
Towards Photorealistic Dynamic Capture and
Animation of Human Hair and Head

Ziyan Wang

CMU-RI-TR-23-77

Sept. 20th, 2023

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Thesis Committee:
Jessica Hodgins, Chair
Fernando De La Torre

Jun-Yan Zhu
Michael Zollhoefer, Meta Reality Labs Research

Kalyan Sunkavalli, Adobe Research

Submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in Robotics

Copyright © 2023 Ziyan Wang. All rights reserved.

To my parents Qingjun Hu and Yongfa Chen, and my girlfriend Shi Ouyang

Abstract
Realistic human avatars play a key role in immersive virtual telepresence. A

human avatar needs to faithfully reflect human appearance to reach a high level of
realism. Besides, a human avatar should also be drivable and express natural mo-
tions. Existing works have made significant progress in building drivable realistic
face avatars, but they rarely include realistic dynamic hair despite its importance
in human appearance. In pursuit of drivable, realistic human avatars with dynamic
hair, we focus on the problem of automatically capturing and animating hair from
multi-view videos.

We first look into the problem of capturing the motion of the head with near-
static hair. Because the hair has complex geometry, we use a neural volumetric
representation that can be rendered efficiently. As a result, we achieve photorealis-
tic capture of complex hairstyles by optimizing the representation with the gradient
from the reconstruction loss on 2D via differentiable volumetric rendering.

Then we extend the problem to capturing hair with dynamics. To accommodate
the complexity introduced by the temporal dimension, data-priors on motion like
optical flow and point flow are leveraged as additional supervision. To be more
specific, we first perform tracking on hair strands with a data prior on motion. In
the next step, we attach volumetric primitives to the tracked hair strands to learn the
fine-level appearance and geometry via differentiable rendering. We further design
a differentiable volumetric rendering algorithm with the optical flow to ensure tem-
poral smoothness at a fine level. As a result, we achieve robust dynamic capture of
hair with large motions.

We then address the problem of building a hair dynamic model for generating
novel animation. We present a two-stage pipeline to build a hair dynamic model
in a data-driven manner. The first stage performs hair state compression using an
autoencoder-as-a-tracker strategy. The second stage learns a hair dynamic model in
a supervised manner using the hair state data from the first stage. The hair dynamic
model enables in-the-wild animation of hair that performs hair state transitions con-
ditioned on head motions and head relative gravity direction.

In parallel to capturing and animating specific hairstyles, we explore the prob-
lem of how to efficiently capture diverse hair appearances. Hair plays a significant
role in personal identity and the efficient creation of personalized avatars with de-
cent hair is essential to individual usages. To handle the large intra-class variance
in hair appearance and geometry, we present a universal hair appearance model that
focuses on the similarity between different hairstyles in a local region. The model
takes 3D-aligned features as input and learns a unified manifold of local hair appear-
ance that adaptively generates appearance for hairstyles with diverse topologies.

I

Acknowledgements
I want to first express my deep gratitude to my advisor Jessica for her unwa-

vering support, guidance, and mentorship throughout my PhD journey. She played
an indispensable role in shaping my PhD research, and her feedback consistently
exerted a profound influence on the quality of my dissertation. As my background
is originally in computer vision, her expertise in animation and graphics has been
instrumental in expanding my horizons. Her profound knowledge and insights have
not only enriched my research but have also inspired me to explore new dimensions
within my own field. I feel truly fortunate for her great patience with me, and her
wisdom enlightened me in both research and life.

I am also grateful to my thesis committee members: Fernando De La Torre, Jun-
Yan Zhu, Michael Zollhoefer and Kalyan Sunkavalli, who dedicated their precious
time to my thesis and provided many insightful comments. Their groundbreaking
research in graphics and computer vision has been both pioneering and influential,
offering a wealth of unique perspectives that have profoundly inspired and influ-
enced my own work.

My PhD journey wouldn’t be so much interesting without my friends and lab-
mates at CMU. I would like to thank Donglai, Yufei, Gengshan, Chaoyang, Zhengyi,
Jiashun, Yi, Xieyang, Yusha, Zhili, Bingbin, Tim, Yuchen, Lingjing, Runliang and
Yewen, with whom I had many fruitful discussions in various topics and sparked
many intriguing ideas. I would also like to thank my gym buddies Yi, Xieyang,
Nan, Zhili, Jinding, Bingda, Shenyuan, Minghan and Kunpeng who worked out
with me to boost our mental health and spotted me many times.

Beyond my time at CMU, I feel extremely fortunate and deeply grateful for the
opportunity to work at Reality Labs Research Pittsburgh, where I met a lot of great
folks. I would like to give my special thanks to my managers Christoph, Michael
and Stephen(Steve). They served as great mentors with a solid technical back-
ground and a continuous stream of innovative ideas. What is even more precious
is their willingness to continuously share their knowledge and experience with ju-
nior fellows. They shaped my career significantly and I couldn’t imagine what my
PhDa journey would be like without them. I would also like to thank my amaz-
ing colleagues: Giljoo, Jason, Tuur, Timur, Chen, Tomas, Aljaz, Olivier, He, Yuan,
Shoou-I, Gabe, Radu(Alex), Yuefan, Shunsuke, Weipeng, Chenglei and so many
more for their help along the path.

Finally, I wish to convey my heartfelt appreciation to my parents, my girlfriend
and her family. This thesis is not only a reflection of my work but also a tribute
to the unwavering support and love they have provided throughout my academic
journey. Their love and unwavering support have consistently acted as a guiding
light during my most challenging moments in this academic voyage.

II

Contents

1 Introduction 1
1.1 Thesis Overview . 4
1.2 Main Contributions . 8

2 Related Work 10
2.1 Neural Geometric Representations 10
2.2 Hair Modeling . 13
2.3 Spatial-temporal Modeling with Coordinate Based Representations . 14
2.4 Volumetric Avatar . 15

3 Learning Compositional Radiance Fields of Dynamic Human Heads 17
3.1 Introduction . 18
3.2 Method . 19
3.3 Experiments . 24
3.4 Limitations . 33
3.5 Conclusion . 34

4 HVH: Learning a Hybrid Neural Volumetric Representation for Dy-
namic Hair Performance Capture 41
4.1 Introduction . 42
4.2 Method . 43
4.3 Experiments . 51
4.4 Video Results . 57
4.5 Applications and Limitations . 58
4.6 Discussion . 58

5 NeuWigs: A Neural Dynamic Model for Volumetric Hair Capture and
Animation 68
5.1 Introduction . 69
5.2 Method . 71

III

5.3 Experiments . 76
5.4 Discussion . 90

6 A Local Appearance Model for Volumetric Capture of Diverse Hairstyles 99
6.1 Introduction . 100
6.2 Method . 102
6.3 Experiments . 105
6.4 Conclusion . 109
6.5 Implementation Details on Volumetric Rendering 109
6.6 Training details . 111

7 Conclusion and Future Work 117

IV

List of Figures

1.1 Thesis overview: Given multiview video captures, we perform ap-
pearance and dynamic capture of the upper head with hair. The
goal is to learn a 3D neural representation that is both renderable
and drivable. Different from the reconstruction, we hope that the
3D neural representation can also help us generate novel content
like creating animation and capturing novel hairstyles. 3

3.1 Method overview. Given a multi-view video as input, we learn a
dynamic radiance field parametrized by a global animation code. To
render a particular frame, the global code is first mapped to a coarse
voxelized field of local animation codes using a 3D convolutional
decoder. This grid of animation codes provides local conditioning
at each 3D position for the fine-level radiance function, represented
as an MLP. Differentiable ray marching is used to render images
and provide supervision, and can be sped up significantly by using a
ray sampling strategy that uses the coarse grid to determine relevant
spatial regions. 20

3.2 Refinement MLP architecture. Each blue box is a fully-connected
layer and the number on top of each box is the output size of that
layer. Blue box with gray tail is a linear layer with ReLU activation.
Boxes in other color stand for different inputs and the size is marked
on top. 27

3.3 Qualitative comparison of rendered images. Our method recov-
ers more fine-scale details than NV and NeRF, particularly in high-
frequency regions like the eyes and hair. Results are rendered at
1024× 667 with insets for better visualization. 29

3.4 Qualitative comparison of rendered images. We show more ren-
dering results under novel views. Our method is capable of captur-
ing details like pupil, hair strands and tooth. 35

V

3.5 Effect of sequence length on quality. Conditioning the radiance
field on local instead of global animation codes greatly expands
model capacity, allowing our model to recover much sharper im-
ages even when trained on longer video sequences. 36

3.6 Effect of sequence length on reconstruction. MSE and SSIM on
the first frame v.s. length of the training sequence. 36

3.7 Novel sequence generation. New animations can be created by dy-
namically changing the global animation code, for example by (a)
using keypoints to drive the animation, (b) interpolating the code at
key frames, (c) sampling from the latent distribution, or (d) directly
fitting the codes to match a novel sequence. 37

3.8 Rendering results of direct sampling in latent space. We visu-
alize the frontal rendering of the sampled avatars. Each avatar is
generated directly from a unique latent code sampled from the la-
tent space. 38

3.9 Rendering results of direct sampling in latent space. We visu-
alize the sampling results of another identity. Similarly, we sample
directly from the latent space and generate the frontal rendering of
the avatar corresponding to the sampled code. 39

3.10 Keypoint-driven animation. We show rendering results of an avatar
driven by facial keypoints. The rendering are shown in the upper
row and the driving signal is shown in the lower row. With some
fine-tuning on the encoder only, our model can quickly adapt to
driving signals from other modality and be reliably driven by facial
keypoints. 40

4.1 Pipeline. Our method consists of two stages: in the first stage,
we perform guide hair tracking with multiview optical flow as well
as per-frame hair reconstruction. In the second stage, we further
amplify the sparse guide hair strands by attaching volumetric neural
rendering primitives and optimizing them by using the multiview
RGB and optical flow data. 44

4.2 Architecture of the hair decoder. The hair decoder takes both the
global latent code z and the per-strand hair features {f t

n} as inputs.
z is first deconvolved into a 2D feature tensor. It is then padded
and concatenated with {f t

n}. In the following operation, the 2D
convolution layers are applied along the hair growing direction and
the hair spatial position seperately. 49

VI

4.3 Comparison on novel view synthesis between different meth-
ods. We compare our method on novel view synthesis with dif-
ferent volumetric methods like a perframe time conditioned NeRF
model, NSFF [40], NRNeRF [95] and MVP [47]. Rendering results
on three different subjects with different hairstyles are shown. Inter-
esting parts of hair with details are highlighted using a red bounding
box. As we can see, our method is capable of generating a consis-
tent global shape while also capturing enough details. 55

4.4 Comparison on novel view synthesis between different meth-
ods. We compare our method with different volumetric methods
including a perframe time conditioned NeRF model, NSFF [40],
NRNeRF [95] and MVP [47]. 56

4.5 Rendering results on subject 3. We show more rendering results
under two novel views on subject 3. From left to right, we show
results of a perframe NeRF, NRNeRF [95], NSFF [40], MVP [47],
ours and ground truth. 59

4.6 Rendering results on subject 2. We show more rendering results
under two novel views on subject 3. From left to right, we show
results of a perframe NeRF, NRNeRF [95], NSFF [40], MVP [47],
ours and ground truth. 60

4.7 Rendering results on subject 1. We show more rendering results
under two novel views on subject 3. From left to right, we show
results of a perframe NeRF, NRNeRF [95], NSFF [40], MVP [47],
ours and ground truth. 61

4.8 Ablation of temporal consistency. We compare our method and
MVP w/ and w/o flow supervision. With flow supervision, better
temporal consistency and generalization for unseen sequence can
be observed. 62

4.9 Ablation on flow supervision. We further compare the volumetric
primitives of the models w/ and w/o flow supervision. We see that
the model with additional flow supervision yields a consistent and
reasonable shape for hair and yields better hair shoulder disentan-
glement. 62

4.10 Ablation of temporal consistency. We compare MVP [47] and
ours with different variations. 63

4.11 Hair volumes layout. We show the hair volume layout of both
naive decoder and ours. 63

VII

4.12 Architecture of the hair decoder. We show late fusion on the top
and early fusion on the bottom. The late fusion model first decon-
volves the 1D global latent code into a 2D feature map and then
concatenate it with the per-strand hair features. A 2D CNN is used
afterwards to generate the hair volumes. The early fusion model
first repeat the 1D global latent vector spatially and then concate-
nate the repeated feature map with per-strand hair features. The
concatenated features are than fed into a deeper 2D CNN to gener-
ate the hair volumes. 64

4.13 Effects of Llen + Ltang and Lcur. We show how the shape and
curvature of tracked hair strands are preserved with both Llen +
Ltang and Lcur. Point on the same strand are visualized in the same
color and adjacent points are connected with line in the same color.
When no regularization on hair strand geometry is applied, some
part of the hair strand get stretched or become zigzag. When only
the second order regularization Lcur is applied, we find the results
become more unstable. When first order regularization Llen+Ltang

is applied, the tracked hair strand become more stable but zigzags
still persist. When all terms are applied, we get the most smooth
result. This suggest that all regularization terms are supposed to be
applied together. 65

4.14 Ablation of different initialization in hair tracking. We show
tracking results of our methods with different initializations. From
top to bottom, we use no momentum information, first and sec-
ond order momentum information for tracking initialization. Please
note the brown and orange strands. As we can see, the hairs are bet-
ter tracked when we utilize the dynamic information from previous
frames. Better view in color version. 66

4.15 Plot of tracked hair properties v.s. time. As we can see, the
hair properties like length and curvature are not changing too much
across time and hair Chamfer distance are relatively small. 66

4.16 Visualization of flow. We show the rendered 3D scene flow into
2D flow in the first column and the openCV optical flow [36] in the
second column. The last column shows the ground truth image as
reference. 67

4.17 Hair position editing. We create a new animation by direct edit-
ing on the guide hair strands. As the guide hair provide a tangible
interface to control the hair part, we can directly drive the volumes
of hair by adding motion to the guide hair like lifting it up to create
new animation. 67

VIII

5.1 Animation from Single View Captures. Our model can generate
realistic hair animation from single view video based on head mo-
tion and gravity direction. Original captures of subjects wearing a
wig cap are shown in red boxes. 70

5.2 Method Overview. Our method is comprised of two stages: state
compression and dynamic modeling. In the first stage, we train
an autoencoder for hair and head appearance from multiview RGB
images using differentiable volumetric raymarching; at the same
time we create an encoding space of hair states. In the dynamic
modeling stage, we sample temporally adjacent hair encodings to
train a temporal transfer module (T2M) that performs the transfer
between the two, based on head motion and head-relative gravity
direction. 71

5.3 . 81

5.4 Novel View Synthesis. Compared with previous methods, our method
captures hair with more details, including fly-away hair strands and
creates an overall more accurate hair reconstruction with perceptu-
ally better rendering results. 84

5.5 Hair/Head Disentanglement. By explicitly enforcing the semantic
segmentation of head and hair through additional supervision, we
learn a more opaque hair texture while the result suffers less from
texture bleeding. 85

5.6 Ablation on LV GG. Adding a perceptual loss leads to sharper re-
construction results with more salient high frequency textures on
parts like single flying away strands and shadows. 86

5.7 Ablation on Point Flow. We find that adding point flow to regular-
ize the offsets between temporally adjacent tracked points prevents
jittering. Comparison are better visualized here as videos. 86

5.8 ChamDist vs. time. We plot Chamfer distance vs. time of different
dynamic models to show drifting. 88

5.9 encprop v.s. ptsprop. ptsprop generates sharper results with less
drifting than encprop. 90

5.10 Point Encoder E as a Stabilizer. We sample several ẑ and cor-
responding z̄= E(D(ẑ)) with a fixed z and visualize part of them
above. As we can see, z̄ stays similar to z while ẑ jitters. 91

IX

https://ziyanw1.github.io/neuwigs/resources/index.html

5.11 Effect of Initialization. We initialize two different models (hs1
mod. and hs2 mod.) with two different hair point clouds (hs1 and
hs2) in two time steps. The green box indicates matched initial-
ization while orange indicates mismatched initialization. Although
the mismatched initialization shows blurry results at first, the model
automatically corrects itself when there is no head motion. 91

5.12 Animation on Bald Sequence. We animate a straight brown hair
with a nodding head. 93

5.13 Animation on Bald Sequence. We animate short blue pigtails with
a nodding head. 94

5.14 Animation on Bald Sequence. We animate curly blonde pigtails
with a rotating head. 95

5.15 Animation on Bald Sequence. We animate burly blonde pigtails
with a nodding head. 96

5.16 Animation on Bald Sequence. We animate a curly ash blonde hair
with a nodding head. 97

5.17 Animation on Bald Sequence. We animate a curly ash blonde hair
with a rotating head. 98

6.1 Pipeline of Our Method. We present a pipeline to achieve large
scale capture of diverse hairstyles for avatar creation. The core of
our pipeline is a local UNet that can generate local appearance field
conditioned on colored point cloud q. Our method is robust to var-
ious challenging hairstyles and can generate photorealistic appear-
ance of those hairstyles. 101

6.2 Novel View Synthesis. Rendering results on the holdout views of
the training identities. We compare our method with Keypoint-
NeRF [58] and Cao et al. [9]. Our method is compatible with
different hair geometries and captures the detailed volumetric tex-
ture of varied hairstyles. 112

6.3 Novel View Synthesis. Rendering results on the test identities. We
compare our method with KeypointNeRF [58] and Cao et al. [9].
Our method generalizes reasonably to new identities and is capable
of generating a photorealistic appearance without any finetuning. . . 113

6.4 Rendering results under different finetuning steps and views.
We show finetuned results under iteration 0 and 100 on the first
and third columns respectively and train from scratch results on the
second and fourth. From left to right, the results are from models
trained using 10, 20, 40 and 80 views. In the lower right corner, we
show the ground truth image under the rendering view for reference. 114

X

6.5 Ablation on different finetuning configurations. We show the
learning curve of models under different finetuning configurations.
We finetune(ft) our model as well as train from scratch(noft) with a
varied number of training views in {10, 20, 40, 80} that are approx-
imately uniformly sampled from all training views. Our pre-trained
model creates a warm start for avatar personalization and is also
robust to the number of views used for finetuning. 115

6.6 Rendering results on iPhone captured data. We show the results
of our method and instant-ngp on the iPhone-captured data. Both
our method and instant-ngp work well on the training views while
our method works better on testing views 116

6.7 Raymarching example. 116

XI

List of Tables

3.1 Encoder architecture. Each Conv2d layer in the encoder has a kernel
size of 4, stride of 2 and padding of 1. After each layer, except for the last
two parallel fully-connected layers, a Leaky ReLU [54] activation with
a negative slope of 0.2 is applied. The last two parallel fully-connected
layers produce, respectively, µ and σ. 26

3.2 Decoder architecture. Each layer is followed by a Leaky ReLU [54]
activation with a negative slope of 0.2 except for the last two par-
allel layers. Each ConvTrans3d layer has a kernel size of 4, a
stride of 2 and a padding of 1. NX

in stands for the input feature size
and NX

out is the output size. X here is a placeholder for color or
opacity, X ∈ {c, σ}. 27

3.3 Image prediction error. We compare NV, NeRF, and our method
on 4 sequences, and report average error computed over a set of ap-
proximately 200 images of 7 views for each sequence. Our method
outperforms all other baselines on all metrics. 28

3.4 Ablation on different sampling schemes. We show image recon-
struction results as well as runtime for both NeRF and ours with
different sampling strategies. 30

3.5 Novel content synthesis. We show results on novel content gener-
ation and novel sequence fitting. We tested two different encoder
models that use data from two modalities: sparse 2D keypoints and
images. We use a coarse voxel resolution of 643. 31

3.6 Keypoint Encoder architecture. Each layer is followed by a ReLU
except for the last fully-connected layer. Each Conv1d layer has a
kernel size of 1, a stride of 1 and a padding of 0. 32

4.1 Novel view synthesis. We compare our method with both NeRF
stemmed methods like NSFF [40], NRNeRF [95] and a per-frame
NeRF (PFNeRF) baseline, and a volumetric method like MVP [47].
As we can see, our methods achieves the best performance on image
reconstruction metrics. 53

XII

4.2 Novel view synthesis. We further compare our method and differ-
ent variants of our methods with MVP [47] on novel views of both
seen (top) and unseen (bottom) sequences. We find that using the
optical flow to enforce the temporal consistency leads to improve-
ment on both MVP [47] and our method, while the best results are
achieve when coarse level guide hair tracking is combined with fine
level flow optimization. 54

4.3 Decoder structure. We compare different designs of the hair de-
coder. We report all metrics on both training and testing and we
use a to separate them where on the left are the results of novel
synthesis on training sequence. 56

5.1 Encoder Eimg architecture. Each Conv2d layer in the encoder has
a kernel size of 3, stride of 1 and padding of 1. Weight normal-
ization [82] and untied bias are applied. After each layer, except
for the last two parallel fully-connected layers, a Leaky ReLU [54]
activation with a negative slope of 0.2 is applied. Then a downsam-
ple layer with a stride of 2 is applied after every conv2d layer. The
first linear layer takes the concatenation of all towers from different
image views as input. ninpimg stands for much many views we take. 78

5.2 Encoder E architecture. We use a E structure similar to Point-
Net [74]. All Conv2d uses a kernel of 1 and stride of 1, which
serves as a shared MLP. We only use Conv2d for simpler imple-
mentation. After each Conv2d layer, a Leaky ReLU [54] activation
with a negative slope of 0.2 is applied. Then we use a MAM pool
layer to aggregate features from all points. MAM stands for min,
avarage and max pooling, which concatenates the results of min, av-
erage and max pooling into one. Then, two linear layers are applied
to the output of MAM pooling and generate a 256 latent vector. . . 79

5.3 Decoder D architecture. We use an MLP with three Linear lay-
ers as the decoderD. After each layer except the last layer, a Leaky
ReLU [54] activation with a negative slope of 0.2 is applied. 79

XIII

5.4 Architecture of the Volume Decoder. We first repeat the global
encoding zt into the shape of the per-point hair feature. The per-
point hair feature is a tensor that is shared across all time frames.
We then concatenate those two into one. Each layer except for the
last one is followed by a Leaky ReLU layer with a negative slope of
0.2. Each deconv2d layer has a filter size of 4, stride size of 2 and
padding size of 1. Each conv2d layer has a filter size of 3, stride
size of 1 and padding size of 1. ch stands for the channel size of the
output. It is set to 3 if it is an rgb decoder and 1 for a alpha decoder. 80

5.5 Temporal Transfer Module (T2M). We first encode the head veloc-
ity {ht−1,ht−2} and head relative gravity gt into 1d vectors, with
a 2-layer MLP and cosine encoding respectively. Then we con-
catenate hair state zt−1 with those vectors to serve as the input to
another MLP. The last two layers will be regressing the mean µt+1

and standard deviation σt+1 of the predicted hair state zt+1. All
Linear except for the last two are followed by a Leaky ReLu acti-
vation with a negative slope of 0.2. 80

5.6 Novel view synthesis. We compute MSE↓, PSNR↑, SSIM↑ and
LPIPS↓ comparing rendered and ground truth images on hold-out
views. First and second best results are highlighted. 83

5.7 Novel View Synthesis on Longer Sequence. 83

5.8 IoU(↑) between rendered hair silhouette and ground truth hair seg-
mentation. Compared to HVH [102], our method achieved a signif-
icant improvement over the hair coverage. There two major reasons
for the increase: 1) our hair volume texture is more opaque. 2) The
coarse level hair geometry better resemble the hair reconstruction. . 83

5.9 Ablation on LV GG. We find using an additional complementary
perceptual loss leads to better appearance reconstruction. 85

5.10 Metrics on Novel Views. We show quantitative results of different
encoders under both SEEN and UNSEEN sequence of the same hair
styles. 87

5.11 Ablation of Different Dynamic Models. 88

5.12 Ablation of Different Dynamic Models. We compare different
models in terms of rendering quality and tracking accuracy. 89

XIV

6.1 Novel View Synthesis. We show qualitative results on novel view
synthesis. The upper part and lower part of the table report the
MSE, PSNR, SSIM and LPIPS computed on the holdout views of
training identities and the test identities respectively. Our method
achieves a better result on MSE, PSNR and SSIM compared to pre-
vious methods [9, 58]. Our method is capable of generating sharp
appearance on detailed geometries which leads to improvement on
LPIPS by a large margin. 105

6.2 Ablation on different inputs Ωρi , Γρi and Λρi . We evaluate models
with different input configurations and report their MSE, PSNR,
SSIM and LPIPS on the holdout views of both training and testing
data. As we can see, both Γρi and Λρi serve as a more effective
way to improve the model performance compared to just increasing
the model’s capacity like with untied bias ub. We also find that the
inclusion of per-vertex viewing direction Λρi improves the model’s
performance on novel view synthesis by a large margin. We use
gold , silver and bronze to indicate first, second and third places. 107

7.1 Datasets used in each chapter. We compare the number of frames,
types of hair motion and number of identities we captured for the
datasets we used in each chapter. 121

XV

Chapter 1

Introduction

Interactive human avatars, representing individuals within a VR/AR environment,
introduce the potential for a novel communication paradigm. In pursuit of an im-
mersive experience, human avatars should ideally reflect every nuance of human
appearance and motion. Photorealism should facilitate the experience of interact-
ing by making the avatars visually indistinguishable from real people. However,
photorealistic avatars can be particularly challenging due to the uncanny valley ef-
fect, as they come extremely close to human appearance and subtle differences
in their motion can elicit discomfort in users. Achieving a genuine experience of
interacting with photorealistic avatars requires them to exhibit natural movements
grounded in the principles of physics and human perceptual norms. When using
such avatars as digital twins of ourselves, we hope to be able to communicate and
interact smoothly with our families and friends regardless of the physical distance,
just by putting on a VR headset or sitting in front of a 3D AR display.

Many existing techniques [18, 45, 91, 94] for data-driven avatar creation align
face geometric models such as 3DMM [5] or a tracked head mesh with image ob-
servations and learn the avatar’s appearance by inverse rendering. However, most
of those techniques focus on the face and largely ignore the hair. Both the low-
quality hair appearance and the lack of motion can make those avatars unrealistic
and reduce the sense of presence during interaction. We believe that adding hair
with accurate appearance and motion will create a more compelling experience for
viewing and engaging with avatars.

In this work, we focus on building an animatable avatar with realistic hair. We
argue that hair, as a key part of human appearance, needs to be modeled separately
due to the innate uncorrelated variation in both the appearance and motion of hair
and head. To achieve controllable and realistic animation of hair, it is important to
first understand the geometry, appearance and dynamic properties of the hair. The
ability to model those three properties determines the level of realism associated

1

with a given model. In contrast to the geometry and appearance terms, the dynam-
ics property is not straightforward to capture with a photometric capture system,
as it is usually intertwined with the other two. Thus the success in building a con-
trollable and generalizable avatar is closely related to how well we disentangle and
reconstruct those three properties: geometry acquisition, appearance modeling and
dynamic capture.

One big challenge for capturing realistic hair lies in the the complexity of hair
geometry and appearance. The variety of color, curliness and style of human hair is
significant. Hair can be tied up or formed into different topologies such as a pony
tail, french braid, or a bun. The appearance of hair is quite hard to model due to its
complex specular and diffusion properties as light intersects with multiple strands.
To model this kind of complex geometry and appearance, we use a volumetric rep-
resentation. There are several advantages to volumetric representations. First, vol-
umetric representations can model thin and semi-transparent geometry with high
fidelity, which is suitable for hair modeling. Second, rendering a volumetric rep-
resentation is relatively more efficient compared to physics based rendering while
still achieving photorealistic rendering quality.

The complexity of hair geometry and appearance is also affected by hair motion.
Hair strands are actively driven by the motion of the head, the root of the hair, and
gravity. The dynamic state of the hair strands are also affected by interaction with
other strands, the scalp that they are rooted on, and the shoulders and the face that
they might collide with. These complicated dynamics result in many different hair
motions including swinging of clumps of hair, sliding between different layers,
and collision with the head. Even with realistic hair geometry, unrealistic physical
motion would lead to noticeably unnatural hair for an avatar. Although we found
that a volumetric representation is good for modeling the geometry and appearance
of near static hair, it is not efficient for modeling motion or temporal alignment at a
finer level as it wastes memory on modeling empty spaces. To model complex hair
dynamics, we need a hair structure representation that can encapsulate the important
hair specific properties.

Beyond reconstructing complex appearance and motion, drivability is desired
for animation. To build a avatar with drivable hair, we need a proper driving sig-
nal. This signal must be easy to obtain and manipulate. For the face, a general
practice is to ask an artist to define a set of key-points and then to use sparse facial
key-points as a low dimensional representation for the face and body respectively.
Then the complete signal for the face can be decoded from the sparse low dimen-
sional representation using a prior model. With recent advances in visual key-point
detection, getting those sparse signals has become easier. However, the innate com-
plexity of hair geometry and the large hair motion state space makes it impractical
to manually define a set of sparse key-points that could align different hair states

2

both semantically and geometrically. Only the root part of a hair strand is attached
to the scalp. This structural difference allows the hair to deform more freely than
the face, especially for longer hair styles. Although conventional hair animation
techniques have achieved good animation quality, the process requires significant
manual effort and expert knowledge to create digital hair wigs and select plausible
physical parameters for animating them. Furthermore, given the massive number
of strands, animating and rendering hair with conventional techniques can be very
time consuming.

