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Abstract

We propose SparseFusion, a sparse view 3D reconstruction approach
that unifies recent advances in neural rendering and probabilistic image
generation. Existing approaches typically build on neural rendering
with re-projected features but fail to generate unseen regions or handle
uncertainty under large viewpoint changes. Alternate methods treat this as
a (probabilistic) 2D synthesis task, and while they can generate plausible
2D images, they do not infer a consistent underlying 3D. However, we
find that this trade-off between 3D consistency and probabilistic image
generation does not need to exist. In fact, we show that geometric
consistency and generative inference can be complementary in a mode-
seeking behavior. By distilling a 3D consistent scene representation from a
view-conditioned latent diffusion model, we are able to recover a plausible
3D representation whose renderings are both accurate and realistic. We
evaluate our approach across 51 categories in the CO3D dataset and show
that it outperforms existing methods, in both distortion and perception
metrics, for sparse-view novel view synthesis.
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Chapter 1

Introduction

2 Input Views Synthesized Views Geometry 2 Input Views Synthesized Views Geometry

Figure 1.1: Sparse-view Reconstruction. We present SparseFusion, an approach
for 3D reconstruction given a few (e.g., just two) segmented input images with known
relative pose. SparseFusion is able to generate a 3D consistent neural scene represen-
tation, enabling us to render novel views and extract the underlying geometry, while
being able to generate detailed and plausible structures in uncertain or unobserved
regions (e.g., front of hydrant, teddy’s face, back of laptop, or left side of toybus).

Consider the two images of the teddybear shown in Figure 1.1 and try to imagine

the underlying 3D object. Relying on the direct visual evidence in these images, you

can easily infer that the teddybear is white, has a large head, and has small arms.

Even more remarkably, you can imagine beyond the directly visible to estimate a

complete 3D model of this object e.g., forming a mental model of the teddy’s face

with (likely black) eyes even though these were not observed. In this work, we build

1



1. Introduction

a computational approach that can similarly predict 3D from just a few images –

by integrating visual measurements and priors via probabilistic modeling and then

seeking likely 3D modes.

A growing number of recent works have studied the related tasks of sparse-view

3D reconstruction and novel view synthesis, i.e., inferring 3D representations and/or

synthesizing novel views of an object given just a few (typically 2-3) images with

known relative camera poses. By leveraging data-driven priors, these approaches

can learn to efficiently leverage multi-view cues and infer 3D from sparse views.

However, they still yield blurry predictions under large viewpoint changes and cannot

hallucinate plausible content in unobserved regions. This is because they do not

account for the uncertainty in the outputs e.g., the unobserved nose of a teddybear

may be either red or black, but these methods, by reducing inference to independent

pixel-wise or point-wise predictions, cannot model such variation.

In this work, we propose to instead model the distribution over the possible

images given observations from some context views and an arbitrary query viewpoint.

Leveraging a geometrically-informed backbone that computes pixel-aligned features

in the query view, our approach learns a (conditional) diffusion model that can then

infer detailed plausible novel-view images. While this probabilistic image synthesis

approach allows the generation of higher quality image outputs, it does not directly

yield a 3D representation of underlying the object. In fact, the (independently)

sampled outputs for each query view often do not even correspond to a consistent

underlying 3D e.g., if the nose of the teddybear is unobserved in context views, one

sampled query view may paint it red, while another one black.

To obtain a consistent 3D representation, we propose a Diffusion Distillation

technique that ‘distills’ the predicted distributions into an instance-specific 3D repre-

sentation. We note that the conditional diffusion model not only gives us the ability

to sample novel-view images but also to (approximately) compute the likelihood of

a generated one. Using this insight, we optimize an instance-specific (neural) 3D

representation by maximizing the diffusion-based likelihood of its renderings. We

show that this leads to a mode-seeking optimization that results in more accurate

and realistic renderings, while also recovering a 3D-consistent representation of the

underlying object. We demonstrate our approach on over 50 real-world categories

from the CO3D dataset and show that our method allows recovering accurate 3D

2



1. Introduction

and novel views given as few as 2 images as input – please see Figure 1.1 for sample

results.
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Chapter 2

Related Work

2.1 Prior Works

Instance-specific Reconstruction from Multiple Views. Leveraging Structure-

from-Motion [32, 36] to recover camera viewpoints, early Multi-view-Stereo (MVS) [7,

33] methods could recover dense 3D outputs. Recent neural incarnations of these

[19, 48, 49] use volumetric rendering to learn a compact neural scene representation.

Follow up works [3, 6, 20] seek to make the training and rendering orders of magnitudes

faster. However, these methods require many input views, making them impractical

for real world applications. While some works [10, 21, 52] seek to reduce the input

views required, they still do not make predictions for unseen regions.

Single-view 3D Reconstruction. The ability to predict 3D geometry (and ap-

pearance) beyond the visible is a key goal for single-view 3D prediction methods.

While these approaches have pursued prediction of different 3D representations e.g.,

volumetric [4, 8, 12, 42, 50], mesh-based [9, 14], or neural implicit [16, 18, 43] 3D,

the use of a single input image fundamentally limits the details that can be pre-

dicted. Moreover, these methods do not prioritize view synthesis as a goal. While

our approach similarly learns data driven inference, we aim for a more detailed

reconstruction and high quality novel-view renderings.

Generalizable View Synthesis from Fewer Views. Novel view synthesis (NVS),

while similar to reconstruction, has slightly different roots. Earlier works [40, 55] frame

5
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1) Real data ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓
2) Sparse-views × ✓ ✓ ✓ × ✓ ✓ × ✓ ✓ ✓ ✓
3) 3D consistent ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓
4) Generalization × × × × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
5) Generate unseen × × × × × × × × × × ✓ ✓

Table 2.1: Comparison with prior methods. The rows indicate whether each
method: 1) has been demonstrated on real world data, 2) works with sparse (2-6)
input views, 3) generates geometrically consistent views, 4) generalizes to new scene
instances, and 5) hallucinates unseen regions.

