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Abstract

Traditional object detection methods are often confined to predefined
object vocabularies, limiting their versatility in real-world scenarios where
robots need to understand and execute diverse household tasks. Addi-
tionally, the 2D and 3D perception communities have typically pursued
separate approaches tailored to their respective domains.

In this thesis, we present a language-conditioned object detector with an
open and adaptable vocabulary, capable of seamlessly operating in both
2D and 3D environments with minimal architectural adjustments. Our
detector incorporates top-down guidance from language commands to
direct its attention within the visual stream, while also leveraging bottom-
up information from pre-trained object detectors. We demonstrate its
state-of-the-art performance in both 2D and 3D contexts on widely-
recognized benchmarks.

Furthermore, we showcase its practical utility in language-guided robot
manipulation. Central to our model are energy-based concept generation
modules, proficient in handling longer instructions and novel spatial
concept combinations. We evaluate our model on established instruction-
guided manipulation benchmarks, including newly introduced benchmarks
for compositional instructions. Notably, our model demonstrates the
ability to execute highly compositional instructions zero-shot in both
simulation and real-world settings.
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Chapter 1

Introduction

Object detection is the fundamental computer vision task of finding all “objects” that

are present in a visual scene. However, this raises the question, what is an object?

Typically, this question is side-stepped by defining a vocabulary of categories and

then training a model to detect instances of this vocabulary. This means that if

“apple” is not in this vocabulary, the model does not consider it as an object. The

problem gets even worse when we try to integrate these object detectors into real

household agents. Imagine that we want a robot that can pick up “your favorite

green mug from the table right in front of you”. We want the robot to specifically

detect the “green mug” which is on the “table in front of you” and not any other

mug or table. Obviously, treating descriptions such as “green mug from the table

right in front of you” as separate classes in the detector’s vocabulary cannot scale;

one can come up with countless variations of such descriptions.

To address this problem, In Chapter 2 of this thesis, we introduce Bottom-up

Top-Down DEtection TRansformer (BUTD-DETR pron. Beauty-DETER), a model

that conditions directly on a language utterance and detects all objects that the

utterance mentions. When the utterance is a list of object categories, BUTD-DETR

operates as a standard object detector. It is trained from both fixed vocabulary object

detection datasets and referential grounding datasets which provide image-language

pairs annotated with the bounding boxes for all objects referred to in the language

utterance. With minimal changes, BUTD-DETR grounds language phrases both in

3D point clouds and 2D images. Thus, we relax the assumption of closed-vocabulary
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1. Introduction

object detectors and enable our model to detect objects mentioned in free-flowing

natural language.

Chapter 3 introduces our approach to scene re-arrangement, where we manipulate

a diverse range of objects to fulfill specific language instructions. We break down

this task into three key components: perception, concept learning, and low-level

manipulation. To begin with, we utilize the open-vocabulary detector introduced in

Chapter 2 for perceiving the objects referenced in the given sentence. This detector

identifies all relevant objects mentioned in the instruction. Next, for concept learning,

we establish a library of energy-based concept learner models, each representing a

spatial relation (e.g., left, right, above, below, inside, etc.). At test time, these models

can be combined in a zero-shot manner to perform compositional tasks like ”Place the

strawberry to the left of the banana and to the right of the cherry.” by simply jointly

optimizing over sum of energies from the “left” and the “right” concept modules.

The energy-based models operate on the abstraction of bounding boxes predicted by

the object detector and generate new “goal” locations for each object, ensuring the

fulfilment of the language goal. Finally, we design low-level manipulation policies

that utilize the pick and place locations generated by the object detector and the

energy-based models, respectively, to execute the actual manipulation. Through

our experiments, we demonstrate that our proposed models outperform existing

state-of-the-art approaches in language-guided instruction manipulation scenarios

both in simulation and real-world. Notably, they exhibit exceptional out-of-domain

generalization capabilities, effectively handling novel objects, colors, and backgrounds,

surpassing existing state-of-the-art approaches.

Finally, Chapter 4 provides a summary of these findings and delves into future

research prospects.
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Chapter 2

Bottom Up Top Down Detection

Transformers for Language

Grounding in Images and Point

Clouds
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2. Bottom Up Top Down Detection Transformers for Language Grounding in Images
and Point Clouds

2.1 Introduction

Figure 2.1: Language-modulated 3D (top) and 2D (bottom) detection with
BUTD-DETR. Middle: State-of-the-art object detectors often fail to localize
small, occluded or rare objects (here they miss the clock on the shelf and the
bottle on the cabinet). Right: Language-driven and objectness-driven attention in
BUTD-DETR modulates the visual processing depending on the referential expression
while taking into account salient, bottom-up detected objects, and correctly localizes
all referenced objects.

Language-directed attention helps us localize objects that our “bottom-up”, task-

agnostic perception may miss. Consider Fig. 2.1. The utterance “bottle on top of the

bathroom vanity” suffices to direct our attention to the reference object, even though

it is far from salient. Language-directed perception adapts the visual processing of

the input scene according to the utterance. Object detectors instead apply the same

computation in each scene, which can miss task-relevant objects.

Most existing language grounding models use object proposal bottlenecks: they

select the referenced object from a pool of object proposals provided by the pre-trained

This chapter is based on the paper previously published at ECCV 2022 [36]

4



2. Bottom Up Top Down Detection Transformers for Language Grounding in Images
and Point Clouds

object detector [17, 19, 30, 37, 44]. This means they cannot recover objects or parts

that a bottom-up detector misses. This is limiting since small, occluded, or rare

objects are hard to detect without task-driven guidance. For example, in Figure 2.1

middle, state-of-the-art 2D [84] and 3D [61] detectors miss the clock on the shelf and

the bottle on the bathroom vanity, respectively.

Recently, Kamath et al. [42] introduced MDETR, a language grounding model

for 2D images that decodes object boxes using a DETR [5] detection head and aligns

them to the relevant spans in the input utterance, it does not select the answer

from a box proposal pool. The visual computation is modulated based on the input

utterance through several layers of self-attention on a concatenation of language and

visual features. MDETR achieves big leaps in performance in 2D language grounding

over previous box-bottlenecked methods.

We propose a model for grounding referential utterances in 3D and 2D visual

scenes that builds upon MDETR, which we call BUTD-DETR (pronounced Beauty-

DETR), as it uses both box proposals, obtained by a pre-trained detector “bottom-up”

and “top-down” guidance from the language utterance, to localize the relevant objects

in the scene. BUTD-DETR uses box proposals obtained by a pre-trained detector

as an additional input stream to attend on; however, it is not box-bottlenecked and

still decodes objects with a detection head, instead of selecting them from the input

box stream. Current object detectors provide a noisy tokenization of the input visual

scene that, as our experiments show, is a useful cue to attend on for multimodal

reasoning. Second, BUTD-DETR augments grounding annotations by configuring

annotations for object detection as detection prompts to be grounded in visual scenes.

A detection prompt is a list of object category labels, e.g., “Chair. Door. Person.

Bed.”. We train the model to ground detection prompts by localizing the labels that

are present in the image and learn to discard labels that are mentioned but do not

correspond to any objects in the scene. Third, BUTD-DETR considers improved

bounding box - word span alignment losses that reduce noise during alignment of

object boxes to noun phrases in the referential utterance.

We test BUTD-DETR on the 3D benchmarks of [2, 6] and 2D benchmarks of

[45, 107]. In 3D point clouds, we set new state-of-the-art in the two benchmarks of

Referit3D [2] and ScanRefer [6] and report significant performance boosts over all

prior methods (12.6% on SR3D, 11.6% on NR3D and 6.3% on ScanRefer), as well as

5



2. Bottom Up Top Down Detection Transformers for Language Grounding in Images
and Point Clouds

over a direct MDETR-3D implementation of ours that does not use a box proposal

stream or detection prompts during training. In 2D images, our model obtains

competitive performance with MDETR on RefCOCO, RefCOCO+ and Flickr30k,

and requires less than half of the GPU training time due to the cheaper deformable

attention in the visual stream. We ablate each of the design choices of the model to

quantify their contribution to performance.

In summary, our contributions are: (i) A model with SOTA performance across

both 2D and 3D scenes with minor changes showing that modulated detection in 2D

images can also work in 3D point clouds with appropriate visual encoder and decoder

modifications. (ii) Augmenting supervision with detection prompts, attention on an

additional input box stream and improved bounding box - word span alignment losses.

(iii) Extensive ablations to quantify the contribution of different components of our

model. We make our code publicly available at https://butd-detr.github.io.

6
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2. Bottom Up Top Down Detection Transformers for Language Grounding in Images
and Point Clouds

2.2 Related work

Object detection with transformers

Object detectors are trained to localize all instances of a closed set of object category

labels in images and 3D point-clouds. While earlier architectures pool features within

proposed boxes to decode objects and classify them into categories [29, 57, 83], recent

methods pioneered by DETR [5] use transformer architectures where a set of object

query vectors attend to the scene and among themselves to decode object boxes

and their labels. DETR suffers from the quadratic cost of within image features

self attention. D(eformable)-DETR [111] proposes deformable attention, a locally

adaptive kernel that is predicted directly in each pixel location without attention to

other pixel locations, thus saving the quadratic cost of pixel-to-pixel attention. Our

model builds upon deformable attention for feature extraction from RGB images.

[61, 71] extend detection transformers to 3D point cloud input.

2D referential language grounding

Referential language grounding [45] is the task of localizing the object(s) referenced

in a language utterance. Most 2D language grounding models obtain sets of object

proposals using pre-trained object detectors and the original image is discarded upon

extraction of the object proposals [17, 19, 30, 37, 44]. Many of these approaches use

multiple layers of attention to fuse information across both, the extracted boxes and

language utterance [8, 62, 105]. Recently, a few approaches directly regress the target

bounding box without using pre-trained object proposals. In [7] language and visual

features cross-attend and are concatenated to predict the box of the referential object.

Yang et al. [103] extends the YOLO detector [83] to referential grounding by channel-

wise concatenating language, visual and spatial feature maps and then regressing a

single box using the YOLO box prediction head. [87] performs a fusion similar to [103],

then selects a single box from a set of anchor boxes and predicts a deformation of it,

much like the Faster-RCNN object detector [84]. While previous approaches encode

the whole text input into a single feature vector, [104] further improves performance

by recursively attending on different parts of the referential utterance. Lastly, [12]

encodes the image and utterance with within- and cross-modality transformers, and

7



2. Bottom Up Top Down Detection Transformers for Language Grounding in Images
and Point Clouds

a special learnable token regresses a single box. In contrast to our method, all these

works predict a single bounding box per image-utterance pair. Our work builds upon

MDETR of Kamath et al. [42] that modulates visual processing through attention

to the input language utterance and decodes objects from queries similar to DETR,

without selecting from a pool of proposals. Both our method and MDETR can predict

multiple instances being referred to, as well as ground intermediate noun phrases.

