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Abstract

Neural Radiance Fields (NeRF) are compelling techniques for modeling
dynamic 3D scenes from 2D image collections. These volumetric repre-
sentations would be well suited for synthesizing novel facial expressions
but for three problems. First, deformable NeRFs are object agnostic
and model holistic movement of the scene: they can replay how the mo-
tion changes over time, but they cannot alter it in an interpretable way.
Second, controllable volumetric representations typically require either
time-consuming manual annotations or 3D supervision to provide seman-
tic meaning to the scene. Third, classic NeRF-based methods rely on
numerical integration which involves sampling hundreds of points across
the ray, and evaluating the MLP at all of those locations, making them
prohibitively slow for real-time applications.

In this work, we propose a real-time controllable neural representation
for face self-portraits, that solves all of these problems within a common
framework, and it can rely on automated processing. We use automated
facial action recognition (AFAR) to characterize facial expressions as
a combination of action units (AU) and their intensities. AUs provide
both the semantic locations and control labels for the system. We also
extend the light field network, the re-formulations of radiance fields to
oriented rays, to dynamic de-formations and hyperspace representations
to accelerate the rendering speed. Our method outperforms competing
methods for novel view and expression synthesis in terms of visual and
anatomic fidelity of expressions, and also achieves an order of magnitude
faster rendering speed than state-of-the-art methods.
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Chapter 1

Introduction

3D understanding of the world plays a vital role in driving the next wave of technolog-

ical innovations, particularly in the realm of creating digital representations of scenes,

objects, and humans. While 2D images provide valuable visual information, they lack

the depth and spatial awareness that are inherent in 3D data. However, acquiring 3D

supervision for systems that rely on 3D understanding can be prohibitively expensive

compared to their 2D counterparts.

Traditionally, capturing 3D data requires specialized equipment such as depth

sensors, LiDAR, or structured light systems, which can be costly and time-consuming

to set up. Additionally, annotating and labeling 3D data for training machine learning

models is a labor-intensive task that further increases the cost. As a result, leveraging

3D supervision for training large-scale systems becomes a challenging and expensive

endeavor.

To address these limitations, researchers have been exploring alternative ap-

proaches that can infer 3D information solely from 2D image collections. One notable

technique is the use of neural volumetric representations, with Neural Radiance Fields

(NeRF) [42] being a compelling example. NeRF is a neural network-based model that

learns to represent 3D scenes by capturing both geometry and appearance information

from a set of 2D images. It can generate high fidelity 3D reconstructions that are

visually consistent with the observed 2D images.

The key idea behind NeRF is to model a continuous 3D scene as a function that

maps 3D spatial coordinates to radiance values. By training a neural network on
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1. Introduction

a collection of 2D images, NeRF learns to approximate this underlying function,

effectively enabling the synthesis of novel views from arbitrary viewpoints within the

scene. This approach bypasses the need for explicit 3D supervision, as the model

directly learns the 3D scene representation from 2D image data.

The advantages of using neural volumetric representations like NeRF for building

high fidelity 3D models from 2D image collections are numerous. Firstly, it significantly

reduces the cost and complexity associated with acquiring 3D supervision. Since

NeRF operates solely on 2D images, it eliminates the need for specialized 3D capture

equipment, saving both time and resources. Moreover, annotating large-scale 3D

datasets becomes more manageable, as it only requires collecting a diverse set of 2D

images.

Additionally, neural volumetric representations provide greater flexibility and

generality in handling complex scenes, objects, and humans. They can capture

intricate geometric details and appearance variations that are challenging to represent

accurately with traditional 3D models. By leveraging the expressive power of neural

networks, these representations can produce highly realistic and visually consistent

3D reconstructions.

Neural face avatars are a specific application domain where the use of neural

volumetric representations has gained significant attention. Creating realistic digital

representations of human faces is a challenging task due to the complex geometry

and appearance variations involved. Traditional 3D modeling approaches often

require laborious manual sculpting, intricate mesh rigging, and texture mapping.

However, neural volumetric representations offer an alternative avenue for generating

high-fidelity face avatars.

In this work, our goal is to build a real-time controllable neural face avatar

system that can achieve high-fidelity 3D reconstruction and control of complex facial

movements using a simplified camera setup and minimal manual annotation.

In this chapter, we provide an introduction to our work, starting with the mo-

tivation behind our research in Section 1.1. Subsequently, in Section 1.2, we delve

into the challenges that we aim to address within this research area. In Section

1.3, we present a concise summary of the contributions made by our research. To

provide a roadmap for the rest of the work, we outline the structure and content in

Section 1.4. Through these sections, we aim to establish the context, significance,

2



1. Introduction

and contributions of our research, while also providing a clear roadmap for readers to

follow as they explore the subsequent chapters of this work.

1.1 Motivation

The field of computer vision, computer graphics, and virtual reality (VR) has witnessed

tremendous advancements in recent years, enabling highly realistic and immersive

virtual environments. However, the creation of lifelike digital avatars that accurately

represent human facial expressions and movements remains a significant challenge.

Traditional approaches to avatar creation often require labor-intensive manual rigging,

complex animation pipelines, and costly motion capture systems. These limitations

hinder the real-time control and responsiveness necessary for interactive applications

such as virtual communication, gaming, and film production.

Therefore, our motivation is to develop a real-time controllable neural face avatar

system that overcomes the limitations of traditional methods. By leveraging the

power of the neural rendering method, we aim to create a novel framework capable

of generating high-fidelity facial avatars that accurately mimic human expressions.

The primary objective of this work is to enable intuitive and natural control over

the facial avatar, empowering users to manipulate its appearance and behavior in

real time. By providing users with direct and responsive control, we aim to enhance

the sense of presence and immersion in virtual environments, improving the overall

user experience.

Furthermore, the proposed system seeks to reduce the dependency on costly

hardware and complex capture setups. By utilizing a simplified camera setup (just a

cellphone) and fully automatic annotation, we aim to democratize the creation of

facial avatars, making them more accessible to a wider range of users and applications.

The potential applications of a real-time controllable neural face avatar system

are vast and diverse. From virtual communication platforms that enable users to

represent themselves with lifelike avatars during remote interactions to interactive

storytelling experiences where digital characters can be controlled and animated in

real-time, the impact of this research can revolutionize the way we interact with

virtual worlds.

Ultimately, the development of a real-time controllable neural face avatar system

3



1. Introduction

has the potential to reshape the fields of VR, computer vision, computer graphics,

and human-computer interaction. By bridging the gap between digital avatars and

real-life facial expressions, this research opens up new possibilities for entertainment,

communication, education, and various other domains.

1.2 Challenges

Building a real-time controllable neural face avatar system poses several significant

challenges that need to be addressed to achieve the desired outcomes. These challenges

are crucial to consider in order to develop a robust and effective system:

Data Availability and Annotation Obtaining high-quality training data for

neural face avatar systems is a challenge in itself. Collecting diverse and representative

facial expression datasets that cover a wide range of motions, lighting conditions,

and demographics can be time-consuming and resource-intensive. Additionally,

manual annotation of the data to provide ground truth information for training can

be challenging due to the subjective nature of facial expressions and the need for

meticulous annotation efforts.

Anatomically Correct Control The achievement of anatomically correct control

in high-fidelity 3D modeling of facial appearance and dynamics poses a significant

challenge in the field. Previous approaches based on neural representations for

facial actions have either relied on parametric models to encode facial expressions or

exhibited limitations in the level of control over scene attributes.

Real-time Performance Another challenge is achieving real-time performance

for the neural face avatar system. Generating high-fidelity facial animations in real

time requires efficient algorithms and optimized computational techniques. The

system must process input data, perform complex computations, and render the

results within strict time constraints to maintain interactive frame rates. Balancing

accuracy and responsiveness is a critical challenge to ensure a smooth and immersive

user experience.

4



1. Introduction

1.3 Contributions

Addressing key challenges in the development of a real-time controllable neural face

avatar system, the contributions of this work are as follows:

Fully Automatic Annotation We achieve fully automatic annotation of facial

data by applying automated facial action recognition (AFAR) to characterize facial

expressions as a combination of action units (AU) and their intensities. AUs provide

both the semantic locations and control labels for the system. This contribution

eliminates the need for labor-intensive manual annotation, enabling more efficient

data processing and alleviating the burden of annotation tasks.

High Fidelity 3D Reconstruction and Control We present an innovative

neural representation that enables both high-fidelity 3D reconstruction and precise

control of intricate facial movements, all achieved with a simplified camera setup.

Our approach achieves a fully disentangled representation in the feature space, where

distinct semantic regions are independent of each other. Furthermore, each region is

equipped with multiple semantic control variables, allowing for fine-grained control

over specific aspects of the facial expression.

Real-Time Performance Additionally, another significant contribution of this

work is the implementation of real-time rendering capabilities throughout the entire

system by applying the idea of Light Field Networks (LFNs)(LFNs) [59], allowing

for the generation of facial animations in real time. This achievement ensures that

the system can deliver seamless and immediate visualization of the rendered facial

expressions, enhancing the interactive and immersive nature of the user experience.

1.4 Outline

This report is organized as follows:

• Chapter 2: Controllable Neural Face Avatars In this chapter, we explore

the methodology behind achieving controllability of neural face avatars through

the use of automatic annotation. We delve into the details of how automatic

annotation techniques can be employed to enable precise control over the facial

expressions and attributes of the avatars.
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• Chapter 3: Making Light Field Networks Dynamic In this chapter,

our focus will be on discussing the techniques and methodologies employed to

achieve real-time neural rendering. We will delve into the details and explore

the innovative approaches used to enable the generation and visualization of

neural-rendered outputs in real time.

• Chapter 4: Real-time Controllable Neural Face Avatars In this chapter,

our objective is to elucidate the process of building real-time controllable neural

face avatars by leveraging the techniques introduced in the preceding chapters.

We will delve into the implementation details and explore how these techniques

are integrated to construct a system that achieves both real-time performance

and precise control over facial avatars.

This work is based on the following articles:

• Yu, et al. “CoNFies: Controllable Neural Face Avatars.” 2023 IEEE 17th

International Conference on Automatic Face and Gesture Recognition (FG).

IEEE, 2023.

• Yu, et al. “DyLiN: Making Light Field Networks Dynamic.” Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.
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Chapter 2

Controllable Neural Face Avatars

In this chapter, we will delve into the techniques and methodologies employed to

achieve the controllability of neural face avatars. Neural Radiance Fields (NeRF) [42]

are compelling techniques for modeling dynamic 3D scenes from 2D image collections.