NVS as a 2D problem, using deep networks to make predictions from global encodings.

Recent approaches combine deep networks with various rendering formulations [31,

34, 35]. Strong performing approaches often leverage re-projected features from input

views with volumetric rendering [24, 41, 51] or image based rendering [2, 38, 46].

While feature re-projection methods are 3D consistent, they regress to the mean and

fail to produce perceptually sharp outputs. Another line of work [15, 26] revisits

NVS as a probabilistic 2D generation task, using newer generative backbones to offer

better perceptual quality at the cost of larger distortion and 3D consistency. See

Table 2.1 for a comparison of our method against existing approaches.

Diffusion Models. Several works extend upon denoising diffusion models [13, 37]

to achieve impressive applications, such as generating images from text [23, 30] and

placing foreground objects in different backgrounds [29]. In this work, we leverage this

class of models for (probabilistic) novel view synthesis while using geometry-aware

features as conditioning. Inspired by the impressive results in DreamFusion [22]

which optimized 3D scenes using text-conditioned diffusion models, we propose a

view-conditioned diffusion distillation mechanism to similarly extract 3D modes in

the sparse view reconstruction task.

6



2. Related Work

2.2 Concurrent Works

Several concurrent works also leverage diffusion models for 3D reconstruction and

view synthesis. 3DiM [47] proposes a 2D diffusion approach for image-conditioned

novel view synthesis, but does not infer a 3D representation like our approach. Closer

to our work, Deng et al. [5] uses (pre-trained) 2D diffusion models as guidance for

single-view 3D, but obtain coarser reconstructions in this more challenging setting.

While we leverage a 2D diffusion model for optimizing 3D, RenderDiffusion [1] learns

a diffusion model in 3D space. Concurrently to DreamFusion [22], which inspired our

distillation objective, Wang et al. [44] provide a different mathematical intuition for

a similar objective.
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Chapter 3

Background

3.1 Denoising Diffusion Models

Denoising diffusion probabilistic models [13] approximate a distribution p(x) over

real data by reversing a Markov chain of diffusion steps, starting from Gaussian noise

at xT to a realistic image at x̂0. See [13] for details.

Forward Process. The forward diffusion process, which incrementally adds noise

to a real image x0 until the image becomes Gaussian noise xT , is defined in Eq. 3.1.

Forward variance β is usually defined by a fixed schedule.

q(xt|xt−1) = N (
√
1− βtxt−1, βtI) (3.1)

Reverse Process. The reverse diffusion process reverses the noise added in the

forward process, effectively denoising a noisy image. When we generate a sample

from a diffusion model, we apply the reverse process T times from t = T to t = 1.

The reverse process is defined in Eq. 3.2, where posterior mean µϕ(xt, t) is predicted

from a network and posterior variance σ2 follows a fixed schedule (though other works

such as [37] also learn σ2 with a network).

p(xt−1|xt) = N (µϕ(xt, t), σ
2I) (3.2)

9



3. Background

Posterior Mean. Prior works [13, 37] have found that parameterizing the neural

network to predict ϵ instead of xt−1 or x0 works better in practice. We write posterior

mean in terms of ϵ in Eq. 3.3 where αt = 1− βt and ᾱt = Πt
s=1αs.

µϕ(xt, t) =
1

√
αt

(xt −
βt√
1− ᾱt

ϵϕ(xt, t)) (3.3)

As mentioned in the main text, this parametrization leads to a training framework

where one adds (time-dependent) noise to a data point x0, and then trains the network

ϵϕ to predict this noise given the noisy data point xt.

LDM = Ex0,ϵ,t

[
wt ||ϵ− ϵϕ(xt, t)||2

]
where xt =

√
ᾱtx0 +

√
1− ᾱtϵ; ϵ ∼ N (0, 1)

(3.4)

In this work, we use conditional diffusion models to infer distributions of the form

p(x|y) by additionally using y as an input for the noise prediction network ϵϕ(x,y, t).

10



Chapter 4

Method

Input Views

min
𝜃

𝔼𝜋[− log𝑝𝜙(𝑓𝜃(𝝅)|𝒚)]

Diffusion DistillationView-conditioned Latent Diffusion

ℎ𝜓(𝝅, 𝐶)

𝝐 ~𝒩(0, 𝐼)

𝑝𝜙(𝒛𝑡−1|𝒛𝑡, 𝒚) ෝ𝒙0
EFT

VLDM

𝝅

(x,y,z) (rgb,σ)𝑓𝜃

Figure 4.1: Overview of SparseFusion. SparseFusion comprises of two core
components: a view-conditioned latent diffusion model (VLDM) and a diffusion
distillation process that optimizes an Instant NGP [20, 39]. We use VLDM to model
p(x|π, C).

Given sparse-view observations of an object (typically 2-3 images with masked

foreground) with known camera viewpoints, our approach aims to infer a (3D)

representation capable of synthesizing novel views while also capturing the geometric

structure. However, as aspects of the object may be unobserved and its geometry

difficult to precisely infer, direct prediction of 3D or novel views leads to implausibly

blurry outputs in regions of uncertainty.

To enable plausible and 3D-consistent predictions, we instead take a two step

approach as outlined in Figure 4.1. First, we learn a probabilistic view-synthesis

model that, using geometry-guided diffusion, can model the distribution of images

from query views given the sparse-view context (Section 4.1). While this allows

the generation of detailed and diverse outputs, the obtained renderings lack 3D

consistency. To extract a 3D representation, we propose a 3D neural distillation

process that ‘distills’ the predicted view distributions into a 3D mode (Section 4.4).
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4. Method

Input Views

Epipolar Features

Epipolar Feature Transformer

Epipolar lines for query pixel

𝝐𝜙(𝒛𝑡, 𝑡, 𝒚)𝒛0 𝝐 ~𝒩(0, 𝐼)

View-Conditioned Latent Diffusion

EFT

VLDM

ො𝝐

𝑙𝑜𝑠𝑠

Query View

𝒛𝑡

𝒚
V K Q

𝒙0

Figure 4.2: View-conditioned Diffusion. We show a diagram of our view-
conditioned latent diffusion model. VLDM is conditioned on features y, which
is predicted by EFT.

