendering can be used to solve multiple classic computer

vision tasks. As such, for this work, a good representation is one which can easily

produce images whose analytical gradients lead to sensible solutions.

In contrast to work from the “pattern recognition” (or “learning”) literature,

we are interested in a compact, interpretable representation. Statistical learning by

adjusting weights has a long history, used in character recognition [Doy60; SN60;

Ros60; UV61] predating early computer vision work [Rob63; Guz67; Pap66]. Neural

networks have had wide success over the years, from steering vehicles [Pom88] to

detecting faces [RBK98] decades before the deep learning revolution [LBH15]. Recently

Neural Radiance Fields [Mil+20a] demonstrated extremely compelling results in view

interpolation using MLPs to encode both density and radiance fields. Other works

use MLPs to output more classic representations directly, such as signed distance

fields [Par+19]. While these approaches provide effective solutions to down-stream

tasks, they are not the focus here. Instead, we believe the first computer vision

thesis [Rob63] adequately frames these learning methods as “better suited” for

handling front-end (finding features) and back-end (making decisions) steps in a

system, while techniques which “can be based on properties of three-dimensional

transformations and the laws of nature” should be studied and developed, even when

neural networks can adequately approximate those properties.

Our work spans three main preexisting research areas. We develop a computer

graphics technique, designed to work with stochastic optimization tools, in order

to solve classic computer vision problems. The representation should be simple,

compact, and interpretable. The rendering method willingly sacrifices fidelity for

2

1. Introduction

utility in optimization, focusing on smooth solutions that provide dense gradient flow.

For robust vision modeling, we focus on using silhouettes and depth maps, which

do not require knowledge of scene lighting and can easily be extracted by masking

methods [He+17] and depth sensors [Kes+17]. Modeling colors in an image requires

knowledge of lighting and material properties along with potentially high frequency

information content, which isn’t well supported by simple, approximate methods

trying to solve coarse-grain vision problems.

On a historical note, these fields are intertwined from their very earliest days.

Perhaps the first computer graphics thesis, Sketchpad [Sut63] includes optimization,

error minimization and fitting of functions. The first vision thesis [Rob63] makes

several mentions to pattern recognition literature while the second [Guz67] explicitly

suggests parts where “standard pattern classifiers” [Nil65] may be used. Early

contributors to AI [Min66] and Graphics [Sut66] both point to Robert’s vision thesis

as important to their fields in the same issue of Scientific American, which includes

research in early 3D surface representations [Coo66]. Computer Vision research is

Artificial Intelligence research, in even the earliest surveys [Fei69], which also cover

the successes of statistical learning methods in playing checkers [Sam59] or building

robots. Perhaps the first work in image processing [Kir+57] hinted towards using

automatic pattern recognition methods to separate images into their constituent

parts. Soon after, researchers deployed automated learning methods on recognition

of natural images [Nag68] and written characters [Mun68]. The connections between

these fields will no doubt continue into the future.

1.2 Hidden Surface Problem

Early graphics researchers studied and prioritized the hidden surface problem:

The difficulty is in computing what parts of an object are visible from

a given viewing position and what parts are not ... Once the hidden-

surface problem is solved, shading and color are relatively easy to intro-

duce. [Sut70]

There were many proposed solutions to this problem for early graphics hard-

ware [Eva66; War69; Wat70; SSS74]. Of note, these early graphics researchers also

3

1. Introduction

developed meshes, the popularity of which may have originated from the ease at

which early digitized objects were painted over and turned into polygons [Gab15].

[Gab15] studies the history of the hidden surface problem and how early researchers

tackled it.

A main contribution of this thesis is to provide an alternative solution to the

hidden surface problem. Most rendering approaches are typically not differentiable,

and we aim to formulate an alternative approach that enables robust gradient flow.

Classic rendering approaches are discontinuous for two primary reasons:

• Rays either intersect known geometry or they do not. If they do not intersection

any geometry, there is no gradient information to the shape.

• Rays that intersect geometry typically only intersect the front-most component

of geometry. This limits gradient flow to only a single piece of geometry.

Instead, our rendering equations in Chapters 2 and 3 have continuous, differentiable

alternatives to the two steps above.

• Shapes are represented with mixtures 3D Gaussians, which have infinite support

and are non-zero everywhere. This implies that all rays intersect all geometry

in the scene to some degree.

• Final intersection values are combined as a weighted average of positive weights,

leading to some contribution from all geometric components.

Final intersections can be computed with either a novel sort-free approach (Sec-

tions 2.3 and 3.3.2) or with typical alpha-compositing (Section 3.3.3). These choices

enable differentiable rendering that is smooth due to both the underlying geometry

(whose intersections are defined via maximization of some quantity), and due to the

smooth computation of final intersection locations. This aids smooth optimization,

and export to traditional discontinuous representations requires additional steps

(Sections 2.15 and 3.6).

4

Chapter 2

Fuzzy Metaballs: 3D Gaussians for

Differentiable Rendering

This chapter introduces an approach to differentiable rendering of shapes where the

underlying shape is represented as a mixture of 3D Gaussians. It is largely similar to

our publication on this topic [KH22].

Originally, 3D Gaussians in the rendering and graphics literature were called

Metaballs (or atoms, soft objects, blobs, blobbies). The original approach was used

to render visualizations of atoms, and defined the surface at a specific isosurface

level [Bli82]. Instead, we use 3D Gaussians as objects that are defined everywhere, a

property that enables robust optimization for differentiable rendering applications

such as pose estimation and shape reconstruction. Hence we call the approach Fuzzy

Metaballs, to note that we’re extending metaballs and also using them as infinite

support objects without a specific isosurface value.

As an alternative to searching for a discrete isosurface level, we instead intersect

each Gaussian at a maximal value of some objective. We derive three alternative

rules for maximal intersection of Gaussians, which correspond to different orders

of polynomial: linear, quadratic, and cubic. Along with the title of [Bli82], this is

why we sometimes refer to these as algebraic surfaces of different order [Zar35]. This

approach to rendering provides smooth interpolation between the objects, leading

to surface interpolation between individual components, which behave more like flat

planes (especially under the linear formulation) (see Figs. 2.1 and 2.3) than ellipsoids.

5

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

An interesting part of this chapter is studying parameter efficient representations

of 3D shapes. We consider the scaling of different representations in Section 2.6.

In general, we focus on having under-defined representations which can be robust

to errors in annotations (Section 2.10) and only model as much shape complexity

as is needed for coarse shape representation for potential robotics applications like

planning, manipulation, and collusion avoidance.

In Chapter 3 we simplify both the models used and some of the presentation of

similar material, so interested readers may benefit from the summary in Section 3.3.1.

2.1 Introduction

Rendering can be seen as the inverse of computer vision: turning 3D scene descriptions

into plausible images. There are countless classic rendering methods, spanning from

the extremely fast (as used in video games) to the extremely realistic (as used in

film and animation). Common to all of these methods is that the rendering process

for opaque objects is discontinuous; rays that hit no objects have no relationship to

scene geometry and when intersections do occur, they typically only interact with

the front-most component of geometry.

Differentiable Rendering is a recent development, designing techniques (often

sub-gradients) that enable a more direct mathematical relationship between an

image and the scene or camera parameters that generated it. The easy access to

derivatives allows for statistical optimization and natural integration with gradient-

based learning techniques. There exist several recent differentiable renderers which

produce images comparable in fidelity to classic, non-differentiable, photorealistic

rendering methods [Lai+20; Mil+20a; Nim+19; Zha+20].

This chapter presents a different approach: a differentiable renderer focused on

utility for computer vision tasks. We are interested in the quality and computability

of gradients, not on matching the exact image formation task. We willingly sacrifice

fidelity for computational simplicity (and hence speed). Our method focuses on a

rendering-like process for shapes which generates good gradients that rapidly lead

to viable solutions for classic vision problems. Other methods may produce more

pleasing images, but we care about the quality of our local minima and our ability to

easily find those minima. Our experiments show how, compared to classic methods,

6

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

Components Depth Alpha Normals Phong

Figure 2.1: Our differentiable renderer producing images of Stanford bunny,
using a representation with 400 parameters. From left to right: the 40 components
at one standard deviation, followed by our differentiable renderer generating depth,
alpha, surface normals and a shaded image.

differentiable renderers can be used to solve classic vision problems using only gradient

descent, enabling a high degree of robustness to noise such as under-segmented masks

or depth sensor artifacts.

Our approach is built on a specific 3D representation. Existing representations

often have undesirable properties for rendering or optimization. Point clouds require

splatting or calculating precise point sizes [Yif+19]. Meshes explicitly represent

the object surface, making changes of genus difficult. Other representations require

optimization or numerical estimation of ray-shape intersections [Bli82; Mil+20a]. Our

proposed method is formulated with independent rays, represents object surfaces

implicitly and computes ray termination in closed form.

Most existing differentiable renders focus on GPU performance. However, GPUs

are not always available. Many robotics platforms do not have a GPU [Tom+12]

or find it occupied running object detection [YS19], optical flow [TD20] or a SLAM

method [Mil+20b]. While a single method may claim to be real-time on a dedicated

GPU [TD21a], an autonomous system requires a sharing of resources. To run in

parallel with the countless GPU-friendly techniques of today, CPU-friendly methods

are desirable. Thus, while our method is implemented in JAX [Bra+18], supporting

CPU and GPU backends, our focus is typically on CPU runtimes.

Lastly, in the era of deep learning, techniques which support gradient-based

optimization are desirable. Since our objects have an explicit algebraic form, gradients

are simple and easy to compute. Importantly, every pixel has a non-zero (if very

slight) relationship with each piece of geometry in the scene (even those behind the

camera!). This allows for gradient flow (up to machine precision), even when objects

start far from their initialization. While this can also true of large over-parmaterized

7

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

implicit surfaces (such as NeRF [Mil+20a]), our representation is extremely compact

and each parameter has approximate geometric meaning.

2.2 Related Work

Early work in 3D shape representation focused on building volumes from partial

observations [Agi72] but most modern methods instead focus on surface representation.

Meshes, point clouds and surfels [Pfi+00] focus on representing the exterior of an

object. In contrast, our method works by representing volumes, and obtaining surface

samples is implicit; similar to recent work on implicit neural surfaces [Mil+20a].

Tetrahedral volumetric representations have also been proven useful for geometric

processing [Hu+18].

In using low-fidelity representations, our work is hardly unique. Often learning-

based methods settle for pseudorendering [LKL18] or even treating images as layers

of planar objects [TS20]. Settling for low fidelity contrasts sharply with a wide array

of differentiable renderers focused on accurate light transport, which are slower but

can simulate subtle phenomena [BLD20; Zha+20]. High-quality results can also be

obtained by using learning methods and dense voxel grids [Lom+19]. In psychology, it

has been shown that people can be primed to use a recognition pathway that focuses

on low-fidelity, blobby representations [SO94].

Differentiable Rendering has many recent works. OpenDR [LB14] demonstrated

pose updates for meshes representing humans. Neural Mesh Renderer [KUH17]

developed approximate gradients and used a differentiable renderer for a wide array

of tasks. SoftRasterizer [Liu+19] developed a subgradient function for meshes with

greatly improved gradient quality. Modular Primitives [Lai+20] demonstrated fast,

GPU-based differentiable rendering for meshes with texture mapping. Differentiable

Surface Splatting [Yif+19] developed a differentiable renderer for point clouds by

building upon existing rendering techniques [Zwi+01]. Conversion of point clouds

to volumes is also differentiable [ID18]. Pulsar [LZ21] uses spheres as the primary

primitive and focuses on GPU performance. PyTorch3D [Rav+20] implements

several of these techniques for mesh and point cloud rendering. Some methods exploit

sampling to be generic across object representation [Col+21]. Many methods integrate

with neural networks for specific tasks, such as obtaining better descriptors [Li+20]

8

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

or predicting 3D object shape from a single images [Che+19; Tew+17].

The use of an algebraic surface representation, which came to be known as meta-

balls can be attributed to Blinn [Bli82]. These algebraic representations were well

studied in the 1980s and 1990s. These include the development of ray-tracing approx-

imations [Hec86; WMW86; WT90] and building metaball representations of depth

images [Mur91]. Non-differentiable rendering metaballs has many methods, involving

splatting [ALD06], data structures [Gou+10; SI12] or even a neural network [Hor19].

Metaballs, especially in our treatment of them, are related to the use of Gaussian

Mixture Models (GMMs) for surface representation. Our method could be considered

a differentiable renderer for GMMs. Gaussian Mixture Models as a shape repre-

sentation has some appeal to roboticists [OTM19; TOM18]. Methods developed to

render GMMs include search-based methods [SM20] and projection for occupancy

maps [OTM19]. Projection methods for GMMs have also found application in robot

pose estimation [Hua+20]. In the vision community, GMMs have been studied as a

shape representation [Eck+16] and used for pose estimation [EKK18; Eck+15]. In

the visual learning space, GMMs [Her+20], or their approximations [Gen+20] have

also been used.

Concurrent work also uses Gaussians for rendering. VoGE [Wan+23] uses existing

volume rendering techniques [Max95; Mil+20a]. Others use a DGT to build screen-

space Gaussians for point clouds [MWK22]. In contrast, our contribution is the

development of an approximate differentiable renderer that produces fast & robust

results.

2.3 Fuzzy Metaballs

Our proposed object representation, dubbed Fuzzy Metaballs, is an algebraic, implicit

surface representation. Implicit surfaces are an object representations where the

surface is represented as

F (x, y, z) = 0. (2.1)

While some methods parameterize F with neural networks [Mil+20a], Blinn’s

9

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

algebraic surfaces [Bli82], also known as blobby models or metaballs, are defined by

F (x, y, z) =
∑
i

λiP (x, y, z)− T, (2.2)

where P (x, y, z) is some geometric component and T is a threshold for sufficient

density. While Blinn used isotropic Gaussians (hence balls), in our case, we use

general multidimensional Gaussians that form ellipsoids:

P (x⃗) = |Σ|−
1
2 exp

(
−1

2
(x⃗− µ)TΣ−1(x⃗− µ)

)
. (2.3)

In contrast to classic metaballs, we relax the restriction on T being a hard

threshold set by the user and instead develop a ray-tracing formulation for Gaussians

which implicitly defines the surface; hence fuzzy metaballs. To achieve this, we

develop two components: a way of defining intersections between Gaussians and

rays (Section 2.4.1), and a way of combining intersections across all Gaussians

(Section 2.4.2). In our definition, all rays always intersect all Gaussians, leading to

smooth gradients. The fuzzy surface locations are not viewpoint invariant.

Our implementation is in JAX [Bra+18], enabling CPU and GPU acceleration

as well as automatic backpropogation. The rendering function that takes camera

pose, camera rays and geometry is 60 lines of code. To enable constraint-free

backpropogation, we parameterize Σ−1 with its Cholesky decomposition: a lower

triangular matrix with positive diagonal components. We ensure that the diagonal

elements are positive and at least 10−6. The determinant is directly computed from

a product of the diagonal of L. When analyzing ray intersections, one can omit

the |Σ|− 1
2 term as maximizing requires only the quadratic form. For example, x⃗ is

replaced with a ray intersection of v⃗t with v⃗ ∈ R3 and t ∈ R:

s(vt) = (vt− µ)TΣ−1(vt− µ), (2.4)

giving a Mahlanobis distnance [Mah36] that is invariant to object scale and allows us

to use constant hyperparameters, irrespective of object distance. Using probabilities

would be scale-sensitive as equivalent Gaussians that are further are also larger and

would have smaller likelihoods at the same points.

10

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

To produce an alpha-mask, we simply have two hyperparameters for scale and

offset and use a standard sigmoid function:

α = σ

(
β4

[∑
i

λi exp(−
1

2
s(vt))

]
+ β5

)
. (2.5)

2.4 Approximate Differentiable Rendering

Instead of using existing rendering methods, we develop an approximate renderer that

produces smooth, high-quality gradients. While inexact, our formulation enables fast

and robust differentiable rendering usable in an analysis by synthesis pipeline [Bel+61].

We split the process into two steps: intersecting each component independently in

Section 2.4.1 and combining those results smoothly in Section 2.4.2.

2.4.1 Intersecting Gaussians

What does it mean to have a particular intersection of a ray with a Gaussian? We

propose three methods. The linear method is where the ray intersects the Gaussian

at the point of highest probability. Maximizing Eq. (2.4) is solved by

t =
µTΣ−1v

vTΣ−1v
. (2.6)

An alternative view is a volume model, intersecting at the maximum magnitude

of the gradient of the Gaussian:

||∇p(tv)||2= P (tv)2(tv − µ)TΣ−1Σ−1(tv − µ). (2.7)

Obtaining the gradient of Eq. (2.7) and setting it equal to zero leads to a cubic

equation, hence the cubic method. Defining m = Σµ and r = Σv leads to:

0 = −t3(rT r)(vT r)

+t2
[
(mT r + rTm)(vT r) + (rT r)(vTm)

]
−t
[
(mTm)(vT r) + (mT r + rTm)(vTm)− rT r

]
+(mTm)(vTm)− rTm.

11

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

Linear Quadratic Cubic

Figure 2.2: Two dimensional version of our approximate renderer with camera rays
cast from the center left. Three components are shown by their contour maps and
their intersections with dots. The blended results are shown with red rays.

While standard formulas exist for the cubic, the higher order polynomial all-but-

ensures that numerical issues will arise. We implement a numerically stable solver for

the cubic [Bli07]. However, even the numerically stable version produces problematic

pixels in 32bit floating point. Errors at a rate of about 1 in 1,000 produce NaNs and

make backpropagation impossible.

The quadratic method approximates the cubic by intersecting the Gaussian at the

one standard deviation ellipsoid. Clipping the inside of square roots to be non-negative

leads to reasonable results when the ray misses the ellipsoid.

t2vTΣ−1v − 2tvTΣ−1µ+ µTΣ−1µ = 1

a = vTΣ−1v b = −2vTΣ−1µ c = µTΣ−1µ− 1

Figures 2.2 and 2.3 illustrate all three methods. The linear method produces

smooth surfaces and the quadratic surface shows the individual ellipsoids protruding

from the surface of the object and the cubic shows artifacts.

In 3D evaluation on objects, for a forward pass, the linear method is the fastest,

the quadratic method takes 50% longer and the cubic method takes twice as long as

the linear method. The quadratic method has the lowest errors in depth and mask

errors. However, due to its stability, in all evaluation outside this section, we use the

linear method.

12

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

depth (14)
mask (28)errors:

Linear

depth (12)
mask (28)errors:

Quadratic

depth (13)
mask (31)errors:

Cubic

Figure 2.3: Visual examples of normal maps from different methods of ray intersection,
along with the respective mask and depth errors. See Section 2.4.1 for details

2.4.2 Blending intersections

We present a particular solution to the hidden-surface problem [SSS74]. Our method is

related to prior work on Order Independent Transparency (OIT) [End+10; MB13] but

extended to 3D objects with opaque surfaces. We combine each pixel’s ray-Gaussian

intersections with a weighted average

tf =
1∑
i wi

∑
i

witi. (2.8)

The weights are an exponential function with two hyperparameters β1 and β2

balancing high-quality hits versus hits closer closer to the camera:

wi = exp

(
β1s(vti)h(ti)−

β2

η
ti

)
. (2.9)

We include a term (η) for the rough scale of the object. This, along with use of

Eq. (2.4) allows our rendering to be invariant to object scale. We also include an

extra term to down-weight results of intersections behind the camera with a simple

sigmoid function:

h(t) = σ

(
β3

η
t

)
. (2.10)

Our blending solution requires only O(N) evaluations of Gaussians for each ray.

13

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

2.4.3 Obtaining Fuzzy Metaballs

A representation can be limited in utility by how easily one can convert to it. We pro-

pose that, unlike classic Metaballs, Fuzzy Metaballs have reasonably straightforward

methods for conversion from other formats.

Since we’ve developed a differentiable renderer, one can optimize a Fuzzy Metaball

representation from a set of images. One could use several different losses, but

experiments with silhouettes are described in Section 2.7.2.

If one has a mesh, the mathematical relationship of Fuzzy Metaballs and Gaussian

Mixture Models can be exploited by fitting a GMMwith Expectation-Maximization [DLR77].

With Fuzzy Metaballs being between a surface and volume representation, there

are two forms of GMM one could fit. The first is a surface GMM (sGMM) as used

by many authors [Eck+16; KH19; TOM18], where a GMM is fit to points sampled

from the surface of the object. The second is to build a volumetric GMM (vGMM).

To build a vGMM, one takes a watertight mesh [KBH06], and samples points from

the interior of the object. Fitting a GMM to these interior points is what we call

a volumetric GMM. Both representations can then further be optimized using the

differentiable renderer. Our experiments show that both forms of GMM initialization

work well, but we use vGMMs in our experiments.

Extraction is also straightforward. Point clouds can easily be sampled from our

proper probability distributions. Extracting a mesh is possible by running marching

cubes [LC87] with an optimized iso-surface level. Details in Section 2.15.

2.5 Data

We use ten models for evaluation: five from the Stanford Model Repository [Lev+05]

(arma, buddha, dragon, lucy, bunny), three from Thingi10K [ZJ16] (gear, eiffel,

rebel) and two from prior rendering literature (yoga, plane). All ten are used for

reconstruction, and seven are used for pose estimation. We selected objects with

different scales, genus, and variety in features. We choose 40 component FMs based

on prior literature suggesting 20 to 60 GMMs for object representation [EKK18].

14

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

Table 2.1: Runtimes in milliseconds with µ±σ for rendering images and performing
gradient updates in pose estimation with comparable fidelity (Section 2.6). CPU
performance may be a fairer comparison as our method is 60 lines of JAX [Bra+18]
code and lacks a custom CUDA kernel. CUDA numbers use 160 x 120 images on a
Quadro P2000, while CPU use 80 x 60 images on an i5-7287U.

Method Forward
CUDA

Backwards
CUDA

Forward
CPU

Backwards
CPU

Point Cloud [Rav+20] 12.1± 0.5 23.4± 0.5 18.0± 1.0 23.8± 4.0
Pulsar [LZ21] 7.8± 0.3 11.2± 0.4 16.4± 1.4 63.6± 7.9
SoftRas Mesh [Liu+19;
Rav+20]

17.0± 0.4 27.2± 0.5 21.5± 2.0 384.7± 93.8

Fuzzy Metaballs 3.0 ± 0.2 9.6 ± 0.5 3.0 ± 0.15 13.2 ± 1.4

2.6 Comparing Representations

Fairly comparing object representations requires some notion of what to hold constant.

As the parameter counts of each representation increase, so do their representational

ability. It would be unfair to compare a million point point-cloud against a 100 face

triangle mesh. Since our goal is utility in vision tasks, our definition of fidelity will

also be task-centric.

In this case, our metric of fidelity will be a representation’s perturbation sensitivity.

We define this as the pose error obtained when optimizing an object’s camera pose

given a depth map, when the optimization process was initialized with ground truth

camera pose. The given depth map is of the full representation object, but the methods

are evaluated using lower fidelity versions, leading to perturbations of optimal pose

and our fidelity metric. Pose errors are reported using the geometric mean of rotation

error and translation error.

Results of our fidelity experiments can be seen in Fig. 2.4. We evaluate point clouds

and meshes using a standard Iterative Closest Point (ICP) method [ZPK18], with the

point clouds randomly subsampled and the meshes undergoing decimation [GH97]. We

also use PyTorch3D [Rav+20], a differential mesh renderer, and obtain its perturbation

curve. These experiments are conditional on an experimental setup and methods

used, and thus these results may change under different conditions.

15

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

200 400 600 800 1000 1200 1400 1600
Number of Parameters

0

1

2

3

4

5

P
os

e
U

nc
er

ta
in

ty

Perturbation Sensitivity
Point Cloud
PyTorch3D Mesh
Mesh
Fuzzy Metaballs

Figure 2.4: Perturbation sensitivity is the average error in pose when registration
is performed with ground truth pose as initialization. See Section 2.6 for details.
The underlying ground truth is a decimated mesh, so only the mesh representation
approaches exactly zero error while other asymptote at a higher mark.

In our experiments, a 40 component Fuzzy Metaball (the size we throughout

across this chapter) produces a pose uncertainty equivalent to a 470 point point cloud

(roughly triple the parameter count of a fuzzy metaball) and 85 vertex, 170 triangle

mesh (roughly twice the parameter count). These are the sizes use throughout the

rest of the chapter, in our attempt to keep comparisons fair.

2.7 Experiments

For comparison against other Differentiable Renderers, we use the methods im-

plemented in PyTorch3D [Rav+20], which has a wide variety of techniques with

well-optimized routines. The mesh rendering method is an implementation of the

SoftRasterizer [Liu+19]. For point clouds, PyTorch3D cites Direct Surface Splat-

ting [Yif+19], while also implementing the recent Pulsar [LZ21].

With the fidelity of different object representations normalized out (Section 2.6), we

can compare the runtime performance in a fair way, with times shown in in Table 2.1.

On the CPU, where comparisons are more equal (due to lacking a custom CUDA

16

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

kernel), our renderer is 5 times faster for a forward pass, and significantly faster

(30x) for a backwards pass compared to the mesh rendering methods. The point

cloud renderer is more comparable in runtime to ours but need a pre-specified point

size, often producing images with lots of holes (when points are too small) or a poor

silhouette (when points are too big).

To the demonstrate the ability our differentiable renderer to solve classic computer

vision tasks, we look at pose estimation (Section 2.7.1) and 3D reconstruction from

silhouettes (Section 2.7.2). Our renderer is a function that takes camera pose and

geometry, and produces images. It seems natural to take images and evaluate how

well either camera pose or geometry can be reconstructed, when the other is given.

All five hyperparameters for our rendering algorithm (β1,2,3,4,5) were held constant

throughout all experiments.

Since pose estimation and shape from silhouette (SFS) are classic computer vision

problems, there are countless methods for both tasks. We do not claim to be the

best solution to these problems, as there are many methods specifically designed

for these tasks under a variety of conditions. Instead, we seek to demonstrate how

our approximate differentiable renderer is comparable in quality to typical solutions,

using only gradient descent, without any regularization.

2.7.1 Pose Estimation

Many differential renderers show qualitative results of pose estimation [Liu+19;

Yif+19]. We instead perform quantitative results over our library of models rendered

from random viewpoints. Methods are given a perturbed camera pose (±45◦ rotation

and a random translation up to 50% of model scale) and the ground truth depth

image from the original pose. The methods are evaluated by their ability to recover

the original pose from minimizing image-based errors. The resulting pose is evaluated

for rotation error and translation error. We quantify the score for a model as the

geometric mean of the two errors. All methods are tested on the same random

viewpoints and with the same random perturbations.

For Fuzzy Metaballs, we establish projective correspondence [RL01] and optimize

17

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

Table 2.2: Pose Estimation Results. Pose Errors are reported with a geometric
mean of rotation and translation error. The reported numbers are mean± IQR. We
report results clean data and data with simulated depth and silhouette noise.

Parameters Noise-Free Error Noisy Error

Initialization 20.2 ± 18 20.2 ± 18

Pulsar [LZ21] 1,200 20.2 ± 18 20.2 ± 18
Point Cloud [Rav+20] 1,200 18.5 ± 16 18.4 ± 16
SoftRas Mesh [Liu+19] 750 14.9 ± 15 17.0 ± 17

Equal Fidelity ICP
(Plane) [ZPK18]

1,200 10.8 ± 12 8.2 ± 3.3

Equal Fidelity ICP
(Point) [ZPK18]

1,200 7.6 ± 9.9 8.7 ± 6.6

High Fidelity ICP
(Plane) [ZPK18]

120,000 8.2 ± 0.8 8.0 ± 3.6

High Fidelity ICP
(Point) [ZPK18]

120,000 6.2 ± 3.7 6.8 ± 3.3

Fuzzy Metaballs 400 4.0 ± 1.5 4.2 ± 2.1

silhouette cross-entropy loss averaged over all pixels:

CE(α, α̂) = α log(α̂) + (1− α) log(1− α̂). (2.11)

Estimated alpha is clipped to [10−6, 1− 10−6] to avoid infinite error. We also evaluate

with an additional depth loss of MSE(z, ẑ) where |z| normalizes the errors to be

invariant to object scale and comparable in magnitude to CE(α, α̂).

MSE(z, ẑ) =

∣∣∣∣∣∣∣∣(z − ẑ)

|z|

∣∣∣∣∣∣∣∣
2

(2.12)

There is a subtle caveat in the gradients of Fuzzy Metaballs. The gradient of the

translation scales by the inverse of model scale.. We correct for this by scaling the

gradients by η2. Alternatively one could scale the input data to always be of some

canonical scale [YLJ13]. To maintain scale invariance, we limit our use of adaptive

learning rate methods to SGD with Momentum.

We provide point cloud ICP results for point-to-point and point-to-plane meth-

18

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

Initialization PyTorch3D Plane ICP Pt ICP Plane 40k ICP Pt 40k ICP Fuzzy Metaballs
0

5

10

15

20
Po

se
 E

rro
r

mean = 20.2
median = 19.8

q1 = 10.9
q3 = 28.9

mean = 17.0
median = 15.4

q1 = 8.4
q3 = 25.1

mean = 8.2
median = 3.9

q1 = 2.6
q3 = 7.0

mean = 8.0
median = 4.2

q1 = 3.0
q3 = 8.0

mean = 7.6
median = 3.8

q1 = 2.7
q3 = 6.4

mean = 7.0
median = 3.7

q1 = 2.7
q3 = 6.1

mean = 4.0
median = 1.6

q1 = 1.0
q3 = 2.7

arma
happy
lucy
bunny
dragon
eiffel
rebel

Figure 2.5: Noisy Pose Estimation Dashed lines are averages for the method,
while the black diamonds show the average for that method and model. Here Fuzzy
Metaballs win in all statistical measures, typically by a factor of ≈ 2.

ods [RL01] as implemented by Open3D [ZPK18]. For the differentiable rendering

experiments, we use PyTorch3D [Rav+20] and tune its settings (Section 2.14). All

differentiable rendering methods use the same loss, learning rate decay criteria and

are run until the loss stops reliably decreasing.

Pose Estimation Results

Overall results are found in Table 2.2 and a more detailed breakdown in Fig. 2.5.

All methods sometimes struggle to find the correct local minima in this testing setup.

Prior differentiable renderers significantly under-performed classic baselines like ICP,

while our approximate renderer even outperforms the ICP baselines under realistic

settings with synthetic noise.

ICP on noise-free data had bimodal results: it typically either recovered the

correct pose to near machine precision or it fell into the wrong local minima. Despite

having a higher mean error, ICP’s median errors on noise-free data were 1
10

of Fuzzy

Metaballs (FMs). With noisy data, this bimodal distribution disappears and Fuzzy

Metaballs outperform on all tested statistical measures. FMs even outperformed ICP

with high-fidelity point clouds, suggesting a difference in method not just fidelity.

This may be due to our inclusion of a silhouette loss, the benefits of projective

correspondence over the nearest neighbors used by this ICP variant [ZPK18] or the

strengths of visual loss over geometric loss [Tri+00].

19

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

2.7.2 3D Reconstruction

Reconstruction experiments are common in the differential rendering literature [LZ21;

Yif+19]. However, instead of optimizing with annotations of color [Lai+20] or

normals [Yif+19], we instead only optimize only over silhouettes, as in the classic

Shape From Silhouette (SFS) [CBK05]. Unlike many prior examples in the literature,

which require fine-tuning of several regularization losses [Rav+20; Yif+19], we use no

regularization in our experiments and can keep constant settings for all objects.

We initialize with a sphere (isosphere for meshes, an isotropic Gaussian of points

for point clouds and a small blobby sphere for Fuzzy Metaballs). Given a set of

silhouette images and their camera poses, we then optimize silhouette loss for the

object. In our experiments, we use 64 x 64 pixel images and have 32 views. For

these experiments, we resize all models to a canonical scale and use the Adam [KB15]

optimizer. For baseline hyperparameters, we use the PyTorch3D settings with minimal

modification. For SoftRas, we use a twice subdivided icosphere. For NeRF [Mil+20a],

we use a two layer MLP with 30 harmonic function embedding with 128 hidden

dimension and the same early exit strategy as FMs.

Inspired by artifacts seen in real videos (Fig. 2.9), we produce a noisy silhouette

dataset where training data had 1
8
of each silhouette under-segmented (Fig. 2.8) in

16 of 32 images by clustering silhouette coordinates [Scu10a] and removing a cluster.

Figure 2.6: Shape from Silhouette (SFS) reconstructions. On the left is a 40
component Fuzzy Metaball result and the right is the mesh ground-truth of about
2,500 faces, both colored by depth maps.

Shape From Silhouette Results

We show qualitative reconstructions from Fuzzy Metaballs (Fig. 2.6), along with

quantitative results against baselines (Table 2.3) and some example reconstructions

20

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

Table 2.3: Shape from Silhouette reconstruction fidelity as measured by cross-
entropy silhouette loss on 32 novel viewpoints for each of 10 sample models. Runtimes
were the average per model and performed on CPU. Results show µ± σ.

Time (s) Noise-Free Recon.
Error

Noisy Recon.
Error

Voxel Carving [MA83;
ZPK18]

82 0.31 ± 0.100 1.119± 0.367

PyTorch3D Point
[Rav+20]

185 0.075 ± 0.066 0.100± 0.079

PyTorch3D Mesh
[Liu+19]

3008 0.062 ± 0.049 0.072± 0.051

NeRF [Mil+20a] 7406 0.032 ± 0.022 0.062 ± 0.063

Fuzzy Metaballs 68 0.040 ± 0.015 0.055 ± 0.016

from all methods (Fig. 2.8).

Overall, we found that our method was significantly faster than the other differen-

tiable renderers, while producing the best results in the case of noisy reconstructions.

Classic voxel carving [MA83] with a 3843 volume was reasonably fast, but the 32

views of low resolution images didn’t produce extremely sharp contours (Fig. 2.24).

With under-segmentation noise, voxel carving fails completely while the differentiable

renderers reasonably reconstruct all models.

Among the differentiable renders, we can see how the mesh-based approach

struggles to change genus from a sphere to the Eiffel tower. The point cloud ren-

derer lacks the correct gradients to successfully pull spurious points into the model.

NeRF [Mil+20a] performs reasonably well in shape from silhouette, even with spurious

masks. In fact, it was the best performer for noise-free data, and in a majority of the

reconstructions in noisy data (its mean performance was hurt by results on eiffel

and lucy with long thin surfaces). NeRF is a sophisticated model with many settings,

and it may have a configuration where it successfully reconstructs all the models, but

due to its dense volumetric rendering and use of an MLP, it is 100x slower than our

low degree of freedom representation.

21

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

Figure 2.7: Shape from Silhouette steps Top row shows synthetic data with recon-
structed depth. Bottom row shows reconstructed masks for a CO3D video [Rei+21].

Ground Truth
Included
Removed

Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

Ground Truth
Included
Removed

Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

Figure 2.8: Shape from Silhouette Results with simulated under-segmentation.

2.8 Discussion

The focus of our approximate differentiable rendering method has been on shape.

While it is possible to add per-component colors to Fuzzy Metaballs (Fig. 2.20), that

has not been the focus of our experiments. Focusing on shape allows us to circumvent

modeling high-frequency color textures, as well as ignoring lighting computations.

This shape-based approach can use data from modern segmentation methods [He+17]

and depth sensors [Kes+17]. Low-degree of freedom models have a natural robustness

and implicit regularization that allows for recovery from significant artifacts present

in real systems. For example, Fig. 2.9 shows robust recovery from real over/under-

segmentation artifacts in video sequences.

Our approximate approach to rendering by using OIT-like methods creates a

22

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

trade-off. The downside is that small artifacts can be observed since the method

coarsely approximates correct image formation. The benefits are good gradients,

speed & robustness, all of which produce utility in vision tasks.

Compared to prior work [LZ21; Liu+19], our results do not focus on the same

areas of differentiable rendering. Unlike other work, we do not perform GPU-centric

optimizations [Lai+20]. Additionally, prior work focuses on producing high-fidelity

color images (and using them for optimization). Unlike prior work, we benchmark

our method across a family of objects and report quantitative results against classic

baselines. Unlike some popular implicit surface methods such as the NeRF [Mil+20a]

family, our object representation is low degree of freedom, quick to optimize from

scratch, and all the parameters are interpretable with geometric meaning.

While our experiments focus on classic computer vision tasks such as pose esti-

mation or shape from silhouette, the value of efficiently rendering interpretable, low

degree of freedom models may have the biggest impact outside of classic computer

vision contexts. For example, in scientific imaging it is often impossible to obtain high-

quality observations since the sensors are limited. For example, in non-light-of-sight

imaging [TSG19], sonar reconstruction [WGK20], lightcurve inversion [KT01] and

CryoEM [BPF15; Zho+21]. In all these contexts, getting good imaging information

is extremely hard and low degree of freedom models could be desirable.

2.9 Conclusion

Approximate differentiable rendering with algebraic surfaces enables fast analysis-by-

synthesis pipelines for vision tasks which focus on shapes, such as pose estimation

and shape from silhouette. For both tasks, we show results with realistic, simulated

noise. The robustness of our approach enables it to runs naturally on silhouettes

extracted from real video sequences without any regularization. Whereas classic

methods can struggle once noise is introduced, differentiable renderers naturally

recovery by using stochastic optimization techniques. By using gradient-based opti-

mization, differentiable rendering techniques provide a robust solution to classic vision

problems. Fuzzy Metaballs can enable low-latency differential rendering on CPUs.

Our formulation connects algebraic surfaces [Bli82] used in graphics with Gaussian

Mixture Models [Eck+16] used in vision. These provide a compact, interpretable

23

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

representation for shape with many uses.

2.10 Video Results

Here we describe additional details about the experiment shown in Fig. 9 of the

main chapter. Concerning the differentiable renderer: the method, settings and

hyperparameters are identical to those in Fig. 7 and 8 and Section 5.3. We simply

run the method on different input.

We collected a 14 second video with a Samsung S9 cell phone at 1280 x 720

resolution at 30 Hz. The video contains motion blur, auto-exposure, and clearly

visible video compression artifacts, making it unsuitable for some reconstruction

methods. We sub-sampled the video down to 6Hz and ran Mask RCNN [He+17]

from Detectron2 [Wu+19] with the pre-trained weights COCO-InstanceSegmentation

/mask rcnn R 50 FPN 3x.yaml to detect objects. In our case, the object was de-

tected as part of the teddy bear class, with about 55 viable frames. We ran

COLMAP [Sch+16] to obtain camera poses for those frames, where COLMAP

successfully returned 36 frames with valid camera poses. We ran our SFS pipeline at

160 x 90 resolution to obtain the results shown. Visual examples from this pipeline

are shown in Fig. 2.10. All the methods used their default settings; there was no

parameter tuning involved.

2.10.1 Video Result Analysis

The trajectory shown here only covers about half of the object from a roughly constant

elevation. Complicating the reconstruction is that the camera poses are imperfect

due to estimation and unmodeled camera distortion. Much more significant is that

the Mask RCNN silhouettes used for reconstruction are often extremely under or over

segmented.

Despite these issues in the ”ground truth” used for optimization, the low degree of

freedom of Fuzzy Metaballs allows the model to reasonably recover from the massive

artifacts. While the results in this chapter typically show the default 50% threshold,

to recover some areas, we have to lower our α threshold to 10%.

24

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

(a) Depth and silhouette from a shape-from-silhouette reconstruction.

(b) Recovering from undersegmentation in the ground truth masks. While a 50%
threshold does a good job recovering the head, better recovery can be shown with a 10%
threshold, also recovering the leg.

(c) Recovering from oversegmentation in ground truth masks. Even the α = 10%
threshold only leads to minor over-segmentation in the mask, suggesting a setting that be
appropriate in general.

Figure 2.9: Shape from silhouette reconstruction on natural images from a
handheld cell phone video, using COLMAP [Sch+16] and Mask RCNN [He+17] for
automatic camera poses and silhouettes. The low degree of freedom leads to natural
regularization and recovery from errors in ground truth.

25

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

(a) Mask RCNN output for valid frame (b) COLMAP estimate of camera poses

(c) All 36 frames used for SFS (d) SFS initialization

(e) Mask RCNN Silhouettes (f) SFS Mask Results

Figure 2.10: Video-based SFS reconstruction

26

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

2.11 Hyper-parameters

Our proposed method has 5 hyper-parameters described in this chapter. Briefly,

β1 prioritizes close hits, β2 prioritizes hits closer to the camera, β3 prioritizes hits

in front of the camera, and β4 and β5 serve as a scale and offset to generate alpha

masks. Since our system is fully algebraic, it is possible to perform gradient descent

into these hyper-parameters (and the functional form of JAX naturally returns their

gradients), but this was not done.

Instead, we optimized them for depth and alpha mask accuracy over a small

simulated dataset of the Stanford bunny using standard black-box optimization

techniques [Han16; HAB19; LH16] before running most of our experiments. We found

that the ray-based renderer led to similar optimal hyperparameters across multiple

tested resolutions, across a wide range of mixture components, and across our linear,

quadratic and cubic methods of intersection computation.

2.12 Exclusion of gear model

The gearmodel was selected because of its interesting geometry from Thingi10k [ZJ16].

However, for pose estimation, we exclude its results from the overall average due

to symmetry. Our poses are generated with rotations of uniform axis and angle

uniformly between -45 and 45 degrees (uniform-axis random spin [Sta14]). The gear

model however has 15 teeth and a rotational symmetry of 24 degrees when viewed

from one side, as seen in Fig. 2.11. This can sometimes produce pose errors with no

real geometric error.

The model itself is not symmetric, with 15 gears and a back face with 180 degree

symmetry. But with a single view, our testing conditions can generate poses which

are geometrically correct but produce pose errors. The other model with symmetry,

eiffel, only has 90 degree symmetry and our testing conditions place all random

poses in the same local minima.

We don’t use the yoga or plane models for pose estimation as we only latter

added them for the reconstruction experiments. Both models originate from prior

differentiable rendering uses in reconstruction [Liu+19; Yif+19].

27

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

2.13 Pose Estimation Details

We include noise-free results the same seed as the noisy results earlier in this chapter.

Summary plots are shown in Fig. 2.12 and Fig. 2.5. In the noise-free case, we find that

Point-to-Point ICP works better. With noise, Point-to-Plane ICP methods perform

better.