These volumetric representations would be well suited for synthesizing novel facial

expressions but for two problems. First, deformable NeRFs are object agnostic and

model holistic movement of the scene: they can replay how the motion changes over

time, but they cannot alter it in an interpretable way. Second, controllable volumetric

representations typically require either time-consuming manual annotations or 3D

supervision to provide semantic meaning to the scene. We propose a controllable

neural representation for face self-portraits (CoNFies), that solves both of these

problems within a common framework, and it can rely on automated processing. We

use automated facial action recognition (AFAR) to characterize facial expressions

as a combination of action units (AU) and their intensities. AUs provide both

the semantic locations and control labels for the system. CoNFies outperformed

competing methods for novel view and expression synthesis in terms of visual and

anatomic fidelity of expressions.

2.1 Introduction

3D understanding of the world is crucial to the next round of technological innovations

in creating digital representations of scenes, objects, and humans. However, the cost

7



2. Controllable Neural Face Avatars

Figure 2.1: 2D video of users recording themselves using a circular motion during a
semi-structured facial expressions task (a) is processed by a person-independent face
tracker that codes facial action units (AU) (b). The estimated camera parameters,
semantic masks, action unit intensities, and the original 2D frames are used to build
a disentangled face hyper-space (c). From this representation, novel views and unseen
expressions can be generated along with their 3D depth (d).

of getting 3D supervision for such systems is astronomically higher than those in

2D. Neural volumetric representations, such as Neural Radiance Fields (NeRF) [42],

are compelling alternatives for building high-fidelity representations from 2D image

collections only.

Although, previous work in this direction has demonstrated promising results for

modeling and synthesizing novel views of static scenes [75] [20] [13] [72], articulated

objects [63] [52] [21], have explored the use of coarse-grain controls over limited

properties, such as color [25], material [77], and object editing [73], relatively neglected

is the fine-level control of semantic scene attributes.

Our interest is in general social interactions, and thus we are interested in high-

fidelity 3D modeling of facial appearance and dynamics. Previous neural repre-

sentation based approaches for facial actions either required parametric models to

encode facial expressions [21] [4] or were limited in the level of control over scene

attributes [51].

In a recent work Kania et al. [27] proposed a controllable neural representation

that can achieve simple manipulation, such as opening and closing the mouth and

the eyes using a learned mapping between a segmentation mask and a control value

that describes the state of that region. The method relies on temporally sparse and

manual annotation of the regions of interest along with their control signals, which

limits the application of the method.

8
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We wish to make high-fidelity 3D reconstruction and control of complex facial

movements with a simplified camera setup and little or no manual annotation. A

high-level summary of our method is shown on Fig. 2.1. First, we capture fine-

scale transitions of facial movements during a semi-structured expression task. The

recorded video is then processed with an automated facial action recognition system

[18] [7] that provides anatomically correct action unit (AU) [56] intensities and facial

landmarks. From these, semantic facial masks are generated automatically and

frames are sub-sampled to build an AU-balanced set of training data. The selected

2D frames, semantic masks, AU intensities, and camera parameters then used to build

a face hyper-space, that can be used to synthesize novel views and unseen expression

combinations.

Our contributions are as follows:

• Anatomically Correct Control. Previous work was limited to holistic

deformations or required manual annotation. We achieve an anatomically

controllable neural avatar with no manual annotation. We show that this is

achievable by using automated facial action coding that provides consistent

facial key-points and semantic labels across subjects.

• Multi-label Semantic Masks. We achieve a completely disentangled repre-

sentation in the feature space where the different semantic regions do not affect

each other and each region has multiple semantic control variables. We demon-

strate that this formulation correctly handles different action unit combinations

and achieves better visual fidelity than previous methods.

2.2 Related Works

Our work focuses on automatic control over avatar expressions and is closely related

to several computer vision and graphics research domains such as neural rendering

and avatar animation.

2.2.1 Neural Rendering and Novel View Synthesis

Implicit neural representations represented by NeRF has become more and more

popular recently. NeRF can synthesize high-quality rendering results from novel views

9
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and some following extensions further enhanced the algorithm in rendering quality

improvement [75] [72], faster training and inference [22] [74] [45], generalization

model [58] [47] and so on. NeRF and its variants achieve remarkable performance

on static objects, and several of these variants extend it to dynamic scenes, which

is the same scenario as ours. Park et al. [50] [51] introduce deformation fields along

with a canonical NeRF to learning the movements. Some other works handle the

dynamic scene through learning movement offset [53] [63] or scene flow [34] [71].

These methods achieve eye-catching results in dynamic scenes and can achieve the

separation of static parts and dynamic parts to some extent through the learned

deformation field/offset/flow. However, they are far from the fine-grained control

over the dynamic scenes.

2.2.2 Avatar Animation

Avatar animation is a well explored research area. Some works have attempted to

manipulate or edit a face [17] [31] [61] while they are mainly image-based and fail to

leverage 3d representation. Other works [30] [28] [62] utilize 3D Morphable Model

(3DMM) as 3D face representation to achieve the head pose control and image or

video reanimation. However, they have limited ability to synthesize novel views

since they neglect scene geometry or appearance. Given that high-quality novel

view synthesis and fine-grained avatar control is pretty challenging, some works take

advantage of neural rendering to model a non-rigid 3d avatar. NerFACE [21] allows

face expression and head pose control by modeling a 4D face avatar using neural

radiance fields and a facial expression tracking algorithm while it assumes a static

background and fixed camera. Some other works either require professional equipment

and training dataset [39] or impose parametric face models such as 3DMM [3] [4],

which limit their application scenarios. HyperNeRF [51] introduces hyper space

that can better fit dynamic face avatars and also control facial expressions to some

extent through hyper space. However, it is far from fine-grained control and cannot

achieve per-attribute control. CoNeRF [27] can achieve per-attribute control by

imposing an attribute value and mask based on HyperNeRF while it can only achieve

simple control over each attribute and different attributes may affect each other. It

also requires manual labeling which is labor-intensive. In contrast, we propose an
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Figure 2.2: Facial landmarks, AUs and mask annotations

automatic system that enables fine-grained comprehensive control over a face avatar

and novel-view synthesis simultaneously without any manual labels. Recently, Cao et

al. [12] proposed an approach to creating volumetric avatars using only a short phone

capture. Though their approach can generate a high-fidelity avatar, a large-scale

high-resolution multi-view dataset is required to pre-train their model. Unlike their

approach, our method requires only a single input video.

2.3 Method

Our system consists of three parts: (i) data and annotation processing, (ii) network

training, and (iii) avatar control. We will describe each component in detail in the

following parts.

2.3.1 Data and annotation processing

The data collection process of our system can be done using just a smart phone

with a slo-mo video function. After collecting slo-mo video of changing expressions

with moving cameras, we apply OpenFace [7] on every frame to detect the facial

landmarks [2] [5] and facial action units (AUs) [6]. It is worth noting that other facial
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(a) Uniform Sampling (b) Balanced Sampling

Figure 2.3: AU intensity distribution using different sampling strategies

landmark/AU detection methods can also work and may have better results, but this

is not the focus of our work. OpenFace can output 68 2D landmark locations and

17 AU intensities from 0 to 5 (as shown in Fig. 2.2). To mitigate the noise impact

of AUs detection between adjacent frames, we apply Savitzky–Golay filter [57] to

smooth the AUs and then sample the frames to reduce the computational load of

the whole system. We found uniform sampling can lead to an extreme imbalance in

AU intensity distribution (Fig. 2.3(a)) since there exist many neutral frames in the

dataset. To alleviate this problem, we propose a balanced sampling strategy. We

define each AU value and AU intensity pair as a AU-intensity block, which consists of

frames with a corresponding AU value and intensity. We ascendingly sort all the AU

intensity blocks (total block number equals to intensity number times AU number)

according to frame number in each block first. Then we uniformly sample frames

from each block in order. Before sampling each block, we remove the frames that are

already sampled. Using this strategy, we can get a more balanced sampling result

shown in Fig. 2.3b.

After obtaining the 2D facial landmarks and AUs, we generate attribute masks

and controllable AUs values as annotations. We define three regions and assign each

action unit (AU) to its corresponding mask as shown in Fig. 2.2. We calculate the

middle points of eyebrow and eye key-points as the boundary between the first and

second region. We also extend some distance along the eyebrow direction as the

boundary of the first region to make sure the whole eyebrows are included in the
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region. The boundary of the third region consists of landmarks (#3 −#13, #28)

detected by OpenFace. We also normalize each AU according to:

AU ′ = min(
AU − AUmin

αAUmax − AUmin
× 2− 1, 1) (2.1)

where AU ∈ [0, 5], AU ′ ∈ [−1, 1], AUmin and AUmax are minimum and maximum and

values for each AU among all frames, respectively, and α is the factor that adjusts

the maximum of AUs and we set α as 0.8 for all the experiments.

2.3.2 Network architecture

In this section, we briefly introduce NeRF [42], HyperNeRF [51] and CoNeRF [27]

for completeness and then describe our approach in detail.

Neural Radiance Field (NeRF).

NeRF uses a fully-connected neural network to learn the implicit 3D scene volumetric

representations through a partial set of 2D images and can generate novel views.

The NeRF network takes a sample 3d position x = (x, y, z) and a 2d view direction

d = (θ, ϕ) as input and outputs the emitted color c and volume density σ at position

x with view direction d. Then one can accumulate the densities and colors into image

pixels C in RGB using classical volume rendering techniques [26] as follows:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t), d)dt (2.2)

where T (t) = exp (−
∫ t
tn
σ(r(s))ds), r(t) = o+ td is the camera ray with near bound

tn and far bound tf . C(r) is the expected image pixel color of the ray r(t).

HyperNeRF and CoNeRF.