4.1 Geometry-guided Probabilistic View

Synthesis

Given a target view pose π along with a set of reference images and their relative

poses C ≡ (xm,πm), we want to model the conditional distribution p(x|π, C), from

which we can synthesize an image x̂. We illustrate our approach to modeling this

distribution in Figure 4.2. First, we use an epipolar feature transformer (EFT)

inspired by [38] as feature extractor to obtain a low resolution feature grid y in the

view space of π given the context C. In conjunction, we train a view-conditioned

latent diffusion model (VLDM) that models the distribution over novel-view images

condition on these geometry-aware features.

4.2 Epipolar Feature Transformer

We build upon GPNR [38] to extract features from context C. GPNR learns a

feedforward network, gψ(r, C), that predicts color given a query ray r by extracting

features along its epipolar lines in all context images and aggregating them with

transformers. We make several modifications to GPNR to suit our needs. First, we

replace the patch projection layer with a ResNet18 [11] convolutional encoder as we

found the lightweight patch encodings, while suitable for small baseline view synthesis,

are not robust under the sparse-view setting. Furthermore, we modify the last layer

12



4. Method

to predict both an RGB value and a feature vector. We denote the RGB branch as gψ

and the feature branch as hψ. We refer to our modified epipolar patch-based feature

transformer as EFT and present its color branch as a strong baseline.

We train the color branch of the EFT to minimize a simple reconstruction loss in

Eq. 4.1, where r is a query ray sampled from π, C is the set of reference images and

their relative poses, and I(r) is the ground truth pixel value.

LEFT =
∑

r∈R(π)

||gψ(r, C)− I(r)||2 (4.1)

Input Views Diffusion Samples GT

Figure 4.3: Diffusion Samples. Given the same input features, the reverse sampling
process of diffusion model results in different predictions for unseen regions.

4.3 View-conditioned Latent Diffusion Model

While EFT can directly predict novel views, the pixelwise prediction mechanism does

not allow it to model the underlying probability distribution, thus resulting in blurry

mean-seeking predictions under uncertainty. To model the distribution over plausible

images, we train a view-conditioned diffusion model to estimate p(x|π, C) while using

EFT as a geometric feature extractor. Instead of directly modeling the distribution

in pixel space, we find it computationally efficient to do so in a lower-resolution latent

space z = E(x), which can be decoded back to an image as x = D(z). Please see the

appendix for details.

Given target view π and a set of input images C, we extract a 32 by 32 feature grid

y = hψ(π, C) using the EFT backbone. We train our VLDM to recover ground truth

13



4. Method

EFT𝑓𝜃(𝝅)
𝒛𝑡 , 𝑡~[0, 𝑇)𝝅~Π

Π

Diffusion Distillation

𝑓𝜃(𝝅)ෝ𝒙0

𝑙𝑜𝑠𝑠

× K

𝑝𝜙(𝒛𝑡−1|𝒛𝑡, 𝒚)

ො𝒛0

(x,y,z) (rgb,σ)𝑓𝜃

𝒛0

𝒚

Figure 4.4: Diffusion Distillation Diagram. We optimize the parameters θ of an
Instant NGP network such that rendered images fθ(π) from π ∼ Π are similar to
VLDM predictions x̂0, effectively seeking a mode in pϕ(x|π, C).

image latent z0 conditioned on y. Following diffusion model training conventions

[13, 23, 37], we optimize a simplified variational lower bound in Eq. 4.2.

LV LDM = Ez,ϵ N (0,1),t,y

[
||ϵ− ϵϕ(zt, t,y)||2

]
(4.2)

Figure 4.2 shows a diagram of the training setup. Our VLDM model allows us

to approximate p(x|π, C), and enables drawing multiple sample predictions. In

Figure 4.3, we see variations in VLDM predictions. Nevertheless, all predictions are

plausible explanations for the target view given that majority of it is unseen.

4.4 Extracting 3D Modes via Diffusion

Distillation

While the proposed VLDM gives us the ability to hallucinate unseen regions and make

realistic predictions under uncertainty, it does not output a 3D representation. In

fact, as it models the distribution over images, the views sampled from the VLDM do

not (and should not!) necessarily correspond to a single underlying 3D interpretation.

How can we then obtain an output 3D representation while preserving the high-quality

of renderings?

3D Inference as Neural Mode Seeking. Our key insight is that the VLDM

model not only allows us to sample plausible novel views, but the modeled distribution

also gives us a mechanism to approximate the likelihood of a generated novel view.

Building on this insight, we propose to distill the VLDM predictions to obtain an

instance-specific 3D neural scene representation fθ, such as NeRF [19] or Instant

NGP (INGP) [20]. Intuitively, we want to arrive at a solution for fθ such that its
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4. Method

renderings x ≡ fθ(π) from arbitrary viewpoints π are likely under the conditional

distribution modeled by the VLDM pϕ(x|π, C):

min
θ

Eπ∼Π − log pϕ(fθ(π)|π, C) (4.3)

where we minimize the negative log-likelihood for images rendered with fθ over

cameras sampled from a prior camera distribution Π (constructed by assuming a

circular camera trajectory and that all cameras look at a common center). We

term this process as ‘neural mode seeking’ as it encourages a representation which

maximizes likelihood as opposed to minimizing distance to samples (mean seeking).