2.13.1 Noise Free

As described above, when ICP methods perform well, they perform extremely well,

an order of magnitude better than the differentiable renderers (see the log-scale plot),

to fractions of a degree since they have high resolution samples. However, sometimes

ICP finds poor local minima and on average our method performs better, even when

ICP has a dense point cloud. Despite having a better mean, Fuzzy Metaballs (FM)

have a median error that is 8 times higher and a 25th percentile error that is 10 times

higher. The increase in robustness from FM is demonstrated in lower 75th percentile

errors.

2.13.2 Noisy Depth Images

With synthetic noise, both differentiable renderer methods are barely affected, while

the ICP results see a large degradation in peak performance. Under this experimental

condition, Fuzzy Metaballs have the lowest mean, median, 25th and 75th percentile

errors (typically by a factor of 2 compared to ICP).

Interestingly, some of the worst case performance of the ICP methods disappears

(lower q3 measurements) when noise is added. We hypothesize that this occurs due to

a form of symmetry breaking that helps avoid singularities and bad correspondences.

Fuzzy Metaballs, being a low fidelity model, experience nearly no degradation in

performance when noise is added to depth images.

28

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

true pose 0.07

final pose 0.06init pose 0.56

ground truth

Figure 2.11: Gear Results with Fuzzy Metaballs Final pose describes the final
pose after gradient-based pose optimization, while true pose is rendered view from
the ground truth pose. Ground truth is the Blender-generated depth map of the
full-fidelity model. The final pose shown here has a rotational error of 23.9 degrees.
However, the gear has 15 teeth and hence a 24.0 degree symmetry.

29

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

Initialization PyTorch 3D Plane ICP Point ICP Plane 40k ICP Point 40k ICP Fuzzy Metaballs
0

5

10

15

20

25

Po
se

 E
rro

r

mean = 20.2
median = 19.8

q1 = 10.9
q3 = 28.9

mean = 14.9
median = 11.9

q1 = 6.1
q3 = 21.1

mean = 10.8
median = 0.6

q1 = 0.3
q3 = 11.8

mean = 7.6
median = 0.9

q1 = 0.5
q3 = 10.4

mean = 8.2
median = 0.1

q1 = 0.1
q3 = 0.9

mean = 6.2
median = 0.2

q1 = 0.1
q3 = 3.8

mean = 4.0
median = 1.6

q1 = 1.0
q3 = 2.5

arma
happy
lucy
bunny
dragon
eiffel
rebel

Initialization PyTorch 3D Plane ICP Point ICP Plane 40k ICP Point 40k ICP Fuzzy Metaballs

10 1

100

101

102

Po
se

 E
rro

r arma
happy
lucy
bunny
dragon
eiffel
rebel

Figure 2.12: Noise Free Pose Estimation Linear scale plot above and log-scale
below. Dashed lines are averages for the method, while the black diamonds show
the average for that method and model. Statistics for each method are listed. gear
model is excluded from statistics.

30

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

Initialization PyTorch3D Plane ICP Pt ICP Plane 40k ICP Pt 40k ICP Fuzzy Metaballs
0

5

10

15

20

25

Po
se

 E
rro

r

mean = 20.2
median = 19.8

q1 = 10.9
q3 = 28.9

mean = 17.0
median = 15.4

q1 = 8.4
q3 = 25.1

mean = 8.2
median = 3.9

q1 = 2.6
q3 = 7.0

mean = 8.0
median = 4.2

q1 = 3.0
q3 = 8.0

mean = 7.6
median = 3.8

q1 = 2.7
q3 = 6.4

mean = 7.0
median = 3.7

q1 = 2.7
q3 = 6.1

mean = 4.0
median = 1.6

q1 = 1.0
q3 = 2.7

arma
happy
lucy
bunny
dragon
eiffel
rebel

Initialization PyTorch3D Plane ICP Pt ICP Plane 40k ICP Pt 40k ICP Fuzzy Metaballs

10 1

100

101

102

Po
se

 E
rro

r arma
happy
lucy
bunny
dragon
eiffel
rebel

Figure 2.13: Noisy Pose Estimation Identical visualization to Fig. 2.12. Linear
scale figure is identical to that shown earlier.

31

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

0 100 200 300
Iterations

1000

2000

3000

4000

5000

6000

7000

Lo
ss

original
longer waiting
10x higher LR
10x more blur
tuned

Figure 2.14: PyTorch3D baseline convergence curves using different hyperpa-
rameters for pose estimation. All curves produce roughly equivalent pose errors,
significantly worse than FM or ICP.

2.14 SoftRasterizer performance

One might wonder about why our baseline of PyTorch3D, implementing SoftRas [Liu+19],

performs so poorly in the pose estimation experiments. Prior work on differentiable

rendering [Liu+19; LZ21; Yif+19] demonstrates their pose optimization experiments

with mostly single, visual examples. These often use color images, and provide no

baselines results from standard methods. Quantitative results in SoftRas [Liu+19]

examined solving for rotation uncertainty in images of a colored cube and their

resulting rotation errors averaged over 60 degrees. It is perhaps not surprising that

our pose estimation experiments, featuring a family of models, simultaneous rotation

and translation, while optimizing only depth and silhouettes, might challenging these

methods.

We used the hyperparameters from the current PyTorch 3D [Rav+20] Camera

32

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

position optimization sample. We tuned learning rates to behave well with our depth

+ silhouette loss function, and followed an automatic learning rate schedule [Kin18].

As can be seen in Fig. 2.15, the pose optimization performs reasonably well in reducing

image errors. However, the optimized pose still demonstrates visual errors compared

to the ground truth pose. Even worse, the optimization perturbs the pose in such

a way that the pose error at the end of optimization (16 degrees and 15%) is worse

than the pose errors at the perturbed initialization (12 degrees and 8%), despite the

significant reduction in loss.

To check if the hyper-parameters from the PyTorch3D sample was a poor fit, we

searched for settings which produced good pose estimation for a single frame. We

used CMA-ES [Han16; HAB19], a fairly common black box method [LH16]. This

type of task-specific hyper-parameter optimization was never performed for our

Fuzzy Metaballs experiments. We only performed these experiments on an existing

baseline to examine how good it might perform in the best case. Convergence curves

can be seen in Fig. 2.14.

All our manual tweaking of PyTorch3D hyper-parameters produced comparable

configurations (17-18 degrees of rotation, 15-16 percent translation). The automated

optimization found a setting which produced 16 degrees of rotation error and 9

percent of translation error, still worse than the perturbed initialization. However,

these settings used a very high learning rate that proved unstable with other frames.

Lowering to learning rate resulted in settings with a negligible improvement (2%) to

our initial settings. These tests suggest our initial hyper-parameter choices were a

reasonably good setting for the baseline method.

Further parameter search with a constraint on learning rate failed to find parame-

ters significantly improved from the defaults. Optimization was over 8 parameters:

σ, γ, blurring radius for both depth and silhouette, faces per pixel, learning rate, and

multipliers for depth and silhouette loss.

The results of the PyTorch3D pose optimization, when fed into the Fuzzy Metaballs

renderer suggest these implementations are coherent– the FM optimization run on

the same original pose perturbation and model produces a 0.5 degree error and 1.5%

pose translation error, while even noisy point-to-point ICP gets a 2.6 degree and 4.3%

translation error.

Both the Fuzzy Metaballs and PyTorch3D optimization use an axis-angle, 3

33

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

si
lh

ou
et

te

initial 14.4% final 5.3% true 4.3%

de
pt

h

initial 42.2% final 18.6% true 12.3%

Figure 2.15: PyTorch3D baseline Visualization of errors seen with pose optimization.
Initial is an example pose perturbation of the arma model. Final is the result after
pose optimization, and true is the result of the ground truth pose. Silhouette error
is in percent of pixels that are wrong, while depth error is in average relative depth
error. Optimization leads to a reasonable decrease in both.

parameter rotation estimation. These is some evidence suggesting PyTorch Autograd

for SO(3) might be unstable at times in its native form [TD21b]. Lastly, we suspect

that the same scale invariance issues we address in Section 2.7.1 may exist for the

PyTorch3D baselines. SFS experiments were performed on objects of roughly unit

scale to mitigate this potential issue.

2.14.1 Pulsar performance

Our attempts to test a recent differentiable renderer, Pulsar, found it performed

very poorly. Not only are there software bugs with the latest PyTorch3D at the

time of writing (0.6.1) where the code clobbers camera data-structures and requires

re-creating them with every call to the render function, but the pose estimation

results were very poor.

We used the same settings as the Point Cloud Differentiable Renderer baseline we

tested, which provided fair results and produced visually similar outputs. Compared

to our base learning rate, reducing it by a factor of two led to flat loss. Increasing it

34

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

by a factor of two led to divergence and NaNs.

2.15 Exporting Fuzzy Metaballs

We experiment with exporting fuzzy metaballs as a mesh by running marching

cubes [LC87]. To find an ideal isosurface level, we run optimization to ensure that

the centroids of the voxels match the silhouettes over a sample set of views. This

leads to results like those in Fig. 2.16.

Figure 2.16: Mesh extracted from a 40 mixture fuzzy metaball using marching cubes

2.16 Fuzzy Metaballs as Surface or Volume

GMMs

To understand what classical formulation best matches Fuzzy Metaballs, we try

optimizing models with different initializations. We start with both sphere and EM-fit

GMM initializations, with surface and volume versions of both. Quantitative results

averaged across all 10 models are shown in Fig. 2.19. Qualitative results for the Yoga

model are shown in Fig. 2.23.

At low mixture numbers, Fuzzy Metaballs perform more like a volume GMM,

while at high mixture numbers, surface GMMs work better. Often using a GMM

as a FM model will produce reasonable results. We use constant hyperparameters

from our 40 mixture tuning, and perhaps the out-of-the-box vGMM rendering could

35

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

(a) 40 component Fuzzy
Metaballs (400 params)

(b) 170 face, 85 vertex Mesh
(810 params)

(c) 430 Points recon-
structed [KBH06] (1290
params)

Figure 2.17: Equivalent representations visualized, per the experiments in the chapter.

improve by adding proper scaling with component number. Finally, all initializations

respond very well to optimization, and optimized sphere-initialized models always

outperform the models fit with solely with EM.

The Fuzzy Metaballs improve with more components across our entire range of

testing. This suggests the asymptotic behavior seen in the Comparing Represen-

tations section is due to experimental factors of those experiments, and not the

representation itself. This is somewhat expected as those experiments use the mesh

representation as ground truth and all other formats are sampled.

Lastly, we can see that the fitting process produces no over-fitting as novel and

training frames have identical behavior in Fig. 2.22.

36

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

(a) Visualizing normal maps while sweeping β1 and β2 demonstrates smoothing.

(b) Sweeping β4 and β5 controls the sharpness and extent of the alpha masks.

Figure 2.18: Hyperparameter visualization

37

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

50 100 150
Number of components

10
1

10
0

10
1

m
as

k
+

de
pt

h
er

ro
r Before optimization

50 100 150
Number of components

10
1

10
0

10
1 After optimization

50 100 150
Number of components

10
0

3 × 10
1

4 × 10
1

6 × 10
1

After optimization

Surface Sphere Volume Sphere Surface GMM Volume GMM

Figure 2.19: Optimizing Fuzzy Metaballs from different initializations.

Probability blend Intersection blend Reference

Figure 2.20: Rendering Fuzzy Metaball color images of a snakeboard [KCD09] with
two forms of blending: one behaves more like a volume where the wheels of the
object can be seen, while the other behaves more like a surface with proper occlusion.
Shown is a 40 component vGMM with a single color per component. Cartoon-like
appearance is from exclusively using ambient lighting.

Original =5% noise Masked Pixels Noisy Image

Figure 2.21: Synthetic noise generation. Gaussian noise is combined with per-
turbed silhouettes (red pixels are added, blue are removed).

38

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

0 50 100 150

er
ro

r

arma
6540 996

0 50 100 150

happy
5613 386

0 50 100 150

lucy
6073 853

0 50 100 150

bunny
3516 498

0 50 100 150
epoch

er
ro

r

gear
5437 553

0 20 40 60
epoch

dragon
5245 625

0 50 100 150
epoch

eiffel
7331 480

0 50 100 150
epoch

rebel
7785 915

training view novel view

Figure 2.22: Optimizing Fuzzy Metaballs from a sphere to a shape. Losses are given
for training frames and novel viewpoints, showing no significant difference.

39

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

(a) Sphere Initialization

(b) GMM Initializations

Figure 2.23: Visual examples of Fuzzy Metaballs at different component numbers,
for different initializations, before and after optimization. All images are 60 by 80
pixels and show depth with color coding. Here, unlike the rest of the chapter, colors
are scaled for maximum contrast, not consistency between images. GT is the ground
truth depth map from the mesh rendered by Blender.

40

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

Ground Truth Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

Ground Truth Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

Ground Truth Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

Ground Truth Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

Ground Truth Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

Ground Truth Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

Ground Truth Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

Ground Truth Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

Ground Truth Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

Ground Truth Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

Figure 2.24: Shape from Silhouette Results. The mesh-based representation
cannot change genus from a deformed sphere into the eiffel tower. The point cloud
method leaves spurious points. The classic Voxel Carving method is not that precise
with 3843 volume but only 32 views of low resolution 64 x 64 images.

41

2. Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering

Ground Truth
Included
Removed

Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

Ground Truth
Included
Removed

Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

Ground Truth
Included
Removed

Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

Ground Truth
Included
Removed

Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

Ground Truth
Included
Removed

Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

Ground Truth
Included
Removed

Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

Ground Truth
Included
Removed

Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

Ground Truth
Included
Removed

Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

Ground Truth
Included
Removed

Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

Ground Truth
Included
Removed

Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

Figure 2.25: Shape from Silhouette Noisy Results where 16 of the 32 input
views had one eight of the silhouette under-segmented.
42

Chapter 3

Flexible Uses of 3D Gaussians

In this chapter, we simplify and extend the techniques of Chapter 2, and our presen-

tation is largely similar to a conference manuscript of this material [KH23b].

Here, we produce useful extensions for 3D Gaussians used in shape reconstruction

(removing unneeded parameters, introducing optical flow loss, and comparing sorted

and sort-free rendering approaches). Additionally, we show how to export colored

meshes and robustly re-parameterize Gaussians to add detail and remove low impact

Gaussians.

While our earlier chapter introduced 3D Gaussians for differentiable rendering to

the literature, we also discuss connections with follow-up work that occurred since

our initial publication. A year after our publication, 3D Gaussian Splatting [Ker+23]

built a faster rasterizer for 3D Gaussians, enabling larger scale experiments and

showing NeRF [Mil+20a] levels of fidelity. We show that FM and 3DGS are capable

of rendering the same underlying 3D Gaussians and hence are largely the same

representation, despite some differences in rendering approach.

3.1 Introduction

As computer vision systems are more widely deployed in society, either on robots or

via mixed reality headsets, users will desire that reconstructions of their many regular

everyday objects. While classic techniques from multiview scene reconstruction

could be used [Sch+16], modern approaches strive for more photorealistic scene

43

3. Flexible Uses of 3D Gaussians

generation, such as those created by Neural Radiance Fields (NeRF) [Mil+20a]

and the large array of follow-up work [Tan+23]. Of note, these NeRF approaches

could be seen as differentiable renderers [Liu+19; Yif+19], where an underlying

scene representation is optimized for view synthesis. However, NeRF methods are

demanding in their computational requirements, even with speed-up methods such as

Instant-NGP [Mül+22].

Two recent papers explored similar approaches to fast NeRF alternatives – Fuzzy

Metaballs [KH22] (Chapter 2) in 2022 and 3D Gaussian Splatting in 2023 [Ker+23].

Both approaches represent geometry using a set of classic primitives, specifically

3D Gaussians [Hec86; Pea94]. The former built a differentiable raytracer for 3D

Gaussians, connected it to the metaball literature [Bli82], developed a sort-free

rendering function, focused on fast CPU runtimes, used dozens of Gaussians, and

performed quantitative experiments for object reconstruction and pose estimation.

A year layer, the latter designed a fast rasterizer with a custom CUDA kernel for

splatting [Man06; NM01], used millions of Gaussians, and focused their system on

reconstructing entire scenes to approach NeRF levels of fidelity. We demonstrate

connections between and extensions to both methods.

This chapter is focused on extending the Fuzzy Metaballs renderer to make it

simpler, more robust, and to add additional features. We show that these recent ap-

proaches are interoperable and render the same underlying representation. Since most

well-established rendering techniques are built on triangle meshes, we demonstrate a

reliable way to transform 3D Gaussian representations into meshes.

We summarize our contributions as follows:

• Develop a simplified version of Fuzzy Metaballs [KH22] for shape reconstruction

from Gaussians (Section 3.3.2).

• Show how Fuzzy Metaballs [KH22] can be rendered without hyperparameters

(Section 3.3.3).

• Show how to get per-pixel, differentiable optical flow and its benefits in recon-

struction (Section 3.5).

• Demonstrate how to export meshes from shapes defined by 3D Gaussians

(Section 3.6).

• Show that existing 3D Gaussian rendering methods [Ker+23; KH22] are inter-

44

3. Flexible Uses of 3D Gaussians

(a) Fuzzy Metaballs [KH22] Chapter 2 raytraced dozens of Gaussians, used random
initialization, and estimated geometry and pose for objects.

(b) 3D Gaussian Splatting [Ker+23] splatted millions of Gaussians, used SfM [Sch+16]
initialization, and synthesized novel views for scenes.

Figure 3.1: Recent approaches in differentiable rendering use 3D Gaussians
as an underlying representation.. These approaches enable fast reconstruction
of 3D objects and scenes. This chapter demonstrates how both approaches use the
same underlying representation and how to enhance and export such reconstructions.

45

3. Flexible Uses of 3D Gaussians

operable (Section 3.7).

• Develop a loss-based approach to reparameterizing Gaussians by splitting

components (Section 3.8).

These techniques enable more powerful, flexible uses of these 3D Gaussian shape

representations for applications involving shape reconstruction. Of note, these ap-

proaches require no pretraining and can be optimized directly on the scene of interest

without dataset bias, making them applicable to robotics applications where robots

may be interacting with novel objects, and are limited by onboard compute.

3.2 Related Work

A comprehensive overview of related work can be found in prior papers using 3D

Gaussians, including Fuzzy Metaballs [KH22], 3D Gaussian Splatting [Ker+23] and

VoGE [Wan+23].

Some early methods of building models from partial observations used general-

ized cylinders [Agi72]. More commonly, methods build on top of triangle meshes,

point clouds and surfels [Pfi+00]. Differentiable renders have been built for these

representations, initially for meshes [KUH17; Liu+19; LB14]. These include cus-

tom backends that allow for fast GPU-based results [Lai+20], and high-quality

results [Nim+19]. Other works focus on point clouds [ID18; Yif+19]. Pulsar [LZ21]

uses spheres as its representation, which are equivalent to isotropic 3D Gaussians.

Primitives-based rendering methods have benefits for both for composition [Zha+23]

and tracking [Lui+23].

The earliest work using 3D Gaussians in rendering came from Blinn [Bli82],

originally called atoms, blobs or metaballs, and were the birth of implicit surfaces.

Several methods these techniques [Gou+10; Hor19; Mur91; SI12; Wes90; WMW86;

WT90]. Some renderers used rays while others used splatting [ALD06], and some

recent differentiable renders build screen space Gaussians [MWK22]. Others use

Gaussians as a primary representation in computer vision [EKK18; Eck+15; Eck+16;

Gen+20; GMT23; Her+20; Mag09] or render them via projection, search, or other

techniques [Hua+20; OTM19; SM20].

Gaussians can be seen as a fundamental building block that only uses the 1st

46

3. Flexible Uses of 3D Gaussians

(µ) and 2nd (Σ) order moments [JUD00]. Point clouds only use µ. Oriented point

clouds add a covariance eigenvector [EKK18], and Gaussian Mixtures [Eck+16] use

all the information. Connections in this space include error metrics [GH97; Mah36]

and physics simulations [Mir96].

There is work on connecting NeRF-style differentiable renderers to mesh rep-

resentations. MobileNeRF [Che+23] used the rasterization pipeline of commodity

hardware to perform rendering of NeRF-like objects. VMesh [Guo+23] constructed a

hybrid representation of volume and mesh. NeRFMeshing [Rak+23] learned a Signed

Surface Approximation Network to distill NeRF representations into meshes.

3.3 Ray-Shape Intersections

Existing methods for intersecting 3D Gaussians and rays typically take two forms.

Methods taking inspiration from NeRF family methods [Ker+23; Wan+23] typically

sort all intersections and use closer Gaussians to attenuate the contributions of

further Gaussians. Fuzzy Metaballs [KH22] introduced a heuristic technique for

blending intersections which did does not require sorting. Section 3.3.1 summarizes

this technique, Section 3.3.2 presents a simplification, and Section 3.3.3 proposes a

variation without hyperparameters. All three correctly render the same shapes, so

objects optimized by one can be reproduced with the other.

3.3.1 Weighted Blending

In Fuzzy Metaballs [KH22], intersections between each ray (v⃗) and each Gaussian are

computed separately and then combined with a weighted average. Each Gaussian is

parameterized as mean (µ ∈ R3), inverse root precision (Σ− 1
2) and a weight (λi ≥ 0)

where the
∑

i λi = 1.

Multivariate Gaussians are defined as

P (x⃗) ∝ |Σ|−
1
2 exp

(
−1

2
(x⃗− µ)TΣ−1(x⃗− µ)

)
, (3.1)

47

3. Flexible Uses of 3D Gaussians

and the unnormalized log distance for each Gaussian is

d(v⃗t) = −1

2

[
(vt− µ)TΣ−1(vt− µ)

]
+ log(λi), (3.2)

which we will refer to as di when referring to evaluating the i-th Gaussian for

a ray v⃗ (here we use the point of maximum likelihood, ti =
µT
i Σ−1

i v

vTΣ−1
i v

, the linear

approach [KH22]).

For each Gaussian, its intersection (ti) and distance (di) are used to obtain weights

(wi). The final intersection is obtained as tf , similar to OIT [End+10; MB13]:

tf =
1∑
i wi

∑
i

witi. (3.3)

Per-ray estimation of other properties can continue to use Equation (3.3). For

example, ti (distance from camera) can be replaced with n⃗i (normal) or c⃗i (color), or

even learned features z⃗i (e.g. DINO [Car+21; Oqu+23] or CLIP [Rad+21; Ilh+21]),

and the same blending functions can be reused. For more details about normal

computation, see Section 3.6. It is also helpful to think of the unnormalized Gaussian

density as:

δi = exp(di), (3.4)

The original Fuzzy Metaballs approach uses 5 hyperparameters (β1, β2, β3, β4, β5) to

compute the weights and the transparency. There is also a shape scale (η) to account

for shapes of different scales and return identical results. The following are the weight

and α (quality/opacity) functions:

wi = exp

(
β1diσ

(
β3

η
ti

)
− β2

η
ti

)
, (3.5)

α = σ

(
β4

∑
i

δi + β5

)
. (3.6)

48

3. Flexible Uses of 3D Gaussians

3.3.2 Two Parameter Model

In shape reconstruction from video, 3 of these hyper-parameters are not necessary and

we develop a simplified two parameter model that works in reconstruction settings.

First, β3 was used to give some minor contribution to intersections behind the

camera. While this does make the renderer more differentiable, it is not used in

practice, so the σ function can be removed, leaving us with

wi = exp

(
β1di −

β2

η
ti

)
. (3.7)

Since the earlier chapter Chapter 2 focused on rendering full, proper Gaussian Mixture

Models (where
∑

i λi = 1), it required a normalizing factor β4 to account for how much

opaque a GMM should be. In the case of reconstruction, there is no need for strict

GMMs, so learning β4 can be the responsibilities of unnormalized λi. Additionally,

the GMM focus suggested a smooth step function (sigmoid) for computing α, but

shape reconstruction can simplify this to a decaying exponential, letting us drop

the intercept term β5. This allows us to have a simple, perhaps familiar [Mil+20a;

VJK21], expression for α:

α = 1− exp

(
−
∑
i

δi

)
. (3.8)

We use this simplified two parameter model in most of our experiments. While

we noticed some small differences due to losing the global normalization condition,

they were minor and mostly in the space of pose estimation, which is not the focus of

our experiments here for shape estimation.

3.3.3 Zero Parameter Model

With the simplified design given above, and the NeRF-style approaches in other 3D

Gaussian papers [Ker+23; Wan+23], we also investigate an alpha compositing variant

of Fuzzy Metaball rendering that requires sorting all intersections and then computing

transmission. The transmissions can be seen as weights and Equation (3.3) can be

used to compute depth estimates (as well as normal and color estimates):

49

3. Flexible Uses of 3D Gaussians

wi = Ti (1− exp(−δi)) (3.9)

where Ti is the accumulated transmissions of earlier intersections

Ti = exp

(
−
∑
j

δj1[tj < ti]

)
(3.10)

These equations create a version of differentiable rendering with metaballs that is

hyperparameter-free, doesn’t require splatting, and enables the same usage of weights

for depth, normal and color computation as prior work [KH22]. As our experiments in

Table 3.2 and Figure 3.7 show, this approach is slower but performs nearly identically.

Figure 3.2: Shape reconstruction using 40 3D Gaussians and converging in under
one minute, with color. (See Section 3.4 for details). All objects are reconstructed
from videos in the CO3D [Rei+21] dataset.

3.4 Shape Reconstruction

The input to the system is a video and a single masked frame. COLMAP [Sch+16]

produces poses, XMem [CS22] propagates masks, Unimatch [Xu+23] produces flow,

and 3D Gaussians optimized to fit the data. The shape converges quickly since we use

a ray-based differentiable renderer and are able to sample minibatches that includes

pixels across all frames.

Our differentiable rendering code is based on Fuzzy Metaballs [KH22], which is

built in JAX [Bra+18] and allows for reconstructions on both the CPU and GPU.

With an Nvidia GTX 1080, we can do memory for image sequences of roughly

50

3. Flexible Uses of 3D Gaussians

250× 130, while our CPU experiments are typically closer to 125× 65. Both sets of

experiments typically converge in less than a minute on commodity hardware. We

use 40 Gaussians as in prior work, for ease of comparison.

Differentiable renders provide flexibility for many loss functions in shape recon-

struction. For our experiments, we combine of cross-entropy loss (LM) for objects

segmentation masks, and L1 losses for color and flow (Section 3.5), weighted by the

object mask. Estimated alpha is clipped to [10−6, 1 − 10−6]. For α, color (c), and

optical flow (f) we use the following loss function:

LM = α · log(α̂) + (1− α) · log(1− α̂) (3.11)

LC = α · ||c− ĉ||1 (3.12)

LF = α · ||f − f̂ ||1 (3.13)

L = LM + λCLC + λFLF (3.14)

In practice, we use colors that have had gamma corrected back to linear intensity,

and use a sigmoid to map from an unconstrained parameterization to [0, 1]. Flow is

measured in the scale of half the shorter image dimension. This lets us set λC = 4.5

and λF = 210 for all of our experiments. We used identical settings for all our

experiments: initialization is from a randomized small sphere of Gaussians, and we

use fixed parameters for learning rate, canonical rescaling, batch size, and all other

known parameters. Learning rates are automatically decayed based on statistical

criteria [KH22].

We use the Adam [KB15] optimizer and rescale all scenes to a canonical size based

on camera pose distances to balance the optimization of means and precisions [KH22]

that occurs when using re-scaling optimizers. We randomly sample minibatches of

50,000 rays from across the entire sequence, which leads to extreme fast convergence,

often getting a reasonable shape in well under an epoch (Figure 3.7). We use the

per-Gaussian simple colors used in prior work [KH22] for simplicity, but extensions

to Spherical Harmonics are possible for greater color fidelity per Gaussian [Fri+22;

Ker+23].

Examples of our reconstructions can be seen Figure 3.2. Even though the op-

timization only takes minutes, operates on reasonably low resolution images, with

reasonably few Gaussians, we can still see good results. Depth estimates are able

51

3. Flexible Uses of 3D Gaussians

to capture small geometric details (notice the kickstand and both mirrors on the

motorcycle). Despite the initialization being a small, invisible sphere of Gaussians, the

optimization procedure is able to reconstruct shapes with rich geometry (such as the

bicycle and the plant). Lastly, the color results look reasonably realistic. Although

separate Gaussians must be used to paint 2D flat textures onto surfaces, reasonable

results are obtained for the toy truck and the skateboard reconstructions. In the toy

truck, grey side and roof panel details appear in the reconstruction. In the skateboard,

the painted curve shape is also approximately modeled in the reconstruction, as are

both wheels.

We obtained similarly good results with both Section 3.3.1 and Section 3.3.3, but

all results in Figure 3.2 use the faster, two parameter model for optimization and the

resulting visuals.

3.5 Reconstructing with Optical Flow

Many approaches to 3D reconstruction focus only on reconstructing the independent

images from the given sequence [Ker+23], including all the 3D Gaussian meth-

ods [Ker+23; KH22; Wan+23]. However, in practice, these image sequences are often

collected by cell phone videos [Rei+21] and have a strong temporal prior. Inspired by

work in reconstructing 4D scenes [Li+21; Yan+21a; Yan+21b], we leverage optical

flow in producing more precise 3D reconstructions of static objects.

Optical flow provides a hypothesis of surface correspondence, which regularizes

the shape reconstruction. Correspondence can be essential in classic techniques for

shape estimation [KRN97; LB81]. Sparse particle video trackers extend this, and

obtain long-term video correspondences [HFF22].

Optical flow is a useful signal since it is a local estimator, and is robust to

the long-term lighting changes that occur when typical users capture scenes under

auto-exposure [Jun+22]. This makes it perhaps a more appropriate loss term than

color models, which would be sensitive to lighting changes. Additionally, color often

means texture, which implies high frequency texture details that can be difficult to

reconstruct [Mil+20a], and perhaps efficient shape estimation can do without.

The benefits of flow can be from our experiments, qualitatively in Figure 3.4

and quantitatively in Table 3.1. One interesting result is that even classic optical

52

3. Flexible Uses of 3D Gaussians

flow [Far03] provides helpful cues to the shape optimization, even though it is

very noisy (see Figure 3.4a). Even better, state-of-the-art flow methods such as

Unimatch [Xu+23] are extremely fast (real-time on GPU hardware) and have learned

good priors even in texture-less areas. Using such learned flow maps (Figure 3.4b) can

help shape estimation greatly. After optimization, predicted model flow (Figure 3.4d)

is very similar to the given flow estimate from the network that was used to supervise

it. Incorporating flow also produces significantly smoother depth maps, as can be

seen in Fig. 3.3.

(a) Without Flow (b) With Flow

Figure 3.3: Optical flow improves reconstruction. We show the results of fitting
a set of 3D Gaussians to a CO3D [Rei+21] sequence. Without a flow loss term, colors
are estimated well but the shape is not. After adding flow, color fidelity is sacrificed
but shape estimation improves.

In our experiments, optical flow slightly hurts the color fidelity of the reconstructed

models, but provides much more accurate shape reconstruction, as can be seen

in Figure 3.3. After adding a flow loss term, this surrogate estimate of surface

correspondence helps resolve concavity/convexity ambiguity from the silhouette and

color loss terms. For example, the body of the teddy bear becomes smooth and its

arms become well defined.

With the ray-based differentiable rendering of 3D Gaussians, it is reasonably easy

to compute per-pixel optical flow. It only requires taking the 3D coordinate obtained

from Equation (3.3), and transforming it with adjacent camera poses and projecting

back into camera coordinates.

In our implementation, we pass all camera poses into the rendering function

and represent the camera with a single inverse focal length parameter (making the

53

3. Flexible Uses of 3D Gaussians

assumptions that the images lack distortion, the projection is in the center of the

image, and that the pixels are square). After computing the depth image for a

given frame, we transform the point cloud (forwards and backwards) and project the

transformed coordinates into the image. The changes in coordinates is the direct,

per-ray optical flow estimate. Without using another source to regularize the optical

flow, we get reasonable estimates but with some artifacts due to shape uncertainty

(as can be see in Figure 3.4c).

We include estimates for both forward flow (pose i to pose i+ 1) and backward

flow (pose i to pose i− 1) from our differentiable renderer, for each ray.

(a) Gunnar [Far03] (b) Uni [Xu+23] (c) Without (d) With

Figure 3.4: Optical Flow Quality. (a) shows a classic optical flow estimate. (b)
shows a modern, learned optical flow estimate. (c) and (d) show the estimated flow
for the same frame after fitting 3D Gaussian model; respectively without adding a
flow loss and after adding a flow loss term to fit the estimate from (a). Using standard
optical flow coloring [Bak+07].

Figure 3.5: Colored Mesh Exports reconstructed from CO3D sequences [Rei+21]
with 40 3D Gaussians and exported to Blender (Section 3.6).

54

3. Flexible Uses of 3D Gaussians

Depth
Error

Runtime
(sec-
onds)

No Color or Flow 0.271 17
Color 0.262 15
Color & Classic
Flow [Far03]

0.237 14

Color & Learned
Flow [Xu+23]

0.155 15

Table 3.1: Optical flow helps reconstruction of CO3D sequences [Rei+21]. For
details see Section 3.5.

3.6 Exporting Meshes

Many successful differentiable renderers realize that fast, efficient, robust differentiable

rendering often require smooth, fuzzy and indefinite surface representations [Mil+20a;

KH22; Ker+23]. For optimizing shapes from videos, it is helpful to have some degree

of softness to aid gradient flow.

On the other hand, commercial rasterization pipelines in most desktop and mobile

GPUs typically operate on triangle meshes [Guo+23; Che+23]. Additional, the field

of shape processing often prefers not just definite surfaces in the form of meshes, but

watertight meshes [ZJ16; Hu+22]. Differentiable mesh renderers typically bridge this

divide with an explicit spatial smoothness term [Liu+19; Rav+20].

Instead, 3D Gaussians, neural surfaces, and other similar methods are implicit

surface methods, where the genus of the object can change during optimization. Many

existing works export meshes using marching cubes [LC87; Mil+20a; KH22], where a

volumetric grid is evaluated and triangles are produced at edges crossing a particular

level set threshold. While fast and simple, this can produce non-watertight meshes.

Additionally, it can require searching over an ideal threshold to find which level set

of the implicit surface matches the explicit surface best [KH22].

In this work, we leverage the surface definition used by the underlying differentiable

renderer, and then solve the appropriate Poisson equation [KBH06; KH13]. In Poisson

surface reconstruction, oriented point sets (points with normals indicating the local

55

3. Flexible Uses of 3D Gaussians

tangent plane of the surface) are used as input to solve a Poisson equation:

∇ · ∇χ = ∇ · V⃗ . (3.15)

Solving these equations can be done via well-conditioned sparse linear systems [KBH06].

Each point in the oriented point cloud provides an estimate of the local gradient of

the indicator function (which points are inside the surface of the object). A nice

property of Poisson Surface solvers is that their solutions always produce watertight

meshes, as they solve for an indicator volume, which produces a surface that is a R2

manifold folded in R3. This process can be done over a basis function set of B-splines

with compact support.

To produce an oriented point set, we simply go over all of our training views and

render the point cloud of the object, to produce point locations p = (x, y, z). The

orientation of each point can be produced in two different ways (shown in Section 3.6).

The first, and most general, is to use the rasterization locality by taking a horizontal

(px) and a vertical (py) screen-space neighbor for each point (p) and taking their cross

product:

n⃗ =
(p− px)× (p− py)

||(p− px)× (p− py)||
. (3.16)

This technique works for any differentiable renderer producing images on a grid (hence

rasterization), but produces poor results on discontinuities.

An alternative approach for 3D Gaussians is to re-use Equation (3.3) to blend all

the local estimates of the normal (n⃗i instead of ti) into a final estimate. The local

estimate of the normal is given by the derivative of Equation (3.1).

n⃗i =
Σ−1(vti − µi)

||Σ−1(vti − µi)||
. (3.17)

In general, the sign and scale of the normal is fixed: the sign of the normal should

face the camera created it, and the ||n⃗i||= ||n⃗f ||= 1. Both of these techniques can be

seen in Section 3.6. In practice, the blended definition is preferred as it requires no

neighbors.

For producing meshes from our renderer, we typically perform the faster optimiza-

tion with Section 3.3.1. and the rendering equation from Section 3.3.3 can directly

56

3. Flexible Uses of 3D Gaussians

render that representation with no changes. The alpha compositing definition is

preferred for mesh exporting as it is more view consistent than the heuristic blending.

Lastly, we can reject any intersections that fail a quality threshold of a direct intersec-

tion, maxi(wi) ≤ ϵ which is typically set to 0.9. The Poisson surface reconstruction

produces a surface interpolation, and so the sparsity of point samples is not a problem.

Additionally, we can export a colored, oriented point cloud, where the color is either

the reconstructed color or the color of the images themselves at those points (see

Figure 3.5). We obtained object reconstructions by solving Equation (3.15) with

Dirichlet boundary constraints [KH13].

An intuition for why we can simply export strong hits is that Gaussians fit to

data are typically not overlapping. For example, for a GMM, consider evaluating how

independent each Gaussian is from each other:

r(i) =

∑
j;j ̸=i λjpj(µi)

λipi(µi)

In our experiments, r(i) tends to average less than 5% for Gaussians fit to point

clouds with EM. This suggests that the shapes are largely overlapping.

3.7 Interoperability

We describe how Fuzzy Metaballs [KH22] and 3D Gaussian Splatting [Ker+23] share

a similar underlying shape representation. We demonstrate this by showing results in

Figures 3.6 and 3.9 where the initial shape reconstruction was performed using the

3D Gaussian Splatting paper [Ker+23], and then directly converted and rendered

using the methods in Sections 3.3.1 and 3.3.3 and then exported using the oriented

points using Section 3.6.

Our experiments in Figure 3.7 and Section 3.6 show that Sections 3.3.1 and 3.3.3

use mutually compatible definitions of shape representation. However, the Gaussian

Splatting [Ker+23] work uses an entirely different code base, in a different framework,

optimizing scenes instead of objects, with no object masks, with a custom CUDA

kernel, and preferring α to δ estimates. However, since both are using 3D Gaussians,

we can render one with the other.

We convert the Gaussian Splatting method to be compatible with our approach

57

3. Flexible Uses of 3D Gaussians

(a) Ficus via Weighted Blending (Section 3.3.1)

(b) Ficus via Alpha Compositing (Section 3.3.3)

Figure 3.6: 3D Gaussians are Fuzzy Metaballs Reconstructed ficus from Gaussian
Splatting [Ker+23], rendered with Fuzzy Metaballs [KH22]. Shown are opacity, depth
& normals.

58

3. Flexible Uses of 3D Gaussians

(a) Optimization via Weighted Blending (Section 3.3.1)

(b) Optimization via Alpha Compositing (Section 3.3.3)

Figure 3.7: Both forms of rendering behave similarly. Shown are 1%, 4%, 7%,
12%, 16% and 20% of the first epoch.

Blended Neighbors Reference

Figure 3.8: Visualization of Normals for 3D Gaussians.

59

3. Flexible Uses of 3D Gaussians

Figure 3.9: Visualization of Mesh Export This ficus shape was reconstructed
using the Gaussian Splatting [Ker+23] code but rendered as an oriented point cloud
with Fuzzy Metaballs [KH22] and reconstructed with a Poisson Solver [KBH06; KH13].
Left to right are Poisson tree depths of 6 through 10. While deeper tree depths
produce more detailed reconstruction, noise and artifacts are also amplified. The
mesh export is based on an oriented point cloud exported from 100 images of size
80 × 60. It is interesting to see that precise details like the various steps become
visible, even when the forward passes were low resolution (see Figure 3.6 for a visual
example of the coarseness generated by the renderer).

with only a few steps. Means are used directly, each Σ are converted to Σ− 1
2 , and the

α for each Gaussian is replaced. For simplicity, we ignore αi < 0.5 and set λi = log(80)

for the remaining 3D Gaussians, which we found works reasonably well1. About 90%

of Gaussians had insufficient α, creating a ten times speedup in our experiments. For

weighted blending experiments, we reused the settings of β1 = 21.4 and β2 = 3.14

from our prior experiments.

As can be seen in Figure 3.6, both techniques are able to capture the fine stem

and leaf structures in the reconstructed ficus plant. The weighted blending technique

demonstrates smoother normals, but the mesh export uses the alpha composting

method and reasonable meshes can be obtained.

In Figure 3.9 we show Poisson surface reconstructions of the ficus, where the

oriented point cloud used for solving the equation was generated by our renderer,

but the original reconstruction was made with 3D Gaussian splatting. We show

reconstructions at different tree depths, showing an increase in details, and an

increase in noise, at finer scales. The solver can recover reasonably fine details

1Inverse sigmoid conversion of λ = −C log(1− α) maybe also be reasonable with appropriate C,
which we did not search for.

60

3. Flexible Uses of 3D Gaussians

considering considering the low resolution of the oriented point clouds.

This extends the utility of the 3D Gaussian Splatting approach to be rendered

with our fast methods that have viable JAX [Bra+18] CPU and GPU backends.

Our approach enables per-ray depth computation, normals and mesh exporting

(Section 3.6). The ficus data was provided without color, so we show colored exports

in Figure 3.5. Mesh exports provides an interconnect with most 3D creation tools.

It remains to be seen which approach produces better optimization for shape

reconstruction. The weighted blending FM approach allows two Gaussians to be

blended together and averaged, but 3DGS and the sorting method both require

explicit occlusion of Gaussians based on z-order, perhaps harming the smoothness of

the optimization process.

CPU GPU

Weighted Blending
(Section 3.3.1) 4.94 µs 226.6 ns
Alpha Compositing
(Section 3.3.3) 12.7 µs 377.6 ns

Table 3.2: Runtime per ray, for an entire iteration with a i5-7267U CPU and a
GTX 1080 GPU. This was done with a 40 Gaussian model and these times include
memory transfer times and forwards and backwards passes. Alpha compositing drops
the need for hyper-parameters, in exchange for 200% slower runtimes on CPU and
50% slower runtimes on GPU. Since both approaches behave similarly (Fig. 3.7) and
are interoperable (Section 3.6), this creates a trade-off between performance and
simplicity.

3.8 Splitting Gaussians

While the 3D Gaussian Splatting [Ker+23] explores some heuristic techniques for

merging and splitting of Gaussians, here we develop an alternative, deterministic

approach to modifying the number of Gaussians in the reconstruction.

We split 3D Gaussians after our initial model has converged according to statistical

criteria [KH22]. And we then repeat the optimization process. Two steps of this

are shown in Figure 3.10. The splitting and removal process is based on removing

61

3. Flexible Uses of 3D Gaussians

N = 40 N = 45 N = 51

Figure 3.10: Re-parameterized 3D Gaussians to minimize apparent loss. N is
the number of mixtures used. The appearance of the tie and the sleeve in green can
be seen with added Gaussians.