Given that original NeRF can only model static scenes, HyperNeRF, which extend

Nerfies [50], is proposed to model dynamic objects, especially face avatars, by intro-

ducing canonical hyper-space. The input of HyperNeRF includes sample point x and

view direction d, which is similar to the template NeRF, and also a latent deformation
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code ωi and a latent appearance code ψi. The sample point x concatenated with the

image’s latent deformation code ωi are taken as input to the spatial deformation field

T and the ambient slicing surface H as follows, which yields a warped coordinate x’

and a coordinate in ambient space w, respectively.

x’ = T (x, ωi); w = H(x, ωi) (2.3)

The density σ and color c can be then obtained by taking x’, w along with direction

d and latent appearance code ψi as input into template NeRF F :

(σ, c) = F (x’,w,d, ψi) (2.4)

HyperNeRF can model time-varying shapes even with topological changes and can

render different expressions of face avatar by using setting specific ambient coordinates

in hyper-space. However, it is far from fine-grained control and fails to achieve per

attribute control. Inspired by HyperNeRF, CoNeRF introduces regressors A and

M to regress the attribute α and the corresponding mask m. The attribute α is

generated from latent deformation code ωi and then is taken as input into ambient

slicing surface H to generate a coordinate in ambient space w:

α = A(ωi); w = H(x, α) (2.5)

The corresponding mask map m is generated using the warped coordinate x’ and the

ambient space w and then is used to mask out w:

m =M(x’,w); w’ = w⊙m (2.6)

The following density and color generation is the same as HyperNeRF. CoNeRF maps

attribute α to its corresponding area through mask m so as to achieve the control

over the corresponding area when rendering from novel views by assigning attribute

α with different values. However, it requires manual labeling of attribute α and the

corresponding mask m which is labor-intensive and can only perform simple control

over each area since only one attribute is related to each mask. CoNeRF can also lead

to movement in another area when controlling one area since its network architecture
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does not achieve complete decoupling between attributes.
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Figure 2.4: CoNFies architecture. αi represents AU attribute learned from the latent
code. βi is uncertainty and mi is mask.

CoNFies.

We propose CoNFies based on CoNeRF that can achieve more complex and accurate

control over attributes. The network architecture of CoNFies is shown as Fig. 2.4.

We learn K attributes α1···K from latent deformation code ωi using attribute network

A. Different from CoNeRF, we use tanh as activation function in the last layer

of A to learn attributes whose range is [−1, 1]. We adopt the hyper-space W as

proposed in HyperNeRF while our hyper-space W consists of K + 1 (K attributes

and 1 remaining part) components, which are attribute-specific. First, K original

hyper-space components are generated using X and corresponding attribute α as

following:

wi = Hi(x, αi); i = 1 · · ·K (2.7)
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We also generate one hyper-space w0 for remaining avatar part and generate a warped

coordinate x’ through deformation field T :

w0 = H0(x, ωi); x’ = T (x, ωi) (2.8)

After obtaining the original hyper-space w0···K , we then learn N masks according to

a pre-defined correspondence between attributes and masks (many-to-one):

mn =Mn(x’,w0,wn1 · · ·wnp); n = 1 · · ·N (2.9)

where wn1 · · ·wnp are the hyper-space generated from corresponding attributes

αn1 · · ·αnp that are related to mn. The mask m0 for hyper-space w0 is 1−
∑

nmn.

Final hyper-space w′
0···K are obtained by masking the original hyper-space using

corresponding masks:

w′
i = wi ⊙mj; i = 1 · · ·K; j = 1 · · ·N (2.10)

where mj is the mask which αi is related to. The whole hyper-space W is obtained

by concatenating w′
0···K and the final density σ and color c are obtained using (2.4),

which is the same as template NeRF. We also render the mask field into image space

using an analogous volume rendering process:

M(r|θ, βc) =
∫ tf

tn

T (t)σ(r(t))m(r(t), d)dt (2.11)

It is also worth noting that we learn an uncertainty βi for each attribute αi as

follows to help reduce the potential noises after AUs filtering during training.

βi = Bi(x’,w0,wi); i = 1 · · ·K (2.12)
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Training Losses.

Given a training set collection of C images, the losses of our method consist of two

parts, reconstruction losses Lrec and control losses Lctrl, which are similar to [27]:

arg min
θ,{µc}

Lrec(θ, {µc}) + Lctrl(θ, {µc}) (2.13)

where θ is network parameters and µc represents the latent code (deformation/appearance)

of image c. Reconstruction losses Lrec have two parts (Lrecon and Lreg). One is the

primary reconstruction loss, which aims to reconstruct input observations {Cc} as

follow (gt = ground truth):

Lrecon =
∑
r∈R

∥C(r|θ, βc)− Cgt(r)∥22 (2.14)

The other one a Gaussian prior on the latent codes {µc} as proposed in [49]:

Lreg =
∑
c

∥µc∥22 (2.15)

Control losses Lctrl also have two parts: attribute mask loss Lmask and attribute

value loss Lattr, as proposed in [27]. For attribute mask loss, we first project 3D

volumetric neural mask field m into 2D mask image using (2.11) and the attribute

mask loss can be written as:

Lmask =
∑
r,a

δc,aCE(M(r|θ, βc),M gt
c,a(r)) (2.16)

where CE(·, ·) represents cross entropy and M gt
c,a(r) is a-th attribute in the c-th image.

δc,a denotes an indicator, where δc,a = 1 means attribute a for image c, which r is

belong to, is provided, otherwise δc,a = 0. We also stop gradients in (2.16) w.r.t

σ and employ focal loss [35] in place of the standard cross entropy loss as in [27].

For attribute value loss, we employ the AUs after filtering as ground-truth and βc,a
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learned from (2.12) to further reduce noises in AUs:

Lattr =
∑
c

∑
a

δc,a
|αc,a − αgtc,a|2

2β2
c,a

+
(log βc,a)

2

2
(2.17)

where larger βc,a values attenuate the importance of learned αc,a and the second term

precludes the trivial minimum at βc,a = ∞. Hence the network can better learn to

adjust αc,a and reduce the negative effect of noises in AUs. The final loss is:

L = Lrecon + wregLreg + wmaskLmask + wattrLattr (2.18)

where wreg, wmask and wattr are weighting coefficients.

2.4 Experiments

2.4.1 Implementation details

Our method is based on the JAX [10] implementation of CoNeRF [27]. Attribute

network A has six layers, each of which is a 32 neuron multi-layer perceptron (MLP)

and has a skip connection at the fifth layer following [50] [51] [27]. Deformation field T

and ambient slicing surface Hi have the same architecture of those in [51] [27]. Mask

network Mi and uncertainty network Bi have the same structure, which is a four-layer

MLP with 128 neuron per layer and followed by an additional 64 neuron layer with a

skip connection as in [27]. The template NeRF is the same as original NeRF [42] but

with a different input dimension size. In our case, the number of attributes K is 17,

which is the number of AUs and the number of mask N is 3 as shown in Fig. 2.2. We

resize all the input images to 480× 270 and train our NeRF model for 250k iterations

with 128 samples per ray and a batch size of 512 rays. We use Adam [29] with initial

learning rate lr = 1e− 4 and set wreg = 1e− 4, wmask = 1e− 2 and wattr = 0.1 for all

experiments. We introduce exponentially decaying on lr and wattr, which decay to

1e− 5 and 0, respectively. Exponentially decaying on wattr can help further reduce

the noises introduced by AU detection. We train our model on a NVIDIA A100 GPU

with 80G memory and the whole process takes around 26 hours
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Figure 2.5: Controlling results of CoNFies and CoNeRF. Our CoNFies can perform
better control over one attribute without affecting other attributes.
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Figure 2.6: Control using single AU. AU02 is an outer brow raiser. AU04 is brow
lowerer. AU12 is a lip corner puller. AU23 is a lip tightener.

2.4.2 Dataset

We used both the real dataset provided in [27] and we collected our own video

sequences using a smartphone. In our data collection each of the sequences was

captured with an Apple iPhone 13 Pro using 120 fps slo-mo mode and is about 2

minutes long. In each video sequence, the person performs different facial expressions

related to a single AU one by one first and then performs arbitrary facial expressions

related to multiple AUs. Each video is extracted to frames with 120 fps and we

perform OpenFace [7] and smoothing as mentioned above. Note that OpenFace can

only provide 17 AU intensities and we use these in the following experiments. More

AU intensities may be obtained from other methods, which is not the focus of our

paper. We then undersample the sequences to give approximately 750 frames per

capture. The frames along with the AUs and attribute masks generated automatically

form the datasets we use in our experiments.
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Table 2.1: Intraclass Correlation (ICC) comparison between CoNeRF and our method.

AU CoNeRF Ours AU CoNeRF Ours
01 0.52 0.86 14 0.17 0.77
02 0.54 0.73 15 -0.15 0.81
04 0.23 0.91 17 0.31 0.88
05 -0.11 0.40 20 0.03 0.63
06 0.00 0.00 23 0.49 0.82
07 -0.44 0.73 25 0.36 0.90
09 0.55 0.74 26 0.08 0.93
10 0.00 0.00 45 0.21 0.83
12 0.00 0.87 mean 0.16 0.69

2.4.3 Decoupling Mask

We compare our method with CoNeRF using their dataset with manual attribute

values and mask area labels to show the effectiveness of our decoupling mask structure.

We control the eyes and mouth separately using attribute values and show the

rendering image results along with the masks in Fig. 2.5. We can see from the mask

results that when controlling one attribute, the masks of the other attribute are not

affected in our method. But one attribute can affect the others in CoNeRF, which

lead to unexpected movement and artifacts in the rendering results.

2.4.4 Attribute Control

Our CoNFies can achieve attribute control using different AUs. We first show the

controlling result using single AU (AU 02, 04, 12, 23) on two sequences as in Fig. 2.6.

We also conducted quantitative evaluation to compare our method and CoNeRF.

In this experiment, AU intensities were obtained from synthesis images generated

by our method and CoNeRF, and compare them using Intraclass Correlation (ICC).

OpenFace was used to obtain AU intensities from synthesis images. Only images with

extreme AU values (near -1 or 1) were manually selected to train CoNeRF while our

method automatically obtained images to train the model. Table 2.1 and Fig. 2.7 show

that our method outperforms CoNeRF. Fig. 2.8 compares AU01 intensity transition

between control values and synthesized images. The AU intensity transition of our

method is much closer to the control than CoNeRF. This result also indicates that
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Figure 2.7: Intraclass Correlation (ICC) comparison between CoNeRF and our
method.

Figure 2.8: Comparison of AU01 intensity transition between control values and
synthesized images.

22



2. Controllable Neural Face Avatars

Figure 2.9: Control using multiple AUs on different regions. AU02 is outer brow
raiser. AU04 is brow lowerer. AU12 is lip corner puller. AU17 is chin raiser. AU25 is
lips part. AU45 is blink.

our method can handle subtle AU changes better than CoNeRF.