Concurrent to our work, GLIP [49] shows that adding supervision from detection

annotations can improve 2D referential grounding. Our work independently confirms

this hypothesis in 2D and also shows its applicability on the 3D domain.

3D referential language grounding

has only recently gained popularity [2, 6]. To the best of our knowledge, all re-

lated approaches are box-bottlenecked: they extract 3D object proposals and select

one as their answer. Their pipeline can be decomposed into three main steps: i)

Representation of object boxes as point features [105], segmentation masks [108] or

pure spatial/categorical features [86]. ii) Encoding of language utterance using word

embeddings [86, 105] and/or scene graphs [18]. iii) Fusion of the two modalities and

scoring of each proposal using graph networks [31] or Transformers [105]. Most of

these works also employ domain-specific design choices by explicitly encoding pairwise

relationships [25, 31, 108] or by relying on heuristics, such as restricting attention

to be local [108, 110] and ignoring input modalities [86]. Such design prevents those

architectures from being applicable to both the 3D and 2D domains simultaneously.

Due to the inferior performance of 3D object detectors in comparison to their 2D

counterparts, popular benchmarks for 3D language grounding, such as Referit3D [2]

provide access to ground-truth object boxes at test time. The proposed BUTD-DETR

is the first 3D language grounding model that is evaluated on this benchmark without

access to oracle 3D object boxes.
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2. Bottom Up Top Down Detection Transformers for Language Grounding in Images
and Point Clouds

2.3 Method

We first describe MDETR [42] in Section 2.3.1. Then, we present BUTD-DETR’s

architecture in Section 2.3.2, supervision augmentation with detection prompts in

Section 2.3.3 and its training objectives in Section 2.3.4.

2.3.1 Background: MDETR

MDETR is a 2D language grounding model that takes a referential utterance and

an RGB image as input and localises in the image all objects mentioned in the

utterance. MDETR encodes the image with a convolutional network [27] and the

language utterance with a RoBERTa encoder [59]. It then fuses information across

the language and visual features through multiple layers of self-attention on the

concatenated visual and language feature sequences. In MDETR’s decoder, a set of

query vectors iteratively attend to the contextualized visual features and self-attend

to one another, similar to the DETR’s [5] decoder. Finally, each query decodes a

bounding box and a confidence score over each word in the input utterance, which

associates the box to a text span.

The predicted boxes are assigned to ground-truth ones using a Hungarian matching,

similar to [5]. Upon matching, the following losses are computed:

• A bounding box loss between predicted boxes and the corresponding ground-

truth ones. This is a combination of L1 and generalized IoU [85] losses.

• A soft token prediction loss. A query matched to a ground-truth box is trained

to decode a uniform distribution over the language token positions that refer to

that object. Queries not matched to ground-truth targets are trained to predict

a no-object label.

• Two contrastive losses between query and language token features. The first

one, called object contrastive loss, pulls an object query’s features closer to the

features of the corresponding ground-truth span’s word tokens, and further

than all other tokens. The second one, called token contrastive loss, pulls the

features of a ground-truth span’s token closer to the corresponding object query

features, and further than all other queries.
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Figure 2.2: BUTD-DETR architecture. Given a visual scene and a referential
utterance, the model localizes all object instances mentioned in the utterance. A
pre-trained object detector extracts object box proposals. The visual scene features,
the language utterance and the labelled box proposals are encoded into corresponding
sequences of visual, word and box tokens using visual, language and box encoders,
respectively. The three streams cross-attend and finally decode boxes and correspond-
ing spans in the language utterance that each decoded box refers to. We visualize
here the model operating on a 3D point cloud; an analogous architecture is used for
2D image grounding.

2.3.2 Bottom-up Top-down DETR (BUTD-DETR)

The architecture of BUTD-DETR is illustrated in Figure 2.2. Given a referential

language utterance, e.g., “find the plant that is on top of the end table” and a visual

scene, which can be a 3D point cloud or a 2D image, BUTD-DETR is trained to

localize all objects mentioned in the utterance. In the previous example, we expect

one box for the “plant” and one for the “end table”. The model attends across

image/point cloud, language and box proposal streams, then decodes the relevant

objects and aligns them to input language spans.

Within-modality encoder

In 2D, we encode an RGB image using a pre-trained ResNet101 backbone [26]. The

2D appearance visual features are added to 2D Fourier positional encodings, same as

in [35, 111]. In 3D, we encode a 3D point cloud using a PointNet++ backbone [78].

The 3D point visual features are added to learnable 3D positional encodings, same as

in [61]: we pass the coordinates of the points through a small multilayer perceptron
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(MLP). Let V ∈ Rnv×cv denote the visual token sequence, where nv is the number of

visual tokens and cv is the number of visual feature channels.

The words of the input utterance are encoded using a pre-trained RoBERTa [59]

backbone. Let L ∈ Rnℓ×cℓ denote the word token sequence.

A pre-trained detector is used to obtain 2D or 3D object box proposals. Following

prior literature, we use Faster-RCNN [84] for RGB images, pre-trained on 1601 object

categories of Visual Genome [47], and Group-Free detector [61] for 3D point clouds

pre-trained on a vocabulary of 485 object categories on ScanNet [11]. The detected

box proposals that surpass a confidence threshold are encoded using a box proposal

encoder, by mapping their spatial coordinates and categorical class information to an

embedding vector each, and concatenating them to form an object proposal token.

We use a pre-trained and frozen RoBERTa [59] backbone to encode the semantic

categories of proposed boxes. Let O ∈ Rno×co denote the object token sequence.

The 3D detector is trained on ScanNet and all 3D benchmarks we use are also

ScanNet-based. This creates a discrepancy in the quality of the detector’s predictions

between train and test time, as it is far more accurate on the training set. As a

result, we find that BUTD-DETR tends to rely on the detector at training time and

generalizes less at test time, where the detector’s predictions are much noisier. To

mitigate this, we randomly replace 30% of the detected boxes at training time with

random ones. This augmentation leads to stronger generalization when the detector

fails to locate the target object. Note that this is not the case in 2D, where the

detector is trained on a different dataset.

All visual, word and box proposal tokens are mapped using (different per modality)

MLPs to same-length feature vectors.

Cross-modality Encoder

The visual, language and box proposals, interact through a sequence of NE cross-

attention layers. In each encoding layer, visual and language tokens cross-attend

to one another and are updated using standard key-value attention. Then, the

resulting language-conditioned visual tokens attend to the box proposal tokens. We

use standard attention for both streams in 3D and deformable attention [111] for the

visual stream in 2D.
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In contrast to MDETR, BUTD-DETR keeps visual, language and box stream

separate in the encoder instead of concatenating them. This enables us to employ

deformable attention [111] in self and cross attention layers involving the visual stream

in 2D domain. Deformable attention involves computing bilinearly interpolated

features which is expensive and non-robust in discontinous and sparse modalities like

pointclouds, hence we use vanilla attention in 3D. In our experiments, we show that

concatenation versus keeping separate streams performs similarly in 3D referential

grounding.

Decoder

BUTD-DETR decodes objects from contextualized features using non-parametric

queries in both 2D and 3D, similar to [61, 111]. Non-parametric queries are predicted

by visual tokens from the current scene, in contrast to parametric queries used in

DETR [5] and MDETR [42] that correspond to a learned set of vectors shared across

all scenes. Specifically, the contextualized visual tokens from the last multi-modality

encoding layer predict confidence scores, one per visual token. The top-K highest

scoring tokens are each fed into an MLP to predict a vector which stands for an object

query, i.e., a vector that will decode a box center and size relative to the location

of the corresponding visual token, similar to D-DETR [111]. The query vectors are

updated in a residual manner through ND decoder layers. In each decoder layer, we

employ four types of attention operations. First, the queries self-attend to one another

to contextually refine their estimates. Second, they attend to the contextualized word

embeddings to condition on the language utterance. Next, they attend to the box

proposal tokens and then in the image or point visual tokens. At the end of each

decoding layer, there is a prediction head that predicts a box center displacement,

height and width vector, and a token span for each object query that localizes the

corresponding object box and aligns it with the language input.

2.3.3 Augmenting supervision with detection prompts

Object detection is an instance of referential language grounding in which the utterance

is a single word, namely, the object category label. Language grounding models have

effectively combined supervision across referential grounding, caption description
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Figure 2.3: Augmenting referential grounding supervision with detection
prompts. A detection prompt is constructed by sequencing sampled object category
labels (here couch, person and chair). The task is to localize all instances of mentioned
objects and associate them with the correct span in the prompt. 50% of the sampled
labels are negative, i.e., they have no corresponding object instance in the scene. The
model learns not to associate these spans with predicted boxes.

and question answering tasks [62, 63], which is an important factor for their success.

Object detection annotations have not been considered so far as candidates for such

co-training.

We cast object detection as grounding of detection prompts, namely, referential

utterances comprised of a list of object category labels, as shown in Figure 2.3.

Specifically, given the detector’s vocabulary of object category labels, we randomly

sample a fixed number of them—some appear in the visual scene and some do not—

and generate synthetic utterances by sequencing the sampled labels, e.g., “Couch.

Person. Chair. Fridge.”, we call them detection prompts. We treat these prompts

as referential utterances to be grounded: the task is to localize all object instances

of the category labels mentioned in the prompt if they appear in the scene. The

sampling of negative category labels (labels for which there are no object instances

present) operates as negative training: the model is trained to not match any boxes

to the negative category labels.

2.3.4 Supervision objectives

We supervise the outputs of all prediction heads in each layer of the decoder. We

follow MDETR [42] in using Hungarian matching to assign a subset of object queries
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to the ground-truth object boxes and then compute the bounding box, soft token

prediction and contrastive losses. Our bounding box and soft token prediction losses

are identical to MDETR’s. However, we notice that MDETR’s contrastive losses do

not compare all object queries and word tokens symmetrically. Specifically, the object

contrastive loss supervises only the object queries that are matched to a ground-truth

object box. On the other hand, the token contrastive loss includes only the tokens that

belong to positive spans, namely, noun phrases with corresponding object instances

in the scene. As a result, object queries not matched to any ground-truth object box

are not pulled far from non-ground-truth text spans, which means at inference object

queries can be close to negative spans. We find this asymmetry to hurt performance,

as we show in our experiments.

To address this, we propose a symmetric alternative where the similarities between

all object queries and language tokens are considered. We append the span “not-

mentioned” to all input utterances. This acts as the ground-truth text span for all

object queries that are not assigned to any of the ground-truth objects. The object

contrastive loss now supervises all queries and considers the similarities with all tokens.

We empirically find that gathering unmatched queries to “not mentioned” is beneficial.

This is similar in principle to the soft token prediction loss, where unmatched queries

have to predict “no object”. In fact, we find that this symmetric contrastive loss

is sufficient for our model’s supervision, but we observe that co-optimizing for soft

token prediction results in faster convergence.
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2.4 Experiments

We test BUTD-DETR on grounding referential utterances in 3D point clouds and

2D images. Our experiments aim to answer the following questions:

1. How does BUTD-DETR perform compared to the state-of-the-art in 3D and

2D language grounding?