Gaussians that contribute minimally to the reconstruction and splitting Gaussians

that are given too much reconstruction responsibility based on the chosen loss.

To compute the set of Gaussians that minimally contribute, we compute the

means and standard deviations of the weights assigned to each Gaussian µλ and σλ

and remove Gaussians that satisfy

λi ≤ µλ − zλσλ, (3.18)

where zλ is a z-score typically set to 2.

To compute the splitting criteria, we take a random batch of rays (typically

about 5% of the dataset) and compute the per-ray loss (e.g. Eq. (3.14) but any

reconstruction loss is viable). Each ray also has an associated set of computed weights

wi (Eqs. (3.7) and (3.9)). Over this batch of M rays, we estimate the average loss

associated with each Gaussian as l̄i =
1
M

∑M
j = Lj · wi. We compute the means and

standard deviations of these losses as µl̄ and σl̄ and split Gaussians that satisfy

l̄i ≥ µl̄ + zl̄σl̄, (3.19)

where zl̄ is a z-score typically set to 1.

Gaussians are split by forming two Gaussians by using the properties of the

62

3. Flexible Uses of 3D Gaussians

half-normal distribution [Dan59]. The two new means are generated by shifting the

initial mean (µi) in opposite directions by the direction of the dominant eigenvector

(v⃗1), and by the appropriate factor of the dominant eigenvalue (σ1) of the covariance

matrix (Σi):

µa,b = µ± σ1v⃗1

√
2

π
. (3.20)

Both new Gaussians are given identical covariance matrices, reconstructed from the

initial eigenvalues and eigenvectors but with a scaled dominant eigenvalue:

σ1a,b = σ1

√
1− 2

π
. (3.21)

The scaling factors
√

2
π
≈ 0.8 and

√
1− 2

π
≈ 0.6 are based on the properties of the

half-normal distribution.

We replicate the initial weights (λ) and colors (ci) for the new Gaussians, with

noise (ϵc = ϵw = 0.1) in their unconstrained parameterization space to avoid issues

with coupled gradients during further optimization:

log(λa,b) = log(λ) +N (0, ϵw), (3.22)

σ−1(ca,b) = σ−1(c) +N (0, ϵc). (3.23)

This approach to splitting is deterministic and allows for increasing detail in an

iterative way, as shown in Fig. 3.10.

3.9 Discussion

With the increased deployment of vision systems in everyday environments, there is

a need for flexible, efficient, and easily computed shape reconstructions. The recent

developments in photorealistic differentiable rendering make close the dream of virtual

systems accurately capturing everyday objects in the virtual world. 3D Gaussians,

or metaballs, are a simple and powerful representation for shapes that enables easy

reconstruction, as has been shown by prior work [Ker+23; KH22; Wan+23]. These

techniques extend and interconnect these approaches and provide them additional

flexibility.

63

3. Flexible Uses of 3D Gaussians

The equivalence of weighted blending and alpha composting approaches provides

a wider array of options — one being significantly faster and the other lacking

hyper-parameters. The computation of per-ray blended normals allows for reliable

mesh exporting, connecting to other 3D techniques and methods, without the need

to pick thresholds for marching cubes [LC87], and producing watertight meshes via

Poisson reconstruction [KH13]. We show a more deterministic, grounded approach to

performing reparameterization of Gaussians. Lastly, optical flow as a regularizer and

prior for surface correspondences can easily and reliably improve the quality of shape

reconstructions.

3.10 Conclusion

We have extended existing approaches for differentiable rendering of 3D Gaussians

for speed, simplicity and flexibility. This expanded flexibility should allow these

representations to be used in more places, for more applications, and potentially

across a wider array of computational platforms than before.

64

3. Flexible Uses of 3D Gaussians

Figure 3.11: Reconstruction of Scottish Terrier Statue on the Carnegie Mellon
Campus. Performed by running SAM [Kir+23] on the first frame and propagating with
XMem [CS22], before performing the optimization described in this section. Different
reconstructions with different masks are possible, as is relighting the reconstructed
meshes in Blender. Charlie, my actual Scottish Terrier, is shown for reference. As
is a printed 3D model of 32 Gaussian reconstruction of the object. And a dragon
(crocheted by K. Shih) reconstruction to represent CMU SCS.

65

Chapter 4

Direct Fitting of Gaussian Mixture

Models to Meshes

In this chapter, we present a formulation for fitting Gaussian Mixture Models (GMMs)

directly to a triangular mesh instead of using points sampled from its surface. This is

largely similar to our published manuscript on this topic [KH19].

Part of this work analyzes a general formulation for evaluating likelihood of

geometric objects. This modification enables fitting higher-quality GMMs under a

wider range of initialization conditions. Additionally, models obtained from this fitting

method are shown to produce an improvement in 3D registration for both meshes and

RGB-D frames. This result is general and applicable to arbitrary geometric objects,

including representing uncertainty from sensor measurements.

4.1 Introduction

In robotics and computer vision, there exist many forms of representation for 3D

geometric data. For example, some researchers use unordered point sets [Pau92], others

require points with surface normals [KBH06] or dense volumetric representations

such as signed distance fields [New+11]. The variation in forms of representation is

related to the wide variety of sources and uses for this data, from raw depth sensor

measurements to Computed-Aided Design (CAD) models.

Many researchers have found that Gaussian Mixture Models provide a power-

66

4. Direct Fitting of Gaussian Mixture Models to Meshes

Figure 4.1: Visual example of the Stanford Bunny, highlighting 8 triangles
on the head. Each triangle is shown with its covariance (plotted to 1.5σ). We
demonstrate how Gaussian Mixture Models can use the covariance information from
given geometric structures (in this case, triangles) to fit models more efficiently,
robustly and with higher fidelity.

ful representation, especially for use in registration between unknown poses [JV11;

Eck+15; Eck+16; EKK18; TOM18]. Producing a Gaussian Mixture Model requires

only unstructured point sets from the underlying geometric data, which makes them

widely applicable. Our contribution in this work is to demonstrate how Gaussian

Mixture Model can be constructed, evaluated on and fit directly to geometric prim-

itives, such as the triangles of a polygon mesh. This is done by incorporating the

structural information from each primitive into the algorithm, for a visual example,

see Figure 4.1.

Our contributions include a mathematical framework for how geometric primitives

can be incorporated with probability distributions (Section 4.2.2). We demonstrate

how to obtain the structural properties for a triangular mesh (Section 4.2) and how

it can be generalized to other primitives (Section 4.5.1). Incorporating structural

information allows us to build Gaussian Mixture Models that not only converge faster

and in more conditions (Section 4.4) but also provide a representation that produces

higher quality registration results when the models are used in practice (Section 4.6).

The code for all methods and experiments in this chapter is available at https:

//github.com/leonidk/direct_gmm.

67

https://github.com/leonidk/direct_gmm
https://github.com/leonidk/direct_gmm

4. Direct Fitting of Gaussian Mixture Models to Meshes

4.2 Method

4.2.1 Gaussian Mixture Models

The Gaussian Mixture Model (GMMs) is a well studied probability distribution. It is

possible to fit these models to empirical data via Maximum Likelihood Estimation

(MLE) [Has66; DLR77]. The likelihood of any point x in a Gaussian is given by

N (x;µ,Σ) = 2π−k/2 det(Σ)−
1
2 e−

1
2
(x−µ)TΣ−1(x−µ) (4.1)

where µ ∈ Rk is the mean and Σ ∈ Rk×k is the positive-definite covariance matrix.

The log-likelihood of a given point x is given by

logN (x;µ,Σ) =− k

2
log(2π)

− 1

2
log(det(Σ))

− 1

2
(x− µ)TΣ−1(x− µ)

(4.2)

In a Gaussian Mixture Model with K components, with λi are mixing weights

subject to
∑

i λi = 1 and λi ≥ 0 ∀i, the probability of a point x is given by

g(x) =
K∑
i=1

λi N (x;µi,Σi)

4.2.2 Geometric Objects in a Probability Distribution

First we must handle the general case of how to evaluate the probability of a known

geometric object in a probability distribution. Consider sampling N points from

the geometric object, where a notion of likelihood can be evaluated by taking their

product. To account for the variable number of samples, we take a geometric mean.

And to obtain the likelihood of the object, we take the limit as the number of samples

68

4. Direct Fitting of Gaussian Mixture Models to Meshes

grows to infinity.

ℓ ∼=
N∏
i=1

p(xi)

ℓ ∼=

(
N∏
i=1

p(xi)

) 1
N

ℓ = lim
N→∞

(
N∏
i=1

p(xi)

) 1
N

ℓ = lim
N→∞

exp

log

(N∏
i=1

p(xi)

) 1
N


ℓ = lim

N→∞
exp

(
1

N

N∑
i=1

log(p(xi))

)

ℓ = exp

(∫
log(p(x))dx

)

(4.3)

Equation 4.3 is a form of product integral [Fey51; Gue83; BKÖ08], which can be

used to evaluate the likelihood of a known geometric object. The extension to multiple

objects is straightforward, simply adjust their sampling weights accordingly. This

form of product integral has two nice properties, it is invariant to resampling and it

produces a result of 0 if p(x) = 0 anywhere along the geometric object. By invariance

to resampling, we mean that one large primitive with sophisticated integration bounds

gives the same answer as many small disjoint pieces of surface with their own bounds.

Following the use of Jensen’s inequality, we get the following lower bound on

likelihood

L = exp

(
M∑
j=1

∫
△
log

(
K∑
i=1

λi N (x;µi,Σi)

)
dx

)

log(L) =
M∑
j=1

∫
△
log

(
K∑
i=1

λi N (x;µi,Σi)

)
dx

≥
M∑
j=1

K∑
i=1

∫
△
log (λi N (x;µi,Σi)) dx

(4.4)

69

4. Direct Fitting of Gaussian Mixture Models to Meshes

We also consider a simplified model, where each triangle is sampled at its center of

mass (µj), and has weight corresponding to its area (αj). As combining probabilities is

done with multiplication, we use a weighted geometric mean over all points, obtaining

the following approximation

L ≈ LS =
M∏
j=1

(
K∑
i=1

λi N (µj;µi,Σi)

) αj∑
k αk

(4.5)

4.3 Modifying EM maximization to account for

triangles

In this section we derive the expressions for fitting a GMM to a triangular mesh. We

will represent each GMM component with parameters µi,Σi, λi and each triangle with

vertices Aj, Bj, Cj, centroid µj and area αj. Traditional EM minimization is possible

by analyzing the lower bound of the log-likelihood. Following standard formulations

(see [DLR77; Jor09; Sri14]), we add mixture sampling probabilities ηij and move the

logarithm inside the summation to obtain a valid lower-bound to minimize by using

Jensen’s inequality.

To perform fitting, we need an M-step which obtains λi, µi,Σi by maximizing the

lower bound

LB =
M∑
j=1

K∑
i=1

ηij log(λiN (xjk;µi,Σi)) (4.6)

To maximize this expression, we can take derivatives with respect to the variables of

interest and obtain

∂LB

∂µi

=
1

2

M∑
j=1

Σ−1
i (xj − ui)ηij

∂LB

∂Σ−1
i

=
1

2

M∑
j=1

ηij
(
Σi − (xj − µi)(xj − µi)

T
) (4.7)

Now we can integrate these three expressions over the two dimensional surface of a

triangle via a change of variables substitution, then set the result equal to zero and

70

4. Direct Fitting of Gaussian Mixture Models to Meshes

solve, thus obtaining the update equations. For clarity we will also define a weight

variable wij and its corresponding normalization constant Wi

wij = ηijαj

Wi =
M∑
j=1

wij

The resulting lower-bound likelihood can be written as

log(L) ≥ 1

2

M∑
j=1

K∑
i=1

wij

[2 log(λi)− k log(2π)− log(det(Σi))

− (µj − µi)
TΣ−1

i (µj − µi)

− 1

12
(AT

j Σ
−1
i Aj +BT

j Σ
−1
i Bj + CT

j Σ
−1
i Cj

−3µT
j Σ

−1
i µj)

]
(4.8)

The new mean is obtained as simply weighted mean of centroids. This update equation

is identical to the one derived for the approximation in equation 4.5

(4.9)µi =
1

Wi

M∑
j=1

wijµj

The same technique will provide an answer to the update equation for covariance.

Σi

=
1

Wi

M∑
j=1

wij

(µj − µi)(µj − µi)
T︸ ︷︷ ︸

cov(µj ,µi)

+
1

12
(AjA

T
j +BjB

T
j + CjC

T
j − 3µjµ

T
j)︸ ︷︷ ︸

cov(△j)


(4.10)

The final update is surprisingly simple, it is the area weighted average of the covariance

obtained by using centroids as point measurements plus the covariance equation for

a triangle. That is, at every iteration, each mixture is updated with some fraction

of the structure of the triangles associated with it. A visual example of ellipsoids

71

4. Direct Fitting of Gaussian Mixture Models to Meshes

showing triangle covariance structures is shown in Fig. 4.1. Our derived expression

for the covariance of a triangle is expressed in terms of vertices, but is consistent with

the standard formulation in CGAL [GAP08].1 The update equation for eq. 4.5 is

similar, simply lacking the cov(△j) term.

4.3.1 Evaluating the derived loss function

To evaluate the validity of the expression in equation 4.8, we compare its fitting

fidelity numerically against a large number of sampled points. The results are shown

in figure 4.2. We can see that, the lower bound expression for triangles is equal to

that obtained numerically from a large number of points. Since the lower-bound

expression is all that’s needed in EM optimization [DLR77], the equality of this

expression suggests we can use it in fitting real data.

4.4 Results

We performed experiments fitting Gaussian Mixture Models to triangular meshes.

We swept a wide range of K mixture components (from 6 to 400) and evaluated two

different initialization schemes. The first initialization performs k-means++ [AV07]

clustering, and uses those clusters as initial assignments for the EM method. The

second method uses simple random assignments for initialization. We run 25 iterations

of EM for all methods, with a tight tolerance (ϵ = 10−12) to prevent an early exit

from the optimization.

To evaluate the converged model, we use a densely sampled point cloud of the

initial mesh (Figure 4.5e) and report its likelihood according to equation 4.1. Since

all of our experiments tend to operate on 1,000 points or triangles, the use of 50,000

points for evaluating the model should provide a good test of GMM model fidelity.

In all of these cases, we focus on the Stanford Bunny. Visual examples of our input

and output data is shown in Figure 4.5.

1The reference document has a typographic error in the moment matrix for triangles, which
should be a 5x multiple of the one for 3D tetrahedrons. The CGAL source code correctly implements
this matrix in practice.

72

4. Direct Fitting of Gaussian Mixture Models to Meshes

4.4.1 Mesh Input Data

The first set of experiments, shown in Figure 4.3, compares fitting GMM models to

different input formats of the res4 Stanford Bunny. We compare our exact (eq. 4.8)

and approximate (eq. 4.5) mesh loss equations against fitting a traditional point-loss

to the triangle centroids and the mesh vertices. The best results came from our

exact mesh expression, with the second best being its approximation. The proposed

methods handled random initialization and k-means initialization. On the other hand,

the point-based methods often had a preferred initialization. A qualitative look at

the resulting models, shows that the mesh GMM (Fig. 4.5h) produces a fuller model

of the Stanford Bunny than the center-of-mass GMM (Fig. 4.5d), even when the

evaluated likelihood was numerically very similar.

4.4.2 Mesh Decimation

While the above experiments used the low-resolution res4 Stanford Bunny, we also

evaluated which GMM fitting strategy works best when subsampling high-resolution

mesh data. In our case, we try two methods point-sampling (Poisson and Random)

and two methods of triangle collapse (Quadric and Clustering). Our experimental

procedure involves fitting a GMM to a low-resolution mesh (1,000 faces) or point

cloud (1,000 points) and evaluating the likelihood of the resulting GMM against a

dense point sampling of the original shape (50,000 points). The different sampling

strategies can be seen visually in Figure 4.5.

To generate a low-resolution mesh, we try two methods, clustering decima-

tion [RB93], which is fast, and quadric error decimation [GH97], which is more

accurate. To generate a low-resolution point cloud, we both randomly sample points

on the surface on the mesh, and use Poisson Disc sampling to ensure uniform sam-

ples [CCS12]. As before, the first is faster while the latter produces better results.

Poisson Disc sampling is also used to generate the high-resolution, ”ground truth”,

point cloud used for evaluation.

The results of these experiments are reported in Figure 4.4. As before, the mesh-

based registration strategies are largely invariant to initialization method while the

point-based strategies often prefer k-means initialization (exceptions discussed in

Sec. 4.4.3). The best results often came from the use of Poisson Disc Sampling (with

73

4. Direct Fitting of Gaussian Mixture Models to Meshes

k-means), which ensures uniform coverage of the surface areas. In contrast, using

random samples generated the lowest quality results. The mesh-based techniques

proved to be reliable across all tests, regardless of mixture number and initialization.

4.4.3 Discussion

All of these experiments were run using the GaussianMixture code base from

scikit-learn v0.20.0 [Ped+11]. We modified the code to support additional

weight and covariance terms (Sec. 4.5.1), which were general enough to allow us to

implement all proposed methods.

One surprising result in Figures 4.3 and 4.4 was that random sampled points

performed better with random initialization than k-means initialization (at high

mixture numbers). As the EM algorithm only finds a local minima, this suggests that

k-means may not always be an ideal initialization technique. We believe that this

occurred due to either a bad local minima from initialization, or fairly flat cost during

optimization, leading to an early exit condition being triggered (despite our tight

tolerance of ϵ = 10−12). This behavior was never observed when using our proposed

exact mesh formulation.

We used 25 iterations for all of these experiments. When 100 iterations were used,

the point-based methods performed better (nearly as good as our proposed method).

However, our method often converged in about 1
3
the number of iterations, so we

picked a lower iteration number for consistency in runtime.

4.5 Extensions

4.5.1 Generalization to other primitives

While equations 4.8,4.9,4.10 were derived specifically for triangles, the update equa-

tions can be written more generally for any primitive (triangles, Gaussian mixtures,

cuboids, etc.) using µp,Σp, αp to denote primitive’s mean, covariance and size (
∫
S
dS)

respectively. Then the loss, mean update, and covariance update equations for a

Gaussian Mixture can be written with equations 4.11,4.12,4.13. The previous equa-

tions can be seen as a special case of these formulas, which provide an M-step update

74

4. Direct Fitting of Gaussian Mixture Models to Meshes

for any set of geometric primitives p ∈ P in fitting a Gaussian Mixture Model.

log(L) ≥ 1

2

P∑
p=1

K∑
i=1

wip [2 log(λi)− k log(2π) (4.11)

− log(det(Σi))− (µp − µi)
TΣ−1

i (µp − µi)− Σp

]

µi =
1

Wi

P∑
p

wipµp (4.12)

Σi =
1

Wi

P∑
p

wip

[
(µp − µi)(µp − µi)

T + Σp

]
(4.13)

We note that these are the exact same update equations used in fitting hierarchical

Gaussian Mixture Models [VL99]. However, while previous work applied these

equations to fitting GMMs to existing GMMs, we show how this update can be

used for fitting geometric data. This general form allows for easy substitution of

known structural information (in the form of a second moment) about any geometric

primitive. Computing covariance structures for arbitrary polyhedra is well studied

area of research [Mir96; GAP08].

4.5.2 Number of Mixtures

In our later experiments, we fix the number of mixture models. Unless otherwise

stated, we use K = 100. A visual example of this mixture can be see in Figures 4.5d

and 4.5h. We picked K = 100 as this matches the experimental conditions recom-

mended for using GMMs for SLAM [TOM18]. In practice, there are many ways to

select this number, including flatness of the distribution’s KL-divergence [SM16;

DSM18], flatness of the mixture themselves [EKK18], or by evaluating an information

criterion [PM00]. We believe that when this technique is used in practice, this number

can either be found through cross-validation [TOM18] on a registration dataset or by

using external system information such as depth sensor noise models [Kes+17].

75

4. Direct Fitting of Gaussian Mixture Models to Meshes

4.6 Applications

The experiments in section 4.4 showed that fitting Gaussian Mixture Models using

structural information tends to produce higher quality probability distributions.

Some recent work has focused solely on the efficient nature of GMMs in representing

shapes [Eck+16]. Here we show that our improvements in model quality produce an

appreciable performance improvement in actual 3D computer vision applications.

Gaussian Mixture Models have found wide use in the 3D registration literature.

From the Normal Distance Transform [Mag+09; Sto+12], to variants of the L2

loss [JV11; SML12] and even Coherent Point Drift [MS10], many 3D registration

methods utilize Gaussian Mixture Models. Their benefits include robustness to noise,

smooth variation over 3D space, speed of evaluation, and straightforward control over

model complexity. These models can provide results that are state-of-the-art in both

runtime and registration accuracy [EKK18]. We show that applying our proposed

mesh GMM fitting can produce an improvement in these results.

4.6.1 Mesh Registration

We replicate the experimental setup of a recent paper [EKK18], demonstrating

how Gaussian Mixture Models can be used for efficient 3D registration. As our

experimental setup matches [EKK18], the 20 different dozen registration methods

compared in Figure 3 of that work can be directly compared against the results here.

Their experiment operates on taking a large number of random deformations of the

Stanford Bunny and evaluating the final quality of fitting result. Our results can be

seen in Figure 4.6.

To perform 3D registration, we first build a GMM for the res4 Stanford Bunny,

as in Section 4.4.1, using 100 iterations of EM with a tolerance of 10−5. We then

sample vertex number of 3D points from the surface of the mesh (N = 453). While

previous work has focused on a Point-to-Distribution (P2D) technique with a poly-

nomial approximation of the likelihood function [Mag09], we do straightforward

P2D in our experiments. Our registration process consists of finding the rigid body

transformation that maximizes equation 4.1. We use the identity transformation for

initialization and then perform gradient-based optimization to find the local minima.

76

4. Direct Fitting of Gaussian Mixture Models to Meshes

We compute gradients using numerical differences. For the optimizer, we tried both

Conjugate Gradients [PR69; She94] and BFGS [NW06] as optimization strategies,

which produced similar results and we report the BFGS results as it ran faster.

To parameterize our rigid-body transformation, we perform the optimization on

R7, with a translation t ∈ R3 and a quaternion q ∈ R4. Quaternions are well studied

in the context of optimization for rigid-body transformation [SN01; HK09]. As we

use numerical differences in our optimizer, we did not utilize methods the closed-form

gradients for quaternions [XXM16]. While many authors prefer the exponential

map for optimizing rigid-body transformations [TOM18], our experiments using the

rotation vector v = θv̂ ∈ R3 (with rotation angle θ around the unit vector v̂) produced

nearly identical results in our final registration result.

We performed these experiments on our mesh and point-derived Gaussian Mixture

Models, as well as two baselines. We implemented our own point-to-point Iterative

Closest Point (ICP) method [Pau92] and used an exiting implementation of Coherent

Point Drift (CPD) [MS10] from pyCPD [Kha19]. We adjusted pyCPD to run for 150

iterations to approximately match the run-time of our P2D GMM registration. ICP

we ran for up to 50,000 iterations, or until the improvement in mean matching error

was below 10−9. For consistency, all methods used in this chapter were implemented

in the Python programming language and only used the CPU.

4.6.2 Analysis of Mesh Registration

The results in Figure 4.6 demonstrate that our mesh-derived Gaussian Mixture Model

provides improved registration results when using P2D compared to the existing

baselines, ICP and CPD. Not only does our method produce better registration on

average, but it also demonstrates a better distribution of errors. Specifically, the small

difference between the median and mean errors shows that our method is less prone

to outliers. On the other hand, the point-based GMM P2D registration results had

outliers that dragged the mean towards the worst quartile of results. The randomly

initialized point-based GMM had a mean that was about three times that of its

median result, suggesting that some experiments produced results in the incorrect

local minima.

77

4. Direct Fitting of Gaussian Mixture Models to Meshes

4.6.3 Other 3D Models

We report results on additional 3D models in Table 4.1. For consistency, we decimated

each model to 1000 faces using [GH97] and then repeated our previous experiments

exactly (except that the registration results are now the average of 25 runs). The

likelihood column reports the per-sample average log-likelihood of ground truth,

where larger numbers are better. The translation and rotation errors are reported as

a percentage of the error obtained by ICP registration. In all our experiments, the

mesh-based GMM always outperformed the point-based one, often significantly.

Model Likelihood
(larger is
better)

Translation
Error
(% of
ICP)

Rotation
Error
(% of
ICP)

points mesh points mesh points mesh

Armadillo -14.6 -12.2 127 37 161 33

Bunny 7.6 8.2 50 28 41 17

Dragon 6.9 7.6 68 25 40 19

Happy 7.3 8.2 101 27 85 27

Lucy -21.5 -18.3 95 23 122 35

Table 4.1: Results of repeating the experiments in Figures 4.3 and 4.6 on mulitple
models from [Lev+05]. All experiments used k-means initialization and K = 100.
Details in Sec. 4.6.3.

4.6.4 Visual Odometry

Our proposed method can be also used for improved models of partial view observa-

tions, such as those seen in simultaneous localization and mapping (SLAM). In this

case, the geometric primitives used represent not the exact surface, as with our mesh

experiment above, but instead an uncertainty region for each 3D measurement.

We performed experiments using a GMM distribution-to-distribution (D2D) reg-

istration method for visual odometry [TOM18], reproducing an experiment on an RGB-

D dataset sequence from the TUM dataset (freiburg3 long office household) [Stu+12].

78

4. Direct Fitting of Gaussian Mixture Models to Meshes

We are able to incorporate structural information into the fitting of the Gaussian

Mixture Models by adding depth uncertainty information around each 3D point and

applying equation 4.13 during GMM fitting. The results are shown in Figure 4.7.

For our registration experiments, we first subsampled the depth images to 160×120
resolution before performing frame-to-frame registration over the 2510 frame sequence.

The ICP method used our aforementioned point-to-point ICP method over 2,500

points randomly sampled from each point cloud (selected to roughly match the

run-time performance of our method). The GMM method fit a K = 100 GMM to

the point cloud using our uncertainty model, and performed registration using a D2D

metric [TOM18]. We used the determinant-free method as it was much faster in our

re-implementation. Additionally, our implementation used numerical gradients and

BFGS [NW06] as the optimizer.

In this case, our primitive model was simple one, a rectangle representing the

size of each 3D measurement in the X and Y axes of the camera. This generated a

trajectory with absolute translational error RMSE of 0.878m, a small improvement

(2.4%) over the 0.899m APE produced from building GMMs without uncertainty

primitives. Additionally, we found that D2D registration time was 22% faster when

using GMMs built from primitives.

4.7 Conclusion

We have shown how to build Gaussian Mixture Models by incorporating structural

information into their Expectation Maximization algorithm. We demonstrate theo-

retical and empirical equivalence with traditional techniques, along with providing a

fast approximation to our proposed method. By using the covariance structure from

the triangles of a mesh, we are able to build GMM models more quickly, robustly

and to higher quality. Additionally, these models provide an improved result in

3D registration. For a theoretical understanding of how geometric structures, point

samples, and integrals interact, our product integral derivation provides a model that

is invariant to resampling (such as triangles being merged or split while retaining

the same overall 3D structure). We believe that chapter demonstrates that using

structural information can lead to methods that are faster, more robust, and more

lead to improved performance.

79

4. Direct Fitting of Gaussian Mixture Models to Meshes

Tr
ia

ng
le

Ce
nt

ro
id

Ar
ea

 ×
 C

en
tro

id

Po
in

ts
 =

 1
0

Po
in

ts
 =

 2
7

Po
in

ts
 =

 7
6

Po
in

ts
 =

 2
11

Po
in

ts
 =

 5
85

Po
in

ts
 =

 1
62

1

Po
in

ts
 =

 4
48

5
Po

in
ts

 =
 1

24
10

Po

in
ts

 =
 3

43
35

Po

in
ts

 =
 9

49
97

 30000

32000

34000

36000

38000

40000

42000

44000

av
er

ag
e

ne
ga

tiv
e

lo
g-

lik
el

ih
oo

d

Numerical evaluation of likelihood expressions
 for a GMM (k=50) fit to 100,000 points

Figure 4.2: Comparison of fitting metrics. After fitting a 50 mixture GMM
to 100,000 points randomly sampled from the res4 Stanford bunny, different log-
likelihood expressions are compared. Triangle refers to the equation 4.8, while
Centroid refers to using only the triangle centroids, while Area × Centroid refers to
using our approximation in eq. 4.5. The results are on the res4 variant of the Stanford
bunny, which has 948 faces and 453 vertices. The remaining bars show results using
different numbers of points sampled from the mesh surface. The y-axis shows the
sum of individual Gaussian component log-likelihoods (

∑∑
log(x)), equivalent to

the lower-bound obtained from Jensen’s inequality. The horizontal line shows the
result of using all the points, our best approximation of the correct answer.

80

4. Direct Fitting of Gaussian Mixture Models to Meshes

101 102

number of mixtures
2

3

4

5

6

7

8

9

lik
el

ih
oo

d
of

 g
ro

un
d

tru
th

(h
ig

he
r i

s b
et

te
r)

kmeans initialization

Mesh (exact)
Mesh (approx)
Points (Center of Mass)
Points (Vertices)

101 102

number of mixtures
2

3

4

5

6

7

8

9

lik
el

ih
oo

d
of

 g
ro

un
d

tru
th

(h
ig

he
r i

s b
et

te
r)

random initialization

Mesh (exact)
Mesh (approx)
Points (Center of Mass)
Points (Vertices)

Different Mesh Information

Figure 4.3: GMMs fit to different data-types of the low-res Stanford Bunny.
The graphs show fitting fidelity of the converged model. The dashed lines use triangle
likelihood estimates, while the solid lines use traditional point loss. Exact refers
to the M-step derived in eq. 4.9 & 4.10, while Approx refers to only using eq. 4.5.
The results are on the res4 variant of the Stanford bunny, which has 948 faces and
453 vertices. Evaluation is performed by evaluating the likelihood of 50,000 points
sampled from the res4 Stanford bunny.

81

4. Direct Fitting of Gaussian Mixture Models to Meshes

101 102

number of mixtures
2

3

4

5

6

7

8

9

lik
el

ih
oo

d
of

 g
ro

un
d

tru
th

(h
ig

he
r i

s b
et

te
r)

kmeans initialization

Mesh (Quadric)
Mesh (Cluster)
Points (Poisson)
Points (Random)

101 102

number of mixtures
2

3

4

5

6

7

8

9

lik
el

ih
oo

d
of

 g
ro

un
d

tru
th

(h
ig

he
r i

s b
et

te
r)

random initialization

Mesh (Quadric)
Mesh (Cluster)
Points (Poisson)
Points (Random)

Different Decimation Methods

Figure 4.4: GMMs fit to different input formats of the Stanford Bunny.
The graphs show fitting fidelity of the convered Gaussian Mixture Model. The dashed
lines use eq. 4.9,4.10, while the solid lines use traditional point loss. The results
are on the Stanford bunny, which has been simplified to ≈ 1000 triangles or points
respectively with two different methods each. Random or Poisson disc sampling
[CCS12], and with either clustering [RB93] or quadric-error decimation [GH97]. See
Fig. 4.5 for visual examples of these formats. Evaluation is performed by evaluating
the likelihood of a high-resolution point cloud sampled from the original Stanford
bunny.

82

4. Direct Fitting of Gaussian Mixture Models to Meshes

(a) Stanford Bunny (b) Random Samples
(c) Clustering Deci-
mated [RB93]

(d) Points GMM
(K = 100)

(e) Dense Sampled
(f) Poisson Disc Sam-
pled [CCS12]

(g) Quadric Deci-
mated [GH97]

(h) Mesh GMM (K =
100)

Figure 4.5: Examples of different input and output representations for the Stanford
Bunny

83

4. Direct Fitting of Gaussian Mixture Models to Meshes

mesh
(kmeans)

mesh
(random)

points
(kmeans)

points
(random)

icp cpd0

1

2

3

4

5

de
gr

ee
s

rotation error

mesh
(kmeans)

mesh
(random)

points
(kmeans)

points
(random)

icp cpd0.0

0.2

0.4

0.6

0.8

1.0

pe
rc

en
t o

f m
od

el
 sc

al
e

translation error

Figure 4.6: Registration results on the Stanford Bunny, following the experimental
setup described in in [EKK18]. The experimental conditions for these tests are
described in Section 4.6. We plot the results of 250 random rigid deformations. We
show the actual data, along with a box and whisker plot showing the median and
its confidence interval; the mean is plotted as a larger dot. mesh and points are
the results of maximizing the likelihood of a set of points (N=453) against our fit
Gaussian Mixture models (K=100). The mesh result uses our proposed method,
fitting a GMM to the mesh triangles, while points shows the results of fitting a
GMM to the mesh vertices (N=453). icp is our implementation of point-to-point
ICP [Pau92], and cpd [MS10] is from pyCPD [Kha19]. Model size refers to the length
of the diagonal of the model’s bounding box, and we report our results in percent (so
all reported methods have position error, on average, better than 1.1% of the model
size). Some methods have outliers that converged to the wrong local minima, and
hence have a very large mean relative to their distribution.

84

4. Direct Fitting of Gaussian Mixture Models to Meshes

3 2 1 0 1 2
x location (m)

2

1

0

1

2

3

y
lo

ca
tio

n
(m

)

GMM
ICP
Ground Truth

Figure 4.7: Top-down view of trajectories generated using different registration
methods for visual odometry. The GMMmethod uses a per-pixel uncertainty primitive
during GMM fitting. The ICP method is pt2pt ICP [Pau92]. Runtime for both
methods was similar. For details, see Section 4.6.4. For additional baselines and
experiments on this dataset see [TOM18].

85

Chapter 5

Discovering Multiple Algorithm

Configurations

This chapter focuses on leveraging the variance seen during the black box tuning of

algorithms across a dataset. We use this variance to find a partition of the dataset

where different datapoints may prefer different types of configurations. This lets us

explore properties of the dataset, under the view of algorithms trying to perform well

across the entire dataset. This chapter is largely similar to our published manuscript

on the topic [KH23a].

5.1 Introduction

Autonomous integrated systems often depend on a multitude of algorithms interacting

with each other and their external environment. Despite the recent popularity of

deep, end-to-end trained models [Ope+19], robotic systems often depend on hand-

designed algorithms in several parts of the processing stack. They include motion

planning [Col+14], algorithms involved in sensing [Kes+17] and simultaneous location

and mapping [EKC16]. As systems become more sophisticated, they often accumulate

more methods and with them, more parameters that need to be set and configured

by the system designers.

Often the developers of these methods can discover viable configurations by hand

but leave many settings open to configuration by eventual users. Intuitively, these

86

5. Discovering Multiple Algorithm Configurations

can include settings can control smoothing, performance and run-time. Ideal settings

in noise-free environments can vary dramatically from those required in noisy settings.

Likewise, different configurations may exist for optimal online and offline performance.

Tuning such settings to work well in a deployment environment remains a challenge

for many autonomous systems. Without proper tuning, components that are expected

to be reliable may unexpectedly fail.

While it is possible to tune settings by hand, it is also possible to use automated

methods to find potential configurations. In classic computer science literature, this

was done to optimize runtime performance [Ric76] and was known as the algorithm

selection (or configuration) problem. Researchers have shown how automated tuning

can quickly and robustly improve the performance of even common tools such as

compilers [Ans+14]. In an era with many benchmarks [GLU12; MG15; Sch+14] and

challenge competitions [Kro+18], algorithm tuning is performed on a validation set

made to approximate the performance of the final test set, and ensure the best possible

performance for proposed techniques. To demonstrate consistency and generalizability,

researchers often report performance under a single configuration.

Considering multiple configurations can greatly expand the applicability of a

particular method [Mak+21]. In the case of multi-objective optimization, a Pareto set

exists, where progress on any one objective regresses performance on another objective.

As such, providing multiple configurations is often done by hardware vendors [Kes+17],

and selecting between multiple configurations in robotics is also well studied [HK17b;

HK17a; HK18], along with selecting from ensembles of solvers [CAS15] and motion-

planners [Tal+16].

In this work, we propose to discover multiple viable configurations while an

algorithm configuration is being automatically tuned over a dataset by some black-

box optimizer [Han16; LH16]. By noticing correlations between data in response

to new configurations, we detect multiple algorithm modes. Working in algorithm

configuration space enables generalization across several problem domains, as they do

not depend on domain specific features. This allows our method, with fixed settings,

to show benefits in multiple application areas (see Section 5.4). We show how multiple

modes can be found online (Section 5.3.5) and how they can be used to guard against

outliers (Section 5.4.2).

87

5. Discovering Multiple Algorithm Configurations

5.2 Related Work

There is a long history of work in algorithm configuration and related areas. Originally

studied for performance optimization [Ric76], algorithm configuration has been well

studied in the SAT solver community [Ans+15]. These extensions include large

evaluations [Han+21], taxonomies of methods [Sch+22] and methods which adapt

the algorithm configuration over a series of time-steps [Eim+21; YDB21; Adr+22],

assuming the algorithms used have different temporal properties.

Since robotics applications and datasets are reasonably expensive operations

(compared to purely synthetic tasks), our work is related to work on extremely few

function evaluations, typically on the order of 100 [Ans+21]. Typically this is studied

in the Machine Learning community as hyperparameter search, finding configurations

for ideal neural network configuration and training [Kot+19; LH16].

Our work is most closely related to portfolio-based algorithm configuration litera-

ture [Ley+03; GM04; LNS09]. These methods often design a different configuration

for each instance of the problem in their dataset (e.g. each data example) [MS09;

XHL10; Kad+10]. Similar to our work, they cluster methods into groups. However,

their clusters are derived from domain-specific feature spaces, while we use the re-

sponse of the instances to new configurations. Our use of domain-specific features

is limited to test time deployment, using supervised training to target our obtained

algorithm configuration clusters.

In the Machine Learning community, the problem of coreset discovery [MBL19]

is related to our approach. Coreset discovery finds representative examples from a

dataset to focus training time on a subset of the data. Most related, methods exist

for online discovery of such sets [Yoo+22]. Of note, our contribution is orthogonal

to coreset research, as our method could benefit from coreset methods, which would

serve to give us a smaller subset of data to evaluate at each iteration. Specifically,

coreset methods for clustering [BLK17] could enable more function evaluation steps

in a fixed budget of time and give better resulting minima.

In computer vision, some recent work has explored estimating algorithm con-

figurations for classic algorithms on a local level, operating on patches within an

image [Wro21].

88

5. Discovering Multiple Algorithm Configurations

5.3 Method

Our approach consists of evaluating algorithm configurations from a black box

optimizer (Section 5.3.2) across a dataset of examples for the given algorithm (Algo-

rithm 1). Building upon this baseline, we propose three methods of partitioning the

data during optimization: Post hoc (Algorithm 2), Staged (Algorithm 3), and Online

(Algorithm 4).

For our experiments, we always use two partitions, even when there are more

known modes (Section 5.4.1). This avoids exploring the area of instance-specific

algorithm configuration and minimizes our risk of overfitting to the dataset and

overstating our performance. We typically report results between the initialization

(the known defaults for an algorithm) and the oracle. Our oracle is defined as awarding

the best known configuration for each individual datum across all optimization runs.

5.3.1 Partitioning

The optimal partition for a given number of partitions K, with M algorithm configu-

rations over N datapoints can be formulated via 0-1 Integer Linear Programming

where ci,j corresponds to the quality of datum i with configuration j.

min ci,j xi,j

subject to

xi,j ∈ {0, 1}
M∑
j=1

xi,j = 1

M∑
j=1

⊮

[
(

N∑
i=1

xi,j) > 0

]
≤ K

One can also exhaustively evaluate all
(
M
K

)
partitions. Our experiments do

exhaustive evaluation for K = 2 (as with all results in this chapter) and use the

optimization formulation with larger numbers of partitions. We solve the optimization

89

5. Discovering Multiple Algorithm Configurations

problem with a recent solver [HH18] and implement the indicator variables using the

BigM modeling trick.

As an alternative, we evaluate using a clustering method such as k-Means [Scu10b]

on a normalized matrix X̃, where each row has zero mean and unit variance. Cluster

centers are in the space of the history of evaluated configurations and each row is a

datum’s response to the history of evaluated configurations. Clustering approaches

treat the algorithm configuration history as a feature and group results which behave

similarly, but may not be optimally partitioned.

5.3.2 Black Box Optimizer

Our method is generic to the choice of black box optimizer, also known as gradient-

free optimization. For example, one could use random search, which is known to

be a strong baseline in higher dimensional optimization [Gol+17]. On the other

extreme, if one has expensive function evaluations, one could fit a surrogate function

to the data and optimize its expected minima, as is done in Bayesian Optimization

[Fra18]. Effective black box optimizers in practice often combine a plethora of

optimizers [Ans+14; RT18].

We use CMA-ES, an evolutionary method with a multivariate Gaussian model [Han16].

CMA-ES is known for algorithm configuration search in robotics [Zha+17] and is

widely used in other algorithm configuration comparisons [Eim+21]. CMA-ES is

convenient in only requiring an initial configuration and a σ in parameter space.

When tuning existing algorithms, reasonable prior configurations are often available.

Approaches which focus on modeling a bounded volume [Fra18; RT18]) can be

wasteful. All of our parameter search is for non-negative parameters, so we transform

our search space with log(x) to perform unconstrained optimization, making our

search operate on order-of-magnitude scale for all parameters.

5.3.3 Post hoc Partitioning

The post hoc method is simple and straightforward: perform black box on the dataset

as a whole, noting each datum’s response to each configuration. Afterwards, partition

the data following Section 5.3.1. This approach allows clearest evaluation against the

non-partitioned CMA-ES baseline, which it outperforms in all of our experiments.

90

5. Discovering Multiple Algorithm Configurations

Algorithm 2 outlines the Post hoc method in detail. As a method with no change in

exploration, it can be be run on existing single mode optimization or simply using

coherently evaluated random configurations [Gol+17], as in Section 5.4.6.

5.3.4 Staged Partitioning

In staged partitioning, we spend half of the function evaluations exploring the space

to find adequate minimia, and we spend half of the function evaluations exploiting

the discovered partitions in isolation. While the scale of a particular problem may

suggest different balance of exploration and exploitation stages, we use a ratio of 1
2

for our experiments. Algorithm 3 performs partitioning in the middle of optimization

and tunes the results for each partition. This enables more explicit exploitation of

the partitions, at the expense of less exploration time to find good partitions.