To address these challenges in building a photorealistic head avatar with dy-
namic hair, we explored the following directions.

Figure 1.1: Thesis overview: Given multiview video captures, we perform appear-
ance and dynamic capture of the upper head with hair. The goal is to learn a 3D
neural representation that is both renderable and drivable. Different from the recon-
struction, we hope that the 3D neural representation can also help us generate novel
content like creating animation and capturing novel hairstyles.

• Volumetric representation and differentiable rendering. Volumetric mod-
eling has shown promising results on objects with complex shapes and ap-
pearances. In Chapter 3, we explore such good properties of the volume for
modeling hair and present a neural volumetric representation for building a
photorealistic head avatar with near static hair from a multiview capture sys-
tem.

• Hair specific structural information. Hair exhibits diverse motions which
makes capturing dynamic hair a much harder problem than capturing a static

3

view. In Chapter 4, we study how to combine hair-specific structural infor-
mation with a neural volumetric representation for dynamic hair capture with
better efficiency and accuracy. The explicit modeling of hair strands in the
representation makes the hair avatar drivable by sparse signals such as guide
hair strands and provides a tangible interface for creating new animation.

• Data-driven dynamic modeling for animation. Conventional animation
creation requires manual effort to prepare hair geometry and tune physics pa-
rameters related to motion. In Chapter 5, we investigate a data-driven alterna-
tive to automate the hair animation creation process and create an animatable
hair model from the capture of real human hair.

• A universal prior model for diverse hair appearance capture. Hairstyle
and appearance establish personal identity and are therefore an important part
of the personalized avatar. How to efficiently create personalized avatars
with diverse hairstyles is critical for modeling individuals in VR/AR applica-
tions. In Chapter 6, we explore the possibility of democratizing the creation
of personalized avatars with a universal hair appearance model conditioned
on sparser inputs. Our model splits different hairstyles into local primitives
and builds a prior at that level, which greatly improves the ability to handle a
board range of hair topologies over previous techniques.

1.1 Thesis Overview
We now explain each of these works in modeling hair shape, appearance and dy-
namics. An illustration of the thesis pipeline is shown in Fig. 1.1.

1.1.1 Learning Compositional Radiance Fields of Dynamic Hu-
man Heads

In this work, we focus on capturing a dynamic human head with near static hair.
There are many studies that apply conventional geometric representations such as
meshes and point clouds for avatars with hair. With the advent of neural render-
ing techniques, neural representations with a backbone of a conventional geometry
have been developed to further improve the quality of virtual humans and objects.
However, they all have limitations when applied to modeling a head with hair. For
example, meshes are good for surfaces but are not efficient for thin and detailed
structures such as hair strands. Point clouds can reconstruct the geometry approx-
imately, but they have to be very densely sampled to model dense hair without
creating holes.

4

In pursuit of completeness for hair structures ranging from thin to dense, we
explore volumetric models. Some of these existing volumetric methods do not
produce results with enough fidelity for driveable human models of hair (Neural
Volumes) whereas others have extremely long rendering times (NeRF). We pro-
pose a novel 3D representation that combines the best of those two methods to
produce both higher resolution and faster results. Our representation bridges the
gap between discrete and continuous volumetric representations by combining a
coarse 3D-structure-aware grid of animation codes with a continuous learned scene
function that maps every position and its corresponding local animation code to
a view-dependent emitted radiance and local volume density. Differentiable vol-
ume rendering is employed to compute photo-realistic novel views of the human
head and upper body as well as to train our novel representation end-to-end us-
ing only 2D supervision. As a result, we achieved improved results on novel view
synthesis both qualitatively and quantitatively. We use image level metrics such as
mean squared error (MSE), peak signal-to-noise ratio (PNSR), and learned percep-
tual image patch similarity (LPIPS) [119] between the rendered image and ground
truth image as a measurement for the quality of the captured 3D dynamic head
with near static hair. Compared to previous methods, we reconstruct images under
novel views with more details preserved and better visual quality on our dynamic
head dataset [109], with less memory than Neural Volumes [46] and a much shorter
rendering time than NeRF [61]. In addition, our method is also capable of synthe-
sizing novel unseen expressions based on a global animation code, which is useful
for animation and avatar generation.

1.1.2 HVH: Learning a Hybrid Neural Volumetric Representa-
tion for Dynamic Hair Performance Capture

In this work, we extend the scope of the problem we study from near static to dy-
namic hair capture. In dynamic hair capture, the data we need to model is lifted
from 3D to 4D, which requires our model to have enough capacity to capture the
variance introduced in the temporal dimension. While in the previous work we
found that a volumetric representation is suitable for modeling complex and thin
hair structures in static shape, we learned that an axis-aligned voxel grid is not suit-
able for capturing hair in motion. One reason is that it wastes memory on modeling
empty space. Another reason is that a volumetric field is not suitable for tracking
hair with complex motion and fine level details. Other work on spatio-temporal
modeling such as Nerfies [69] and NSFF [40] either learns a volumetric warp field
or a volumetric flow field to model the temporal variance. But they are mostly
limited to small/simple motions and suffer from excessive rendering time.

5

To address these limitations, we present a hybrid volumetric hair representa-
tion with better hair structure awareness and photorealistic rendering quality. The
hybrid representation models the dynamic hair in a coarse-to-fine manner. In the
coarse level, we use guide hair strands as a hair structure specific representation
to model hair geometry and track hair motion. In the fine level, we attach thou-
sands of primitives to those guide hair strands to model the dense appearance and
detailed structure of hair. Each primitive can be rendered efficiently, yet realisti-
cally, by building on the latest advances in neural rendering. To reliably drive a
hybrid representation, we present a novel way of tracking the guide hair strands
using photometric clues. To better improve the temporal consistency and general-
ization ability of our model at the fine level, we further optimize the 3D scene flow
of our representation with multiview optical flow, using volumetric raymarching.
As a result, we achieve better rendering qualities on novel views of hair dynamics
sequences compared to naive volumetric based methods for spatio-temporal model-
ing. As our representation can track hair at a sparse strand level, we found that our
method 4 can create realistic renders on sequences with large motions such as hair
swinging and hair sweeping over shoulders. As a result of enforcing temporal con-
sistency at both a coarse and fine level, the fine level appearance field does not need
to change dramatically from frame to frame to accommodate the temporal changes.
A by-product of the 3D scene flow optimization is that we achieved a certain level
of disentanglement between the hair and non-hair part even without using hair seg-
mentation. In addition to that, the coarse level guide hair strands provide tangible
interfaces to create animations with new hair configurations.

1.1.3 NeuWigs: A Neural Dynamic Model for Volumetric Hair
Capture and Animation

In this work, we study the problem of hair animation by learning a neural dynamic
model for hair. In the graphics community, hair animations have been generated
via simulation. The process requires artists to create hair wigs and iteratively tune
the parameters required to produce the desired motion. To automate the process,
we seek to use data-driven methods and learn a neural dynamic model for hair from
real world capture of hair in motion.

A baseline for learning-based hair motion creation is to learn an encoder-decoder
model that transfers a sparse driving signal into a dense 3D hair representation in
a per-frame manner, without modeling dynamics. This design is straightforward
and performs animation and reconstruction well when the per-frame driving signal
is well acquired. However, there are several challenges to applying this pipeline.
First, the pipeline relies on sophisticated driving signals, such as multi-view im-

6

ages, a tracked mesh of the hair, or tracked guide hair strands, which are hard to
acquire. Furthermore, from an animation perspective, these models are limited to
rendering hair based on observations and cannot be used to generate novel motion.
For virtual telepresence applications, participants might be wearing a headset that
restricts the hair, making it impossible to get the driving signals for the motion be-
ing performed. We might also want to animate hair for a bald person or apply a
novel hair style where there is no corresponding driving signal. Thus, it is impor-
tant to develop a dynamic model for hair that does not rely on a conditional driving
signal directly coming from real hair.

To address these problems, we present a two-stage approach that models hair
motion in a data-driven manner independently from the head motion. The first
stage, state compression, learns a low-dimensional latent space of 3D hair states
containing motion and appearance, via a novel autoencoder-as-a-tracker strategy.
To better disentangle the hair and head in appearance learning, we employ multi-
view hair segmentation masks in combination with a differentiable volumetric ren-
derer. The second stage learns a novel hair dynamics model that performs temporal
hair transfer based on the discovered latent codes. To enforce higher stability while
driving our dynamics model, we employ the 3D point-cloud autoencoder from the
compression stage for de-noising of the hair state. Compared to our previous work
on dynamic hair capture (Chapter 4), we achieved improved results on novel view
synthesis without requiring artists to prepare guide hair geometry. As a result of
using hair segmentation as additional supervision, we achieved explicit disentan-
glement between hair and head, fully addressing the artifacts created when hair
and non-hair volumes collide. On the tracking side, our autoencoder-as-a-tracker
strategy enjoys better stability over the method in Chapter 4 and supports tracking
across discontinuous captures of the same person. On the animation side, the dy-
namic model is capable of generating new hair animation without direct observation
of hair as a driving signal.

1.1.4 A Local Appearance Model for Volumetric Capture of Di-
verse Hairstyles

In this work, we explore the problem of how to capture novel personalized hairstyles
with diverse geometry and appearance. In contrast to the previous chapters where an
identity-specific model for dynamic and appearance capture was learned, the focus
of this work is to achieve both accurate capture of diverse hairstyles and efficient
generation of personalized avatars. There are two major challenges to achieving
those goals. The first lies on the capture side, where most conventional multiview
capture systems are hard to scale up and not easily accessible to the general public.

7

We use easy-to-setup sensors which, provide only sparse input information. The
second challenge is on the modeling side, where the variance of different hairstyles
poses a challenge for accurate capture and generation of personalized avatars with
novel hairstyles. To this end, we present a universal hair appearance model for the
accurate capture of diverse hairstyles that also serves as a good prior for the effi-
cient generation of novel personalized avatars. The universal hair appearance model
generates a personalized avatar with photorealistic hair, conditioned on sparse point
clouds with color. To be more specific, the model takes 3D-aligned feature volumes
that are diffused from a sparse point cloud and generates a dense radiance field of
hair that is spatially aligned with those feature volumes. To better align different
hairstyles with diverse topologies and achieve generalization with a limited amount
of data, the model learns a hair appearance prior at a local primitive level that is not
affected by the overall shape of the hair. Such a design makes the appearance gen-
eration independent of global geometry, which makes our model generalizable to
diverse hair shapes with similar local hair textures. As a result of better geometric
awareness and shape-appearance disentanglement, our methods achieve improved
results on capturing a large group of hairstyles jointly, compared to previous state-
of-the-art approaches [9, 58]. Extensive experiments also show that our method is
capable of generalizing to novel identities and serves as a good initialization for
high-quality personalized avatars under sparse view inputs.

1.2 Main Contributions
The contributions of this thesis are as follows:

• We present a novel compositional 3D representation for learning high-quality
dynamic neural radiance fields of human heads in motion based on a 3D-
structure-aware grid of local animation codes. We develop an importance
sampling strategy tailored to human heads that reduces unnecessary compu-
tation in free space and enables faster volumetric rendering.

• We present a hybrid neural volumetric representation that binds volumes to
guide hair strands for dynamic hair performance capture. We develop a hair
tracking algorithm that utilizes multiview optical flow and per-frame hair
strand reconstruction while preserving specific geometric properties such as
hair strand length and curvature. We implement a volumetric ray marching
algorithm on 3D scene flow which enables optimization of the position and
orientation of each volumetric primitive through multiview 2D optical flow.
We design a hair-specific volumetric decoder for hair volume regression and
with awareness of hair structure.

8

• We present a novel end-to-end data-driven pipeline with a volumetric autoen-
coder as the backbone for real human hair capture and animation, learned
from multi-view RGB images. We learn the hair geometry, tracking and ap-
pearance end-to-end with a novel autoencoder-as-a-tracker strategy for hair
state compression, where the hair is modeled separately from the head using
multi-view hair segmentation. We train an animatable hair dynamic model
that is robust to drift using a hair state denoiser realized by the 3D autoen-
coder from the compression stage.

• We present a novel volumetric feature representation based on a point cloud
with color and a local appearance model that is generalizable to various com-
plex hairstyles. We empirically show that our method outperforms previ-
ous state-of-the-art approaches in capturing high-fidelity avatars with diverse
hairstyles and generating photorealistic appearances for novel identities with
challenging hairstyles. The universal model serves as a good prior for getting
high-quality personalized avatars under sparse view inputs.

9

Chapter 2

Related Work

2.1 Neural Geometric Representations

Recently, there have been many works that combine deep neural networks with ge-
ometric representations to perform rendering. In this section, we discuss different
methods and their trade-offs, categorized by their underlying geometric representa-
tion.

Mesh-based Representations: Triangle meshes have been used for decades in
computer graphics since they provide an explicit representation of a 2D surface em-
bedded within a 3D space. A primary benefit of this representation is the ability to
use high-resolution 2D texture maps to model high-frequency detail on flat surfaces.
Recently, differentiable rasterisation [16, 32, 44, 48] has made it possible to jointly
optimize mesh vertices and texture using gradient descent based on a 2D photo-
metric re-rendering loss. OpenDR [48] presents an approximately differentiable
renderer that is built on an autodifferentiation framework(chumpy). N3MR [32]
relaxes the discrete rasterisation process into a differentiable one. SoftRas [44] for-
mulate the aggregation process along the ray in a probabilistic manner, which makes
the rasterisation process to be differentiable with respect to occluded objects. DIB-
R [16] formulate the rendering as an interpolation between vertex attributes of the
closest cover face for efficiency. There are also several work [20,49,90–92,94] that
apply differentiable rasterisation to 3D face acquisition from images. MoFA [92]
learns to regress a 3DMM [5] face representation from image using differentiable
rasterisation. Tran et al. [94] learns a non-linear 3DMM model parameteried by
deep neural networks using differentiable rasterisation. Genova et al. [20] uses
additional constraints on identity and cycle consistency to stabilize the training
through differentiable rasterization. Tran et al. [49] regress both proxy and residual

10

of face shape and texture with paired regularizations to achieve high fidelity results.
Tewari et al. [91] learns a per-vertex offsite to the regressed 3DMM geometry and
appearance for refinement. FML [90] leverages the implicit multi-view information
of the same identity in video for better 3D face retrieval. These methods often re-
quire a good initialization of the mesh vertices or strong regularization on the 3D
shape to enable convergence. Moreover, these methods require a template mesh
with fixed topology which is difficult to acquire. Another drawback is that it is hard
to apply mesh and differentiable rasterisation when it comes to model non-surface
like geometries like hair.

Point Cloud-based Representations: Point clouds are an explicit geometric rep-
resentation that lacks connectivity between points, alleviating the requirement of a
fixed topology but losing the benefits of 2D texture maps for appearance modeling.
Recent works, like [56] and [1], propose methods that generate photo-realistic ren-
derings using an image-to-image translation pipeline that takes as input a deferred
shading deep buffer consisting of depth, color, and semantic labels. Similarly, in
SynSin [105], per-pixel features from a source image are lifted to 3D to form a
point cloud which is later projected to a target view to perform novel view syn-
thesis. Although point clouds are a light-weight and flexible geometric scene rep-
resentation, rendering novel views using point clouds results in holes due to their
inherent sparseness, and it typically requires image-based rendering techniques for
in-painting and refinement.

Multi-plane Image-based Representations: Another line of work is using multi-
plane images (MPIs) as the scene representation. MPIs [123] are a method to store
color and alpha information at a discrete set of depth planes for novel view synthe-
sis, but they only support a restricted range of motion. LLFF [59] seeks to enlarge
the range of camera motion by fusing a collection of MPIs [123]. Multi-sphere im-
ages (MSIs) [2, 8] are an extension for the use case of stereo 360◦ imagery in VR,
where the camera is located close to the center of a set of concentric spheres.

Voxel-based Representations: One big advantage of voxel-based representations
is that they do not require pre-computation of scene geometry and that they are easy
to optimize with gradient-based optimization techniques. Many recent works [17,
31, 96, 108] have learned volumetric scene representation based on dense uniform
grids. 3D-R2N2 [17] presents a 3D convolutional recurrent network that gener-
ates shape in 3D voxel grids conditioned on 2D observations under different cam-
era poses. 3D-GAN [108] learns an auto-encoder on voxels. Tulsiani et al. [96]
presents a differentiable ray-tracing algorithm for learning to regress voxel with 2D

11

supervision. LSM [31] learns a multi-view stereo machine with 3D recurrent neu-
ral networks, differentiable projection and 2D feature map uplifting. Recently, such
volumetric representations have attracted a lot of attention for novel view synthesis.
DeepVoxels [84] learns a persistent 3D feature volume for view synthesis with an
image-based neural renderer. Neural Volumes [46] proposes a differentiable ray-
marching algorithm for optimizing a volume, where each voxel contains an RGB
and transparency values. The main challenge for voxel-based techniques originates
in the cubic memory complexity of the often employed dense uniform voxel grid,
which makes it hard to scale these approaches to higher resolutions.

Implicit Geometry Representations: Implicit geometry representations have drawn
a lot of attention from the research community due to their low storage requirements
and the ability to provide high-quality reconstructions with good generalization.
This trend started with geometric reconstruction approaches that first employed
learned functions to represent signed distance fields (SDFs) [10, 28, 68] or occu-
pancy fields [21, 55, 71]. DeepSDF [68] and OccNet [55] are among the earliest
works that try to learn an implicit function of a scene with an MLP and are fu-
eled by large scale 3D shape datasets, such as ShapeNet [15]. DeepSDF densely
samples points around the surface to create direct supervision for learning the con-
tinuous SDF, while OccNet learns a continuous occupancy field. ConvOccNet [71]
manages to improve OccNet’s ability to fit large scale scenes by introducing a con-
volutional encoder-decoder. ConvOccNet is limited to static scenes and geometry
modeling, i.e., it can not handle the dynamic photo-realistic sequences that are ad-
dressed by our approach.

Coordinate Based Representations: Inspired by their implicit geometry coun-
terparts, continuous scene representations for modeling colored scenes have been
proposed. Scene Representation Networks (SRNs) [85] propose an approach to
model colored objects by training a continuous feature function against a set of
multi-view images. DVR [64] derived an analytical solution for the depth gradient
to learn an occupancy and texture field from RGB images with implicit differentia-
tion. NeRF [61] learns a 5D neural radiance field using differentiable raymarching
by computing an integral along each ray. Although promising, their results are lim-
ited to a single static scene and the approach is hard to generalize to multiple scenes
or a scene with dynamic objects. Another limiting factor is that these representa-
tions are extremely costly to render, since every step along the ray requires an ex-
pensive evaluation of the complete fully-connected network. As a result of its sim-
plicity and impressive results, many recent works have emerged to improve NeRF
in many dimensions like relighting [6,86,120], physics-based modeling [117], ren-

12

dering efficiency [42, 43, 76, 115], generative model [14, 83] and spatio-temporal
modeling [39,40,69,70,73,95,99,110,116]. AutoInt [42] speeds up the volumetric
raymarching of NeRF by learning closed form solution to the intergral in volumet-
ric raymarching. NSVF [43] and PlenOctrees [115] both optimize the run time
efficiency of NeRF by stacking it in a sparse structure like octree. KiloNeRF [76]
optimizes the run time efficiency by shortening the model inference time where it
substitutes a single MLP by multiple tiny and shallow MLPs. However, the oc-
tree structure is optimized specifically for a given static scene, making animation or
control of the scene not trivial.

2.2 Hair Modeling
In this section, we discuss the most closely related classical hair dynamic and shape
modeling methods.
Image-based Hair Geometry Acquisition is challenging due to the complicated
hair geometry, massive number of strands, severe self occlusion and collision and
view-dependent appearance. Paris et al. [66, 67] and Wei et al. [104] reconstruct
3D hair geometry from 2D/3D orientation fields using multi-view images. Luo
et al. [50, 52] further improve the 3D reconstruction by refining the point cloud
from traditional MVS with structure-aware aggregation and strand-based refine-
ment. Luo et al. [51] and Hu et al. [26] progressively fit hair specific structures
like ribbons and wisps to the point cloud. Recently, Nam et al. [63] substitute the
plane assumption in the conventional MVS by a line-based structure to reconstruct
3D line clouds. Sun et al. [87] use OLAT images for more efficient reconstruction
of line-based MVS and develop an inverse rendering pipeline for hair that reasons
about hair specific reflectance. However, none of those methods explicitly model
temporal consistency for a time series capture.
Dynamic Hair Capture. Compared to the vast body of work on hair geometry
acquisition, the work on hair dynamics [25, 112, 114, 118] acquisition is much less.
Zhang et al. [118] uses hair simulation to enforce better temporal consistency over
a per-frame hair reconstruction result. However, the simulation parameters are em-
pirically determined and no hair collision is considered. Hu et al. [25] solves the
physics parameters of a hair dynamics model by running parallel processes under
different simulation parameters and adopting the one that best matches the visual
observation. However, the computation of this method is relatively heavy. Xu
et al. [112] performs visual tracking by aligning per-frame reconstruction of hair
strands with motion paths of hair strands on a horizontal slice of a video volume.
However, this method does not support drivable animation and don’t have appear-
ance modeling for hairs. Yang et al. [114] developed a deep learning framework

13

for hair tracking using indirect supervision from 2D hair segmentation and a digital
3D hair dataset. But the results are not photometrically accurate. However those
methods mainly focus on geometry modeling and are not photometrically accurate
or do not support drivable animation.
Data-driven Hair Animation. Using physics-based simulation for hair animation
is a common practice in both academia and film/game industry [4, 103]. However,
generating hair animation with physics-based simulation can be costly. To remedy
that, reduced data-driven methods [12, 13, 23] simulated only on a small portion of
guide hair strands and interpolate the rest of hair strands using skinning weights
learned from full simulations. With the advances in deep learning, the efficiency
of both dynamic generation [53] and rendering [11, 65] of hair animation has been
improved using neural networks. Lyu et al. [53] uses deep neural networks for
adaptive binding between normal hair and guide hair. Olszewski et al. [65] treats
hair rendering as an image translation problem and generate realistic rendering on
hair conditioned on 2D hair mask and stroke. Similarly, Chai et al. [11] achieve
faster rendering with photorealistic results by substituting the rendering part in an-
imation pipeline with screen neural rendering techniques. Temporal consistency
is enforced in this pipeline by conditioning on hair flow. However, those methods
still builds on top of conventional hair simulation pipeline, which requires manual
efforts from artist to setup the simulation scene. Wu et al. [107] proposed to use
secondary motion graph(SDG) for hair animation without relying on conventional
hair simulation pipeline during runtime. However, the method is hard to scale up.

2.3 Spatial-temporal Modeling with Coordinate Based
Representations

Coordinated based representation have been the major focus of recent literature in
3D learning due to their low memory footprint and ability to dynamically assign
the model capacity to the correct regions of 3D space. And there are many exten-
sions on spatio-temporal modeling using coordinate based representations [39, 40,
69, 70, 73, 95, 99, 110]. Non-rigid NeRF [95], D-NeRF [73] and Nerfies [69] intro-
duce a dynamic modeling framework with a canonical radiance field and per-frame
warpings. Some works [39, 40, 98, 99, 110, 116] model a 3D video by additionally
conditioning the radiance field on temporally varying latent codes or an additional
time index. Xian et al. [110] further leverages depth as an extra source of super-
vision. STaR [116] models scenes that consist of a background and one dynamic
rigid object. NSFF [40] also combines a static and dynamic NeRF pipeline and
uses optical flow to constrain the 3D scene flow derived from the NeRF model of

14

adjacent time frames. Wang et al. [99] introduce a grid of local animation codes
for better generalization and improved rendering efficiency. DCT-NeRF [98] learns
stable and smooth trajectories of each point in a dynamic scene using NeRF. How-
ever, these methods are still limited by either sampling resolution or ability to model
complex motions and do not generalize well to unseen motions.

2.4 Volumetric Avatar

There has been a long line of research on learning avatars with volumetric or coor-
dinate based representations. To the best of our knowledge, Neural Volumes [46] is
the earliest work that learns a volumetric avatar of upper head from multiview im-
ages using differentiable volumetric raymarching. One of the strength of this work
is that it could directly optimize a volume grid from multiview images and could
still have good quality on semi-transparent objects like hair. One of its followup
work [100] combines the volumetric representation and coordinate based represen-
tation into a hybrid form for better rendering quality and drivability. Another early
work on differentiable volumetric rendering is NeRF [61], where they parameterize
radiance field implicitly with MLPs instead of using volume grid. Due to the suc-
cess of NeRF [61] on modeling 3D scene with good appearance from multiple im-
ages, there are many work on building avatar with NeRF [19,22,24,30,35,58,69,70,
75, 121, 122]. Pixel-Aligned Avatars [75] utilizes pixel aligned information as ad-
ditional inputs for NeRF to extend its drivability and generalization over sequence
data. KeypointNeRF [58] improves the generalization of avatars and NeRF’s ro-
bustness to sparse views by using a new spatial encoding techniques with sparse
3D keypoints. Another type of volumetric avatar is composed of a spatial 3D warp
field and a canonical NeRF. Nerfies [69] learns a volumetric deformation field and
canonical space NeRF for modeling dynamics related changes. HyperNeRF [70]
uplifts the deformation field from 3D eculidean space to a high dimensional hy-
per semantic space to better model large variations in expressions. NeRFace [19]
improves the controllability of NeRF based avatars by using a 3D face morphable
model to controll the radiance field defined on faces. IM Avatar [121] improves
NeRFace in terms of more complete expression based on implicit skinning fields
following FLAME [38]. HeadNeRF [24] learns a parametric head model with il-
lumination using NeRF. PointAvatar [122] learns a point cloud based avatar with
temporally conditioned volumetric deformation field for capturing a 3D avatar from
video. However, those methods mostly assume hair to be rigidly attached to head
without motion. And most of them are still limited by the prohibiting rendering time
which is also the limitation of NeRF. In contrast to the line of NeRF based avatars,
mixture of volumetric primitives (MVP) [47] builds a volumetric representation that

15

can generate extremely high-quality realtime renderings that look realistic even on
challenging materials, like hair and clothing. The key idea is to model a dynamic
head by stacking multiple volumetric primitives only on a tracked head mesh, with-
out wasting memories on empty spaces. Instant codec avatar [9] extends MVP to
in-the-wild scenarios and unseen identities. By learning a cross-identity hypernet-
work that controls the expression and identity change on volumetric avatars from
a large corpus of data, the model can be easily adapted to newly captured iden-
tites even from an iphone scan. However, in those work, the hair is not separately
modeled and the hair motion is not disentangled from the head, making it hard to
generalized to novel hair motion or control the hair motions. Another recent work
HVH [102] proposed to model hair and head separately where they use a hybrid
model of guide hair stands and volumetric primitives. A hair strand structure-aware
tracking algorithm based on per-frame 3D flow optimization is presented to track
hair at strand level. To refine the tracking results and enforce temporal smooth-
ness, a fine level volumetric raymarching algorithm on dense 3D volumetric scene
flow is presented. However, HVH assumes the guide hair motion is given, in which
generating the motion of guide hair itself is already a challenging problem in hair
animation.

16

Chapter 3

Learning Compositional Radiance
Fields of Dynamic Human Heads

17

3.1 Introduction
Modeling, rendering, and animating dynamic human heads at high fidelity, for ex-
ample for virtual reality remote communication applications, is a highly challeng-
ing research problem because of the tremendous complexity of the geometry of the
human head and the appearance variations of human skin, hair, teeth, and eyes.
Skin exhibits subsurface scattering and shows fine-scale geometric pore-level de-
tail, while the human eyes and teeth are both translucent and reflective at the same
time. High fidelity modeling and rendering of human hair is challenging due to its
thin geometric structure and light scattering properties. Importantly, the face is not
static, but changes dynamically with expression and posture.

Recent work on neural rendering learns either discrete or continuous neural
scene representations to achieve viewpoint and animation controllable rendering.
Discrete neural scene representations are based on meshes [20,44,49,91,93], point
clouds [1, 56, 105], voxel grids [46, 84], or multi-plane images [59, 123]. How-
ever, each of these representations has drawbacks: Meshes, even if dynamically
textured [45], struggle to model thin and detailed structures, such as hair. Point
clouds, by design, do not provide connectivity information and thus lead to unde-
fined signals in areas of sparse sampling, while making explicit occlusion reason-
ing challenging. Multi-plane images yield photo-realistic rendering results under
constrained camera motion, but produce ’stack of cards’-like artifacts [123] when
the camera moves freely. Volumetric representations [46] based on discrete uni-
form voxel grids are capable of modeling thin structures, e.g., hair, using semi-
transparency. While these approaches achieve impressive results, they are hard to
scale up due to their innate cubic memory complexity.

To circumvent the cubic memory complexity of these approaches, researchers
have proposed continuous volumetric scene representations based on fully-connected
networks that map world coordinates to a local feature representation. Scene Repre-
sentation Networks (SRNs) [85] employ sphere marching to extract the local feature
vector for every point on the surface, before mapping to pixel colors. This approach
is limited to modeling diffuse objects, making it unsuitable for representing human
heads at high fidelity.