2. How does BUTD-DETR perform compared to a straightforward extension of

the 2D state-of-the-art MDETR [42] model in 3D?

3. How much, if at all, attending to a bottom-up box proposal stream helps

performance?

4. How much, if at all, co-training for grounding detection prompts helps perfor-

mance?

5. How much, if at all, the proposed contrastive loss variant helps performance?

2.4.1 Language grounding in 3D point clouds

We test BUTD-DETR on SR3D, NR3D [2] and ScanRefer [6] benchmarks. All three

benchmarks contain pairs of 3D point clouds of indoor scenes from ScanNet [11] and

corresponding referential utterances, and the task is to localize the objects referenced

in the utterance. The utterances in SR3D are short and synthetic, e.g., “choose the

couch that is underneath the picture”, while utterances in NR3D and ScanRefer are

longer and more natural, e.g. “from the set of chairs against the wall, the chair

farthest from the red wall, in the group of chairs that is closer to the red wall”. For

fair comparison against previous methods, we train BUTD-DETR separately on

each of SR3D, NR3D and ScanRefer. We augment supervision in each of the three

datasets with ScanNet detection prompts. SR3D provides annotations for all objects

mentioned in the utterance, so during training we supervise localization of all objects

mentioned. In NR3D and ScanRefer, we use supervision for grounding only the

referenced object.

All existing models that have been tested in SR3D or NR3D benchmarks are

box-bottlenecked, namely, they are trained to select the answer from a pool of box

proposals. They all use ground-truth 3D object boxes (without category
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Table 2.1: Results on language grounding in 3D point clouds. We evaluate
top-1 accuracy using ground-truth (GT) or detected (det) boxes. ∗ denotes method
uses extra 2D image features. † denotes evaluation with detected boxes using the
authors’ code and checkpoints. ‡ denotes re-training using the authors’ code. For
[110], we compare against their 3D-only version.

SR3D NR3D ScanRefer (Val. Set)
Method Acc@0.25(det) Acc.(GT) Acc@0.25(det) Acc@0.25(det) Acc@0.5(det)
ReferIt3DNet [2] 27.7† 39.8 24.0† 26.4 16.9
ScanRefer [6] - - - 35.5 22.4
TGNN [31] - 45.0 - 37.4 29.7
3DRefTransformer [1] - 47.0 - - -
InstanceRefer [108] 31.5‡ 48.0 29.9‡ 40.2 32.9
FFL-3DOG [18] - - - 41.3 34.0
LanguageRefer [86] 39.5† 56.0 28.6† - -
3DVG-Transformer [110] - 51.4 - 45.9 34.5
TransRefer3D [25] - 57.4 - - -
SAT-2D [105]∗ 35.4† 57.9 31.7† 44.5 30.1
MDETR-[42]-3D (our impl.) 45.4 - 31.5 47.2 31.9
BUTD-DETR (ours) 52.1 67.0 43.3 52.2 39.8

labels) as the set of boxes to select from. We thus consider two evaluation setups:

1. det: where we re-train previous models using their publicly available code and

provide the same 3D box proposals we use in BUTD-DETR, obtained by the

Group-Free 3D object detector [61] trained to detect 485 object categories in

ScanNet (Section det in Table 2.1).

2. GT, where we use ground-truth 3D object boxes for our model and baseline

(Section GT in Table 2.1).

Alongside previous models, we also compare our model against our implementation

of the MDETR model in 3D. This is similar to our model but without attention

on a box stream, without co-training with detection prompts and with the original

contrastive losses proposed by MDETR. We also replace MDETR’s parametric object

queries with non-parametric one —similar to our model—since they have been shown

to be crucial for good performance in 3D [61, 71]. We call this model MDETR-3D. For

the sake of completeness, we do have a 3D version of MDETR that uses parametric

queries in Table 2.2 and, as expected, it is significantly worse. MDETR does not use

a pool of box proposals in any way and hence we cannot report results of MDETR-3D

under GT.

We show quantitative results of our models against previous works in Table 2.1.
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Table 2.2: Ablation of design choices for BUTD-DETR on SR3D.

Model Accuracy
BUTD-DETR 52.1

w/o visual tokens 41.9
w/o detection prompts 47.9
w/o box stream 51.0
with MDETR’s [42] contrastive loss 49.6
w/o detection prompts; w/o box stream; (MDETR [42]-3D) 45.4
with parametric queries; w/o detection prompts; w/o box stream; (MDETR [42]-3D-Param) 33.8
with concatenated Visual, Language and Object Streams 51.3

We use top-1 accuracy metric, which measures the percentage of times we can find the

target box with an IoU higher than the threshold. We report results with IoU@0.25

on SR3D and NR3D; and with both IoU@0.25 and IoU@0.5 on ScanRefer. Please

refer to supplementary for more detailed results.

BUTD-DETR outperforms existing approaches as well as MDETR-3D by a large

margin under both evaluation setups, det and GT. It also outperforms the recent SAT-

2D [105] that uses additional 2D RGB image features during training. BUTD-DETR

does not use 2D image features, but it can be easily extended to do so. We show

qualitative results in Figure 2.4.

Ablative analysis

We ablate all our design choices for 3D BUTD-DETR on SR3D benchmark [2] in

Table 2.2. We compare BUTD-DETR against the following variants:

• w/o visual tokens: an object-bottlenecked variant, which only attends to the

language and box proposal streams and selects one box out of the proposals.

• w/o detection prompts: BUTD-DETR trained solely on SR3D grounding utter-

ances.

• w/o box stream: BUTD-DETR without attention on the box stream.

• w/ MDETR’s contrastive loss: BUTD-DETR where we replace our modified

contrastive loss with MDETR’s.

• w/o detection prompts, w/o box stream, w/ MDETR’s contrastive loss: an

MDETR [42]-3D implementation.

• w/ parametric queries, w/o detection prompts, w/o box stream, w/ MDETR’s
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contrastive loss: an MDETR-3D implementation that uses parametric object

queries, as in original MDETR.

• w/ concatenated visual, language and box streams: instead of attending to each

modality separately, we concatenate the different streams along their sequence

dimension.

The conclusions are as follows:

1. Box bottlenecks hurt: Models such as BUTD-DETR and MDETR-3D that

decode object boxes instead of selecting them from a pool of given object

proposals significantly outperform box-bottlenecked variants. BUTD-DETR

outperforms by 10.2% an object-bottlenecked variant, that does not attend to

3D point features and does not decode boxes.

2. BUTD-DETR outperforms MDETR-3D by 6.7%:

3. Attention on a box proposal stream helps: Removing attention on the

box stream causes an absolute 1.1% drop in accuracy.

4. Co-training with detection prompts helps: Co-training with detection

prompts contributes 4.2% in performance (from 47.9% to 52.1%).

5. BUTD-DETR ’s contrastive loss helps: Replacing our contrastive loss

with MDETR’s results in drop of 2.5% in absolute accuracy.

6. Concatenating Visual, Language and Object Streams performs worse

than a model that has separate streams for each modality Our motiva-

tion is to keep separate streams in 3D cross-modality encoder and decoder to be

consistent with 2D BUTD-DETR as explained in Section 2.3.2. We additionally

find that having separate streams gives a boost of 0.8%.

2.4.2 Language grounding in 2D images

We test BUTD-DETR on the referential grounding datasets of RefCOCO [45], Ref-

COCO+ [107] and Flickr30k entities dataset [76]. We follow the pretrain-then-finetune

protocol of MDETR and first pre-train on combined grounding annotations from

Flickr30k [76], referring expression datasets [45, 69, 107], Visual Genome [47]. During

pre-training the task is to detect all instances of objects mentioned in the utterance.
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Figure 2.4: Qualitative results of BUTD-DETR in the SR3D benchmark.
Predictions for the target are shown in green and for other mentioned objects in orange.
The detected proposals appear in blue. (a) The variant without box stream (red box)
fails to exploit the information given by the detector, but BUTD-DETR succeeds.
(b) The detector misses the “shoes” and any box-bottlenecked variant fails. (c) The
detector is successful in finding the “dustbin”, still BUTD-DETR refines the box to
get a more accurate bounding box.

Different than MDETR, we augment this supervision with detection prompts from

the MS-COCO dataset [54]. Following MDETR, we directly evaluate our pre-trained

model on Flickr30k without any further fine-tuning and fine-tune for 5 epochs on

RefCOCO and RefCOCO+.

We report top-1 accuracy on the standard splits of RefCOCO and RefCOCO+ in

Table 2.3 and Recall metric with ANY-BOX protocol [48] on Flickr30k in Table 2.4.

Our model and MDETR use the same 200k image-language pairs from COCO [54],

Flickr30k [76] and Visual Genome [47]. VisualBERT [48] is trained on COCO captions.

UNITER [8] and VILLA [20] use a larger dataset of 4.4M pairs from COCO, Visual

Genome, Conceptual-Captions [90], and SBU Captions [74]. In addition, we augment

our training set with detection prompts from COCO. BUTD-DETR trains two times

faster than MDETR while getting comparable performance. This computational gain

comes mostly from deformable attention which is much cheaper than original visual

self-attention that scales quadratically with the number of visual tokens, as already

reported in [111].
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Table 2.3: Results on language grounding in 2D RefCOCO and RefCOCO+
Datasets on Top-1 accuracy metric using standard splits. All training times
are computed using same V100 GPUs. Training epochs are written as x + y where x
= number of pre-training epochs and y = number of fine-tuning epochs. All reported
results use ResNet101 backbone.

RefCOCO RefCOCO+ Training Training
Method val testA testB val testA testB Epochs GPU Hours
UNITER L [8] 81.4 87.0 74.2 75.9 81.5 66.7 - -
VILLA L [20] 82.4 87.5 74.8 76.2 81.5 66.8 - -
MDETR [42] 86.8 89.6 81.4 79.5 84.1 70.6 40 + 5 5560
BUTD-DETR (ours) 85.9 88.5 81.5 78.2 82.8 70.0 12 + 5 2748

Table 2.4: Results on language grounding in Flickr30k 2D images. We use
Recall@k metric. All training times are computed using same V100 GPUs.

Val Test Training Training
Method R@1 R@5 R@10 R@1 R@5 R@10 Epochs GPU hours
VisualBERT [48] 70.4 84.5 86.3 71.3 85.0 86.5 - -
MDETR [42] 82.5 92.9 94.9 83.4 93.5 95.3 40 5480
BUTD-DETR (ours) 81.2 90.9 92.8 81.0 91.6 93.2 12 2688

Ablative analysis

We ablate our model in RefCOCO without pre-training in Table 2.5, since pre-training

is computationally expensive due to the size of the combined datasets. Consistent with

3D, removing detection prompts results in an accuracy drop of 2.4%. Additionally

removing attention to the box proposal stream results in a drop of 3.1% in accuracy.