Input Views

SparseFusion VLDM + INGP

min
𝒙

− log 𝑝(𝒙) 𝑚𝑖𝑛
𝒙

𝐸𝒔~𝑝(𝒙) 𝒙 − 𝒔 2
2

Synthesized 
Views

Optimization
Landscape

Figure 4.5: Mode Seeking Visualization. We show qualitative comparison between
a mode-seeking (SparseFusion) and a mean-seeking (VLDM+INGP) objective.

Neural Mode Seeking via Diffusion Distillation. Given a learned diffusion

model, the reconstruction objective yields a bound on the log-likelihood of a data

point x. This approximation yields a simple mechanism for computing the likelihood

of a (rendered) image fθ(π) to be used in the mode-seeking optimization (Eq. 4.3):

− log pϕ(x0) ≈ Eϵ,t

[
wt||z0 − ẑ0,t||2

]
+ C (4.4)

where z0 = E(fθ(π)) is the latent of the rendered image, t ∼ (0, T ], and ẑ0,t is the

predicted latent. Intuitively, this objective implies that if, after adding noise to obtain

zt from z0, the denoising diffusion model predicts ẑ0 close to the original input, one

has reached a mode under pϕ(z). We visualize the behavior of mode seeking versus
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mean seeking in Figure 4.5.

Multi-step Denoising and Image-space Reconstruction. In practice, we make

three modifications to the single-step objective in Eq. 4.4 for better performance:

1) taking loss in pixel space instead of latent space i.e., using x0 instead of z0, 2)

using perceptual distance [54] in addition to the pixelwise distance, and 3) performing

multi-step denoising. Instead of directly predicting ẑ0,t, we adaptively use multiple

time-steps (up to 50 steps) T = (t1, · · · , tk, t), and successively predict ẑtk−1,tk (via

[17]) i.e., predict a denoised estimate for time tk−1 given a sample from time tk.

We denote this reconstruction as ẑ0,T to highlight the multiple-step reconstruction.

We express our final objective for optimizing for neural mode seeking with view-

conditioned diffusion models as:

L = Eπ,ϵ,t

[
wt||fθ(π)− x̂0,T ||2 + LPerp(fθ(π), x̂0,T )

]
(4.5)

where x̂0,T = D(ẑ0,T ), and ẑ0,T is the multi-step reconstruction from zt – which is

obtained by adding noise to z0 = E(fθ(π)). While ẑ in the above objective does

(indirectly) depend on the neural representation fθ, we follow [22] in ignoring this

dependence when computing parameter gradients (see [44] for a justification). We

outline the multi-step denoising diffusion distillation in Figure 4.4.
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Chapter 5

Experiments

We demonstrate our approach on a challenging real world multi-view dataset CO3Dv2

[24], across 51 diverse categories. First, we compare SparseFusion against prior works,

highlighting the benefit of our approach in sparse view settings. Then, we show the

importance of diffusion distillation and its probabilistic mode-seeking formulation.

5.1 Experimental Setup

Dataset. We perform experiments on CO3Dv2 [24], a multi-view dataset of real

world objects annotated with relative camera poses and foreground masks. We

use the specified fewview-train and fewview-dev splits for training and evaluation.

Since SparseFusion optimizes an instance-specific Instant NGP, it is computationally

prohibitive to evaluate on all evaluation scenes. Instead, we perform most experiments

on a core subset of 10 categories proposed by [24], evaluating 10 scenes per category.

Furthermore, we demonstrate that SparseFusion extends to diverse categories by

evaluating 5 scenes per category across 51 categories.

Baselines. We compare SparseFusion against current state-of-the-art methods. We

first compare against PixelNeRF [51], a feature re-projection method. We adapt

PixelNeRF to CO3Dv2 dataset and train category-specific models on the 10 categories

of the core subset, each for 300k steps. We also compare against NerFormer [24],

another feature re-projection method. We use category-specific models provided by
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5. Experiments

the authors for all 51 categories. Moreover, we compare against ViewFormer1 [15],

an autoregressive image generation method, using models provided by the authors.

Lastly, we present components of SparseFusion, EFT and VLDM, as strong baselines.

Metrics. We report standard image metrics PSNR, SSIM, and LPIPS [54]. We

recognize that no metric is perfect for ambiguous cases of novel view synthesis; PSNR

derives from pixelwise MSE and favors mean color prediction while SSIM and LPIPS

favor perceptual agreement.

Implementation Details. For EFT, we use a ResNet18 [11] backbone and three

groups of transformer encoders with 4 layers each. We use 256 hidden dimensions for

all layers. For VLDM, we freeze the VAE from [27] that encodes 256x256 images to

32x32 latents with channel dimension of 4. We construct a 400M parameter denosing

UNet similar to [28, 30] for probabilistic modeling. We jointly train category-specific

EFT and VLDM models, using Eq. 4.1 and Eq. 4.2, across all categories in CO3Dv2.

We use a batch size of 2 and train for 100K iterations.

For diffusion distillation, we use a PyTorch implementation of Instant NGP

[20, 39]. Due to memory constraints, we render images at 128x128 and upsample

to 256x256 before performing diffusion distillation. For each instance, we optimize

Instant NGP for 3,000 steps. During the first 1,000 steps, we optimize rendering

loss on input images and predicted EFT images from a circular camera trajectory

to initialize a rough volume. During the next 2,000 steps, we perform diffusion

distillation. Reconstructing a single instance takes roughly an hour on an A5000 gpu.