Our method can perform complex control using multiple AUs simultaneously as

shown in Fig. 2.9 and Fig. 2.10. From Fig. 2.9, we can see that our method can

perform combined AUs control over different regions, e.g. eyebrow and mouth.

We show that our method can even perform more complicated control over the

same region. As shown in Fig. 2.10, we can control the smile while keeping mouth

open or control mouth open while keeping the smile. However, CoNeRF cannot

render good results under such complex scenarios. More visualization results can be

found in the supplementary material.
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Figure 2.10: Control using multiple AUs on the same region. AU12 is lip corner
puller. AU25 is lips part.

2.4.5 Novel View Synthesis

As a NeRF-based method, we can synthesize novel views with single or multiple AUs

control. We show the novel view synthesis results along with corresponding masks in

Fig. 2.11, where we keep the facial expression constant. To further show the power of

our method, we show the rendering result under different views and control the AU

values (AU02 and AU12) simultaneously in Fig. 2.12.

We also evaluate the rendering quality of our method on a frame interpolation

task as proposed in [27] using the dataset it released. We interpolate every other

frame and do not perform any attribute control. We use Peak Signal-to-Noise Ratio

(PSNR), Multi-scale Structural Similarity (MS-SSIM) [69] and Learned Perceptual

Image Patch Similarity (LPIPS) [76] to quantitatively evaluate our method compared

with NeRF [42], NeRF + Latent, Nerfies [50], HyperNeRF [51], CoNeRF-M and

CoNeRF [27], which is consistent with [27]. The result in shown in Table 2.2, where

we can see that our method can achieve comparable performance in the rendering

quality from a novel view.
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Figure 2.11: Novel view synthesis under fixed AU setting. AU02 is outer brow raiser.
AU04 is brow lowerer. AU12 is lip corner puller. AU25 is lips part.

Table 2.2: Quantitative results

Method PSNR↑ MS-SSIM↑ LPIPS↓
NeRF 28.795 0.951 0.210

NeRF + Latent 32.653 0.981 0.182
NeRFies 32.274 0.981 0.180

HyperNeRF 32.520 0.981 0.169
CoNeRF-M 32.061 0.979 0.167
CoNeRF 32.342 0.981 0.168
Ours 32.356 0.982 0.166
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Figure 2.12: Rendering results under different AU (AU02 and AU12) intensities and
views

Figure 2.13: Facial expression transfer using reference sequence.
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2.4.6 Facial Expression Transfer

In addition to adjusting AU values manually to control the avatar’s expression, it is

possible to copy them from another person’s face. In this case, first we detect the

AU intensities from the source person’s face and use them to re-synthesize the same

expression on the avatar. We show the rendering results using another face sequence

to control the trained sequence in Fig. 2.13.

2.5 Conclusions

We have proposed an automated approach for controllable neural face avatars. Once

a 2D video is recorded using slo-mo mode, our network is automatically trained by

utilizing AU intensities and facial landmarks. We have introduced the decoupling

mask structure so that the different semantic regions do not affect each other and each

region have multiple control variables. We have shown that our approach outperforms

CoNeRF in terms of fine-grained AU control. Moreover, our approach has a capability

to control multiple AUs and novel views simultaneously.
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Chapter 3

Making Light Field Networks

Dynamic

In this chapter, our focus will be on discussing the methods and strategies involved

in achieving real-time neural rendering. We will delve into the technical aspects and

explore the innovative approaches employed to enable the generation and visualization

of neural-rendered outputs in real time. Light Field Networks, the re-formulations of

radiance fields to oriented rays, are magnitudes faster than their coordinate network

counterparts, and provide higher fidelity with respect to representing 3D structures

from 2D observations. They would be well suited for generic scene representation

and manipulation, but suffer from one problem: they are limited to holistic and

static scenes. In this chapter, we propose the Dynamic Light Field Network (DyLiN)

method that can handle non-rigid deformations, including topological changes. We

learn a deformation field from input rays to canonical rays, and lift them into a higher

dimensional space to handle discontinuities. We train both models via knowledge

distillation from pretrained dynamic radiance fields. We evaluated DyLiN using both

synthetic and real-world datasets that include various non-rigid deformations. DyLiN

qualitatively outperformed and quantitatively matched state-of-the-art methods in

terms of visual fidelity, while being 25− 71× computationally faster.
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3.1 Introduction

Machine vision has made tremendous progress with respect to reasoning about 3D

structure using 2D observations. Much of this progress can be attributed to the

emergence of coordinate networks [15, 41, 49], such as Neural Radiance Fields (NeRF)

[43] and its variants [8, 40, 44, 68]. They provide an object agnostic representation

for 3D scenes and can be used for high-fidelity synthesis for unseen views. While

NeRFs mainly focus on static scenes, a series of works[21, 50, 53, 63] extend the idea

to dynamic cases via additional components that map the observed deformations to a

canonical space, supporting moving and shape-evolving objects. It was further shown

that by lifting this canonical space to higher dimensions the method can handle

changes in scene topology as well [51].

However, the applicability of NeRF models is considerably limited by their compu-

tational complexities. From each pixel, one typically casts a ray from that pixel, and

numerically integrates the radiance and color densities computed by a Multi-Layer

Perceptron (MLP) across the ray, approximating the pixel color. Specifically, the

numerical integration involves sampling hundreds of points across the ray, and evaluat-

ing the MLP at all of those locations. Several works have been proposed for speeding

up static NeRFs. These include employing a compact 3D representation structure

[20, 37, 74], breaking up the MLP into multiple smaller networks [54, 55], leveraging

depth information [16, 46], and using fewer sampling points [36, 46, 72]. Yet, these

methods still rely on integration and suffer from sampling many points, making

them prohibitively slow for real-time applications. Recently, Light Field Networks

(LFNs) [59] proposed replacing integration with a direct ray-to-color regressor, trained

using the same sparse set of images, requiring only a single forward pass. R2L [65]

extended LFNs to use a very deep residual architecture, trained by distillation from

a NeRF teacher model to avoid overfitting. In contrast to static NeRF acceleration,

speeding up dynamic NeRFs is a much less discussed problem in the literature. This

is potentially due to the much increased difficulty of the task, as one also has to

deal with the high variability of motion. In this direction, [19, 66] greatly reduce the

training time by using well-designed data structures, but their solutions still rely on

integration. LFNs are clearly better suited for acceleration, yet, to the best of our

knowledge, no works have attempted extending LFNs to the dynamic scenario.
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In this paper, we propose 2 schemes extending LFNs to dynamic scene defor-

mations, topological changes and controllability. First, we introduce DyLiN, by

incorporating a deformation field and a hyperspace representation to deal with non-

rigid transformations, while distilling knowledge from a pretrained dynamic NeRF.

Afterwards, we also propose CoDyLiN, via adding controllable input attributes,

trained with synthetic training data generated by a pretrained Controllable NeRF

(CoNeRF) [27] teacher model. To test the efficiencies of our proposed schemes, we

perform empirical experiments on both synthetic and real datasets. We show that our

DyLiN achieves better image quality and an order of magnitude faster rendering speed

than its original dynamic NeRF teacher model and the state-of-the-art TiNeuVox

[19] method. Similarly, we also show that CoDyLiN outperforms its CoNeRF teacher.

We further execute ablation studies to verify the individual effectiveness of different

components of our model. Our methods can be also understood as accelerated versions

of their respective teacher models, and we are not aware of any prior works that

attempt speeding up CoNeRF.

Our contributions can be summarized as follows:

• We propose DyLiN, an extension of LFNs that can handle dynamic scenes with

topological changes. DyLiN achieves this through non-bending ray deformations,

hyperspace lifting for whole rays, and knowledge distillation from dynamic

NeRFs.

• We show that DyLiN achieves state-of-the-art results on both synthetic and

real-world scenes, while being an order of magnitude faster than the competition.

We also include an ablation study to analyze the contributions of our model

components.

• We introduce CoDyLiN, further extending our DyLiN to handle controllable

input attributes.

3.2 Related Works

Dynamic NeRFs. NeRFs have demonstrated impressive performances in novel

view synthesis for static scenes. Extending these results to dynamic (deformable)

domains has sparked considerable research interest [21, 50, 51, 53, 63]. Among these
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works, the ones that most closely resemble ours are D-NeRF [53] and HyperNeRF [51].

D-NeRF uses a translational deformation field with temporal positional encoding.

HyperNeRF introduces a hyperspace representation, allowing topological variations

to be effectively captured. Our work expands upon these works, as we propose DyLiN,

a similar method for LFNs. We use the above dynamic NeRFs as pretrained teacher

models for DyLiN, achieving better fidelity with orders of magnitude shorter rendering

times.

Accelerated NeRFs. The high computational complexity of NeRFs has motivated

several follow-up works on speeding up the numerical integration process. The

following first set of works are restricted to static scenarios. NSVF [37] represents the

scene with a set of voxel-bounded MLPs organized in a sparse voxel octree, allowing

voxels without relevant content to be skipped. KiloNeRF [55] divides the scene into a

grid and trains a tiny MLP network for each cell within the grid, saving on pointwise

evaluations. AutoInt [36] reduces the number of point samples for each ray using

learned partial integrals. In contrast to the above procedures, speeding up dynamic

NeRFs is much less discussed in the literature, as there are only 2 papers published

on this subject. Wang et al. [66] proposed a method based on Fourier plenoctrees

for real-time dynamic rendering, however, the technique requires an expensive rigid

scene capturing setup. TiNeuVox [19] reduces training time by augmenting the

MLP with time-aware voxel features and a tiny deformation network, while using

a multi-distance interpolation method to model temporal variations. Interestingly,

all of the aforementioned methods suffer from sampling hundreds of points during

numerical integration, and none of them support changes in topology, whereas our

proposed DyLiN excels from both perspectives.

Light Field Networks (LFNs). As opposed to the aforementioned techniques

that accelerate numerical integration within NeRFs, some works have attempted

completely replacing numerical integration with direct per-ray color MLP regressors

called Light Field Networks (LFNs). Since these approaches accept rays as inputs,

they rely heavily on the ray representation. Several such representations exist in the

literature. Plenoptic functions [1, 9] encode 3D rays with 5D representations, i.e., a

3D point on a ray and 2 axis-angle ray directions. Light fields [23, 32] use 4D ray
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codes most commonly through two-plane parameterization: given 2 parallel planes,

rays are encoded by the 2D coordinates of the 2 ray-plane intersection points. Sadly,

these representations are either discontinuous or cannot represent the full set of rays.