Neural radiance fields [61] have shown impressive results for synthesizing novel
views of static scenes at impressive accuracy by mapping world coordinates to
view-dependent emitted radiance and local volume density. A very recent exten-
sion [43] speeds up rendering by applying a static Octree to cull free space. While
they have shown first results on a simple synthetic dynamic sequence, it is unclear
how to extend the approach to learn and render photo-realistic dynamic sequences
of real humans. In addition, it is unclear how to handle expression interpolation and
the synthesis of novel unseen motions given the static nature of the Octree acceler-

18

ation structure.
As discussed, existing work on continuous neural 3D scene representations

mainly focuses on static scenes and dynamic scene modeling and editing are not
directly achievable under the current frameworks. In this work, we propose a novel
compositional 3D scene representation for learning high-quality dynamic neural
radiance fields that addresses these challenges. To this end, we bridge the gap be-
tween discrete and continuous volumetric representations by combining a coarse
3D-structure-aware grid of animation codes with a continuous learned scene func-
tion. We start by extracting a global animation code from a set of input images
using a convolutional encoder network. The global code is then mapped to a 3D-
structure-aware grid of local animation codes as well as a coarse opacity field. A
novel importance sampling approach employs the regressed coarse opacity to speed
up rendering. To facilitate generalization across motion and shape/appearance vari-
ation, in addition to conditioning the dynamic radiance field on the global anima-
tion code, we additionally condition it on a local code which is sampled from the
3D-structure-aware grid of animation codes. The final pixel color is computed by
volume rendering. In summary, the main contributions of our work are

• A novel compositional 3D representation for learning high-quality dynamic
neural radiance fields of human heads in motion based on a 3D-structure-
aware grid of local animation codes.

• An importance sampling strategy tailored to human heads that reduces un-
necessary computation in free space and enables faster volumetric rendering.

• State-of-the-art results for synthesizing novel views of dynamic human heads
that outperform competing methods in terms of quality.

3.2 Method
In this section, we introduce our novel compositional representation that combines
the modeling power of high-capacity voxel-based representations and the ability of
continuous scene representations to capture subtle fine-level detail. In Fig. 3.1 we
provide an overview of our approach.

The core of the method is a hybrid encoder-decoder architecture, directly su-
pervised with multi-view video sequences. For a given frame, the encoder takes a
sparse set of views, and outputs a global animation code, which describes dynamic
scene information specific to the frame. The global animation code is used to con-
dition the 3D convolutional decoder, which outputs a coarse 3D structure-aware
voxel field. In particular, each voxel stores coarse-level opacity, color and localized

19

Local

Animation

Codes

!𝐼′(𝑟)

L2-loss

2D

Encoder

3D

Decoder

Global

Animation Code

Coarse

level MLP
𝑥𝑦𝑧!
fp"!fp’!

$

𝑅p!! , 𝜎p’!

MLP
𝑥𝑦𝑧%
fp’"fp’"

$

𝑅p!" , 𝜎p’"

𝐼(𝑟)

KL loss

ray 𝑟

ray 𝑟

fp#, fp#
$

, &𝑅p#, (𝜎p#

L2-loss

MLP

(+𝑐𝑎𝑚)

𝜎p’#

𝑅p"#

𝑥𝑦𝑧&

(
+

)
Encoding Triplet

Fine

level

Locally Conditioned

Radiance Function

Figure 3.1: Method overview. Given a multi-view video as input, we learn a dy-
namic radiance field parametrized by a global animation code. To render a par-
ticular frame, the global code is first mapped to a coarse voxelized field of local
animation codes using a 3D convolutional decoder. This grid of animation codes
provides local conditioning at each 3D position for the fine-level radiance func-
tion, represented as an MLP. Differentiable ray marching is used to render images
and provide supervision, and can be sped up significantly by using a ray sampling
strategy that uses the coarse grid to determine relevant spatial regions.

animation codes, which represent local dynamical properties of the corresponding
spatial region of the scene. The resulting voxel field is further used to create a coarse
volumetric rendering of the scene, which may lack fine-level detail, but provides a
reliable initial estimate of the scene’s geometry, which is crucial to enable efficient
continuous scene modeling. To account for the lack of detail, we rely on a con-
tinuous scene function, represented as an MLP, to model fine-level radiance. The
coarse-level geometry estimate is used to define spatial regions where the function
is evaluated, and the local animation codes as spatially-varying conditioning signal
to the MLP. To better model view-dependent effects, both coarse- and fine-level
representations are partly conditioned on the camera viewpoint. The outputs of
the continuous scene function are then used to create the final, refined volumetric
rendering of the scene. In what follows, we describe each of the components in
detail.

3.2.1 Encoder-Decoder

The goal of the encoder is to produce a compact representation that captures global
dynamical properties of the scene, which then serves as a conditioning signal for
the decoder. Our encoder is a 2D convolutional network which takes a sparse set of

20

views and outputs parameters of a diagonal Gaussian distribution µ,σ ∈ R256. In
practice, the encoder is conditioned on three different camera views, concatenated
along the channel axis. Given the distribution N (µ,σ), we use the reparameteri-
zation trick to produce the global animation code z ∈ R256 in a differentiable way,
and pass it to the decoder. We found that using a variational formulation [34] is
critical for making our model animatable.

Given the global animation code z, the goal of the decoder is to produce a
coarse-level representation of the scene. In particular, the coarse level is modeled
by a volumetric field

Vp =
(
c̃p, σ̃p, fp, f

v
p

)
, (3.1)

where c̃p ∈ R3 is a coarse-level color value, σ̃p ∈ R is differential opacity, fp ∈ R32

is the view-independent local animation code, fvp ∈ R32 is the view-dependent local
animation code, and p ∈ R3 is the spatial location. In our framework, V is pro-
duced by a volumetric decoder as an explicit coarse discrete grid G ∈ RD×D×D×F ,
where D = 64 is the spatial dimension of the grid, and F = 68 is the dimension-
ality of the field. Samples Vp at continuous locations p ∈ R3 are produced with
trilinear interpolation over the voxels.

In practice, the decoder is represented by two independent 3D convolutional
neural network branches. The first branch is conditioned only on the global code z,
and predicts view-independent values, the differential occupancy σ̃p and the view-
independent local animation codes fp. The second branch predicts view-dependent
color values c̃p and local animation codes fvp, and is conditioned on both the global
code z and the viewpoint v ∈ R3, which is computed as a normalized difference
between the camera location and the center of the scene.

3.2.2 Volumetric Rendering

Given the discrete voxel field, we apply differentiable ray-marching to obtain coarse
volumetric rendering [61]. Namely, for each ray r ∈ R3 shot from the camera center
o ∈ R3, we sample N query points pi = (o+ di · r) along r, where di is the depth
sampled uniformly between the depth at a near plane dmin and a far plane dmax.
Estimates of expected coarse opacity Ãr and color Ĩ ′r are then computed as

Ãr =
N∑
i=1

Tiαi , Ĩ ′r =
N∑
i=1

Tiαic̃pi
, (3.2)

where Ti = exp(−
∑i−1

j=1 σ̃pj
δj), αi = (1− exp(−σ̃pi

δi)), and δi = ∥di+1 − di∥ is
the distance between two neighbouring depth samples. In practice, values c̃pi

, σ̃pi

are sampled from the voxel grid with trilinear interpolation.

21

The final coarse-level rendering is computed by compositing the accumulated
color Ĩ ′r and the background color with a weighted sum

Ĩr = Ĩ ′r + (1− Ãr)I
bg
r . (3.3)

The resulting coarse rendering roughly captures the appearance of the scene, but
lacks fine-level detail. A seemingly straightforward way to improve the level of
detail would be to increase the spatial resolution of the voxel grid. Unfortunately,
this approach quickly becomes impractical due to the cubic memory complexity of
these representations.

3.2.3 Continuous Scene Function
In order to improve fine-level modeling capabilities while avoiding heavy mem-
ory costs associated with high-res voxel representations, we introduce a continuous
scene function f(·), parameterized as an MLP. The key intuition is that voxel-based
approaches represent scenes explicitly and uniformly across space, thus often wast-
ing resources on irrelevant areas. On the other hand, continuous representations are
implicit, and allow for more flexibility, as the scene function can be evaluated at
arbitrary locations. When combined with a sampling strategy that focuses only on
relevant spatial locations, this flexibility can bring significant efficiency improve-
ments.

One crucial difference of our method with respect to the existing continuous
neural rendering approaches [61, 83], is that in addition to conditioning on the lo-
cation, view direction and the global scene information, our scene function is also
conditioned on spatially-varying local animation codes. As we demonstrate in our
experiments in Sec. 3.3, this increases the effective capacity of our model, and al-
lows our model to capture significantly more detail and better generalize across
different motion and shape/appearance variations. We also show that this property
is especially important for modeling dynamic scenes, as they require significantly
more modeling capacity and the naive MLP-based approaches typically fail.

More formally, the scene function f(·) takes as inputs coordinates of a sampled
query point p, view vector v, and the corresponding local animation codes fp, f

v
p,

and produces the fine-level color cp ∈ R3 and the differential probability of opacity
σp ∈ R

cp, σp = f(ϕ(p), ϕ(v), fp, f
v
p) .

Feature vectors fp, fvp are obtained from the the coarse voxel grid via trilinear inter-
polation, and position p and view v vectors are passed through a positional encod-
ing ϕ(·), in order to better capture high-frequency information [61].

Fine-level rendering Ir and Ar can then be computed by evaluating f(·) at a
number of sampled query points along each ray and applying Eq. (3.2)-(3.3). In the

22

next section, we discuss our novel sampling scheme that significantly speeds up the
rendering process.

3.2.4 Efficient Sampling
Using spatially-varying conditioning allows us to increase effective capacity of our
continuous scene representation and leads to better generalization. However, pro-
ducing a high-quality rendering still requires evaluating the scene function at a large
number of query locations, which can be computationally expensive [61], and ulti-
mately suffers from similar limitations as the voxel fields. Luckily, we can exploit
the fact that our coarse voxel field already contains information about the scene’s
geometry. To this end, we introduce a simple and efficient sampling scheme, which
uses the coarse opacity values to produce a strong initial prior on the underlying
geometry. In particular, for each ray r, we first compute a coarse depth d̃r as

d̃r =
1

Ãr

N∑
i=1

Tiαi · di ,

where di are the same uniform samples as in Eq. (3.2). Then, we obtain our new
fine-level location samples from a uniform distribution:

d ∼ U
[
d̃r −∆d, d̃r +∆d

]
,

centered at the depth estimate d̃r, where ∆d = (dmax−dmin)
k

, i.e. k = 10 times
smaller range than at the coarse level. In Sec. 3.3 we demonstrate that this strategy
in practice leads to comparable rendering quality, while being more computation-
ally efficient.

3.2.5 Training Objective
Our model is end-to-end differentiable, which allows us to jointly train our encoder,
decoder and the scene MLP, by minimizing the following loss:

L = Lr + L̃r + λfLβ + λcL̃β + λKLLKL .

Here Lr is the error between the rendered and ground truth images for the fine-level
rendering:

Lr =
∑
r∈R

||Ir − Igtr ||22 ,

23

where R is a set of rays sampled in a batch. The coarse-level rendering loss L̃r

is computed similarly. Lβ and L̃β are the priors on the fine-level and coarse-level
image opacities respectively [46]:

Lβ =
∑
r∈R

(logAr + log(1− Ar)) ,

which pushes both the coarse and fine opacities to be sharper, and encodes the prior
belief that most of the rays should hit either the object or the background. Finally,
the Kullback-Leibler divergence loss LKL encourages our global latent space to be
smooth [34], which improves the animation and interpolation capabilities of our
model.

3.3 Experiments
We first compare with two state-of-the-art methods for novel view synthesis, namely
NV [46] and NeRF [61] on four dynamic sequences of a human head making dif-
ferent facial expressions or talking. We then perform an ablation study to test how
different feature representations affect the ability to capture longer sequences, as
well as the effects of applying different resampling strategies on speed and image
quality. We also evaluate generalization capabilities of our model on novel sequence
generation and animation, by interpolating in latent space and by driving the model
with various input modalities, including keypoints and images.

3.3.1 Datasets
We use a multi-camera system with around 100 synchronized color cameras that
produces 2048 × 1334 resolution images at 30 Hz. The cameras are distributed
approximately spherically at a distance of one meter, and focused at the center of
the capture system to provide as many viewpoints as possible. Camera intrinsics
and extrinsics are calibrated in an offline process. Images are downsampled to
1024 × 667 for training and testing. Each capture contains n = 3 sentences and
around k = 350 frames in total for each camera view. We trained on m = 93
cameras and tested on q = 33 frames from another p = 7 cameras.

3.3.2 Baselines
We compare our methods with two baselines that we describe in the following.

NV [46]: Neural Volumes performs novel view synthesis of a dynamic object-
centric scene by doing raymarching on a warped voxel grid of RGB and differential

24

opacity that is regressed from three images using an encoder-decoder network. As
the volume is conditioned on temporal input of RGB images, NV is capable of
rendering dynamic scenes. The volume is of size 1283 and the warp field is 323.
The global animation code is a feature vector of 256 entries.

NeRF [61]: NeRF learns a continuous function of scene radiance, including
RGB and opacity, with a fully connected neural network conditioned on scene coor-
dinates and viewing direction. Positional encoding is applied to the 3D coordinates
to better capture high frequency information, and raymarching is performed to ren-
der novel views. Note that the original NeRF approach is not directly applicable to
dynamic sequences. Thus, we extend the conditioning signal to NeRF with a global
animation code generated from the encoder in NV. The global animation code is
generated from the encoder in NV and it is also of size 256.

3.3.3 Training Details

Network Architecture

There are three main neural networks used in our methods: 1) Encoder, that re-
gresses image input to the statistics µ,σ of a latent space vector z ∈ R256; 2)
Decoder, a 3D convolutional network that regresses the latent vector z to a coarse-
level volume Vp of log differential opacity σ̃p, color c̃p, and spatial scene features
fp, f

v
p; 3) Refinement MLP, that takes in the coordinate of a spatial location p as

well as its corresponding spatial local feature from the coarse-level volume fp, f
v
p

and outputs the fine-level log differential opacity σp and color cp.
For the image encoder and volume decoder, please refer to Table 3.1 and Ta-

ble 3.2 for their architecture. To better model the view-dependent effects, we em-
ploy two decoders to regress the color and opacity at the coarse level. The common
structure of each decoder is shown in Table 3.2. For the color decoder, the input is
the concatenation of the latent vector z∈R256 and the camera view direction v∈R3,
thus the final input size is N c

in = 256 + 3 and the output size is N c
out = 3, with a

parallel branch producing view-dependent spatial scene features fvp∈R32. Similarly,
the opacity decoder only takes the latent vector z∈R256 as input and regresses opac-
ity σp∈R and view-independent spatial scene features fp∈R32 from its two branches
respectively. To restrict the regressed color c̃p to be non-negative, we apply a ReLU
function after the last layer that directly outputs it.

In Figure 3.3.3, we show the structure of the Refinement MLP. The spatial scene
features fp, fvp are extracted from the feature voxel Vp with a continuous coordinate
p ∈ R3 using tri-linear interpolation. Log differential opacity σp ∈ R is regressed
from the last fully-connected layer of the top branch and no non-linearity is applied.
The spatial color value cp is the output of the bottom branch and ReLU is applied

25

afterwards to guarantee the regressed value is non-negative. At the beginning of the
refinement network, a concatenation of a positional encoding of position p and its
corresponding view-independent spatial scene feature fp. The color branch network
learns to explain view-dependent effects by having additional inputs in addition to
the positional encoding, such as the camera view v and view-dependent spatial
scene feature fvp at position p. Note that the adapted version of NeRF, which we us
as a baseline, shares exactly the same architecture as shown in Figure 3.3.3, except
that instead of fp, fvp it uses the global latent vector z as additional input.

Encoder
1 Conv2d(9, 32)
2 Conv2d(32, 64)
3 Conv2d(64, 128)
4 Conv2d(128, 128)
5 Conv2d(128, 256)
6 Conv2d(256, 256)
7 Conv2d(256, 256)
8 Flatten()
9 Linear(256x4x2, 512)
10 Linear(512, 256) Linear(512, 256)

Table 3.1: Encoder architecture. Each Conv2d layer in the encoder has a kernel size
of 4, stride of 2 and padding of 1. After each layer, except for the last two parallel fully-
connected layers, a Leaky ReLU [54] activation with a negative slope of 0.2 is applied. The
last two parallel fully-connected layers produce, respectively, µ and σ.

Hyperparameter Settings

We use Adam [33] with a learning rate 1e−4, and β1 = 0.9, β2 = 0.999. All the
models are trained for approximately 70 − 100K iterations, each batch containing
64 × 64 rays. For each ray, we then uniformly sample 128 query locations for the
coarse level, and 32 more locations for the fine level using our sampling scheme.
We set λf = 0.1, λc = 0.1 and λKL = 0.001 Training on a sequence of 360 frames
under 93 camera views with 1024×667 resolution takes approximately 3-4 days on
a single NVidia-V100-32GB GPU. All our models are implemented in PyTorch.

3.3.4 Novel View Synthesis
We show quantitative and qualitative results of novel view synthesis on four dy-
namic sequences of human heads.

26

Decoder
1 Linear(NX

in , 1024)
2 Reshape(1024, 1, 1, 1)
3 ConvTrans3d(1024, 512) ConvTrans3d(1024, 512)
4 ConvTrans3d(512, 512) ConvTrans3d(512, 512)
5 ConvTrans3d(512, 256) ConvTrans3d(512, 256)
6 ConvTrans3d(256, 256) ConvTrans3d(256, 256)
7 ConvTrans3d(256, 128) ConvTrans3d(256, 128)
8 ConvTrans3d(128, NX

out) ConvTrans3d(128, 32)

Table 3.2: Decoder architecture. Each layer is followed by a Leaky ReLU [54]
activation with a negative slope of 0.2 except for the last two parallel layers. Each
ConvTrans3d layer has a kernel size of 4, a stride of 2 and a padding of 1. NX

in

stands for the input feature size and NX
out is the output size. X here is a placeholder

for color or opacity, X ∈ {c, σ}.

cp

256 256 256 256 256 256 256 256

256 128

fp

𝜙(p)

𝜙(v)

fpv

σp

Concatenation

Linear Layer

1

3

Linear Layer w/ ReLU

32

63

27

32

Figure 3.2: Refinement MLP architecture. Each blue box is a fully-connected
layer and the number on top of each box is the output size of that layer. Blue box
with gray tail is a linear layer with ReLU activation. Boxes in other color stand for
different inputs and the size is marked on top.

Quantitative Results: We report quantitative evaluation results in Tab. 3.3. Met-
rics used here are MSE, PSNR, and SSIM. We average those metrics across differ-
ent test views and time steps, among each of the sequences. To compensate for sen-
sory difference between each camera, we apply the same color calibration network
as in NV [46] for our methods as well as all baselines. To compute the parameters
of the color calibration networks, we first fit the color calibration model on an ad-
ditional sentence with all camera views and fix the parameters for all subsequent
steps. The first three sequences (Seq1-Seq3) are captures showing the participant

27

Sequence1 Sequence2
MSE PSNR SSIM MSE PSNR SSIM

NV 46.19 31.56 0.8851 52.11 31.24 0.8499
NeRF 43.34 31.88 0.8923 46.89 31.79 0.8531
Ours 34.01 33.09 0.9064 42.65 32.24 0.8617

Sequence3 Sequence4
NV 83.07 29.24 0.7742 40.47 32.30 0.9086
NeRF 90.45 28.87 0.7727 35.52 32.95 0.9129
Ours 79.29 29.61 0.7826 27.62 34.12 0.9246

Table 3.3: Image prediction error. We compare NV, NeRF, and our method on
4 sequences, and report average error computed over a set of approximately 200
images of 7 views for each sequence. Our method outperforms all other baselines
on all metrics.

talking, while the last one (Seq4) is a capture of a range of motions showing chal-
lenging expressions. As we can see, our method outperforms all other baselines on
the four dynamic sequences in terms of all metrics.

Qualitative Results We show visual comparisons between different models trained
on long video sequences in Fig. 3.3 and Fig. 3.4. We can see that NV and NeRF
trained on a sequence tend to yield relatively blurry results, while our approach
produces sharper images and can reconstruct finer details in terms of both texture
and geometry on areas like hair, eyes, and teeth. Our method can achieve bet-
ter rendering results on video sequence compared to previous methods in terms of
photo-realism.

3.3.5 Ablation Studies
Longer Sequences: As one of the major differences between our method and the
adapted NeRF is the different feature representation as input for the fine-level neu-
ral implicit function, we also tested how this impacts the generalization and fitting
power of the approaches. To achieve that, we train our method as well as the tem-
poral conditioned NeRF on sequences with variable length (1, 40, 120, 240, 360
frames) and report their reconstruction performance on a set of views at certain
time frames. For all training sets, the first frame is shared and is taken as the test
frame. For comparisons, we evaluate three different resolutions (16, 32, 64) for the
coarse-level voxel feature in our method to better understand how the voxel reso-
lution could affect the generalization capabilities and expressiveness of our model.
Figure 3.6 shows the plot of MSE and SSIM vs. the length of the training sequence

28

Figure 3.3: Qualitative comparison of rendered images. Our method recovers
more fine-scale details than NV and NeRF, particularly in high-frequency regions
like the eyes and hair. Results are rendered at 1024 × 667 with insets for better
visualization. 29

MSE PSNR SSIM Runtime
NeRF+HS 36.33 32.90 0.8898 >25s
NeRF+SS 38.80 32.75 0.8886 19.69s
Ours+HS 27.23 34.24 0.9090 14.30s
Ours+SS 30.35 34.13 0.9113 3.6s

Table 3.4: Ablation on different sampling schemes. We show image reconstruc-
tion results as well as runtime for both NeRF and ours with different sampling
strategies.

of different models. A direct visual comparison between models trained on a dif-
ferent number of frames is shown in Figure 3.5. As can be seen, the performance
of NeRF with a global animation code drops significantly when the total number of
training frames increases, while our method maintains a higher rendering quality
due to a more expressive local voxel animation code, which enforces the fine-level
implicit function to learn local rather than global representations and capture high
frequency details more accurately. In addition, the 3D convolutional decoder im-
poses 3D inductive bias and improves the capacity of the whole model with the help
of a 3D voxel feature tensor that has more spatial awareness compared to a global
code. We also see that rendering quality improves and the model achieves better
generalization when the coarse-level voxel feature resolution is relatively large. If
the resolution is smaller, the performance drops as each local code has to describe
a larger region of space, see Fig. 3.5.

Sampling Strategy and Runtime Comparison: We further trained our method
and NeRF on a single sentence applying different sampling schemes: the hierar-
chical sampling (HS) in [61] and our simple sampling (SS). For our method, we
use a coarse level voxel resolution of 643. Both sampling methods (HS and SS)
have 128 points sampled along each ray for coarse level rendering. We show results
in Tab. 3.4. As we can see our simple sampling preserves rendering quality while
enjoying a large increase in runtime efficiency. For rendering an image with reso-
lution 1024 × 667, NV takes roughly 0.9s and NeRF is taking >25s whereas our
methods takes 3.6s. The improved runtime efficiency stems from the coarse level
rendering as our method has to only query the MLP at a small number of positions
for refinement. However, our method may fail if the coarse level geometry is too
far from the ground truth since we only sample locally. Fine detail, e.g., wrinkles,
might not be recovered as geometry, but can still be modeled using view-dependent
appearance.

30

MSE PSNR SSIM
keypoints encoder w/o ft 58.52 30.78 0.8891

image encoder w/o ft 55.86 31.07 0.8903
keypoints encoder w/ ft 35.12 32.90 0.9024

image encoder w/ ft 34.86 33.27 0.9053
full model ft 32.47 33.84 0.9121

Table 3.5: Novel content synthesis. We show results on novel content generation
and novel sequence fitting. We tested two different encoder models that use data
from two modalities: sparse 2D keypoints and images. We use a coarse voxel
resolution of 643.

3.3.6 Animation
We demonstrate a large variety of applications that is enabled by our approach.

Latent Space Sampling and Interpolation Given the encoder-decoder architec-
ture, we can generate smooth transitions between two expressions by interpolating
in latent space and create free-view animations. In Fig. 3.7(b), we show direct in-
terpolation results between two frames with different expressions. The frames in
the red and blue bounding box are two key frames and all other frames inbetween
are interpolated results. We also show rendering results by randomly sampling in
the latent space in Fig. 3.7(c).

We show more results of expression sampling in Figure 3.8 and Figure 3.9.
Please also see the videos under “Sampling from Latent Space” and “Interpolation
of Sampled Expression” on https://ziyanw1.github.io/hybrid nerf/. The first video
contains 12 uniform keyframe expressions that are directly sampled from the latent
space. Then, between each keyframe, we linearly interpolate 10 more frames to
create the video. The second videos contains free view rendering of several sampled
expressions. As we can see, our model is capable of generating realistic avatars
by sampling in the latent space and learnt a continuous latent space with smooth
transitions between different latent codes.

Landmark Driven Animation: Because the decoder only depends on a single
global code to generate the dynamic field, the original image encoder can be switched
to an encoder that takes inputs from other modalities as long as correspondence be-
tween input and outputs can be established. To demonstrate controllable animation,
we use 2d landmarks as a substitute of the image input and train a simplified Point-
Net [74]-like encoder that regresses the global code from the set of 2d landmarks.
To train such an encoder, we minimize the ℓ2 distance between the global code

31

https://ziyanw1.github.io/hybrid_nerf/

zkps from keypoints and its corresponding global code zimg from the image on the
training set. Fig. 3.7(a) shows some rendering results that are driven by a keypoint
encoder. To test generalization to a novel sentence that is not included in the train-
ing data, we deployed the keypoint encoder and the pretrained decoder on a novel
sequence. Results on test views are reported in Tab. 3.5. We can see, that with a
keypoint encoder using only a regression loss in the latent space, the avatar can be
driven with reasonable performance, even though keypoints provide less informa-
tion than images.

We used a PointNet [74]-like encoder as a base architecture for the keypoint
encoder. Compared to the original work, our inputs are different in three aspects:
1) The points are in 2D, 2) The order of each point is fixed rather than arbitrary, 3)
All points are roughly aligned to a canonical pose. To simplify the problem, we use
the T-Net in the PointNet as the encoder that regresses the latent code from a set
of points. We show the architecture in Table 3.6. More results of keypoint-driven
animation can be found in Figure 3.10. Please refer to the videos under “Landmark
Driven Facial Animation” on https://ziyanw1.github.io/hybrid nerf/ for more video
results. In the video, the 2d keypoints in the blue bounding box are used as input to
the keypoint encoder. The image in the middle is the output of our model and the
image on the right most column is the ground truth. As we can see, the decoder in
our method can also be driven by inputs from other modalities.

Kps Encoder
1 Conv1d(2, 64)
2 Conv1d(64, 128)
3 Conv1d(128, 256)
4 Conv1d(256, 512)
5 Conv1d(512, 1024)
6 MaxPool1d()
7 Flatten()
8 Linear(1024, 512)
9 Linear(512, 512)

10 Linear(512, 256)

Table 3.6: Keypoint Encoder architecture. Each layer is followed by a ReLU
except for the last fully-connected layer. Each Conv1d layer has a kernel size of 1, a
stride of 1 and a padding of 0.

Novel Sequence Fitting: To demonstrate our model’s ability to generalize to a
novel sequence, we show results of animations driven by novel video sequences.

32

https://ziyanw1.github.io/hybrid_nerf/

For novel sequence generation from a given input modality, two components need
to generalize: (1) the encoder, which produces animation codes given novel image
inputs, and (2) the decoder, which renders novel animation codes into images. We
first study the generalization ability of the decoder in isolation. To do this, we fine-
tune the encoder on the novel sequence, fixing the parameters of the decoder and
only back-propagating gradients to the encoder’s parameters. Fig. 3.7(d) shows ren-
dering results. To test the ability of generalization to novel input driving sequences,
we test the complete encoder-decoder model on a novel sequence, without any fine-
tuning. Results are shown in Tab. 3.5. As we can see, an image-based encoder
trained with a photometric loss shows better performance on novel content than a
key-point encoder trained with a regression loss on the latent space. Innately, im-
age input is a more informative than sparse key-points. Training with a photometric
loss rather than a regression loss enables the encoder to output latent codes that
are more compatible with the decoder. We also fine-tuned just the image encoder
with a photometric loss and we find that the rendering results achieve comparable
quality on novel content. We also fine-tuned the full model (encoder and decoder)
and we find the gap is small in comparison to the model that only has its encoder
fine-tuned.

Please see the videos under “Fitting to a New Sequence” on this page 1. In both
videos, the images in the red bounding boxes serve as inputs. The image in the
middle is the output of our model and the image on the right most column is the
ground truth. As we can see, the model without finetuning can achieve reasonable
performance on fitting the new sequence. And with only encoder finetuning, the
encoder quickly adapts to the latent space of the decoder on the novel sequence and
creates much smoother results.

3.3.7 Video Results

The video results can be found on our project page 1.