1Only category-agnostic CO3Dv1 weights are compatible with our evaluation. We use the
10-category weights for our core subset experiments and all-category weights for our all category
experiments. Despite this difference, the comparative results of ViewFormer against our baselines
are consistent with the comparisons reported in their original paper.
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2 Input 
Views

GT

PN

NF

VF

EFT

VLDM

SF

Figure 5.1: View Synthesis Qualitative Results. We show view synthesis results
with 2 input views on donut, hydrant, cake, bench, teddybear, and plant categories.
We visualize 2 novel views per instance with PixelNeRF (PN), NerFormer (NF),
ViewFormer (VF), EFT, VLDM, and finally, SparseFusion (SF). Corresponding
numbers can be found in Table 5.1.
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5.2 Reconstruction on Real Images

Table 5.1: Detailed View Synthesis Benchmark. We show 2-view category-
specific metrics on 10 CO3D categories from the core subset. We show PSNR ↑ and
LPIPS ↓ averaged across 10 scenes per category.

Donut Apple Hydrant Vase Cake Ball Bench Suitcase Teddybear Plant

PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS

PixelNeRF [51] 20.9 0.30 20.0 0.35 19.0 0.27 21.3 0.26 18.3 0.37 18.5 0.36 17.7 0.35 21.7 0.30 18.5 0.35 19.3 0.36
NerFormer [24] 20.3 0.34 19.5 0.33 18.2 0.30 17.7 0.34 16.9 0.44 16.8 0.35 15.9 0.44 20.0 0.39 15.8 0.43 17.8 0.45
ViewFormer1 [15] 19.3 0.29 20.1 0.26 17.5 0.22 20.4 0.21 17.3 0.33 18.3 0.31 16.4 0.30 21.0 0.26 15.5 0.32 17.8 0.31
EFT 21.5 0.31 22.0 0.29 21.6 0.22 21.1 0.25 19.9 0.33 21.4 0.29 17.8 0.34 23.0 0.26 19.8 0.30 20.4 0.31
VLDM 20.1 0.25 21.3 0.22 20.1 0.18 20.2 0.20 18.9 0.30 20.3 0.25 16.6 0.29 21.3 0.23 17.9 0.27 18.9 0.27
SparseFusion 22.8 0.22 22.8 0.20 22.3 0.16 22.8 0.18 20.8 0.28 22.4 0.22 16.7 0.28 22.2 0.22 20.6 0.24 20.0 0.25

5.2.1 Core Subset: 2-view.

We show 2-view category-specific reconstruction results for the 10 core subset cate-

gories. We evaluate metrics on the first 10 scenes of each category. For each scene, we

load 32 linearly spaced views, from which we randomly sample two input views and

evaluate on the remaining 30 unseen views. The input and evaluation views are held

constant across methods. We report category-specific PSNR and LPIPS in Table 5.1.

We show qualitative comparisons in Figure 5.1.

SparseFusion outperforms all other methods in LPIPS, only losing out in PSNR

for 3 categories. Despite PSNR favoring mean predicting methods, SparseFusion

achieves higher PSNR in 7 categories. The strong performance of SparseFusion is

reflected in the qualitative comparison. Existing methods either predict a blurry view

for unseen regions or a perceptually reasonable view that disregards 3D consistency.

SparseFusion predicts views that are both perceptually reasonable and geometrically

consistent.
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Table 5.2: View Synthesis on 10 Categories. We benchmark view synthesis
results on the 10 categories with 2, 3, and 6 input views.

2 Views 3 Views 6 Views

PSNR � SSIM � LPIPS � PSNR � SSIM � LPIPS � PSNR � SSIM � LPIPS �

PixelNeRF [51] 19.52 0.667 0.327 20.67 0.712 0.293 22.47 0.776 0.241
NerFormer [24] 17.88 0.598 0.382 18.54 0.618 0.367 19.99 0.661 0.332
ViewFormer1 [15] 18.37 0.697 0.282 18.91 0.704 0.275 19.72 0.717 0.266
EFT 20.85 0.680 0.289 22.71 0.747 0.262 24.57 0.804 0.210
VLDM 19.55 0.711 0.247 20.85 0.737 0.225 22.35 0.768 0.201
SparseFusion 21.34 0.752 0.225 22.35 0.766 0.216 23.74 0.791 0.200

5.2.2 Core Subset: Varying Views.

We examine performance of the different methods as we increase the number of input

views. As the number of input views increases, more regions are observed, giving

an advantage to methods that explicitly use feature re-projection. We evaluate 2, 3,

and 6 view reconstruction on the core subset categories and show PSNR, SSIM, and

LPIPS in Table 5.2.

We see feature re-projection methods improve drastically with more input views

as the need for hallucination of unseen regions decreases. EFT outperforms Sparse-

Fusion in PSNR for the 3-view and 6-view settings. However, SparseFusion remains

competitive in PSNR while being better in LPIPS. SSIM results further underscore

the advantage of SparseFusion with sparse (2, 3) input views. Moreover, SparseFusion

outperforms all current state-of-the-art methods in all three metrics for 2, 3, and 6

view reconstruction.
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2 Input Views Synthesized Views Geometry 2 Input Views Synthesized Views Geometry

Figure 5.2: Reconstruction on Diverse Categories. We show SparseFusion
reconstructions on a subset of the 51 CO3D categories. We also show a couple of
failure modes on the last row. Please see project page for more samples and 360-degree
visualizations.

Table 5.3: View Synthesis on 51 Categories. We benchmark novel view synthesis
on all CO3D categories with 2 input views.

2 Views

PSNR � SSIM � LPIPS �

NerFormer [24] 18.44 0.614 0.365
ViewFormer1 [15] 18.91 0.718 0.265
EFT 21.44 0.719 0.281
VLDM 19.85 0.732 0.229
SparseFusion 21.20 0.756 0.223

5.2.3 All Categories: 2-views.

We compare against NerFormer and ViewFormer across all 51 categories to demon-

strate SparseFusion’s performance on diverse categories. We evaluate with 2 random

input views on the first 5 scenes of each category for all 51 categories and report the

averaged metrics in Table 5.3. While EFT edges out in PSNR, SparseFusion achieves

better SSIM and LPIPS. Existing methods, NerFormer and ViewFormer perform
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significantly worse. We show qualitative results of SparseFusion on diverse categories

in Figure 5.2 where, in addition to 3 synthesized novel views, we also visualize the

underlying geometry by extracting an iso-surface via marching cubes.