Recently, Sitzmann et al. [59] advocate for the usage of the 6D Plücker coordinate

representation, i.e., a 3D point on a ray coupled with its cross product with a 3D

direction. They argue that this representation covers the whole set of rays and is

continuous. Consequently, they feed it as input to an LFN, and additionally apply

Meta-Learning across scenes to learn a multi-view consistency prior. However, they

have not considered alternative ray representations, MLP architectures or training

procedures, and only tested their method on toy datasets. R2L [65] employs an

even more effective ray encoding by concatenating few points sampled from it, and

proposes a very deep (88 layers) residual MLP network for LFNs. They resolve

the proneness to overfitting by training the MLP with an abundance of synthetic

images generated by a pretrained NeRF having a shallow MLP. Interestingly, they

find that the student LFN model produces significantly better rendering quality than

its teacher NeRF model, while being about 30 times faster. Our work extends LFNs

to dynamic deformations, topological changes and controllability, achieving similar

gains over the pretrained dynamic NeRF teacher models.

Knowledge Distillation. The process of training a student model with synthetic

data generated by a teacher model is called Knowledge Distillation (KD) [11], and it

has been widely used in the vision and language domains [14, 32, 64, 67] as a form

of data augmentation. Like R2L [65], we also use KD for training, however, our

teacher and student models are both dynamic and more complex than their R2L

counterparts.

3.3 Methods

In this section, we present our solution for extending LFNs. We propose DyLiN,

supporting dynamic deformations and hyperspace representations via two respective

MLPs. We use KD to train DyLiN with synthetic data generated by a pretrained

dynamic NeRF teacher model.
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3.3.1 Network Architecture

Our overall DyLiN architecture Gϕ is summarized in fig. 3.1. It processes rays instead

of the widely adopted 3D point inputs as follows.

Ray origin
Ray direction

Time

o
d

t

MLP

MLP

o′ 

d′ 

x1 x2 x3 . . .

. . .

w
hyper-space

Camera ray

. . .

. . .
Deep Res MLP RGB

concatenation

Figure 3.1: Schematic diagram of our proposed DyLiN architecture. We take a
ray r = (o, d) and time t as input. We deform r into r′ = (o′, d′), and sample few
points xk, k = 1, . . . , K along r′ to encode it (blue). In parallel, we also lift r and
t to the hyperspace code w (green), and concatenate it with each xk. We use the
concatenation to regress the RGB color of r at t directly (red).

Specifically, our deformation MLP Tω maps an input ray r = (o, d) to canonical

space ray r′ = (o′, d′):

(o′, d′) = Tω(o, d, t). (3.1)

Unlike the pointwise deformation MLP proposed in Nerfies [50], which bends rays

by offsetting their points independently, our MLP outputs rays explicitly, hence no

ray bending occurs. Furthermore, after obtaining r′, we encode it by sampling and

concatenating K points along it.

Our hyperspace MLP Hψ is similar to Tω, except it outputs a hyperspace repre-

sentation w:

w = Hψ(o, d, t). (3.2)

In contrast to HyperNeRF [51], which predicts a hyperspace code w for each 3D

point, we use rays and compute a single w for each ray.

Both MLPs further take the index t as input to encode temporal deformations.

Once the K points and w are obtained, we concatenate them and feed the result
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into our LFN Rπ, which is a deep residual color MLP regressor. Overall, we can

collect the model parameters as ϕ = [ω, ψ, π].

Note that without our two MLPs Tω and Hψ, our DyLiN falls back to the vanilla

LFN.

3.3.2 Training Procedure

Our training procedure is composed of 3 phases.

First, we pretrain a dynamic NeRF model Fθ (e.g., D-NeRF [53] or HyperNeRF

[51]) by randomly sampling time t and input ray r, and minimizing the Mean Squared

Error (MSE) against the corresponding RGB color of monocular target video I:

min
θ

Et,r=(o,d)

[
∥Fθ(o, d, t)− I(o, d, t)∥22

]
. (3.3)

Recall, that Fθ is slow, as it performs numerical integration across the ray r = (o, d).

Second, we employ the newly obtained Fθ∗ as the teacher model for our DyLiN

student model Gϕ via KD. Specifically, we minimize the MSE loss against the

respective pseudo ground truth ray color generated by Fθ∗ across S ray samples:

min
ϕ

Et,r=(o,d)

[
∥Gϕ(o, d, t)− Fθ∗(o, d, t)∥22

]
, (3.4)

yielding Gϕ̃. Note how this is considerably different from R2L [65], which uses a

static LFN that is distilled from a static NeRF.

Finally, we initialize our student model Gϕ with parameters ϕ̃ and fine-tune it

using the original real video data:

min
ϕ, ϕ0=ϕ̃

Et,r=(o,d)

[
∥Gϕ(o, d, t)− I(o, d, t)∥22

]
, (3.5)

obtaining ϕ∗.
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3.4 Experimental Setup

3.4.1 Datasets

To test our hypotheses, we performed experiments on three types of dynamic scenes:

synthetic, real and real controllable.

Synthetic Scenes. We utilized the synthetic 360◦ dynamic dataset introduced by

[53], which contains 8 animated objects with complicated geometry and realistic

non-Lambertian materials. Each dynamic scene consists of 50 to 200 training images

and 20 testing images. We used 400 × 400 image resolution. We applied D-NeRF

[53] as our teacher model with the publicly available pretrained weights.

Real Scenes. We collected real dynamic data from 2 sources. First, we utilized 5

topologically varying scenes provided by [51] (Broom, 3D Printer, Chicken, Americano

and Banana), which were captured by a rig encompassing a pole with two Google

Pixel 3 phones rigidly attached roughly 16 cm apart. Second, we collected human

facial videos using an iPhone 13 Pro camera. We rendered both sets at 960 × 540

image resolution. We pretrained a HyperNeRF [51] teacher model from scratch for

each scene.

3.4.2 Settings

Throughout our experiments, we use the settings listed below, many of which follow

[65].

In order to retain efficiency, we define Tω and Hψ to be small MLPs, with Tω

consisting of 7 layers of 128 units with r′ ∈ R6, and Hψ having 6 layers of 64 units

with w ∈ R8. Then, we use K = 16 sampled points to represent rays, where sampling

is done randomly during training and evenly spaced during inference.

Contrary to Tω and Hψ, our LFN Rπ is a very deep residual color MLP regressor,

containing 88 layers with 256 units per layer, in order to have enough capacity to

learn the video generation process.

We generate rays within eqs. (3.3) to (3.5) and (4.3) by sampling ray origins

o = (xo, yo, zo) and normalized directions d = (xd, yd, zd) randomly from the uniform
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distribution U as follows:

xo ∼ U(xmino , xmaxo ), xd ∼ U(xmind , xmaxd ), (3.6)

yo ∼ U(ymino , ymaxo ), yd ∼ U(ymind , ymaxd ), (3.7)

zo ∼ U(zmino , zmaxo ), zd ∼ U(zmind , zmaxd ), (3.8)

where the min,max bounds of the 6 intervals are inferred from the original training

video. In addition to uniform sampling, we also apply the hard example mining

strategy suggested in [65] to focus on fine-grained details. We used S = 10 000

training samples during KD in (3.4).

Subsequently, we also randomly sample time step t uniformly from the unit

interval: t ∼ U(0, 1).

During training, we used Adam [29] with learning rate 5× 10−4 and batch size

4096.

We performed all experiments on single NVIDIA A100 GPUs.

3.4.3 Baseline Models

For testing our methods, we compared quality and speed against several baseline

models, including NeRF [43], NV [38], NSFF [33], Nerfies [50], HyperNeRF [51], two

variants of TiNeuVox [19], DirectVoxGo [60], Plenoxels [20], T-NeRF and D-NeRF

[53], as well as CoNeRF [27].

In addition, we performed an ablation study by comparing against 2 simplified

versions of our DyLiN architecture. First, we omitted both of our deformation and

hyperspace MLPs and simply concatenated the time step t to the sampled ray points

(essentially resulting in a dynamic R2L). This method is illustrated in fig. 3.2a. Second,

we employed a pointwise deformation MLP (5 layers of 256 units) inspired by [53],

which deforms points along a ray by predicting their offsets jointly, i.e., it can bend

rays. This is contrast to our DyLiN, which deforms rays explicitly without bending

and also applies a hyperspace MLP. This scheme is depicted in fig. 3.2b. In both

baselines, the deep residual color MLP regressors were kept intact. Next, we also

tested the effects of our fine-tuning procedure from (3.5) by training all of our models

both with and without it. Lastly, we assessed the dependences on the number of
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Figure 3.2: Our two ablated baseline models, omitting components of our DyLiN.
(a) Without our two proposed MLPs. (b) Pointwise deformation MLP only, predicting
offsets jointly.
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sampled points along rays K and on the number of training samples S during KD in

(3.4).

3.4.4 Evaluation Metrics

For quantitatively evaluating the quality of generated images, we calculated the Peak

Signal-to-Noise Ratio (PSNR) [24] in decibels (dB), the Structural Similarity Index

(SSIM) [48, 70], the Multi-Scale SSIM (MS-SSIM) [69] and the Learned Perceptual

Image Patch Similarity (LPIPS) [76] metrics. Intuitively, PSNR is a pixelwise score,

while SSIM and MS-SSIM also take pixel correlations and multiple scales into account,

respectively, yet all of these tend to favor blurred images. LPIPS compares deep

neural representations of images and is much closer to human perception, promoting

semantically better and sharper images.

Furthermore, for testing space and time complexity, we computed the storage size

of parameters in megabytes (MB) and measured the wall-clock time in milliseconds

(ms) while rendering the synthetic Lego scene with each model.

3.5 Results

3.5.1 Quantitative Results

table 3.1 and table 3.2 contain our quantitative results for reconstruction quality on

synthetic and real dynamic scenes, accordingly. We found that among prior works,

TiNeuVox-B performed the best on synthetic scenes with respect to each metric. On

real scenes, however, NSFF took the lead. Despite having strong metrics, NSFF is

qualitatively poor and slow. Surprisingly, during ablation, even our most basic model

(DyLiN without the two MLPs from fig. 3.2a) could generate perceptually better

looking images than TiNeuVox-B, thanks to the increased training dataset size via

KD. Incorporating the MLPs Tω and Hψ into the model each improved results slightly.