5.3.5 Online Partitioning

To balance exploration and exploitation in an online fashion, one could use a multi-

armed bandit. Algorithm 4 dynamically assigns data points to partitions during the

course of optimization. Since CMA-ES only evaluates relative order, we can readily

switch data assigned to each partition during the course of evaluation. For the online

method, we setup a multi-armed bandit (MAB) for each datum. Since our function

evaluations are unbounded, we use classic Thompson Sampling [Tho33; Rus+17]

with a Gaussian distribution. We perform one CMA-ES step to sample the space,

and use that to initialize the distributions for each arm of the bandits identically.

Each iteration, we sample a partition assignment for each bandit. That datum then

evaluates the configuration given by that optimizer and records its result for that arm.

The optimizers record the mean cost of the data assigned to them that iteration.

This approach allows us to simultaneously perform multiple optimizations and

partition assignments on the fly.

5.4 Experimental Results

We evaluate our approach on several application domains. We start with a synthetic

function whose structure and modes are known and is quick to evaluate. This

91

5. Discovering Multiple Algorithm Configurations

Algorithm 1 Optimize algorithm configuration over a dataset

Require: x0 Initial Configuration
Require: f1...N(x) dataset queries for algorithm
Require: M Maximum number of function evaluations
1: procedure Optimize(x0, f1...N(x),M)
2: for i← 1 to N do
3: xi ← Optimizer Candidate()
4: for j ← 1 to N do ▷ Evaluate all data
5: Xi,j ← fj(xi)
6: end for
7: gi ← Mean(Xi)
8: Optimizer Tell(gi) ▷ Report average
9: end for

10: Yi ← Mean(Xi,j) ▷ Per configuration scores
11: x ← xargmin(Yi) ▷ Best configuration
12: end procedure

Algorithm 2 Finding modes with post hoc partitioning

Require: K Number of partitions
Ensure: x1..K Per partition configurations
Ensure: c1..N Per datum partition assignments
1: procedure Posthoc(x0, f1...N(x),M,K)
2: Optimize(x0, f1...N(x),M)
3: cj ← Partition(XT , K) ▷ Get partitions for data
4: Yk ← Mean(Xi,(cj=k)) ▷ Per partition scores
5: xk ← xargmin(Yk) ▷ Configuration for partitions
6: end procedure

Algorithm 3 Finding modes with staged partitioning

1: procedure Staged(x0, f1...N ,M,K)
2: Post hoc(x0, f1...N(x),

M
2
, K)

3: for k ← 1 to K do ▷ Separate optimization
4: Optimize(x0, fcj=k(x),

M
2
)

5: end for
6: end procedure

92

5. Discovering Multiple Algorithm Configurations

Algorithm 4 Finding modes with online partitioning

1: procedure Online(x0, f1...N ,M,K)
2: Bk ← Bandit(N) ▷ K arms for each datum
3: OPTk ← Optimizer() ▷ K optimizers
4: for i← 1 to M do
5: for j ← 1 to N do
6: bj ← Bandit Pull(Bj) ▷ Sample bandit
7: end for
8: for m← 1 to K do ▷ Separate Evaluation
9: xi,k ← OPTkCandidate()
10: yi,k ←Mean(fbj=k(xi,k))
11: OPTkTell(yi,k)
12: end for
13: end for
14: cj ← Best Arm(Bj)
15: yk ← Best Config(OPTk)
16: end procedure

enables us to characterize our different methods of finding partitions. We then

proceed to show successful benefits to robotics methods like stereoscopic depth

generation [Kes+17], differentiable rendering [KH22], motion planning [Lav98], and

visual odometry [EKC16].

5.4.1 Synthetic Function

A synthetic function allows us to characterize our methods across arbitrary many

dimensions and modes. Our synthetic function has K modes, each the sum of N

hard-to-optimize functions, leading to a simulation of KN data points. We use four

hard-to-optimize functons: Ackley, Griewank, Rastrigin, Zakharov (for details of

these functions and their visualizations see [Lv+18]), and rescale them to have a

minima of value zero, a random rotation, and to have a maximum value of around one

near the minima. This paradigm and these functions can be generated in arbitrary

many dimensions, allowing us to understand how these partitioning methods scale as

algorithm hyper-parameters scale from two to forty dimensions.

For the synthetic function optimization, the staged method works best across most

dimensions and number of function evaluations. Close behind, especially with fewer

93

5. Discovering Multiple Algorithm Configurations

evaluations, is the post hoc method. In contrast, our online bandit method is typically

only slightly better than the single mode baseline. Of note is that all methods begin

to perform better with hundreds of function evaluations, suggesting that the improved

performance of the partitioning may come from improved efficiency in low numbers

of evaluations, and not the multi-modal nature of the synthetic function.

5.4.2 Dense Stereo Matching

Robotics applications often use stereoscopic depth sensors. Here we optimize the

performance a classic Dense Stereo Matching method, namely Semi-Global Block

Matching (SGBM) [Hir08] as implemented by OpenCV [Bra00]. We obtain 47 image

pairs by combining the Middlebury 2014 and 2021 Stereo datasets [Sch+14]. We

split the data into 23 training examples and 24 test examples, shown in Section 5.4.2.

The algorithm settings control the regularization of the SGBM algorithm, the post-

processing filters used to cleanup the data, and the block size used for initial matching.

Results of the four methods on the training set are shown in Fig. 5.5.

In deploying the discovered configurations to new data, we show the efficacy of a

simple supervised classifier. The classifier used is k-nearest neighbors with a k = 1,

returning the partition index to be used. We use a pre-trained neural network’s top

level feature space as the feature space. Specifically we use SqueezeNet 1.1 [Ian+16]

pre-trained on ImageNet in PyTorch [Pas+19] and its 512 dimensional space for

images.

The test set performance is improved with partitioning, as shown in Fig. 5.6c with

quantitative estimates and Fig. 5.6b with two qualitative examples from the test set.

We find that the optimal hyperparameter configuration typically focuses on

regularization and filtering. The first configuration usually has less regularization,

but a more aggressive filter to discard bad matches, while the second configuration

has more regularization and less aggressive filters to discard bad data.

5.4.3 Differentiable Rendering

We optimize the parameters of a recent differentiable renderer [KH22]. Our dataset

includes 20 sequences from the KITTI odometry dataset [GLU12] and 20 synthetic

shapes. The KITTI sequences use k-Means to build a quick model of 10 consecutive

94

5. Discovering Multiple Algorithm Configurations

LIDAR frames, from the center of the scene looking out. In contrast, the synthetic

sequences all have the object densely in front camera. The differentiable render has

four hyperparameters, two controlling the sharpness of the silhouettes, one controlling

surface smoothness and one controlling how opaque objects are. We optimize all four

for depth and silhouette accuracy, similar to the original paper.

In rendering, the optimizer is unable to find a better single mode configuration

than the initialization. However, all proposed methods show a statistically significant

improvement over the baseline, with the staged method performing the best. In

addition, we report the ability of the methods to properly partition the disparate

datasets in Fig. 5.7a.

5.4.4 Motion Planning

We evaluate a popular motion planning method, Informed RRT* [GSB14] in the

Sampling-Based Motion Planner Testing Environment [Lai21]. We setup three start-

goal pairs for three testing environments. We use the geometric mean of runtime (as

estimated by the number of expanded notes) and performance (as estimated by the

quality of the first found solution). This balance of runtime and quality is essential

to obtaining an interested configuration. Results are shown in Fig. 5.8, with only

the post hoc method outperforming the baseline. Other methods perform poorly,

and we suspect the problem is insufficient samples and lack of exploration in the

online and staged methods; especially as RRT*-based planners are stochastic, making

evaluations noisy.

We find that the optimal partition finds different parameters focused on the goal

sampling frequency (0.2 and 0.3; single mode 0.26) and the rewiring radius (1500

vs 7500; single mode 6000). Of our three start/goal pairs in each of three different

environments, optimal partitioning typically grouped one environment together.

We also performed some experiments with RRdT* [LRF19], which we report

briefly report. Often, one partition would focus on a configuration that frequently

spawned new trees, while the other focused on expanding existing trees.

As it is unclear how to parameterize motion planning goals and environments for

supervised classification, we were unable to do experiments on a hold-out test set.

95

5. Discovering Multiple Algorithm Configurations

5.4.5 Visual Odometry

We perform experiments on a subset of the TUM VI Visual-Inertial Dataset [Sch+18]

using DM-VIO [SC22]. DM-VIO has many parameters but we focus on five (points,

immature points, min frames, max frames, max optimization steps). TUM VI has 5

environments, and we select the third sequence from each environment as our dataset.

We prioritize a geometric mean of runtime (frame time) and quality (best-aligned

absolute pose error [Gru17]), while penalizing trajectories which do not complete

successfully. Results are shown in Fig. 5.9. Reliably, the algorithm partitions a

separate configuration for all but the slide3 sequence, which includes fast motion

through a closed pipe. The slides partition is the best single mode, while the

alternative partition uses fewer points (100 vs 350) and fewer frames (2-4 vs 3-5) as

it does not need to handle the difficult high-velocity, highly occluded sequence.

As our VO partitions depend on properties of the sequence, we were unable

to construct a reasonable test set based on the first frame. Instead, our multiple

configurations may be used in on-the-fly configuration selection [HK17a],

5.4.6 Commercial Depth Sensor

Lastly, we demonstrate our partitioning method on a Intel RealSense D435 [Kes+17]

and its 35 parameters for estimating depth. We generate a set of 500 randomly

configurations. We evaluate all configurations on 10 scenes, for which we have

collected their pseudo ground truths using a moving laser pattern [Kes+17]. We

partition the configurations using the post hoc method. Results for four scenes are

shown in Fig. 5.10.

The optimal K = 2 partition included the best single mode configuration as

well, allowing us to show it and the alternative configuration. The single mode

configuration produced small holes, but dense results outdoors. While the alternative

configuration produced smoother, denser walls in indoor environments in exchange

for more artifacts outdoors.

96

5. Discovering Multiple Algorithm Configurations

5.5 Discussion

Many algorithms in robotics operate in environments with multiple modes. These

natural partitions are easy to understand, and can be discovered naturally by analyzing

how different datums respond to different algorithm configurations. The modes were

found because they affected algorithm response, not because they happened to be

grouped together in some domain-specific feature space.

All the proposed methods for partitioning show some efficacy. Across the board,

the post hoc method works well. This is likely due our extremely small number

of evaluations for algorithm configuration [Ans+21], leading to more benefits for

exploration. The online method typically performs poorly in this setting and it is

possible that more sophisticated bandit algorithms [MG17b] could perform better.

Our experiments focused on two partitions for all methods. Even when prob-

lems had more modes by construction, two partitions were able to clearly improve

performance.

5.6 Conclusion

Automatically finding modes during the course of algorithm configuration is a viable

way to improve algorithm performance in several different areas of robotics. More

study is needed to understand what typical algorithm modes exist and how such

modal configurations might be used long-term deployed autonomous systems.

97

5. Discovering Multiple Algorithm Configurations

Figure 5.1: Typical Algorithm Optimization can be seen as factorized and
visualized as different configuration results for each individual datum. This chapter
focuses on leveraging this variance in quality to find different modes in the dataset,
potentially corresponding to different points on the Pareto front.

98

5. Discovering Multiple Algorithm Configurations

t-SNE Component #1

t-S
N

E
C

om
po

ne
nt

 #
2

Partition
#1
#2

Figure 5.2: Partitioned Configurations. Instead of finding a single algorithm
configuration for an entire dataset, we partition the dataset during the process of
optimization and find a different configuration for each partition.

99

5. Discovering Multiple Algorithm Configurations

25 50 75 100 125 150 175 200 225 250
Function Evaluations

0.60

0.65

0.70

0.75

0.80

0.85

Qu
al

ity
 o

f m
in

im
a

 (0
 is

 in
iti

al
iza

tio
n,

 1
 is

 o
ra

cle
)

Clustering vs Partitioning

Cluster Greedy Optimal

Figure 5.3: Greedy and Optimal Partitioning vs K-Means Clustering on
stereoscopic depth optimization. Greedy maximizes the marginal value of new
configurations.

100

5. Discovering Multiple Algorithm Configurations

2 3 4 5 6 8 10 13 16 20 25 32 40
Dimension

0.0

0.1

0.2

0.3

0.4

0.5

Qu
al

ity
 o

f f
ou

nd
 m

in
im

a
 (0

 is
 in

iti
al

iza
tio

n,
 1

 is
 o

ra
cle

)

Synthetic function with 50 evaluations
CMA Online Post hoc Staged

2 3 4 5 6 8 10 13 16 20 25 32 40
Dimension

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Qu
al

ity
 o

f f
ou

nd
 m

in
im

a
 (0

 is
 in

iti
al

iza
tio

n,
 1

 is
 o

ra
cle

)

Synthetic function with 500 evaluations
CMA Online Post hoc Staged

Figure 5.4: Synthetic Function Partitioning (Section 5.4.1). Graphs shows the
quality of the best found minima for all methods, between the initial configuration
and an oracle. Shaded regions indicate standard error of the mean.

101

5. Discovering Multiple Algorithm Configurations

50 100 150 200 250
Function Evaluations

0.5

0.6

0.7

0.8

Qu
al

ity
 o

f m
in

im
a

 (0
 is

 in
iti

al
iza

tio
n,

 1
 is

 o
ra

cle
)

Optimizing Stereo Matching Parameters

CMA Online Post hoc Staged

Figure 5.5: Dense Stereo Matching Partitioning quality on the training set. The
posthoc and staged methods perform well while the online method is indistinguishable
from CMA-ES.

102

5. Discovering Multiple Algorithm Configurations

Cluster 1 Cluster 2
Test Images

(a) Middlebury Stereo Data with training data shown as partitioned by our staged
method after 250 evaluations. The test set is shown with the predicted classification colors
for each image.

Left Image #1 Config (=0.49) #2 Config (=0.55)

Left Image #1 Config (=1.73) #2 Config (=1.40)

(b) Qualitative examples of test set results with our classifier correctly assigning
the better configuration to each example. Disparity error shown in parenthesis for each
configuration and example.

CMA Online Post hoc Staged

0.8025

0.8050

0.8075

0.8100

0.8125

0.8150

0.8175

Di
sp

ar
ity

 E
rro

r

Middlebury test split with 250 function evaluations

(c) Test set performance based on the configurations preferred by our supervised classifier
described in Section 5.4.2.

Figure 5.6: Dense Stereo Matching Test Set Performance.

103

5. Discovering Multiple Algorithm Configurations

50 100 150 200 250
Function Evaluations

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Ra

nd
 In

de
x

Cluster Quality in Diff. Renderer Parameters

Online Post hoc Staged

(a) Partitioning Accuracy in splitting the KITTI data from synthetic data in Section 5.4.3.
All methods show some success.

50 100 150 200 250
Function Evaluations

0.4

0.2

0.0

0.2

0.4

0.6

Qu
al

ity
 o

f m
in

im
a

 (0
 is

 in
iti

al
iza

tio
n,

 1
 is

 o
ra

cle
)

Optimizing Differentiable Renderer Parameters

CMA Online Post hoc Staged

(b) Differentiable Renderer Partitioning hyper-parameter optimization for depth and
silhouette fidelity. Section 5.4.3. In this case, reasonable defaults restrict the progress of
the baseline while the exploitation-focused staged optimization performs best.

Figure 5.7: Differentiable Renderer Experiments

104

5. Discovering Multiple Algorithm Configurations

50 100 150 200 250
Function Evaluations

0.2

0.4

0.6

0.8

Qu
al

ity
 o

f m
in

im
a

 (0
 is

 in
iti

al
iza

tio
n,

 1
 is

 o
ra

cle
)

Optimizing InformedRRT* Parameters

CMA Online Post hoc Staged

Figure 5.8: Motion Planner Partitioning on a set of environments and planar
planning tasks. Section 5.4.4 for details.

105

5. Discovering Multiple Algorithm Configurations

Corridor Magistrale Outdoors Room Slide

(a) Partitioned TUM-VI Visual Odometry Dataset

50 75 100 125 150 175 200 225 250
Function Evaluations

0.0

0.2

0.4

0.6

0.8

Qu
al

ity
 o

f m
in

im
a

 (0
 is

 in
iti

al
iza

tio
n,

 1
 is

 o
ra

cle
)

Optimizing DM-VIO Parameters on TUM-VI

CMA Post hoc

(b) Post-hoc clustering improves DM-VIO performance.

Figure 5.9: Visual-Inertial Odometry Experiments

106

5. Discovering Multiple Algorithm Configurations

Single mode (=0.88) Alternative (=0.78)

Single mode (=1.22) Alternative (=1.02)

Single mode (=0.68) Alternative (=1.18)

Single mode (=1.17) Alternative (=1.31)

Figure 5.10: Intel RealSense D435 Partitioning with 500 randomly generated
configurations on 10 scenes. Two are shown, with both configurations (and its error).
Section 5.4.6.

107

Chapter 6

Optimizing From Pairwise User

Preferences

This chapter focuses on a method for black box tuning of classic algorithms based solely

on user preferences. This is largely similar to parts of published manuscript [Kes+23],

which was done in collaboration with others. The publication contains additional

experiments and results on social navigation which may be interested to readers, but

the content in this chapter focuses just on its contributions to this thesis.

This approach was developed to efficiently tune the 35 parameters in the Intel

RealSense depth camera ASIC to achieve better performance. Tuning stereoscopic

depth cameras based on ground truth can be difficult, as good edge performance is

hard to formalize, since half of all horizontal edges for a stereo depth camera can only

be annotated as edges between missing data and foreground objects (due to occlusion

regions).

Instead, in this chapter, we show how a modern variant of Random Optimiza-

tion [Mát65] called CMA-ES [Han16] can naturally tune algorithms based on user

preferences with the appropriate interface, as shown in Fig. 6.1. This draws on similar

inspiration as the recent approaches for Reinforcement Learning from Human Feed-

back [Chr+17; Mac+17], widely used in Large Language Models (LLMs) [Tou+23].

108

6. Optimizing From Pairwise User Preferences

Pairwise User Eval

Sorted Candidates

Gaussian
Distribution of

Parameters

sort()

Configuration
A

Configuration
B

Sample Candidates

Update
Distribution

Figure 6.1: Overview of the proposed approach for tuning algorithms based on
user preferences.

6.1 Method

Our method is designed for finding argminx f(x), x ∈ Rd, where users select either

f(xi) ≤ f(xj) or f(xi) ≥ f(xj) and there is no access to ∇f(x). This represents a
d dimensional optimization over a series of configurations x1...N : f(x) captures user

preferences, and x typically represents the configuration parameters for an algorithm.

We call our method SortCMA, since it builds on top of two well-studied techniques:

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [Han16] and sorting

methods [MG17a].

CMA-ES is a well-known, successful black-box optimization method [Han+21],

especially effective when few function evaluations are available [Ans+21]. CMA-ES

has been shown to be robust and efficient enough to optimize robotic systems with

humans in the loop where the optimization criteria is a continuous metric [Zha+17].

Pairwise sorting is a classic O(n log n) algorithm with many implementations. For

our results, we use Timsort. Extensions to other sorting techniques, such as radix

sort, approach direct access to f(x), and our method would be identical to traditional

CMA-ES.

109

6. Optimizing From Pairwise User Preferences

SortCMA is a modified interface to CMA-ES that replaces direct evaluation of

f(x) with calling a user-querying sort function. The sort’s key function is a user

interface that returns the user’s preferred selection of f(xi) ≤ f(xj) or f(xi) ≥ f(xj).

After g generations, when the user is satisfied with the quality, they terminate the

optimization and perform g − 1 pairwise comparisons to select the final, optimal

result.

SortCMA and CMA-ES [Han16] are initialized with a mean m0 ∈ Rd, step size

σ0 and positive semi-definite covariance matrix C0 ∈ Rd×d (typically I). For each

generation of the optimization, a set of λ ≥ 2 offspring are sampled:

xi+1
k ∼mi + σiN

(
0,Ci

)
, k = 1...λ. (6.1)

CMA-ES evaluates all f(xi+1
k), k = 1...λ, and performs a sorting to assign weights

w1 ≥ w2 ≥ ... ≥ wλ, where better f(xk) are assigned larger weights. Weights are

defined as

wk = log

(
λ+ 1

2

)
− log(k), k = 1...λ (6.2)

After assigning larger weights to better f(xk), either via evaluation and sorting

(CMA-ES) or direct sorting based on pairwise user evaluation (SortCMA), mi+1, σi+1,

and Ci+1 are generated using established CMA-ES update rules [Han16]. The step

size (σ) is updated to control the overall exploration rate, and the covariance matrix

is adapted to guide the search along favorable vectors in parameter space.

We use pycma [Han+23], transform any strictly positive parameters with f(x) =

log(x) for unbounded optimization, and use an initial σ = 0.2.

6.2 Tuning a Stereoscopic Depth Sensor

Many robots use the widely available Intel RealSense sensors [Kes+17]. The D435 is

a stereoscopic depth camera that uses an ASIC-implemented depth algorithm [Hir08],

along with a laser [Nis84] for projecting additional texture.

While it is possible to tune stereo algorithms with existing datasets [Sch+14] or

on existing camera hardware with pseudo-ground truth [KH23a], these approaches

can often be lacking. In particular, real scenes will often contain pixels which are

not annotated due to surface properties (specularity, transparency, etc.) or exist

110

6. Optimizing From Pairwise User Preferences

around edges and stereo occluded regions. Additionally, practical usage makes this a

multi-objective optimization, balancing depth accuracy, fill rate and outliers (which

often appear in unannotated regions).

Instead, we show how a rich scene can be optimized with SortCMA based on, and

for, user preferences. This allows optimization without designing a multi-objective

loss.

6.2.1 Sensor Setup

The RealSense depth algorithm has 35 parameters that control the properties of the

algorithm implemented in hardware. The parameters control regularization of the

matching algorithm and checks that ensure invalid results are discarded. By modifying

these parameters, users can greatly impact the properties and characteristics of the

data. While the vendor provides several example configurations for how to configure

the sensor, they do not behave well in all environments. To showcase this, we set up

a scene of rich objects where the default parameters (and all other vendor-provided

parameter sets) produce clear artifacts around depth discontinuities which could be

undesirable.

We tune the depth generation for the same scene under two conditions. First, the

laser emitter is enabled and dense, and high quality results are expected. In the second,

the laser emitter is turned off, resulting in a difficult environment that resembles how

the stereo system behaves under sunlight or at distance. These parameters are tuned

directly from user preferences, without having to meticulously collect ground truth of

the target scene [Sch+14].

6.2.2 Visual Tuning Results

The results of running SortCMA on tuning a stereo depth sensor for good edge

performance are shown in Fig. 6.2. In both active and passive settings, we tune the

algorithm with the default CMA-ES population size and perform optimization over

15 generations. Many approaches to pairwise optimization are unsuitable baselines

in this context, as they depend on a reasonable reward function to model the final

choice, but this reward function is unavailable.

111

6. Optimizing From Pairwise User Preferences

We annotated four areas of interest for seeing differences between configurations:

a large V shape, a hole in a woodcut, a close left mug handle and a further right mug

handle.

For stereo matching with projected texture, the initial defaults (Fig. 6.2b) struggle

with the V shape, inpaint the woodcut hole, and cannot obtain any depth inside

the left mug handle. In tuning the settings (Fig. 6.2c), we were able to resolve the

V shape, obtain better detail around the mug, and reject bad matches inside the

woodcut, all without negatively affecting other parts of the scene. Optimization was

quick: by the fourth generation, all samples had a clear V shape. By the sixth, the

handle was sharply resolved. The last five generations mainly balanced density and

outliers.

For passive stereo matching, the defaults are highly inpainted (Fig. 6.2e) across all

four selected regions of interest. The tuned settings (Fig. 6.2f) resolve sharp, detailed

edges at the expense of dense infill in the white background areas. In this difficult

case, it took five batches to obtain a clear V shape, and about ten batches until

tradeoffs were tested.

In both cases, it took about 30 minutes of tuning to get our final results, producing

potentially much better configurations in a given environment. For users with

particular requirements for their depth data, this could broaden and enhance the

utility of commercial hardware.

6.3 Conclusion

This chapter shows how effective user preferences can be for optimization, even in a

gradient-free, expensive evaluation context. In under an hour, it is possible to obtain

good configurations that exhibit desirable and desirable properties (like good edge

performance) that existing shipped configurations do not exhibit.

The use of a Gaussian prior for parameter optimization [Mát65] can be particularly

effective for tuning of existing algorithms. In certain applications, it may be much

easier to sample good algorithm configurations than to learn a reward function that

models human preferences.

112

6. Optimizing From Pairwise User Preferences

(a) Active Input (b) Active Defaults (c) Active Tuned

(d) Passive Input (e) Passive Defaults (f) Passive Tuned

Figure 6.2: Tuning RealSense D435 Stereo Matching As described in Section 6.2,
we use our optimizer to tune the 35 parameters that control depth generation on a
commercial depth camera. The target user preference was for more precise disconti-
nuities. The top row demonstrates dense matching with projected texture [Kes+17;
Nis84; Kon10], while the bottom row lacks texture.

113

Chapter 7

Learning the Value of Academic

Venues

We present a method for automatically organizing and evaluating the quality of

different publishing venues in Computer Science. This is largely similar to our

published manuscript on the topic [Kes19], The motivation was to find an accessible,

robust way to quantify academic productivity that could be easily run and reproduced

(in contrast to citation metrics, which require processing all published literature for

counts).

Since this method only requires paper publication data as its input, we can

demonstrate our method on a large portion of the DBLP dataset, spanning 50 years,

with millions of authors and thousands of publishing venues. By formulating venue

authorship as a regression problem and targeting metrics of interest, we obtain

venue scores for every conference and journal in our dataset. The obtained scores

can also provide a per-year model of conference quality, showing how fields develop

and change over time. Additionally, these venue scores can be used to evaluate

individual academic authors and academic institutions. We show that using venue

scores to evaluate both authors and institutions produces quantitative measures that

are comparable to approaches using citations or peer assessment. In contrast to many

other existing evaluation metrics, our use of large-scale, openly available data enables

this approach to be repeatable and transparent.

114

7. Learning the Value of Academic Venues

1970 1980 1990 2000 2010
year

2

4

6

8

10

12

ve
nu

e
sc

or
es

AI/ML

NIPS (10.9)
ICML (9.5)
AAAI (7.7)
AISTATS (7.5)
UAI (5.8)
IJCAI (5.5)

1970 1980 1990 2000 2010
year

1

2

3

4

5

6

7

ve
nu

e
sc

or
es

HCI

CHI (7.2)
CSCW (5.2)
UIST (5.0)
UbiComp (4.8)
ICWSM (4.6)
DIS (3.1)

1970 1980 1990 2000 2010
year

1

2

3

4

5

6

ve
nu

e
sc

or
es

Robotics

RSS (6.2)
ICRA (5.2)
WAFR (5.2)
IJRR (5.1)
HRI (4.1)
IROS (3.8)

1970 1980 1990 2000 2010
year

2

4

6

8

10

12

ve
nu

e
sc

or
es

Theory

STOC (11.7)
FOCS (11.0)
CCC (10.4)
SODA (10.2)
APPROX-RANDOM (7.9)
COLT (7.8)

1970 1980 1990 2000 2010
year

1
2
3
4
5
6
7
8
9

ve
nu

e
sc

or
es

Vision

CVPR (8.2)
ECCV (6.4)
ICCV (6.2)
PAMI (5.5)
IJCV (4.3)
WACV (3.7)

1970 1980 1990 2000 2010
year

2

4

6

8

10

ve
nu

e
sc

or
es

Database

VLDB (7.8)
SIGMOD (7.6)
ICDE (6.4)
PODS (5.9)
CIDR (5.6)
TDS (5.1)

1970 1980 1990 2000 2010
year

1

2

3

4

5

6

7

ve
nu

e
sc

or
es

IR/Web

WWW (6.8)
KDD (6.2)
CIKM (4.7)
ICWSM (4.6)
ICDM (4.5)
SIGIR (4.2)

1970 1980 1990 2000 2010
year

1

2

3

4

5

6

ve
nu

e
sc

or
es

NLP

EMNLP (6.6)
ACL (5.9)
NAACL (5.3)
TACL (4.8)
COLING (3.3)
INTERSPEECH (1.7)

1970 1980 1990 2000 2010
year

1
2
3
4
5
6
7
8

ve
nu

e
sc

or
es

Graphics

SIGGRAPH (7.6)
SIGGRAPH Asia (7.4)
TOG (5.5)
TVCG (5.0)
CGF (4.9)
SCA (4.7)

1970 1980 1990 2000 2010
year

1
2
3
4
5
6
7
8
9

ve
nu

e
sc

or
es

Crypto

TCC (9.1)
CRYPTO (7.2)
EUROCRYPT (7.2)
J. Cryptology (4.9)
ASIACRYPT (4.0)
PKC (3.8)

Figure 7.1: Results from our method, demonstrating differences and changes in
conference quality over time in various subfields. These graphs includes size and year
normalization and are the result of combining multiple different metrics of interest.

7.1 Introduction

There exist many tools to evaluate professional academic scholarship. For example

Elseiver’s Scorpus provides many author-level and journal-level metrics to measure

the impact of scholars and their work [Col+10; SM17]. Other publishers, such as the

Public Library of Science, provide article-level metrics for their published work [Fen13].

Large technology companies, such as Google and Microsoft provide their own publicly

available metrics for scholarship [But11]. Even independent research institutes, such

as the Allen Institute’s Semantic Scholar [Amm+18], manage their own corpus and

metrics for scholarly productivity. However, these author-based metrics (often derived

from citation measurements) can be inconsistent, even across these large, established

providers [SD18].

In this work, we propose a method for evaluating a comprehensive collection of

published academic work by using an external evaluation metric. By taking a large

collection of papers and using only information about their publication venue, who

wrote them, and when, we provide a largely automated way of discovering not only

venue’s value. Further, we also develop a system for automatic organization of venues.

This is motivated by the desire for an open, reproducible, and objective metric that

is not subject to some of the challenges inherent to citation-based methods [SD18;

BD08; GG17].

We accomplish this by setting up a linear regression from a publication record

to some metric of interest. We demonstrate three valid regression targets: status as

115

7. Learning the Value of Academic Venues

a faculty member (a classification task), awarded grant amounts, and salaries. By

using DBLP [Ley02] as our source of publication data, NSF grants as our source of

awards, University of California data for salaries, and CSRankings [Ber18] for faculty

affiliation status, we’re able to formulate these as large data regression tasks, with

design matrix dimensions on the order of a million in each dimension. However, since

these matrices are sparse, regression weights can be obtained efficiently on a single

laptop computer. Details of our method are explained in section 7.4.

We call our results venue scores and validate their performance in the tasks of

evaluating conferences, evaluating professors, and ranking universities. We show that

our venue scores correlate highly with other influence metrics, such as h-index [Hir05],

citations or highly-influential citations [VHE15]. Additionally, we show that university

rankings, derived from publication records correlate highly with both established rank-

ings [NR18; Edu18; Ran18] and with recently published quantitative metrics [Ber18;

Bla+18; Vuc+18; CAL15].

7.2 Related Work

Quantitative measures of academic productivity tend to focus on methods derived

from citation counts. By using citation count as the primary method of scoring a paper,

one can decouple an individual article from the authors who wrote it and the venue it

was published in. Then, robust citation count statistics, such as h-index [Hir05], can

be used as a method of scoring either individual authors, or a specific venue. Specific

critiques of h-index scores arose almost as soon as the h-index was published, ranging

from a claimed lack-of-utility [LJL06], to a loss of discriminatory power [Tol08].

Citations can also be automatically analyzed for whether or not they’re highly

influential to the citing paper, producing a ”influential citations” metric used by

Semantic Scholar [VHE15]. Even further, techniques from graph and network analysis

can be used to understand systematic relationships in the citation graph [Ber07].

Citation-based metrics can even be used to provide a ranking of different universi-

ties [Bla+18].

Citations-based metrics, despite their wide deployment in the scientometrics

community, have several problems. For one, citation behavior varies widely by

fields [BD08]. Additionally, citations often exhibits non-trivial temporal behav-

116

7. Learning the Value of Academic Venues

ior [GG17], which also varies greatly by sub-field. These issues highly affect one’s

ability to compare across disciplines and produce different scores at different times.

Recent work suggests that citation-based metrics struggle to effectively capture a

venue’s quality with a single number [Wal17]. Comparing citation counts with statisti-

cal significance requires an order-of-magnitude difference in the citation counts [KH17],

which limits their utility in making fine-grained choices. This limitation may be

present in most measures of academic productivity [Sho57]. Despite these quality

issues, recent work [Vuc+18] has demonstrated that citation-based metrics can be

used to build a university ranking that correlates highly with peer assessment; we

show that our method provides a similar quality of correlation.

Our use of straightforward publication data (Section 7.3) enables a much simpler

model. This simplicity is key, as the challenges in maintaining good citation data

have resulted in the major sources of h-index scores being inconsistent with one

another [SD18].

While there exist many forms of ranking journals such as Eigenfactor [Ber07] or

SJR [Fal+08], these tend to focus on journal-level metrics while our work focuses on

all venues, including conferences.

7.2.1 Venue Metrics

We are not the first to propose that scholars and institutions can be ranked by

assigning scores to published papers[RT07]. However, in prior work the list of venues

is often manually curated and assigned equal credit, a trend that is true for studies

in 1990s [Gei+96] and their modern online versions [Ber18]. Instead, we propose a

method for obtaining automatic scores for each venue, and in doing so, requires no

manual curation of valid venues.

Previous work [YL07] has developed methods for ranking venues automatically,

generating unique scores based only on author data by labeling and propagating

notions of ”good” papers and authoritative authors. However, this work required a

manually curated seed of what good work is. It was only demonstrated to work on a

small sub-field of conferences, as new publication cliques would require new labeling

of ”good” papers. Recent developments in network-based techniques for ranking

venues have included citation information [ZW18], and are able to produce temporal

117

7. Learning the Value of Academic Venues

models of quality. In contrast, our proposed model doesn’t require citation data to

produce sensible venue scores.

Our work, in some ways, is most similar to that of CSRankings [Ber18]. CSRank-

ings maintains a highly curated set of top-tier venues; venues selected for inclusion

are given 1 point per paper, while excluded venues are given 0 points. Additionally,

university rankings produced by CSRankings include a manually curated set of cat-

egories, and rankings are produced via a geometric mean over these categories. In

comparison, in this work, we produce unique scores for every venue and simply sum

together scores for evaluating authors and institutions.

In one of the formulations of our method, we use authors status as faculty (or not

faculty) to generate our venue scores. We are not alone in this line of analysis, as

recent work has demonstrated that faculty hiring information can be used to generate

university prestige rankings [CAL15].

Many existing approaches either focus only on journals [Fal+08], or do not have

their rankings available online. For our dataset, we do not have citation-level data

available, so we are unable to compare against certain existing methods on our dataset.

However, as these methods often deploy a variant of PageRank [Pag+99], we describe

a PageRank baseline in Section 7.6.1 and report its results.

7.3 Data

Our primary data is the dblp computer science bibliography [Ley02]. DBLP contains

millions of articles, with millions of authors across thousands of venues in Computer

Science. We produced the results in this paper by using the dblp-2019-01-01 snapshot.

We restricted ourselves to only consider conference and journal publications, skipping

books preprints, articles below 6 pages and over 100 pages. We also merged dblp

entries corresponding to the same conference. This lead to a dataset featuring

2,965,464 papers, written by 1,766,675 authors, across 11,255 uniquely named venues

and 50 years of publications (1970 through 2019).

Our first metric of interest is an individual’s status as a faculty member at a

university. For this, we used the faculty affiliation data from CSRankings [Ber18],

which are manually curated and contain hundreds of universities across the world

and about 15,000 professors. For evaluation against other university rankings, we

118

7. Learning the Value of Academic Venues

used the ScholarRank [Vuc+18] data to obtain faculty affiliation, which contains a

more complete survey of American universities (including more than 50 not currently

included in CS Rankings). While CSRankings data is curated to have correct DBLP

names for faculty, the ScholarRank data does not. To obtain a valid affiliation, the

names were automatically aligned with fuzzy string matching, resulting in about 4,000

faculty with good seemingly unique DBLP names and correct university affiliation.

Although those two methods are manually curated, automatic surveys of faculty

affiliations have recently been demonstrated [MWC18].

Our second metric of interest was National Science Foundation grants, where we

used awards from 1970 until 2018. This data is available directly from the NSF [Fou18].

We adjusted award amounts using annual CPI inflation data. We restricted ourselves

to awards that had finite amount, where we could match at least half the Principal

Investigators on the grant to DBLP names and the grant was above $20,000. Award
amounts over 10 million dollars were clipped in a smooth way to avoid matching to a

few extreme outliers. This resulted in 407,012 NSF grants used in building our model.

Our third and final metric of interest was University of California salary data [Ins18].

This was inspired by a paper that predicted ACM/IEEE Fellowships for 87 professors

and used salary data [Noc+14]. We looked at professors across the entire University

of California system, matching their names to DBLP entries in an automated way.

We used the maximum salary amount for a given individual across the 2015, 2016 and

2017 datasets, skipping individuals making less than 120, 000 or over 800, 000 dollars.

This resulted in 2,436 individuals, down from 3,102 names that we matched and

an initial set of about 20,000 initial professors. As DBLP contains some Chemistry,

Biology, and Economics venues, we expect that some of these are likely not Computer

Science professors.

Table 7.1: Spearman’s ρ correlation between rankings produced by targeting different
metrics of interest.

Faculty NSF Salary

Faculty 1.00 0.91 0.84

NSF 0.91 1.00 0.86

Salary 0.84 0.86 1.00

119

7. Learning the Value of Academic Venues

7.4 Method

Our basic model is that a paper in a given publication venue (either a conference or

a journal), having passed peer review, is worth a certain amount of value. Certain

venues are more prestigious, impactful or selective, and thus should have higher

scores. Other venues have less strict standards, or perhaps provide less opportunity

to disseminate their ideas [Mor+18] and should be worth less. While this model

explicitly ignores the differences in paper quality at a publication venue, discarding

this information enables the use of a large quantity of data to develop a statistical

scoring system.

This methodology is not valid for all fields of science, nor all models of how

impactful ideas are developed and disseminated. Our method requires individual

authors have multiple publications across many different venues, which is more true

in Computer Science than the natural sciences or humanities, where publishing rates

are lower [LMS18]. If instead we assume that all research ideas produce only a

single paper, or that passing peer-review is a noisy measurement of quality [Sha+18],

then our proposed method would not work very well. Instead, the underlying

process which supports our methodology is that good research ideas produce multiple

research publications in selective venues; better ideas would produce more individual

publications in higher quality venues. The concept of All models are wrong, but some

are useful is our guide here. This assumption allows us to obtain venue scores in an

automatic way, and then use these scores to evaluate both authors and institutions.

Our approach to ranking venues is to construct a regression task, apply an

optimization method to solve it, and use the resulting weights. Optimization’s ability

to generate powerful representations is well-studied in machine learning [RHW86]

and statistics [Hub85]. The resulting weights are often useful [CN11], and this

methodology is widely used in natural language processing [Mik+13; PSM14].

120

7. Learning the Value of Academic Venues

7.4.1 Formal Setup

In general, we will obtain a score for each venue by setting up a linear regression task

in the form of equation 7.1.



conf1 conf2 . . . confn

auth1 1 3 . . . 0 1

auth2 1 0 . . . 1 1
...

...
...

. . .
...

...

authm 0 2 . . . 4 1




x0

x1

...

xn

 =


isProf1

isProf2
...

isProfm

 (7.1)

Authors are listed along the rows, and venues are listed along the columns. The

number of publications that an author has in a conference is noted in the design

matrix. There is an additional column of 1s to learn a bias offset in the regression.

Different forms of counting author credit are discussed in section 7.4.6, while

different regression targets are discussed in section 7.3. In equation 7.1, the regression

target is shown as a binary variable indicating whether or not that author is currently

a professor. If this linear system, Ax = b is solved, then the vector x will contain real-

valued scores for every single publishing venue. Since our system is over-determined,

there is generally no exact solution.

Instead of solving this sparse linear system directly, we instead solve a regularized

regression, using a robust loss and L2 regularization. That is, we iteratively minimize

the following expression via stochastic gradient descent [RM51]

L(Ax, b) + λ||x||2 (7.2)

The L2 regularization enforces a Gaussian prior on the learned conference scores. We

can perform this minimization in Python using common machine learning software

packages [Ped+11]. We tend to use a robust loss function, such as the Huber loss in

the case of regression [Hub64], which is quadratic for errors of less than δ and linear

121

7. Learning the Value of Academic Venues

for errors of larger than δ. It can be written as

L(ŷ, y) =

1
2
(y − ŷ)2, if |y − ŷ|≤ δ

δ|y − ŷ|−1
2
δ2, otherwise

(7.3)

In the case of classification, we have labels y ∈ {−1, 1} and use the modified Huber

loss [Zha04],

L(ŷ, y) =

max(0, 1− yŷ)2, if yŷ ≥ −1

−4yŷ, otherwise
(7.4)

We experimented with other loss functions, such as the logistic loss, and while

they tended to produce similar rankings and results, we found that the modified

Huber loss provided better empirical performance in our test metrics, even though

the resulting curves looked very similar upon qualitative inspection.

122

7. Learning the Value of Academic Venues

7.4.2 Metrics of Interest

As detailed in section 7.3, we targeted three metrics of interest: status as a faculty

member, NSF award sizes, and professor salaries. Each of these metrics came from

a completely independent data source, and we found that they each had their own

biases and strengths (more in section 7.5).

For faculty status classification, we used the modified huber loss and CSRank-

ings [Ber18] faculty affiliations. To build venue scores that reward top-tier conferences

more highly, we only gave professors in the top-k ranked universities positive labels.

We tried k = 5, 16, 40, 80, and found that we got qualitatively different results with

quantitative similar performance. Unless otherwise stated, we used k = 40. The uni-

versity ranking used to select top-k was CSRankings itself, and included international

universities, covering the Americas, Europe and Asia. This classification is performed

across all authors, leading to 1.7 million rows in our design matrix.

For the NSF awards, every Principal Investigator on the award had their papers

up to the award year as the input features. We used a Huber loss, λ = 0.03, and

experimented with normalizing our award data to have zero mean and unit variance.