3.4 Limitations
While we achieve state-of-the-art results, our approach is still subject to a few limi-
tations which can be addressed in follow-up work: (1) Our method heavily relies on
the quality of the coarse-level voxel field. In cases when the voxel representation
has significant errors, the following fine-level model is likely not to recover. (2)
Since we rely on the voxel field for our coarse-level representation, our method is

1https://ziyanw1.github.io/hybrid nerf/

33

https://ziyanw1.github.io/hybrid_nerf/

primarily applicable to object-centric scenes. Potentially, by substituting the vox-
elized representation with a coarse depth map, it could also be applied to arbitrary
scenes. (3) Although our compositional approach improves the scalability of both
voxel-based and continuous representations, our approach is still limited in terms
of sampling resolution. Even though the learnt function enables us to go beyond
voxel resolution, image quality is still limited by the sampling resolution along the
ray. One way to tackle this problem could be to regress the position of a group of
voxels, which could serve as a more efficient proxy.

3.5 Conclusion
In this chapter, we proposed a method for rendering and driving photo-realistic
avatars of humans captured with a multi-view camera system. Our representa-
tion bridges the gap between discrete and continuous volumetric representations
by combining a coarse 3D-structure-aware grid of animation codes with a contin-
uous learned scene function that enables high-resolution detail without the need
for a dense voxel grid. We show that our approach produces higher-quality re-
sults than previous methods, especially as the length of the sequence increases, and
is significantly faster than classical neural radiance fields. Our approach also en-
ables driving the model, which we demonstrate via interpolation in the latent space,
randomly sampling the latent space, and facial motion control via a set of sparse
keypoints. We believe that our approach is a stepping stone towards higher-quality
telepresence systems.

Acknowledgments: We thank He Wen and Yuan Dong for helping with key point
generation, Zhaoyang Lv and Christoph Lassner for their valuable feedback.

34

Figure 3.4: Qualitative comparison of rendered images. We show more render-
ing results under novel views. Our method is capable of capturing details like pupil,
hair strands and tooth.

35

NeRF

Ours
Vox16

Ours
Vox32

Ground truth1 frame 40 frames 120 frames 240 frames 360 frames

Ours
Vox64

Figure 3.5: Effect of sequence length on quality. Conditioning the radiance
field on local instead of global animation codes greatly expands model capacity,
allowing our model to recover much sharper images even when trained on longer
video sequences.

Figure 3.6: Effect of sequence length on reconstruction. MSE and SSIM on the
first frame v.s. length of the training sequence.

36

Figure 3.7: Novel sequence generation. New animations can be created by dy-
namically changing the global animation code, for example by (a) using keypoints
to drive the animation, (b) interpolating the code at key frames, (c) sampling from
the latent distribution, or (d) directly fitting the codes to match a novel sequence.

37

Figure 3.8: Rendering results of direct sampling in latent space. We visualize
the frontal rendering of the sampled avatars. Each avatar is generated directly from
a unique latent code sampled from the latent space.

38

Figure 3.9: Rendering results of direct sampling in latent space. We visualize
the sampling results of another identity. Similarly, we sample directly from the
latent space and generate the frontal rendering of the avatar corresponding to the
sampled code.

39

Figure 3.10: Keypoint-driven animation. We show rendering results of an avatar
driven by facial keypoints. The rendering are shown in the upper row and the driv-
ing signal is shown in the lower row. With some fine-tuning on the encoder only,
our model can quickly adapt to driving signals from other modality and be reliably
driven by facial keypoints.

40

Chapter 4

HVH: Learning a Hybrid Neural
Volumetric Representation for
Dynamic Hair Performance Capture

41

4.1 Introduction
Although notable progress has been made towards the realism of human avatars,
cephalic hair is still one of the hardest parts of the human body to capture and
render: with usually more than a hundred-thousand components, with complex
physical interaction among them and with complex interaction with light, which
is extraordinarily hard to model. However, it is an important part of our appearance
and identity: hair styles can convey everything from religious beliefs to mood or
activity. Hence, hair is critically important to make virtual avatars believable and
universally usable.

Previous work on mesh based representations [3, 38, 45, 81, 92, 94, 111] has
shown promising results on modeling the face and skin. However, they suffer when
modeling hair, because meshes are not well suited for representing hair geometry.
Recent volumetric representations [46, 61] have high DoF which allows modeling
of a changing geometric structure. They have achieved impressive results in 3D
scene acquisition and rendering from multi-view photometric information. Com-
pared to other geometric representations like multi-plane images [2, 8, 60, 88, 123]
or point-based representations [1,37,57,78,105], volumetric representations support
a larger range of camera motion for view extrapolation and do not suffer from holes
when rendering dynamic geometry like point-based representations. Furthermore,
they can be learned from multi-view RGB data using differentiable volumetric ray
marching, without additional MVS methods.

However, one major flaw of volumetric representations is their cubic mem-
ory complexity. This problem is particularly significant for hair, where high res-
olution is a requirement. NeRF [61] circumvents the O(n3) memory complex-
ity problem by parameterizing a volumetric radiance field using an MLP. Given
the implicit form, the MLP-based implicit function is not limited by spatial reso-
lution. A hierarchical structure with a coarse and fine level radiance function is
used and an importance resampling based on the coarse level radiance field is uti-
lized for boosting sample resolution. Although promising empirical results have
been shown, they come with at the advance of high rendering time and the qual-
ity is still limited by the coarse level sampling resolution. Another limitation of
NeRFs is that they were initially designed for static scenes. There is some recent
work [39, 40, 69, 70, 73, 95, 99, 110, 116] that extends the original NeRF concept
to modeling dynamic scenes. However, they are still limited to relatively small
motions, do not support drivable animation or are not efficient for rendering.

We present a hybrid representation: by using many volumetric primitives, we
focus the resolution of the model onto the relevant regions of the 3D space. For
each of the volumes, we construct a neural representation that captures the local ap-
pearance of the hair in great detail, similar to [43,47,76,99] . However, without ex-

42

plicitly modeling the dynamics and structure of hair, it would be hard for the model
to learn these properties solely through the indirect supervision of the multi-view
appearance. Given that the model learns to position primitives in an unsupervised
manner, the model is also prone to overfitting as a result of not incorporating any
temporal consistency during training. We address the problem of spatio-temporal
modeling of dynamic upper head and hair by explicitly modeling hair dynamics at
the coarse level and by enforcing temporal consistency of the model by multi-view
optical flow at the fine level.

Procedurally, we first perform hair strand tracking at a coarse level by lifting
multi-view optical flow to a 3D scene flow. To constrain the hair geometry and
reduce the impact of the noise in multi-view optical flow, we also make sure the
tracked hair strands preserve geometric properties like shape, length and curvature
across time. As a second step, we attach volumes to hair strands to model the dy-
namic scene which can be optimized using differentiable volumetric raymarching.
The volumes that are attached to the hair strands are regressed using a decoder that
takes per-hair-strand features and a global latent code as input and is aware of the
hair specific structure. Additionally, we further enforce fine 3D flow consistency
by rendering the 3D scene flow of our model into 2D and compare it with the cor-
responding ground truth optical flow. This step is essential for making the model
generalize better to unseen motions. To summarize, the contributions of this work
are

• A hybrid neural volumetric representation that binds volumes to guide hair
strands for hair performance capture.

• A hair tracking algorithm that utilizes multiview optical flow and per-frame
hair strand reconstruction while preserving specific geometric properties like
hair strand length and curvature.

• A volumetric ray marching algorithm on 3D scene flow which enables opti-
mization of the position and orientation of each volumetric primitive through
multiview 2D optical flow.

• A hair specific volumetric decoder for hair volume regression and with aware-
ness of hair structure.

4.2 Method
In this section, we introduce our hybrid neural volumetric representation for hair
performance capture. Our representation combines both, the drivability of guide

43

Multiview
Optical Flow

Volumetric
Raymarching

Radiance Field

HVHframe t+d
d ∈ {−𝟏, 𝟏}

Volumetric
Raymarching

Multiview
RGB

Encoder

Guide Hair
{S𝒏𝒕 }

Head Mesh
{𝒗𝒎𝒕 }

Hair Volume
𝒱$%&'(

Head volume
𝒱$

Head
Decoder

Per-strand
features {𝑓$)}

HVH frame t

Hair
Decoder

Hair strands
{S!" }

Hair strands
{S𝒏𝒕%𝟏}

Multiview
Optical Flow

Hair Chamfer Loss Length & Curvature
Loss

Hair reconstruction
{H𝒏𝒕#𝟏}

Hair strands
{S𝒏𝟎}

frame 0

frame t

frame t+1

frame N

...
...

Figure 4.1: Pipeline. Our method consists of two stages: in the first stage, we
perform guide hair tracking with multiview optical flow as well as per-frame hair
reconstruction. In the second stage, we further amplify the sparse guide hair strands
by attaching volumetric neural rendering primitives and optimizing them by using
the multiview RGB and optical flow data.

hair strands and the completeness of volumetric primitives. Additionally, the guide
hair strands serve as an efficient coarse level geometry for volumetric primitives
to attach to, avoiding unnecessary computational expense on empty space. As a
result of guide hair strand tracking as well as dense 3D scene flow refinement, our
model is temporally consistent with better generalization over unseen motions. As
illustrated in Fig. 4.1, the whole pipeline contains two major steps which we will
explain separately. In the first step, we perform strand-level tracking that leverages
multi-view optical flow information and propagates information about a subset of
tracked hair strands into future frames. To save computation time, we track only
guide hairs instead of tracking all hair strands. This is a widely used technique in
hair animation and simulation [13, 27, 72], which leads to a significant boost in run
time performance. However, getting the guide hairs tracked is not enough to model
the hair motion and appearance or to animate all the hairs due to the sparseness of
the guide hairs. To circumvent this, we combine it with a volumetric representation
by attaching volumetric primitives to the nodes on the guide hairs. This hybrid rep-
resentation has good localization of hairs in an explicit way and has full coverage of
all the hairs, making use of the benefits of both representations. Another advantage
is that the introduction of volumes allows optimizing hair shape and appearance by
multi-view dense photometric information via differentiable volumetric ray march-
ing. In the second step, we use the attached volumetric primitives to model the hairs
that are surrounding the guide hair strands to achieve dense hair appearance, shape
and motion acquisition. A hair specific volume decoder is designed for regressing
those volumes, conditioning on both a global latent vector and hair strand feature
vectors with hair structure awareness. Additionally, we develop a volumetric ray-

44

marching algorithm for 3D scene flow that facilitates the learning from multi-view
2D optical flow. We show in the experiments that the introduction of additional op-
tical flow supervision yields better temporal consistency and generalization of the
model.

4.2.1 Guide Hair Tracking

We frame the guide hair tracking process as an optimization problem. Given the
guide hair strands and multi-view optical flow at the current frame t, we unproject
and fuse optical flow under different camera poses into 3D flow and use that to infer
the next possible position of the guide hairs at the next frame t+ 1. The guide hair
initialization at first frame is prepared by artist.
Data Setup and Notation. In our setting, we perform hair tracking using multi-
view video data. We use a multi-camera system with around 100 synchronized color
cameras that produces 2048 × 1334 resolution images at 30 Hz. The cameras are
focused at the center of the capture system and distributed spherically at a distance
of one meter to provide as many viewpoints as possible. Camera intrinsics and
extrinsics are calibrated in an offline process. We generate multi-view optical flow
between adjacent frames for each camera, using the OpenCV [7] implementation
of [36]. We acquire per-frame hair geometry by running [63]. We parameterize
guide hairs as connected point clouds. Given a specific hair strand St at time frame
t, we denote the Euclidean coordinate of the nth node on hair strand St as St

n.
Similarly, we have the future position of St

n at time frame t + 1 as St+1
n . Next we

introduce the notations for multi-view camera related information. We denote Πi(·)
as the camera transformation matrix of camera i which projects a 3D point into 2D
image coordinate. We denote Iof,i and Id,i as 2D matrix of optical flow and depth of
camera i respectively. We denote Ht

n as the reconstructed point cloud with direction
from [63, 87]. Unless otherwise stated, all bold lower case symbols denote vectors.
Tracking Objectives. Given camera i, we could project a 3D point into 2D to
retrieve its 2D image index. The camera projection is defined as

p̂t
s,i =

[
pt
s,i

1

]
= Πi(S

t
n),

where p̂t
s,i is the homogeneous coordinate of pt

s,i. Given the camera projection
formulation, we formulate the first data-term objective based on optical flow as
follows:

45

Lof =
∑
n,i

ωn,i||St+1
n − Zi(S

t+1
n)Π−1

i (pt
s,i + δp)||22,

ωn,i = exp(−σ||Zi(S
t
n)− Id,i(p

t
s,i)||22),

δp = Iof,i(p
t
s,i),

where we denote Zi(·) as the function that represents the depth of a certain point un-
der camera i and ωi serves as a weighting factor for view selection where a smaller
value means larger mismatch of projected depth and real depth under the ith camera
pose. We use a σ = 0.01.

In parallel with the data-term objective on optical flow, we add another data-
term objective to facilitate geometry preserved tracking, which compares the Cham-
fer distance between tracked guide hair strands and the per-frame hair reconstruc-
tion from [63]. This loss is designed to make sure that the guide hair geometry
point cloud will not deviate too much from the true hair geometry. Unlike the con-
ventional Chamfer loss, we also penalize the cosine distance between the directions
of St

n and the direction of its closest k = 10 neighbors as H(St+1
n) ⊊ {Ht+1

n }; the
losses are defined as:

Lhdir =
∑

n,h∈H(St+1
n)

ωd
n,h(1− | cos(dir(St+1

n),dir(h))|),

Lhpos =
∑

n,h∈H(St+1
n)

ωr
n,h||St+1

n − h||22,

where ωd
n,h = exp(−σ||St+1

n − h||22) is a spatial weighting, cos(·, ·) is a cosine
distance function between two vectors and dir(St+1

n) = St+1
n+1−St+1

n is a first order
approximation of the hair direction at St+1

n . ωr
n,h = cos(dir(St+1

n),dir(h)) is a
weighting factor that aims at describing the direction similarity between St+1

n and
h. With Lhdir, we could groom the guide hairs St+1

n to have similar direction to
its closest k = 10 neighbors in H(St+1

n), resulting in a more consistent guide hair
direction distribution. Alternatively, Lhpos guarantees that the tracked guide hairs
do not deviate too much from the reconstructed hair shapes.

However, with just the data-term loss, the tracked guide hairs might overfit to
noise in the data terms. To prevent this, we further introduce several model-term
objectives for hair shape regularization.

46

Llen =
∑
n

(||dir(St+1
n)||2 − ||dir(S0

n)||2)2,

Ltang =
∑
n

((St+1
n+1 − St+1

n − St
n+1 + St

n) · dir(St
n))

2+

((St
n+1 − St

n − St+1
n+1 + St+1

n) · dir(St+1
n))2,

Lcur =
∑
n

(cur(St+1
n)− cur(S0

n)),

where cur(St
n) is a numerical approximation of curvature at point St

n and is defined
as:

√
24(||dir(St

n)||2 + ||dir(St
n)||2 − ||St

n − St
n+2||2)

||St
n − St

n+2||32
.

We optimize all loss terms together to solve {St+1
n } given {St

n} with:

Lhair =Lof + ωhdirLhdir + ωhposLhpos

+ ωlenLlen + ωtangLtang + ωcurLcur.

By utilizing momentum information across the temporal axis, we can provide a
better initialization of St+1

n given its trajectory and intialize St+1
n as

St+1
n = 3St

n − 3St−1
n + St−2

n .

4.2.2 HVH
Background. Similar to MVP, we define volumetric primitives Vn = {tn,Rn, sn,Vn}
to model a volume of local 3D space each, where Rn ∈ SO(3), tn ∈ R3 describes
the volume-to-world transformation, sn ∈ R3 are the per-axis scale factors and
Vn = [Vc,Vα] ∈ R4×M×M×M is a volumetric grid that stores three channel color
and opacity information. The volumes are placed on a UV-map that are unwrapped
from a head tracked mesh and are regressed from a 2D CNN. Using an optimized
BVH implementation, we can efficiently determine how the rays intersect each vol-
ume and find hit boxes. For each ray rp(t) = op + tdp, we denote (tmin, tmax) as
the start and end point for ray integration. Then, the differentiable aggregation of
those volumetric primitives is defined as:

47

Ip =
∫ tmax

tmin

Vc(rp(t))
dT (t)

dt
dt,

T (t) = min(

∫ t

tmin

Vα(rp(t))dt, 1).

We composite the rendered image as Ĩp = Ip + (1−Ap)Ip,bg whereAp = T (tmax)
and Ip,bg is the background image.
Encoder. The encoder uses the driving signal of a specific point in time and outputs
a global latent code z ∈ R256. We use the tracked guide hairs {St

n} and tracked
head mesh vertices {vt

m} to define the driving signal. Symmetrically, we learn
another decoder in parallel with the encoder in an auto-encoding way that regresses
the tracked guide hairs {St

n} and head mesh vertices {vt
m} from the global latent

code z . The architecture of the encoder is an MLP that regresses the parameter of
a normal distribution N (µ,σ),µ,σ ∈ R256. We use the reparameterization trick
from [34] to sample z from N (µ,σ) in a differentiable way.
Hair Volume Decoder. Besides the volumes that are attached to the tracked mesh
{vt

m}, we define additional hair volume Vhair
n that are associated with guide hair

nodes St
n. The position tn = t̂n+δtn , orientation Rn = δRn ·R̂n and scale sn = ŝn+

δsn of each hair volume are determined by the base hair transformation (̂tn, R̂n, ŝn)
and regressed hair relative transformation (δtn , δRn , δsn). The base translation t̂n
of each hair node is directly its position St

n. The base rotation R̂n is derived from
the hair tangential direction and the hair-head relative position. We denote τn as
the hair tangential direction at position St

n and ν ′
n as the direction pointing to the

tracked head center starting from St
n. Then, the base rotation is R̂n = [τTn ; ρ

T
n ; ν

T
n],

where ρn = τn × ν ′
n, νn = ρn × τn.

The geometry of hair can not be simply described by a surface. Therefore, we
design a 2D CNN that convolves along the hair growing direction and the rough
hair spatial position separately. Specifically, in the each layer of the 2D CNN, we
seperate a k × k filter into two k × 1 and 1× k filters and apply convolution along
two orthogonal directions respectively, similar to [113]. To learn a more consistent
hair shape and appearance model, we optimize per-strand hair features {f t

n} that
are shared across all time frames besides the temporally varying global latent code
z . For each node St

n on a hair strand St, we assign an unique feature vector f t
n. The

shared per-strand hair features and the temporal varying latent code z are fused to
serve as the input to the hair volume decoder, which is shown in Fig. 4.2.
Differentiable Volumetric Raymarching of 3D Scene Flow. Learning a volu-
metric scene representation by multi-view photometric information is sufficient for
high fidelity rendering and novel view synthesis. However, it is challenging for the

48

Global latent code
𝓏

Hair
Growing
Direction

Per-strand Hair Features
{𝑓!"}

Feature
DimensionHair Spatial

position

2D
CNN padding

concat 2D CNN

Hair Volume
𝒱!"#$%

Hair
Decoder

Figure 4.2: Architecture of the hair decoder. The hair decoder takes both the
global latent code z and the per-strand hair features {f t

n} as inputs. z is first decon-
volved into a 2D feature tensor. It is then padded and concatenated with {f t

n}. In
the following operation, the 2D convolution layers are applied along the hair grow-
ing direction and the hair spatial position seperately.

model to reason about motion given the limited supervision and the results have
poor temporal consistency, especially on unseen sequences. To better enforce tem-
poral consistency, we develop a differentiable volumetric ray marching algorithm
of 3D scene flow which enables training via multi-view 2D optical flow.

Given the transformations of each primitive as (tn,Rn, sn), we express the co-
ordinate of each node on a volumetric grid at frame u as Vu

xyz = stRtVtpl + tn,
where Vtpl are the coordinates of a 3D mesh grid ranging between [−1, 1]. Given
that the 3D scene flow from frame u to u + δ can be expressed by each volumetric
primitives as {δVu,u+ϵ

xyz = Vu+ϵ
xyz −Vu

xyz} and rendered into 2D flow as:

Iu,u+δ
p,flow =

∫ tmax

tmin

(δVu,u+ϵ
xyz (rp(t)))

dT (t)

dt
dt,

T (t) = min(

∫ tmax

tmin

Vu
α(rp(t))dt, 1).

Training Objectives. We train our model in an end-to-end manner with the follow-
ing loss:

49

L =Lpho + λflowLflow + λgeoLgeo

+ λvolLvol + λcubLcub + λKLLKL.

The first term Lpho is the photometric loss that compares the difference between the
rendered image Ĩp and ground truth image Ip on all sampled pixels p ∈ P ,

Lpho =
∑
p∈P

||Ip,gt − Ĩp||22.

The second term Lflow aims to enforce temporal consistency of volumetric prim-
itives from frame u and its adjacent frame u + ϵ by minimizing the projected 2D
flow and ground truth optical flow Iu,u+ϵ

p,flow,

Lflow =
∑
p∈P

Ap||Iu,u+ϵ
p,of − I

u,u+ϵ
p,flow||

2
2,

where ϵ ∈ {−1, 1}. It is important to note that we use Ap to mask out the back-
ground part and we do not back propagate the errors fromLflow toAp in order to get
rid of the background noise in optical flows. To better enforce hair and head prim-
itives moving with the tracked head mesh and guide hair strands, Lgeo is designed
to measure the difference between the mesh/strand vertices and their corresponding
regressed value.

Lgeo =
∑
n

||St
n − St

n,gt||22 +
∑
m

||vt
m − vt

m,gt||22,

where St
n and vt

m are the coordinate of the nth node of the tracked guide hair and
tracked head mesh at frame t and the Xgt denotes the corresponding ground truth
value.

We also add several regularization terms to inform the layout of the volumetric
primitives:

Lvol =
∑

i=1,··· ,Np

∏
j∈{x,y,z}

sji ,

Lcub =
∑

i=1,··· ,Np

||max(sxi , s
y
i , s

z
i)−min(sxi , s

y
i , s

z
i)||,

50

where Np stands for the total number of volumetric primitives and sxi , s
y
i , s

z
i are the

three entries of each volumetric primitive’s scale sj . The two regularization terms
aim to prevent each primitive from growing too big while preserving the aspect
ratio so that they remain approximately cubic. The last term is the Kullback-Leibler
divergence loss LKL which makes the learnt distribution of latent code z smooth
and enforces similarity with a normal distribution N (0, 1).

4.3 Experiments

4.3.1 Dataset

For each video recorded with our multi camera system, we split the them by the
motions performed (like nodding and shaking of the head) and hold out the last 1

4
of

each motion for testing drivable animation. This results in roughly 300 frames for
training sequence and 100 frames for testing sequence. Additionally, on the training
sequence, we hold out 7 cameras that are distributed around the rear and side view
of the head. The captured images are downsampled to 1024 × 667 resolution for
training and testing. We train our model exclusively on the training portion of each
sequence with m = 93 training views.

We use a multi-camera system with around 100 synchronized color cameras that
produces 2048 × 1334 resolution images at 30 Hz. The cameras are focused at the
center of the capture system and distributed spherically at a distance of one meter
to provide as many viewpoints as possible. Camera intrinsics and extrinsics are
calibrated in an offline process. We captured three sequences of different hair styles
and hair motions. In the first sequence, we have one actor with a short high pony tail
performing nodding and rotating. In the second sequence, we have one actor with
a curly long releasing style hair and leaning her head towards four directions(left,
right, up and down) and rotating. In the third sequence, we have one actor with a
long high pony tail performing nodding and rotating.
Diversity in hairstyles: Given that the main focus of this work is dynamic hair
capture and tracking, we selected several hairstyles with a certain level of diversity,
like long curly open hair, mid-length fluffy straight pony tail, and long curly pony
tail, that exhibit complex dynamic behavior where hair does not move rigidly with
the head—hence are particularly well-suited for analyzing the performance of the
proposed approach. Regarding generalization, the 3D scene flow formulation and
the hair decoder are agnostic to specific hair structure and color; the hair tracking
algorithm depends on artist prepared guide strands and, together with the optical
flow, requires sufficient contrast for hair strands and background. Given its strand-
based nature, our method might not be suitable for specific hairstyles like buzz

51

cut or afro-textured hair, where it is challenging to create the initialization of the
strands. However, we want to point out that our 3D scene flow formulation, which is
agnostic to hair style, alone already improves MVP (as shown in the experiments).

4.3.2 Baselines
We compare against several volume-based or implicit function based baseline meth-
ods [40, 47, 95] for spatio-temporal modeling.
MVP [47] presents an efficient 4D representation for dynamic scenes with humans
which is capable of doing animation and novel view synthesis. It combines explic-
itly tracked head mesh with volumetric primitives to model the human appearance
and geometry with better completeness. The volumetric primitives can be aligned
onto an unwrapped 2D UV-map from a tracked head mesh and can be regressed
from a 2D convolutional neural network that leverages shared spatially computa-
tion. Similar to Neural Volumes [46], a differentiable volumetric ray marching algo-
rithm is designed to render 2D rgb images on MVP in real time. We use Np = 4096
volumetric primitives with a voxel resolution 8× 8× 8 on each sequence with a ray
marching step size around dt = 1mm. We use a global latent size of 256.
Non-rigid NeRF [95] presents an implicit function based representation for dy-
namic scene reconstruction and novel view synthesis based on NeRF [61]. It uti-
lizes a hierarchical model by disentangling a dynamic scene into a canonical frame
NeRF and its corresponding deformation field which is parameterized by another
MLP. In our experiments, we use 128 sampling points for both coarse and fine level
sampling. We use the original implementation from the authors here. We train
different models for each sequences and each model is trained for at least 300k
iterations until convergence.
NSFF [40] is another implicit function based representation for dynamic scenes
that is also based on NeRF [61]. It learns a per-frame NeRF that is additionally
conditioned on the time index. It brings optical flow as additional supervision and
learns a 3D scene flow in parallel with the per-frame NeRF for enforcing temporal
consistency. NSFF is able to perform both spatial and temporal interpolation on a
given video sequence. We use a setting of 256 sampling points in our experiments,
using [36] as a substitute for generating optical flow. We use the original imple-
mentation from the authors here. We train different models for each sequences and
each model is trained for at least 300k iterations until convergence.

4.3.3 Training Details
For both tracking optimization and HVH training, We deploy Adam [33] for op-
timization. For hair tracking, we use a learning rate of 1. We set the weighting

52

https://github.com/facebookresearch/nonrigid_nerf
https://github.com/zl548/Neural-Scene-Flow-Fields

coefficients of each losses as ωhdir = 3, ωhpos = 1, ωlen = 3, ωtang = 3 and
ωcur = 1e4. For each time step, 100 iterations are taken for optimization to solve
the possible hair strands at next frame out. For HVH, we set weighting parame-
ters for each objective as λflow = 1. λgeo = 0.1, λvol = 0.01, λcub = 0.01 and
λKL = 0.001. All models are trained with approximately 100-150k iterations. We
use a latent code size of 256 and per-strand hair code size of 256, raymarching step
size around dt = 1mm and around Np = 5500 volumetric primitives with a voxel
resolution 8×8×8 for each sequence depending on the number of guide hairs. For
each sequence, we have roughly 30 strands for guide hair and we sample 50 points
on each strands.

4.3.4 Novel View Synthesis

Seq01 Seq02 Seq03
MSE SSIM PSNR MSE SSIM PSNR MSE SSIM PSNR

PFNeRF 51.25 0.9269 31.16 103.41 0.8659 28.15 76.59 0.9000 29.50
NSFF 50.13 0.9346 31.21 90.06 0.8885 28.75 83.18 0.8936 29.1

NRNeRF 56.78 0.9231 30.78 132.16 0.8549 27.13 79.83 0.8987 29.33
MVP 47.54 0.9476 31.6 77.23 0.9088 29.62 73.78 0.9224 29.66
Ours 41.89 0.9543 32.17 59.84 0.9275 30.69 71.58 0.9314 29.81

Table 4.1: Novel view synthesis. We compare our method with both NeRF
stemmed methods like NSFF [40], NRNeRF [95] and a per-frame NeRF (PFNeRF)
baseline, and a volumetric method like MVP [47]. As we can see, our methods
achieves the best performance on image reconstruction metrics.

We show both qualitative and quantitative comparisons with other methods [40,
47, 95] on the novel view synthesis task. In Tab. 4.1, we show the mean squared
error (MSE), SSIM and PSNR between predicted images and ground truth images
from the novel views of the training sequences. Qualitative results are shown in
Fig. 4.3. Our method has smaller image prediction errors and is able to generate
sharper results, especially on the hair regions.

We show a larger version of comparison figure between different methods in
Figure 4.4. For completeness, we also include visualizations from a perframe NeRF
model which takes a perframe temporal code as input liker non-rigid NeRF [95].