When replacing our contrastive loss with MDETR’s, the model achieves 74.2%,

resulting in an additional drop of 2.1% accuracy.

Table 2.5: Ablation for BUTD-DETR on the RefCOCO validation set.

Model Accuracy
BUTD-DETR 79.4

w/o det prompts 77.0
w/o box stream w/o det prompts 76.3
w/o box stream w/o det prompts w/ MDETR’s [42] contrastive 74.2
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2.4.3 Limitations

Our work relies on language-image alignment and does not address how to ground

language better and more robustly through abstraction of the visual features, e.g.,

the fact that left and right reverse when we change the user’s viewpoint, the fact that

numbers requires precise counting, or the fact that the “ chair furthest away from the

door” requires to satisfy a logical constraint which our model can totally violate when

presented with out-of-distribution visual input. This limitation is a direct avenue for

future work.
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2.5 Conclusion

We present BUTD-DETR , a model for referential grounding in 3D and 2D scenes,

that attends to language, visual and box proposal streams to decode objects men-

tioned in the referential utterance and align them to corresponding spans in the

input. BUTD-DETR builds upon MDETR [42] and outperforms its straightforward

MDETR-3D equivalent by a significant margin thanks to attention on labelled bottom-

up box proposals, co-training with detection prompts and improved contrastive

losses, setting a new state-of-the-art in two 3D language grounding benchmarks.

BUTD-DETR is also the first model in 3D referential grounding that operates on the

realistic setup of not having access to oracle object boxes, but rather detects them

from the input 3D point cloud.
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Chapter 3

Energy-based Models are Zero-Shot

Planners for Compositional Scene

Rearrangement

3.1 Introduction

We consider the scene arrangement task shown in Figure 3.1. Given a visual scene

and an instruction regarding object spatial relations, the robot is tasked to rearrange

the objects to their instructed configuration. Our focus is on strong generalization to

longer instructions with novel predicate compositions, as well as to scene arrangements

that involve novel objects and backgrounds.

We propose generating goal scene configurations corresponding to language instruc-

tions by minimizing a composition of energy functions over object spatial locations,

where each energy function corresponds to a language concept (predicate) in the

instruction. We represent each language concept as an n-ary energy function over

relative object poses and other static attributes, such as object size. We train these

predicate energy functions to optimize object poses starting from randomly sampled

object arrangements through Langevin dynamics minimization [16], using a handful

of examples of visual scenes paired with single predicate captions. Energy functions

This chapter is based on the paper previously published at RSS 2023 [22]
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Figure 3.1: Energy-based Models are Zero-Shot Planners for Compositional
Scene Rearrangement. We represent language concepts with energy functions over
object locations and sizes. Gradient descent on the sum of energy functions, one per
predicate in the instruction, iteratively updates the object spatial coordinates and
generates a goal scene configuration that satisfies the instruction, if one exists.

can be binary for two-object concepts such as left of and in front of, or multi-ary

for concepts that describe arrangements for sets of objects, such as line or circle.

We show that gradient descent on the sum of predicate energy functions, each one

involving different subsets of objects, generates a configuration that jointly satisfies

all predicates, if this configuration exists, as shown in Figure 3.1.

We propose a robot learning framework that harnesses minimization of compo-

sitions of energy functions to generate instruction-compatible object configurations

for robot scene rearrangement. A neural semantic parser is trained to map the

input instruction to a set of predicates and corresponding energy functions, and the

open-vocabulary visual-language grounding model proposed in Chapter 2 [36] grounds

their arguments to objects in the scene, as shown in Figure 3.2. Gradient descent

on the sum of energies with respect to the objects’ spatial coordinates computes

the final object locations that best satisfy the set of spatial constraints expressed

in the instruction. Given the predicted object goal locations, we use vision-based

pick-and-place policies that condition on the visual patch around the predicted pick

24



3. Energy-based Models are Zero-Shot Planners for Compositional Scene
Rearrangement

and place locations to rearrange the objects [109]. We call our framework Scene

Rearrangement via Energy Minimization (SREM).

We test SREM in scene rearrangement of tabletop environments on simulation

benchmarks of previous works [91], as well as on new benchmarks we contribute

that involve compositional instructions. We curate multiple train and test splits to

test out-of-distribution generalization with respect to (i) longer instructions with

more predicates, (ii) novel objects and (iii) novel background colors. We show SREM

generalizes zero-shot to complex predicate compositions, such as “put all red blocks in

a circle in the plate” while trained from single predicate examples, such as “an

apple inside the plate” and “a circle of blocks”. We show SREM generalizes to real-

world scene rearrangement without any fine-tuning, thanks to the object abstractions

it operates on. We compare our model against state-of-the-art language-to-action

policies [91] as well as Large Language Model planners [33] and show it dramatically

outperforms both, especially for long complicated instructions. We ablate each

component of our model and evaluate contributions of perception, semantic parsing,

goal generation and low-level policy modules to performance.

In summary, our contributions are: (i) A novel energy-based object-centric

planning framework for zero-shot compositional language-conditioned goal scene

generation. (ii) A modular system for instruction-guided robot scene rearrangement

that uses semantic parsers, vision-language grounding models, energy-based models

for scene generation, and vision-based policies for object manipulation. (iii) A new

instruction-guided scene rearrangement benchmark in simulation with compositional

language instructions. (iv) Comparisons against state-of-the-art language-to-action

policies and LLM planners, and extensive ablations.

Simulation and real-world robot execution videos, as well as our code are publicly

available on our website: https://ebmplanner.github.io.

3.2 Related Work

Following instructions for rearranging scenes: Language is a natural means of

communicating goals and can easily describe compositions of actions and arrangements

[3, 9, 10], providing more versatile goal descriptions compared to supplying one or

more goal images. The latter requires the task to be executed beforehand, which
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defeats the purpose of instruction [73, 77, 89, 99]. We group methods in the literature

in the following broad categories:

• End-to-end language to action policies [58, 64, 91, 93] map instructions to

actions or to object locations directly. We have found that these reactive

policies, despite impressively effective within the training distribution, typically

do not generalize to longer instructions, new object classes and attributes or

novel backgrounds [58, 91].

• Symbolic planners such as PDDL (Planning Domain Definition Language)

planners [40, 65, 70, 94] use predefined symbolic rules and known dynamics

models, and infer discrete task plans given an instruction with lookahead logic

search [21, 40, 40, 65, 70, 94]. Symbolic planners assume that each state of the

world, scene goal and intermediate subgoal can be sufficiently represented in a

logical form, using language predicates that describe object spatial relations.

These methods predominantly rely on manually-specified symbolic transition

rules, planning domains and grounding, which limits their applicability.

• Large language models (LLMs) map instructions to language subgoals [32, 33,

102, 112] or program policies [51] with appropriate plan-like prompts. The

predicted subgoals interface with low-level short-term policies or skill controllers.

LLMs trained from Internet-scale text have shown impressive zero-shot reasoning

capabilities for a variety of downstream language tasks [4] when prompted

appropriately, without any weight fine-tuning [56, 97]. The scene description is

usually provided in a symbolic form as a list of objects present, predicted by

open-vocabulary detectors [41]. Recent works of [51, 52] have also fed as input

overhead pixel coordinates of objects to inform the LLM’s predictions. The

prompts for these methods need to be engineered per family of tasks. It is yet

to be shown how the composition of spatial concept functions can emerge in

this way.

Language-conditioned scene generation: A large body of work has explored

scene generation conditioned on text descriptions [39, 66, 81, 88, 106]. The work of

[43] leverages web-scale pre-trained models [28, 80, 82] to generate segmentation masks

for each object in the generated goal image. Given an input image, their method

generates a text prompt using a captioning model and feeds it to a generative model
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Figure 3.2: Scene rearrangement through energy minimization. Given an
image and a language instruction, a semantic parser maps the language into a set
of energy functions (BinaryEBM, MultiAryEBM), one for each spatial predicate in the
instruction, and calls to an open-vocabulary visual language grounder (VLMGround)
to localize the object arguments of each energy function mentioned in the instruction,
here “fruits” and “plate”. Gradient descent on the sum of energy functions with
respect to object spatial coordinates generates the goal scene configuration. Vision-
based neural policies condition on the predicted pick and place visual image crops
and predict accurate pick and place locations to manipulate the objects.

that outputs a goal image, which is then further parsed into segmentation masks.

However, the prompt is limited to contain only names of objects and there is no explicit

language-guided spatial reasoning. In this work, we seek to make scene generation

useful as goal imagination for robotic spatial reasoning and instruction following.

Instead of generating pixel-accurate images, we generate object configurations by

abstracting the appearance of object entities. We show this abstraction suffices for a

great number of diverse scene rearrangement tasks.

Energy-based models: Our work builds upon existing work on energy-based

models (EBMs) [14, 15, 16, 23, 55, 72]. Most similar to our work is that of [72],

which generates and detects spatial concepts with EBMs on images with dots, and

[15, 55], which demonstrates composability of image-centric EBMs for generating

face images and images from CLEVR dataset [38]. In this work, we demonstrate

zero-shot composability of EBMs over object poses instead of images, and showcase

their applicability on spatial reasoning and instruction following for robotic scene

rearrangement.
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3.3 Method

The architecture of SREM is shown in Figure 3.2. The model takes as input an

RGB-D image of the scene and a language instruction. A semantic parser maps the

instruction to a set of spatial predicate energy functions and corresponding referential

expressions for their object arguments. An open-vocabulary visual detector grounds

the arguments of each energy function to actual objects in the scene. The goal object

locations are predicted via gradient descent on the sum of energy functions. Lastly,

short-term vision-based pick-and-place policies move the objects to their inferred goal

locations. Below, we describe each component in detail.

A library of energy-based models for spatial concepts In our work, a

spatial predicate is represented by an energy-based model (EBM) that takes as input

x the set of objects that participate in the spatial predicate and maps them to a

scalar energy value Eθ(x). An EBM defines a distribution over configurations x that

satisfy its concept through the Boltzmann distribution pθ(x) ∝ e−Eθ(x). Low-energy

configurations imply satisfaction of the language concept and have high probability.

An example of the spatial concept can be generated by optimizing for a low-energy

configuration through gradient descent on (part of) the input x. We represent each

object entity by its 2D overhead centroid coordinates and box size. During gradient

descent, we only update the center coordinates and leave box sizes fixed. We consider

both binary spatial concepts (in, left of, right of, in front of, behind) as well as

multi-ary spatial concepts (circle, line).

Using an EBM, we can sample configurations from pθ, by starting from an initial

configuration x0 and refining it using Langevin Dynamics [98]:

xk+1 = xk − λ∇xEθ(x
k) + ϵkzk, (3.1)

where zk is random noise, λ is an update rate hyperparameter and ϵk is a time-

dependent hyperparameter that monotonically decreases as k increases. The role

of zk and decreasing ϵk is to induce noise in optimization and promote exploration,

similar to Simulated Annealing [46]. After K iterations, we obtain x− = xK . During

training, we iterate over Equation 3.1 K = 30 times, using λ = 1 and ϵk = 5e − 3.