Interestingly, fine-tuning on real data as in (3.5) gave a substantial boost. In addition,

our relative PSNR improvement over the teacher model (table 3.1=+1.93 dB, up to

+3.16 dB per scene; table 3.2=+2.7 dB, up to +13.14 dB) is better than that of R2L

[65] (+1.4 dB, up to +2.8 dB).
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Table 3.1: Quantitative results on synthetic dynamic scenes. Notations: Multi-Layer
Perceptron (MLP), PD (pointwise deformation), FT (fine-tuning). We utilized D-
NeRF as the teacher model for our DyLiNs. The winning numbers are highlighted in
bold.

Method PSNR↑ SSIM↑ LPIPS↓

NeRF[43] 19.00 0.8700 0.1825
DirectVoxGo[60] 18.61 0.8538 0.1688
Plenoxels[20] 20.24 0.8688 0.1600
T-NeRF[53] 29.51 0.9513 0.0788
D-NeRF[53] 30.50 0.9525 0.0663
TiNeuVox-S[19] 30.75 0.9550 0.0663
TiNeuVox-B[19] 32.67 0.9725 0.0425

DyLiN, w/o two MLPs, w/o FT (ours) 31.16 0.9931 0.0281
DyLiN, w/o two MLPs (ours) 32.07 0.9937 0.0196
DyLiN, PD MLP only, w/o FT (ours) 31.26 0.9932 0.0279
DyLiN, PD MLP only (ours) 31.24 0.9940 0.0189
DyLiN, w/o FT (ours) 31.37 0.9933 0.0275
DyLiN (ours) 32.43 0.9943 0.0184
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Table 3.2: Quantitative results on real dynamic scenes. Notations: Multi-Layer
Perceptron (MLP), PD (pointwise deformation), FT (fine-tuning). We utilized Hy-
perNeRF as the teacher model for our DyLiNs. The winning numbers are highlighted
in bold.

Method PSNR↑ MS-SSIM↑

NeRF[43] 20.1 0.745
NV[38] 16.9 0.571
NSFF[33] 26.3 0.916
Nerfies[50] 22.2 0.803
HyperNeRF[51] 22.4 0.814
TiNeuVox-S[19] 23.4 0.813
TiNeuVox-B[19] 24.3 0.837

DyLiN, w/o two MLPs, w/o FT (ours) 23.8 0.882
DyLiN, w/o two MLPs (ours) 24.2 0.894
DyLiN, PD MLP only, w/o FT (ours) 23.9 0.885
DyLiN, PD MLP only (ours) 24.6 0.903
DyLiN, w/o FT (ours) 24.0 0.886
DyLiN (ours) 25.1 0.910
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Table 3.3: Quantitative results for space and time complexity on the synthetic Lego
scene. Notations: Multi-Layer Perceptron (MLP), PD (pointwise deformation), FT
(fine-tuning).

Storage Wall-clock
Method (MB) time (ms)

NeRF[43] 5.00 2,950.0
DirectVoxGo[60] 205.00 1,090.0
Plenoxels[20] 717.00 50.0
NV[38] 439.00 74.9
D-NeRF[53] 4.00 8,150.0
NSFF[33] 14.17 5,450.0
HyperNeRF[51] 15.36 2,900.0
TiNeuVox-S[19] 23.70 3,280.0
TiNeuVox-B[19] 23.70 6,920.0

DyLiN, w/o two MLPs, w/o FT (ours) 68.04 115.4
DyLiN, w/o two MLPs (ours) 68.04 115.4
DyLiN, PD MLP only, w/o FT (ours) 72.60 115.7
DyLiN, PD MLP only (ours) 72.60 115.7
DyLiN, w/o FT (ours) 70.11 116.0
DyLiN (ours) 70.11 116.0
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table 3.3 shows quantitative results for space and time complexity on the synthetic

Lego scene. We found that there is a trade-off between the two metrics, as prior

works are typically optimized for just one of those. In contrast, all of our proposed

DyLiN variants settle at the golden mean between the two extremes. When compared

to the strongest baseline TiNeuVox-B, our method requires 3 times as much storage

but is nearly 2 orders of magnitude faster. Plenoxels and NV, the only methods that

require less computation than ours, perform much worse in quality.

fig. 3.4 reports quantitative ablation results for dependencies on the number of

sampled points per ray K and on the number of training samples during KD S,

performed on the synthetic Standup scene. For dependence on K (fig. 3.4a), we

found that there were no significant differences between test set PNSR scores for K ∈
{4, 8, 16, 32}, while we encountered overfitting for K ∈ {64, 128}. This justified our

choice of K = 16 for the rest of our experiments. Regarding the effect of S (fig. 3.4b),

overfitting occured for smaller sample sizes including S ∈ {100; 500; 1000; 5000 }. The
test and training set PSNR scores were much closer for S = 10 000, validating our

general setting.

3.5.2 Qualitative Results

fig. A.10 and fig. 3.6 depict qualitative results for reconstruction quality on synthetic

and real dynamic scenes, respectively. Both show that our full DyLiN model generated

the sharpest, most detailed images, as it was able to capture cloth wrinkles (fig. A.9l)

and the eye of the chicken (fig. 3.6f). The competing methods tended to oversmooth

these features. We also ablated the effect of omitting fine-tuning (fig. A.9k, fig. 3.6e),

and results declined considerably.

For the sake of completeness, fig. 3.7 illustrates qualitative ablation results for our

model components on real dynamic scenes. We found that sequentially adding our two

proposed MLPs Tω and Hψ improves the reconstruction, e.g., the gum between the

teeth (fig. 3.7f) and the fingers (fig. 3.7l) become more and more apparent. Without

the MLPs, these parts were heavily blurred (fig. 3.7d, fig. 3.7j).
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(a)

(b)

Figure 3.3: Quantitative results for ablation on the synthetic Standup scene. (a) De-
pendence on the number of sampled points K across ray r′. (b) Dependence on the
number of training samples S during Knowledge Distillation (KD).
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(a)

(b)

Figure 3.4: Quantitative results for ablation on the synthetic Standup scene. (a) De-
pendence on the number of sampled points K across ray r′. (b) Dependence on the
number of training samples S during Knowledge Distillation (KD).
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(a) Hook (b) Ground
Truth

(c) D-NeRF (d) TiNeuVox (e) Ours w/o
FT

(f) Ours w/ FT

(g) Jumping
Jacks

(h) Ground
Truth

(i) D-NeRF (j) TiNeuVox (k) Ours w/o
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(l) Ours w/ FT

Figure 3.5: Qualitative results on synthetic dynamic scenes. We compare our DyLiN
(Ours-1, Ours-2) with the ground truth, the D-NeRF teacher model and TiNeuVox.
Ours-1 and Ours-2 were trained without and with fine-tuning on the original data,
respectively.

(a) Chicken(b) Ground
Truth

(c) HyperN-
eRF

(d) TiNeuVox (e) Ours w/o
FT

(f) Ours w/ FT

Figure 3.6: Qualitative results on a real dynamic scene. We compare our DyLiN (Ours-
1, Ours-2) with the ground truth, the HyperNeRF teacher model, and TiNeuVox.
Ours-1 and Ours-2 were trained without and with fine-tuning on the original data,
respectively.
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(h) Ground
Truth

(i) HyperN-
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Figure 3.7: Qualitative results for ablation on real dynamic scenes. We compare our
DyLiN (Ours-1, Ours-2, Ours-3) with the ground truth and the HyperNeRF teacher
model. Ours-1 was trained without our two MLPs. Ours-2 was trained with the
pointwise deformation MLP only. Ours-3 is our full model with both of our proposed
MLPs.
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3.6 Conclusion

We proposed the architecture for extending LFNs to dynamic scenes. Specifically, we

introduced DyLiN, which models ray deformations without bending and lifts whole

rays into a hyperspace. We trained our model via knowledge distillation from various

dynamic NeRF teacher models. We found that DyLiN produces state-of-the-art

quality even without ray bending, while is nearly 2 orders of magnitude faster than

their strongest baselines.

Our method does not come without limitations, however. Most importantly, it

focuses on speeding up inference, as it requires a pretrained teacher model, which can

be expensive to obtain. In some experiments, our solution was outperformed in terms

of the PSNR score. Using the winners as teacher models could improve performance.

Additionally, distillation from multiple teacher models or joint training of the teacher

and student models is also yet to be explored. Moreover, we currently represent rays

implicitly by sampling K points along them, but increasing this number can lead to

overfitting. An explicit ray representation may be more effective. Finally, voxelizing

and quantizing our models could improve efficiency.

Our results are encouraging steps towards achieving real-time volumetric rendering

and animation, and we hope that our work will contribute to the progress in these

areas.
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Chapter 4

Real-time Controllable Neural Face

Avatars

In this chapter, we will delve into the construction of the real-time controllable neural

face avatar system, building upon the findings and advancements presented in the

previous chapters. Specifically, we will explore how the controllability discussed in

Chapter 2 and the real-time capabilities outlined in Chapter 3 are integrated to form

a cohesive and functional system.

4.1 Methods

In this section, we introduce CoDyLiN, which further augments DyLiN with con-

trollability, via lifting attribute inputs to hyperspace with MLPs, and masking their

hyperspace codes for disentanglement. In this case, we also train via KD, but the

teacher model is a pretrained controllable NeRF.

4.1.1 Network Architecture

We demonstrate here that our DyLiN architecture from section 3.3.1 can be extended

to the controllable scenario using attribute inputs with hyperspace MLPs and attention

masks. Our proposed CoDyLiN network Qτ is depicted in fig. 4.1.

Specifically, we start from DyLiN Gϕ and add scalar inputs αi ∈ [−1, 1], i =
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4. Real-time Controllable Neural Face Avatars

1, . . . , n next to o, d, t. Intuitively, these are given strength values for specific local

attributes, which can be interpolated continuously. n is the total number of attributes.

Each αi is then processed independently with its own hyperspace MLP Hi,ψi
to

yield the hyperspace code wi:

wi = Hi,ψi
(o, d, t). (4.1)

Next, we include mask MLP regressors Mi,ρi to generate scalar attention masks

m̂i ∈ [0, 1] for each wi (including w0 = w):

m̂i =Mi,ρi(wi, w, o, d),

m̂0 = 1−
n∑
i=1

m̂i,

w′
i = m̂i · wi, i = 0, . . . , n,

(4.2)

This helps the architecture to spatially disentangle (i.e., localize) the effects of

attributes αi, while m̂0 can be understood as the space not affected by any attributes.