5.2.4 Failure Modes.

We show failure modes on the bottom row of Figure 5.2. On the bottom left, Sparse-

Fusion fails to reconstruct a good geometry for the black suitcase. As Instant NGP is

trained to output a default black color for the background, the neural representation

sometimes fails to disambiguate black foreground from black background. On the

bottom right, we see SparseFusion propagating a dataset bias for the category, remote.

Since most remote images are TV remotes, SparseFusion attempts to make the video

game controller a TV remote.

5.3 Additional Analysis

5.3.1 Performance Binned by Viewpoint Changes.

We investigate the relationship between magnitude of viewpoint change and recon-

struction performance. We analyze SparseFusion, EFT, and PixelNeRF results on the

core subset and visualize PSNR and LPIPS binned by angle in degrees to the nearest

context view in Figure 5.3. We show that for small viewpoint changes, SparseFusion

performs better in LPIPS and competitively in PSNR against EFT. As viewpoint

change increases, feature re-projection methods fall off quite fast while SparseFusion

remains more robust and performs relatively better.

5.3.2 Importance of Mode Seeking.

We compare the diffusion distillation formulation against a naive method to obtain a

neural representation given a view synthesis method (VLDM or EFT). Concretely, we

obtain several rendered samples ({Î , π̂}) from the base view synthesis method given

the context views C, and simply train an INGP to fit a 3D representation to these.

We present the results in Table 5.4, and see no significant change when we fit

INGP to EFT renderings because EFT predicts consistent mean outputs. However,
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Figure 5.3: Metrics Binned by Viewpoint Change. We show metrics binned by
the angle of query camera to the nearest context view. Results are aggregated from
Table 5.1.

Table 5.4: The Importance of Mode Seeking. We show metrics when EFT and
VLDM are naively used to optimize Instant NGP [20] in a mean seeking behavior,
versus the mode seeking optimization in SparseFusion. We average across 10 scenes
of hydrants with 2 input views.

Backbone Method PSNR � SSIM � LPIPS �

EFT
base 21.58 0.732 0.224
base w/ INGP 21.57 0.780 0.219

VLDM
base 20.05 0.776 0.178
base w/ INGP 20.61 0.753 0.230
SparseFusion 22.35 0.817 0.153

when we fit INGP to VLDM predictions, we see that perceptual quality decreases.

We show a qualitative example in Figure 4.5 and also illustrate a toy 2D scenario

which explains this drop due to mean seeking where averaging over conflicting samples

leads to a poor reconstruction. However, when we optimize INGP using the diffusion

distillation objective, all metrics improve, underscoring the importance our proposed

of mode seeking optimization.
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Table 5.5: Diffusion Distillation Setup. We show that a combination of multi-step
prediction and perceptual loss strikes a balance between all three metrics. (hydrant,
10 scenes, 2 input views)

Loss Space Denoising Steps Perceptual Loss PSNR � SSIM � LPIPS �

Latent
Single

No 22.25 0.720 0.211
Yes 22.15 0.770 0.187

Multiple
No 21.92 0.744 0.211
Yes 22.03 0.781 0.170

Pixel
Single

No 22.13 0.792 0.208
Yes 22.49 0.826 0.169

Multiple
No 22.36 0.797 0.200
Yes 22.35 0.817 0.153

Single Single + Percep Loss Multi + Percep Loss GT

Figure 5.4: Qualitative Results with Pixel Space Loss. Using multi-step
denoising and perceptual loss achieves more realistic results.

5.3.3 Ablating Distillation Objective.

We examine performance across various distillation design choices in Table 5.5. We

observe that for all methods, PSNR remains relatively similar. However, computing

loss in pixel space and additionally using perceptual loss improves both SSIM and

LPIPS. Moreover, the multi-step denoising leads to the best perceptual results. While

single-step denoising with perceptual loss achieves better PSNR and SSIM by a small

margin, qualitative results in Figure 5.4 show that the predicted texture is smooth

and unrealistic.
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Chapter 6

Discussion

6.1 Limitations

We presented an approach for inferring 3D neural representations from sparse-view

observations. Unlike prior methods that struggled to deal with uncertainty, our

approach allowed predicting 3D-consistent representations with plausible and realistic

outputs even in unobserved regions. While we believe our work represents a significant

step forward in recovering detailed 3D from casually captured images, a few challenges

still remain. A key limitation of our work (as well as prior methods) is the reliance

on known (relative) camera poses across the observations, and while there have

been recent promising advances [25, 53], this remains a challenging task in general.

Additionally, our approach requires optimizing instance-specific neural fields and is

computationally expensive. Finally, while our work introduced the view-conditioned

diffusion distillation in context of sparse-view reconstruction, we believe even single-

view 3D prediction approaches can benefit from leveraging similar objectives.

6.2 Ethics and Broader Impact

Compared to existing novel view synthesis methods, SparseFusion is more compu-

tationally expensive. This poses a hardware limitation for potential downstream

tasks and may also increase carbon emissions. Additionally, SparseFusion relies on
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view-conditioned latent diffusion models (VLDM), which are trained on multi-view

datasets. VLDMs are good at representing their training data, potentially learning

harmful biases that will propagate to reconstructed 3D scenes. While our current

use case for reconstructing static objects from CO3D categories does not present

ethical concerns, adapting SparseFusion to humans or animals requires more thorough

examination of bias present in the training data.
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Appendix A

Implementation Details

A.1 Epipolar Feature Transformer

Overview. Epipolar feature transformer is a feed-forward network that first gathers

features along the epipolar lines of input images before aggregating them through

a series of transformers. EFT is inspired by the GPNR approach by Suhail et al.