During inference, we find that iterating for more, e.g. K = 50 often leads to better
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solution. In this case we also linearly decay ϵk to 0 for k > 30.

We learn the parameters θ of our EBM using a contrastive divergence loss that

penalizes energies of examples sampled by the model being lower than energies of

ground-truth configuration:

L = Ex+∼pDEθ(x
+) − Ex−∼pθEθ(x

−), (3.2)

where x+ a sample from the data distribution pD and x− a sample drawn from the

learned distribution pθ. We additionally use the KL-loss and the L2 regularization

proposed in [16] for stable training. At test time, compositions of concepts can be

created by simply summing energies of individual constituent concept, as shown in

Figures 3.1 and 3.2.

We implement two sets of EBMs, a BinaryEBM and a MultiAryEBM for bi-

nary (e.g., left of ) and multi-ary (e.g., circle) language concepts, respectively. The

BinaryEBM expects two object arguments, each represented by its bounding box.

We convert the object bounding box to (top-left corner, bottom-right corner) rep-

resentation. Then we compute the difference between all corners of the two object

arguments and concatenate and feed to a multi-layer perceptron (MLP) that outputs

a scalar energy value. Note that the energy function only depends on the relative

arrangement of the two objects, not their absolute locations. The MultiAryEBM is

used for order-invariant concepts of multiple entities, such as shapes. The input is a

set of objects, each represented as a point (box center). We subtract the centroid

of the configuration from each point and then featurize each object using an MLP.

We feed this set of object features to a sequence of four attention layers [95] for

contextualization. The refined features are averaged into an 1D vector which is

then mapped to a scalar energy using an MLP. We train a separate EBM for each

language concept in our vocabulary using corresponding annotated scenes in given

demonstrations. Note that annotated scenes suffice to train the energy functions,

kinesthetic demonstrations are not necessary, and in practice each EBM can be

trained within a few minutes.

Semantic parsing of instructions into spatial concepts and their arguments.

Our parser maps language instructions to instantiations of energy-based models and

their arguments. It is a Sequence-to-Tree model [13] with a copying mechanism [24]
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which allows it to handle a larger vocabulary than the one seen during training. The

input to the model is a natural language instruction and the output is a tree. Each

tree node is an operation. The three operations supported are i) BinaryEBM which

calls a BinaryEBM from our library, ii) MultiAryEBM and iii) VLMGround which calls

the visual-language grounding module. Each node has a pointer to the arguments

of the operation, language concepts for EBM calls, e.g., behind, and noun phrases

for grounding model calls, e.g., “the green cube”. Nodes in the parsing tree may also

have children nodes, which imply nested execution of the corresponding operations.

The input utterance is encoded using a pre-trained RoBERTa encoder [60], giving

a sequence of contextualized word embeddings and a global representation of the

full utterance. Then, a decoder is iteratively employed to i) decode an operation, ii)

condition on this operation to decode or copy the arguments for this operation, iii)

add one (or more) children node(s). For example, the instruction “a circle of cubes

inside the plate” is mapped to a sum of energy functions where each object of the

multi-ary concept circle participates in the constraining binary concept in:

Etotal = MultiAryEBM(circle, VLMGround(“cubes”))

+
∑

i BinaryEBM(in, xi, VLMGround(“plate”)),

xi ∈ VLMGround(“cubes”).

(3.3)

We train our semantic parser on the instructions of all training demonstrations of all

tasks jointly, as well as on synthesized instructions paired with programs, each with

1-7 predicates, that we generate by sampling from a grammar, similar to previous

works [68, 96].

We ground noun phrases predicted by our parser with an off-the-shelf language

grounding model [36], which operates as an open-vocabulary detector. The input is

the noun phrase, e.g., “the blue cube” and the image, while the output is the boxes

of all object instances that match the noun phrase. The open-vocabulary detector

has been pre-trained for object detection and referential grounding on MS COCO

[53], Flickr30k [76] and Visual Genome [47]. We finetune the publicly available code

of [36] on our training data of all tasks jointly.

Short-term vision-based manipulation skills We use short-term manipulation

policies built upon Transporter Networks [109] to move the obejcts to their predicted
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locations. Transporter Networks take as input one or more RGB-D images, reproject

them to the overhead birds-eye-view, and predict two robot gripper poses: i) a pick

pose and ii) a pick-conditioned placement pose. These networks can model any

behaviour that can be effectively represented as two consecutive poses for the robot

gripper, such as pushing, sweeping, rearranging ropes, folding, and so on – for more

details please refer to [109].

We modify Transporter Networks to take as input a small image RGB-D patch,

instead of a complete image view. Specifically, we consider as input the image patches

around the object pick and object goal locations predicted by our visual grounding and

energy-based minimization modules respectively. In this way, the low-level policies

know roughly what to pick and where to place it, and only locally optimize over

the best pick location, as well as the gripper’s relative rotation, within an object of

interest, or placement location, at a particular part of the scene, respectively. We

show in our ablations (Table 3.7) that using learning-based pick-and-place policies

helps performance, even if the search space is limited thanks to grounding and goal

imagination. We train Transporter Networks from scratch on all our pick-and-place

demonstration datasets jointly.

Termination of execution: SREM generates a goal scene by optimizing the rela-

tive poses of the objects mentioned in the instruction. We estimate how many objects

should be moved by comparing the detected bounding box (by the language grounding

model) and the optimized bounding box (by the EBM). For non-compositional tasks

that involve binary concepts, we inject the prior that one object is fixed. Then we

take as many actions as the number of objects the EBM moved.

Closed-loop execution: SREM first generates a goal scene from the input

instruction and then executes it. After execution, we re-detect all relevant objects

using our VLM-grounder module to check if they are close to their predicted goal

locations. If the re-detected object’s bounding box and initially predicted goal

bounding box intersect over a certain IoU threshold, we consider the goal to be

successfully executed. If we fail to reach the goal, we call again our vision based

policies using the current scene configuration. Comparing the post-execution object

configuration with the initially imagined goal scene allows to track progress and

estimate goal completion as we show in the experimental section.
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3.4 Experiments

We test SREM in its ability to follow language instructions for rearrangement of

tabletop scenes in simulation and in the real world. We compare our model against

LLM planners [33] and end-to-end language-to-action policies [91]. Our experiments

aim to answer the following questions:

1. How does SREM compare to LLM planners in predicting scene configurations

from instructions? (Section 3.4.1)

2. How does SREM compare to state-of-the-art language-to-action policies for

rearranging scenes? How does their relative performance change with varying

instruction length and varying amount of training data? (Section 3.4.2)

3. How does SREM generalize to novel objects, object colors and background

colors, compared to an end-to-end language-to-action model? (Section 3.4.3)

4. How much do different modules of our framework contribute to performance?

(Section 3.4.4)

Benchmarks: Existing language-conditioned manipulation benchmarks are usually

dominated by a single spatial concept like “inside” [91]. To better illustrate the

compositionality of spatial concepts, we introduce the following set of benchmarks,

implemented with PyBullet:

• spatial-relations, containing single pick-and-place instructions with referential

expressions in cluttered scenes with distractors, e.g. “Put the cyan cube above

the red cylinder”. We consider the relations left of, right of, in front of, behind.

• comp-one-step, containing compositional instructions with referential expres-

sions in cluttered scenes with distractors that require one object to be re-located

to a particular location, e.g. “put the red bowl to the right of the yellow cube,

to the left of the red cylinder, and above blue cylinder”.

• comp-group, containing compositional instructions with referential expressions

in cluttered scenes with distractors that require multiple objects to be re-located,

e.g., “put the grey bowl above the brown cylinder, put the yellow cube to the

right of the blue ring, and put the blue ring below the grey bowl”.

• shapes, containing instructions for making multi-entity shapes (circles and
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Figure 3.3: Planning in language space with Large Language Models (LLMs).
LLM Planners predict language subgoals that decompose the initial instruction to
simpler-to-execute subtasks. Predicted language subgoals are fed to reactive language-
to-action policies for execution. In cases where concept intersection is needed, the
predicted sequential language subgoal decomposition of instructions can fail. Here,
the LLM predicts the first subgoal of putting the strawberry to the right of the apple.
The reactive policy can succeed if it places the strawberry anywhere within the shaded
region. During execution of the next issued language subgoal of putting the strawberry
in front of the bowl, the policy violates the first constraint. Placing the strawberry
in the intersection of the two shaded regions may not be achieved by decomposing
the two predicates sequentially, as opposed to composing them. Then the burden of
handling the compositional instruction is outsourced to the language-to-action policy,
which often fails to generalize. Instead, SREM directly addresses compositionality of
multiple spatial language predicates.

lines), e.g. “rearrange all red cubes in a circle”.

We further evaluate our model and baselines on four tasks from the CLIPort benchmark

[91], namely put-block-in-bowls, pack-google objects-seq, pack-google objects-

group and assemble-kits-seq.
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For all tasks we train on either 10 or 100 demos and use the same demos to train

all our modules, as discussed in Section 3.3. We test on 50 episodes per task, where

we vary the instruction and the initial configuration of objects. For spatial-relations

and shapes each concept corresponds to a task, while the composition benchmarks

correspond to one task each.

Baselines: We compare SREM to the following baselines:

• CLIPort [91], a model that takes as input an overhead RGB-D image and an

instruction and uses pre-trained CLIP language and image encoders to featurize

the instruction and RGB image, respectively; then fuses these with depth

features to predict pick-and-place actions using the action parametrization of

Transporter Networks [109]. The model capitalizes on language-vision associa-

tions learnt by the CLIP encoders. We use the publicly available code of [91].

We train one CLIPort model on all tasks of each benchmark, e.g., one model

for spatial-relations, a different for comp-group etc. Note that the original

CLIPort implementation assumes access to oracle success/failure information

based on which the model can retry the task for a fixed budget of steps or stop

the execution if oracle confirms that the task is completed. We evaluate the

CLIPort model without this oracle retry but still with oracle information of

how many minimum steps it needs to take to complete the task, so we force

CLIPort to take exactly that number of actions.

• LLMplanner, inspired by [33], an instruction-following scene-rearrangement

model that uses an LLM to predict a sequence of subgoals in language form,

e.g. “pick the red cube and place it to the right of the blue bowl”. The generated

language subgoals are fed as input to language-to-action policies, such as

CLIPort. Scene state description is provided as a list of objects in the scene.

LLMplanner does not finetune the LLM but instead uses appropriate prompts

so that the LLM adapts its behavior in-context and generates similar statements.