4.3.5 Ablation Studies
Temporal consistency. To test the effects of the temporal consistency and the
tracked guide hair, we also conduct a novel view synthesis task on the test portion

53

Seq01 Seq02 Seq03
MSE SSIM PSNR MSE SSIM PSNR MSE SSIM PSNR

MVP 47.54 0.9476 31.6 77.23 0.9088 29.62 73.78 0.9224 29.66
MVP w/ Lflow 46.49 0.9473 31.69 71.07 0.9107 29.93 75.13 0.9240 29.58

Ours w/o Lflow 43.82 0.9508 31.99 65.98 0.9186 30.27 69.97 0.9359 29.93
Ours 41.89 0.9543 32.17 59.84 0.9275 30.69 71.58 0.9314 29.81
MVP 75.68 0.9200 29.49 85.10 0.9039 29.62 83.76 0.9086 29.16

MVP w/ Lflow 67.86 0.9276 30.00 83.11 0.9037 29.93 80.96 0.9086 29.16
Ours w/o Lflow 71.90 0.9223 29.74 72.74 0.9137 30.27 78.34 0.9198 29.44

Ours 65.96 0.9280 30.09 67.75 0.9208 30.69 75.66 0.9222 29.57

Table 4.2: Novel view synthesis. We further compare our method and different
variants of our methods with MVP [47] on novel views of both seen (top) and un-
seen (bottom) sequences. We find that using the optical flow to enforce the temporal
consistency leads to improvement on both MVP [47] and our method, while the best
results are achieve when coarse level guide hair tracking is combined with fine level
flow optimization.

of our captured sequence. Note that our model is not trained using any part of the
test sequence data. In Tab. 4.2, we report MSE, SSIM, PSNR from different vari-
ants of our method with MVP on novel views of both seen and unseen sequences.
As we can see, having the coarse level guide hair strands tracked and without flow
supervision gives us better rendering quality. With flow supervision, the results
are improved further. This improvement is because the tracking information helps
the volumetric primitives to better localize the hair region with higher consistency.
While the improvement for seen motions is relatively small, both our model and
MVP are notably improved for unseen sequences with novel hair motion when flow
supervision is added. Rendering results on unseen sequences are shown in Fig. 4.8.
In Fig. 4.9, we visualize the volumetric primitives of the hairs of our model with
and without flow supervision. Including flow supervision produces notably better
disentanglement between the hair and shoulder.

We show a bigger version of rendering results on unseen sequence in Fig-
ure 4.10.
Hair Decoder structure. As part of the hair decoder ablation, we compare our
method with a naive decoder that uses the same volume decoder as MVP [47] for
hair volumes. There are two major differences: 1) the naive decoder does not take
the per-strand hair feature as input; 2) The design of the naive decoder does not
take into account the hair specific structure where it regresses the same slab as for
head tracked mesh and we take the first Nhair volumes as the output. In this way,
the naive decoder discards all intrinsic geometric structural information while doing
convolutions in each layers. We show the hair volumes layout in Figure 4.11. In the

54

NSFF [40] NRNeRF [95] MVP [47] Ours Ground Truth

Figure 4.3: Comparison on novel view synthesis between different methods.
We compare our method on novel view synthesis with different volumetric meth-
ods like a perframe time conditioned NeRF model, NSFF [40], NRNeRF [95] and
MVP [47]. Rendering results on three different subjects with different hairstyles are
shown. Interesting parts of hair with details are highlighted using a red bounding
box. As we can see, our method is capable of generating a consistent global shape
while also capturing enough details.

naive design, the hair strands are randomly squeezed into a square UV-map which
could break the inner connections of each hair. In our design, we groom the hair
strands into the their directions which could preserve the hair specific geometric
structure. We compare different designs of decoder on Seq01. As in Table 4.3,
our hair structure aware decoder produces a smaller image reconstruction error and
better SSIM, a result of inductive bias of the designed hair decoder.

We additionally compare two different designs of the hair decoder where we
do late and early fusion of the per-strand hair feature and the global latent feature.

55

Perframe NeRF NSFF [40] NR NeRF [95] MVP [47] Ours Ground Truth

Figure 4.4: Comparison on novel view synthesis between different methods. We
compare our method with different volumetric methods including a perframe time
conditioned NeRF model, NSFF [40], NRNeRF [95] and MVP [47].

decoder MSE SSIM PSNR
naive 45.68/75.15 0.9549/0.9220 31.83/29.54

early fus. 43.75/71.08 0.9533/0.9259 31.97/29.82
late fus. 41.89/65.96 0.9543/0.9280 32.17/30.09

Table 4.3: Decoder structure. We compare different designs of the hair decoder.
We report all metrics on both training and testing and we use a to separate them
where on the left are the results of novel synthesis on training sequence.

We show two different designs in Figure 4.12. Table 4.3 shows that the late fusion
model performs better than early fusion model. This could be because the late
fusion model transfers the 1d global latent code into a spatially varying feature
tensor which is a more expressive form of feature representation.
Hair tracking analysis. We first study the impact of different objectives Llen +
Ltang and Lcur in hair tracking. As in Fig. 4.13, when both Lcur and Llen + Ltang

56

are applied, the tracking results are more smooth and without kinks. We observe
that, when using the loss Llen + Ltang as the only regularization term, the length
of each hair strand segments are already preserved but could cause some kinks
without awareness of the correct hair strand curvatures. Lcur itself does not help and
exaggerates the error when the hair strand length is not correct, but yields smooth
results when combined with Llen+Ltang. This is because curvature computation is
agnostic to absolute length of the hair and only controls the relative length ratio.

We show the impact of different initialization for hair tracking in Fig. 4.14.
When no momentum information from previous frames is used, there is more obvi-
ous drifting on some of the strands happening, while the drifting is less severe when
we take advantage of the motion information from previous frames.

In Figure 4.15, we plot different hair properties over time. We report four dif-
ferent metrics describing how well the tracked hairs fit the per-frame reconstruction
and how well it preserves its length and curvature. In the first two rows, we report
the MSE between the tracked hair and the tracked hair at first frame in terms of cur-
vature and length. In the last two rows, we report the cosine distance between the
direction of each nodes on the tracked guide hair and the direction of its neighbor
from the reconstruction and the Chamfer distance between the tracked guide hair
nodes and the reconstruction. As we can see the length and curvature are relatively
preserved across frames and the affinity between the per-frame reconstruction and
the tracked guide hair is relatively high.
Visualization of Flow: Please see Figure 4.16 for a visualization of the rendered
flow from our representation. Compared to the optical flow from [36], our rendered
2D flow has less noise on the background. This is because that we only define our
3D scene flow on the volumetric primitives instead of the whole space. With the
help of the coarse level geometry like the hair strands and head tracked mesh, the
scene flow of most part of the empty space will naturally be zero. This could help
us eliminate the noise from the background optical flow to certain degree.
Run Time Analysis. We report the rendering time of one iamge at resolution
1024 × 667 for each methods here. MVP [47] takes 0.223s. Ours takes 0.254s.
NSFF takes 28.68s. NRNeRF [95] takes 41.29s. All tests are conducted under a
single Nvidia Tesla V100 GPU.

4.4 Video Results

Please see all the video results on this page1.

1https://ziyanw1.github.io/hvh/

57

https://ziyanw1.github.io/hvh/

4.5 Applications and Limitations
One major application that is enabled by our neural volumetric scene representation
is novel view synthesis as we have shown in Sec. 4.3.4. Our neural volumetric rep-
resentation is also animatable with a sparse driving signals like guide hair strands.
Given that we have explicitly modeled hair in the form of guide strands, our method
allows modifying the guide hairs directly. In Fig. 4.17, we show four snapshots of
different configurations of hair positions.

There are several limitations of our work which we plan to address in the future:
1) Our method requires the help from artist to prepare guide hair at the first frame
and some flyaway hair might be excluded. 2) We currently do not consider physics
based interactions between hair and other objects like the shoulder or the chair.
3) Although we achieved certain level of disentanglement between hair and other
objects without any human labeling, it is still not perfect. We only showed results
on blonde hair which could be better distinguished from a dark background. Our
method might be limited by other hairstyles like buzz cut or afro-textured that are
hard for artist to prepare guide hair. Future directions like incorporating a physics
aware module or leveraging additional supervision from semantic information for
disentanglement could be interesting.

4.6 Discussion
In this chapter, we present a hybrid neural volumetric representation for hair dy-
namic performance capture. Our representation leverages the efficiency of guide
hair representation in hair simulation by attaching volumetric primitives to them
as well as the high DoF of volumetric representation. With both hair tracking and
3D scene flow refinement, our model enjoys better temporal consistency. We em-
pirically show that our method generates sharper and higher quality results on hair
and our method achieves better generalization. Our model also supports multiple
applications like drivable animation and hair editing.

58

Figure 4.5: Rendering results on subject 3. We show more rendering results under
two novel views on subject 3. From left to right, we show results of a perframe
NeRF, NRNeRF [95], NSFF [40], MVP [47], ours and ground truth.

59

Figure 4.6: Rendering results on subject 2. We show more rendering results under
two novel views on subject 3. From left to right, we show results of a perframe
NeRF, NRNeRF [95], NSFF [40], MVP [47], ours and ground truth.

60

Figure 4.7: Rendering results on subject 1. We show more rendering results under
two novel views on subject 3. From left to right, we show results of a perframe
NeRF, NRNeRF [95], NSFF [40], MVP [47], ours and ground truth.

61

MVP MVP w/ flow Ours w/o flow Ours Ground Truth

Figure 4.8: Ablation of temporal consistency. We compare our method and MVP
w/ and w/o flow supervision. With flow supervision, better temporal consistency
and generalization for unseen sequence can be observed.

w/o flow sup. w/ flow sup. Ground truth

Figure 4.9: Ablation on flow supervision. We further compare the volumetric
primitives of the models w/ and w/o flow supervision. We see that the model with
additional flow supervision yields a consistent and reasonable shape for hair and
yields better hair shoulder disentanglement.

62

MVP MVP w/ flow Ours w/o flow Ours Ground Truth

Figure 4.10: Ablation of temporal consistency. We compare MVP [47] and ours
with different variations.

Naive Decoder Our Decoder

Figure 4.11: Hair volumes layout. We show the hair volume layout of both naive
decoder and ours.

63

Global latent code
𝓏

Hair
Growing
Direction

Per-strand Hair Features
{𝑓!"}

Feature
DimensionHair Spatial

position

2D
CNN padding

concat 2D CNN

Hair Volume
𝒱!"#$%

Hair
Decoder

Global latent code
𝓏

Per-strand Hair Features
{𝑓!"}Hair

Growing
Direction

Feature
DimensionHair Spatial

position

2D CNN

Hair Volume
𝒱!"#$%

Hair
Decoder

concat

repeat

Figure 4.12: Architecture of the hair decoder. We show late fusion on the top and
early fusion on the bottom. The late fusion model first deconvolves the 1D global
latent code into a 2D feature map and then concatenate it with the per-strand hair
features. A 2D CNN is used afterwards to generate the hair volumes. The early
fusion model first repeat the 1D global latent vector spatially and then concatenate
the repeated feature map with per-strand hair features. The concatenated features
are than fed into a deeper 2D CNN to generate the hair volumes.

64

w/o Lcur
Llen + Ltang

w/o Llen + Ltang w/o Lcur
w/ Lcur

Llen + Ltang

Figure 4.13: Effects of Llen + Ltang and Lcur. We show how the shape and cur-
vature of tracked hair strands are preserved with both Llen + Ltang and Lcur. Point
on the same strand are visualized in the same color and adjacent points are con-
nected with line in the same color. When no regularization on hair strand geometry
is applied, some part of the hair strand get stretched or become zigzag. When only
the second order regularization Lcur is applied, we find the results become more
unstable. When first order regularization Llen + Ltang is applied, the tracked hair
strand become more stable but zigzags still persist. When all terms are applied, we
get the most smooth result. This suggest that all regularization terms are supposed
to be applied together.

65

frame 118 frame 119 frame 120 frame 121 frame 122

no
mm.

1st
ord.
mm.

2nd
ord.
mm.

Figure 4.14: Ablation of different initialization in hair tracking. We show track-
ing results of our methods with different initializations. From top to bottom, we
use no momentum information, first and second order momentum information for
tracking initialization. Please note the brown and orange strands. As we can see,
the hairs are better tracked when we utilize the dynamic information from previous
frames. Better view in color version.

Figure 4.15: Plot of tracked hair properties v.s. time. As we can see, the hair
properties like length and curvature are not changing too much across time and hair
Chamfer distance are relatively small.

66

Flow from ours Flow from [36] Ground truth

Figure 4.16: Visualization of flow. We show the rendered 3D scene flow into 2D
flow in the first column and the openCV optical flow [36] in the second column.
The last column shows the ground truth image as reference.

Figure 4.17: Hair position editing. We create a new animation by direct editing on
the guide hair strands. As the guide hair provide a tangible interface to control the
hair part, we can directly drive the volumes of hair by adding motion to the guide
hair like lifting it up to create new animation.

67

Chapter 5

NeuWigs: A Neural Dynamic Model
for Volumetric Hair Capture and
Animation

68

5.1 Introduction
The ability to model the details of human hair with high fidelity is key to achiev-
ing realism in human avatar creation because hair establishes part of our personal
identity.One big challenge towards that goal is how to capture the hair dynamics.
While modern capture systems reconstruct the hair geometry and appearance from
a sparse and discrete set of real world observations with high fidelity, the problem
of tracking is not trivially solved by that as not temporal alignment between those
reconstructions is established.

In the previous chapter 4, we designed a forward tracking algorithm based on
data-driven prior of flow. Although many hand-crafted regularizers on hair shape
and curvatures are applied, the tracking algorithm is not robust to long sequence as
errors accumulate along the forward pass. Furthermore, it relies on artist input to
prepare the guide hair strand as an initialization. This design becomes problematic
when it is hard for the artist to prepare guide hair for certain hairstyle or register
different states of the same hairstyle.

Another challenge is how to generate realistic hair dynamics. Generating re-
alistic dynamics given only the head motion is similarly hard because the motion
of hair is not solely controlled by the head position but also influenced by gravity
and inertial forces. From a control perspective, hair does not respond linearly to
the head position and a zero-order system is inadequate for modeling hair dynam-
ics. To achieve that, we need to go beyond reconstructing and tracking to create a
controllable dynamic hair model using captured data.

In conventional animation techniques, hair geometry is created by an artist man-
ually preparing 3D hair grooms. Motion of the 3D hair groom is created by a
physics simulator where an artist selects the parameters for the simulation. This
process requires expert knowledge. In contrast, data-driven methods aim to achieve
hair capture and animation in an automatic way while preserving metric photo-
realism. Most of the current data-driven hair capture and animation approaches
learn to regress a dense 3D hair representation that is renderable directly from per-
frame driving signals, without modeling dynamics.

However, there are several factors that limit the practical use of these data-driven
methods for hair animation. First of all, these methods mostly rely on sophisticated
driving signals, like multi-view images [46, 69], a tracked mesh of the hair [47], or
tracked guide hair strands [102], which are hard to acquire. Furthermore, from an
animation perspective, these models are limited to rendering hair based on obser-
vations and cannot be used to generate novel motion of hair. Sometimes it is not
possible to record the hair driving signals at all. We might want to animate hair
for a person wearing accessories or equipment that (partially) obstructs the view of
their hair, for example VR glasses; or animate a novel hair style for a subject.

69

Figure 5.1: Animation from Single View Captures. Our model can generate re-
alistic hair animation from single view video based on head motion and gravity
direction. Original captures of subjects wearing a wig cap are shown in red boxes.

To address these limitations of existing data-driven hair capture and animation
approaches, we present a neural dynamic model that is able to animate hair with
high fidelity conditioned on head motion and relative gravity direction. By building
such a dynamic model, we are able to generate hair motions by evolving an ini-
tial hair state into a future one, without relying on per-frame hair observation as a
driving signal. We utilize a two-stage approach for creating this dynamic model: in
the first stage, we perform state compression by learning a hair autoencoder from
multi-view video captures with an evolving tracking algorithm. As adjacent hair
states are temporally continuous, we believe that such property can be preserved
when they are encoded into an embedding space and tracking between them are
automatically discovered through the encoding learning. Our method is capable
of capturing a temporally consistent, fully renderable volumetric representation of
hair from videos with both head and hair. Hair states with different time-stamps are
parameterized into a semantic embedding space via the autoencoder. In the second

70

Figure 5.2: Method Overview. Our method is comprised of two stages: state com-
pression and dynamic modeling. In the first stage, we train an autoencoder for hair
and head appearance from multiview RGB images using differentiable volumetric
raymarching; at the same time we create an encoding space of hair states. In the
dynamic modeling stage, we sample temporally adjacent hair encodings to train a
temporal transfer module (T2M) that performs the transfer between the two, based
on head motion and head-relative gravity direction.

stage, we sample temporally adjacent pairs from the semantic embedding space and
learn a dynamic model that can perform the hair state transition between each state
in the embedding space given the previous head motion and gravity direction. With
such a dynamic model, we can perform hair state evolution and hair animation in
a recurrent manner which is not driven by existing hair observations. As shown in
Fig 5.1, our method is capable of generating realistic hair animation with different
hair styles on single view captures of a moving head with a bald cap. In summary,
the contributions of this work are

• We present NeuWigs, a novel end-to-end data-driven pipeline with a volumetric
autoencoder as the backbone for real human hair capture and animation, learnt
from multi-view RGB images.

• We learn the hair geometry, tracking and appearance end-to-end with a novel
autoencoder-as-a-tracker strategy for hair state compression, where the hair is
modeled separately from the head using multi-view hair segmentation.

• We train an animatable hair dynamic model that is robust to drift using a hair state
denoiser realized by the 3D autoencoder from the compression stage.

5.2 Method
Our method for hair performance capture and animation consists of two stages:
state compression and dynamic modeling (see also Fig. 5.2). The goal of the first

71

stage is to perform dynamic hair capture from multi-view video of a head in motion.
To be more specific, in this stage, we aim to distill a 3D renderable representation
of hair from multi-view images at each frame into an embedding space. To achieve
that, we train a volumetric autoencoder in a self-supervised manner to model the
hair geometry, tracking and appearance. The output of this model is a set of tracked
hair point clouds pt, their corresponding local radiance fields in the form of vol-
umetric primitives Vt and a compact embedding space that is spanned by the 1D
hair state encoding zt. In the second stage, we perform modeling of hair dynamics
based on the hair capture from the first stage. The goal of this stage is to create a
controllable, self-evolving representation of hair without relying on online obser-
vations of hair. We achieve this by learning a neural network to regress the next
possible hair state, which is conditioned on the previous hair state as well as the
previous head motion and head-relative gravity direction. Equipped with the hair
encoding space acquired from the first stage, we can train that model in a super-
vised manner by simply sampling data pairs of temporally adjacent hair states from
the encoding space. Using both stages, we can perform dynamic hair animation at
test time given an initialization using a recurrent strategy, without relying on direct
observations of hair as a per-frame driving signal.

5.2.1 State Compression
We assume that multi-view image captures Icami

with their corresponding calibrated
cameras are given. We denote the extrinsics of each camera i as Ri and ti. We then
run l-MVS [63] and non-rigid tracking [106] to obtain the per-frame hair recon-
structions pt ∈ RNpt×3 and head tracked vertices xt ∈ RNxt×3 at time frame t,
where Npt and Nxt denote the size of each. The pt and xt together serves as a
coarse representation for the hair and head. Different from the head vertices, here
the pt represent an unordered set of hair point clouds. Due to the difference between
hair and head dynamic patterns, we model them separately by training two differ-
ent volumetric autoencoders. For the head model, we use an autoencoder to regress
the volumetric texture in an unwrapped UV layout conditioned on the tracked head
mesh, similar to [47,102]. For the hair model, we optimize the hair volumetric tex-
ture and its tracking simultaneously. To better enforce the disentanglement between
hair and head, we attach head volumes only to the head mesh and hair volumes only
to the hair point clouds. Moreover, we use a segmentation loss to constrain each of
them to only model the texture of their assigned category of hair or head.
Autoencoder as a Tracker. Learning to track hair in a supervised manner with
manual annotation is infeasible. We automatically discover the hair keypoints as
well as their tracking information by optimizing a variational autoencoder (VAE) [34]
in a semi-supervised manner. By doing autoencoding on hair point clouds, we find

72

that the VAE representing the hair point cloud can automatically align hair shapes
along the temporal axis and is capable of tracking through both long and discontin-
uous hair video segments such as captures of different hair motions.

The input to the point encoder E is the point coordinates of the unordered hair
point cloud pt. Given its innate randomness in terms of point coverage and order,
we use PointNet [74] to extract the corresponding encoding zt ∈ R256. Besides
being agnostic to the order of pt, it also can process varying numbers of points
and aggregate global information from the input point cloud. The point decoder
D is a simple MLP that regresses the coordinate and point tangential direction of
the tracked point cloud qt ∈ RNprim×3, dir(qt) ∈ RNprim×3 and st ∈ RNprim from
zt, where Nprim is the number of tracked hair points. We denote dir(x) as the
tangential direction of x. st is a per-point scale factor which will be used later. We
optimize the following loss to train the point autoencoder:

Lgeo = Lcham + ωtempLtemp + ωKLLKL.

The first term is the Chamfer distance loss which aims to align the shape of tracked
point cloud qt to pt:

Lcham = ||qt − Nqt,pt ||2 − cos(dir(qt),dir(Nqt,pt))

+||pt − Nqt,pt ||2 − cos(dir(pt),dir(Nqt,pt)),

where cos(·, ·) is the cosine similarity and Nx,y ∈ RNx×3 are the coordinates of the
nearest neighbor of each point of x in y. To further enforce temporal smoothness,
we use point flow

−→
fl(pt) and

←−
fl(pt) denoting forward and backward flow from pt

to pt+1 and pt−1 as additional supervision and formulate Ltemp as follows:

Ltemp = ||
←−
fl(p̂t)−

←−
fl(Nqt,pt)||2 + ||

←−
fl(pt)−

←−
fl(Npt,qt)||2

+||
−→
fl(p̂t)−

−→
fl(Nqt,pt)||2 + ||

−→
fl(pt)−

−→
fl(Npt,qt)||2,

where as qt is the tracked point, we can simply have
←−
fl(qt) = qt−qt−1 and

−→
fl(qt) =

qt− qt+1. Please see the Section 5.3.2 for how we estimate
←−
fl(Nqt,pt). The last term

LKL is the KL-divergence loss [34] on the encoding zt to enforce similarity with a
normal distribution N (0, 1).
Hair Volumetric Decoder. In parallel to the point decoder D, we optimize a hair
volumetric decoder that regresses a volumetric radiance field around each of the
hair points. The hair volumetric primitives Vt ∈ RNprim×4×m3 store RGB and alpha
in resolution of m3. We use a decoder similar to HVH [102] to regress the volume
payload. The pose of each volumetric primitive is directly determined by the output
of the point decoder: qt and dir(qt). We denote Rp,n

t ∈ SO(3) and dp,n
t ∈ R3

73

as the nth volume-to-world rotation and translation of hair volume and per-hair-
volume scale sp,nt as the nth element in scale st. Similarly, dn

t = qnt is the nth
element of qt. Given the head center xc

t extracted from the head vertices xt and
hair head direction as h̄n

t = qnt − xc
t , we formulate the rotation Rp,n

t as Rp,n
t =

[l(qnt), l(q
n
t × h̄n

t), l(q
n
t × (qnt × h̄n

t))]
T , where l(x) = x/||x||2 is the normalization

function. The output of the head model is similar to the hair part except that it is
modeling head related (non-hair) regions. We denote the head volume payload as
Ut ∈ RNprim×3×m3 and head related rotation Rx,n

t ∈ SO(3), translation dx,n
t ∈ R3

and scale sx,nt ∈ R.
Differentiable Volumetric Raymarching. Given all volume rotations Rall

t =
[Rx,n

t ,Rp,n
t], translations dall

t = [dx,n
t ,dp,n

t], scales sallt = [sx,nt , sp,nt] and local ra-
diance fields V all

t = [Ut,Vt], we can render them into image Icami
and compare it

with Icami
to optimize all volumes. Using an optimized BVH implementation sim-

ilar to MVP [47], we can efficiently determine how each ray intersects with each
volume. We define a ray as r(p, l) = o(p)+lv(p) shooting from pixel p in direction
of v(p) with a depth l in range of (lmin, lmax). The differentiable formation of an
image given the volumes can then be formulated as below:

Ip =
∫ lmax

lmin

Vall
t,rgb(rp(l))

dT (l)

dl
dl,

T (l) = min(

∫ l

lmin

Vall
t,α(rp(l))dl, 1),

where V all
t,rgb is the RGB part of V all

t and V all
t,α is the alpha part of V all

t . To get the
full rendering, we composite the rendered image as Ĩp = Ip + (1−Ap)Ip,bg where
Ap = T (lmax) and Ip,bg is the background image. We optimize the following loss
to train the volume decoder:

Lpho = ||Ĩp − Ip,gt||1 + ωV GGLV GG(Ĩp, Ip,gt),

where LV GG is the perceptual loss in [29] and Ip,gt is the ground truth pixel value of
p. We find that the usage of a perceptual loss yields more salient rendering results.

However, as we optimize both Ut and Vt from the images, texture bleeding
between the hair volume Vt and the head volume Ut becomes a problem. The
texture bleeding issue is especially undesirable when we want to treat the hair and
head separately, for example, when we want to animate new hair to a head. To
prevent this, we additionally render a hair mask map to regularize both Vt,α and
Ut,α. We denote the ground truth hair mask as Mp,gt and the rendered hair mask as

74

Mp:

Mp =

∫ lmax

lmin

Vall
t,1(rp(l))

dT (l)

dl
dl,

T (l) = min(

∫ l

lmin

Vall
t,α(rp(l))dl, 1),

where Vall
t,1 is all one volume if it belongs to Vt otherwise zero. We formulate the

segmentation loss as Lmask = ||Mp −Mp,gt||1. The final objective for training the
whole autoencoder is L = Lgeo + Lpho + ωmaskLmask.

5.2.2 Dynamic Model
In the second stage, we aim to build a dynamic model that can evolve hair states over
time without relying on per-frame hair observation as a driving signal. To achieve
that, we leverage the embedding space of hair states built at the state compression
stage and train a model that performs the hair state transfer in a supervised manner.
To this end, we build a temporal transfer module (T2M) of hair dynamic priors, that
evolves the hair state and can produce hair animation based on the indirect driving
signals of head motion and head-relative gravity direction in a self-evolving manner.
The design of T2M is similar to a hair simulator except that it is fully data-driven.
One of the inputs to T2M is the encoding zt−1 of the previous time step. At the same
time, T2M is also conditioned on the head per-vertex displacement ht = xt − xt−1

and ht−1 = xt−1 − xt−2 from the previous two time steps as well as head relative
gravity direction gt ∈ R3 at the current time step. T2M will then predict the next
possible state ẑt from T2M based on those inputs. Similar to the design of the VAE,
the output of T2M is a distribution instead of a single vector. To be more specific,
the mean and standard deviation of ẑt are µ(ẑt), δ(ẑt) = T2M(zt−1|ht,ht−1, gt).
During training, we take ẑt = µ(ẑt) + n ⊙ δ(ẑt) and during testing ẑt = µ(ẑt).
The per point normal distribution vector, n, is the same shape as δ(ẑt) and ⊙ is the
element-wise multiplication.
Training Objectives. We denote the point encoder as E(·) and the point decoder
as D(·). Across the training of T2M, we freeze the parameters of both, E and D. We
denote the unordered point cloud at frame t as pt, its corresponding encoding as
µ(zt), δ(zt) = E(pt) and the tracked point cloud as qt = D(zt). The following loss
enforces the prediction of T2M to be similar to its ground truth:

Lmse = ||µ(ẑt+1)− µ(zt+1)||2 + ||δ(ẑt+1)− δ(zt+1)||2
Lcos = −cos(µẑt+1, µzt+1)− cos(δẑt+1, δzt+1)

Lptsmse = ||D(ẑt+1)−D(zt+1)||2,

75

where we not only minimize the ℓ2 distance between ẑt+1 and zt+1, but also enforce
the cosine similarity and the corresponding tracked point cloud to be equivalent. To
adapt T2M to the tracked point cloud qt, we compute the above loss again but using
qt as input, where we generate the corresponding encoding as z′

t from E(qt) and its
prediction ẑ′

t+1 from T2M(z′
t|ht,ht−1, gt):

Lmse,cyc = ||µ(ẑ′
t+1)− µ(zt+1)||2 + ||δ(ẑ′

t+1)− δ(zt+1)||2
Lcos,cyc = −cos(µẑ′

t+1, µzt+1)− cos(δẑ′
t+1, δzt+1)

Lptsmse,cyc = ||D(ẑ′
t+1)−D(zt+1)||2.

Similar to how we train our autoencoder, we also enforce two KL divergence losses
on both the predicted ẑt+1 and ẑ′

t+1 with a normal distribution N . The final objec-
tive for training the T2M is a weighted sum of the above eight terms.
Animation. Given an initialized hair state, our dynamic model T2M can evolve
the hair state into future states conditioned on head motion and head-relative grav-
ity direction. One straightforward implementation of the T2M would be to directly
propagate the hair state encoding zt. However, in practice, we find this leads to
severe drift in the semantic space. As a simple feed forward neural network, T2M
can not guarantee that its output is noise free. The noise in the output becomes even
more problematic when we use T2M in a recurrent manner, where the output noise
will aggregate and lead to drift. To remedy this, instead of propagating the encod-
ing zt directly, we reproject the predicted encoding zt by the point autoencoder E
and D every time for denoising. To be more specific, we acquire the de-noised
predicted hair encoding ẑt+1 = E(D(ẑt+1)) from the raw prediction ẑt+1 of T2M.
The use of the point autoencoder E and D can help us remove the noise in zt+1, as
the point cloud encoder E can regress the mean µt+1 and standard deviation δt+1 of
zt+1 separately by using qt+1 as an intermediate variable. Thus, we can extract the
noise free part of zt+1 by taking the mean µt+1 regressed from E . Please see our
experiments for further details of this approach.