Additionally, we built models for both raw award sizes and log of award sizes; the raw

award sizes seem to follow a power-law while the log award sizes seem distributed

as approximately a Gaussian. Another model choice is whether to regress each NSF

grant as an independent measurement or instead a marginal measurement which

tracks the cumulative total of NSF grants received by the authors. If not all authors

on the grant were matched to DBLP names, we only used the fraction of the award

corresponding to the fraction of identified authors. This regression had ∼ 1
2
million

rows in its design matrix .

For the salary data, we found that normalizing the salary data to have zero mean

and unit variance led to a very poor regression result, while having no normalization

produced a good result. This regression only had ∼ 2, 400 datapoints, and thus

provided information about fewer venues than the other metrics of interest.

7.4.3 Modeling Change Over Time

In modeling conference values, we wanted to build a model that could adjust for

different values in different years. For example, a venue may be considered excellent

123

7. Learning the Value of Academic Venues

in the 1980s, but may have declined in influence and prestige since then. To account

for this behavior, we break our dataset into chunks of n years and create a different

regression variable for each conference for each chunk. The non-temporal model is

obtained simply by setting n ≥ 50.

We also examine a model that creates an independent variable for each year, for

each conference. After setting n = 1 in the block model, we splat each publication

as a Gaussian at a given year. By modifying σ, we can control the smoothness of

the obtained weights. The Gaussian is applied via a sparse matrix multiply of the

design matrix A with the appropriate band diagonal sparse matrix G. The use of a

truncated Gaussian (where p < 0.05 is clipped and the Gaussian is re-normalized)

enables our matrix to maintain sparsity. We used a σ = 4.5, which produced an

effective window size of about 10 years. This can be seen visually in Figure 7.2.

Our different temporal models are compared in Table 7.5 by correlating against

existing author-level, journal-level and university-level metrics. For evaluation details

see Section 7.6.

7.4.4 Normalizing Differences Across Years

The temporal models described in the previous section have an inherent bias. Due

to the temporal window of the DBLP publication history, there is variation in

distributed value due to changes annual NSF funding, the survivorship of current

academic faculty, etc. To adjust for this bias, we scale each conference-year value by

the standard deviation of conference values in that year. This scaling can help or

hurt performance, depending on which metric of interest the model is built against.

It generally produces flatter value scores over time but leads to some artifacts. The

effects of this normalization are shown in Figure 7.3 and Table 7.2. In our final

version, we instead normalize by the average of the top 10 conferences in each year,

which produced flatter results over time,

124

7. Learning the Value of Academic Venues

1970 1980 1990 2000 2010 2020
0.0

0.1

0.2

0.3

0.4

0.5

1970 1980 1990 2000 2010 2020
0.0

0.1

0.2

0.3

0.4

0.5

Figure 7.2: Truncated Gaussian (σ = 4.5) used to splat a publication’s value across
multiple years. Examples centered at the year 2000 and the year 2018

125

7. Learning the Value of Academic Venues

1970 1980 1990 2000 2010
year

0

5

10

15

20

25

ve
nu

e
sc

or
es

 (i
n

st
an

da
rd

 d
ev

ia
tio

ns
)

None

NIPS
AAAI
ICML
IJCAI
AISTATS
UAI

1970 1980 1990 2000 2010
year

0

2

4

6

8

10

ve
nu

e
sc

or
es

 (i
n

st
an

da
rd

 d
ev

ia
tio

ns
)

Size

NIPS
AAAI
ICML
IJCAI
AISTATS
UAI

1970 1980 1990 2000 2010
year

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

ve
nu

e
sc

or
es

 (i
n

st
an

da
rd

 d
ev

ia
tio

ns
)

Year

NIPS
AAAI
ICML
IJCAI
AISTATS
UAI

1970 1980 1990 2000 2010
year

0

2

4

6

8

ve
nu

e
sc

or
es

 (i
n

st
an

da
rd

 d
ev

ia
tio

ns
)

Year + Size

NIPS
AAAI
ICML
IJCAI
AISTATS
UAI

Normalization Methods

Figure 7.3: Results showing the effect of performing a normalization for venue year
and size. See Sections 7.4.4 and 7.4.5.

126

7. Learning the Value of Academic Venues

Table 7.2: Spearman correlation between our model and existing metrics, showing
the effect of different normalization schemes. See Sections 7.4.4 and 7.4.5 for model
details. See Section 7.6 for evaluation details.

Normalization influential
cita-
tions
(au-
thor)

h-
index
(au-
thor)

h-index
(univer-
sity)

h-
index
(venue)

None 0.72 0.61 0.60 0.26

Year 0.72 0.66 0.58 0.18

Size 0.74 0.63 0.61 0.25

Year + Size 0.72 0.61 0.60 0.26

7.4.5 Normalizing Differences In Venue Size

Our model uses L2 regularization on the venue scores, which tends to squash the

value of variables with less explanatory power.This process often resulted in the

under-valuing of smaller, more selective venues. To correct for this size bias, instead

of giving each paper 1 point of value in the design matrix, we give each paper 1
M

credit, where M is the number of papers at that venue in that year; this step is

performed before Gaussian splatting. This produced rankings which emphasized small

venues and provided a good notion of efficient venues. In practice, we instead used a

blended result with a multiplier of 1
α
√
M

with α = 1.5849, the Hausdorff dimension

of the Sierpinski triangle, an arbitrary constant.

7.4.6 Modeling Author Position

Another question to consider is how credit for a paper is divided up amongst the

authors. We consider four models of authorship credit assignment:

1. Authors get 1
n
credit for each paper, where n is the number of authors on the

paper. Used by [Ber18].

2. All authors get full credit (1 point) for each paper

3. Authors receive less credit for later positions (1
1
, 1
2
, 1
3
· · · 1

n
), normalized so total

127

7. Learning the Value of Academic Venues

Table 7.3: Correlation (Spearman’s ρ) between our model and Semantic
Scholar [VHE15], showing the properties of different authorship models. For de-
tails see section 7.4.6.

Evaluation Author Model

1 2 3 4

R
eg
re
ss
io
n

A
u
th
or

M
o
d
el

1 0.70 0.72 0.65 0.70

2 0.68 0.71 0.61 0.67

3 0.71 0.73 0.66 0.71

4 0.70 0.72 0.65 0.71

credit sums to 1). This model assigns more credit to earlier authors and is used

by certain practitioners [Sek08; HGC81; Hua18; Hag08].

4. The same as (3), except the last author is explicitly assigned equal credit with

the first author before normalization.

Using Spearman correlation with Semantic Scholar’s ”highly influential citations”,

an evaluation metric described in depth in Sec. 7.6.4, we can evaluate each of these

models. Specifically, there are two places where venues scores require a selection

of authorship model. The first is how much credit is assigned to each paper when

performing regression (in the case of our faculty metric of interest). The second is

when evaluating authors with the obtained regression vector. See table 7.3 for a

summary of experimental results. For the purposes of evaluation, assigning full credit

to authors (model 2) produced the best results, while model 3 consistently produced

the lowest quality correlations. On the other hand, for the purposes of performing the

classification task, the roles are flipped. Assigning full credit (model 2) consistently

produces the worst quality correlations while using model 3 produces the highest

quality correlations.

7.4.7 Combining Models

Since the proposed metrics of interest (faculty status, NSF awards, salaries) were

generated from different independent regression targets, with different sized design

matrices, there may be value in combining them to produce a joint model. The value

of ensemble models is well documented in both theory [FS97] and practice [BKV09].

128

7. Learning the Value of Academic Venues

Table 7.4: Correlation between our model and traditional measures of scholarly output
on the dataset of CMU faculty. For model details see Section 7.4.7. For evaluation
details see Section 7.6.4.

Model citations h-index [Hir05] influential citations [VHE15]

Faculty 0.59 0.68 0.71

NSF 0.63 0.66 0.67

Salary 0.36 0.36 0.41

Combined 0.69 0.77 0.75

In the absence of a preferred metric with which to cross-validate our model, we simply

perform an unweighted average of our models to obtain a gold model. To ensure

that the weights are of similar scale, the conference scores are normalized to have

zero mean and unit variance before combining them. Venue scores that are too large

or too small are clipped at 12 standard deviations. For the temporal models, this

normalization is performed on a per-year basis. While table 7.4 shows results for a

simple combination, one could average together many models with different choices

of hyperparameters, regression functions, datasets, filters to scrub the data, etc.

7.5 Results

A visual example of some of venue scores is shown in Figure 7.1. We kept the y-axis

fixed across all the different Computer Science sub-disciplines to show how venue

scores can be used to compare different fields in a unified metric. There are additional

results in our qualitative demonstration of normalization methods, Figure 7.3.

Due to the variation in rankings produced by one’s choice of hyperparameters, and

the large set of venues being evaluated, we do not have a canonical set of rankings that

can be presented succinctly here. Instead, we will focus on quantitative evaluations

of our results in the following section.

129

7. Learning the Value of Academic Venues

Table 7.5: Correlation between rankings produced by our model against rankings
produced by traditional scholarly metrics. Different rows correspond to different
hyperparameters choices for our model. Each column is a corresponds to a traditional
metric. AI = Author Highly Influential Citations, AH = Author H-index, USN = US
News 2018, VH = Venue H-index, VC = Venue Citations.

Years Metric AI AH USN VH VC

σ = 4.5 Faculty 0.73 0.69 0.74 0.63 0.42

10 0.67 0.57 0.76 0.57 0.35

50 0.75 0.68 0.76 0.38 0.21

σ = 4.5 NSF 0.64 0.62 0.62 0.61 0.59

10 0.68 0.68 0.60 0.59 0.60

50 0.67 0.65 0.63 0.64 0.67

σ = 4.5 Salary 0.62 0.58 0.59 0.48 0.55

10 0.65 0.62 0.57 0.45 0.55

50 0.66 0.63 0.56 0.43 0.63

7.6 Evaluation

To validate the venue scores obtained by our regression methods, our evaluation

consists of correlating our results against existing rankings and metrics. We consider

three classes of existing scholarly measurements to correlate against: those evaluat-

ing universities, authors, and venues. Each of these classes has different standard

techniques, and a different evaluation dataset, so they will be described separately in

Sections 7.6.2, 7.6.4, and 7.6.3.

In the case of our proposed method, venue scores, we have a simple way to turn

them from a journal-based to an author-based or institution-based metric. Venues are

evaluated directly with the scores. Authors are evaluated as the dot product of venue

scores and the publication vector of an author. Universities are evaluated as the dot

product of venue scores and the total publication vector of all faculty affiliated with

that university.

130

7. Learning the Value of Academic Venues

7.6.1 PageRank Baseline

Many existing approaches build on the idea of eigenvalue centrality [Ber07; YL07;

ZW18]. We implemented PageRank [Pag+99] using the power iteration method to

compute a centrality measure to use for both author-level and venue-level metrics.

Unlike most versions of PageRank, which use citation counts, we implement two

variants based solely on co-authorship information.

Author-level PageRank (PageRankA) is computed on the 1.7M x 1.7M sized

co-authorship graph, where an edge is added for every time two authors co-author a

paper. We found that the authors with highest centrality measures are often common

names with insufficient disambiguation information in DBLP.

Journal-level PageRank (PageRankC) is computed on the 11,000 x 11,000 co-

authorship graph, where an edge is added for every author who publishes in both

venues. When ran on the unfiltered DBLP data, the highest scoring venue was arXiv,

an expected result.

7.6.2 University Ranks

For this work, we produce university rankings simply as an evaluation method to

demonstrate the quality and utility of our venue scoring system. The reader is

cautioned that university ranking systems can tend to produce undesirable gaming

behavior [Joh18], and are prone to manipulation.

We obtained and aligned many existing university rankings for Computer Science

departments. These include rankings curated by journalistic sources, such as the

US News Rankings [NR18], the QS Rankings [Ran18], Shanghai Ranking [Ran15],

Times Higher Education Rankings [Edu18] and the National Research Council re-

port [CAL15]. In addition, we consider purely quantitative evaluation systems such

as ScholarRank [Vuc+18], CSRankings [Ber18], CSMetrics [Bla+18], and Prestige

Rankings [CAL15]. We additionally include ScholarRank’s t10sum across the matched

faculty that our venue scores result uses.

We follow a recent paper [Vuc+18], which demonstrated the efficacy of a citation-

based metric in producing rankings with large correlation against US News rankings.

We extend these experiments to include more baselines. In contrast with [Vuc+18],

we use a rank correlation metric (namely Kendall’s τ), which naturally handles ordinal

131

7. Learning the Value of Academic Venues

Table 7.6: Section 7.6.2. Kendall’s τ correlation across different University Rankings.

Ranking Correlation
with US
News 2018

USN2018 [NR18] 1.000

USN2010 [CAL15] 0.928

Venue Scores 0.780

ScholarRank [Vuc+18] 0.768

ScholarRankFull 0.757

CSMetrics [Bla+18] 0.746

CSRankings [Ber18] 0.724

Times [Edu18] 0.721

NRC95 [CAL15] 0.713

t10Sum [Vuc+18] 0.713

Prestige [CAL15] 0.666

Citations [Vuc+18] 0.665

Shanghai [Ran15] 0.586

of papers 0.585

BestPaper [Hua18] 0.559

PageRankA 0.535

PageRankC 0.532

QS [Ran18] 0.518

ranking systems. While ScholarRank [Vuc+18] claimed a correlation of > 0.9 with US

News, this was under Pearson’s correlation coefficient, and the result under Kendall’s

τ is 0.768 in the published version and 0.757 using full precision ScholarRank.

Our faculty-based regression is able to generate a result with the highest correlation

against the US News rankings. We perform even better than ScholarRank, which

was designed to optimize this metric (although under a non-rank correlation metric).

132

7. Learning the Value of Academic Venues

Table 7.7: Spearman’s ρ correlation between different journal-level metrics (N=1008).
For details see Section 7.6.3.

papers citations h-index PageRank
C

venue
scores

papers 0.75 0.41 0.91 0.25

citations 0.75 0.60 0.69 0.27

h-index 0.41 0.60 0.37 0.65

PageRankC 0.91 0.69 0.37 0.27

venue scores 0.25 0.27 0.65 0.27

7.6.3 Journal-level metrics

To evaluate the fidelity of our venue scores for journals and conferences, we obtain

the h-index [Hir05] and citation count for 1,308 conferences from Microsoft Academic

Graph [Sch14]. We continue to use Spearman’s ρ as our correlation metric, even

though rank-correlation metrics can be highly impacted by noisy data [Abd90].

Under this metric, venue scores correlated highly with h-index. Notably, h-index

and venue scores are highly correlated with each other, even though venue scores are

much less correlated with raw conference size. See Figure 7.7 for detailed results.

7.6.4 Author-level Metrics

To evaluate our venue scores in the application of generating author-level metrics, we

will use rank correlation (also known as Spearman’s ρ) [Spe04] between our venue

scores and traditional author-level metrics such as h-index. Google Scholar was

used to obtain citations, h-index [Hir05], i10-index, and Semantic Scholar used to

obtain highly influential citations [VHE15]. Prior work has critiqued the h-index

measure [Yon14] and proposed an alternative metric, derived from a citation count.

However, our use of a rank correlation means that monotonically transformed

approximations of citation counts would lead to identical scores.

For evaluation, we collected a dataset for the largest Computer Science department

in CSRankings (n = 148). The results are shown in Table 7.8. We can see that venue

scores highly correlate with h-index, influential citations, i10-scores and CSRankings

133

7. Learning the Value of Academic Venues

Table 7.8: Correlation between different author-level metrics for a dataset of professors
(N=148). Details are in Section 7.6.4.

paper cite h i10 CSR venue influence

paper 0.66 0.79 0.81 0.71 0.94 0.76

cite 0.66 0.93 0.88 0.49 0.66 0.81

hx 0.79 0.93 0.97 0.56 0.75 0.80

i10 0.81 0.88 0.97 0.53 0.75 0.73

CSR [Ber18] 0.71 0.49 0.56 0.53 0.84 0.64

venue 0.94 0.66 0.75 0.75 0.84 0.78

influence [VHE15] 0.76 0.81 0.80 0.73 0.64 0.78

scores. The results from the author-based PageRank are surprisingly similar to our

venue scores. However, the conference-based PageRank performed worse than venue

scores on every correlation metric.

7.7 Discussion

Our results show a medium to strong correlation of venue scores to existing scholarly

metrics, such as citation count and h-index. For author metrics, venue scores correlate

with influential citations [VHE15] or h-index about as well as such measures correlate

against each other or raw citation counts (see Table 7.8). For venue metrics, venue

scores correlate with h-index (0.64) and citations (0.61) nearly as well as citations

correlate with h-index (0.66). For university metrics, venue scores correlate as well

with measures of peer assessment as citation-based metrics do [Vuc+18].

As h-index and citation counts have their flaws, obtaining perfect correlation is

not necessarily a desirable goal. Instead, these strong correlations serve as evidence

for the viability of venue scores.

Venue scores have been shown to be robust against hyperparameter choices

(Tables 7.2, 7.3, 7.4, 7.5). Even venue scores produced from completely different data

sources tend to look very similar (Table 7.1). Additionally, venue scores can naturally

capture the variation of conference quality over time (Figures 7.1, 7.3).

As with any inductive method, venue scores are data-driven and will be subject

134

7. Learning the Value of Academic Venues

1970 1980 1990 2000 2010 2020
year

0.0

2.5

5.0

7.5

10.0

12.5

15.0

an
nu

al
 v

al
ue

 (4
.5

 s
ig

m
a

sm
oo

th
in

g)

venue scores

Judea Pearl
Leonidas J. Guibas

Richard M. Karp
Takeo Kanade

Michael I. Jordan
Elisa Bertino

1970 1980 1990 2000 2010 2020
year

0

5

10

15

20

25

30

35

an
nu

al
 v

al
ue

 (4
.5

 s
ig

m
a

sm
oo

th
in

g)

paper count

1970 1980 1990 2000 2010 2020
year

0

2

4

6

8

an
nu

al
 v

al
ue

 (4
.5

 s
ig

m
a

sm
oo

th
in

g)

paper count (norm by annual paper totals)

Figure 7.4: The career arcs of several accomplished Computer Scientists. The first
row uses a simple model where all papers are all given equal weight; first using raw
counts and then normalizing by the number of papers published each year. The
second row shows our model.

135

7. Learning the Value of Academic Venues

to past biases. For example, venue scores can clearly be biased by hiring practices,

pay inequality and NSF funding priorities. As these are the supervising metrics,

bias in those datasets will be encoded in our results. For example, we found that

the faculty hiring metric prioritized Theoretical Computer Science, while using NSF

awards prioritized Robotics. The faculty classification task may devalue publishing

areas where candidates pursue industry jobs, while the NSF grant regression task

may devalue areas with smaller capital requirements. By using large datasets and

combining multiple metrics in a single model (Section 7.4.7), the final model could

reduce the biases in any individual dataset.

Each of our metrics of interest has an inherent bias in timescale, which our

temporal normalization tries to correct for, but likely does an incomplete job of.

Salaries are often higher for senior faculty. NSF Awards can have a long response time

and a preference towards established researchers. Faculty classification prioritizes the

productive years of existing faculty. Additionally, faculty hiring as a metric will have

a bias towards work from prestigious universities [CAL15] and their venue preferences.

Some of these issues also exist in citation metrics, and may be why our uncorrected

models correlated better with them (Table 7.2).

7.8 Similarity Metrics

While the previous sections of this paper have focused on evaluation, the same dataset

can be used to organize venues into groups. For organization, we use a much smaller

dataset, using data since 2005 and only evaluating the 1,155 venues that have at

least 20 R1 universities with faculty publishing in them. We then build the venue ×
author matrix, counting the number of papers each that author published in each

venue. Performing a d-dimensional Latent Dirichlet Allocation [BNJ03], we obtain a

50-dimensional vector representing each conference in a meaningful way.

These vectors can then be clustered [AV07] to produce automatic categories for

each conference. These high dimensional vectors can also be embedded [MH08] into

two dimensions to produce a visual map of Computer Science. See Figure 7.5 for

our result. These clusters represent natural categories in Computer Science. For

example, it is easy to see groups that could be called Theory, Artificial Intelligence,

Machine Learning, Graphics, Vision, Parallel Computing, Software Engineering,

136

7. Learning the Value of Academic Venues

Figure 7.5: Automatic clustering for venues in Computer Science, the largest venues
in each cluster are labeled.

Human-Computer Interaction, among many others.

While some clusters are distinct and repeatable, others are not. When datasets

contain challenging cases, ideal clustering can be hard to estimate [Ben15]. Using

silhouette scores [Rou87], we can estimate how many natural clusters of publishing

exist in Computer Science. In our experiments, silhouette scores were maximized

with 20 to 28 clusters. As the clustering process is stochastic, we were unable to

137

7. Learning the Value of Academic Venues

Carnegie Mellon University Massachusetts Institute of Technology University of California - Berkeley Stanford University Univ. of Illinois at Urbana-Champaign Cornell University

University of Michigan University of Washington Georgia Institute of Technology Tsinghua University ETH Zurich University of California - San Diego

University of Maryland - College Park Columbia University University of Wisconsin - Madison National University of Singapore University of Pennsylvania University of Toronto

Max Planck Institute Northeastern University Princeton University University of California - Los Angeles University of Texas at Austin University of Southern California

EPFL Purdue University Technion University of Massachusetts Amherst University of Waterloo KAIST

New York University University of Edinburgh Harvard University Peking University University of British Columbia University of California - Irvine

Figure 7.6: Heatmap showing the differences in research focus across different univer-
sities. Figure 7.5 can be used as a guide.

138

7. Learning the Value of Academic Venues

B Póczos

M Balcan

V Aleven

B Myers

C Harrison

B Vasilescu

W Scherlis

J Mostow

P Narasimhan

E Hovy

H Choset

Y Sheikh
I Gkioulekas

H Miller

F Jahanian

D Garlan

A Kittur

G Fedder

E Xing

S Rudich

B Lucia

M Shamos

T Berg-Kirkpatrick

K Carley

D BrumleyL Cranor

B Haeupler

K Kitani

S Narasimhan

T Kanade

D Woodruff

K Crary

N Sadeh

R Rosenfeld

U Acar

L Bauer

K Sycara

Z Bar-Joseph

J Bagnell

A Pfenning

L Dabbish

C Kulkarni

M O'Toole

L Ahn

R O'Donnell

A Gupta

H Admoni

D Wettergreen

S Balakrishnan

A Waibel

D O'Hallaron

C Atkeson

I Nourbakhsh

J Zimmerman

L Blum

P Gibbons

D Marculescu

B Moseley

K Rashmi

J Carbonell

E Nyberg

D Ramanan

C Goues

S Seshan

R Stern
S Kim

J McCann

R Murphy

D Andersen

B Raj

J Callan

J Bigham

S Brookes

M Fredrikson

R Rajkumar

Y Yang

G Gordon

T Mowry

Y Agarwal

F Pfenning

L Yao

M Mason

R Bryant

J Hammer

A Steinfeld

T Breaux

C Kingsford

K Crane

J Ma

S Goldstein

V Goyal

D Scott

L Morency

R Kraut

A Dubrawski

J Cassell

A Gupta

D Sicker

S Hudson

V Gligor

D Held

E Clarke

M Satyanarayanan
D Sleator

S Lucey

N Michael

A Acquisti

G Neubig

G Miller

J Herbsleb

N Beckmann

J Stamper

J Hodgins

G Blelloch

J Hong

A Datta

Y Tsvetkov
J Kolter

J Baker

J Hoffmann

A Talwalkar

V Sekar

R Reddy

T Lee

A Pavlo

J Forlizzi

M Shaw

C Riviere
H Geyer

M Hebert

M Harchol-Balter

A Ogan

A Singh
R Salakhutdinov

J Morris

P Ravikumar

N Shah

W Whittaker

L Kara

G Ganger

N Pollard

J Aldrich

T Sandholm

K Fragkiadaki

R Harper

M Goel

B Parno

M Erdmann

T Mitchell
W Cohen

C Kästner

M Likhachev

D Siewiorek

A Platzer

K Koedinger

C Liu

C Faloutsos

P Steenkiste

A Procaccia

G Kaufman

R DannenbergK Zhang

V Guruswami

M Blum

A Kelly

R Marculescu

F Fang

C Langmead

J Sherry

A Black

J Hoe

C Rosé

S Kiesler

CSD
RI
MLD
LTI
HCI
ISR
BIO

Figure 7.7: An embedding of Carnegie Mellon University’s School of Computer Science
with colors indicating sub-departments. For example, the Robotics Institute (RI) has
clear clusters for Robotics, Graphics, CV and HRI.

139

7. Learning the Value of Academic Venues

determine the optimal cluster number with statistical significance.

By embedding each author with the weighted average of their publication’s vectors,

we can also obtain a fingerprint that shows which areas of Computer Science each

university focuses on. See Figure 7.6 for an example of such fingerprints for many

top departments. The same clustering method can be used to analyze the focus areas

of a single department, for an example see Figure 7.7.

7.9 Conclusion

We have presented a method for ranking and organizing a scholarly field based only

on simple publication information- namely a list of papers, each labeled with only

their published venue, authors, and year. By regressing venue scores from metrics of

interest, one obtains a plausible set of venue scores. These scores can be compared

across sub-fields and aggregated into author-level and institution-level metrics. The

scores provided by this system, and their resulting rankings, correlate highly with

other established metrics. As this system is based on easily obtainable, publicly

available data, it is transparent and reproducible. Our method builds on simple

techniques and demonstrates that their application to large-scale data can produce

surprisingly robust and useful tools for scientometric analysis.

7.10 Credit Assignment

In order to address issues of collinearity raised by having authors who publish papers

together, we wanted to solve a credit assignment problem. We adapted a well-known

method for addressing this by adapting regularized plus minus [Sil10] from the sports

analytics literature. In our case, we simply regress each publications values from its

authors, as shown below.

140

7. Learning the Value of Academic Venues

15 20 25 30 35 40 45 50
Number of Clusters

0.525

0.550

0.575

0.600

0.625

0.650

0.675
Si

lh
ou

et
te

 S
co

re
Optimal Number of Clusters

Figure 7.8: Curve showing the natural number of clusters in the dataset using R1
authors



author1 author2 . . . authorn

paper1 1 1 . . . 0

paper2 1 0 . . . 0
...

...
...

. . .
...

paperm 0 1 . . . 1




x1

x2

...

xn

 =


score1

score2
...

scoren

 (7.5)

This technique produced scores that correlated highly with total value scores.

While this may be valuable for understanding an individual’s contribution, but we

were unable to find an evaluation for this method. The form of this model that

considers n-wise or pairwise relationships was also considered, but these matrices

were too large for us to run trials.

141

7. Learning the Value of Academic Venues

0 10 20 30 40 50
years since first publication

0.0

0.5

1.0

1.5

2.0
av

er
ag

e
an

nu
al

 v
al

ue
 g

en
er

at
ed Aging Curve for Authors

Figure 7.9: The average productivity of all DBLP authors for that year of their
publishing career.

7.11 Aging Curve

To evaluate if our model makes a sensible prediction over the timescale of a scholar’s

career, we built a model to see what an average academic career looks like, given

that the author is still publishing in those years. See Figure 7.9. Our model suggests

a rise in productivity for the first 20 years of one’s publishing history, and then a

steady decline.

142

7. Learning the Value of Academic Venues

1970 1980 1990 2000 2010 2020

2

4

6

8

10

Systems

INFOCOM (7.6)
IEEE/ACM TON (7.4)
MobiCom (6.0)
MobiSys (5.9)
SIGMETRICS (5.3)
IEEE TMC (5.4)

1970 1980 1990 2000 2010 2020

1

2

3

4

5

6

7

Data Mining

WWW (7.1)
KDD (6.1)
SDM (5.0)
IEEE-TKDE (4.9)
CIKM (4.3)
ICDM (4.3)

1970 1980 1990 2000 2010 2020

1

2

3

4

5

6

7

8

9
Computer Vision

CVPR (8.0)
ECCV (6.4)
ICCV (0.0)
PAMI (5.2)
IJCV (3.8)
WACV (3.9)

1970 1980 1990 2000 2010 2020

2

4

6

8

10

Parallel

IPDPS (5.8)
IEEE-TPDS (4.9)
SC (4.3)
IPDPS Workshops (4.9)
HPDC (4.1)
IEEE Trans. Com (3.7)

1970 1980 1990 2000 2010 2020

2

4

6

8

EE Theory

Allerton (9.2)
ISIT (6.4)
IEEE TIT (6.0)
ICASSP (3.8)
ACSSC (5.2)
ITW (3.8)

1970 1980 1990 2000 2010 2020

1

2

3

4

5

6

7
CAD

DAC (5.2)
ICCAD (5.0)
Proceedings of (5.1)
ICCD (4.6)
ISLPED (4.0)
IEEE TCAD (3.9)

1970 1980 1990 2000 2010 2020

1

2

3

4

5

6

Robotics

RSS (6.4)
ICRA (5.2)
IJRR (5.3)
HRI (4.2)
WAFR (0.0)
IROS (3.8)

1970 1980 1990 2000 2010 2020

1

2

3

4

5

6

7

HCI

CHI (7.3)
CSCW (0.0)
UIST (5.0)
UbiComp (4.8)
CHI Extended Ab (3.5)
DIS (3.1)

1970 1980 1990 2000 2010 2020

2

4

6

8

10

12
Theory

STOC (11.1)
FOCS (10.1)
CCC (9.7)
SODA (10.2)
SIAM JC (9.9)
J. ACM (8.0)

1970 1980 1990 2000 2010 2020

2

4

6

8

Parallelism

SPAA (6.0)
SIGACT News (4.5)
Algorithmica (3.6)
LATIN (2.5)
Theor. Comput. (2.2)
Inf. Comput. (2.4)

1970 1980 1990 2000 2010 2020

1

2

3

4

5

Cyber Physical

HSCC (5.3)
CDC (4.6)
IEEE-TAC (3.7)
ACC (3.7)
SIAM Journal on (2.8)
IEEE-CNS (4.9)

1970 1980 1990 2000 2010 2020

2

4

6

8

10

12
AI

AAAI (7.8)
EC (6.1)
IJCAI (5.6)
AAMAS (4.9)
SIGecom Exchang (4.1)
ACM TEAC (6.0)

1970 1980 1990 2000 2010 2020

1

2

3

4

5

6

7
NLP

EMNLP (6.8)
ACL (6.0)
NAACL (5.6)
TACL (5.4)
COLING (3.4)
Computational L (2.7)

1970 1980 1990 2000 2010 2020

2

4

6

8

10
Parallelism

PODC (5.4)
DISC (4.1)
Distributed Com (2.7)
OPODIS (1.6)
ICDCN (1.6)
SSS (0.8)

1970 1980 1990 2000 2010 2020

1

2

3

4

5

6

7

8

Graphics

SIGGRAPH (7.4)
SIGGRAPH Asia (8.1)
TOG (5.5)
TVCG (4.7)
CGF (4.9)
IEEE Vis (4.8)

1970 1980 1990 2000 2010 2020

2

4

6

8

Computer Science

Commun. ACM (6.7)
IEEE Computer (3.2)
Advances in Com (1.3)
SCIENCE CHINA I (1.3)
CIG (1.1)
CEC (0.7)

1970 1980 1990 2000 2010 2020

1

2

3

4

5

6

7

8

Software Engineering

SIGSOFT FSE (6.3)
ICSE (5.9)
ISSTA (5.2)
ASE (4.6)
ECOOP (3.3)
IEEE Trans. Sof (2.9)

1970 1980 1990 2000 2010 2020

1

2

3

4

5

6

7

Computational Biology

RECOMB (5.4)
JCB (3.0)
WABI (3.8)
Bioinformatics (2.9)
IEEE TCBB (2.7)
BCB (3.0)

1970 1980 1990 2000 2010 2020

2

4

6

8

10

Machine Learning

NIPS (10.9)
ICML (9.7)
COLT (7.9)
AISTATS (7.7)
JMLR (6.0)
UAI (5.5)

1970 1980 1990 2000 2010 2020

2

4

6

8

10
Networking

HotNets (9.7)
CCS (8.7)
NSDI (8.9)
SIGCOMM (7.7)
USENIX Security (7.8)
NDSS (7.9)

1970 1980 1990 2000 2010 2020

2

4

6

8

10
Programming Languages

PLDI (7.9)
OOPSLA (7.7)
POPL (7.5)
CAV (5.3)
VMCAI (3.6)
TPLS (3.4)

1970 1980 1990 2000 2010 2020

2

4

6

8

10

Databases

VLDB (7.6)
SIGMOD (7.6)
ICDE (5.8)
PODS (5.6)
CIDR (5.5)
TDS (4.9)

1970 1980 1990 2000 2010 2020

2

4

6

8

Architecture

ASPLOS (8.7)
HotOS (6.6)
MICRO (6.1)
ISCA (6.2)
HPCA (5.8)
PPOPP (5.5)

1970 1980 1990 2000 2010 2020

2

4

6

8

Computational Geometry

SCG (4.1)
DCG (2.5)
CCCG (2.2)
Comput. Geom. (2.0)
ISAAC (2.3)
WADS (0.0)

1970 1980 1990 2000 2010 2020

0.5

1.0

1.5

2.0

IVA (1.9)
ACII (0.0)
SocInfo (1.9)
JASIST (1.0)
ASIST (0.0)

1970 1980 1990 2000 2010 2020

2

4

6

8

Crypto

TCC (9.1)
CRYPTO (6.8)
EUROCRYPT (7.3)
J. Cryptology (4.8)
ASIACRYPT (3.6)
PKC (4.0)

1970 1980 1990 2000 2010 2020

0.2

0.4

0.6

0.8

1.0

1.2

Softw. Test., V (1.2)
SEKE (0.7)
International J (0.8)
CSEE&T (0.0)

1970 1980 1990 2000 2010 2020

0.5

1.0

1.5

2.0

2.5

3.0

IEEE Trans. Inf (2.9)
WIFS (1.0)
ICB (0.8)
BTAS (0.9)

Figure 7.10: An automatic clustering and rating of the entirity of CS.

143

7. Learning the Value of Academic Venues

Table 7.9: Top Venues

Name Score Size

STOC 11.71 128

FOCS 11.04 120

NIPS 10.94 484

Conference on Computational Complexity 10.41 53

SODA 10.17 224

SIAM J. Comput. 9.98 138

HotNets 9.53 46

ICML 9.46 303

TCC 9.06 76

NSDI 8.76 69

CCS 8.76 114

INFOCOM 8.59 434

ITCS 8.56 103

Allerton 8.53 331

ASPLOS 8.43 48

SIGCOMM 8.31 55

CVPR 8.22 606

PLDI 8.05 68

J. ACM 8.03 82

Theory of Computing 7.94 29

USENIX Security Symposium 7.91 62

NDSS 7.86 63

APPROX-RANDOM 7.86 74

COLT 7.78 82

VLDB 7.75 185

IEEE/ACM Trans. Netw. 7.74 226

AAAI 7.73 403

SIGMOD Conference 7.62 98

SIGGRAPH 7.59 125

AISTATS 7.52 138

144

7. Learning the Value of Academic Venues

Table 7.10: Top Universities

school authors papers venue score size normed

Carnegie Mellon University 174 17275 73126 14159

University of California - Berkeley 108 11011 51062 10884

Massachusetts Institute of Technology 108 9613 47037 10026

Univ. of Illinois at Urbana-Champaign 103 11248 44714 9627

Technion 96 8795 39601 8656

Stanford University 69 7028 36169 8513

Georgia Institute of Technology 108 9337 38083 8118

Tsinghua University 150 14643 40662 8104

University of California - Los Angeles 46 6589 30368 7888

University of Michigan 83 7897 33666 7598

Tel Aviv University 48 5468 28816 7404

University of California - San Diego 74 6646 30836 7142

University of Maryland - College Park 76 7751 30795 7089

ETH Zurich 39 6673 26120 7081

Cornell University 81 5918 30278 6871

University of Washington 69 5727 29087 6846

University of Southern California 58 7206 26044 6387

Columbia University 53 5064 25251 6330

EPFL 55 6927 25320 6290

Princeton University 47 4991 24203 6252

HKUST 57 6640 25134 6190

National University of Singapore 75 7210 25123 5801

University of Pennsylvania 53 5340 22696 5690

University of California - Irvine 71 6624 24070 5628

Pennsylvania State University 49 5668 21325 5451

Peking University 147 11858 27050 5413

University of Toronto 99 5955 24759 5376

University of Texas at Austin 52 4485 21225 5346

University of California - Santa Barbara 38 4698 19137 5224

University of Waterloo 105 7316 23781 5099

Max Planck Institute 32 4307 17808 5093

145

7. Learning the Value of Academic Venues

Table 7.11: Top Authors

Name Score

Philip S. Yu 4354

H. Vincent Poor 3873

Kang G. Shin 3540

Jiawei Han 0001 3143

Micha Sharir 3086

Thomas S. Huang 2992

Don Towsley 2913

Xuemin Shen 2755

Luc J. Van Gool 2700

Noga Alon 2596

Christos H. Papadimitriou 2531

Leonidas J. Guibas 2525

Mahmut T. Kandemir 2467

Jie Wu 0001 2452

Wen Gao 0001 2416

Shuicheng Yan 2373

Rama Chellappa 2286

Alberto L. Sangiovanni-Vincentelli 2266

Georgios B. Giannakis 2266

Yunhao Liu 2257

Mohamed-Slim Alouini 2238

Michael I. Jordan 2213

Christos Faloutsos 2173

Massoud Pedram 2153

Dacheng Tao 2149

Hans-Peter Seidel 2145

Luca Benini 2139

Moshe Y. Vardi 2092

Lajos Hanzo 2081

Yishay Mansour 2073

146

Chapter 8

Additional Results

This chapter briefly notes some otherwise unpublished work that did not make a full

length conference publication.

8.1 Alternative Rendering Formulations

We experimented with different alternatives to 3D Gaussians as an underlying shape

representation. For example, surfels [Pfi+00] with infinite plane intersections, and

configurable fuzz (Fig. 8.1). The confiurable fuzz was a sigmoid function based on

intersection distance from the surfel center. While these sometimes provided sharper

details, they didn’t optimize as well as the 3D Gaussian formulation described above.

Figure 8.1: Surfel Renderer.

Another idea that we pursued was implementing a differentiable render for Varia-

147

8. Additional Results

tional Implicit Surfaces [TO99], also known as Gaussian Process Surfaces [WF07].

Here, we used a similar exponential blending trick as the one used in Fuzzy Metaballs,

where the two terms were distance along the ray (to handle occlusion) and distance

orthogonal to the ray (to handle priority) compared to all the vertex control points.

Forward passes could be further refined by running gradient descent along the ray to

minimize SDF distance. Despite our best efforts at linearization, reparameterization,

we never got the shape optimization to work well.

The basic shape parameterization we experiment with was a simple squared

distance kernel over control points.

f(x) =
N∑
i

λi||µi − x||2

Figure 8.2: Variational Implicit Surface Renderer Forward Pass. Using 256
control points. Based on either the exponential weighting trick to get initialization,
or further steps of SDF improvement. Normals based on instantaneous gradient are
shown.

8.1.1 Multivariate Logistic

We experimented with an alternative primitive, which seems to behave like a gener-

alized simplex (triangle in two dimensions, tetrahedron in three dimensions). This

has a closed form cumulative distribution function, and is one potential multivariate

148

8. Additional Results

Figure 8.3: Variational Implicit Surface Renderer Shape From Silhouette.
Despite having about 100 times more runtime than the similar Fuzzy Metaballs
experiment, there is marginal optimization of the shape towards the desired object.

generalization of the logistic distribution. We were hoping this could enable other

renderers, and it might be an interesting replacement primative for the smooth,

defined everywhere optimization.

w(x;µ,Σ) = Σ(x− u) zTΣz ≥ 0

f(x;µ,Σ) = D!
e−

∑D
j wj

|Σ|
(
1 +

∑D
j e−wj

)D+1

Figure 8.4: Multivariate Logistic Primitive.

It seems to be slightly different than the typical multivarariate logistic distribution

used by others [Fra04; MO90; Arn96; FX89; McD09; MA+73; Bal91].

149

8. Additional Results

Figure 8.5: Sonar Results. The first row shows baseline results for 14 degree
aperture reconstructions. Point cloud based on maximal ray values on the left,
[WGK20] on the right. The second row shows the resulting Gaussian reconstructions
for a 14 degree and 28 degree aperture. The original work didn’t show visual results
for 28 degree data, so it is not available for comparison.

8.2 Sonar Results

We briefly experimented with using 3D Gaussians as an underlying representation for

sonar reconstructions. Of note, we compare against the results shown in [WGK20]

for both 14 degree aperture and 28 degree aperture sonar. We develop a strong point

cloud baseline, and show that we can get comparable results by using the dense sonar

returns to optimized a Gaussian Mixture Model likelihood in JAX.

150

Chapter 9

Conclusions

In Freeman Dyson’s characterization [Dys09], I believe this thesis was largely done in

the manner of a frog, focusing on very specific problems and providing good solutions

to them. Stepping back, there is a clear theme of efficiency, generality across domains,

and tiny bits of mathematics to ground the work. Often, these specific approaches

used Gaussians, and hence the title of the thesis. But overall, trying to take a look

as a bird, the goals were about efficiency, generality and robustness in intelligent

methods that work with real world data. I hope the themes will continue in my

future work, but which problem domains they will focus on seems hard to see at this

moment.

Looking to the future, there are potentially other massive gains in efficiency

that could be possible for techniques in computer vision and robotics. For example,

building neural network back-ends that efficiently process videos for learned ML

inference. Or perhaps building methods that efficiently learn robot policies from a

small dataset of learned trajectories and the appropriate additional information. If

we formulate solutions directly for these problems instead of copying approaches used

elsewhere, perhaps we can see the same benefits as 3D Gaussians did for differentiable

rendering.

However, I will outline some specific directions that would be interesting in the

space of 3D reconstruction. A rough concept is that, having built a differentiable ray-

tracer, we could compute lighting bounces, and perhaps reconstruct HDR environment

maps or perform per-Gaussian material capture for relighting purposes.

151

9. Conclusions

9.1 Bootstrapping Solutions

Since Fuzzy Metaballs are extremely fast, simple and converge well, they may serve

as an ideal coarse method for quickly seeding a solution for a fine method. This

would successfully demonstrate how low degree of freedom models can integrate with,

and provide comparable solutions to, higher quality models that can take days to

optimize.