The prompts include various previous successful interactions between a human

user and the model. We design suitable prompts for our introduced benchmarks

and use the LLM to decompose a long instruction into simpler ones (see

Figure 2.3 in the Appendix for an example). Then, we feed each generated

instruction to a CLIPort model, trained as described earlier. Lastly, for tabletop
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comp-one-step comp-group
Method TP TC TP TC

LLMplanner w/ oracle 82.0 59.0 75.3 29.0
SREM w/ oracle 90.8 76.0 88.7 62.0

Table 3.1: Evaluation of SREM and LLMplanner with oracle perception
and oracle low-level execution policies on compositional spatial arrangement
tasks. We report Task Progress (TP) and Task Completion (TC).

manipulation tasks in simulation, the LLMPlanner of [33] assumes access to an

oracle success/failure detector. The difference in our implementation is that

we do not assume any success detector. The execution terminates when all

language subgoals have been fed to and handled by CLIPort.

Note that LLMplanner boils down to CLIPort for non-compositional instructions.

As such, we compare with LLMplanner only on comp-one-step and comp-group,

both in simulation and real world.

Evaluation Metrics: We use the following two evaluation metrics: (i) Task

Progress (TP) [109] is the percentage of the referred objects placed in their goal

location, e.g. 4/5 = 80.0% for rearranging 4 out of 5 objects specified in the instruction.

(ii) Task Completion (TC) rewards the model only if the full rearrangement is

complete. For the introduced benchmarks we have oracle reward functions that

evaluate whether the task constraints are satisfied.

3.4.1 Spatial reasoning for scene rearrangement with oracle

perception and control

In this section, we compare spatial reasoning for predicting compositional scene

subgoals in a language space versus in an abstract visually grounded space. In this

section, to isolate this reasoning ability from nuisance factors of visually localizing

the objects and picking them up effectively, we consider oracle object detection,

referential grounding and low-level pick-and-place policies. Specifically, we

carry out inferred language subgoals from LLMplanner using oracle controllers that

relocate an object in the scene such that it satisfies the predicted subgoals. Note

that SREM relies on pick-and-place policies that are not language-conditioned, while
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left-seen-colors left-unseen-colors right-seen-colors right-unseen-colors
Method 10 demos 100 demos 10 demos 100 demos 10 demos 100 demos 10 demos 100 demos

CLIPort 13.0 44.0 9.0 33.0 29.0 43.0 28.0 44.0
SREM 95.0 95.0 93.0 94.0 89.0 92.0 93.0 96.0

behind-seen-colors behind-unseen-colors front-seen-colors front-unseen-colors
Method 10 100 10 100 10 100 10 100

CLIPort 24.0 45.0 22.0 51.0 23.0 55.0 13.0 40.0
SREM 87.0 87.0 89.0 90.0 89.0 90.0 88.0 89.0

circle-seen-colors circle-unseen-colors line-seen-colors line-unseen-colors
Method 10 demos 100 demos 10 demos 100 demos 10 demos 100 demos 10 demos 100 demos

CLIPort 34.1 61.5 31.2 55.6 48.6 88.2 48.6 88.5
SREM 91.3 91.5 90.2 91.2 98.1 99.0 98.4 99.4

Table 3.2: Evaluation (TP) of SREM and CLIPort on spatial-relations and
shapes in simulation.

comp-one-step comp-one-step comp-group comp-group
seen-colors unseen-colors seen-colors unseen-colors

Method 10 100 10 100 10 100 10 100

Initial (no movement) 0.0 0.0 0.0 0.0 31.7 31.7 31.8 31.8
CLIPort (zero-shot) 9.0 12.0 7.0 12.0 37.4 37.5 32.6 38.4
CLIPort 13.0 15.0 14.0 9.0 38.2 38.5 34.7 40.9
LLMplanner 51.2 53.2 49.4 53.5 38.6 39.0 37.1 39.0
SREM (zero-shot) 90.0 91.0 92.7 90.3 77.2 77.4 77.7 78.4
SREM (zero-shot + closed-loop) 91.6 92.0 92.9 91.4 80.8 81.6 81.1 82.4

Table 3.3: Evaluation (TP) of SREM, CLIPort and LLMplanner on compo-
sitional tasks. SREM is trained only on atomic relations and tested zero-shot on
tasks with compositions of spatial relations which involve moving one (comp-one-
step) or multiple (comp-group) objects to satisfy all constraints specified by the
language. Some language constraints are satisfied already in the initial configuration
and the Initial model captures that.

LLMplanner relies on language-conditioned policies for object re-location. Thus, the

oracle control assumption is less realistic in the latter case. We forego this difference

for the sake of comparison.

We show quantitative results of SREM and LLMplanner on the comp-one-step

and comp-group benchmarks in Table 3.1. Our model outperforms LLMplanner

and the performance gap is larger in more complex instructions. To elucidate why

an abstract visual space may be preferable for planning, we visualize steps of energy
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put-block-in-bowl put-block-in-bowl packing-google-objects packing-google-objects
seen-colors unseen-colors seq-seen-objects seq-unseen-objects

Method 10 demos 100 demos 10 demos 100 demos 10 demos 100 demos 10 demos 100 demos

CLIPort 31.0 82.1 4.8 17.6 34.8 54.7 27.2 56.4
SREM 84.3 93.8 89.0 95.3 86.8 94.8 88.0 92.9

packing-google-objects packing-google-objects assembling-kits assembling-kits
group-seen-objects group-unseen-objects seq-seen-colors seq-unseen-colors

Method 10 100 10 100 10 100 10 100

CLIPort 33.5 61.2 32.2 70.0 38.0 62.6 36.8 51.0
SREM 86.1 76.8 87.2 79.6 38.4 42.0 40.8 44.0

Table 3.4: Evaluation (TP) of SREM and CLIPort on CLIPort benchmark
in simulation.

minimization for different instructions in Figure 3.1 and steps of the execution of the

LLM prompted by us to the best of our capability in Figure 3.3. We can see that

SREM trained on single-predicate scenes shows remarkable composability in case of

multiple predicates. Language planning on the other hand suffers from the ambiguity

of translating geometric concepts to language and vice versa: step-by-step execution

of language subgoals does not suffice for the composition of the two subgoals to

emerge (Figure 3.3).

3.4.2 Spatial scene rearrangement

Simulation: In this section, we compare our model and the baselines in the task of

instruction-guided scene rearrangement. We first show results on spatial-relations

and shapes in Table 3.2. We largely outperform CLIPort, especially when less

training demos are considered.

To evaluate generalization on longer instructions at test time, we show quantitative

results in Table 3.3 for the benchmarks of comp-one-step and comp-group. We

compare our model with CLIPort trained on atomic spatial relations and zero-shot

evaluated on compositional benchmarks. We further fine-tune CLIPort on demos

from the compositional benchmarks. SREM is not trained on these benchmarks,

because the energy functions are already composable, meaning that we can jointly

optimize over an arbitrary number of constraints by simply summing the different

energy terms. Under all different settings, we significantly outperform all variants of

CLIPort and LLMplanner. We also observe that closed-loop execution boosts our
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performance further.

We additionally show results on the CLIPort benchmark in Table 3.4. We largely

outperform CLIPort on almost all tested tasks. Margins are significantly larger when

i) less demos are used and ii) the robot has to interact with objects of unseen colors

or classes. Most of the failure cases for our model are due to the language grounding

mistakes - in particular for assemble-kits-seq we find that the grounder gets confused

between letters and letter holes.

Real World: We test our model on a 7-DoF Franka Emika robot, equipped with

a parallel jaw gripper and a top-down Azure Kinect RGB-D camera. We do not

perform any real-world finetuning. Our test set contains 10 language-guided tabletop

manipulation tasks per setting (Comp-one-step, Comp-group, Circles, Lines). We

show quantitative results in Table 3.6. SREM generalizes to the real world without

any real-world training or adaptation thanks to the open-vocabulary detector trained

on real-world images, as well as the object abstractions in the predicate EBMs and

low-level policy modules. We encourage readers to refer to our supplementary video

and our website for more detailed results.

spatial-relations composition
Novel attribute Model 10 demos 100 demos 10 demos 100 demos

None
CLIPort 22.0 47.0 25.6 26.8
SREM 90.0 91.0 83.6 84.2

Color
CLIPort 18.0 39.0 25.1 24.5
SREM 87.0 85.0 86.5 84.0

Background
CLIPort 10.0 20.0 23.7 23.2
SREM 79.0 68.0 77.0 72.0

Objects
CLIPort 17.0 19.0 24.5 24.8
SREM 86.0 86.0 80.9 81.5

Table 3.5: Generalization experiments of SREM and CLIPort in manipula-
tion tasks in simulation (metric is TP).
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Method comp-one-step comp-group circles lines

CLIPort 13.1 22.9 34.0 46.0
LLMplanner 39.5 25.9 - -
SREM 85.6 75.8 94.0 90.0

Table 3.6: Real-world evaluation (TP) of SREM

Method Accuracy
SREM 77.2
SREM w/o goal generation 42.1
SREM w/o learnable policies 61.2
SREM w/ oracle language grounding 82.3
SREM w/ everything oracle except goal 88.3

Table 3.7: Ablations of SREM on the benchmark comp-group-seen-colors
(metric is TP).

3.4.3 Generalization analysis

We conduct controlled studies of our model’s generalization across three axes: a)

novel colors: we train the models with objects of 7 different colors and evaluate

them on objects of 4 unseen colors; b) novel background colors: we train all

models on black-colored tables and evaluate on tables of randomly sampled RGB

colors; c) novel objects: we train the models on objects of 4 classes and evaluate

on rearrangement of 11 novel classes. In each of these settings, we only change

one attribute (i.e. object color, background color or object instance) while keeping

everything else constant.

We evaluate our model and CLIPort trained on 10 or 100 demos per task on

spatial-relations (average performance over all tasks) and composition (average

performance over all tasks from comp-one-step and comp-group). The results are

summarized in Table-3.5. We observe that our model maintains high performance

across all axes of generalization, independently of the number of training demos.

Our model’s generalization capabilities rely on the open-vocabulary detector and

the fact that EBMs and transporter-based low-level execution policy operate on

abstracted space in a modular fashion. While CLIPort models can also generalize to

novel scenarios by leveraging the CLIP model, the action prediction and perception

are completely entangled and hence even if CLIP manages to identify the right objects
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based on the language, it has trouble predicting the correct pick and place locations.

3.4.4 Ablations

We show an error analysis of our model in Table-3.7. First, we remove the goal

generation from SREM (SREM w/o goal generation) by conditioning the place

network on the language input instead of the EBM-generated goal image, while

keeping the pick network and object grounders identical. We observe a drop of 35.1%

in accuracy, underscoring the importance of goal generation. We then remove our

executor policy (SREM w/o learnable policies) and instead randomly select pick/place

locations inside the bounding box of the relevant object. This results in a drop of 16%,

showing the importance of robust low-level policies. We do not remove the grounder

and parser since they are necessary for goal generation. We then experiment with

oracle visual language grounder (SREM w/ oracle language grounding) that perfectly

detects the objects mentioned in the sentence, which results in a performance gain

of 5.1%. We finally evaluate with perfect grounding, language parsing and low-level

execution (SREM w/ everything oracle except goal) to test the error rate of our goal

generator. We obtain an 88.3% accuracy, thus concluding that our goal generator

fails in 11.7% cases.