[38], but we modify the feature extractor backbone to better suit the sparse-view

setup and additionally use epipolar features for conditional diffusion. We describe

our implementation below.

Notation: Let gψ be the RGB branch and hψ be the feature branch.

Inputs: C ≡ (xm,πm), a set of input images with known camera poses and a query

pose π – note that the poses are w.r.t. an arbitrary world-coordinate system and we

only use their relative configuration.

Outputs: an RGB image x and a feature grid y corresponding to the query viewpoint

π.

Feature Extractor Backbone. Given input views C ≡ (xm,πm) where xm is the

mth masked (black background) input image of shape (256, 256, 3). We use ResNet18

[11] as our backbone to extract pixel-aligned features by concatenating intermediate

features from the first 4 layer groups of ResNet18, using bilinear upsampling to ensure

all features are 128 by 128. For each image xm, we arrive at a feature grid of shape
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(128, 128, 512).

Epipolar Points Projector. Given a query camera π, each pixel in its image

plane corresponds to some ray. Our Epipolar Transformer seeks to infer per-pixel

colors or features, and does so by processing each ray using the multi-view projections

of points along it. For each ray r (parameterized by its origin and direction), we

project 20 points along the ray direction with depth values linearly spaced between

z near and z far. We set z near to s− 5 and z far to s+ 5 where s is the average

distance from scene cameras to origin computed per scene. The 20 points, with shape

(20, 3), are then projected into the screen space of each of the m input cameras,

giving us epipolar points with shape (M, 20, 2). We use bilinear sampling to sample

image features at the epipolar points, giving us combined epipolar features of shape

(M, 20, 512) per ray. This becomes the input to our epipolar feature transformer.

Epipolar Feature Transformer. EFT aggregates the epipolar features from a

single ray with a series of three transformers to predict an RGB pixel color and a

256-dimension feature. We visualize the EFT in Figure A.1. We show details of

the transformers in Table A.1. All transformer encoders have hidden and output

dimensions of 256. Both the depth aggregator and view aggregator transformers

are followed by a weighted average operation, where the output features from the

transformers are multiplied by a weight, which sums to 1 along the sequence length

dimension. The relative weights are predicted by a linear layer before passing through

softmax. This effectively performs weighted averaging along the sequence dimension.

The inputs to the transformer are the sampled features concatenated with addi-

tional ray and depth encodings. Given a point along the query ray rq at depth d, we

denote by pmd its projection in the mth context view. In addition to the pixel-aligned

feature fmd (described in previous paragraph), we also concatenate encodings of the

query ray rq, the depth d, and the ray rmd connecting the mth camera center to the

3D point. We use plucker coordinates to represent each ray, and compute harmonic

embeddings for each to (rq, rmd,d) (using 6 harmonic functions) before concatenating

them with fmd to form the input tokens to the transformer.
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Input Views

(B, M, D, F)

Epipolar Feature Transformer

V K Q

Query View
Epipolar lines for query ray

V K Q

V K Q

(B, M, D, F)

(B, M, F)

(B, 3) (B, 256)
RGB Features

Depth Aggregator

View Aggregator

Init Transformer

Query Ray

Figure A.1: Epipolar Feature Transformer We show a diagram of EFT. This
module processes each query ray independently, using a transformer to aggregate the
projected features across views and across possible depths. For each ray, the output
is a predicted RGB color (used as a baseline prediction method), and a pixel-aligned
feature (used as conditioning in the diffusion model).

Training Procedure. We can train the color branch of EFT as a standalone novel

view synthesis baseline. In our work, EFT is jointly trained with VLDM. Please see

supplementary Section A.2 for details.

A.2 View-conditioned Diffusion Model

Overview. View-conditioned diffusion model is a latent diffusion model that condi-

tions on a pixel-aligned feature grid y.

Notation: Let ϵϕ be the denoising UNet, E be the VAE encoder, and D be the VAE

decoder.

VAE. We use the VAE from Stable Diffusion [27]. We use the provided v1-3 weights

and keep the VAE frozen for all experiments. We use (256, 256, 3) RGB images as
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Table A.1: EFT Configuration. We use default PyTorch hyperparameters for each
layer. B is number of rays. M is the number of input views. D is the number of
epipolar feature samples along the ray. D is 20.

Transformer Layers Sequence Dims / Dim Output Shape

Init Transformer Transformer Encoder x4 M (B, M, D, 256)

Depth Aggregator
Transformer Encoder x4 D (B, M, D, 256)
Linear + Softmax D (B, M, D, 1)
Weighted Average (B, M, 256)

View Aggregator
Transformer Encoder x4 M (B, M, 256)
Linear + Softmax M (B, M, 1)
Weighted Average (B, 256)

Color Branch Linear (B, 3)

input, and the VAE encodes them into latents of shape (32, 32, 4). We refer readers

to [27] for more details.

Denoising UNet. Our 400M parameter UNet roughly follows [30]. We construct

our UNet using code from [45] with the parameters in Table A.2.

Table A.2: UNet Parameters. We provide parameters for our UNet.

Parameter Value
channels 4
dim 256
dim mults (1,2,4,4)
num resnet blocks (2,2,2,2)
layer attns (False, False, False, True)
cond images channels 256

The UNet comprises of 4 down-sampling blocks, a middle block, and 4 up-sampling

blocks. We show the input and output shape for the modules of the UNet in Table A.3.

We refer readers to [45] for UNet details. We disable all text conditioning and cross

attention mechanisms; instead, we concatenate EFT features, y, with image latents,

zt. These EFT features are computed for the of 32× 32 rays corresponding to the

patch centers.

Training Procedure. We train with batch size of 2, randomly chosen number of

input views between 2-5, and learning rate of 5e-5 using Adam optimizer with default

32



A. Implementation Details

Table A.3: UNet Blocks. We outline the modules in our denoising UNet.