In this case, we were thinking of tackling the reconstruction of articulated bodies

from a monocular video [Yan+21a; Yan+21b; Yan+22; Yan+23]. While prior work

uses mesh or NeRF-based differentiable rendering, we believe using Fuzzy Metaballs

might greatly benefit these approaches. Mesh differentiable renderers struggle to

converge well in our experiments without careful regularization and tuning, and are

significantly slower. While prior work solves these issues by doing multiple stages of

coarse-to-fine solving and constantly remeshing, we hope that doing an initial solve

with an implicit surface and then a single pass of high-quality optimization with a

high resolution mesh.

Another potential application of this might be cases where users currently deploy

NeRF-based models, such as in scene reconstruction [Suc+21]. This may help

alleviate the need for COLAMP [Sch+16] (or other SfM methods) before switching

to optimization with differentiable rendering.

9.2 Better Applications

Fuzzy Metaballs (Chapter 2) are extremely low dimensional and the low dimensionality

acts as an implicit regularizer (Section 2.10). Compared to other methods, they are

extremely parameter efficient (Section 2.6).

While the focus of the thesis has thus far been on standard computer graphics

datasets (such as the Stanford Bunny) and standard computer vision style inputs

(cell phone videos), we would like to extend our method to other domains. Namely,

we would like to demonstrate the benefits of low degree of freedom models in highly

noisy and difficult tasks.

We have identified several possible areas where such regularization might be

beneficial: in non-light-of-sight imaging [TSG19], lightcurve inversion [KT01] and

152

9. Conclusions

CryoEM [BPF15]. In all these contexts, getting good imaging information is extremely

hard and low degree of freedom models could be desirable. Often the measurements

are based on some aggregated sensing (e.g. all the sonar returns along a potential arc,

all the light coming from an asteroid) and the reconstruction is a very difficult inverse

problem. In some of these cases, getting alternative information is very expensive.

The alternative to CryoEM is getting chemicals to form crystal structures and using

NMR techniques. The alternative to lightcurve inversion for asteroids is to launch a

spacecraft for a flyby.

In these applications, we expect that a differentiable renderer using implicitly

regularized, low-degree-of-freedom models would have large benefits.

Figure 9.1: Asteroid Lightcurve

Thank you for the kind readership. Many have supported me during the writing

and revision of this thesis, but all errors are my own.

Leonid Keselman, September 2023

153

Bibliography

[Abd90] Abdullah, Mokhtar Bin. “On a Robust Correlation Coefficient”. In:
Journal of the Royal Statistical Society. Series D (The Statistician) 39.4
(1990), pp. 455–460. issn: 00390526, 14679884. url: http://www.jstor.
org/stable/2349088 (pg. 133).

[Adr+22] Adriaensen, Steven, Biedenkapp, André, Shala, Gresa, Awad, Noor,
Eimer, Theresa, Lindauer, Marius, and Hutter, Frank. Automated Dy-
namic Algorithm Configuration. 2022. doi: 10.48550/ARXIV.2205.
13881. url: https://arxiv.org/abs/2205.13881 (pg. 88).

[Agi72] Agin, Gerald Jacob. “Representation and Description of Curved Ob-
jects”. PhD thesis. Stanford University, 1972. url: https://apps.dtic.
mil/sti/citations/AD0755139 (pg. 2, 8, 46).

[ALD06] Adams, Bart, Lenaert, Toon, and Dutré, Philip. Particle Splatting:
Interactive Rendering of Particle-Based Simulation Data. Report CW
453. KU Leuven, July 2006, p. 18. url: http://www.cs.kuleuven.be/
publicaties/rapporten/cw/CW453.abs.html (pg. 9, 46).

[Amm+18] Ammar, Waleed et al. “Construction of the Literature Graph in Semantic
Scholar”. In: NAACL HLT. New Orleans - Louisiana: Association for
Computational Linguistics, 2018, pp. 84–91. doi: 10.18653/v1/N18-
3011. url: http://aclweb.org/anthology/N18-3011 (pg. 115).

[Ans+14] Ansel, Jason, Kamil, Shoaib, Veeramachaneni, Kalyan, Ragan-Kelley,
Jonathan, Bosboom, Jeffrey, O’Reilly, Una-May, and Amarasinghe,
Saman. “OpenTuner: An Extensible Framework for Program Auto-
tuning”. In: International Conference on Parallel Architectures and
Compilation Techniques. Edmonton, Canada, Aug. 2014. url: http:
//groups.csail.mit.edu/commit/papers/2014/ansel-pact14-

opentuner.pdf (pg. 87, 90).

[Ans+15] Ansótegui, Carlos, Malitsky, Yuri, Samulowitz, Horst, Sellmann, Meinolf,
and Tierney, Kevin. “Model-Based Genetic Algorithms for Algorithm
Configuration”. In: Proceedings of the 24th International Conference on

154

http://www.jstor.org/stable/2349088
http://www.jstor.org/stable/2349088
https://doi.org/10.48550/ARXIV.2205.13881
https://doi.org/10.48550/ARXIV.2205.13881
https://arxiv.org/abs/2205.13881
https://apps.dtic.mil/sti/citations/AD0755139
https://apps.dtic.mil/sti/citations/AD0755139
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW453.abs.html
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW453.abs.html
https://doi.org/10.18653/v1/N18-3011
https://doi.org/10.18653/v1/N18-3011
http://aclweb.org/anthology/N18-3011
http://groups.csail.mit.edu/commit/papers/2014/ansel-pact14-opentuner.pdf
http://groups.csail.mit.edu/commit/papers/2014/ansel-pact14-opentuner.pdf
http://groups.csail.mit.edu/commit/papers/2014/ansel-pact14-opentuner.pdf

BIBLIOGRAPHY

Artificial Intelligence. IJCAI’15. Buenos Aires, Argentina: AAAI Press,
2015, pp. 733–739. isbn: 9781577357384 (pg. 88).

[Ans+21] Ansotegui, Carlos, Sellmann, Meinolf, Shah, Tapan, and Tierney, Kevin.
Learning How to Optimize Black-Box Functions With Extreme Limits
on the Number of Function Evaluations. 2021. doi: 10.48550/ARXIV.
2103.10321 (pg. 88, 97, 109).

[Arn96] Arnold, Barry C. “Distributions with Logistic Marginals and/or Condi-
tionals”. In: Lecture Notes-Monograph Series 28 (1996), pp. 15–32. issn:
07492170. url: http://www.jstor.org/stable/4355881 (pg. 149).

[AV07] Arthur, David and Vassilvitskii, Sergei. “k-means++: The advantages
of careful seeding”. In: Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms. Society for Industrial and Applied
Mathematics. New Orleans, Louisiana: SIAM, 2007, pp. 1027–1035. isbn:
978-0-898716-24-5 (pg. 72, 136).

[Bak+07] Baker, Simon, Roth, Stefan, Scharstein, Daniel, Black, Michael J., Lewis,
J.P., and Szeliski, Richard. “A Database and Evaluation Methodology
for Optical Flow”. In: International Conference on Computer Vision.
2007, pp. 1–8. doi: 10.1109/ICCV.2007.4408903 (pg. 54).

[Bal91] Balakrishnan, Narayanaswamy. Handbook of the logistic distribution.
CRC Press, 1991 (pg. 149).

[BD08] Bornmann, Lutz and Daniel, Hans-Dieter. “What do citation counts
measure? A review of studies on citing behavior”. In: J. Doc. 64.1 (2008),
pp. 45–80 (pg. 115, 116).

[Bel+61] Bell, C. G., Fujisaki, H., Heinz, J. M., Stevens, K. N., and House, A. S.
“Reduction of Speech Spectra by Analysis-by-Synthesis Techniques”. In:
The Journal of the Acoustical Society of America 33.12 (1961), pp. 1725–
1736. doi: 10.1121/1.1908556 (pg. 11).

[Ben15] Ben-David, Shai. “Clustering is Easy WhenWhat?” In: arXiv e-prints,
arXiv:1510.05336 (Oct. 2015), arXiv:1510.05336. arXiv: 1510.05336
[stat.ML] (pg. 137).

[Ber07] Bergstrom, Carl. “Eigenfactor: Measuring the value and prestige of
scholarly journals”. In: College & Research Libraries News 68.5 (2007),
pp. 314–316 (pg. 116, 117, 131).

[Ber18] Berger, Emery. CSRankings: Computer Science Rankings. http://
csrankings.org/. 2018 (pg. 116–118, 123, 127, 131, 132, 134).

[BKÖ08] Bashirov, Agamirza E, Kurpınar, Emine Mısırlı, and Özyapıcı, Ali. “Mul-
tiplicative calculus and its applications”. In: Journal of Mathematical
Analysis and Applications 337.1 (2008), pp. 36–48. issn: 0022-247X. doi:
https://doi.org/10.1016/j.jmaa.2007.03.081. url: http://www.

155

https://doi.org/10.48550/ARXIV.2103.10321
https://doi.org/10.48550/ARXIV.2103.10321
http://www.jstor.org/stable/4355881
https://doi.org/10.1109/ICCV.2007.4408903
https://doi.org/10.1121/1.1908556
https://arxiv.org/abs/1510.05336
https://arxiv.org/abs/1510.05336
http://csrankings.org/
http://csrankings.org/
https://doi.org/https://doi.org/10.1016/j.jmaa.2007.03.081
http://www.sciencedirect.com/science/article/pii/S0022247X07003824
http://www.sciencedirect.com/science/article/pii/S0022247X07003824

BIBLIOGRAPHY

sciencedirect . com / science / article / pii / S0022247X07003824

(pg. 69).

[BKV09] Bell, Robert M., Koren, Yehuda, and Volinsky, Chris. The BellKor
solution to the Netflix Prize. 2009 (pg. 128).

[Bla+18] Blackburn, Steve, Brodley, Carla, Jagadish, H. V., McKinley, Kathryn
S, Nascimento, Mario, Shin, Minjeong, Stockwel, Sean, Xie, Lexing,
and Xu, Qiongkai. csmetrics.org: Institutional Publication Metrics for
Computer Science. https://github.com/csmetrics/csmetrics.org/
blob/master/docs/Overview.md. 2018 (pg. 116, 131, 132).

[BLD20] Bangaru, Sai, Li, Tzu-Mao, and Durand, Frédo. “Unbiased Warped-Area
Sampling for Differentiable Rendering”. In: ACM Trans. Graph. 39.6
(2020), 245:1–245:18 (pg. 8).

[Bli07] Blinn, James F. “How to Solve a Cubic Equation, Part 5: Back to
Numerics”. In: IEEE Computer Graphics and Applications 27.3 (2007),
pp. 78–89. doi: 10.1109/MCG.2007.60 (pg. 12).

[Bli82] Blinn, James F. “A Generalization of Algebraic Surface Drawing”. In:
ACM Trans. Graph. 1.3 (July 1982), pp. 235–256. issn: 0730-0301. doi:
10.1145/357306.357310 (pg. 5, 7, 9, 10, 23, 44, 46).

[BLK17] Bachem, Olivier, Lucic, Mario, and Krause, Andreas. Scalable k-Means
Clustering via Lightweight Coresets. 2017. doi: 10.48550/ARXIV.1702.
08248. url: https://arxiv.org/abs/1702.08248 (pg. 88).

[BNJ03] Blei, David M, Ng, Andrew Y, and Jordan, Michael I. “Latent dirichlet
allocation”. In: Journal of machine Learning research 3.Jan (2003),
pp. 993–1022 (pg. 136).

[BPF15] Brubaker, M, Punjani, A, and Fleet, D. “Building proteins in a day”. In:
CVPR (June 2015). doi: 10.1109/cvpr.2015.7298929 (pg. 23, 153).

[Bra+18] Bradbury, James, Frostig, Roy, Hawkins, Peter, Johnson, Matthew
James, Leary, Chris, Maclaurin, Dougal, Necula, George, Paszke, Adam,
VanderPlas, Jake, Wanderman-Milne, Skye, and Zhang, Qiao. JAX:
composable transformations of Python+NumPy programs. Version 0.2.5.
2018. url: http://github.com/google/jax (pg. 7, 10, 15, 50, 61).

[Bra00] Bradski, G. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software
Tools (2000) (pg. 94).

[But11] Butler, D. “Computing giants launch free science metrics”. In: Nature
476.7358 (Aug. 2011), p. 18 (pg. 115).

[CAL15] Clauset, Aaron, Arbesman, Samuel, and Larremore, Daniel B. “System-
atic inequality and hierarchy in faculty hiring networks”. In: Science
Advances (2015) (pg. 116, 118, 131, 132, 136).

[Car+21] Caron, Mathilde, Touvron, Hugo, Misra, Ishan, Jégou, Hervé, Mairal,
Julien, Bojanowski, Piotr, and Joulin, Armand. “Emerging Proper-

156

http://www.sciencedirect.com/science/article/pii/S0022247X07003824
http://www.sciencedirect.com/science/article/pii/S0022247X07003824
http://www.sciencedirect.com/science/article/pii/S0022247X07003824
https://github.com/csmetrics/csmetrics.org/blob/master/docs/Overview.md
https://github.com/csmetrics/csmetrics.org/blob/master/docs/Overview.md
https://doi.org/10.1109/MCG.2007.60
https://doi.org/10.1145/357306.357310
https://doi.org/10.48550/ARXIV.1702.08248
https://doi.org/10.48550/ARXIV.1702.08248
https://arxiv.org/abs/1702.08248
https://doi.org/10.1109/cvpr.2015.7298929
http://github.com/google/jax

BIBLIOGRAPHY

ties in Self-Supervised Vision Transformers”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV). Oct.
2021, pp. 9650–9660. arXiv: 2104.14294 [cs.CV] (pg. 48).

[CAS15] Choudhury, Sanjiban, Arora, Sankalp, and Scherer, Sebastian. “The
planner ensemble: Motion planning by executing diverse algorithms”.
In: 2015 IEEE International Conference on Robotics and Automation
(ICRA). 2015, pp. 2389–2395. doi: 10.1109/ICRA.2015.7139517
(pg. 87).

[Cat72] Catmull, Edwin. “A System for Computer Generated Movies”. In:
Proceedings of the ACM Annual Conference - Volume 1. ACM ’72.
Boston, Massachusetts, USA: Association for Computing Machinery,
1972, pp. 422–431. isbn: 9781450374910. doi: 10.1145/800193.569952
(pg. 2).

[CBK05] Cheung, Kong-man German, Baker, Simon, and Kanade, Takeo. “Shape-
from-silhouette across time part i: Theory and algorithms”. In: Interna-
tional Journal of Computer Vision 62.3 (2005), pp. 221–247 (pg. 20).

[CCS12] Corsini, Massimiliano, Cignoni, Paolo, and Scopigno, Roberto. “Efficient
and flexible sampling with blue noise properties of triangular meshes”.
In: TVCG 18.6 (2012), pp. 914–924. doi: 10.1109/TVCG.2012.34. url:
http://vcg.isti.cnr.it/Publications/2012/CCS12/TVCG-2011-

07-0217.pdf (pg. 73, 82, 83).

[Che+19] Chen, Wenzheng, Ling, Huan, Gao, Jun, Smith, Edward, Lehtinen,
Jaakko, Jacobson, Alec, and Fidler, Sanja. “Learning to Predict 3D Ob-
jects with an Interpolation-based Differentiable Renderer”. In: Advances
in Neural Information Processing Systems 32 (2019). Ed. by Wallach, H.,
Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., and Garnett,
R. arXiv: 1908.01210 [cs.CV] (pg. 9).

[Che+23] Chen, Zhiqin, Funkhouser, Thomas, Hedman, Peter, and Tagliasacchi,
Andrea. “MobileNeRF: Exploiting the Polygon Rasterization Pipeline
for Efficient Neural Field Rendering on Mobile Architectures”. In: The
Conference on Computer Vision and Pattern Recognition (CVPR). 2023
(pg. 47, 55).

[Chr+17] Christiano, Paul F, Leike, Jan, Brown, Tom, Martic, Miljan, Legg,
Shane, and Amodei, Dario. “Deep Reinforcement Learning from Human
Preferences”. In: Advances in Neural Information Processing Systems.
Vol. 30. 2017. arXiv: 1706.03741 [stat.ML] (pg. 108).

[CN11] Coates, Adam and Ng, Andrew Y. “The importance of encoding versus
training with sparse coding and vector quantization”. In: ICML. 2011,
pp. 921–928 (pg. 120).

157

https://arxiv.org/abs/2104.14294
https://doi.org/10.1109/ICRA.2015.7139517
https://doi.org/10.1145/800193.569952
https://doi.org/10.1109/TVCG.2012.34
http://vcg.isti.cnr.it/Publications/2012/CCS12/TVCG-2011-07-0217.pdf
http://vcg.isti.cnr.it/Publications/2012/CCS12/TVCG-2011-07-0217.pdf
https://arxiv.org/abs/1908.01210
https://arxiv.org/abs/1706.03741

BIBLIOGRAPHY

[Col+10] Colledge, Lisa, Moya-Anegón, Félix de, Guerrero-Bote, Vicente P, López-
Illescas, Carmen, Moed, Henk F, et al. “SJR and SNIP: two new journal
metrics in Elsevier’s Scopus”. In: Insights 23.3 (2010), p. 215 (pg. 115).

[Col+14] Coleman, David, Sucan, Ioan, Chitta, Sachin, and Correll, Nikolaus.
Reducing the Barrier to Entry of Complex Robotic Software: a MoveIt!
Case Study. 2014. doi: 10.48550/ARXIV.1404.3785. url: https:
//arxiv.org/abs/1404.3785 (pg. 86).

[Col+21] Cole, Forrester, Genova, Kyle, Sud, Avneesh, Vlasic, Daniel, and Zhang,
Zhoutong. Differentiable Surface Rendering via Non-Differentiable Sam-
pling. 2021. arXiv: 2108.04886 [cs.GR] (pg. 8).

[Coo66] Coons, Steven Anson. “The Uses of Computers in Technology”. In:
Scientific American 215.3 (1966), pp. 176–191. url: http : / / www .
jstor.org/stable/24931054 (pg. 2, 3).

[CS22] Cheng, Ho Kei and Schwing, Alexander G. “XMem: Long-Term Video
Object Segmentation with an Atkinson-Shiffrin Memory Model”. In:
ECCV. 2022 (pg. 50, 65).

[Dan59] Daniel, Cuthbert. “Use of Half-Normal Plots in Interpreting Factorial
Two-Level Experiments”. In: Technometrics 1.4 (1959), pp. 311–341.
doi: 10.1080/00401706.1959.10489866 (pg. 63).

[DLR77] Dempster, A.P., Laird, N.M., and Rubin, Donald B. “Maximum likeli-
hood from incomplete data via the EM algorithm”. In: J. Royal Stat.
Soc. (B) 39.1 (1977), pp. 1–38. issn: 00359246. doi: http://dx.doi.
org/10.2307/2984875. arXiv: 0710.5696v2. url: http://www.jstor.
org/stable/10.2307/2984875 (pg. 14, 68, 70, 72).

[Doy60] Doyle, Worthie. “Recognition of Sloppy, Hand-Printed Characters”. In:
IRE-AIEE-ACM ’60 (Western). San Francisco, California: Association
for Computing Machinery, 1960, pp. 133–142. isbn: 9781450378697. doi:
10.1145/1460361.1460380 (pg. 2).

[DSM18] Dhawale, Aditya, Shaurya Shankar, Kumar, and Michael, Nathan. “Fast
Monte-Carlo Localization on Aerial Vehicles Using Approximate Contin-
uous Belief Representations”. In: CVPR. 2018, pp. 5851–5859 (pg. 75).

[Dys09] Dyson, Freeman. “Birds and frogs”. In: Notices of the AMS 56.2 (2009),
pp. 212–223 (pg. 151).

[Eck+15] Eckart, Ben, Kim, Kihwan, Troccoli, Alejandro, Kelly, Alonzo, and
Kautz, Jan. “MLMD: Maximum Likelihood Mixture Decoupling for
Fast and Accurate Point Cloud Registration”. In: 3DV. 2015, pp. 241–
249. isbn: 9781467383325. doi: 10.1109/3DV.2015.34. url: http:
//jankautz.com/publications/MLMD%5C_3DV15.pdf (pg. 9, 46, 67).

[Eck+16] Eckart, Ben, Kim, Kihwan, Troccoli, Alejandro, Kelly, Alonzo, and
Kautz, Jan. “Accelerated Generative Models for 3D Point Cloud Data”.

158

https://doi.org/10.48550/ARXIV.1404.3785
https://arxiv.org/abs/1404.3785
https://arxiv.org/abs/1404.3785
https://arxiv.org/abs/2108.04886
http://www.jstor.org/stable/24931054
http://www.jstor.org/stable/24931054
https://doi.org/10.1080/00401706.1959.10489866
https://doi.org/http://dx.doi.org/10.2307/2984875
https://doi.org/http://dx.doi.org/10.2307/2984875
https://arxiv.org/abs/0710.5696v2
http://www.jstor.org/stable/10.2307/2984875
http://www.jstor.org/stable/10.2307/2984875
https://doi.org/10.1145/1460361.1460380
https://doi.org/10.1109/3DV.2015.34
http://jankautz.com/publications/MLMD%5C_3DV15.pdf
http://jankautz.com/publications/MLMD%5C_3DV15.pdf

BIBLIOGRAPHY

In: CVPR. 2016, pp. 5497–5505. isbn: 978-1-4673-8851-1. doi: 10.1109/
CVPR.2016.593. url: http://ieeexplore.ieee.org/document/
7780962/ (pg. 9, 14, 23, 46, 47, 67, 76).

[Edu18] Education, Times Higher. World University Rankings, Computer Sci-
ence. https://www.timeshighereducation.com/world-university-
rankings/2018/subject-ranking/computer-science. 2018 (pg. 116,
131, 132).

[Eim+21] Eimer, Theresa, Biedenkapp, André, Reimer, Maximilian, Adriaensen,
Steven, Hutter, Frank, and Lindauer, Marius. “DACBench: A Benchmark
Library for Dynamic Algorithm Configuration”. In: (2021). doi: 10.
48550/ARXIV.2105.08541. url: https://arxiv.org/abs/2105.
08541 (pg. 88, 90).

[EKC16] Engel, Jakob, Koltun, Vladlen, and Cremers, Daniel. Direct Sparse
Odometry. 2016. doi: 10.48550/ARXIV.1607.02565. url: https:
//arxiv.org/abs/1607.02565 (pg. 86, 93).

[EKK18] Eckart, B., Kim, K., and Kautz, J. “HGMR: Hierarchical Gaussian
Mixtures for Adaptive 3D Registration”. In: ECCV. Sept. 2018, pp. 730–
746. isbn: 978-3-030-01267-0. url: http://arxiv.org/abs/1807.
02587 (pg. 9, 14, 46, 47, 67, 75, 76, 84).

[End+10] Enderton, Eric, Sintorn, Erik, Shirley, Peter, and Luebke, David. “Stochas-
tic Transparency”. In: I3D ’10: Proceedings of the 2010 symposium on
Interactive 3D graphics and games. Washington, DC, USA, 2010, pp. 157–
164. isbn: 978-1-60558-938-1 (pg. 13, 48).

[Eva66] Evans, David C. Graphical man/machine communications. Tech. rep.
University of Utah, 1966. url: https://collections.lib.utah.edu/
ark:/87278/s61n8j92 (pg. 3).

[Fal+08] Falagas, Matthew E., Kouranos, Vasilios D., Arencibia-Jorge, Ricardo,
and Karageorgopoulos, Drosos E. “Comparison of SCImago journal rank
indicator with journal impact factor”. In: The FASEB Journal 22.8
(2008), pp. 2623–2628 (pg. 117, 118).

[Far03] Farnebäck, Gunnar. “Two-Frame Motion Estimation Based on Poly-
nomial Expansion”. In: Image Analysis. Ed. by Bigun, Josef and Gus-
tavsson, Tomas. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,
pp. 363–370. isbn: 978-3-540-45103-7 (pg. 53–55).

[Fei69] Feigenbaum, Edward A. “Artificial Intelligence: Themes in the Second
Decade”. In: Information Processing 68. Amsterdam: North-Holland
Publishing Company, 1969. url: https://apps.dtic.mil/sti/
citations/AD0680487 (pg. 3).

[Fen13] Fenner, Martin. “What can article-level metrics do for you?” In: PLoS
biology 11.10 (2013), e1001687 (pg. 115).

159

https://doi.org/10.1109/CVPR.2016.593
https://doi.org/10.1109/CVPR.2016.593
http://ieeexplore.ieee.org/document/7780962/
http://ieeexplore.ieee.org/document/7780962/
https://www.timeshighereducation.com/world-university-rankings/2018/subject-ranking/computer-science
https://www.timeshighereducation.com/world-university-rankings/2018/subject-ranking/computer-science
https://doi.org/10.48550/ARXIV.2105.08541
https://doi.org/10.48550/ARXIV.2105.08541
https://arxiv.org/abs/2105.08541
https://arxiv.org/abs/2105.08541
https://doi.org/10.48550/ARXIV.1607.02565
https://arxiv.org/abs/1607.02565
https://arxiv.org/abs/1607.02565
http://arxiv.org/abs/1807.02587
http://arxiv.org/abs/1807.02587
https://collections.lib.utah.edu/ark:/87278/s61n8j92
https://collections.lib.utah.edu/ark:/87278/s61n8j92
https://apps.dtic.mil/sti/citations/AD0680487
https://apps.dtic.mil/sti/citations/AD0680487

BIBLIOGRAPHY

[Fey51] Feynman, Richard P. “An operator calculus having applications in
quantum electrodynamics”. In: Physical Review 84.1 (1951), p. 108
(pg. 69).

[Fou18] Foundation, National Science. Download Awards by Year. https://www.
nsf.gov/awardsearch/download.jsp. 2018 (pg. 119).

[Fox01] Fox, Dieter. “KLD-Sampling: Adaptive Particle Filters”. In: Advances
in Neural Information Processing Systems. Ed. by Dietterich, T., Becker,
S., and Ghahramani, Z. Vol. 14. MIT Press, 2001. url: http://papers.
neurips . cc / paper / 1998 - kld - sampling - adaptive - particle -

filters.pdf (pg. 2).

[Fra04] Frahm, Gabriel. “Generalized Elliptical Distributions: Theory and Ap-
plications”. PhD thesis. Universität zu Köln, 2004. url: https://kups.
ub.uni-koeln.de/1319/ (pg. 149).

[Fra18] Frazier, Peter I. A Tutorial on Bayesian Optimization. 2018. doi: 10.
48550/ARXIV.1807.02811. url: https://arxiv.org/abs/1807.
02811 (pg. 90).

[Fri+22] Fridovich-Keil, Sara, Yu, Alex, Tancik, Matthew, Chen, Qinhong, Recht,
Benjamin, and Kanazawa, Angjoo. “Plenoxels: Radiance Fields without
Neural Networks”. In: CVPR. 2022 (pg. 51).

[FS97] Freund, Yoav and Schapire, Robert E. “A Decision-Theoretic Gener-
alization of On-Line Learning and an Application to Boosting”. In:
Journal of Computer and System Sciences 55.1 (1997), pp. 119–139.
issn: 0022-0000. doi: https://doi.org/10.1006/jcss.1997.1504.
url: http : / / www . sciencedirect . com / science / article / pii /

S002200009791504X (pg. 128).

[FX89] Fang, Kai-Tai and Xu, Jian-Lun. A Class of Multivariate Distributions
Including the Multivariate Logistic. 1989 (pg. 149).

[Gab15] Gaboury, Jacob. “Hidden Surface Problems: On the Digital Image as
Material Object”. In: Journal of Visual Culture 14.1 (2015), pp. 40–60.
doi: 10.1177/1470412914562270 (pg. 4).

[GAP08] Gupta, Ankit, Alliez, Pierre, and Pion, Sylvain. Principal Component
Analysis in CGAL. Research Report RR-6642. INRIA, 2008, p. 13. url:
https://hal.inria.fr/inria-00327027 (pg. 72, 75).

[Gei+96] Geist, Robert, Chetuparambil, Madhu, Hedetniemi, Stephen, and Turner,
A. Joe. “Computing Research Programs in the U.S.” In: Commun.
ACM 39.12 (Dec. 1996), pp. 96–99. issn: 0001-0782. doi: 10.1145/
240483.240505. url: http://doi.acm.org/10.1145/240483.240505
(pg. 117).

160

https://www.nsf.gov/awardsearch/download.jsp
https://www.nsf.gov/awardsearch/download.jsp
http://papers.neurips.cc/paper/1998-kld-sampling-adaptive-particle-filters.pdf
http://papers.neurips.cc/paper/1998-kld-sampling-adaptive-particle-filters.pdf
http://papers.neurips.cc/paper/1998-kld-sampling-adaptive-particle-filters.pdf
https://kups.ub.uni-koeln.de/1319/
https://kups.ub.uni-koeln.de/1319/
https://doi.org/10.48550/ARXIV.1807.02811
https://doi.org/10.48550/ARXIV.1807.02811
https://arxiv.org/abs/1807.02811
https://arxiv.org/abs/1807.02811
https://doi.org/https://doi.org/10.1006/jcss.1997.1504
http://www.sciencedirect.com/science/article/pii/S002200009791504X
http://www.sciencedirect.com/science/article/pii/S002200009791504X
https://doi.org/10.1177/1470412914562270
https://hal.inria.fr/inria-00327027
https://doi.org/10.1145/240483.240505
https://doi.org/10.1145/240483.240505
http://doi.acm.org/10.1145/240483.240505

BIBLIOGRAPHY

[Gen+20] Genova, Kyle, Cole, Forrester, Sud, Avneesh, Sarna, Aaron, and Funkhouser,
Thomas. Local Deep Implicit Functions for 3D Shape. 2020. arXiv:
1912.06126 [cs.CV] (pg. 9, 46).

[GG17] Galiani, Sebastian and Gálvez, Ramiro H. The life cycle of scholarly
articles across fields of research. Tech. rep. National Bureau of Economic
Research, 2017 (pg. 115, 117).

[GH97] Garland, Michael and Heckbert, Paul S. “Surface simplification us-
ing quadric error metrics”. In: SIGGRAPH. 1997, pp. 209–216. isbn:
0897918967. doi: 10.1145/258734.258849. arXiv: 1708.07199. url:
http : / / portal . acm . org / citation . cfm ? doid = 258734 . 258849

(pg. 15, 47, 73, 78, 82, 83).

[GLU12] Geiger, Andreas, Lenz, Philip, and Urtasun, Raquel. “Are we ready
for Autonomous Driving? The KITTI Vision Benchmark Suite”. In:
Conference on Computer Vision and Pattern Recognition (CVPR). 2012
(pg. 87, 94).

[GM04] Guerri, Alessio and Milano, Michela. “Learning Techniques for Auto-
matic Algorithm Portfolio Selection”. In: Proceedings of the 16th Eu-
ropean Conference on Artificial Intelligence. ECAI’04. Valencia, Spain:
IOS Press, 2004, pp. 475–479. isbn: 9781586034528 (pg. 88).

[GMT23] Goel, Kshitij, Michael, Nathan, and Tabib, Wennie. “Probabilistic Point
Cloud Modeling via Self-Organizing Gaussian Mixture Models”. In:
IEEE Robotics and Automation Letters 8.5 (2023), pp. 2526–2533. doi:
10.1109/LRA.2023.3256923 (pg. 46).

[Gol+17] Golovin, Daniel, Solnik, Benjamin, Moitra, Subhodeep, Kochanski, Greg,
Karro, John Elliot, and Sculley, D., eds. Google Vizier: A Service for
Black-Box Optimization. 2017, pp. 1487–1495. url: http://www.kdd.
org/kdd2017/papers/view/google-vizier-a-service-for-black-

box-optimization (pg. 90, 91).

[Gou+10] Gourmel, Olivier, Pajot, Anthony, Paulin, Mathias, Barthe, Loic, and
Poulin, Pierre. “Fitted BVH for Fast Raytracing of Metaballs”. In:
Computer Graphics Forum 3 (2010), pp. 7–288. doi: 10.1111/j.1467-
8659.2009.01597.x. url: https://hal.archives-ouvertes.fr/
hal-01516266 (pg. 9, 46).

[Gru17] Grupp, Michael. evo: Python package for the evaluation of odometry
and SLAM. https://github.com/MichaelGrupp/evo. 2017 (pg. 96).

[GSB14] Gammell, Jonathan D., Srinivasa, Siddhartha S., and Barfoot, Timothy
D. “Informed RRT*: Optimal sampling-based path planning focused
via direct sampling of an admissible ellipsoidal heuristic”. In: 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems.
2014, pp. 2997–3004. doi: 10.1109/IROS.2014.6942976 (pg. 95).

161

https://arxiv.org/abs/1912.06126
https://doi.org/10.1145/258734.258849
https://arxiv.org/abs/1708.07199
http://portal.acm.org/citation.cfm?doid=258734.258849
https://doi.org/10.1109/LRA.2023.3256923
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization
https://doi.org/10.1111/j.1467-8659.2009.01597.x
https://doi.org/10.1111/j.1467-8659.2009.01597.x
https://hal.archives-ouvertes.fr/hal-01516266
https://hal.archives-ouvertes.fr/hal-01516266
https://github.com/MichaelGrupp/evo
https://doi.org/10.1109/IROS.2014.6942976

BIBLIOGRAPHY

[Gue83] Guenther, Raymond A. “Product integrals and sum integrals”. In: Inter-
national Journal of Mathematical Education in Science and Technology
14.2 (1983), pp. 243–249 (pg. 69).

[Guo+23] Guo, Yuan-Chen, Cao, Yan-Pei, Wang, Chen, He, Yu, Shan, Ying, Qie,
Xiaohu, and Zhang, Song-Hai. VMesh: Hybrid Volume-Mesh Represen-
tation for Efficient View Synthesis. 2023. arXiv: 2303.16184 [cs.CV]

(pg. 47, 55).

[Guz67] Guzman-Arenas, Adolfo. “Some Aspects of Pattern Recognition by
Computer”. MS thesis. Massachusetts Institute of Technology, 1967.
url: http://dspace.mit.edu/handle/1721.1/6887 (pg. 2, 3).

[HAB19] Hansen, Nikolaus, Akimoto, Youhei, and Baudis, Petr. CMA-ES/pycma
on Github. Zenodo, DOI:10.5281/zenodo.2559634. Feb. 2019. doi: 10.
5281/zenodo.2559634. url: https://doi.org/10.5281/zenodo.
2559634 (pg. 27, 33).

[Hag08] Hagen, Nils T. “Harmonic Allocation of Authorship Credit: Source-
Level Correction of Bibliometric Bias Assures Accurate Publication
and Citation Analysis”. In: PLOS ONE 3.12 (Dec. 2008), pp. 1–7. doi:
10.1371/journal.pone.0004021. url: https://doi.org/10.1371/
journal.pone.0004021 (pg. 128).

[Han+21] Hansen, Nikolaus, Auger, Anne, Ros, Raymond, Mersmann, Olaf, Tušar,
Tea, and Brockhoff, Dimo. “COCO: a platform for comparing continuous
optimizers in a black-box setting”. In: Optimization Methods and Soft-
ware 36.1 (2021), pp. 114–144. doi: 10.1080/10556788.2020.1808977.
eprint: https://doi.org/10.1080/10556788.2020.1808977. url:
https://doi.org/10.1080/10556788.2020.1808977 (pg. 88, 109).

[Han+23] Hansen, Nikolaus, yoshihikoueno, ARF1, Kadlecová, Gabriela, Nozawa,
Kento, Rolshoven, Luca, Chan, Matthew, Akimoto, Youhei, brieglhostis,
and Brockhoff, Dimo. CMA-ES/pycma: r3.3.0. Version r3.3.0. Jan. 2023
(pg. 110).

[Han16] Hansen, Nikolaus. The CMA Evolution Strategy: A Tutorial. 2016. arXiv:
1604.00772 [cs.LG] (pg. 27, 33, 87, 90, 108–110).

[Has66] Hasselblad, Victor. “Estimation of Parameters for a Mixture of Nor-
mal Distributions”. In: Technometrics 8.3 (1966), pp. 431–444. issn:
15372723. doi: 10.1080/00401706.1966.10490375. url: http://
www.tandfonline.com/action/journalInformation?journalCode=

utch20 (pg. 68).

[He+17] He, Kaiming, Gkioxari, Georgia, Dollár, Piotr, and Girshick, Ross B.
“Mask R-CNN”. In: 2017 IEEE International Conference on Computer
Vision (ICCV) (2017), pp. 2980–2988 (pg. 3, 22, 24, 25).

162

https://arxiv.org/abs/2303.16184
http://dspace.mit.edu/handle/1721.1/6887
https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.1371/journal.pone.0004021
https://doi.org/10.1371/journal.pone.0004021
https://doi.org/10.1371/journal.pone.0004021
https://doi.org/10.1080/10556788.2020.1808977
https://doi.org/10.1080/10556788.2020.1808977
https://doi.org/10.1080/10556788.2020.1808977
https://arxiv.org/abs/1604.00772
https://doi.org/10.1080/00401706.1966.10490375
http://www.tandfonline.com/action/journalInformation?journalCode=utch20
http://www.tandfonline.com/action/journalInformation?journalCode=utch20
http://www.tandfonline.com/action/journalInformation?journalCode=utch20

BIBLIOGRAPHY

[Hec86] Heckbert, Paul S. “Fun With Gaussians”. In: SIGGRAPH ’86 Advanced
Image Processing seminar notes (1986) (pg. 9, 44).

[Her+20] Hertz, Amir, Hanocka, Rana, Giryes, Raja, and Cohen-Or, Daniel.
“PointGMM: a Neural GMM Network for Point Clouds”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition.
2020. arXiv: 2003.13326 [cs.LG] (pg. 9, 46).

[HFF22] Harley, Adam W., Fang, Zhaoyuan, and Fragkiadaki, Katerina. “Particle
Video Revisited: Tracking Through Occlusions Using Point Trajectories”.
In: ECCV. 2022 (pg. 52).

[HGC81] Hodge, Susan E., Greenberg, David A., and Challice, C. E. “Publication
Credit”. In: Science 213.4511 (1981), pp. 950–952. issn: 00368075,
10959203. url: http://www.jstor.org/stable/1687033 (pg. 128).

[HH18] Huangfu, Q. and Hall, J. A. J. “Parallelizing the dual revised simplex
method”. In: Mathematical Programming Computation 10.1 (Mar. 2018),
pp. 119–142. issn: 1867-2957. doi: 10.1007/s12532-017-0130-5. url:
https://doi.org/10.1007/s12532-017-0130-5 (pg. 90).

[Hir05] Hirsch, J E. “An index to quantify an individual’s scientific research out-
put”. In: Proc. Natl. Acad. Sci. U. S. A. 102.46 (Nov. 2005), pp. 16569–
16572. issn: 0027-8424. doi: 10.1073/pnas.0507655102. url: https:
//www.ncbi.nlm.nih.gov/pubmed/16275915%20https://www.ncbi.

nlm.nih.gov/pmc/PMC1283832/ (pg. 116, 129, 133).

[Hir08] Hirschmuller, Heiko. “Stereo Processing by Semiglobal Matching and
Mutual Information”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 30.2 (2008), pp. 328–341. doi: 10.1109/TPAMI.
2007.1166 (pg. 94, 110).

[HK09] Hartley, Richard I. and Kahl, Fredrik. “Global Optimization through
Rotation Space Search”. In: IJCV 82.1 (Apr. 2009), pp. 64–79. issn:
1573-1405. doi: 10.1007/s11263-008-0186-9. url: https://doi.
org/10.1007/s11263-008-0186-9 (pg. 77).

[HK17a] Hu, Humphrey and Kantor, George. “Efficient Automatic Perception
System Parameter Tuning On Site without Expert Supervision”. In:
Proceedings of the 1st Annual Conference on Robot Learning. Ed. by
Levine, Sergey, Vanhoucke, Vincent, and Goldberg, Ken. Vol. 78. Pro-
ceedings of Machine Learning Research. PMLR, Nov. 2017, pp. 57–66.
url: https://proceedings.mlr.press/v78/hu17a.html (pg. 87, 96).

[HK17b] Hu, Humphrey and Kantor, George. “Introspective Evaluation of Per-
ception Performance for Parameter Tuning without Ground Truth”. In:
Proceedings of Robotics: Science and Systems. Cambridge, Massachusetts,
July 2017. doi: 10.15607/RSS.2017.XIII.033 (pg. 87).

163

https://arxiv.org/abs/2003.13326
http://www.jstor.org/stable/1687033
https://doi.org/10.1007/s12532-017-0130-5
https://doi.org/10.1007/s12532-017-0130-5
https://doi.org/10.1073/pnas.0507655102
https://www.ncbi.nlm.nih.gov/pubmed/16275915%20https://www.ncbi.nlm.nih.gov/pmc/PMC1283832/
https://www.ncbi.nlm.nih.gov/pubmed/16275915%20https://www.ncbi.nlm.nih.gov/pmc/PMC1283832/
https://www.ncbi.nlm.nih.gov/pubmed/16275915%20https://www.ncbi.nlm.nih.gov/pmc/PMC1283832/
https://doi.org/10.1109/TPAMI.2007.1166
https://doi.org/10.1109/TPAMI.2007.1166
https://doi.org/10.1007/s11263-008-0186-9
https://doi.org/10.1007/s11263-008-0186-9
https://doi.org/10.1007/s11263-008-0186-9
https://proceedings.mlr.press/v78/hu17a.html
https://doi.org/10.15607/RSS.2017.XIII.033

BIBLIOGRAPHY

[HK18] Hu, Humphrey and Kantor, George. “Compensating for Context by
Learning Local Models of Perception Performance”. In: 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
2018, pp. 4629–4634. doi: 10.1109/IROS.2018.8593778 (pg. 87).

[Hor19] Horvath, Robert. “Image-Space Metaballs Using Deep Learning”. MA
thesis. Faculty of Informatics, TU Wien, July 2019. url: https://www.
cg.tuwien.ac.at/research/publications/2019/horvath-2018-

ism/ (pg. 9, 46).

[Hu+18] Hu, Yixin, Zhou, Qingnan, Gao, Xifeng, Jacobson, Alec, Zorin, Denis,
and Panozzo, Daniele. “Tetrahedral Meshing in the Wild”. In: ACM
Trans. Graph. 37.4 (July 2018). issn: 0730-0301. doi: 10.1145/3197517.
3201353 (pg. 8).

[Hu+22] Hu, Shi-Min, Liu, Zheng-Ning, Guo, Meng-Hao, Cai, Junxiong, Huang,
Jiahui, Mu, Tai-Jiang, and Martin, Ralph R. “Subdivision-based Mesh
Convolution Networks”. In: ACM Trans. Graph. 41.3 (2022), 25:1–25:16.
doi: 10.1145/3506694. url: https://doi.org/10.1145/3506694
(pg. 55).