3.4.5 Limitations

Our model presently has the following two limitations: First, it predicts the goal

object scene configuration but does not have any knowledge regarding temporal

ordering constraints on object manipulation execution implied by physics. For

example, our model can predict a stack of multiple objects on top of one another

but cannot suggest which object needs to be moved first. One solution to this

problem is to heuristically pick the order based on objects that are closer to the floor

in the predicted scene configuration. However, more explicit encoding of physics

priors are important to also identify if the generated configuration is stable or not.

A promising direction is to model physics-based constraints as additional energy

constraints, and obtain optimization gradients by leveraging either differentiable

physics simulators [34, 79, 101] or learned dynamics models [50, 75, 100]. Second, our

EBMs are currently parametrized by object locations and sizes, but different tasks
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need different abstractions. Manipulation of articulated objects, fluids, deformable

objects or granular materials, would require finer-grained parametrization in both

space and time. Furthermore, even for rigid objects, many tasks would require finer

in-space parametrization, e.g., it would be useful to know a set of points in the

perimeter of a plate as opposed to solely representing its bounding box for accurately

placing things inside it. Considering EBMs over keypoint or object part graphs

[67, 92] is a direct avenue for future work.

3.5 Conclusion

We introduce SREM, a modular robot learning framework for instruction-guided

scene rearrangement that maps instructions to object scene configurations via com-

positional energy minimization over object spatial coordinates. We test our model in

diverse tabletop manipulation tasks in simulation and in the real world. Our model

outperforms state-of-the-art end-to-end language-to-action policies, and LLM-based

instruction following methods both in in- and out-of-distribution settings, and across

varying amount of supervision. We contribute a new scene rearrangement benchmark

that contains more compositional language instructions than previous works, which

we make publicly available to the community. Our work shows that a handful of

visually-grounded examples suffice to learn energy-based spatial language concepts

that can be composed to infer novel instructed scene arrangements, in long and

complex compositional instructions.
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Chapter 4

Conclusions

In this thesis, we propose a language-conditioned object detector that can detect all

objects mentioned in a free-flowing natural language in 2D and 3D scenes. We show

its application in tabletop manipulation setup where we combine the open-vocabulary

object detector with a continously expandable library of concept learners that can

compositionalize zero-shot and generalize in out-of-domain distribution settings. The

key underlying idea with this thesis is to bring 2D and 3D perception closer so that

3D perception can benefit from strong and matured 2D architectures and internet

scale 2D annotated data. Then, the strong vision systems can be seamlessly combined

with concept learning and low-level manipulation to execute complex tasks.

In our ongoing and future work, we are actively considering the following problems:

• Towards the Development of Large-scale Vision Foundation Models:

The current state-of-the-art in 3D computer vision heavily relies on domain-

specific architectures and small-scale datasets, resulting in limited generalization

capabilities. Conversely, 2D models trained on diverse datasets exhibit strong

performance in real-world scenarios. Although our architecture, presented in

Chapter 2, is applicable to both 2D and 3D language grounding with minimal

modifications, we do not share parameters and data between the two modalities.

This hinders the transfer of representations across modalities, which would

be particularly advantageous for the low-resource 3D modality. Motivated by

this, our ongoing work focuses on constructing a unified vision model using

2D techniques. Our model aims to enhance generalization, performance, and
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versatility by training on both 2D and 3D datasets. We aim to showcase

experimental results on the Scannet benchmark [11], demonstrating superior

performance compared to domain-specific architectures. Additionally, we aim

to exhibit enhanced generalization capabilities by successfully adapting to new

3D scenes outside the training domain, surpassing the limitations of existing

Scannet-based models. Lastly, we aim to demonstrate the ability to jointly train

on both 2D and 3D datasets, achieving state-of-the-art results in both domains.

Our objective is to highlight the potential of building unified vision foundation

models that excel in multiple domains and enable seamless integration of 2D

and 3D data. While the primary focus of this work is to demonstrate the

benefits of 2D data for 3D perception, we are also interested in closing the loop

by incorporating 3D understanding even when only 2D visual streams (without

depth information) are available.

• Learning Visual Perception for Unposed In-the-wild Dynamic Video

Data: In addition to the aforementioned work, which assumes access to posed

RGBD images and static environments, there is a wealth of internet-scale video

data that is dynamic and lacks available camera parameters. We aim to extend

our Vision Foundation Model to learn generalizable representations by relaxing

these assumptions, allowing for the effective analysis of unposed, in-the-wild

dynamic video data.

• Visual Imitation: Finally, we plan to leverage and expand upon the visual

models we develop for robotics applications, specifically focusing on learning a

wide range of skills through visually imitating both active and passive human

demonstrations (e.g., using YouTube videos). Our hypothesis is that achieving

consistent 3D understanding will significantly contribute to this goal of learning

from passive data.
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Berg. ReferItGame: Referring to Objects in Photographs of Natural Scenes. In
Proc. EMNLP, 2014. 2.1, 2.2, 2.4.2

[46] Scott Kirkpatrick. Optimization by simulated annealing: Quantitative studies.
Journal of Statistical Physics, 34:975–986, 1984. 3.3

[47] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua
Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma,
Michael S. Bernstein, and Li Fei-Fei. Visual Genome: Connecting Language
and Vision Using Crowdsourced Dense Image Annotations. International
Journal of Computer Vision, 123, 2016. 2.3.2, 2.4.2, 3.3

[48] Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang.
VisualBERT: A Simple and Performant Baseline for Vision and Language.
ArXiv, abs/1908.03557, 2019. 2.4.2, 2.4

[49] Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan
Li, Yiwu Zhong, Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, Kai-Wei
Chang, and Jianfeng Gao. Grounded Language-Image Pre-training. In Proc.
CVPR, 2022. 2.2

[50] Yunzhu Li, Jiajun Wu, Jun-Yan Zhu, Joshua B Tenenbaum, Antonio Torralba,
and Russ Tedrake. Propagation networks for model-based control under partial
observation. In 2019 International Conference on Robotics and Automation
(ICRA), pages 1205–1211. IEEE, 2019. 3.4.5

[51] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter,
Pete Florence, and Andy Zeng. Code as policies: Language model programs
for embodied control, 2022. URL https://arxiv.org/abs/2209.07753. 3.2

[52] Bill Yuchen Lin, Chengsong Huang, Qian Liu, Wenda Gu, Sam Sommerer, and
Xiang Ren. On grounded planning for embodied tasks with language models,
2022. URL https://arxiv.org/abs/2209.00465. 3.2

49

https://arxiv.org/abs/2104.12763
https://arxiv.org/abs/2104.12763
https://arxiv.org/abs/2209.07753
https://arxiv.org/abs/2209.00465


Bibliography

[53] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B.
Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft COCO: common objects in context. CoRR,
abs/1405.0312, 2014. URL http://arxiv.org/abs/1405.0312. 3.3

[54] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO:
Common Objects in Context. In Proc. ECCV, 2014. 2.4.2

[55] Nan Liu, Shuang Li, Yilun Du, Joshua B. Tenenbaum, and Antonio Torralba.
Learning to compose visual relations. CoRR, abs/2111.09297, 2021. URL
https://arxiv.org/abs/2111.09297. 3.2

[56] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. CoRR, abs/2107.13586,
2021. URL https://arxiv.org/abs/2107.13586. 3.2

[57] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed,
Cheng-Yang Fu, and Alexander C. Berg. SSD: Single Shot MultiBox Detector.
In Proc. ECCV, 2016. 2.2

[58] Weiyu Liu, Chris Paxton, Tucker Hermans, and Dieter Fox. Structformer:
Learning spatial structure for language-guided semantic rearrangement of novel
objects. arXiv preprint arXiv:2110.10189, 2021. 3.2

[59] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, M. Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa:
A Robustly Optimized BERT Pretraining Approach. ArXiv, abs/1907.11692,
2019. 2.3.1, 2.3.2

[60] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692,
2019. 3.3

[61] Ze Liu, Zheng Zhang, Yue Cao, Han Hu, and Xin Tong. Group-Free 3D Object
Detection via Transformers. In Proc. ICCV, 2021. 2.1, 2.2, 2.3.2, 2.3.2, 1, 2.4.1

[62] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. ViLBERT: Pretraining
Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks.
In Proc. NeurIPS, 2019. 2.2, 2.3.3

[63] Jiasen Lu, Vedanuj Goswami, Marcus Rohrbach, Devi Parikh, and Stefan Lee.
12-in-1: Multi-Task Vision and Language Representation Learning. In Proc.
CVPR, 2020. 2.3.3

[64] Corey Lynch and Pierre Sermanet. Grounding language in play. arXiv preprint

50

http://arxiv.org/abs/1405.0312
https://arxiv.org/abs/2111.09297
https://arxiv.org/abs/2107.13586


Bibliography

arXiv:2005.07648, 2020. 3.2

[65] Daoming Lyu, Fangkai Yang, Bo Liu, and Steven Gustafson. SDRL: inter-
pretable and data-efficient deep reinforcement learning leveraging symbolic plan-
ning. CoRR, abs/1811.00090, 2018. URL http://arxiv.org/abs/1811.00090.
3.2

[66] Elman Mansimov, Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov.
Generating images from captions with attention, 2015. URL https://arxiv.

org/abs/1511.02793. 3.2

[67] Lucas Manuelli, Wei Gao, Peter Florence, and Russ Tedrake. kpam: Keypoint
affordances for category-level robotic manipulation. In Robotics Research: The
19th International Symposium ISRR, pages 132–157. Springer, 2022. 3.4.5

[68] Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B Tenenbaum, and Jiajun
Wu. The neuro-symbolic concept learner: Interpreting scenes, words, and
sentences from natural supervision. arXiv preprint arXiv:1904.12584, 2019. 3.3

[69] Junhua Mao, Jonathan Huang, Alexander Toshev, Oana-Maria Camburu,
Alan Loddon Yuille, and Kevin P. Murphy. Generation and Comprehension of
Unambiguous Object Descriptions. In Proc. CVPR, 2016. 2.4.2

[70] Toki Migimatsu and Jeannette Bohg. Object-centric task and motion planning
in dynamic environments. CoRR, abs/1911.04679, 2019. URL http://arxiv.

org/abs/1911.04679. 3.2

[71] Ishan Misra, Rohit Girdhar, and Armand Joulin. An End-to-End Transformer
Model for 3D Object Detection. In Proc. ICCV, 2021. 2.2, 2.4.1

[72] Igor Mordatch. Concept learning with energy-based models. CoRR,
abs/1811.02486, 2018. URL http://arxiv.org/abs/1811.02486. 3.2

[73] Ashvin Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and
Sergey Levine. Visual reinforcement learning with imagined goals. CoRR,
abs/1807.04742, 2018. URL http://arxiv.org/abs/1807.04742. 3.2

[74] Vicente Ordonez, Girish Kulkarni, and Tamara Berg. Im2text: Describing
images using 1 million captioned photographs. In Proc. NIPS, 2011. 2.4.2