Finally, we sample K points on the ray similarly to section 3.3.1, concatenate

those with the w′
i vectors, and process the result further with LFN Rπ. Again, we

can use a shorthand for the parameters: τ = [ω, ψ, ψ1, . . . , ψn, ρ1, . . . , ρn, π].

Observe that without our MLPs Hi,ψi
, Mi,ρi , i = 1, . . . , n, our CoDyLiN reverts

to our simpler DyLiN. Different from CoNeRF [27], we process rays instead of points,

and use the αi as inputs instead of targets.

4.1.2 Training Procedure

Akin to section 3.3.2, we split training into pretraining and distillation steps, but

omit fine-tuning.

First, we pretrain a CoNeRF model Eν [27] by randomly sampling (t, r, i), against

3 ground truths: ray color, attribute values αi and 2D per-attribute masks m2D,i.

This yields us Eν∗ . For brevity, we omit the details of this step, and kindly forward

the reader to Section 3 in [27].

Second, we distill from our teacher CoNeRF model Eν∗ into our student CoDyLiN

Qτ by randomly sampling t, r, α1, . . . , αn, and minimizing the MSE against 2 pseudo
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ground truths, i.e., ray colors and 2D masks m̄2D,i:

min
τ

Et,r=(o,d)

[
∥Qτ (o, d, t, α1:n)− Ēν∗(o, d, t, α1:n)∥22

+ λm ·
n∑
i=0

∥m̂i(o, d, t, αi)− m̄2D(o, d, t, α1:n)i∥22
]
, (4.3)

where Ēν is identical to Eν except for taking α1:n = [α1, . . . , αn] as input and

outputting the masks m̄2D,i, i = 0, . . . , n. We denote the result of the optimization

as Qτ∗ .

We highlight that our teacher and student models are both controllable in this

setup.

4.2 Experimental Setup

Real Controllable Scenes. We borrowed several real controllable scenes from

[27] and our CoNFies (closing/opening eyes/mouth, and transformer), which are

captured either with a Google Pixel 3a or an Apple iPhone 13 Pro, and contain

annotations over various attributes. We applied image resolution of 480× 270 pixels.

We pretrained a CoNeRF [27] teacher model from scratch per scene.

4.2.1 Settings

The experimental setup for our CoDyLiN experiments closely follows that of DyLiN,

with a slight modification. In our CoDyLiN experiments, we define each Hi,ψi
to be a

small MLP having 5 layers of 128 units with wi ∈ R8. During training, we uniformly

sample attributes within [−1, 1]: αi ∼ U(−1, 1), and let λm = 0.1.

4.3 Results

4.3.1 Quantitative Results

Our controllable numerical results are collected in table 4.1. In short, our CoDyLiN

was able to considerably outperform CoNeRF with respect to MS-SSIM and speed.
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Table 4.1: Quantitative results on real controllable scenes. We utilized CoNeRF as
the teacher model for our CoDyLiN. The winning numbers are highlighted in bold.

Eyes/Mouth Transformer

Wall-clock Wall-clock
Method PSNR↑ MS-SSIM↑ time (ms) PSNR↑ MS-SSIM↑ time (ms)

CoNeRF[27] 21.4658 0.7458 6230.0 23.0319 0.8878 4360.0
CoDyLiN (ours) 21.4655 0.9510 116.3 23.5882 0.9779 116.0

4.3.2 Qualitative Results

We present the visualization of our results in Figure 4.2, showcasing the effectiveness

of CoDyLiN in achieving precise control over facial expressions. Notably, our system

demonstrates remarkable speed, significantly outperforming previous methods. For a

more comprehensive overview of our findings, additional results can be found in the

supplementary material.

4.4 Conclusion

In conclusion, we introduce CoDyLiN, a pioneering real-time controllable neural

face avatar system that combines the strengths of DyLiN and CoNFies. CoDyLiN

inherits real-time capabilities from DyLiN, enabling fast and efficient rendering of

facial animations, while incorporating controllability from CoNFies, granting users

precise control over various attributes and expressions.

Our proposed system represents a significant step forward in the field of facial

animation, providing a novel solution that achieves both real-time performance and

fine-grained control. By integrating these key features, CoDyLiN offers a versatile

platform for generating lifelike and expressive facial avatars in interactive applications,

virtual communication, and entertainment.
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Figure 4.1: Schematic diagram of our proposed CoDyLiN architecture. We augment
our DyLiN (blue, green, red) by introducing scalar attribute inputs αi ∈ [−1, 1],
i = 1, . . . , n and lifting them to their respective hyperspace codes wi (orange, . . . , pink
MLPs). Next, Mi disentangles wi from wj, j ̸= i by masking it into w′

i (orange, . . . ,
pink boxes and bottom insets). We concatenate the sampled points xk, k = 1, . . . , K
with the w′

i, i = 1, . . . , n and predict the RGB color corresponding to the inputs
(red). Arrows from (o′, d′) and w0 to Mi are omitted from the top figure for simplicity.
Compare this with fig. 3.1.
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Figure 4.2: Control using single AU and their combinations using our CoDyLiN.
AU02 is an outer brow raiser. AU12 is a lip corner puller. AU45 is blink.
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Chapter 5

Conclusions

In conclusion, this thesis presents the proposal of a real-time controllable neural face

avatar system, making notable contributions to the research area. The following

contributions have been made:

Firstly, we achieved fully automatic annotation of facial data through the ap-

plication of automated facial action recognition (AFAR). By characterizing facial

expressions as a combination of action units (AU) and their intensities, we eliminated

the need for labor-intensive manual annotation. This breakthrough significantly

improves data processing efficiency and alleviates the burden of annotation tasks.

Secondly, we introduced an innovative neural representation that enables high-

fidelity 3D reconstruction and precise control of intricate facial movements. Through a

disentangled feature space, each region of the representation is independent, allowing

for fine-grained control over specific aspects of facial expressions. This contribution

advances the state-of-the-art in capturing realistic and expressive facial animations.

Furthermore, we implemented real-time rendering capabilities throughout the

entire system by leveraging the concept of Light Field Networks (LFNs). This

integration enables the generation of facial animations in real time, providing seamless

and immediate visualization of rendered facial expressions. The achievement of

real-time performance enhances the interactive and immersive nature of the user

experience.

Collectively, these contributions pave the way for novel advancements in the realm

of real-time controllable neural face avatars. By automating annotation processes,
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5. Conclusions

improving the fidelity of 3D reconstruction, and achieving real-time performance,

our research significantly enhances the quality and interactivity of virtual facial

representations.

We anticipate that the proposed system and its contributions will foster progress

in various fields, including virtual communication, entertainment, gaming, and human-

computer interaction. This thesis sets the stage for further exploration and develop-

ment in the exciting domain of real-time controllable neural face avatars, contributing

to the advancement of technology and enriching the user experience in virtual envi-

ronments.
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Appendix A

Supplementary Material

A.1 Overview

In this supplementary material, we provide detailed quantitative and additional

qualitative results, showcasing the benefits of our proposed CoNFies, DyLiN and

CoDyLiN methods. Furthermore, we also provide the training times one should

expect given our current setup.

A.2 CoNFies Architecture

We show the architectures of our CoNFies in this section: attribute mapping network

A in Fig. A.1, spatial deformation field T in Fig. A.2, ambient slicing surface mapping

network H in Fig. A.3, mask and uncertainty prediction network M(B) in Fig. A.4,

and rendering network in Fig. A.5. All networks only contain fully connected layers

and all the hidden layers use ReLU as activation function. The numbers in each blocks

indicate the kernel numbers used in corresponding layers. Our network architectures

are similar to CoNeRF except that we introduce decoupling mask and uncertainty

mechanism.
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Figure A.1: Attribute mapping A takes a per-image learnable latent code β and
outputs attributes α1...K . We use tanh as activation function to that the attributes
have the range of (-1, 1).
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Figure A.2: Spatial deformation field T takes β and raw coordinates x to generate
quaternion r as rotation and outputs translation t. Spatial deformation point x′ is
obtained through applying affine transform on x using r and t.
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Figure A.3: Ambient slicing surface mapping network H takes β or attribute αi along
with raw coordinates x to learn the ambient space w0 or wi. w0 is generated using β
as input and wi is generated using αi as input.
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Figure A.4: Mask and uncertainty prediction network M(B) has the same archi-
tecture, which takes spatial deformation point x′, canonical ambient space w0 and
corresponding ambient space wi. It’s worth noting that each mi can take multiple wi
as input and each βi takes one wi as input.
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Figure A.5: Rendering network is the same as the template NeRF except the input
dimension is adjusted according to spatial deformation point x′ and ambient space w.

59



A. Supplementary Material

Table A.5: Per-scene quantitative results on synthetic dynamic scenes. Notations:
Multi-Layer Perceptron (MLP), PD (pointwise deformation), FT (fine-tuning). We
utilized D-NeRF as the teacher model for our DyLiNs. The winning numbers are
highlighted in bold.