[Hua+20] Huang, H., Ye, H., Sun, Y., and Liu, M. “GMMLoc: Structure Consistent
Visual Localization With Gaussian Mixture Models”. In: IEEE Robotics
and Automation Letters 5.4 (2020), pp. 5043–5050. doi: 10.1109/LRA.
2020.3005130 (pg. 9, 46).

[Hua18] Huang, Jeff. Best Paper Awards in Computer Science (since 1996).
https://jeffhuang.com/best_paper_awards.html. 2018 (pg. 128,
132).

[Hub64] Huber, Peter J. “Robust Estimation of a Location Parameter”. In:
Ann. Math. Statist. 35.1 (Mar. 1964), pp. 73–101. doi: 10.1214/aoms/
1177703732. url: https://doi.org/10.1214/aoms/1177703732
(pg. 121).

[Hub85] Huber, Peter J. “Projection Pursuit”. In: The Annals of Statistics 13.2
(1985), pp. 435–475. issn: 00905364. url: http://www.jstor.org/
stable/2241175 (pg. 120).

[Ian+16] Iandola, Forrest N., Han, Song, Moskewicz, Matthew W., Ashraf, Khalid,
Dally, William J., and Keutzer, Kurt. SqueezeNet: AlexNet-level accuracy
with 50x fewer parameters and ¡0.5MB model size. 2016. doi: 10.48550/
ARXIV.1602.07360. url: https://arxiv.org/abs/1602.07360
(pg. 94).

[ID18] Insafutdinov, Eldar and Dosovitskiy, Alexey. Unsupervised Learning of
Shape and Pose with Differentiable Point Clouds. 2018. arXiv: 1810.
09381 [cs.CV] (pg. 8, 46).

164

https://doi.org/10.1109/IROS.2018.8593778
https://www.cg.tuwien.ac.at/research/publications/2019/horvath-2018-ism/
https://www.cg.tuwien.ac.at/research/publications/2019/horvath-2018-ism/
https://www.cg.tuwien.ac.at/research/publications/2019/horvath-2018-ism/
https://doi.org/10.1145/3197517.3201353
https://doi.org/10.1145/3197517.3201353
https://doi.org/10.1145/3506694
https://doi.org/10.1145/3506694
https://doi.org/10.1109/LRA.2020.3005130
https://doi.org/10.1109/LRA.2020.3005130
https://jeffhuang.com/best_paper_awards.html
https://doi.org/10.1214/aoms/1177703732
https://doi.org/10.1214/aoms/1177703732
https://doi.org/10.1214/aoms/1177703732
http://www.jstor.org/stable/2241175
http://www.jstor.org/stable/2241175
https://doi.org/10.48550/ARXIV.1602.07360
https://doi.org/10.48550/ARXIV.1602.07360
https://arxiv.org/abs/1602.07360
https://arxiv.org/abs/1810.09381
https://arxiv.org/abs/1810.09381

BIBLIOGRAPHY

[Ilh+21] Ilharco, Gabriel et al. OpenCLIP. Version 0.1. July 2021. doi: 10.5281/
zenodo.5143773. url: https://doi.org/10.5281/zenodo.5143773
(pg. 48).

[Ins18] Institute, Nevada Policy Research. Transparent California. https://
transparentcalifornia . com / agencies / salaries / #university -

system. 2018 (pg. 119).

[Joh18] Johnes, Jill. “University rankings: What do they really show?” In:
Scientometrics 115.1 (Apr. 2018), pp. 585–606. issn: 1588-2861. doi:
10.1007/s11192-018-2666-1. url: https://doi.org/10.1007/
s11192-018-2666-1 (pg. 131).

[Jor09] Jordan, Michael I. “The Multivariate Gaussian”. In: (2009). https:
//people.eecs.berkeley.edu/~jordan/courses/260-spring10/

other-readings/chapter13.pdf (pg. 70).

[JUD00] Julier, S., Uhlmann, J., and Durrant-Whyte, H.F. “A new method for
the nonlinear transformation of means and covariances in filters and
estimators”. In: IEEE Transactions on Automatic Control 45.3 (2000),
pp. 477–482. doi: 10.1109/9.847726 (pg. 47).

[Jun+22] Jun-Seong, Kim, Yu-Ji, Kim, Ye-Bin, Moon, and Oh, Tae-Hyun. “HDR-
Plenoxels: Self-Calibrating High Dynamic Range Radiance Fields”. In:
ECCV. 2022 (pg. 52).

[JV11] Jian, B. and Vemuri, B. C. “Robust Point Set Registration Using Gaus-
sian Mixture Models”. In: PAMI 33.8 (2011), pp. 1633–1645. issn:
0162-8828. doi: 10.1109/TPAMI.2010.223 (pg. 67, 76).

[Kad+10] Kadioglu, Serdar, Malitsky, Yuri, Sellmann, Meinolf, and Tierney, Kevin.
“ISAC –Instance-Specific Algorithm Configuration”. In: Proceedings of the
2010 Conference on ECAI 2010: 19th European Conference on Artificial
Intelligence. NLD: IOS Press, 2010, pp. 751–756. isbn: 9781607506058
(pg. 88).

[KB15] Kingma, Diederik P. and Ba, Jimmy. “Adam: A Method for Stochastic
Optimization”. In: ICLR (Poster). 2015. url: http://arxiv.org/abs/
1412.6980 (pg. 20, 51).

[KBH06] Kazhdan, Michael, Bolitho, Matthew, and Hoppe, Hugues. “Poisson
Surface Reconstruction”. In: Symposium on Geometry Processing. Ed. by
Sheffer, Alla and Polthier, Konrad. The Eurographics Association, 2006.
isbn: 3-905673-24-X. doi: 10.2312/SGP/SGP06/061-070 (pg. 14, 36,
55, 56, 60, 66).

[KCD09] Kobilarov, Marin, Crane, Keenan, and Desbrun, Mathieu. “Lie group
integrators for animation and control of vehicles”. In: ACM Trans. Graph.
28 (2 May 2009) (pg. 38).

165

https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773
https://transparentcalifornia.com/agencies/salaries/#university-system
https://transparentcalifornia.com/agencies/salaries/#university-system
https://transparentcalifornia.com/agencies/salaries/#university-system
https://doi.org/10.1007/s11192-018-2666-1
https://doi.org/10.1007/s11192-018-2666-1
https://doi.org/10.1007/s11192-018-2666-1
https://people.eecs.berkeley.edu/~jordan/courses/260-spring10/other-readings/chapter13.pdf
https://people.eecs.berkeley.edu/~jordan/courses/260-spring10/other-readings/chapter13.pdf
https://people.eecs.berkeley.edu/~jordan/courses/260-spring10/other-readings/chapter13.pdf
https://doi.org/10.1109/9.847726
https://doi.org/10.1109/TPAMI.2010.223
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.2312/SGP/SGP06/061-070

BIBLIOGRAPHY

[Ker+23] Kerbl, Bernhard, Kopanas, Georgios, Leimkühler, Thomas, and Dret-
takis, George. “3D Gaussian Splatting for Real-Time Radiance Field
Rendering”. In: ACM Transactions on Graphics (ToG) 42.4 (July 2023)
(pg. 43–47, 49, 51, 52, 55, 57, 58, 60, 61, 63).

[Kes+17] Keselman, Leonid, Woodfill, John Iselin, Grunnet-Jepsen, Anders, and
Bhowmik, Achintya. “Intel RealSense Stereoscopic Depth Cameras”.
In: CVPR Workshops (2017). doi: 10.1109/CVPRW.2017.167. arXiv:
1705.05548 [cs.CV] (pg. 3, 22, 75, 86, 87, 93, 96, 110, 113).

[Kes+23] Keselman, Leonid, Shih, Katherine, Hebert, Martial, and Steinfeld,
Aaron. “Optimizing Algorithms From Pairwise User Preferences”. In:
International Conference on Intelligent Robots and Systems (IROS).
2023. arXiv: 2308.04571 [cs.RO] (pg. 1, 108).

[Kes19] Keselman, Leonid. “Venue Analytics: A Simple Alternative to Citation-
Based Metrics”. In: ACM/IEEE Joint Conference on Digital Libraries.
2019. doi: 10.1109/JCDL.2019.00052. arXiv: 1904.12573 [cs.DL]

(pg. 1, 114).

[KH13] Kazhdan, Michael and Hoppe, Hugues. “Screened poisson surface re-
construction”. In: ACM Transactions on Graphics (ToG) 32.3 (2013),
pp. 1–13 (pg. 55, 57, 60, 64).

[KH17] Kurtz, Michael J. and Henneken, Edwin A. “Measuring metrics - a
40-year longitudinal cross-validation of citations, downloads, and peer
review in astrophysics”. In: JAIST 68.3 (2017), pp. 695–708. doi: 10.
1002/asi.23689. url: https://onlinelibrary.wiley.com/doi/
abs/10.1002/asi.23689 (pg. 117).

[KH19] Keselman, Leonid and Hebert, Martial. “Direct Fitting of Gaussian
Mixture Models”. In: 2019 16th Conference on Computer and Robot
Vision (CRV). 2019, pp. 25–32. doi: 10.1109/CRV.2019.00012. arXiv:
1904.05537 [cs.CV] (pg. 1, 14, 66).

[KH22] Keselman, Leonid and Hebert, Martial. “Approximate Differentiable Ren-
dering with Algebraic Surfaces”. In: European Conference on Computer
Vision (ECCV). Oct. 2022. doi: 10.1007/978-3-031-19824-3_35.
arXiv: 2207.10606 [cs.CV] (pg. 1, 5, 44–48, 50–52, 55, 57, 58, 60, 61,
63, 93, 94).

[KH23a] Keselman, Leonid and Hebert, Martial. “Discovering Multiple Algo-
rithm Configurations”. In: 2023 IEEE International Conference on
Robotics and Automation (ICRA). 2023. doi: 10.1109/ICRA48891.
2023.10160363. arXiv: 2303.07434 [cs.AI] (pg. 1, 86, 110).

[KH23b] Keselman, Leonid and Hebert, Martial. Flexible Techniques for Differen-
tiable Rendering with 3D Gaussians. 2023. doi: 10.48550/arXiv.2308.
14737. arXiv: 2308.14737 [cs.CV] (pg. 1, 43).

166

https://doi.org/10.1109/CVPRW.2017.167
https://arxiv.org/abs/1705.05548
https://arxiv.org/abs/2308.04571
https://doi.org/10.1109/JCDL.2019.00052
https://arxiv.org/abs/1904.12573
https://doi.org/10.1002/asi.23689
https://doi.org/10.1002/asi.23689
https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.23689
https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.23689
https://doi.org/10.1109/CRV.2019.00012
https://arxiv.org/abs/1904.05537
https://doi.org/10.1007/978-3-031-19824-3_35
https://arxiv.org/abs/2207.10606
https://doi.org/10.1109/ICRA48891.2023.10160363
https://doi.org/10.1109/ICRA48891.2023.10160363
https://arxiv.org/abs/2303.07434
https://doi.org/10.48550/arXiv.2308.14737
https://doi.org/10.48550/arXiv.2308.14737
https://arxiv.org/abs/2308.14737

BIBLIOGRAPHY

[Kha19] Khallaghi, Siavash. Pure Numpy Implementation of the Coherent Point
Drift Algorithm. https://github.com/siavashk/pycpd. 2019 (pg. 77,
84).

[Kin18] King, Davis. Automatic learning rate scheduling that really works. Feb.
2018. url: http://blog.dlib.net/2018/02/automatic-learning-
rate-scheduling-that.html (pg. 33).

[Kir+23] Kirillov, Alexander, Mintun, Eric, Ravi, Nikhila, Mao, Hanzi, Rolland,
Chloe, Gustafson, Laura, Xiao, Tete, Whitehead, Spencer, Berg, Alexan-
der C., Lo, Wan-Yen, Dollár, Piotr, and Girshick, Ross. Segment Any-
thing. 2023. arXiv: 2304.02643 [cs.CV] (pg. 65).

[Kir+57] Kirsch, Russell. A., Cahn, Lee, Ray, C., and Urban, Genevie. H. “Exper-
iments in Processing Pictorial Information with a Digital Computer”. In:
IRE-ACM-AIEE ’57 (Eastern). Washington, D.C.: Association for Com-
puting Machinery, 1957, pp. 221–229. doi: 10.1145/1457720.1457763
(pg. 3).

[Kon10] Konolige, Kurt. “Projected texture stereo”. In: 2010 IEEE International
Conference on Robotics and Automation. 2010, pp. 148–155. doi: 10.
1109/ROBOT.2010.5509796 (pg. 113).

[Kot+19] Kotthoff, Lars, Thornton, Chris, Hoos, Holger H., Hutter, Frank, and
Leyton-Brown, Kevin. “Auto-WEKA: Automatic Model Selection and
Hyperparameter Optimization in WEKA”. In: Automated Machine
Learning: Methods, Systems, Challenges. Ed. by Hutter, Frank, Kotthoff,
Lars, and Vanschoren, Joaquin. Cham: Springer International Publishing,
2019, pp. 81–95. isbn: 978-3-030-05318-5. doi: 10.1007/978-3-030-
05318-5_4. url: https://doi.org/10.1007/978-3-030-05318-5_4
(pg. 88).

[KRN97] Kanade, Takeo, Rander, Peter, and Narayanan, P.J. “Virtualized reality:
constructing virtual worlds from real scenes”. In: IEEE MultiMedia 4.1
(1997), pp. 34–47. doi: 10.1109/93.580394 (pg. 52).

[Kro+18] Krotkov, Eric, Hackett, Douglas, Jackel, Larry, Perschbacher, Michael,
Pippine, James, Strauss, Jesse, Pratt, Gill, and Orlowski, Christopher.
“The DARPA robotics challenge finals: Results and perspectives”. In: The
DARPA Robotics Challenge Finals: Humanoid Robots To The Rescue.
Springer, 2018, pp. 1–26 (pg. 87).

[KT01] Kaasalainen, M and Torppa, J. “Optimization methods for asteroid
lightcurve inversion”. In: Icarus 153.1 (2001), pp. 24–36 (pg. 23, 152).

[KUH17] Kato, Hiroharu, Ushiku, Yoshitaka, and Harada, Tatsuya. Neural 3D
Mesh Renderer. 2017. arXiv: 1711.07566 [cs.CV] (pg. 8, 46).

[Lai+20] Laine, Samuli, Hellsten, Janne, Karras, Tero, Seol, Yeongho, Lehtinen,
Jaakko, and Aila, Timo. “Modular Primitives for High-Performance

167

https://github.com/siavashk/pycpd
http://blog.dlib.net/2018/02/automatic-learning-rate-scheduling-that.html
http://blog.dlib.net/2018/02/automatic-learning-rate-scheduling-that.html
https://arxiv.org/abs/2304.02643
https://doi.org/10.1145/1457720.1457763
https://doi.org/10.1109/ROBOT.2010.5509796
https://doi.org/10.1109/ROBOT.2010.5509796
https://doi.org/10.1007/978-3-030-05318-5_4
https://doi.org/10.1007/978-3-030-05318-5_4
https://doi.org/10.1007/978-3-030-05318-5_4
https://doi.org/10.1109/93.580394
https://arxiv.org/abs/1711.07566

BIBLIOGRAPHY

Differentiable Rendering”. In: ACM Transactions on Graphics 39.6
(2020) (pg. 6, 8, 20, 23, 46).

[Lai21] Lai, Tin. “sbp-env: A Python Package for Sampling-based Motion Plan-
ner and Samplers”. In: Journal of Open Source Software 6.66 (2021),
p. 3782. doi: 10.21105/joss.03782. url: https://doi.org/10.
21105/joss.03782 (pg. 95).

[Lav98] Lavalle, Steven M. Rapidly-Exploring Random Trees: A New Tool for
Path Planning. Tech. rep. 1998 (pg. 93).

[LB14] Loper, Matthew M. and Black, Michael J. “OpenDR: An Approximate
Differentiable Renderer”. In: ECCV. Ed. by Fleet, David, Pajdla, Tomas,
Schiele, Bernt, and Tuytelaars, Tinne. Cham: Springer International
Publishing, 2014, pp. 154–169. isbn: 978-3-319-10584-0 (pg. 8, 46).

[LB81] Lowe, David G. and Binford, Thomas O. “Interpretation Of Geometric
Structure From Image Boundaries”. In: Techniques and Applications of
Image Understanding. Ed. by Pearson, James J. Vol. 0281. International
Society for Optics and Photonics. SPIE, 1981, pp. 224–231. doi: 10.
1117/12.965752. url: https://doi.org/10.1117/12.965752
(pg. 52).

[LBH15] LeCun, Yann, Bengio, Yoshua, and Hinton, Geoffrey. “Deep learning”.
In: Nature 521.7553 (2015), pp. 436–444. issn: 1476-4687. doi: 10.1038/
nature14539 (pg. 2).

[LC87] Lorensen, William E and Cline, Harvey E. “Marching cubes: A high res-
olution 3D surface construction algorithm”. In: ACM siggraph computer
graphics 21.4 (1987), pp. 163–169 (pg. 14, 35, 55, 64).

[Lev+05] Levoy, Marc, Gerth, J, Curless, Brian, and Pull, K. The Stanford 3D
Scanning Repository. 2005. url: http://graphics.stanford.edu/
data/3Dscanrep/ (pg. 14, 78).

[Ley+03] Leyton-Brown, Kevin, Nudelman, Eugene, Andrew, Galen, McFadden,
Jim, and Shoham, Yoav. “A Portfolio Approach to Algorithm Select”.
In: Proceedings of the 18th International Joint Conference on Artificial
Intelligence. IJCAI’03. Acapulco, Mexico: Morgan Kaufmann Publishers
Inc., 2003, pp. 1542–1543 (pg. 88).

[Ley02] Ley, Michael. “The DBLP Computer Science Bibliography: Evolution,
Research Issues, Perspectives”. In: String Processing and Information
Retrieval. Ed. by Laender, Alberto H. F. and Oliveira, Arlindo L. Springer
Berlin Heidelberg, 2002, pp. 1–10. isbn: 978-3-540-45735-0 (pg. 116,
118).

[LH16] Loshchilov, Ilya and Hutter, Frank. CMA-ES for Hyperparameter Opti-
mization of Deep Neural Networks. 2016. arXiv: 1604.07269 [cs.NE]

(pg. 27, 33, 87, 88).

168

https://doi.org/10.21105/joss.03782
https://doi.org/10.21105/joss.03782
https://doi.org/10.21105/joss.03782
https://doi.org/10.1117/12.965752
https://doi.org/10.1117/12.965752
https://doi.org/10.1117/12.965752
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
https://arxiv.org/abs/1604.07269

BIBLIOGRAPHY

[Li+20] Li, Lei, Zhu, Siyu, Fu, Hongbo, Tan, Ping, and Tai, Chiew-Lan. End-to-
End Learning Local Multi-view Descriptors for 3D Point Clouds. 2020.
arXiv: 2003.05855 [cs.CV] (pg. 8).

[Li+21] Li, Zhengqi, Niklaus, Simon, Snavely, Noah, and Wang, Oliver. “Neural
Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes”.
In: IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2021 (pg. 52).

[Liu+19] Liu, Shichen, Li, Tianye, Chen, Weikai, and Li, Hao. “Soft Rasterizer: A
Differentiable Renderer for Image-Based 3D Reasoning”. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV).
Oct. 2019. arXiv: 1904.01786 [cs.CV] (pg. 8, 15–18, 21, 23, 27, 32, 44,
46, 55).

[LJL06] Lehmann, Sune, Jackson, Andrew D, and Lautrup, Benny E. “Measures
for measures”. In: Nature 444.7122 (2006), p. 1003 (pg. 116).

[LKL18] Lin, Chen-Hsuan, Kong, Chen, and Lucey, Simon. “Learning Efficient
Point Cloud Generation for Dense 3D Object Reconstruction”. In:
AAAI Conf. on Artificial Intelligence (AAAI). 2018. arXiv: 1706.07036
[cs.CV] (pg. 8).

[LMS18] Lubienski, Sarah Theule, Miller, Emily K., and Saclarides, Evthokia
Stephanie. “Sex Differences in Doctoral Student Publication Rates”.
In: Educational Researcher 47.1 (2018), pp. 76–81. doi: 10.3102/
0013189X17738746. url: https://doi.org/10.3102/0013189X17738746
(pg. 120).

[LNS09] Leyton-Brown, Kevin, Nudelman, Eugene, and Shoham, Yoav. “Em-
pirical Hardness Models: Methodology and a Case Study on Com-
binatorial Auctions”. In: J. ACM 56.4 (July 2009). issn: 0004-5411.
doi: 10.1145/1538902.1538906. url: https://doi.org/10.1145/
1538902.1538906 (pg. 88).

[Lom+19] Lombardi, Stephen, Simon, Tomas, Saragih, Jason, Schwartz, Gabriel,
Lehrmann, Andreas, and Sheikh, Yaser. “Neural Volumes: Learning
Dynamic Renderable Volumes from Images”. In: ACM Trans. Graph.
38.4 (July 2019), 65:1–65:14. arXiv: 1906.07751 (pg. 8).

[LRF19] Lai, Tin, Ramos, Fabio, and Francis, Gilad. “Balancing Global Ex-
ploration and Local-connectivity Exploitation with Rapidly-exploring
Random disjointed-Trees”. In: Proceedings of The International Confer-
ence on Robotics and Automation (ICRA). IEEE. 2019 (pg. 95).

[Lui+23] Luiten, Jonathon, Kopanas, Georgios, Leibe, Bastian, and Ramanan,
Deva. “Dynamic 3D Gaussians: Tracking by Persistent Dynamic View
Synthesis”. In: (2023). arXiv: 2308.09713 [cs.CV] (pg. 46).

169

https://arxiv.org/abs/2003.05855
https://arxiv.org/abs/1904.01786
https://arxiv.org/abs/1706.07036
https://arxiv.org/abs/1706.07036
https://doi.org/10.3102/0013189X17738746
https://doi.org/10.3102/0013189X17738746
https://doi.org/10.3102/0013189X17738746
https://doi.org/10.1145/1538902.1538906
https://doi.org/10.1145/1538902.1538906
https://doi.org/10.1145/1538902.1538906
https://arxiv.org/abs/1906.07751
https://arxiv.org/abs/2308.09713

BIBLIOGRAPHY

[Lv+18] Lv, Xueying, Wang, Yitian, Deng, Junyi, Zhang, Guanyu, and Zhang,
Liu. “Improved Particle Swarm Optimization Algorithm Based on Last-
Eliminated Principle and Enhanced Information Sharing”. In: Computa-
tional Intelligence and Neuroscience 2018 (Dec. 2018), p. 5025672. issn:
1687-5265. doi: 10.1155/2018/5025672. url: https://doi.org/10.
1155/2018/5025672 (pg. 93).

[LZ21] Lassner, Christoph and Zollhöfer, Michael. “Pulsar: Efficient Sphere-
based Neural Rendering”. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR). June 2021,
pp. 1440–1449. arXiv: 2004.07484 [cs.GR] (pg. 8, 15, 16, 18, 20, 23,
32, 46).

[MA+73] Malik, Henrick J, Abraham, Bovas, et al. “Multivariate logistic distribu-
tions”. In: The Annals of Statistics 1.3 (1973), pp. 588–590 (pg. 149).

[MA83] Martin, Worthy N. and Aggarwal, J. K. “Volumetric Descriptions of
Objects from Multiple Views”. In: IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence PAMI-5.2 (1983), pp. 150–158. doi: 10.
1109/TPAMI.1983.4767367 (pg. 21).

[Mac+17] MacGlashan, James, Ho, Mark K., Loftin, Robert, Peng, Bei, Wang,
Guan, Roberts, David L., Taylor, Matthew E., and Littman, Michael
L. “Interactive Learning from Policy-Dependent Human Feedback”. In:
Proceedings of the 34th International Conference on Machine Learning.
Ed. by Precup, Doina and Teh, Yee Whye. Vol. 70. Proceedings of
Machine Learning Research. PMLR, Aug. 2017, pp. 2285–2294. arXiv:
1701.06049 [cs.AI] (pg. 108).

[Mag+09] Magnusson, M., Nuchter, A., Lorken, C., Lilienthal, A. J., and Hertzberg,
J. “Evaluation of 3D registration reliability and speed - A comparison
of ICP and NDT”. In: ICRA. May 2009, pp. 3907–3912. doi: 10.1109/
ROBOT.2009.5152538 (pg. 76).

[Mag09] Magnusson, Martin. “The three-dimensional normal-distributions trans-
form: an efficient representation for registration, surface analysis, and
loop detection”. PhD thesis. Örebro universitet, 2009. isbn: 978-91-7668-
696-6. url: http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-
8458 (pg. 46, 76).

[Mah36] Mahalanobis, Prasanta Chandra. “On the generalized distance in statis-
tics”. In: Proceedings of the National Institute of Sciences (Calcutta)
(1936), pp. 49–55 (pg. 10, 47).

[Mak+21] Makatura, Liane, Guo, Minghao, Schulz, Adriana, Solomon, Justin, and
Matusik, Wojciech. “Pareto Gamuts: Exploring Optimal Designs Across
Varying Contexts”. In: ACM Transactions on Graphics (SIGGRAPH)

170

https://doi.org/10.1155/2018/5025672
https://doi.org/10.1155/2018/5025672
https://doi.org/10.1155/2018/5025672
https://arxiv.org/abs/2004.07484
https://doi.org/10.1109/TPAMI.1983.4767367
https://doi.org/10.1109/TPAMI.1983.4767367
https://arxiv.org/abs/1701.06049
https://doi.org/10.1109/ROBOT.2009.5152538
https://doi.org/10.1109/ROBOT.2009.5152538
http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-8458
http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-8458

BIBLIOGRAPHY

40.4 (Aug. 2021), pp. 1–17. doi: 10.1145/3450626.3459750. url:
https://doi.org/10.1145/3450626.3459750 (pg. 87).

[Man06] Man, Petr. “Generating and Real-Time Rendering of Clouds”. In: Central
European seminar on computer graphics (2006) (pg. 44).

[Mát65] Mátyáš, I. “Random Optimization”. In: Avtomat. i Telemekh 26.2 (1965),
pp. 246–253. url: http://mi.mathnet.ru/at11288 (pg. 108, 112).

[Max95] Max, Nelson. “Optical models for direct volume rendering”. In: IEEE
Transactions on Visualization and Computer Graphics 1.2 (1995), pp. 99–
108. doi: 10.1109/2945.468400 (pg. 9).

[MB13] McGuire, Morgan and Bavoil, Louis. “Weighted Blended Order-Independent
Transparency”. In: Journal of Computer Graphics Techniques (JCGT)
2.2 (Dec. 2013), pp. 122–141. issn: 2331-7418. url: http://jcgt.org/
published/0002/02/09/ (pg. 13, 48).

[MBL19] Mirzasoleiman, Baharan, Bilmes, Jeff, and Leskovec, Jure. “Coresets for
Data-efficient Training of Machine Learning Models”. In: (2019). doi:
10.48550/ARXIV.1906.01827. url: https://arxiv.org/abs/1906.
01827 (pg. 88).

[McD09] McDonald, John H. Handbook of biological statistics. Vol. 2. 2009 (pg. 149).

[MG15] Menze, Moritz and Geiger, Andreas. “Object Scene Flow for Autonomous
Vehicles”. In: Conference on Computer Vision and Pattern Recognition
(CVPR). 2015 (pg. 87).

[MG17a] Maystre, Lucas and Grossglauser, Matthias. “Just Sort It! A Simple and
Effective Approach to Active Preference Learning”. In: Proceedings of
the 34th International Conference on Machine Learning. 2017, pp. 2344–
2353 (pg. 109).

[MG17b] Ménard, Pierre and Garivier, Aurélien. “A minimax and asymptotically
optimal algorithm for stochastic bandits”. In: Algorithmic Learning
Theory. 2017 Algorithmic Learning Theory Conference 76 (2017). url:
https://hal.archives-ouvertes.fr/hal-01475078 (pg. 97).

[MH08] Maaten, Laurens van der and Hinton, Geoffrey. “Visualizing Data using
t-SNE”. In: Journal of Machine Learning Research 9 (2008), pp. 2579–
2605 (pg. 136).

[Mik+13] Mikolov, Tomas, Chen, Kai, Corrado, Greg, and Dean, Jeffrey. “Efficient
estimation of word representations in vector space”. In: ICLR (2013)
(pg. 120).

[Mil+20a] Mildenhall, Ben, Srinivasan, Pratul P., Tancik, Matthew, Barron, Jonathan
T., Ramamoorthi, Ravi, and Ng, Ren. “NeRF: Representing Scenes as
Neural Radiance Fields for View Synthesis”. In: Computer Vision –
ECCV 2020. Ed. by Vedaldi, Andrea, Bischof, Horst, Brox, Thomas,
and Frahm, Jan-Michael. Cham: Springer International Publishing, 2020,

171

https://doi.org/10.1145/3450626.3459750
https://doi.org/10.1145/3450626.3459750
http://mi.mathnet.ru/at11288
https://doi.org/10.1109/2945.468400
http://jcgt.org/published/0002/02/09/
http://jcgt.org/published/0002/02/09/
https://doi.org/10.48550/ARXIV.1906.01827
https://arxiv.org/abs/1906.01827
https://arxiv.org/abs/1906.01827
https://hal.archives-ouvertes.fr/hal-01475078

BIBLIOGRAPHY

pp. 405–421. isbn: 978-3-030-58452-8. doi: 10.1007/978-3-030-58452-
8_24. arXiv: 2003.08934 (pg. 2, 6–9, 20, 21, 23, 43, 44, 49, 52, 55).

[Mil+20b] Miller, Ian D. et al. Mine Tunnel Exploration using Multiple Quadrupedal
Robots. 2020. arXiv: 1909.09662 [cs.RO] (pg. 7).

[Min66] Minsky, Marvin L. “Artificial Intelligence”. In: Scientific American 215.3
(1966), pp. 246–263. url: http://www.jstor.org/stable/24931058
(pg. 3).

[Mir96] Mirtich, Brian. “Fast and Accurate Computation of Polyhedral Mass
Properties”. In: JGT 1.2 (1996), pp. 31–50. doi: 10.1080/10867651.
1996 . 10487458. eprint: https : / / doi . org / 10 . 1080 / 10867651 .

1996.10487458. url: https://doi.org/10.1080/10867651.1996.
10487458 (pg. 47, 75).

[MO90] Marshall, Albert W. and Olkin, Ingram. “Multivariate Distributions
Generated from Mixtures of Convolution and Product Families”. In:
Lecture Notes-Monograph Series 16 (1990), pp. 371–393. issn: 07492170.
url: http://www.jstor.org/stable/4355607 (pg. 149).

[Mor+18] Morgan, Allison C., Economou, Dimitrios J., Way, Samuel F., and
Clauset, Aaron. “Prestige drives epistemic inequality in the diffusion
of scientific ideas”. In: EPJ Data Science 7.1 (Oct. 2018), p. 40. issn:
2193-1127 (pg. 120).

[Mor83] Moravec, Hans P. “The Stanford Cart and the CMU Rover”. In: Pro-
ceedings of the IEEE 71.7 (1983), pp. 872–884. doi: 10.1109/PROC.
1983.12684 (pg. 2).

[MS09] Malitsky, Yuri and Sellmann, Meinolf. “Stochastic Offline Programming”.
In: 2009 21st IEEE International Conference on Tools with Artificial
Intelligence. 2009, pp. 784–791. doi: 10.1109/ICTAI.2009.23 (pg. 88).

[MS10] Myronenko, A. and Song, X. “Point Set Registration: Coherent Point
Drift”. In: PAMI 32.12 (Dec. 2010), pp. 2262–2275. issn: 0162-8828.
doi: 10.1109/TPAMI.2010.46 (pg. 76, 77, 84).

[Mül+22] Müller, Thomas, Evans, Alex, Schied, Christoph, and Keller, Alexan-
der. “Instant Neural Graphics Primitives with a Multiresolution Hash
Encoding”. In: ACM Trans. Graph. 41.4 (July 2022), 102:1–102:15.
doi: 10.1145/3528223.3530127. url: https://doi.org/10.1145/
3528223.3530127 (pg. 44).

[Mun68] Munson, John H. “Experiments in the Recognition of Hand-Printed Text,
Part I: Character Recognition”. In: Proceedings of the December 9-11,
1968, Fall Joint Computer Conference, Part II. AFIPS ’68 (Fall, part II).
San Francisco, California: Association for Computing Machinery, 1968,
pp. 1125–1138. isbn: 9781450379007. doi: 10.1145/1476706.1476735
(pg. 3).

172

https://doi.org/10.1007/978-3-030-58452-8_24
https://doi.org/10.1007/978-3-030-58452-8_24
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/1909.09662
http://www.jstor.org/stable/24931058
https://doi.org/10.1080/10867651.1996.10487458
https://doi.org/10.1080/10867651.1996.10487458
https://doi.org/10.1080/10867651.1996.10487458
https://doi.org/10.1080/10867651.1996.10487458
https://doi.org/10.1080/10867651.1996.10487458
https://doi.org/10.1080/10867651.1996.10487458
http://www.jstor.org/stable/4355607
https://doi.org/10.1109/PROC.1983.12684
https://doi.org/10.1109/PROC.1983.12684
https://doi.org/10.1109/ICTAI.2009.23
https://doi.org/10.1109/TPAMI.2010.46
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/1476706.1476735

BIBLIOGRAPHY

[Mur91] Muraki, Shigeru. “Volumetric Shape Description of Range Data Using
“Blobby Model””. In: Proceedings of the 18th Annual Conference on
Computer Graphics and Interactive Techniques. SIGGRAPH ’91. New
York, NY, USA: Association for Computing Machinery, 1991, pp. 227–
235. isbn: 0897914368. doi: 10.1145/122718.122743 (pg. 9, 46).

[MWC18] Morgan, Allison C., Way, Samuel F., and Clauset, Aaron. “Automatically
assembling a full census of an academic field”. In: PLOS ONE 13.8
(Aug. 2018), pp. 1–18. doi: 10.1371/journal.pone.0202223. url:
https://doi.org/10.1371/journal.pone.0202223 (pg. 119).

[MWK22] Müller, Jan U., Weinmann, Michael, and Klein, Reinhard. “Unbiased
Gradient Estimation for Differentiable Surface Splatting via Poisson
Sampling”. In: European Conference on Computer Vision (ECCV). 2022
(pg. 9, 46).

[Nag68] Nagy, George. “State of the art in pattern recognition”. In: Proceedings
of the IEEE 56.5 (1968), pp. 836–863. doi: 10.1109/PROC.1968.6414
(pg. 3).

[New+11] Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D.,
Davison, A. J., Kohi, P., Shotton, J., Hodges, S., and Fitzgibbon, A.
“KinectFusion: Real-time dense surface mapping and tracking”. In: IS-
MAR. Oct. 2011, pp. 127–136. doi: 10.1109/ISMAR.2011.6092378
(pg. 66).

[Nil65] Nilsson, Nils J. Learning Machines: Foundations of Trainable Pattern-
Classifying Systems. Thanks to CMU Libraries for lending me Herbert
Simon’s personal copy. McGraw Hill, 1965 (pg. 3).

[Nim+19] Nimier-David, Merlin, Vicini, Delio, Zeltner, Tizian, and Jakob, Wenzel.
“Mitsuba 2: A Retargetable Forward and Inverse Renderer”. In: ACM
Trans. Graph. 38.6 (Nov. 2019). issn: 0730-0301. doi: 10.1145/3355089.
3356498 (pg. 6, 46).

[Nis84] Nishihara, H.K. PRISM: A Practical Real-Time Imaging Stereo Matcher.
Tech. rep. MIT AI Lab, May 1984 (pg. 110, 113).

[NM01] Nulkar, Manjushree and Mueller, Klaus. “Splatting With Shadows”.
In: Volume Graphics 2001. Ed. by Mueller, Klaus and Kaufman, Arie
E. Vienna: Springer Vienna, 2001, pp. 35–49. isbn: 978-3-7091-6756-4
(pg. 44).

[Noc+14] Nocka, Andrew, Zheng, Danning, Hu, Tianran, and Luo, Jiebo. “Mon-
eyball for Academia: Toward Measuring and Maximizing Faculty Perfor-
mance and Impact”. In: 2014 IEEE International Conference on Data
Mining Workshop. Dec. 2014, pp. 193–197 (pg. 119).

173

https://doi.org/10.1145/122718.122743
https://doi.org/10.1371/journal.pone.0202223
https://doi.org/10.1371/journal.pone.0202223
https://doi.org/10.1109/PROC.1968.6414
https://doi.org/10.1109/ISMAR.2011.6092378
https://doi.org/10.1145/3355089.3356498
https://doi.org/10.1145/3355089.3356498

BIBLIOGRAPHY

[NR18] News, US and Report, World. Best Computer Science Schools. https://
www.usnews.com/best-graduate-schools/top-science-schools/

computer-science-rankings. 2018 (pg. 116, 131, 132).

[NW06] Nocedal, Jorge and Wright, Stephen J. Numerical Optimization. second.
New York, NY, USA: Springer, 2006 (pg. 77, 79).

[Ope+19] OpenAI et al. Learning Dexterous In-Hand Manipulation. 2019. arXiv:
1808.00177 [cs.LG] (pg. 86).

[Oqu+23] Oquab, Maxime et al. DINOv2: Learning Robust Visual Features without
Supervision. 2023. arXiv: 2304.07193 [cs.CV] (pg. 48).

[OTM19] O’Meadhra, C., Tabib, W., and Michael, N. “Variable Resolution Occu-
pancy Mapping Using Gaussian Mixture Models”. In: IEEE Robotics
and Automation Letters 4.2 (2019), pp. 2015–2022. doi: 10.1109/LRA.
2018.2889348 (pg. 9, 46).

[Pag+99] Page, Lawrence, Brin, Sergey, Motwani, Rajeev, and Winograd, Terry.
The PageRank citation ranking: Bringing order to the web. Tech. rep.
Stanford, 1999 (pg. 118, 131).

[Pap66] Papert, Seymour A. “The Summer Vision Project”. In: Artificial In-
telligence Group Memo 100 (1966). url: http://dspace.mit.edu/
handle/1721.1/6125 (pg. 2).

[Par+19] Park, Jeong Joon, Florence, Peter, Straub, Julian, Newcombe, Richard,
and Lovegrove, Steven. “DeepSDF: Learning Continuous Signed Distance
Functions for Shape Representation”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). June
2019 (pg. 2).

[Pas+19] Paszke, Adam et al. “PyTorch: An Imperative Style, High-Performance
Deep Learning Library”. In: Advances in Neural Information Processing
Systems 32. Ed. by Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-
Buc, F., Fox, E., and Garnett, R. Curran Associates, Inc., 2019, pp. 8024–
8035. url: http://papers.neurips.cc/paper/9015-pytorch-an-
imperative- style- high- performance- deep- learning- library.

pdf (pg. 94).

[Pau92] Paul J. Besl, Neil D. McKay. “Method for registration of 3-D shapes”.
In: Proc.SPIE. 1992, pp. 1611–1621. doi: 10.1117/12.57955. url:
https://doi.org/10.1117/12.57955 (pg. 66, 77, 84, 85).

[Pea94] Pearson, Karl. “Contributions to the Mathematical Theory of Evolution”.
In: Philosophical Transactions of the Royal Society of London. A 185
(1894), pp. 71–110. issn: 02643820. url: http://www.jstor.org/
stable/90667 (pg. 44).

[Ped+11] Pedregosa, F. et al. “Scikit-learn: Machine Learning in Python”. In:
JMLR 12 (2011), pp. 2825–2830 (pg. 74, 121).

174

https://www.usnews.com/best-graduate-schools/top-science-schools/computer-science-rankings
https://www.usnews.com/best-graduate-schools/top-science-schools/computer-science-rankings
https://www.usnews.com/best-graduate-schools/top-science-schools/computer-science-rankings
https://arxiv.org/abs/1808.00177
https://arxiv.org/abs/2304.07193
https://doi.org/10.1109/LRA.2018.2889348
https://doi.org/10.1109/LRA.2018.2889348
http://dspace.mit.edu/handle/1721.1/6125
http://dspace.mit.edu/handle/1721.1/6125
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1117/12.57955
https://doi.org/10.1117/12.57955
http://www.jstor.org/stable/90667
http://www.jstor.org/stable/90667

BIBLIOGRAPHY

[Pfi+00] Pfister, Hanspeter, Zwicker, Matthias, Baar, Jeroen van, and Gross,
Markus. “Surfels: Surface Elements as Rendering Primitives”. In: Pro-
ceedings of the 27th Annual Conference on Computer Graphics and
Interactive Techniques. SIGGRAPH ’00. USA: ACM Press/Addison-
Wesley Publishing Co., 2000, pp. 335–342. isbn: 1581132085. doi: 10.
1145/344779.344936 (pg. 8, 46, 147).

[PM00] Pelleg, Dau and Moore, Andrew. “X-means: Extending K-means with
Efficient Estimation of the Number of Clusters”. In: ICML. 2000, pp. 727–
734 (pg. 75).

[Pom88] Pomerleau, Dean A. “ALVINN: An Autonomous Land Vehicle in a Neu-
ral Network”. In: Advances in Neural Information Processing Systems.
Ed. by Touretzky, D. Vol. 1. Morgan-Kaufmann, 1988. url: https://
papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-

in-a-neural-network (pg. 2).

[PR69] Polak, E. and Ribiere, G. “Note sur la convergence de méthodes de
directions conjuguées”. In: R.I.R.O. 3.16 (1969), pp. 35–43. doi: 10.
1051/m2an/196903R100351. url: https://doi.org/10.1051/m2an/
196903R100351 (pg. 77).

[PSM14] Pennington, Jeffrey, Socher, Richard, and Manning, Christopher. “Glove:
Global vectors for word representation”. In: EMNLP. 2014, pp. 1532–
1543 (pg. 120).

[Rad+21] Radford, Alec, Kim, Jong Wook, Hallacy, Chris, Ramesh, A., Goh,
Gabriel, Agarwal, Sandhini, Sastry, Girish, Askell, Amanda, Mishkin,
Pamela, Clark, Jack, Krueger, Gretchen, and Sutskever, Ilya. “Learning
Transferable Visual Models From Natural Language Supervision”. In:
ICML. 2021. arXiv: 2103.00020 [cs.CV] (pg. 48).