5.3 Experiments
In order to test our proposed model, we conduct experiments on both the hair mo-
tion data set presented in HVH [102] and our own dataset with longer sequences
following a similar capture protocol as HVH [102]. We collect a total of four dif-
ferent hair wig styles with scripted head motions like nodding, swinging and tilting.
We also collect an animation test set with the same scripted head motions performed
by different actors wearing a wig cap, which we will refer to as “bald head motion
sequence”. The animation test set contains both single view captures from a smart

76

phone and multiview captures. The total length of each hair wig capture is around
1-1.5 minutes with a frame rate of 30Hz. A hundred cameras are used during the
capture where 93 of them are used to obtain training views and the rest are provid-
ing held-out test views. We split each sequence into two folds with similar amounts
of frames and train our model exclusively on the training portion of each sequence.

5.3.1 Network Architecture
Here we provide details about how we design our neural networks and further in-
formation about training.
Encoder. As training a point cloud encoder solely is extremely unstable, we first
train an image encoder and use it as a teacher model to train the point cloud en-
coder. In practice, we train two encoders for our hair branch together. Here we first
illustrate the structure of both encoders. We will go back to how we train them and
use them later. One of the encoders is an image encoder which is a convolutional
neural network (CNN) that takes multiple view images as input. We denote the im-
age encoder as Eimg The other one is E which is a PointNet encoder that takes either
an unordered hair point cloud pt or a tracked hair point cloud qt as input. Positional
encoding [61] is applied to the raw point cloud coordinate before it is used as the
input to the network. We find this is very effective to help the network in capturing
high frequency details. In practice, we use frequencies of x2 where x ranges from
1 to 7. We show the detailed architecture of Eimg in Tab 5.1. The architecture of the
point cloud encoder E is shown in Tab 5.2. Both of the two encoders E and Eimg

can produce a latent vector in size of 256, which are supposed to describe the same
content. Their output will be passed to Eµ and Eσ which are two linear layers that
produce µ and σ of zt respectively.
Point Decoder. We use a 3-layer MLP as the point decoder D, which takes a 1d
latent code zt as input and outputs the coordinate of the corresponding tracked point
cloud qt. We show the architecture of D in Tab 5.3.
Volume Decoder. The volumetric model is a stack of 2D deconv layers. We align
the x-axis and y-axis of each volume and put them onto a 2D imaginary UV-space.
Then we convolve on them to regress the z-axis content for each of the x,y position.
We show the architecture of the volume decoder in Tab 5.4. In our setting, we have
two seperate volume decoder for both RGB volume and alpha volume.
Dynamic Model. We use three different inputs to the dynamic model T2M, namely
the hair encoding zt−1 at the previous frame t− 1, the head velocity ht−1 and ht−2

from the previous two frames t−1 and t−2, and the head relative gravity direction
gt at the current frame t. We first seperately encode {ht−1,ht−2} and gt into two 1d
vectors. Both of them have 128 dimensions. Then, we concatenate them together
with encoding zt−1 as the input to another MLP to regress the next possible hair

77

Encoder Eimg

1 Conv2d(3, 64)
2 Conv2d(64, 64)
3 Conv2d(64, 128)
4 Conv2d(128, 128)
5 Conv2d(128, 256)
6 Conv2d(256, 256)
7 Conv2d(256, 256)
8 Flatten()
9 Linear(256×ninpimg×15, 256)

Table 5.1: Encoder Eimg architecture. Each Conv2d layer in the encoder has a
kernel size of 3, stride of 1 and padding of 1. Weight normalization [82] and untied
bias are applied. After each layer, except for the last two parallel fully-connected
layers, a Leaky ReLU [54] activation with a negative slope of 0.2 is applied. Then
a downsample layer with a stride of 2 is applied after every conv2d layer. The
first linear layer takes the concatenation of all towers from different image views as
input. ninpimg stands for much many views we take.

state encoding zt. As in Tab. 5.5, we show the flow of T2M. For the head velocity
branch, we first extract the per-vertex velocity ht−1 = xt − xt−1 where xt is the
coordinate of the tracked head mesh at frame t. To be noted, here the ht−1 contains
only the information of the rigid head motion but not any other non-rigid motion like
expression change. This representation of head motion is redundant theoretically,
but we find it helps our network to converge better when compared to just using the
pure 6-DoF head rotation and translation. We then reshape it and use it as the input
to a two layer MLP to extract a 1d encoding of size 128. For the gravity branch, we
first encode the gravity direction gt with cosine encoding [61]. The output of the
dynamic model is the mean µt+1 and standard deviation σt+1 of the predicted hair
state zt+1.

5.3.2 Training details

Dataset and Capture Systems. Following the setting in HVH [102], we also cap-
tured several video sequences with scripted hair motion performed under different
hair styles for animation tests. During the capture, we ask the participants to put
on different kind of hair wigs and perform a variety of head motions like nodding,
swinging and tilting. They performed these actions multiple times and at both slow
and fast speed. In summary, we collect a dataset of four different hairstyles with

78

Encoder E
1 Conv2d(3, 128)
2 Conv2d(128, 256)
3 Conv2d(256, 256)
4 Conv2d(256, 256)
5 Conv2d(256, 512)
6 Conv2d(512, 512)
7 Conv2d(512, 512)
8 Conv2d(512, 1024)
8 MAM pooling()
9 Linear(1024×3, 512)

10 Linear(512, 256)
11 Linear(256, 256)

Table 5.2: Encoder E architecture. We use a E structure similar to PointNet [74].
All Conv2d uses a kernel of 1 and stride of 1, which serves as a shared MLP. We
only use Conv2d for simpler implementation. After each Conv2d layer, a Leaky
ReLU [54] activation with a negative slope of 0.2 is applied. Then we use a MAM
pool layer to aggregate features from all points. MAM stands for min, avarage and
max pooling, which concatenates the results of min, average and max pooling into
one. Then, two linear layers are applied to the output of MAM pooling and generate
a 256 latent vector.

Decoder D
1 Linear(256, 256)
2 Linear(256, 256)
2 Linear(256, 4096×3)

Table 5.3: Decoder D architecture. We use an MLP with three Linear layers as
the decoder D. After each layer except the last layer, a Leaky ReLU [54] activation
with a negative slope of 0.2 is applied.

varying appearance and topology and 6 different motions for each hairstyle. The
total length for the capture of each hairstyle is around 90 seconds. To collect a
demonstration set for animation, we also ask the participants to put on a hair net
(bare head) and perform the same set of motions as when they are wearing a hair
wig.
Hair Point Flow Estimation. There are three steps for computing the hair point
flow, namely per-point feature descriptor extraction, feature matching and flow fil-
tering. In the first step, we compute a per-point feature descriptor based on the

79

Volume Decoder
global encoding zt per-point

hair featurerepeat
concat

1 Linear(320, 512)
2 deconv2d(512, 256)
3 conv2d(256, 256)
4 deconv2d(256, 256)
5 conv2d(256, 256)
6 deconv2d(256, 128)
7 conv2d(128, 128)
8 deconv2d(128, 16×ch)

Table 5.4: Architecture of the Volume Decoder. We first repeat the global en-
coding zt into the shape of the per-point hair feature. The per-point hair feature is
a tensor that is shared across all time frames. We then concatenate those two into
one. Each layer except for the last one is followed by a Leaky ReLU layer with a
negative slope of 0.2. Each deconv2d layer has a filter size of 4, stride size of 2
and padding size of 1. Each conv2d layer has a filter size of 3, stride size of 1 and
padding size of 1. ch stands for the channel size of the output. It is set to 3 if it is
an rgb decoder and 1 for a alpha decoder.

Temporal Transfer Module (T2M)
1 head velocity {ht−1,ht−2} head relative gravity gt hair state zt−1

2 Linear(7306×3, 256)
cosine encoding

3 Linear(256, 128)
4 Linear(539, 256)
5 Linear(256, 256)
6 Linear(256, 256)
7 Linear(256, 256) Linear(256, 256)

Table 5.5: Temporal Transfer Module (T2M). We first encode the head velocity
{ht−1,ht−2} and head relative gravity gt into 1d vectors, with a 2-layer MLP and
cosine encoding respectively. Then we concatenate hair state zt−1 with those vec-
tors to serve as the input to another MLP. The last two layers will be regressing the
mean µt+1 and standard deviation σt+1 of the predicted hair state zt+1. All Linear
except for the last two are followed by a Leaky ReLu activation with a negative
slope of 0.2.

80

Figure 5.3:

distribution of each point’s local neighboring points. In the second step, we match
the points from two adjacent time steps based on the similarity between their feature
descriptor. In the last step, we filter out outlier flows that are abnormal.

To compute the point feature descriptor, we construct Line Feature Histograms (LFH)
inspired by Point Feature Histograms (PFH) [80]. The LFH is a historgram of a 4-
tuple that describes the spatial relationship between a certain point pt

1 and its neigh-
boring point pt

2. As shown in Fig. 5.3, we visualize two points pt
1 ∈ R3 and pt

2 ∈ R3

from the same time step t. Given pt
1 and pt

2, we define the following four properties
that describe their spatial relationship. The first one is the relative position of pt

2

with respect to pt
1, which is dt

1,2 = pt
2 − pt

1. Then we can compute the relative
distance as ||dt

1,2||2 ∈ R. The second term is the angle θt1,2 between dir(pt
1) and

dir(pt
2), where dir(x) is the line direction of x from [63]. The last two terms are

the angles αt
1,2 and βt

1,2 between (dir(pt
1),d

t
1,2) and (dir(pt

2),d
t
1,2) respectively.

For all intersections, we take the acute angle, which means θt1,2, α
t
1,2 and βt

1,2 are in
[0, π/2]. Thus, the 4-tuple we used to create LFH(pt

1) is (||dt
1,2||2, θt1,2, αt

1,2, β
t
1,2)

and we normalize the histogram by its l2 norm. The designed LFH has three good
properties. As we use the normalized feature, it is density invariant. As θt1,2, α

t
1,2

and βt
1,2 are always acute angles, the feature is also rotation and flip invariant, mean-

ing that is unchanged if we flip or rotate dir(pt
1) the histogram are still the same.

This design helps us to get a more robust feature descriptor for matching. We set
the resolution for each entry of the 4-tuple to be 4 and it results in a descriptor in
size of 256.

In the second step, we compute the correspondence between points from adja-
cent time frames t and t + tδ where tδ ∈ {−1, 1}. We use the method from Rusu

81

et al. [79] to compute the correspondence between two point clouds from t and
t + tδ. To further validate the flow we get, we use several heuristics to filter out
some obvious outliers. We first discard all the flows that have a large magnitude.
As the flow is computed between two adjacent frames, it should not be large. The
second heuristic we use to filter the outliers is cycle consistency, where we compute
the flow both forward and backward to see if we can map back to the origin. If the
mapped back point departs too far away from the origin, we discard that flow.
Training of Encoder. As mentioned before, we train two encoders E and Eimg

together. In practice, we find that directly training E is not very stable and might
not lead to convergence. Thus, we learn the two encoders in a teach-student manner,
where we use Eimg as a teach model to train E . We denote ximg,t as the output of
Eimg and xpt,t as the output of E . Then, we formulate the following MSE loss to
enforce the E to output similarly to Eimg:

Lts = ||ximg,t − xpt,t||2,

where we restraint the gradient from Lts from back-propagating to Eimg while train-
ing.

5.3.3 Evaluation of the State Compression Model
We first test our state compression model to evaluate its ability to reconstruct the
appearance of hair and head.
Novel View Synthesis. We compare with volumetric methods like NeRF based
methods [40,95] and volumetric primitives based methods [47,102] on the data set
from HVH [102]. In Tab 5.6, we show the reconstruction related metrics MSE,
SSIM, PSNR and LPIPS [119] between predicted images and the ground truth im-
age on hold out views. Our method yields a good balance between perceptual loss
and reconstruction loss while keeping both of them relatively low. Furthermore,
our method achieves a much higher perceptual similarity with ground truth images.
In Fig. 5.4 we show that our method can capture high frequency details and even
preserve some fly-away hair strands.

We compare our method with MVP [47] on the longer sequences we captured
with scripted head motion. Reconstruction related metrics are shown in Tab.5.7.
We found that NeRF-based methods can not fit to longer sequences properly. This
problem might be due to the large range of motion exhibited in the videos as well
as the length of the video. HVH is not applicable because it does not support hair
tracking across segmented sequences of different hair motion. Compared to MVP,
we achieve better reconstruction accuracy and improved perceptual similarity be-

82

seq01 seq02 seq03
MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓

PFNeRF 51.25 31.16 0.9269 0.3717 103.41 28.15 0.8659 0.5067 76.59 29.50 0.9000 0.2949
NSFF 50.13 31.21 0.9346 0.3672 90.06 28.75 0.8885 0.4728 83.18 29.10 0.8936 0.3292

NRNeRF 56.78 30.78 0.9231 0.3554 132.16 27.13 0.8549 0.5241 79.83 29.33 0.8987 0.3067
MVP 47.54 31.60 0.9476 0.2587 77.23 29.62 0.9088 0.3051 73.78 29.66 0.9224 0.2455
HVH 41.89 32.17 0.9543 0.2019 59.84 30.69 0.9275 0.2353 71.58 29.81 0.9314 0.2021
Ours 40.34 32.28 0.9558 0.1299 56.47 30.94 0.9329 0.1254 73.65 29.69 0.9247 0.1496

Table 5.6: Novel view synthesis. We compute MSE↓, PSNR↑, SSIM↑ and LPIPS↓
comparing rendered and ground truth images on hold-out views. First and second
best results are highlighted.

MSE(↓) PSNR(↑) SSIM(↑) LPIPS(↓)
MVP 66.21 30.36 0.9291 0.2830
Ours 29.44 34.05 0.9657 0.1109

Table 5.7: Novel View Synthesis on Longer Sequence.

tween the rendered image and ground truth with the hair specific modeling in our
design.
Ablation on Hair/Head Disentanglement. We test how well our model handles
hair/head disentanglement compared to previous work. As hair and head are ex-
hibiting different dynamic patterns, disentanglement is usually required, especially
to achieve independent controllability for both. We compare with HVH, which im-
plicitly separates the hair and head using the dynamic discrepancy between them
and optical flow. In our model, we further facilitate the disentanglement by using
semantic segmentation. In Tab 5.8, we show the IoU between the rendered silhou-
ette of hair volumes and ground truth hair segmentatation of the different meth-
ods. We visualize the difference in Fig. 5.5. Our method generates a more opaque
hair texture with less texture bleeding between hair volumes and non-hair volumes.
Moreover, our model creates the hair shape in an entirely data-driven fashion, which
yields higher fidelity results than the artist prepared hair in HVH [102].

Seq01 Seq02 Seq03
HVH [102] 0.6685 0.4121 0.3766

Ours 0.8289 0.9243 0.8571

Table 5.8: IoU(↑) between rendered hair silhouette and ground truth hair segmen-
tation. Compared to HVH [102], our method achieved a significant improvement
over the hair coverage. There two major reasons for the increase: 1) our hair vol-
ume texture is more opaque. 2) The coarse level hair geometry better resemble the
hair reconstruction.

83

MVP [47] HVH [102] Ours Ground Truth

Figure 5.4: Novel View Synthesis. Compared with previous methods, our method
captures hair with more details, including fly-away hair strands and creates an over-
all more accurate hair reconstruction with perceptually better rendering results.

Ablation on LV GG. We examine the synergy between LV GG and the ℓ1 loss for
improving the rendering quality. As shown in Tab. 5.9, we find that the perceptual
loss has positive effects on the reconstruction performance while the improvements
are negated when the weight is too large. In Fig. 5.6, we compare the rendered
images using different LV GG weights. The results are more blurry when not using
LV GG and fewer details are reconstructed, such as fly-away strands.
Ablation on Point Flow Supervision. Although with Lcham we can can already

84

HVH [102] Seq01 Ours Seq01 HVH [102] Seq02 Ours Seq02

Figure 5.5: Hair/Head Disentanglement. By explicitly enforcing the semantic
segmentation of head and hair through additional supervision, we learn a more
opaque hair texture while the result suffers less from texture bleeding.

vgg=0.0 vgg=0.1 vgg=0.3 vgg=1.0 vgg=3.0 vgg=10.0
MSE 42.84 42.40 39.94 40.34 40.98 42.82
PSNR 32.04 32.09 32.34 32.28 32.25 32.07
SSIM 0.9544 0.9564 0.9576 0.9558 0.9541 0.9518
LPIPS 0.2021 0.1765 0.1511 0.1299 0.1238 0.1257

Table 5.9: Ablation on LV GG. We find using an additional complementary percep-
tual loss leads to better appearance reconstruction.

optimize a reasonably tracked point cloud pt, we find that point flow can help re-
move the jittering in appearance. We show the temporal smoothness enforced by
the point flow supervision in Fig. 5.7. Our model learns a more consistent hair tex-
ture with less jittering when trained with point flow. Please see the videos in this
page1 for a visualization over time.
Ablation on Different Encoders. We show quantitative evaluations on render-
ing quality of different encoders on both the SEEN and UNSEEN sequences in
Tab. 5.10. Our E performs similarly to the Eimg on the novel views of the SEEN se-
quence. This result is as expected due to the nature of teach-student model and we
train our model on the SEEN sequence with the training views. On the UNSEEN
sequence, we find our E performs better than Eimg. We hypothesize that this is be-
cause there is a smaller domain gap between the point clouds from SEEN sequence

1https://ziyanw1.github.io/neuwigs/resources/index.html

85

https://ziyanw1.github.io/neuwigs/resources/index.html

VGG 0.0 VGG 1.0 VGG 10.0 GT

Figure 5.6: Ablation on LV GG. Adding a perceptual loss leads to sharper recon-
struction results with more salient high frequency textures on parts like single flying
away strands and shadows.

w/o flow (frame T) w/o flow (frame T+1) w/ flow (frame T) w/ flow (frame T+1)

Figure 5.7: Ablation on Point Flow. We find that adding point flow to regularize
the offsets between temporally adjacent tracked points prevents jittering. Compari-
son are better visualized here as videos.

and UNSEEN sequence while the multi-view images might vary a lot due to the
head motion. The CNN is not good for handling such changes due to the head mo-
tion while point encoder can process point clouds with better structure awareness.

5.3.4 Evaluation of the Dynamic Model
Lastly, we perform tests of our animation model. Compared to a per-frame model
that takes hair observations as input, the input to our dynamic model and any of

86

https://ziyanw1.github.io/neuwigs/resources/index.html

MSE↓ PSNR↑ SSIM↑ LPIPS↓
E on SEEN 29.48 34.05 0.9657 0.1109
Eimg on SEEN 29.44 34.05 0.9657 0.1109
E on UNSEEN 34.97 33.21 0.9587 0.1209
Eimg on UNSEEN 37.36 32.94 0.9559 0.1333

Table 5.10: Metrics on Novel Views. We show quantitative results of different
encoders under both SEEN and UNSEEN sequence of the same hair styles.

its variations is a subset of the head motion trajectory and hair point cloud at the
initialization frame. As a quantitative evaluation, we compare our model with per-
frame driven models using either hair observations or head observations as driving
signals. For qualitative evaluation, we render new hair animations for the bald head
motion sequences.
Quantitative Test of the Dynamic Model. We evaluate our dynamic model on the
test sequences of scripted hair motion capture. The goal is to test whether our dy-
namic model generates reasonable novel content rather than only testing how well
it reconstructs the test sequence. To test the performance of our dynamic model,
we treat the model driven by per-frame (pf) hair observations as an oracle paradigm
to compare with, while our dynamic model does not use any per-frame hair obser-
vation as a driving signal. In Tab. 5.12, we compare the rendering quality of our
dynamic model with pf models and ablate several designs. The best performing
dynamic model (dyn) has similar performance with the pf model even without the
per-frame hair observation as driving signal. We find that both adding a cosine sim-
ilarity loss as an additional objective to MSE and adding a cycle consistency loss
helps improve the stability of the dynamic model. Meanwhile, we find adding grav-
ity as an auxiliary input stabilizes our model on slow motions. Presumably because
during slow motions of the head, the hair motion is primarily driven by gravity.

We show more detailed comparisons of different dynamic models and per-frame
driven models in Tab. 5.11 and Fig. 5.8. We find that our model offers a significant
improvement over the per-frame driven model that takes head pose or motion as
input. This result is because the hair motion is not only determined by the head pose
or the previous history of head pose but also the initial state of the hair. In Fig. 5.8,
we visualize how each model drifts by plotting the Chamfer distance between the
regressed point cloud and the ground truth point cloud. We find that adding head
relative gravity direction can improve the model performance on slow motions.
Ablation for the Point Autoencoder E +D. Here, we analyze how well the point
autoencoder acts as a stabilizer for the dynamic model. We compare two different

87

Figure 5.8: ChamDist vs. time. We plot Chamfer distance vs. time of different
dynamic models to show drifting.

MSE(↓) PSNR(↑) SSIM(↑) LPIPS(↓) ChamDis(↓)
pf w/ hair img 37.36 32.94 0.9559 0.1333 10.47
pf w/ hair pts 34.97 33.21 0.9587 0.1209 10.46

pf w/ head pos 47.43 32.01 0.9458 0.1522 18.94
pf w/ head mot 40.25 32.64 0.9508 0.1333 13.31

dyn w/o cos 44.96 32.26 0.9458 0.1327 25.49
dyn w/o cyc 45.22 32.23 0.9453 0.1335 26.79
dyn w/o grav 40.12 32.64 0.9504 0.1268 13.76

dyn 38.49 32.80 0.9532 0.1211 11.12

Table 5.11: Ablation of Different Dynamic Models.

models in Fig. 5.9: encprop, that propagates the encoding directly, and ptsprop that
propagates the regressed hair point cloud and generates the corresponding encoding
from the point encoder. The results are more salient with ptsprop. The improvement
of the ptsprop over the encprop is partially because the mapping from point cloud to

88

MSE(↓) PSNR(↑) SSIM(↑) LPIPS(↓) ChamDis(↓)
pf w/ hair img 37.36 32.94 0.9559 0.1333 10.47
dyn w/o cos 44.96 32.26 0.9458 0.1327 25.49
dyn w/o cyc 45.22 32.23 0.9453 0.1335 26.79
dyn w/o grav 40.12 32.64 0.9504 0.1268 13.76

dyn 38.49 32.80 0.9532 0.1211 11.12

Table 5.12: Ablation of Different Dynamic Models. We compare different mod-
els in terms of rendering quality and tracking accuracy.

encoding is an injective mapping and the point encoder serves as a noise canceller
in the encoding space. To further study this behavior, we perform a cycle test on
the point encoder, where we add noise n to a certain encoding z and get a noisy
version of the encoding ẑ=z+n and its corresponding noisy point cloud p̂. Then,
we predict a cycled encoding z̄= E(D(ẑ)). We compare z, ẑ and z̄ in Fig. 5.9. z
and z̄ are consistently close while ẑ jitters. This result suggests that the remapping
of ẑ using E and D counteracts the noise n.
Effect of the Initialization. We test how robust our model is to the initialization
of the hair point cloud. In Fig. 5.11, we show animation results from models of
two different hair styles (hs) with different initialization hair point clouds. The
results look sharp when the model is matched with the correct hair style, but blurry
when we use mismatched hair point clouds for initialization. However, we find our
model self-rectifies and returns to a stable state after a certain number of iterations.
This self-rectification might be partially due to the model prior stored in the point
encoder.
Animation on Bald Head Sequences. We show animation results driven by head
motions on in-the-wild phone video captures in Fig 5.1. We find our model gener-
ates reasonable motions of hair under natural head motions like swinging or nod-
ding.

We show animation results driven by head motions both on lab multi-view video
captures and in-the-wild phone video captures. For results on in-the-wild phone
video captures, please refer to the supplemental videos 2. For phone captures, we
ask the participants to face the front camera of the phone and perform different head
motions. Then, we apply the face tracking algorithm in [9] to obtain face tracking
data that serves as the input to our method. The initial hair state of the phone
animation is sampled from the lab captured dataset. We find our model generates
reasonable motions of hair under head motions like swinging and nodding.

We also test our model on multi-view video captures from the lab. As shown in

2https://ziyanw1.github.io/neuwigs/resources/index.html

89

https://ziyanw1.github.io/neuwigs/resources/index.html

enc vis encprop ptsprop

Figure 5.9: encprop v.s. ptsprop. ptsprop generates sharper results with less drift-
ing than encprop.

Figs. 5.12 and 5.13, our model generates reasonable hair motions with respect to
the head motion while preserving multi-view consistency.

5.4 Discussion
We present a two-stage data-driven pipeline for volumetric hair capture and anima-
tion. The core of our method is a 3D volumetric autoencoder that we find useful for
both, automatic hair state acquisition and stable hair dynamic generation. The first
stage of our pipeline simultaneously performs hair tracking, geometry and appear-
ance reconstruction in a self-supervised manner via an autoencoder-as-a-tracker
strategy. The second stage leverages the hair states acquired from the first stage

90

sample 1 sample 2 sample 3

Figure 5.10: Point Encoder E as a Stabilizer. We sample several ẑ and corre-
sponding z̄= E(D(ẑ)) with a fixed z and visualize part of them above. As we can
see, z̄ stays similar to z while ẑ jitters.

time 0 time n
hs1 init. hs2 init. hs1 init. hs2 init.

hs1
mod.

hs2
mod.

Figure 5.11: Effect of Initialization. We initialize two different models (hs1 mod.
and hs2 mod.) with two different hair point clouds (hs1 and hs2) in two time steps.
The green box indicates matched initialization while orange indicates mismatched
initialization. Although the mismatched initialization shows blurry results at first,
the model automatically corrects itself when there is no head motion.

91

and creates a recurrent hair dynamics model that is robust to moderate drift with
the autoencoder as a denoiser. We empirically show that our method performs sta-
ble tracking of hair on long and segmented video captures while preserving high
fidelity for hair appearance. Our model also supports generating new animations in
both, lab- and in-the-wild conditions and does not rely on hair observations.
Limitations. Like many other data-driven methods, our method requires a large
amount of diverse training data and might fail with data that is far from the train-
ing distribution. Our model is currently not relightable and can not animate new
hairstyles. One future direction is to separately model appearance and lighting,
which can be learnt from varied lighting captures. Another interesting direction is
to learn a morphable hair model for new hairstyle adaptation.

92

Figure 5.12: Animation on Bald Sequence. We animate a straight brown hair with
a nodding head.

93

Figure 5.13: Animation on Bald Sequence. We animate short blue pigtails with a
nodding head.

94

Figure 5.14: Animation on Bald Sequence. We animate curly blonde pigtails with
a rotating head. 95

Figure 5.15: Animation on Bald Sequence. We animate burly blonde pigtails with
a nodding head. 96

Figure 5.16: Animation on Bald Sequence. We animate a curly ash blonde hair
with a nodding head. 97

Figure 5.17: Animation on Bald Sequence. We animate a curly ash blonde hair
with a rotating head. 98

Chapter 6

A Local Appearance Model for
Volumetric Capture of Diverse
Hairstyles

99

6.1 Introduction

Creating and capturing high-fidelity 3D human avatars is an essential capability
for mixed reality. A high-quality, photorealistic 3D avatar can blur the boundary
between the real and virtual world and facilitate many VR/AR applications like
social telepresence, virtual gaming and virtual shopping. One critical aspect of
achieving a lifelike avatar is accurately capturing and modeling hair, as it plays
a vital role in establishing personal identity and achieving personalized avatars.
However, hair is potentially challenging to capture due to its complex geometry
and high-frequency texture. Furthermore, different hairstyles exhibit large intra-
class variance in terms of appearance and shape, which adds to the complexity of
efficiently creating personalized avatars for a large group of individuals.

In this work, we look at the problem of how to capture diverse hair appearance
for efficient and accurate creation of photorealistic, personalized 3D avatars. Given
the complexity of hair geometry, several 3D representations have been explored for
modeling a human head avatar in pursuit of modeling accuracy. Mesh-based repre-
sentations work well for capturing the surface details and are most efficient to store.
But they are not well-suited for modeling hairstyles that exhibit volumetric proper-
ties. Strand-based representations can capture hair with high accuracy and are easy
to manipulate. However, modeling complex hairstyles with strand-based represen-
tations as well as rendering them can be computationally expensive. In comparison,
many recent volumetric-based methods [19,22,24,30,35,69,70,102,121,122] show-
cased their success in modeling human avatars with photorealistic hair with diverse
geometry and appearance. They can be optimized from images or videos via dif-
ferentiable raymarching in an end-to-end learning framework. However, the model
accuracy comes with the use of a person-specific model which does not generalize
and requires an extensive training time. Those properties prohibit them from the
efficient creation of personalized avatars for a large group.