Hell Warrior Mutant Hook Bouncing Balls

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRF[43] 13.52 0.8100 0.2500 20.31 0.9100 0.0900 16.65 0.8400 0.1900 20.26 0.9100 0.2000
DirectVoxGo[60] 13.51 0.7500 0.2500 19.45 0.8900 0.1200 16.16 0.8000 0.2100 20.20 0.8700 0.2200
Plenoxels[20] 15.19 0.7800 0.2700 21.44 0.9100 0.0900 17.90 0.8100 0.2100 21.30 0.8900 0.1800
T-NeRF[53] 23.19 0.9300 0.0800 30.56 0.9600 0.0400 27.21 0.9400 0.0600 37.81 0.9800 0.1200
D-NeRF[53] 25.10 0.9500 0.0600 31.29 0.9700 0.0200 29.25 0.9600 0.1100 38.93 0.9800 0.1000
TiNeuVox-S[19] 27.00 0.9500 0.0900 31.09 0.9600 0.0500 29.30 0.9500 0.0700 39.05 0.9900 0.0600
TiNeuVox-B[19] 28.17 0.9700 0.0700 33.61 0.9800 0.0300 31.45 0.9700 0.0500 40.73 0.9900 0.0400

DyLiN, w/o two MLPs, w/o FT (ours) 26.81 0.9885 0.0363 32.13 0.9961 0.0186 29.89 0.9922 0.0297 39.78 0.9997 0.0099
DyLiN, w/o two MLPs (ours) 27.73 0.9893 0.0317 33.26 0.9971 0.0101 30.20 0.9928 0.0187 41.13 0.9998 0.0064
DyLiN, PD MLP only, w/o FT (ours) 26.82 0.9886 0.0362 32.13 0.9963 0.0185 29.94 0.9923 0.0296 39.70 0.9996 0.0096
DyLiN, PD MLP only (ours) 27.75 0.9896 0.0302 33.47 0.9972 0.0102 30.39 0.9930 0.0186 41.52 0.9998 0.0062
DyLiN, w/o FT (ours) 26.90 0.9887 0.0360 32.17 0.9963 0.0182 29.99 0.9923 0.0289 40.02 0.9997 0.0098
DyLiN (ours) 27.79 0.9898 0.0298 33.80 0.9974 0.0086 30.49 0.9931 0.0186 41.59 0.9998 0.0062

Lego T-Rex Stand Up Jumping Jacks

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRF[43] 20.30 0.7900 0.2300 24.29 0.9300 0.1300 18.19 0.8900 0.1400 18.28 0.8800 0.2300
DirectVoxGo[60] 21.13 0.9000 0.1000 23.27 0.9200 0.0900 17.58 0.8600 0.1600 17.80 0.8400 0.2000
Plenoxels[20] 21.97 0.9000 0.1100 25.18 0.9300 0.0800 18.76 0.8700 0.1500 20.18 0.8600 0.1900
T-NeRF[53] 23.82 0.9000 0.1500 30.19 0.9600 0.1300 31.24 0.9700 0.0200 32.01 0.9700 0.0300
D-NeRF[53] 21.64 0.8300 0.1600 31.75 0.9700 0.0300 32.79 0.9800 0.0200 32.80 0.9800 0.0300
TiNeuVox-S[19] 24.35 0.8800 0.1300 29.95 0.9600 0.0600 32.89 0.9800 0.0300 32.33 0.9700 0.0400
TiNeuVox-B[19] 25.02 0.9200 0.0700 32.70 0.9800 0.0300 35.43 0.9900 0.0200 34.23 0.9800 0.0300

DyLiN, w/o two MLPs, w/o FT (ours) 22.11 0.9747 0.0612 31.35 0.9978 0.0290 33.98 0.9973 0.0140 33.24 0.9981 0.0260
DyLiN, w/o two MLPs (ours) 22.42 0.9761 0.0493 32.80 0.9984 0.0170 35.31 0.9980 0.0084 33.67 0.9984 0.0155
DyLiN, PD MLP only, w/o FT (ours) 22.13 0.9748 0.0618 32.18 0.9982 0.0282 33.97 0.9973 0.0140 33.19 0.9982 0.0257
DyLiN, PD MLP only (ours) 22.76 0.9775 0.0452 32.77 0.9985 0.0176 35.56 0.9981 0.0082 33.68 0.9984 0.0152
DyLiN, w/o FT (ours) 22.24 0.9754 0.0600 32.24 0.9982 0.0276 34.15 0.9974 0.0141 33.23 0.9983 0.0256
DyLiN (ours) 23.10 0.9791 0.0443 32.91 0.9985 0.0168 35.95 0.9983 0.0074 33.84 0.9985 0.0151

A.3 DyLiN Per-Scene Quantitative Results

For the sake of completeness, we provide the detailed per-scene quantitative results for

reconstruction quality (PSNR, SSIM, MS-SSIM, LPIPS) on the synthetic (table A.5)

and real (table A.6) dynamic scenes, extending Tab. 1 and Tab. 2 in the main

paper that average these numbers across the scenes. Accordingly, we found that our

DyLiN performs the best with respect to the SSIM and LPIPS metrics, generating

perceptually better images, yet it sometimes falls behind in terms of PSNR and

MS-SSIM that may prefer blurred results. Knowledge distillation improves a lot, our

deformation and hyperspace MLPs yield slightly better results, while fine-tuning on

the original training data gives a considerable boost.
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Table A.6: Per-scene quantitative results on real dynamic scenes. Notations: Multi-
Layer Perceptron (MLP), PD (pointwise deformation), FT (fine-tuning), N/A (not
available in the cited research paper). We utilized HyperNeRF as the teacher model
for our DyLiNs. The winning numbers are highlighted in bold.

Broom 3D Printer Chicken

Method PSNR↑ MS-SSIM↑ PSNR↑ MS-SSIM↑ PSNR↑ MS-SSIM↑

NeRF[43] 19.90 0.653 20.70 0.780 19.90 0.777
NV [38] 17.70 0.623 16.20 0.665 17.60 0.615
NSFF [33] 26.10 0.871 27.70 0.947 26.90 0.944
Nerfies [50] 19.20 0.567 20.60 0.830 26.70 0.943
HyperNeRF [51] 19.30 0.591 20.00 0.821 26.90 0.948
TiNeuVox-S[19] 21.90 0.707 22.70 0.836 27.00 0.929
TiNeuVox-B[19] 21.50 0.686 22.80 0.841 28.30 0.947

DyLiN, w/o two MLPs, w/o FT (ours) 21.98 0.808 22.99 0.899 26.89 0.948
DyLiN, w/o two MLPs (ours) 22.04 0.811 23.16 0.905 27.35 0.954
DyLiN, PD MLP only, w/o FT (ours) 22.02 0.805 23.04 0.903 26.88 0.948
DyLiN, PD MLP only (ours) 22.14 0.815 23.19 0.906 27.53 0.955
DyLiN, w/o FT (ours) 22.04 0.809 23.06 0.902 26.91 0.948
DyLiN (ours) 22.14 0.823 23.21 0.906 27.62 0.956

Peel Banana Americano Expressions

Method PSNR↑ MS-SSIM↑ PSNR↑ MS-SSIM↑ PSNR↑ MS-SSIM↑

NeRF[43] 20.00 0.769 N/A N/A N/A N/A
NV [38] 15.90 0.380 N/A N/A N/A N/A
NSFF [33] 24.60 0.902 N/A N/A N/A N/A
Nerfies [50] 22.40 0.872 N/A N/A N/A N/A
HyperNeRF [51] 23.30 0.896 18.42 0.720 25.40 0.958
TiNeuVox-S[19] 22.10 0.780 N/A N/A N/A N/A
TiNeuVox-B[19] 24.40 0.873 N/A N/A N/A N/A

DyLiN, w/o two MLPs, w/o FT (ours) 23.38 0.872 18.45 0.722 25.36 0.950
DyLiN, w/o two MLPs (ours) 24.35 0.906 30.85 0.977 26.33 0.967
DyLiN, PD MLP only, w/o FT (ours) 23.70 0.882 18.47 0.722 25.55 0.960
DyLiN, PD MLP only (ours) 25.72 0.936 31.01 0.978 26.33 0.967
DyLiN, w/o FT (ours) 23.97 0.886 18.48 0.722 26.51 0.969
DyLiN (ours) 27.36 0.952 31.56 0.982 26.91 0.974
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A.4 More Qualitative Results of DyLiN

We provide additional qualitative results for 3 experiments.

First, fig. A.10 depicts more qualitative results for reconstruction quality on

synthetic dynamic scenes, extending Fig. 6 in the main paper. Specifically, the

Standup scene includes buttons on the shirt of the avatar (fig. A.9b), and the

baselines are all missing them (figs. A.9c and A.9d), whereas our full method is

capable of reconstructing such details (fig. A.9f). Furthermore, the Bouncing Ball

scene involves shadow casting (fig. A.9h). Inside the shadowed area, D-NeRF [53]

produces horizontal artifacts (fig. A.9i), while TiNeuVox [19] predicts an inaccurate

boundary (fig. A.9j). Again, our full model outputs the correct shadow (fig. A.9l).

Second, fig. 3.7 shows qualitative results for ablation on the synthetic Standup

scene using a D-NeRF teacher model, complementing Fig. 8 in the main paper that

is restricted to real scenes and distilling from HyperNeRF [51]. D-NeRF gives an

oversmoothed prediction (fig. A.10c), whereas the two MLPs of our DyLiN gradually

reduce the blurriness of the face (figs. A.10d to A.10f).

Lastly, fig. A.11 illustrates qualitative results for the real controllable Transformer

scene, complementing the numbers of Tab. 4 in the main paper. We portray the

effects of altering the attribute input αi ∈ [−1, 1], which encodes the body pose of

the character. We found that the CoNeRF [27] teacher model produces yellow color

artifacts outside the boundary of the character (see, e.g., top row 1st inset), whereas

our CoDyLiN student model captures the boundary well.

A.5 Training Times for DyLiN and CoDyLiN

On a single NVIDIA A100 GPU, the full process takes ≈ 38–43 h, including 5–10 h

to train the teacher, 13 h for drawing S = 10 000 training samples for KD, and 20 h

for training the student via KD.
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(a) Standup (b) Ground
Truth

(c) D-NeRF (d) TiNeuVox (e) Ours-1 (f) Ours-2

(g) Bouncing
Ball

(h) Ground
Truth

(i) D-NeRF (j) TiNeuVox (k) Ours-1 (l) Ours-2

Figure A.9: More qualitative results on synthetic dynamic scenes. We compare our
DyLiN (Ours-1, Ours-2) with the ground truth, the D-NeRF teacher model, and
TiNeuVox. Ours-1 and Ours-2 were trained without and with fine-tuning on the
original data, respectively.

(a) Standup (b) Ground
Truth

(c) D-NeRF (d) Ours-1 (e) Ours-2 (f) Ours-3

Figure A.10: Qualitative results for ablation on the synthetic Standup scene. We
compare our DyLiN (Ours-1, Ours-2, Ours-3) with the ground truth and the D-NeRF
teacher model. Ours-1 was trained without our two MLPs. Ours-2 was trained with
pointwise deformation MLP only. Ours-3 is our full model with both of our proposed
two MLPs.
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Figure A.11: Qualitative results on the real controllable Transformer scene. We
utilized CoNeRF [27] as the teacher model for our CoDyLiN. Red circles indicate
regions enlarged in insets. Best viewed zoomed in.
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