[Rak+23] Rakotosaona, Marie-Julie, Manhardt, Fabian, Arroyo, Diego Martin,
Niemeyer, Michael, Kundu, Abhijit, and Tombari, Federico. NeRFMesh-
ing: Distilling Neural Radiance Fields into Geometrically-Accurate 3D
Meshes. 2023. arXiv: 2303.09431 [cs.CV] (pg. 47).

[Ran15] Rankings, Shanghai. Academic Ranking of World Universities in Com-
puter Science. http://www.shanghairanking.com/SubjectCS2015.
html. 2015 (pg. 131, 132).

[Ran18] Rankings, QS World University. Computer Science & Information Sys-
tems. https://www.topuniversities.com/university-rankings/
university-subject-rankings/2018/computer-science-information-

systems. 2018 (pg. 116, 131, 132).

[Rav+20] Ravi, Nikhila, Reizenstein, Jeremy, Novotny, David, Gordon, Taylor,
Lo, Wan-Yen, Johnson, Justin, and Gkioxari, Georgia. “Accelerating 3D

175

https://doi.org/10.1145/344779.344936
https://doi.org/10.1145/344779.344936
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network
https://doi.org/10.1051/m2an/196903R100351
https://doi.org/10.1051/m2an/196903R100351
https://doi.org/10.1051/m2an/196903R100351
https://doi.org/10.1051/m2an/196903R100351
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2303.09431
http://www.shanghairanking.com/SubjectCS2015.html
http://www.shanghairanking.com/SubjectCS2015.html
https://www.topuniversities.com/university-rankings/university-subject-rankings/2018/computer-science-information-systems
https://www.topuniversities.com/university-rankings/university-subject-rankings/2018/computer-science-information-systems
https://www.topuniversities.com/university-rankings/university-subject-rankings/2018/computer-science-information-systems

BIBLIOGRAPHY

Deep Learning with PyTorch3D”. In: arXiv:2007.08501 (2020) (pg. 8,
15, 16, 18–21, 32, 55).

[RB93] Rossignac, Jarek and Borrel, Paul. “Multi-resolution 3D approximations
for rendering complex scenes”. In: Model. Comput. Graph. Springer
Verlag, 1993, pp. 455–465. isbn: 978-3-642-78116-2. doi: 10.1007/978-
3-642-78114-8_29. url: http://www.springerlink.com/index/10.
1007/978-3-642-78114-8%5C_29 (pg. 73, 82, 83).

[RBK98] Rowley, H.A., Baluja, S., and Kanade, T. “Neural network-based face
detection”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 20.1 (1998), pp. 23–38. doi: 10.1109/34.655647 (pg. 2).

[Rei+21] Reizenstein, Jeremy, Shapovalov, Roman, Henzler, Philipp, Sbordone,
Luca, Labatut, Patrick, and Novotny, David. “Common Objects in
3D: Large-Scale Learning and Evaluation of Real-life 3D Category Re-
construction”. In: International Conference on Computer Vision. 2021
(pg. 22, 50, 52–55).

[RHL02] Rusinkiewicz, Szymon, Hall-Holt, Olaf, and Levoy, Marc. “Real-Time 3D
Model Acquisition”. In: ACM Trans. Graph. 21.3 (July 2002), pp. 438–
446. issn: 0730-0301. doi: 10.1145/566654.566600 (pg. 2).

[RHW86] Rumelhart, David E., Hinton, Geoffrey E., and Williams, Ronald J.
“Learning representations by back-propagating errors”. In: Nature 323.6088
(1986), pp. 533–536. issn: 1476-4687 (pg. 120).

[Ric76] Rice, John R. “The Algorithm Selection Problem”. In: Adv. Comput. 15
(1976), pp. 65–118 (pg. 87, 88).

[RL01] Rusinkiewicz, S. and Levoy, M. “Efficient variants of the ICP algorithm”.
In: Proceedings Third International Conference on 3D Digital Imaging
& Modeling. 2001, pp. 145–152. doi: 10.1109/IM.2001.924423 (pg. 17,
19).

[RM51] Robbins, Herbert and Monro, Sutton. “A Stochastic Approximation
Method”. In: The Annals of Mathematical Statistics 22.3 (1951), pp. 400–
407 (pg. 121).

[Rob63] Roberts, Lawrence Gillman. “Machine perception of three-dimensional
solids”. PhD thesis. Massachusetts Institute of Technology, 1963. url:
http://dspace.mit.edu/handle/1721.1/11589 (pg. 2, 3).

[Ros60] Rosenblatt, Frank. “Perceptron Simulation Experiments”. In: Proceed-
ings of the IRE 48.3 (1960), pp. 301–309. doi: 10.1109/JRPROC.1960.
287598 (pg. 2).

[Rou87] Rousseeuw, Peter J. “Silhouettes: A graphical aid to the interpreta-
tion and validation of cluster analysis”. In: Journal of Computational
and Applied Mathematics 20 (1987), pp. 53–65. issn: 0377-0427. doi:
https://doi.org/10.1016/0377-0427(87)90125-7. url: http://

176

https://doi.org/10.1007/978-3-642-78114-8_29
https://doi.org/10.1007/978-3-642-78114-8_29
http://www.springerlink.com/index/10.1007/978-3-642-78114-8%5C_29
http://www.springerlink.com/index/10.1007/978-3-642-78114-8%5C_29
https://doi.org/10.1109/34.655647
https://doi.org/10.1145/566654.566600
https://doi.org/10.1109/IM.2001.924423
http://dspace.mit.edu/handle/1721.1/11589
https://doi.org/10.1109/JRPROC.1960.287598
https://doi.org/10.1109/JRPROC.1960.287598
https://doi.org/https://doi.org/10.1016/0377-0427(87)90125-7
http://www.sciencedirect.com/science/article/pii/0377042787901257
http://www.sciencedirect.com/science/article/pii/0377042787901257

BIBLIOGRAPHY

www.sciencedirect.com/science/article/pii/0377042787901257

(pg. 137).

[RT07] Ren, Jie and Taylor, Richard N. “Automatic and versatile publications
ranking for research institutions and scholars”. In: Communications of
the ACM 50.6 (2007), pp. 81–85 (pg. 117).

[RT18] Rapin, J. and Teytaud, O. Nevergrad - A gradient-free optimization
platform. https://GitHub.com/FacebookResearch/Nevergrad. 2018
(pg. 90).

[Rus+17] Russo, Daniel, Van Roy, Benjamin, Kazerouni, Abbas, Osband, Ian,
and Wen, Zheng. “A Tutorial on Thompson Sampling”. In: (2017). doi:
10.48550/ARXIV.1707.02038. url: https://arxiv.org/abs/1707.
02038 (pg. 91).

[Sam59] Samuel, Aruthur L. “Some Studies in Machine Learning Using the Game
of Checkers”. In: IBM Journal of Research and Development 3.3 (1959),
pp. 210–229. doi: 10.1147/rd.33.0210 (pg. 3).

[SC22] Stumberg, L. von and Cremers, D. “DM-VIO: Delayed Marginalization
Visual-Inertial Odometry”. In: International Conference on Robotics
and Automation (ICRA) 7.2 (2022), pp. 1408–1415. doi: 10.1109/LRA.
2021.3140129 (pg. 96).

[Sch+14] Scharstein, Daniel, Hirschmüller, Heiko, Kitajima, York, Krathwohl,
Greg, Nešić, Nera, Wang, Xi, and Westling, Porter. “High-Resolution
Stereo Datasets with Subpixel-Accurate Ground Truth”. In: Pattern
Recognition. 2014 (pg. 87, 94, 110, 111).

[Sch+16] Schönberger, Johannes Lutz, Zheng, Enliang, Pollefeys, Marc, and
Frahm, Jan-Michael. “Pixelwise View Selection for Unstructured Multi-
View Stereo”. In: European Conference on Computer Vision (ECCV).
2016 (pg. 24, 25, 43, 45, 50, 152).

[Sch+18] Schubert, D., Goll, T., Demmel, N., Usenko, V., Stueckler, J., and
Cremers, D. “The TUM VI Benchmark for Evaluating Visual-Inertial
Odometry”. In: International Conference on Intelligent Robots and
Systems (IROS). Oct. 2018 (pg. 96).

[Sch+22] Schede, Elias, Brandt, Jasmin, Tornede, Alexander, Wever, Marcel,
Bengs, Viktor, Hüllermeier, Eyke, and Tierney, Kevin. A Survey of
Methods for Automated Algorithm Configuration. 2022. doi: 10.48550/
ARXIV.2202.01651. url: https://arxiv.org/abs/2202.01651
(pg. 88).

[Sch14] Schauerte, Boris. Microsoft Academic: conference field ratings. http:
//www.conferenceranks.com/visualization/msar2014.html. 2014
(pg. 133).

177

http://www.sciencedirect.com/science/article/pii/0377042787901257
http://www.sciencedirect.com/science/article/pii/0377042787901257
http://www.sciencedirect.com/science/article/pii/0377042787901257
https://GitHub.com/FacebookResearch/Nevergrad
https://doi.org/10.48550/ARXIV.1707.02038
https://arxiv.org/abs/1707.02038
https://arxiv.org/abs/1707.02038
https://doi.org/10.1147/rd.33.0210
https://doi.org/10.1109/LRA.2021.3140129
https://doi.org/10.1109/LRA.2021.3140129
https://doi.org/10.48550/ARXIV.2202.01651
https://doi.org/10.48550/ARXIV.2202.01651
https://arxiv.org/abs/2202.01651
http://www.conferenceranks.com/visualization/msar2014.html
http://www.conferenceranks.com/visualization/msar2014.html

BIBLIOGRAPHY

[Scu10a] Sculley, D. “Web-Scale k-Means Clustering”. In: Proceedings of the 19th
International Conference on World Wide Web. WWW ’10. Raleigh,
North Carolina, USA: Association for Computing Machinery, 2010,
pp. 1177–1178. isbn: 9781605587998. doi: 10.1145/1772690.1772862
(pg. 20).

[Scu10b] Sculley, D. “Web-Scale k-Means Clustering”. In: Proceedings of the 19th
International Conference on World Wide Web. WWW ’10. Raleigh,
North Carolina, USA: Association for Computing Machinery, 2010,
pp. 1177–1178. isbn: 9781605587998. doi: 10.1145/1772690.1772862.
url: https://doi.org/10.1145/1772690.1772862 (pg. 90).

[SD18] Silva, Jaime A Teixeira da and Dobránszki, Judit. “Multiple versions of
the h-index: Cautionary use for formal academic purposes”. In: Sciento-
metrics 115.2 (2018), pp. 1107–1113 (pg. 115, 117).

[Sek08] Sekercioglu, Cagan H. “Quantifying Coauthor Contributions”. In: Sci-
ence 322.5900 (2008), pp. 371–371. issn: 0036-8075. doi: 10.1126/
science.322.5900.371a. url: http://science.sciencemag.org/
content/322/5900/371.1 (pg. 128).

[Sha+18] Shah, Nihar B., Tabibian, Behzad, Muandet, Krikamol, Guyon, Isabelle,
and Luxburg, Ulrike von. “Design and Analysis of the NIPS 2016 Review
Process”. In: JMLR 19.49 (2018), pp. 1–34. url: http://jmlr.org/
papers/v19/17-511.html (pg. 120).

[She94] Shewchuk, Jonathan Richard. An introduction to the conjugate gradient
method without the agonizing pain. Tech. rep. Carnegie Mellon University,
1994. url: https://www.cs.cmu.edu/~quake-papers/painless-
conjugate-gradient.pdf (pg. 77).

[Sho57] Shockley, William. “On the statistics of individual variations of produc-
tivity in research laboratories”. In: Proceedings of the IRE 45.3 (1957),
pp. 279–290 (pg. 117).

[SI12] Szécsi, László and Illés, Dávid. “Real-Time Metaball Ray Casting with
Fragment Lists”. In: Eurographics. 2012 (pg. 9, 46).

[Sil10] Sill, Joseph. “Improved NBA adjusted+/-using regularization and out-
of-sample testing”. In: MIT Sloan Sports Analytics Conference. 2010
(pg. 140).

[SM16] Srivastava, S. and Michael, N. “Approximate continuous belief distribu-
tions for precise autonomous inspection”. In: IEEE SSRR. Oct. 2016,
pp. 74–80. doi: 10.1109/SSRR.2016.7784280 (pg. 75).

[SM17] Silva, Jaime A Teixeira da and Memon, Aamir Raoof. “CiteScore: A
cite for sore eyes, or a valuable, transparent metric?” In: Scientometrics
111.1 (2017), pp. 553–556 (pg. 115).

178

https://doi.org/10.1145/1772690.1772862
https://doi.org/10.1145/1772690.1772862
https://doi.org/10.1145/1772690.1772862
https://doi.org/10.1126/science.322.5900.371a
https://doi.org/10.1126/science.322.5900.371a
http://science.sciencemag.org/content/322/5900/371.1
http://science.sciencemag.org/content/322/5900/371.1
http://jmlr.org/papers/v19/17-511.html
http://jmlr.org/papers/v19/17-511.html
https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
https://doi.org/10.1109/SSRR.2016.7784280

BIBLIOGRAPHY

[SM20] Shankar, Kumar Shaurya and Michael, Nathan. “MRFMap: Online Prob-
abilistic 3D Mapping using Forward Ray Sensor Models”. In: Robotics:
Science and Systems. 2020. arXiv: 2006.03512 [cs.RO] (pg. 9, 46).

[SML12] Stoyanov, T., Magnusson, M., and Lilienthal, A. J. “Point set registration
through minimization of the L2 distance between 3D-NDT models”. In:
ICRA. May 2012, pp. 5196–5201. doi: 10.1109/ICRA.2012.6224717
(pg. 76).

[SN01] Schmidt, Jochen and Niemann, Heinrich. “Using Quaternions for Parametriz-
ing 3-D Rotations in Unconstrained Nonlinear Optimization”. In: VMV.
VMV ’01. Aka GmbH, 2001, pp. 399–406. isbn: 3-89838-028-9. url:
http://dl.acm.org/citation.cfm?id=647260.718651 (pg. 77).

[SN60] Selfridge, Oliver G. and Neisser, Ulric. “Pattern Recognition by Ma-
chine”. In: Scientific American 203.2 (1960), pp. 60–69. url: https:
//www.jstor.org/stable/24940576 (pg. 2).

[SO94] Schyns, Philippe G. and Oliva, Aude. “From Blobs to Boundary Edges:
Evidence for Time- and Spatial-Scale-Dpendent Scene Recognition”. In:
Psychological Science 5.4 (1994), pp. 195–200. url: http://www.jstor.
org/stable/40063101 (pg. 8).

[Spe04] Spearman, Charles. “The proof and measurement of association between
two things”. In: The American journal of psychology 15.1 (1904), pp. 72–
101 (pg. 133).

[Sri14] Sridharan, Ramesh. “Gaussian mixture models and the EM algorithm”.
In: (2014). https://people.csail.mit.edu/rameshvs/content/gmm-
em.pdf (pg. 70).

[SSS74] Sutherland, Ivan E., Sproull, Robert F., and Schumacker, Robert A. “A
Characterization of Ten Hidden-Surface Algorithms”. In: ACM Comput.
Surv. 6.1 (Mar. 1974), pp. 1–55. issn: 0360-0300. doi: 10.1145/356625.
356626 (pg. 3, 13).

[Sta14] Stanfill, Bryan. “Statistical methods for random rotations”. PhD thesis.
Iowa State University, 2014 (pg. 27).

[Sto+12] Stoyanov, Todor, Magnusson, Martin, Andreasson, Henrik, and Lilien-
thal, Achim J. “Fast and accurate scan registration through minimization
of the distance between compact 3D NDT representations”. In: IJRR
31.12 (2012), pp. 1377–1393. doi: 10.1177/0278364912460895. url:
https://doi.org/10.1177/0278364912460895 (pg. 76).

[Stu+12] Sturm, J., Engelhard, N., Endres, F., Burgard, W., and Cremers, D. “A
Benchmark for the Evaluation of RGB-D SLAM Systems”. In: IROS.
2012 (pg. 78).

179

https://arxiv.org/abs/2006.03512
https://doi.org/10.1109/ICRA.2012.6224717
http://dl.acm.org/citation.cfm?id=647260.718651
https://www.jstor.org/stable/24940576
https://www.jstor.org/stable/24940576
http://www.jstor.org/stable/40063101
http://www.jstor.org/stable/40063101
https://people.csail.mit.edu/rameshvs/content/gmm-em.pdf
https://people.csail.mit.edu/rameshvs/content/gmm-em.pdf
https://doi.org/10.1145/356625.356626
https://doi.org/10.1145/356625.356626
https://doi.org/10.1177/0278364912460895
https://doi.org/10.1177/0278364912460895

BIBLIOGRAPHY

[Suc+21] Sucar, Edgar, Liu, Shikun, Ortiz, Joseph, and Davison, Andrew. “iMAP:
Implicit Mapping and Positioning in Real-Time”. In: Proceedings of the
International Conference on Computer Vision (ICCV). 2021 (pg. 152).

[Sut63] Sutherland, Ivan Edward. “Sketchpad, a man-machine graphical com-
munication system”. PhD thesis. Massachusetts Institute of Technology,
1963. url: http://dspace.mit.edu/handle/1721.1/14979 (pg. 3).

[Sut66] Sutherland, Ivan E. “Computer Inputs and Outputs”. In: Scientific
American 215.3 (1966), pp. 86–99. url: http://www.jstor.org/
stable/24931048 (pg. 3).

[Sut70] Sutherland, Ivan E. “Computer Displays”. In: Scientific American 222.6
(1970), pp. 56–81. url: http://www.jstor.org/stable/24925827
(pg. 3).

[Tal+16] Tallavajhula, Abhijeet, Choudhury, Sanjiban, Scherer, Sebastian, and
Kelly, Alonzo. “List prediction applied to motion planning”. In: 2016
IEEE International Conference on Robotics and Automation (ICRA).
2016, pp. 213–220. doi: 10.1109/ICRA.2016.7487136 (pg. 87).

[Tan+23] Tancik, Matthew et al. “Nerfstudio: A Modular Framework for Neural
Radiance Field Development”. In: Special Interest Group on Computer
Graphics and Interactive Techniques Conference Conference Proceedings.
ACM, 2023. doi: 10.1145/3588432.3591516. url: https://doi.org/
10.1145%2F3588432.3591516 (pg. 44).

[TD20] Teed, Zachary and Deng, Jia. “RAFT: Recurrent All-Pairs Field Trans-
forms for Optical Flow”. English (US). In: 16th European Conference
on Computer Vision. Germany, 2020, pp. 402–419. doi: 10.1007/978-
3-030-58536-5_24 (pg. 7).

[TD21a] Teed, Zachary and Deng, Jia. DROID-SLAM: Deep Visual SLAM for
Monocular, Stereo, and RGB-D Cameras. 2021. arXiv: 2108.10869
[cs.CV] (pg. 7).

[TD21b] Teed, Zachary and Deng, Jia. Tangent Space Backpropagation for 3D
Transformation Groups. 2021. arXiv: 2103.12032 [cs.CV] (pg. 34).

[Tew+17] Tewari, A., Zollhöfer, M., Kim, H., Garrido, P., Bernard, F., Pérez,
P., and Theobalt, C. “MoFA: Model-Based Deep Convolutional Face
Autoencoder for Unsupervised Monocular Reconstruction”. In: 2017
IEEE International Conference on Computer Vision (ICCV). 2017,
pp. 3735–3744. doi: 10.1109/ICCV.2017.401 (pg. 9).

[Tho33] Thompson, William R. “On the Likelihood that One Unknown Prob-
ability Exceeds Another in View of the Evidence of Two Samples”.
In: Biometrika 25.3/4 (1933), pp. 285–294. issn: 00063444. url: http:
//www.jstor.org/stable/2332286 (visited on 09/15/2022) (pg. 91).

180

http://dspace.mit.edu/handle/1721.1/14979
http://www.jstor.org/stable/24931048
http://www.jstor.org/stable/24931048
http://www.jstor.org/stable/24925827
https://doi.org/10.1109/ICRA.2016.7487136
https://doi.org/10.1145/3588432.3591516
https://doi.org/10.1145%2F3588432.3591516
https://doi.org/10.1145%2F3588432.3591516
https://doi.org/10.1007/978-3-030-58536-5_24
https://doi.org/10.1007/978-3-030-58536-5_24
https://arxiv.org/abs/2108.10869
https://arxiv.org/abs/2108.10869
https://arxiv.org/abs/2103.12032
https://doi.org/10.1109/ICCV.2017.401
http://www.jstor.org/stable/2332286
http://www.jstor.org/stable/2332286

BIBLIOGRAPHY

[TO99] Turk, Greg and O’Brien, James F. Variational Implicit Surfaces. Tech.
rep. GIT-GVU-99-15. Georgia Institute of Technology, 1999. url: http:
//hdl.handle.net/1853/3382 (pg. 148).

[Tol08] Tol, Richard S. J. “A rational, successive g-index applied to economics
departments in Ireland”. In: J. Informetrics 2 (2008), pp. 149–155
(pg. 116).

[Tom+12] Tomic, Teodor, Schmid, Korbinian, Lutz, Philipp, Domel, Andreas,
Kassecker, Michael, Mair, Elmar, Grixa, Iris Lynne, Ruess, Felix, Suppa,
Michael, and Burschka, Darius. “Toward a Fully Autonomous UAV:
Research Platform for Indoor and Outdoor Urban Search and Rescue”.
In: IEEE Robotics Automation Magazine 19.3 (2012), pp. 46–56. doi:
10.1109/MRA.2012.2206473 (pg. 7).

[TOM18] Tabib, W., O’Meadhra, C., and Michael, N. “On-Manifold GMM Reg-
istration”. In: IEEE Robotics and Automation Letters 3.4 (Oct. 2018),
pp. 3805–3812. issn: 2377-3766. doi: 10.1109/LRA.2018.2856279
(pg. 9, 14, 67, 75, 77–79, 85).

[Tou+23] Touvron, Hugo et al. Llama 2: Open Foundation and Fine-Tuned Chat
Models. 2023. arXiv: 2307.09288 [cs.CL] (pg. 108).

[Tri+00] Triggs, Bill, McLauchlan, Philip F., Hartley, Richard I., and Fitzgibbon,
Andrew W. “Bundle Adjustment — A Modern Synthesis”. In: Vision
Algorithms: Theory and Practice. Ed. by Triggs, Bill, Zisserman, Andrew,
and Szeliski, Richard. Berlin, Heidelberg: Springer Berlin Heidelberg,
2000, pp. 298–372. isbn: 978-3-540-44480-0 (pg. 19).

[TS20] Tucker, Richard and Snavely, Noah. “Single-view view synthesis with
multiplane images”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2020, pp. 551–560 (pg. 8).

[TSG19] Tsai, C, Sankaranarayanan, A, and Gkioulekas, I. “Beyond Volumetric
Albedo”. In: CVPR. June 2019 (pg. 23, 152).

[UV61] Uhr, Leonard and Vossler, Charles. “A Pattern Recognition Program
That Generates, Evaluates, and Adjusts Its Own Operators”. In: Pa-
pers Presented at the May 9-11, 1961, Western Joint IRE-AIEE-ACM
Computer Conference. IRE-AIEE-ACM ’61 (Western). Los Angeles, Cal-
ifornia: Association for Computing Machinery, 1961, pp. 555–569. isbn:
9781450378727. doi: 10.1145/1460690.1460751 (pg. 2).

[VHE15] Valenzuela, Marco, Ha, Vu, and Etzioni, Oren. “Identifying meaningful
citations”. In: AAAI Workshop: Scholarly Big Data. 2015 (pg. 116, 128,
129, 133, 134).

[VJK21] Vicini, Delio, Jakob, Wenzel, and Kaplanyan, Anton. “A Non-Exponential
Transmittance Model for Volumetric Scene Representations”. In: ACM

181

http://hdl.handle.net/1853/3382
http://hdl.handle.net/1853/3382
https://doi.org/10.1109/MRA.2012.2206473
https://doi.org/10.1109/LRA.2018.2856279
https://arxiv.org/abs/2307.09288
https://doi.org/10.1145/1460690.1460751

BIBLIOGRAPHY

Trans. Graph. 40.4 (July 2021). issn: 0730-0301. doi: 10.1145/3450626.
3459815. url: https://doi.org/10.1145/3450626.3459815 (pg. 49).

[VL99] Vasconcelos, Nuno and Lippman, Andrew. “Learning Mixture Hierar-
chies”. In: NIPS. Ed. by Kearns, M. J., Solla, S. A., and Cohn, D. A. MIT
Press, 1999, pp. 606–612. url: http://papers.nips.cc/paper/1543-
learning-mixture-hierarchies.pdf (pg. 75).

[Vuc+18] Vucetic, Slobodan, Chanda, Ashis Kumar, Zhang, Shanshan, Bai, Tian,
and Maiti, Aniruddha. “Peer Assessment of CS Doctoral Programs
Shows Strong Correlation with Faculty Citations”. In: Commun. ACM
61.9 (Aug. 2018), pp. 70–76. issn: 0001-0782 (pg. 116, 117, 119, 131,
132, 134).

[Wal17] Walters, W. H. “Citation-Based Journal Rankings: Key Questions, Met-
rics, and Data Sources”. In: IEEE Access 5 (2017), pp. 22036–22053.
issn: 2169-3536. doi: 10.1109/ACCESS.2017.2761400 (pg. 117).

[Wan+23] Wang, Angtian, Wang, Peng, Sun, Jian, Kortylewski, Adam, and Yuille,
Alan. “VoGE: A Differentiable Volume Renderer using Gaussian Ellip-
soids for Analysis-by-Synthesis”. In: The Eleventh International Confer-
ence on Learning Representations. 2023 (pg. 9, 46, 47, 49, 52, 63).

[War69] Warnock, John Edward. “A Hidden Surface Algorithm for Computer
Generated Halftone Pictures”. PhD thesis. The University of Utah, 1969.
url: https://collections.lib.utah.edu/ark:/87278/s6vj1cn7
(pg. 3).

[Wat70] Watkins, Gary Scott. “A Real Time Visible Surface Algorithm”. PhD
thesis. The University of Utah, 1970. url: https://apps.dtic.mil/
sti/citations/AD0762004 (pg. 3).

[Wes90] Westover, Lee. “Footprint Evaluation for Volume Rendering”. In: SIG-
GRAPH Comput. Graph. 24.4 (Sept. 1990), pp. 367–376. issn: 0097-8930.
doi: 10.1145/97880.97919. url: https://doi.org/10.1145/97880.
97919 (pg. 46).

[WF07] Williams, Oliver and Fitzgibbon, Andrew. “Gaussian Process Implicit
Surfaces”. In: Gaussian Processes in Practice. Apr. 2007. url: https:
//www.microsoft.com/en-us/research/publication/gaussian-

process-implicit-surfaces-2/ (pg. 148).

[WGK20] Westman, E., Gkioulekas, I., and Kaess, M. “Volumetric Albedo Frame-
work for 3D Imaging Sonar”. In: ICRA. 2020 (pg. 23, 150).

[WMW86] Wyvill, Geoff, McPheeters, Craig, and Wyvill, Brian. “Data structure
forsoft objects”. In: The Visual Computer 2.4 (Aug. 1986), pp. 227–234.
issn: 1432-2315. doi: 10.1007/BF01900346 (pg. 9, 46).

182

https://doi.org/10.1145/3450626.3459815
https://doi.org/10.1145/3450626.3459815
https://doi.org/10.1145/3450626.3459815
http://papers.nips.cc/paper/1543-learning-mixture-hierarchies.pdf
http://papers.nips.cc/paper/1543-learning-mixture-hierarchies.pdf
https://doi.org/10.1109/ACCESS.2017.2761400
https://collections.lib.utah.edu/ark:/87278/s6vj1cn7
https://apps.dtic.mil/sti/citations/AD0762004
https://apps.dtic.mil/sti/citations/AD0762004
https://doi.org/10.1145/97880.97919
https://doi.org/10.1145/97880.97919
https://doi.org/10.1145/97880.97919
https://www.microsoft.com/en-us/research/publication/gaussian-process-implicit-surfaces-2/
https://www.microsoft.com/en-us/research/publication/gaussian-process-implicit-surfaces-2/
https://www.microsoft.com/en-us/research/publication/gaussian-process-implicit-surfaces-2/
https://doi.org/10.1007/BF01900346

BIBLIOGRAPHY

[Wro21] Wronski, Bartlomiej. Procedural Kernel Networks. 2021. doi: 10.48550/
ARXIV.2112.09318. url: https://arxiv.org/abs/2112.09318
(pg. 88).

[WT90] Wyvill, Geoff and Trotman, Andrew. “Ray-Tracing Soft Objects”. In:
CG International. Ed. by Chua, Tat-Seng and Kunii, Tosiyasu L. Tokyo:
Springer Japan, 1990, pp. 469–476. isbn: 978-4-431-68123-6 (pg. 9, 46).

[Wu+19] Wu, Yuxin, Kirillov, Alexander, Massa, Francisco, Lo, Wan-Yen, and
Girshick, Ross. Detectron2. https://github.com/facebookresearch/
detectron2. 2019 (pg. 24).

[XHL10] Xu, Lin, Hoos, Holger H., and Leyton-Brown, Kevin. “Hydra: Auto-
matically Configuring Algorithms for Portfolio-Based Selection”. In:
Proceedings of the Twenty-Fourth AAAI Conference on Artificial In-
telligence. AAAI’10. Atlanta, Georgia: AAAI Press, 2010, pp. 210–216
(pg. 88).

[Xu+23] Xu, Haofei, Zhang, Jing, Cai, Jianfei, Rezatofighi, Hamid, Yu, Fisher,
Tao, Dacheng, and Geiger, Andreas. “Unifying Flow, Stereo and Depth
Estimation”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence (2023) (pg. 50, 53–55).

[XXM16] Xu, D., Xia, Y., and Mandic, D. P. “Optimization in Quaternion Dy-
namic Systems: Gradient, Hessian, and Learning Algorithms”. In: IEEE
Transactions on Neural Networks and Learning Systems 27.2 (Feb. 2016),
pp. 249–261. issn: 2162-237X. doi: 10.1109/TNNLS.2015.2440473
(pg. 77).

[Yan+21a] Yang, Gengshan, Sun, Deqing, Jampani, Varun, Vlasic, Daniel, Cole,
Forrester, Chang, Huiwen, Ramanan, Deva, Freeman, William T, and
Liu, Ce. “LASR: Learning Articulated Shape Reconstruction from a
Monocular Video”. In: CVPR. June 2021 (pg. 52, 152).

[Yan+21b] Yang, Gengshan, Sun, Deqing, Jampani, Varun, Vlasic, Daniel, Cole,
Forrester, Liu, Ce, and Ramanan, Deva. “ViSER: Video-Specific Surface
Embeddings for Articulated 3D Shape Reconstruction”. In: NeurIPS.
Dec. 2021 (pg. 52, 152).

[Yan+22] Yang, Gengshan, Vo, Minh, Neverova, Natalia, Ramanan, Deva, Vedaldi,
Andrea, and Joo, Hanbyul. “BANMo: Building Animatable 3D Neural
Models from Many Casual Videos”. In: CVPR. 2022 (pg. 152).

[Yan+23] Yang, Gengshan, Yang, Shuo, Zhang, John Z., Manchester, Zachary, and
Ramanan, Deva. “Physically Plausible Reconstruction from Monocular
Videos”. In: ICCV. 2023 (pg. 152).

[YDB21] Ye, Furong, Doerr, Carola, and Bäck, Thomas. “Leveraging Bench-
marking Data for Informed One-Shot Dynamic Algorithm Selection”.
In: Proceedings of the Genetic and Evolutionary Computation Confer-

183

https://doi.org/10.48550/ARXIV.2112.09318
https://doi.org/10.48550/ARXIV.2112.09318
https://arxiv.org/abs/2112.09318
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://doi.org/10.1109/TNNLS.2015.2440473

BIBLIOGRAPHY

ence Companion. GECCO ’21. Lille, France: Association for Computing
Machinery, 2021, pp. 245–246. isbn: 9781450383516. doi: 10.1145/
3449726.3459578 (pg. 88).

[Yif+19] Yifan, Wang, Serena, Felice, Wu, Shihao, Öztireli, Cengiz, and Sorkine-
Hornung, Olga. “Differentiable surface splatting for point-based geometry
processing”. In: ACM Transactions on Graphics 38.6 (Nov. 2019), pp. 1–
14. issn: 1557-7368. doi: 10.1145/3355089.3356513 (pg. 7, 8, 16, 17,
20, 27, 32, 44, 46).

[YL07] Yan, Su and Lee, Dongwon. “Toward Alternative Measures for Ranking
Venues: A Case of Database Research Community”. In: 7th ACM/IEEE-
CS Joint Conference on Digital Libraries. JCDL ’07. Vancouver, BC,
Canada: ACM, 2007, pp. 235–244. isbn: 978-1-59593-644-8 (pg. 117,
131).

[YLJ13] Yang, Jiaolong, Li, Hongdong, and Jia, Yunde. “Go-ICP: Solving 3D
Registration Efficiently and Globally Optimally”. In: 2013 IEEE In-
ternational Conference on Computer Vision. 2013, pp. 1457–1464. doi:
10.1109/ICCV.2013.184 (pg. 18).

[Yon14] Yong, Alexander. “Critique of Hirsch’s citation index: A combinatorial
Fermi problem”. In: Notices of the AMS 61.9 (2014), pp. 1040–1050
(pg. 133).

[Yoo+22] Yoon, Jaehong, Madaan, Divyam, Yang, Eunho, and Hwang, Sung
Ju. “Online Coreset Selection for Rehearsal-based Continual Learning”.
In: International Conference on Learning Representations. 2022. url:
https://openreview.net/forum?id=f9D-5WNG4Nv (pg. 88).

[YS19] Yang, Shichao and Scherer, Sebastian. “CubeSLAM: Monocular 3-D
Object SLAM”. In: IEEE Transactions on Robotics 35.4 (2019), pp. 925–
938. doi: 10.1109/TRO.2019.2909168 (pg. 7).

[Zar35] Zariski, Oscar. Algebraic Surfaces. McGraw Hill, 1935. doi: 10.1007/
978-3-642-61991-5 (pg. 5).

[Zha+17] Zhang, Juanjuan, Fiers, Pieter, Witte, Kirby A., Jackson, Rachel W.,
Poggensee, Katherine L., Atkeson, Christopher G., and Collins, Steven
H. “Human-in-the-loop optimization of exoskeleton assistance during
walking”. In: Science 356.6344 (2017), pp. 1280–1284. doi: 10.1126/
science.aal5054. eprint: https://www.science.org/doi/pdf/10.
1126/science.aal5054. url: https://www.science.org/doi/abs/
10.1126/science.aal5054 (pg. 90, 109).

[Zha+20] Zhang, Cheng, Miller, Bailey, Yan, Kai, Gkioulekas, Ioannis, and Zhao,
Shuang. “Path-Space Differentiable Rendering”. In: ACM Trans. Graph.
39.4 (2020), 143:1–143:19. doi: 10.1145/3386569.3392383 (pg. 6, 8).

184

https://doi.org/10.1145/3449726.3459578
https://doi.org/10.1145/3449726.3459578
https://doi.org/10.1145/3355089.3356513
https://doi.org/10.1109/ICCV.2013.184
https://openreview.net/forum?id=f9D-5WNG4Nv
https://doi.org/10.1109/TRO.2019.2909168
https://doi.org/10.1007/978-3-642-61991-5
https://doi.org/10.1007/978-3-642-61991-5
https://doi.org/10.1126/science.aal5054
https://doi.org/10.1126/science.aal5054
https://www.science.org/doi/pdf/10.1126/science.aal5054
https://www.science.org/doi/pdf/10.1126/science.aal5054
https://www.science.org/doi/abs/10.1126/science.aal5054
https://www.science.org/doi/abs/10.1126/science.aal5054
https://doi.org/10.1145/3386569.3392383

BIBLIOGRAPHY

[Zha+23] Zhang, Xiaoshuai, Kundu, Abhijit, Funkhouser, Thomas, Guibas, Leonidas,
Su, Hao, and Genova, Kyle. “Nerflets: Local Radiance Fields for Efficient
Structure-Aware 3D Scene Representation from 2D Supervision”. In:
CVPR (2023) (pg. 46).

[Zha04] Zhang, Tong. “Solving Large Scale Linear Prediction Problems Using
Stochastic Gradient Descent Algorithms”. In: ICML. Banff, Alberta,
Canada: ACM, 2004, pp. 116–. isbn: 1-58113-838-5 (pg. 122).

[Zho+21] Zhong, Ellen D., Lerer, Adam, Davis, Joseph H., and Berger, Bonnie.
“CryoDRGN2: Ab Initio Neural Reconstruction of 3D Protein Structures
From Real Cryo-EM Images”. In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV). Oct. 2021, pp. 4066–
4075 (pg. 23).

[ZJ16] Zhou, Qingnan and Jacobson, Alec. “Thingi10K: A Dataset of 10, 000 3D-
Printing Models”. In: CoRR abs/1605.04797 (2016). arXiv: 1605.04797.
url: http://arxiv.org/abs/1605.04797 (pg. 14, 27, 55).

[ZPK18] Zhou, Qian-Yi, Park, Jaesik, and Koltun, Vladlen. “Open3D: A Modern
Library for 3D Data Processing”. In: arXiv:1801.09847 (2018) (pg. 15,
18, 19, 21).

[ZW18] Zhang, Fang and Wu, Shengli. “Ranking Scientific Papers and Venues
in Heterogeneous Academic Networks by Mutual Reinforcement”. In:
JCDL. Fort Worth, Texas, USA: ACM, 2018, pp. 127–130. isbn: 978-1-
4503-5178-2 (pg. 117, 131).

[Zwi+01] Zwicker, Matthias, Pfister, Hanspeter, Baar, Jeroen van, and Gross,
Markus. “Surface Splatting”. In: Proceedings of the 28th Annual Con-
ference on Computer Graphics and Interactive Techniques. SIGGRAPH
’01. 2001, pp. 371–378. doi: 10.1145/383259.383300 (pg. 8).

185

https://arxiv.org/abs/1605.04797
http://arxiv.org/abs/1605.04797
https://doi.org/10.1145/383259.383300

	1 Introduction
	1.1 Motivation
	1.2 Hidden Surface Problem

	2 Fuzzy Metaballs: 3D Gaussians for Differentiable Rendering
	2.1 Introduction
	2.2 Related Work
	2.3 Fuzzy Metaballs
	2.4 Approximate Differentiable Rendering
	2.4.1 Intersecting Gaussians
	2.4.2 Blending intersections
	2.4.3 Obtaining Fuzzy Metaballs

	2.5 Data
	2.6 Comparing Representations
	2.7 Experiments
	2.7.1 Pose Estimation
	2.7.2 3D Reconstruction

	2.8 Discussion
	2.9 Conclusion
	2.10 Video Results
	2.10.1 Video Result Analysis

	2.11 Hyper-parameters
	2.12 Exclusion of gear model
	2.13 Pose Estimation Details
	2.13.1 Noise Free
	2.13.2 Noisy Depth Images

	2.14 SoftRasterizer performance
	2.14.1 Pulsar performance

	2.15 Exporting Fuzzy Metaballs
	2.16 Fuzzy Metaballs as Surface or Volume GMMs

	3 Flexible Uses of 3D Gaussians
	3.1 Introduction
	3.2 Related Work
	3.3 Ray-Shape Intersections
	3.3.1 Weighted Blending
	3.3.2 Two Parameter Model
	3.3.3 Zero Parameter Model

	3.4 Shape Reconstruction
	3.5 Reconstructing with Optical Flow
	3.6 Exporting Meshes
	3.7 Interoperability
	3.8 Splitting Gaussians
	3.9 Discussion
	3.10 Conclusion

	4 Direct Fitting of Gaussian Mixture Models to Meshes
	4.1 Introduction
	4.2 Method
	4.2.1 Gaussian Mixture Models
	4.2.2 Geometric Objects in a Probability Distribution

	4.3 Modifying EM maximization to account for triangles
	4.3.1 Evaluating the derived loss function

	4.4 Results
	4.4.1 Mesh Input Data
	4.4.2 Mesh Decimation
	4.4.3 Discussion

	4.5 Extensions
	4.5.1 Generalization to other primitives
	4.5.2 Number of Mixtures

	4.6 Applications
	4.6.1 Mesh Registration
	4.6.2 Analysis of Mesh Registration
	4.6.3 Other 3D Models
	4.6.4 Visual Odometry

	4.7 Conclusion

	5 Discovering Multiple Algorithm Configurations
	5.1 Introduction
	5.2 Related Work
	5.3 Method
	5.3.1 Partitioning
	5.3.2 Black Box Optimizer
	5.3.3 Post hoc Partitioning
	5.3.4 Staged Partitioning
	5.3.5 Online Partitioning

	5.4 Experimental Results
	5.4.1 Synthetic Function
	5.4.2 Dense Stereo Matching
	5.4.3 Differentiable Rendering
	5.4.4 Motion Planning
	5.4.5 Visual Odometry
	5.4.6 Commercial Depth Sensor

	5.5 Discussion
	5.6 Conclusion

	6 Optimizing From Pairwise User Preferences
	6.1 Method
	6.2 Tuning a Stereoscopic Depth Sensor
	6.2.1 Sensor Setup
	6.2.2 Visual Tuning Results

	6.3 Conclusion

	7 Learning the Value of Academic Venues
	7.1 Introduction
	7.2 Related Work
	7.2.1 Venue Metrics

	7.3 Data
	7.4 Method
	7.4.1 Formal Setup
	7.4.2 Metrics of Interest
	7.4.3 Modeling Change Over Time
	7.4.4 Normalizing Differences Across Years
	7.4.5 Normalizing Differences In Venue Size
	7.4.6 Modeling Author Position
	7.4.7 Combining Models

	7.5 Results
	7.6 Evaluation
	7.6.1 PageRank Baseline
	7.6.2 University Ranks
	7.6.3 Journal-level metrics
	7.6.4 Author-level Metrics

	7.7 Discussion
	7.8 Similarity Metrics
	7.9 Conclusion
	7.10 Credit Assignment
	7.11 Aging Curve

	8 Additional Results
	8.1 Alternative Rendering Formulations
	8.1.1 Multivariate Logistic

	8.2 Sonar Results

	9 Conclusions
	9.1 Bootstrapping Solutions
	9.2 Better Applications

	Bibliography