To reconcile the efficiency and accuracy in creating personalized avatars for in-
dividuals, we present a universal 3D hair appearance model that captures diverse
hairstyles with high fidelity and helps to generate a decent hair appearance for per-
sonalized avatar creation. Our universal 3D hair appearance model is conditioned
on a group of hair feature volumes that are diffused from a 3D hair point cloud
with color. Those hair feature volumes are anchored by volumetric primitives that
tightly bound the hair point cloud, and reflect the local structures and appearance at
a primitive level. To amplify the sparse point cloud for dense appearance modeling,
we learn a UNet to transfer those hair feature volumes into dense radiance fields.
By spatially compositing those volumetric primitives, we get a set of volumetric ra-
diance fields that fully cover different parts of the hair. Those volumetric radiance
fields are not restricted to certain topologies and are flexible with modeling differ-

100

Figure 6.1: Pipeline of Our Method. We present a pipeline to achieve large scale
capture of diverse hairstyles for avatar creation. The core of our pipeline is a local
UNet that can generate local appearance field conditioned on colored point cloud
q. Our method is robust to various challenging hairstyles and can generate photo-
realistic appearance of those hairstyles.

ent hairstyles. The design of learning an appearance prior at a primitive level rather
than the hairstyle level is based on the observation that different hairstyles share a
more similar pattern within a local region than at a global scale. As hairstyles vary
a lot both in geometry and appearance, learning a compact embedding space at a
global scale to express such variety is nearly implausible, with a limited amount of
training data. Learning a local prior model helps us to achieve data augmentation
as it splits each hairstyle into multiple local volumetric primitives.

We conduct extensive experiments on multiview captures of multiple identities
as well as in-the-wild captures of new identities under a sparse viewpoints setup.
We empirically show that our method outperforms previous state-of-the-art meth-
ods [9, 58] in capturing diverse hairstyles with improved quality and generalizing
to new hairstyles for personalized avatar creation. Given sparse views as input, we
also find that our local prior model serves as a good initialization for more efficient
acquisition of personalized avatars with less finetuning. In summary, our contribu-
tions are:

• We present a novel volumetric feature representation based on a point cloud
with color and a local appearance model that is generalizable to various com-
plex hairstyles.

• We empirically show that our method outperforms previous state-of-the-art
approaches in capturing high-fidelity avatars with diverse hairstyles and gen-
erating photorealistic appearances for novel identities with challenging hairstyles.
Our method also enables the efficient capture of personalized avatars from an
iPhone scan.

101

6.2 Method

Our goal is to achieve efficient and accurate hair appearance capture of a large
group with a single model that is also generalizable. We use a compositional vol-
umetric representation for hair modeling. There are several benefits of using such
a representation for hair modeling. First, volumetric representation is flexible with
complex hair configuration while also yielding a decent rendering quality with high
fidelity on detailed geometry. Second, rendering a compositional volumetric rep-
resentation is more efficient than a volumetric representation, as the raymarching
process is guided by a sparse structure to skip empty spaces. To accommodate the
diverse topology as well as capture the generalizable prior of various hairstyles, we
learn a local hair appearance prior model Ψα and Ψrgb that can regress the compo-
sitional volumetric presentation based on sparse color point clouds q. The model
takes input as a group of local hair feature volumes diffused by the colored hair
point cloud, which is agnostic to the ordering of the point cloud and outputs a com-
positional volumetric representation Vrgb +Vα that can be rendered from different
viewpoints.

6.2.1 Preliminaries: Volumetric Rendering

We render and optimize our compositional volumetric representation with the dif-
ferentiable volumetric raymarching algorithm in MVP [47]. Given the camera cen-
ter as c and a ray direction v(p) associated with pixel p, we can define a ray function
r as follow:

r(p) = c+ τv(p),

where τ is the traversal depth along the ray and v(p) is the direction starting from
camera center c and pointing to pixel p.

To render the compositional volumetric representation, we aggregate all the al-
pha, the RGB values and the semantic labels from the volumetric field. The above
image formation process can be formulated as:

Ip =
∫ τmax

τmin

Vrgb(rp(τ))
dT (τ)

dτ
dτ,

Mp =

∫ τmax

τmin

Vlabel(rp(τ))
dT (τ)

dτ
dτ,

T (l) = min(

∫ τmax

τmin

Vα(rp(τ))dτ, 1),

102

where we composite the RGB and semantic label from near to far in a weighted
sum manner. V♣(·) indicates the volumetric field function that outputs the function
value of a specific spatial point, where ♣ can be alpha, RGB, or semantic label.
For efficient rendering of V♣, we use a BVH to speed up the process of finding
intersections between rays and volumetric primitives following MVP [47].

To get the full rendering, we composite the rendered image as Ĩp = Ip +
(1 − Ap)Ip,bg where Ap = T (lmax) and Ip,bg is the background image. Similar
to NeuWigs [101], we model the hair and head of an avatar in separate layers and
render their segmentation map asMp. Please refer to the supplemental materials
for implementation details.

6.2.2 Local Hair Appearance Prior Model
In this part, we describe how we achieve the conditional generation of Valpha and
Vrgb based on sparse colored hair point cloud q with a local appearance prior model.
We will first describe how we create the input to the local appearance model with a
colored hair point cloud. Then we will introduce our design for the architecture of
the local appearance prior model as well as objectives for training the model.
Hair feature volumes. As different hairstyles might be in different topologies
and different sizes, it is not practical to learn a model that has a fixed output size
to regress the appearance field of both long hair and short hair in the 3D space
directly. To achieve modeling across different hairstyles and capture the common
appearance prior among them, we learn a local appearance prior model to regress
the radiance field for each of those hair volumes in separate runs. Given a colored
hair point cloud q defined in a head-centered coordinate system, we prepare the
input to the local appearance prior model by first partitioning it into a group of
hair feature volumes. Specifically, we first perform furthest point sampling [74] on
q to get k centroids {ρi|i = 1, 2, · · · , k} that roughly span over the point cloud
manifold uniformly. Then for each centroid ρi, we diffuse the points into a volume
grid Ωρi centered at ρi. The volume grid is axis-aligned with the head-centered
coordinate system with a length of δ and a grid resolution of m. Each vertex in the
grid Ωρi stores both the spatial occupancy and RGB values, where the occupancy
is 0 if no point is found within the radius of

√
3δ/2m around that vertex otherwise

1. The RGB value will be the mean of the colors from all found points and 0
if no point is found. In addition to the occupancy and RGB value, we aggregate
the spatial coordinate of each vertex in the head-centered coordinates as well as
the per-vertex viewing direction into volume grids Γρi and Λρi respectively. Given
viewing direction camera center c under the head centered coordinate, we calculate
Λρi = norm(Γρi − c) where we take the normalized vector between each point in
Λρi and c as the per-vertex viewing direction.

103

Local appearance UNet. We learn two separate UNets [77] with skip connections
that takes volume grid Ωρ

i as input and outputs the corresponding dense radiance
field νρi

α and νρi
rgb respectively as follow:

νρi
α = Ψα(Ω

ρ
i ,Γ

ρi|θα)

νρi
rgb = Ψrgb(Ω

ρ
i ,Γ

ρi , ĉ,Λρi|θrgb),

where θα and θrgb are the learnable parameters for each networks. By spatially
compositing the volumetric primitives {νρi

α , νρi
rgb|i = 1, 2, · · · , k} with respect to

their centroids {ρi|i = 1, 2, · · · , k}, we get Valpha and Vrgb. The UNet Ψα(·) that
regresses the alpha field of hair takes the occupancy and RGB field Ωρi as well
as the grid coordinate Γρi as input. To model the view conditioned appearance
of hair, we learn a separate UNet Ψrgb(·) to regress the RGB field νρi

rgb that takes
additional input of the per-vertex viewing direction Λρi as well as the normalized
camera center ĉ as viewing direction. Λρi is served as additional information to
the input of the UNet Ψrgb(·) and ĉ is injected at the bottleneck level where it is
repeated and appended to every hair features at the coarsest resolution map. We
find that the usage of Γρi and Λρi improves the model’s convergence by a large
margin, which will be discussed in detail in the experiment. The encoder part of
each UNet consists of convolutional layers with a kernel size of 3 × 3 with stride
1 and 2 to extract the features of Ωρ

i at different scales. The decoder part of each
UNet consists of convolutional layers with a kernel size of 3 × 3 with stride 1 and
deconvolutional layers with a kernel size of 4 × 4 with stride 2. At each scale, we
use a 1× 1 convolutional layer as skip connections to add early conditions from the
encoder features to the decoder features respectively. All layers are followed with
a LeakyReLU layer as activation. We find that the usage of skip connections can
greatly help the network to capture detailed geometry and more salient textures on
the regressed hair radiance field.
Training objectives and details. To learn the parameters θα and θrgb of the lo-
cal appearance model Ψα(·) and Ψrgb(·), we construct image level reconstruction
losses. We formulate the training objective L as below:

L = L1 + λV GGLV GG + λsegLseg,

where λV GG and λseg are positive values for rebalancing each term in the training
objectives. The first term L1 measures the difference between the rendered image
Ĩ and the ground truth image Igt. The second term is a perceptual loss between
the rendered image Ĩ and the ground truth image Igt, which aims at enhancing the
visual quality and adding high frequency details of the rendered image. The third
term is a segmentation loss for better disentangling hair and non-hair region. Please
refer to the supplimental materials for more training related details.

104

TRAIN MSE(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

KeypointNeRF [58] 257.42 24.57 0.86 0.3140
Cao et al. [9] 159.37 27.12 0.7961 0.3117

Ours 130.07 27.73 0.8922 0.1993

TEST MSE(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

KeypointNeRF [58] 303.60 23.77 0.8596 0.3389
Cao et al. [9] 334.68 23.89 0.7883 0.3511

Ours 236.46 25.08 0.8741 0.2610

Table 6.1: Novel View Synthesis. We show qualitative results on novel view syn-
thesis. The upper part and lower part of the table report the MSE, PSNR, SSIM
and LPIPS computed on the holdout views of training identities and the test iden-
tities respectively. Our method achieves a better result on MSE, PSNR and SSIM
compared to previous methods [9, 58]. Our method is capable of generating sharp
appearance on detailed geometries which leads to improvement on LPIPS by a large
margin.

6.3 Experiments
Dataset. We collect a multiview RGB image dataset of multiple identities with
diverse personalized hairstyles. The dataset contains lightstage capture of around
260 identities and each capture has around 160 views covering most perspectives
around the participant with a focus on the head and hair region. We exclude captures
of 8 identities from training our model and use them just for test purposes. For all
256 training identities, we also hold out 7 views for testing and the rest of the views
will be used for training.

6.3.1 Novel View Synthesis

We test our model on the task of novel view synthesis and compare it with previ-
ous state-of-the-art approaches on generating personalized avatars like the universal
prior model(UPM) in Cao et al. [9] and a generalizable NeRF model Keypoint-
NeRF [58]. We evaluate different methods using image reconstruction and similar-
ity metrics like MSE, PSRN, SSIM and LPIPS between the ground true image and
the reconstructed ones, which are reported in Tab. 6.1. In the upper part of the table,
we report the metrics computed on the holdout views of the training identities. This

105

is supposed to reflect how well each model reconstructs the hair appearance and
shape on those training identities. Compared to KeypointNeRF [58], we achieve
a lower distortion in terms of reconstructing different hairstyles. When compared
with the UPM model [9], we find that our model enjoys a much larger improvement
on LPIPS compared to the other reconstruction metrics like MSE, PSNR and SSIM.
One of the reasons behind this is that the perceptual metric is more sensitive to high-
frequency information as well as the fine-level details in one’s appearance. And the
UPM model is capable of reconstructing a coarse-level geometry and appearance
but fails to capture the fine-level details which our model does a better job on. In
Fig. 6.2, the improvements of our methods can be better justified visually, where we
show the rendering results of each method on the holdout views of several training
identities. On the lower part of Tab. 6.1, we report the metrics computed on the
same set of holdout views but of test identities. Fig. 6.3 shows the rendering results
of some of those views. We can see that the UPM model [9] and ours both achieve
better generalization on the face than KeypointNeRF [58] as a result of awareness
of face geometry. Our method can achieve a more detailed hair appearance given
sparse inputs like point clouds on never-seen-before identities.
Ablation on input features Ωρi , Γρi and Λρi . We ablate on the usage of different
input features to the local appearance networks Ψα(·) and Ψrgb(·). Tab. 6.2 shows
the performance of our model under different input configurations. The base model
is Ψα(Ω

ρi) + Ψrgb(Ω
ρi , ĉ), which only takes Ωρi and ĉ as input and do not have

untied bias for each layer. +Γρ represents the model that use Γρ as additional input
to both Ψα(·) and Ψrgb(·). +ub stands for adding untied bias to each learnable layer
in Ψα(·) and Ψrgb(·).

According to Tab. 6.2, the inclusion of Γρ helps the base model to converge
better with improved image reconstruction and perceptual metrics on both training
and testing sets. However, adding untied bias solely gives worse results on both data
splits. We argue that using Ωρ as the only input makes the network to be aware of
only local region and to be agnostic of positional information, which further exposes
the network to the noise in Ωρ. And including additional network parameters like
the untied bias in such a setting will make the network even harder to learn. If
we combine both Γρ and the untied bias, we get much better performance on the
training set. This improvement suggests that using Γρ is more effective than just
adding more network parameters, which helps the network to capture the underlying
correlation between human hair’s appearance and spatial position. Finally, we find
that having per-vertex view conditioning Λρ as additional input help the model to
achieve the best on both the training and testing set. As different hair geometry
leads to different shadow and reflectance patterns, the per-vertex viewing condition
Λρ serves as a more informative term than the viewing direction ĉ to infer the view-
conditioned appearance.

106

TRAIN TEST

MSE(↓) PSNR(↑) SSIM(↑) LPIPS(↓) MSE(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

base 150.69 27.11 0.8090 0.2039 242.56 25.01 0.8023 0.2556
base+Γρ 140.38 27.42 0.8123 0.1973 228.41 25.19 0.8059 0.2479
base+ub 164.04 26.70 0.8022 0.2234 253.61 24.69 0.7969 0.2705
base+Γρ+ub 134.60 27.54 0.8108 0.2042 236.46 25.08 0.8081 0.2610
base+Γρ+ub+Λρ 130.07 27.73 0.8922 0.1993 220.00 25.45 0.8741 0.2472

Table 6.2: Ablation on different inputs Ωρi , Γρi and Λρi . We evaluate models
with different input configurations and report their MSE, PSNR, SSIM and LPIPS
on the holdout views of both training and testing data. As we can see, both Γρi

and Λρi serve as a more effective way to improve the model performance compared
to just increasing the model’s capacity like with untied bias ub. We also find that
the inclusion of per-vertex viewing direction Λρi improves the model’s performance
on novel view synthesis by a large margin. We use gold , silver and bronze to
indicate first, second and third places.

Ablation on finetuning efficiency. Even though our model generalizes reasonably
to unseen identities and creates photorealistic avatars for them, finetuning or on-
line optimization is still needed for getting metrically correct personalized avatars.
Thus, we evaluate our model in terms of how well it can help get personalized
avatars for novel identities efficiently. Given RGB-D scans of new subjects with
novel hairstyles, we finetune our model based on them to capture the personalized
3D avatar. We ablate on both the number of views needed to do finetuning as well
as the number of iterations we update our model.

In Fig 6.5, we show how MSE, PSNR, SSIM and LPIPS on test views change
across optimization steps. Each curve in Fig 6.5 represents a model with a different
finetuning configuration. ft stands for finetuning a pre-trained model on the new
identity while noft stands for training the same model on the new identity from
scratch. xvs indicates that we use a total number of x views to perform the fine-
tuning. For example, 10vs means that we use 10 views for finetuning. To make
sure that the finetuning views are not biased to certain viewpoints, we sample the
finetuning views from all training views using the furthest point sampling. As we
can see, the pre-trained model could give the finetuning a warm start and leads to
better convergence under a short amount of training time, which is also robust to
the density of finetuning views.

In Fig 6.4, we show the rendering results of a test view under different finetun-
ing/training configurations as in Fig. 6.5. As we can see, at iteration 0, our model
can already reconstruct most details about the new hairstyle and after 100 iterations
models trained with different numbers of views gets sharp results, while models

107

trained from scratch have not yet converged.

6.3.2 Personalized Avatar from an iPhone Scan
We demonstrate an application enabled by our method, which is the efficient gen-
eration of personalized avatars with an iPhone scan. We have been using a multi-
view camera system to collect the training and validation data for learning the local
appearance prior model Ψα and Ψrgb. However, a multi-view capture system is
expensive to set up and not readily available to create personalized avatars for indi-
viduals. To accommodate the need for simplicity and scalability, we seek to use a
single RGB-D camera (like an iPhone) to substitute for the multi-view capture sys-
tem, which might yield a decayed quality of data. We demonstrate that our learned
model Ψα and Ψrgb can infill the gaps between in-the-wild capture and a lab-level
capture in many ways like accommodating a sparse view and noisy camera tracking
setup.
Reconstructing from iPhone Scan. We perform further experiments on recon-
structing a personalized avatar from an iPhone scan in sparse views. The data we
used is RGB-D data from the iPhone scan. We asked the participant to sit tight and
start our iPhone scan by facing the iPhone towards the participant at a distance of
30-50cm and capturing different perspectives of the participant’s face, which re-
sults in the participant occupying 70− 80% of the whole image. The resolution of
the captured image is 1024 × 667 and the resolution of the captured depth image
is 640 × 480. To get the iPhone tracking information, we perform ICP tracking
using the per-frame depth as well as color information from the RGB-D scan under
different perspectives.

We first test our model on in-the-wild avatar creation using the point cloud from
the iPhone scan. However, we observe that the quality of the reconstructed avatar
is not comparable to those reconstructed from the lightstage capture system. We
argue there are two reasons for the decrease in quality. The major one is the lack
of explicit modeling of lighting in our appearance model. As the model is trained
under the lighting condition from a lightstage capture, it is biased to that lighting
distribution and does not generalize well to the in-the-wild lighting condition. An-
other minor reason lies in the noise in the input to the model. Given the nature
of the in-the-wild capture setup, there will be noise in both the depth scan as well
as the camera tracking. However, we demonstrate that our method is not severely
affected by those noises after a moderate level of online finetuning.

We compare our method with instant-ngp [62] based on the implementation [89]
and perform personalized avatar acquisition from the RGB-D scan. We optimize
both instant-ngp and our method using five views with training objectives described
in Sec 6.2.2. To prepare the input to our method, we fuse the RGB-D scans into a

108

point cloud given the ICP tracking results. We generate the foreground mask using
RVM [41] and masked the background in the iPhone captures to be black with the
mask. Both models are optimized for 5min and converge. As shown in Fig. 6.6,
our method and instant-ngp create good-quality rendering on the training views.
However, we also find that instant-ngp yields floating artifacts under the sparse
view training setting. When we render from a none training camera distribution, the
quality of instant-ngp decays dramatically. This result suggests that our method is
more robust to sparse views training and camera tracking noise with fewer floating
artifacts and suffers from less overfitting on training views.

6.4 Conclusion
In this chapter, we develop a method based on compositional volumetric represen-
tation for efficient and accurate capturing of human avatars with diverse hairstyles.
Towards that goal, we build a universal hair appearance prior model for modeling
the appearance of diverse hairstyles. To accommodate the large intra-class variance
in hair appearance, we split hairstyles into small volumetric primitives and learn a
local appearance model that captures the universal appearance prior at that scale.
We empirically show that our model is capable of generating a dense radiance field
for a large spectrum of hairstyles with photorealistic appearance and outperforms
previous state-of-the-art approaches on both capturing fidelity and generalization.
As a result, our method supports applications like generating personalized avatars
from in-the-wild scans using sparse views.

6.5 Implementation Details on Volumetric Render-
ing

Differentiable Volumetric Raymarching in MVP [47]. Following the formula-
tion in Sec 6.2.1, we first explain the implementation details regarding how we
aggregate the spatial radiance functions Vrgb, Vα and Vlabel into the renderings as
Ip, Mp and T (l). We use Riemann sum to approximate the integral in Sec 6.2.1.
For simplicity, we use a toy example shown in Figure 6.7 for easier illustration. We
denote the red dot c as the camera center and the arrow v(p) as the raymarching
direction of pixel p. We march the ray with uniform step size which results in sam-
ple points (blue dots) along the ray with depth τi. And we denote the volumetric
primitives that intersect with those sample points as νj

∗ where ∗ can be α, rgb or
label and j is the index of the corresponding volumetric primitive. The green ones
are the primitives for the non-hair region and the orange ones are the primitives for

109

the hair region. We use the term νj
∗(τi) as the value we sampled from νj

∗ at point τi.
To get νj

∗(τi), we use trilinear interpolation between the nearest vertices of τi in νj
∗ .

As in MVP, the aggregated α value up to τi along the ray is computed as below

T (τi) = min(1,
i∑

j=1

∑
k∈jk

νj k
α),

where jk is the set for all the indices of the intersected primitives at τj . Supposing
that all the α values adds up to a value greater than 1 at ν4 1

α , we will have

T (τ1) = ν1 1
α

T (τ2) = T (τ1) + ν2 1
α + ν2 2

α

T (τ3) = T (τ2) + ν3 1
α

T (τ4) = 1

T (τ5) = 1,

where T (τ4) and T (τ5) will be constant. Thus, we will have the aggregated rgb and
label values as

Ip = ν1 1
α ν1 1

rgb + ν2 1
α ν2 1

rgb + ν2 2
α ν2 2

rgb

+ ν3 1
α ν3 1

rgb + (1− T (τ3))ν
4 1
rgb,

where the above equation will yield 0 gradient with respect to ν4 2
∗ , ν4 3

∗ and ν5 1
∗ .

As in NeuWigs [101], the aggregated label value will be zero in this case as T (·)
already saturates at ν4 1

α . The early termination of raymarching in this case is espe-
cially problematic if pixel p is on the hair region. In this case, the label loss will
not backpropagate any useful gradients to update νi

α to the correct value. To fix that
problem, we make the saturation point to be better awared of the other intersecting
boxes with a new soft blending formulation. Instead of taking the rgb and label
value of the very first box τ4 intersects, we compute the rgb and label at that point
as

Ip = ν1 1
α ν1 1

rgb + ν2 1
α ν2 1

rgb

+ ν2 2
α ν2 2

rgb + ν3 1
α ν3 1

rgb

+ (1− T (τ3))

∑3
i=1 ν

4 i
α ν4 i

rgb∑3
i=1 ν

4 i
α

Mp = (1− T (τ3))

∑3
i=2 ν

4 i
α∑3

i=1 ν
4 i
α

.

110

With a soft blending reformulation, the rendering terms Ip andMp are both aware
of all the primitives intersected at the saturation point and the rendering formulation
is no longer affected by the stochasticity in the primitive sorting at the same point.

6.6 Training details
We formulate the training objective L as below:

L = L1 + λV GGLV GG + λsegLseg,

where λV GG and λseg are positive values for rebalancing each term in the training
objectives. The first term L1 measures the difference between the rendered image
Ĩ and the ground truth image Igt:

L1 = ||Ĩ − Igt||1.

To enhance the rendering fidelity and achieve better convergence on L1, we add a
second term of perceptual loss as

LV GG =
∑
i

||V GGi(Ĩ)− V GGi(Igt)||1,

where V GGi(·) indicates extracting the intermediate feature from the ith layer of a
pretrained VGG network. The last term Lseg is segmentation loss,

Lseg = ||M−Mgt||1,

which is the L1 distance between the rendered maskM and the ground truth seg-
mentation mask Mgt.

To mitigate overfitting, we perform data augmentation while training. In order
to mimic the noise pattern in the input point cloud, we randomly jitter each point
in the point cloud q with a gaussian noise. We find that data augmentation helps
stabilize the training.

111

KeypointNeRF [58] Cao et al. [9] Ours Ground Truth

Figure 6.2: Novel View Synthesis. Rendering results on the holdout views of the
training identities. We compare our method with KeypointNeRF [58] and Cao et
al. [9]. Our method is compatible with different hair geometries and captures the
detailed volumetric texture of varied hairstyles.

112

KeypointNeRF [58] Cao et al. [9] Ours Ground Truth

Figure 6.3: Novel View Synthesis. Rendering results on the test identities. We
compare our method with KeypointNeRF [58] and Cao et al. [9]. Our method
generalizes reasonably to new identities and is capable of generating a photorealistic
appearance without any finetuning.

113

Figure 6.4: Rendering results under different finetuning steps and views. We
show finetuned results under iteration 0 and 100 on the first and third columns
respectively and train from scratch results on the second and fourth. From left to
right, the results are from models trained using 10, 20, 40 and 80 views. In the
lower right corner, we show the ground truth image under the rendering view for
reference.

114

Figure 6.5: Ablation on different finetuning configurations. We show the learn-
ing curve of models under different finetuning configurations. We finetune(ft) our
model as well as train from scratch(noft) with a varied number of training views in
{10, 20, 40, 80} that are approximately uniformly sampled from all training views.
Our pre-trained model creates a warm start for avatar personalization and is also
robust to the number of views used for finetuning.

115

instant-ngp [62] test view Ours test view Ground Truth

Figure 6.6: Rendering results on iPhone captured data. We show the results
of our method and instant-ngp on the iPhone-captured data. Both our method and
instant-ngp work well on the training views while our method works better on test-
ing views

Figure 6.7: Raymarching example.

116

Chapter 7

Conclusion and Future Work

In this thesis, we have studied the problem of the dynamic capture of the human
head with dynamic hair from videos. There are three major components of the
captured content: geometry, appearance and motion. We first explore the use of
a neural volumetric representation for a photorealistic appearance capture of near-
static hair. We then further extend the problem to capture hair with motion using a
hybrid neural volumetric representation that improves the efficiency of rendering as
well as the accuracy of dynamic capture. Combined with a Decoder-as-a-Tracker
(DaaT) algorithm, we achieve robust and automatic capture of dynamic hair with
the help of both data and model priors. In addition to the dynamic capture of hair,
we studied the problem of hair animation without relying on instant hair observa-
tions as a driving signal. Powered by the data from the capture stage, we build a
data-driven animation model that can propagate an initial hair configuration into
future configuration recurrently, while having the generated hair motion be consis-
tent with the head motion and relative gravity direction. In parallel with building
an identity-specific model for detailed dynamic capture of individual hairstyles, we
tackle the problem of efficient and generalizable capture of diverse hairstyles with
a single universal hair appearance model. To handle the large intra-class variance
in hair appearance and geometry, we learn a local appearance prior model at the
primitive level that achieves reasonable generalization on novel hairstyles with a
limited amount of data. Beyond the work we have done, we believe that there is
much more that can be done to improve capture efficiency and accuracy as well as
generalization power for animation and content creation. In the following, we will
further discuss the lessons we learned and our outlook on future directions.

1. Dynamic Capture and Animation. In the computer vision community, re-
searchers attempted to solve the problem of dynamic capture under ill-posed
conditions like incomplete observations, with the help of different kinds of

117

priors. This problem of perception aims at the accurate reconstruction of real-
world assets that go beyond incomplete observations. In contrast, conven-
tional graphics research is focused on the creation of visual data and anima-
tion, which is a generation problem. Although they are inverse to each other,
the similarity between the perception and generation problems is the use of
a prior model that can guide both processes. In this thesis, we jointly solve
the problems of dynamic capture (perception) and animation (generation) of
humans in an end-to-end manner. The benefit of solving the two problems to-
gether goes beyond the consideration of automating the pipeline. We believe
that the synergy between perception and generation is key to asymptotically
approaching an ideal prior model that both aligns well with observations of
the world and is capable of generating realistic and diverse content. The prob-
lems of how to build and drive such a prior model are equally important for
human avatars and virtual telepresence. In this thesis, we build a data-driven
dynamic model of hair that propagates a previous hair state into a future one.
However, the motion is limited by the training data distribution and does not
cover very complex motion types. One way to solve this problem is using a
more advanced sequential model such as transformer [97] and including more
diverse data for training.

2. Model-based vs. Data-driven Prior. In this thesis, we have demonstrated
the importance of both a model-based prior and a data-driven prior for the
performance capture of dynamic hair. Using a model-based prior, we can
explicitly regulate the model and restrict the solution space for better op-
timization efficiency and convergence. However, it is usually not straight-
forward to register an existing model prior to the input observations. One
reason is that existing models might be too complex to be aligned given the
incomplete form of the observations. Another reason is that some phenom-
ena might go beyond the capability of existing models. Thus, we develop
data-driven models, which are trained in both a supervised and unsupervised
manner, to explain certain observations from a statistical perspective. With
the model-based priors as constraints, the data-driven model is more physi-
cally grounded and converges faster during the learning process. Although
this kind of model might not be fully explainable and could be limited by
the training data distribution, we believe that it serves as a stepping stone
towards building better model-based priors and models that are more pre-
cisely aligned with observations. One possible future direction is to use a
differentiable simulator to solve for a plausible joint distribution of physical
parameters via data-driven optimization. Another interesting future direction
is to use a learning-based model as a guide for improving existing physical

118

models.

3. Layered Representation. Much of the work in the literature uses a unified
model to jointly capture and animate the head and hair. In our work, we argue
that using a layered representation instead provides many benefits beyond a
unified model. The first benefit it brings us is compositionality. Although
we might see the co-existence of a certain hairstyle and a certain identity
from a dataset, theoretically the same hairstyle can be put on anyone’s head.
Compared with a unified model, a layered representation treats hair and head
as separate modules, and therefore is less affected by the co-existence bias
introduced by certain datasets. Additionally, a layered representation leads
to better accuracy in modeling dynamics and appearance. With a layered
representation, we will be able to use hair-specific prior models, rather than
a prior model of scalp, to fit the specific hair dynamic and apparel properties.
However, this kind of design requires that we manually determine how many
layers to use and which parts should be modeled separately. Future work
could automatically determine which parts need to be separately modeled
and how many layers are needed. Besides the head, many hairstyles interact
frequently with shoulders and hands. Good modeling for each of those body
parts is essential for a natural and realistic appearance. Furthermore, as those
parts enjoy a smaller intra-class variance than hair among different identities,
the interaction between those parts and hair will serve as a good clue for
anchoring the shape and dynamics property of different hairstyles.