[75] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W
Battaglia. Learning mesh-based simulation with graph networks. arXiv preprint
arXiv:2010.03409, 2020. 3.4.5

[76] Bryan A. Plummer, Liwei Wang, Christopher M. Cervantes, Juan C. Caicedo,
Julia Hockenmaier, and Svetlana Lazebnik. Flickr30k Entities: Collecting
Region-to-Phrase Correspondences for Richer Image-to-Sentence Models. In
Proc. ICCV, 2015. 2.4.2, 3.3

[77] Vitchyr H. Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and

51

http://arxiv.org/abs/1811.00090
https://arxiv.org/abs/1511.02793
https://arxiv.org/abs/1511.02793
http://arxiv.org/abs/1911.04679
http://arxiv.org/abs/1911.04679
http://arxiv.org/abs/1811.02486
http://arxiv.org/abs/1807.04742


Bibliography

Sergey Levine. Skew-fit: State-covering self-supervised reinforcement learning.
CoRR, abs/1903.03698, 2019. URL http://arxiv.org/abs/1903.03698. 3.2

[78] Charles Qi, Li Yi, Hao Su, and Leonidas J. Guibas. PointNet++: Deep
Hierarchical Feature Learning on Point Sets in a Metric Space. In Proc. NIPS,
2017. 2.3.2

[79] Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, and Ming C Lin. Scalable
differentiable physics for learning and control. arXiv preprint arXiv:2007.02168,
2020. 3.4.5

[80] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models
from natural language supervision. CoRR, abs/2103.00020, 2021. URL https:

//arxiv.org/abs/2103.00020. 3.2

[81] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec
Radford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation.
CoRR, abs/2102.12092, 2021. URL https://arxiv.org/abs/2102.12092. 3.2

[82] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark
Chen. Hierarchical text-conditional image generation with clip latents. ArXiv,
abs/2204.06125, 2022. 3.2

[83] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi.
You Only Look Once: Unified, Real-Time Object Detection. In Proc. CVPR,
2016. 2.2, 2.2

[84] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN:
Towards Real-time Object Detection with Region Proposal Networks. In Proc.
NIPS, 2015. 2.1, 2.2, 2.3.2

[85] Seyed Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian,
Ian D. Reid, and Silvio Savarese. Generalized Intersection Over Union: A
Metric and a Loss for Bounding Box Regression. In Proc. CVPR, 2019. 2.3.1

[86] Junha Roh, Karthik Desingh, Ali Farhadi, and Dieter Fox. LanguageRefer:
Spatial-Language Model for 3D Visual Grounding. In Proc. CoRL, 2021. 2.2,
2.1

[87] Arka Sadhu, Kan Chen, and Ram Nevatia. Zero-shot grounding of objects from
natural language queries. In Pro. ICCV, 2019. 2.2

[88] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily
Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara
Mahdavi, Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho, David J Fleet, and
Mohammad Norouzi. Photorealistic text-to-image diffusion models with deep

52

http://arxiv.org/abs/1903.03698
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2102.12092


Bibliography

language understanding, 2022. URL https://arxiv.org/abs/2205.11487.
3.2

[89] Daniel Seita, Pete Florence, Jonathan Tompson, Erwin Coumans, Vikas Sind-
hwani, Ken Goldberg, and Andy Zeng. Learning to rearrange deformable
cables, fabrics, and bags with goal-conditioned transporter networks. In 2021
IEEE International Conference on Robotics and Automation (ICRA), pages
4568–4575. IEEE, 2021. 3.2

[90] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual
Captions: A Cleaned, Hypernymed, Image Alt-text Dataset for Automatic
Image Captioning. In Proc. ACL, 2018. 2.4.2

[91] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport: What and where
pathways for robotic manipulation. In Proceedings of the 5th Conference on
Robot Learning (CoRL), 2021. 3.1, 3.2, 3.4, 3.4

[92] Maximilian Sieb, Zhou Xian, Audrey Huang, Oliver Kroemer, and Katerina
Fragkiadaki. Graph-structured visual imitation. In Conference on Robot
Learning, pages 979–989. PMLR, 2020. 3.4.5

[93] Elias Stengel-Eskin, Andrew Hundt, Zhuohong He, Aditya Murali, Nakul
Gopalan, Matthew Gombolay, and Gregory Hager. Guiding multi-step rear-
rangement tasks with natural language instructions. In Aleksandra Faust, David
Hsu, and Gerhard Neumann, editors, Proceedings of the 5th Conference on
Robot Learning, volume 164 of Proceedings of Machine Learning Research, pages
1486–1501. PMLR, 08–11 Nov 2022. URL https://proceedings.mlr.press/

v164/stengel-eskin22a.html. 3.2

[94] Marc Toussaint. Logic-geometric programming: An optimization-based ap-
proach to combined task and motion planning. In Proceedings of the 24th
International Conference on Artificial Intelligence, IJCAI’15, page 1930–1936.
AAAI Press, 2015. ISBN 9781577357384. 3.2

[95] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez,  Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in neural information processing systems, pages 5998–6008, 2017.
3.3

[96] Yushi Wang, Jonathan Berant, and Percy Liang. Building a semantic parser
overnight. In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages 1332–1342, Beijing, China,
July 2015. Association for Computational Linguistics. doi: 10.3115/v1/P15-1129.
URL https://aclanthology.org/P15-1129. 3.3

[97] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, Quoc

53

https://arxiv.org/abs/2205.11487
https://proceedings.mlr.press/v164/stengel-eskin22a.html
https://proceedings.mlr.press/v164/stengel-eskin22a.html
https://aclanthology.org/P15-1129


Bibliography

Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large
language models. CoRR, abs/2201.11903, 2022. URL https://arxiv.org/

abs/2201.11903. 3.2

[98] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin
dynamics. In Proceedings of the 28th international conference on machine
learning (ICML-11), pages 681–688. Citeseer, 2011. 3.3

[99] Hongtao Wu, Jikai Ye, Xin Meng, Chris Paxton, and Gregory Chirikjian.
Transporters with visual foresight for solving unseen rearrangement tasks, 2022.
URL https://arxiv.org/abs/2202.10765. 3.2

[100] Zhou Xian, Shamit Lal, Hsiao-Yu Tung, Emmanouil Antonios Platanios, and Ka-
terina Fragkiadaki. Hyperdynamics: Meta-learning object and agent dynamics
with hypernetworks. arXiv preprint arXiv:2103.09439, 2021. 3.4.5

[101] Zhou Xian, Bo Zhu, Zhenjia Xu, Hsiao-Yu Tung, Antonio Torralba, Katerina
Fragkiadaki, and Chuang Gan. Fluidlab: A differentiable environment for
benchmarking complex fluid manipulation. In International Conference on
Learning Representations, 2023. 3.4.5

[102] Danfei Xu, Roberto Mart́ın-Mart́ın, De-An Huang, Yuke Zhu, Silvio Savarese,
and Li Fei-Fei. Regression planning networks. CoRR, abs/1909.13072, 2019.
URL http://arxiv.org/abs/1909.13072. 3.2

[103] Zhengyuan Yang, Boqing Gong, Liwei Wang, Wenbing Huang, Dong Yu, and
Jiebo Luo. A fast and accurate one-stage approach to visual grounding. In
Proc. ICCV, 2019. 2.2

[104] Zhengyuan Yang, Tianlang Chen, Liwei Wang, and Jiebo Luo. Improving
one-stage visual grounding by recursive sub-query construction. In Proc. ECCV,
2020. 2.2

[105] Zhengyuan Yang, Songyang Zhang, Liwei Wang, and Jiebo Luo. SAT: 2D
Semantics Assisted Training for 3D Visual Grounding. In Proc. ICCV, 2021.
2.2, 2.2, 2.1, 2.4.1

[106] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui
Wang, Vijay Vasudevan, Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, Ben
Hutchinson, Wei Han, Zarana Parekh, Xin Li, Han Zhang, Jason Baldridge,
and Yonghui Wu. Scaling autoregressive models for content-rich text-to-image
generation, 2022. URL https://arxiv.org/abs/2206.10789. 3.2

[107] Licheng Yu, Patrick Poirson, Shan Yang, Alexander C. Berg, and Tamara L.
Berg. Modeling Context in Referring Expressions. In Proc. ECCV, 2016. 2.1,
2.4.2

[108] Zhihao Yuan, Xu Yan, Yinghong Liao, Ruimao Zhang, Zhen Li, and Shuguang

54

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2202.10765
http://arxiv.org/abs/1909.13072
https://arxiv.org/abs/2206.10789


Bibliography

Cui. InstanceRefer: Cooperative Holistic Understanding for Visual Grounding
on Point Clouds through Instance Multi-level Contextual Referring. In Proc.
ICCV, 2021. 2.2, 2.1

[109] Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien,
Maria Attarian, Travis Armstrong, Ivan Krasin, Dan Duong, Vikas Sindhwani,
et al. Transporter networks: Rearranging the visual world for robotic manipu-
lation. arXiv preprint arXiv:2010.14406, 2020. 3.1, 3.3, 3.4

[110] Lichen Zhao, Daigang Cai, Lu Sheng, and Dong Xu. 3DVG-Transformer:
Relation Modeling for Visual Grounding on Point Clouds. In Proc. ICCV, 2021.
(document), 2.2, 2.1

[111] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai.
Deformable DETR: Deformable Transformers for End-to-End Object Detection.
In Proc. ICLR, 2021. 2.2, 2.3.2, 2.3.2, 2.3.2, 2.4.2

[112] Yifeng Zhu, Jonathan Tremblay, Stan Birchfield, and Yuke Zhu. Hierarchical
planning for long-horizon manipulation with geometric and symbolic scene
graphs. CoRR, abs/2012.07277, 2020. URL https://arxiv.org/abs/2012.

07277. 3.2

55

https://arxiv.org/abs/2012.07277
https://arxiv.org/abs/2012.07277

	1 Introduction
	2 Bottom Up Top Down Detection Transformers for Language Grounding in Images and Point Clouds
	2.1 Introduction
	2.2 Related work
	2.3 Method
	2.3.1 Background: MDETR
	2.3.2 Bottom-up Top-down DETR (BUTD-DETR)
	2.3.3 Augmenting supervision with detection prompts
	2.3.4 Supervision objectives

	2.4 Experiments
	2.4.1 Language grounding in 3D point clouds
	2.4.2 Language grounding in 2D images
	2.4.3 Limitations

	2.5 Conclusion

	3 Energy-based Models are Zero-Shot Planners for Compositional Scene Rearrangement
	3.1 Introduction
	3.2 Related Work
	3.3 Method
	3.4 Experiments
	3.4.1 Spatial reasoning for scene rearrangement with oracle perception and control
	3.4.2 Spatial scene rearrangement
	3.4.3 Generalization analysis
	3.4.4 Ablations
	3.4.5 Limitations

	3.5 Conclusion

	4 Conclusions
	Bibliography