Modules Block Output Shape

Input (B, 260, 32, 32)

Init. Conv InitBlock (B, 256, 32, 32)

Down 1 DownBlock (B, 256, 16, 16)

Down 2 DownBlock (B, 512, 8, 8)

Down 3 DownBlock (B, 1024, 4, 4)

Down 4
DownBlock (B, 1024, 4, 4)
Self-attention (B, 1024, 4, 4)

Middle MiddleBlock (B, 1024, 4, 4)

Up 1
UpBlock (B, 1024, 8, 8)
Self-attention (B, 1024, 8, 8)

Up 2 UpBlock (B, 512, 16, 16)

Up 3 UpBlock (B, 256, 32, 32)

Up 4 UpBlock (B, 256, 32, 32)

Final Conv. Conv2D (B, 4, 32, 32)

hyperparameters for 100K steps. We optimize both the UNet weights and also the

EFT weights. We optimize the UNet and feature branch of EFT with the simplified

variational lower bound [13]. We optimize the color branch of EFT with pixel-wise

reconstruction loss.

A.3 Diffusion Distillation

Overview. We optimize a 3D neural scene representation, Instant NGP [20, 39],

with our VLDM.

Notation: Let fθ be the volumetric Instant NGP renderer, pϕ(z0:T |π, C) be the

multi-step denoising process that estimates ẑ0. Let Π be an instance-specific camera

distribution.

Instant NGP. We use the PyTorch Instant NGP implementation from [39]. We

set scene bounds to 4 with desired hashgrid resolution of 8,192. We use a small 3

layer MLP with hidden dimension of 64 to predict RGB and density. We do not use
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view direction as input.

Camera Distribution. Given a set of input cameras CI ≡ (πm) and a query

camera πq, we first find the look-at point Pat by finding the nearest point to all m+1

rays originating from camera centers. Then, we fit a circle O in 3D space with center

being the mean of all camera centers. Let the normal of circle O be n. To sample a

camera, we first sample a point Pi on O and jitter the angle between PatPi and n

by N (0, 0.17) radians to get jittered point P
′
i . We then construct a camera π with

center P
′
i looking at Pat.

Multi-step Diffusion Guidance. Given a rendered image x0, we encode it to

obtain z0. Then, we uniformly sample t ∼ (0, T ] and construct a noisy image

latent zt. We perform multi-step denoising to obtain ẑ0 by iteratively sampling

ẑtk−1
∼ pϕ(ztk−1

|ẑtk , y) on an interval of time steps T = (t1, ..., tk, t) using a linear

multi-step method [17]. We construct T by linearly spacing k + 1 time steps between

(0, t]. We define k with a simple scheduler:

k + 1 =

{
100t
T

, if t ≤ T
2

50, if t > T
2

}
(A.1)

Finally, given ẑ0, we get the predicted image x̂0 = D(ẑ0). We do not compute

gradients through multi-step diffusion and treat x̂0 as a detached tensor.

Distillation Details. We perform 3,000 steps of distillation, optimizing weights of

the MLP θ with Adam optimizer and learning rate 5e-4. During each step of diffusion

distillation, we sample π ∼ Π and render an image x0 = fθ(π). For the first 1,000

steps, we compute rendering loss between fθ(π) and gψ(π|C). During the remaining

steps, we compute loss between fθ(π) and x̂0 and use weighting wt = 1 − ᾱt. To

avoid out-of-memory error, we render images at reduced resolution (128, 128) and

apply bilinear up-sampling before performing multi-step diffusion. In addition, we

compute rendering loss between fθ(πm) and xm on all m input images. Optimizing a

single scene takes roughly 1 hour on an A5000 GPU.

34



Bibliography

[1] Titas Anciukevičius, Zexiang Xu, Matthew Fisher, Paul Henderson, Hakan Bilen,
Niloy J Mitra, and Paul Guerrero. Renderdiffusion: Image diffusion for 3d
reconstruction, inpainting and generation. In CVPR, 2023. 2.2

[2] Ang Cao, Chris Rockwell, and Justin Johnson. Fwd: Real-time novel view
synthesis with forward warping and depth. In CVPR, 2022. 2.1

[3] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf:
Tensorial radiance fields. In ECCV, 2022. 2.1

[4] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio
Savarese. 3d-r2n2: A unified approach for single and multi-view 3d object
reconstruction. In ECCV, 2016. 2.1

[5] Congyue Deng, Chiyu Jiang, Charles R Qi, Xinchen Yan, Yin Zhou, Leonidas
Guibas, Dragomir Anguelov, et al. Nerdi: Single-view nerf synthesis with
language-guided diffusion as general image priors. In CVPR, 2023. 2.2

[6] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht,
and Angjoo Kanazawa. Plenoxels: Radiance fields without neural networks. In
CVPR, 2022. 2.1

[7] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and robust multiview
stereopsis. TPAMI, 2009. 2.1

[8] Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Abhinav Gupta. Learning
a predictable and generative vector representation for objects. In ECCV, 2016.
2.1

[9] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh r-cnn. In ICCV,
2019. 2.1

[10] Shubham Goel, Georgia Gkioxari, and Jitendra Malik. Differentiable stereopsis:
Meshes from multiple views using differentiable rendering. In CVPR, 2022. 2.1

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In CVPR, 2016. 4.2, 5.1, A.1

[12] Philipp Henzler, Niloy J Mitra, and Tobias Ritschel. Escaping plato’s cave: 3d

35



Bibliography

shape from adversarial rendering. In ICCV, 2019. 2.1

[13] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic
models. NeurIPS, 2020. 2.1, 3.1, 3.1, 4.3, A.2

[14] Angjoo Kanazawa, Shubham Tulsiani, Alexei A Efros, and Jitendra Malik.
Learning category-specific mesh reconstruction from image collections. In ECCV,
2018. 2.1
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