4. Hybrid Representation for Efficient Rendering and Animation. A 3D
representation that is efficient to render and store is essential for animation.
Our methods used a hybrid representation for that purpose. The hybrid repre-
sentation contains a coarse-level explicit geometric representation that can be
controlled directly and a fine-level representation of a neural volumetric func-
tion which is stored with a sparse structure. Although that can be made quite
efficient to drive and render, there is still room to improve. One promising
direction is to use a mipmap-like structure to store the appearance at different
levels, such that we can adaptively select the content to render according to
the resolution needs. Another possible improvement is to generate the neural
appearance of the visible parts rather than all parts, improving the run-time
efficiency.

5. Generalization and Scalability. Building a generalizable and scalable model
is essential for democratizing high-quality human avatars. Toward this goal,
many research directions have been explored in this thesis such as finding

119

suitable neural 3D representation for dynamic human modeling, efficient in-
verse rendering techniques for distilling 3D avatars from 2D images and
building a data-driven dynamic model for better control of human avatars.
Besides the technical improvements, data is fuel for making those models
work. We detail the scale of the data we used in each chapter in Tab 7.1
and discuss what model we build with those data. We hope it could inspire
future data collection for generalizable high-quality avatars. From Chap. 3
to Chap. 5 we build identity-specific models for various motion patterns like
expressions and hair movements. In Chap. 3, we build a volumetric model
for capturing static hair. Although the data we used are videos, there is little
hair motion variation. In Chap. 4, we capture videos with hair movements
and use a sparse volumetric model for detailed capture of hair movements.
However, the videos we captured contain a single motion and are not enough
to build animatable avatars. Therefore, in Chap. 5, we further expand the data
variation in our dataset by introducing more hair motions captured under dif-
ferent head velocities. The newly captured dataset facilitates a more robust
dynamic model that can generate diverse hair motions. In Chap. 6, the size of
our dataset drops dramatically in terms of frames but increases significantly
in the number of identities covered. We explore a generalizable local appear-
ance model for hair appearance capture for a large group of individuals with
diverse hairstyles. In the future, we hope to build an avatar that generalizes on
both appearance and dynamics. To achieve that, we can collect a new dataset
that exhausts all combinations of different appearances and motions. How-
ever, the efforts for creating such a dataset would be tremendous. To avoid
that, we need to disentangle the appearance and motion from real-world ob-
servations and treat them as tangential parts of our avatar modeling. Then,
we will be able to use a collection of much smaller datasets that capture the
variance only in appearance or motion.

There are two major challenges to building a more universal model for both
appearance and dynamics. The first challenge is the great intra-class vari-
ance in the appearance and geometry of human hair. With a limited amount
of data for individuals, this problem becomes even more challenging. Most
of the existing large-scale datasets are noisy and unstructured, which makes
them hard to use for building a generalizable model with high quality. How
to utilize existing large-scale internet data to upgrade existing prior models is
an interesting and challenging problem. One possible approach is to utilize
large foundation models that are trained on internet data as a critique to opti-
mize existing prior models for better generalization on appearance. Another
difficulty is on the dynamic modeling side. Although visual correlation can

120

Chap. 3 Chap. 4 (HVH) Chap. 5 (NeuWigs) Chap. 6

Number of frames 360 360 1800 255
Types of hair motion 0 1 6 0
Number of identities 1 1 1 255

Table 7.1: Datasets used in each chapter. We compare the number of frames,
types of hair motion and number of identities we captured for the datasets we used
in each chapter.

sometimes indicate the similarity in dynamic patterns for different objects, it
might fail to do so, especially when we have no observation of the internal
structure or are tricked by objects made of different materials but with similar
textures. Thus a model based only on visual conditioning might not be suf-
ficient for a generalizable dynamic model. How to incorporate inputs from
other modalities and how to leverage appropriate physics-based models are
interesting directions for future research. For example, we can use additional
multi-modal input such as language to help determine the dynamic properties
and materials of an object.

Looking forward, we believe that unifying perception and generation is a good
approach to solving other dynamic human modeling problems and beyond. To
accommodate the need for modeling more sophisticated real-world scenarios, we
shall break the limitations of existing models and iteratively update the model using
novel data-driven priors from observations. This data-driven optimization ensures
the model’s accuracy from a statistical perspective. A key component in this loop is
the scheme of analysis-by-synthesis with differentiable pathways, which seamlessly
registers the internal model and the real-world observation. To go beyond observa-
tions and approximate the true underlying distribution of the dynamic world, we
need to develop a deep understanding of physically grounded mechanisms. We
believe that the two directions of perception and generation will become more inte-
grated and the synergy between them will spur more advanced development in both
computer vision and graphics communities.

121

Bibliography

[1] K.-A. Aliev, A. Sevastopolsky, M. Kolos, D. Ulyanov, and V. Lempitsky. Neural
point-based graphics. In European conference on computer vision, pages 696–712.
Springer, 2020.

[2] B. Attal, S. Ling, A. Gokaslan, C. Richardt, and J. Tompkin. Matryodshka: Real-
time 6dof video view synthesis using multi-sphere images. In European Conference
on Computer Vision, pages 441–459. Springer, 2020.

[3] T. Bagautdinov, C. Wu, T. Simon, F. Prada, T. Shiratori, S.-E. Wei, W. Xu, Y. Sheikh,
and J. Saragih. Driving-signal aware full-body avatars. ACM Transactions on Graph-
ics, 40(4):1–17, 2021.

[4] F. Bertails, S. Hadap, M.-P. Cani, M. Lin, T.-Y. Kim, S. Marschner, K. Ward, and
Z. Kačić-Alesić. Realistic hair simulation: animation and rendering. In ACM SIG-
GRAPH 2008 classes, pages 1–154. 2008.

[5] V. Blanz and T. Vetter. A morphable model for the synthesis of 3d faces. In Pro-
ceedings of the 26th annual Conference on Computer Graphics and Interactive Tech-
niques, pages 187–194, 1999.

[6] M. Boss, R. Braun, V. Jampani, J. T. Barron, C. Liu, and H. Lensch. Nerd: Neural
reflectance decomposition from image collections. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 12684–12694, 2021.

[7] G. Bradski. The opencv library. Dr. Dobb’s Journal: Software Tools for the Profes-
sional Programmer, 25(11):120–123, 2000.

[8] M. Broxton, J. Flynn, R. Overbeck, D. Erickson, P. Hedman, M. Duvall, J. Dourgar-
ian, J. Busch, M. Whalen, and P. Debevec. Immersive light field video with a layered
mesh representation. ACM Transactions on Graphics, 39(4):86–1, 2020.

[9] C. Cao, T. Simon, J. K. Kim, G. Schwartz, M. Zollhoefer, S.-S. Saito, S. Lombardi,
S.-E. Wei, D. Belko, S.-I. Yu, Y. Sheikh, and J. Saragih. Authentic volumetric avatars
from a phone scan. ACM Transactions on Graphics, 41(4), jul 2022.

122

[10] R. Chabra, J. E. Lenssen, E. Ilg, T. Schmidt, J. Straub, S. Lovegrove, and R. New-
combe. Deep local shapes: Learning local sdf priors for detailed 3d reconstruction.
In European Conference on Computer Vision. Springer, 2020.

[11] M. Chai, J. Ren, and S. Tulyakov. Neural hair rendering. In European Conference
on Computer Vision, pages 371–388. Springer, 2020.

[12] M. Chai, C. Zheng, and K. Zhou. A reduced model for interactive hairs. ACM
Transactions on Graphics, 33(4):1–11, 2014.

[13] M. Chai, C. Zheng, and K. Zhou. Adaptive skinning for interactive hair-solid simula-
tion. IEEE transactions on visualization and computer graphics, 23(7):1725–1738,
2016.

[14] E. R. Chan, M. Monteiro, P. Kellnhofer, J. Wu, and G. Wetzstein. pi-gan: Peri-
odic implicit generative adversarial networks for 3d-aware image synthesis. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 5799–5809, 2021.

[15] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese,
M. Savva, S. Song, H. Su, et al. Shapenet: An information-rich 3d model repository.
arXiv preprint arXiv:1512.03012, 2015.

[16] W. Chen, H. Ling, J. Gao, E. Smith, J. Lehtinen, A. Jacobson, and S. Fidler. Learning
to predict 3d objects with an interpolation-based differentiable renderer. In Advances
in Neural Information Processing Systems. Curran Associates, Inc., 2019.

[17] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3d-r2n2: A unified ap-
proach for single and multi-view 3d object reconstruction. In European Conference
on Computer Vision. Springer, 2016.

[18] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 23(6):681–685, 2001.

[19] G. Gafni, J. Thies, M. Zollhöfer, and M. Nießner. Dynamic neural radiance fields for
monocular 4d facial avatar reconstruction. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 8649–8658, June 2021.

[20] K. Genova, F. Cole, A. Maschinot, A. Sarna, D. Vlasic, and W. T. Freeman. Unsuper-
vised training for 3d morphable model regression. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2018.

[21] K. Genova, F. Cole, A. Sud, A. Sarna, and T. Funkhouser. Local deep implicit
functions for 3d shape. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020.

123

[22] P.-W. Grassal, M. Prinzler, T. Leistner, C. Rother, M. Nießner, and J. Thies. Neural
head avatars from monocular rgb videos. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 18653–18664, June 2022.

[23] P. Guan, L. Sigal, V. Reznitskaya, and J. K. Hodgins. Multi-linear data-driven dy-
namic hair model with efficient hair-body collision handling. In Proceedings of
the 11th ACM SIGGRAPH/Eurographics conference on Computer Animation, pages
295–304, 2012.

[24] Y. Hong, B. Peng, H. Xiao, L. Liu, and J. Zhang. Headnerf: A real-time nerf-based
parametric head model. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 20374–20384, June 2022.

[25] L. Hu, D. Bradley, H. Li, and T. Beeler. Simulation-ready hair capture. In Computer
Graphics Forum, volume 36, pages 281–294. Wiley Online Library, 2017.

[26] L. Hu, C. Ma, L. Luo, and H. Li. Robust hair capture using simulated examples.
ACM Transactions on Graphics, 33(4):1–10, 2014.

[27] H. Iben, M. Meyer, L. Petrovic, O. Soares, J. Anderson, and A. Witkin. Artistic
simulation of curly hair. In Proceedings of the 12th ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pages 63–71, 2013.

[28] C. Jiang, A. Sud, A. Makadia, J. Huang, M. Nießner, and T. Funkhouser. Local
implicit grid representations for 3d scenes. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2020.

[29] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer
and super-resolution. In European conference on computer vision, pages 694–711.
Springer, 2016.

[30] K. Kania, K. M. Yi, M. Kowalski, T. Trzciński, and A. Tagliasacchi. CoNeRF:
Controllable Neural Radiance Fields. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2022.

[31] A. Kar, C. Häne, and J. Malik. Learning a multi-view stereo machine. In Advances in
Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[32] H. Kato, Y. Ushiku, and T. Harada. Neural 3d mesh renderer. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018.

[33] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[34] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

124

[35] A. Kornilova, M. Faizullin, K. Pakulev, A. Sadkov, D. Kukushkin, A. Akhmetyanov,
T. Akhtyamov, H. Taherinejad, and G. Ferrer. Smartportraits: Depth powered hand-
held smartphone dataset of human portraits for state estimation, reconstruction and
synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 21318–21329, June 2022.

[36] T. Kroeger, R. Timofte, D. Dai, and L. Van Gool. Fast optical flow using dense in-
verse search. In European Conference on Computer Vision, pages 471–488. Springer,
2016.

[37] C. Lassner and M. Zollhöfer. Pulsar: Efficient sphere-based neural rendering. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
June 2021.

[38] T. Li, T. Bolkart, M. J. Black, H. Li, and J. Romero. Learning a model of facial shape
and expression from 4d scans. ACM Transactions on Graphics, 36(6):194–1, 2017.

[39] T. Li, M. Slavcheva, M. Zollhoefer, S. Green, C. Lassner, C. Kim, T. Schmidt,
S. Lovegrove, M. Goesele, R. Newcombe, et al. Neural 3d video synthesis from
multi-view video. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5521–5531, 2022.

[40] Z. Li, S. Niklaus, N. Snavely, and O. Wang. Neural scene flow fields for space-time
view synthesis of dynamic scenes. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 6498–6508, 2021.

[41] S. Lin, L. Yang, I. Saleemi, and S. Sengupta. Robust high-resolution video matting
with temporal guidance. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 238–247, 2022.

[42] D. B. Lindell, J. N. Martel, and G. Wetzstein. Autoint: Automatic integration for fast
neural volume rendering. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 14556–14565, 2021.

[43] L. Liu, J. Gu, K. Zaw Lin, T.-S. Chua, and C. Theobalt. Neural sparse voxel fields. In
Advances in Neural Information Processing Systems, volume 33. Curran Associates,
Inc., 2020.

[44] S. Liu, T. Li, W. Chen, and H. Li. Soft rasterizer: A differentiable renderer for image-
based 3d reasoning. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019.

[45] S. Lombardi, J. Saragih, T. Simon, and Y. Sheikh. Deep appearance models for face
rendering. ACM Transactions on Graphics, 37(4), July 2018.

125

[46] S. Lombardi, T. Simon, J. Saragih, G. Schwartz, A. Lehrmann, and Y. Sheikh. Neural
volumes: Learning dynamic renderable volumes from images. ACM Transactions on
Graphics, 38(4), July 2019.

[47] S. Lombardi, T. Simon, G. Schwartz, M. Zollhoefer, Y. Sheikh, and J. Saragih. Mix-
ture of volumetric primitives for efficient neural rendering. ACM Transactions on
Graphics, 40(4), July 2021.

[48] M. M. Loper and M. J. Black. Opendr: An approximate differentiable renderer. In
European Conference on Computer Vision. Springer, 2014.

[49] T. Luan, L. Feng, and L. Xiaoming. Towards high-fidelity nonlinear 3d face mor-
phoable model. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2019.

[50] L. Luo, H. Li, S. Paris, T. Weise, M. Pauly, and S. Rusinkiewicz. Multi-view hair
capture using orientation fields. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 1490–1497. IEEE, 2012.

[51] L. Luo, H. Li, and S. Rusinkiewicz. Structure-aware hair capture. ACM Transactions
on Graphics, 32(4):1–12, 2013.

[52] L. Luo, C. Zhang, Z. Zhang, and S. Rusinkiewicz. Wide-baseline hair capture using
strand-based refinement. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 265–272, 2013.

[53] Q. Lyu, M. Chai, X. Chen, and K. Zhou. Real-time hair simulation with neural
interpolation. IEEE Transactions on Visualization and Computer Graphics, 2020.

[54] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural
network acoustic models. In Proc. icml, volume 30, 2013.

[55] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger. Occupancy
networks: Learning 3d reconstruction in function space. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.

[56] M. Meshry, D. B. Goldman, S. Khamis, H. Hoppe, R. Pandey, N. Snavely, and
R. Martin-Brualla. Neural rerendering in the wild. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019.

[57] M. Meshry, D. B. Goldman, S. Khamis, H. Hoppe, R. Pandey, N. Snavely, and
R. Martin-Brualla. Neural rerendering in the wild. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 6878–6887, 2019.

[58] M. Mihajlovic, A. Bansal, M. Zollhoefer, S. Tang, and S. Saito. KeypointNeRF:
Generalizing image-based volumetric avatars using relative spatial encoding of key-
points. In European conference on computer vision, 2022.

126

[59] B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. K. Kalantari, R. Ramamoorthi,
R. Ng, and A. Kar. Local light field fusion: Practical view synthesis with prescriptive
sampling guidelines. ACM Transactions on Graphics, 38(4), 2019.

[60] B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. K. Kalantari, R. Ramamoorthi,
R. Ng, and A. Kar. Local light field fusion: Practical view synthesis with prescriptive
sampling guidelines. ACM Transactions on Graphics, 38(4):1–14, 2019.

[61] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng.
Nerf: Representing scenes as neural radiance fields for view synthesis. In European
Conference on Computer Vision. Springer, 2020.

[62] T. Müller, A. Evans, C. Schied, and A. Keller. Instant neural graphics primitives
with a multiresolution hash encoding. ACM Trans. Graph., 41(4):102:1–102:15,
July 2022.

[63] G. Nam, C. Wu, M. H. Kim, and Y. Sheikh. Strand-accurate multi-view hair cap-
ture. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 155–164, 2019.

[64] M. Niemeyer, L. Mescheder, M. Oechsle, and A. Geiger. Differentiable volumetric
rendering: Learning implicit 3d representations without 3d supervision. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020.

[65] K. Olszewski, D. Ceylan, J. Xing, J. Echevarria, Z. Chen, W. Chen, and H. Li. In-
tuitive, interactive beard and hair synthesis with generative models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
7446–7456, 2020.

[66] S. Paris, H. M. Briceno, and F. X. Sillion. Capture of hair geometry from multiple
images. ACM Transactions on Graphics, 23(3):712–719, 2004.

[67] S. Paris, W. Chang, O. I. Kozhushnyan, W. Jarosz, W. Matusik, M. Zwicker,
and F. Durand. Hair photobooth: geometric and photometric acquisition of real
hairstyles. ACM Transactions on Graphics, 27(3):30, 2008.

[68] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. Deepsdf: Learn-
ing continuous signed distance functions for shape representation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.

[69] K. Park, U. Sinha, J. T. Barron, S. Bouaziz, D. B. Goldman, S. M. Seitz, and
R. Martin-Brualla. Nerfies: Deformable neural radiance fields. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 5865–5874, 2021.

127

[70] K. Park, U. Sinha, P. Hedman, J. T. Barron, S. Bouaziz, D. B. Goldman, R. Martin-
Brualla, and S. M. Seitz. Hypernerf: A higher-dimensional representation for topo-
logically varying neural radiance fields. arXiv preprint arXiv:2106.13228, 2021.

[71] S. Peng, M. Niemeyer, L. Mescheder, M. Pollefeys, and A. Geiger. Convolutional
occupancy networks. In European Conference on Computer Vision. Springer, 2020.

[72] L. Petrovic, M. Henne, and J. Anderson. Volumetric methods for simulation and
rendering of hair. Pixar Animation Studios, 2(4):1–6, 2005.

[73] A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-Noguer. D-nerf: Neural
radiance fields for dynamic scenes. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10318–10327, 2021.

[74] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for
3d classification and segmentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2017.

[75] A. Raj, M. Zollhofer, T. Simon, J. Saragih, S. Saito, J. Hays, and S. Lombardi.
Pixel-aligned volumetric avatars. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11733–11742, June 2021.

[76] C. Reiser, S. Peng, Y. Liao, and A. Geiger. Kilonerf: Speeding up neural radiance
fields with thousands of tiny mlps. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 14335–14345, 2021.

[77] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In International Conference on Medical image computing
and computer-assisted intervention, pages 234–241. Springer, 2015.

[78] D. Rückert, L. Franke, and M. Stamminger. Adop: Approximate differentiable one-
pixel point rendering. ACM Transactions on Graphics (TOG), 41(4):1–14, 2022.

[79] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz. Aligning point cloud views
using persistent feature histograms. In 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3384–3391. IEEE, 2008.

[80] R. B. Rusu, Z. C. Marton, N. Blodow, and M. Beetz. Persistent point feature his-
tograms for 3d point clouds. In Proc 10th Int Conf Intel Autonomous Syst (IAS-10),
Baden-Baden, Germany, pages 119–128, 2008.

[81] S. Saito, J. Yang, Q. Ma, and M. J. Black. Scanimate: Weakly supervised learning
of skinned clothed avatar networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2886–2897, 2021.

128

[82] T. Salimans and D. P. Kingma. Weight normalization: A simple reparameterization
to accelerate training of deep neural networks. Advances in Neural Information
Processing Systems, 29, 2016.

[83] K. Schwarz, Y. Liao, M. Niemeyer, and A. Geiger. Graf: Generative radiance fields
for 3d-aware image synthesis. In Advances in Neural Information Processing Sys-
tems, volume 33. Curran Associates, Inc., 2020.

[84] V. Sitzmann, J. Thies, F. Heide, M. Nießner, G. Wetzstein, and M. Zollhöfer. Deep-
voxels: Learning persistent 3d feature embeddings. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019.

[85] V. Sitzmann, M. Zollhöfer, and G. Wetzstein. Scene representation networks: Con-
tinuous 3d-structure-aware neural scene representations. In Advances in Neural In-
formation Processing Systems, volume 32. Curran Associates, Inc., 2019.

[86] P. P. Srinivasan, B. Deng, X. Zhang, M. Tancik, B. Mildenhall, and J. T. Barron.
Nerv: Neural reflectance and visibility fields for relighting and view synthesis. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 7495–7504, 2021.

[87] T. Sun, G. Nam, C. Aliaga, C. Hery, and R. Ramamoorthi. Human Hair Inverse
Rendering using Multi-View Photometric data. In A. Bousseau and M. McGuire,
editors, Eurographics Symposium on Rendering - DL-only Track. The Eurographics
Association, 2021.

[88] R. Szeliski and P. Golland. Stereo matching with transparency and matting. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
517–524. IEEE, 1998.

[89] J. Tang. Torch-ngp: a pytorch implementation of instant-ngp, 2022.
https://github.com/ashawkey/torch-ngp.

[90] A. Tewari, F. Bernard, P. Garrido, G. Bharaj, M. Elgharib, H.-P. Seidel, P. Pérez,
M. Zöllhofer, and C. Theobalt. Fml: Face model learning from videos. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
10812–10822, 2019.

[91] A. Tewari, M. Zollhöfer, P. Garrido, F. Bernard, H. Kim, P. Pérez, and C. Theobalt.
Self-supervised multi-level face model learning for monocular reconstruction at over
250 hz. In The Proceeding of IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2018.

[92] A. Tewari, M. Zollhofer, H. Kim, P. Garrido, F. Bernard, P. Perez, and C. Theobalt.
Mofa: Model-based deep convolutional face autoencoder for unsupervised monoc-
ular reconstruction. In Proceedings of the IEEE/CVF International Conference on
Computer Vision Workshops, pages 1274–1283, 2017.

129

[93] J. Thies, M. Zollhöfer, and M. Nießner. Deferred neural rendering: Image synthesis
using neural textures. ACM Transactions on Graphics, 38(4), 2019.

[94] L. Tran and X. Liu. Nonlinear 3d face morphable model. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7346–
7355, 2018.

[95] E. Tretschk, A. Tewari, V. Golyanik, M. Zollhöfer, C. Lassner, and C. Theobalt.
Non-rigid neural radiance fields: Reconstruction and novel view synthesis of a dy-
namic scene from monocular video. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 12959–12970, 2021.

[96] S. Tulsiani, T. Zhou, A. A. Efros, and J. Malik. Multi-view supervision for
single-view reconstruction via differentiable ray consistency. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, volume 29,
2017.

[97] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin. Attention is all you need. Advances in neural information pro-
cessing systems, 30, 2017.

[98] C. Wang, B. Eckart, S. Lucey, and O. Gallo. Neural trajectory fields for dynamic
novel view synthesis. arXiv preprint arXiv:2105.05994, 2021.

[99] Z. Wang, T. Bagautdinov, S. Lombardi, T. Simon, J. Saragih, J. Hodgins, and
M. Zollhofer. Learning compositional radiance fields of dynamic human heads. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 5704–5713, June 2021.

[100] Z. Wang, T. Bagautdinov, S. Lombardi, T. Simon, J. Saragih, J. Hodgins, and
M. Zollhofer. Learning compositional radiance fields of dynamic human heads. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 5704–5713, 2021.

[101] Z. Wang, G. Nam, T. Stuyck, S. Lombardi, C. Cao, J. Saragih, M. Zollhöfer, J. Hod-
gins, and C. Lassner. Neuwigs: A neural dynamic model for volumetric hair capture
and animation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8641–8651, 2023.

[102] Z. Wang, G. Nam, T. Stuyck, S. Lombardi, M. Zollhoefer, J. Hodgins, and C. Lass-
ner. Hvh: Learning a hybrid neural volumetric representation for dynamic hair per-
formance capture, 2021.

[103] K. Ward, F. Bertails, T.-Y. Kim, S. R. Marschner, M.-P. Cani, and M. C. Lin. A
survey on hair modeling: Styling, simulation, and rendering. IEEE transactions on
visualization and computer graphics, 13(2):213–234, 2007.

130

[104] Y. Wei, E. Ofek, L. Quan, and H.-Y. Shum. Modeling hair from multiple views. In
ACM SIGGRAPH 2005 Papers, pages 816–820. 2005.

[105] O. Wiles, G. Gkioxari, R. Szeliski, and J. Johnson. Synsin: End-to-end view synthe-
sis from a single image. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020.

[106] C. Wu, T. Shiratori, and Y. Sheikh. Deep incremental learning for efficient high-
fidelity face tracking. ACM Transactions on Graphics, 37(6):1–12, 2018.

[107] C. Wu and T. Kanai. Data-driven detailed hair animation for game characters. Com-
puter Animation and Virtual Worlds, 27(3-4):221–230, 2016.

[108] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum. Learning a probabilistic
latent space of object shapes via 3d generative-adversarial modeling. In Advances in
Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

[109] C.-h. Wuu, N. Zheng, S. Ardisson, R. Bali, D. Belko, E. Brockmeyer, L. Evans,
T. Godisart, H. Ha, A. Hypes, et al. Multiface: A dataset for neural face rendering.
arXiv preprint arXiv:2207.11243, 2022.

[110] W. Xian, J.-B. Huang, J. Kopf, and C. Kim. Space-time neural irradiance fields for
free-viewpoint video. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9421–9431, 2021.

[111] D. Xiang, F. Prada, C. Wu, and J. Hodgins. Monoclothcap: Towards temporally co-
herent clothing capture from monocular rgb video. In 2020 International Conference
on 3D Vision (3DV), pages 322–332. IEEE, 2020.

[112] Z. Xu, H.-T. Wu, L. Wang, C. Zheng, X. Tong, and Y. Qi. Dynamic hair capture
using spacetime optimization. ACM Transactions on Graphics, 33(6), nov 2014.

[113] G. Yang and D. Ramanan. Volumetric correspondence networks for optical flow. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

[114] L. Yang, Z. Shi, Y. Zheng, and K. Zhou. Dynamic hair modeling from monocular
videos using deep neural networks. ACM Transactions on Graphics, 38(6):1–12,
2019.

[115] A. Yu, R. Li, M. Tancik, H. Li, R. Ng, and A. Kanazawa. Plenoctrees for real-time
rendering of neural radiance fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 5752–5761, 2021.

131

[116] W. Yuan, Z. Lv, T. Schmidt, and S. Lovegrove. Star: Self-supervised tracking and
reconstruction of rigid objects in motion with neural rendering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13144–
13152, 2021.

[117] K. Zhang, F. Luan, Q. Wang, K. Bala, and N. Snavely. Physg: Inverse rendering with
spherical gaussians for physics-based material editing and relighting. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
5453–5462, 2021.

[118] Q. Zhang, J. Tong, H. Wang, Z. Pan, and R. Yang. Simulation guided hair dynamics
modeling from video. In Computer Graphics Forum, volume 31, pages 2003–2010.
Wiley Online Library, 2012.

[119] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable ef-
fectiveness of deep features as a perceptual metric. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 586–595, 2018.

[120] X. Zhang, P. P. Srinivasan, B. Deng, P. Debevec, W. T. Freeman, and J. T. Barron.
Nerfactor: Neural factorization of shape and reflectance under an unknown illumi-
nation. ACM Transactions on Graphics (TOG), 40(6):1–18, 2021.

[121] Y. Zheng, V. F. Abrevaya, M. C. Bühler, X. Chen, M. J. Black, and O. Hilliges.
I m avatar: Implicit morphable head avatars from videos. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13545–
13555, June 2022.

[122] Y. Zheng, W. Yifan, G. Wetzstein, M. J. Black, and O. Hilliges. Pointavatar: De-
formable point-based head avatars from videos. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 21057–21067, 2023.

[123] T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely. Stereo magnification: Learn-
ing view synthesis using multiplane images. ACM Transactions on Graphics, 37(4),
2018.

132

	Introduction
	Thesis Overview
	Main Contributions

	Related Work
	Neural Geometric Representations
	Hair Modeling
	Spatial-temporal Modeling with Coordinate Based Representations
	Volumetric Avatar

	Learning Compositional Radiance Fields of Dynamic Human Heads
	Introduction
	Method
	Experiments
	Limitations
	Conclusion

	HVH: Learning a Hybrid Neural Volumetric Representation for Dynamic Hair Performance Capture
	Introduction
	Method
	Experiments
	Video Results
	Applications and Limitations
	Discussion

	NeuWigs: A Neural Dynamic Model for Volumetric Hair Capture and Animation
	Introduction
	Method
	Experiments
	Discussion

	A Local Appearance Model for Volumetric Capture of Diverse Hairstyles
	Introduction
	Method
	Experiments
	Conclusion
	Implementation Details on Volumetric Rendering
	Training details

	Conclusion and Future Work

