Fast Staircase Detection and Estimation
with Multi-View Merging for
Multi-Robot Systems

Prasanna Kettavarapalyam Sriganesh
CMU-RI-TR-23-51
July 28, 2023

The Robotics Institute
School of Computer Science

Carnegie Mellon University
Pittsburgh, PA

Thesis Committee:
Matthew Travers, chair
Howie Choset
Sebastian Scherer
Charles Noren

Submitted in partial fulfillment of the requirements
for the degree of Masters in Robotics.

Copyright (©) 2023 Prasanna Kettavarapalyam Sriganesh. All rights reserved.

Abstract

When robotic systems are deployed in the real world, they demand ad-
vanced mobility capabilities to operate in complex, three-dimensional
environments designed for human use, e.g., multi-level buildings. Stair-
cases have been an integral part of facilitating vertical movement in these
three-dimensional environments. This work presents a novel method
that enables mobile robots to locate and autonomously climb a range
of different staircases. We develop a staircase detection algorithm that
exploits viewpoints in a point cloud, making it possible to quickly detect
staircases and estimate their physical parameters. Further, the algorithm
can validate the number of traversable steps in the staircase by using a
simple density metric to look for obstacles or damage. This staircase per-
ception system runs on heterogeneous platforms in real-time that can each
detect staircases and merge the detections. We present results wherein
a wheeled robot works with a quadrupedal system to detect different
staircases quickly. The performance of this staircase detection system is
compared to the current state-of-the-art detection algorithm. We show
that our approach significantly increases the speed of detections by two
orders of magnitude without compromising the accuracy of parameter
estimation.

1l

v

Acknowledgments

I sincerely thank my advisor, Dr. Matthew Travers, for their guidance and
support throughout my time at Carnegie Mellon University. His expertise
and knowledge have been invaluable, and I am grateful for their patience
and encouragement.

I would also like to thank my committee members, Dr. Howie Choset, Dr.
Sebastian Scherer, and Charles Noren, for their valuable feedback and
suggestions. Their insights have been tremendous and have helped me ask
the right questions and make quality improvements to my thesis work.

I am incredibly grateful for the consistent support and advice my project
scientist, Dr. Bhaskar Vundurthy, provided. He has been instrumental
in guiding and motivating me in the right direction whenever I needed a
nudge.

I want to acknowledge all the support I received from my teammates on
the MMPUG project. I especially want to thank my teammates Namya,
Burhan, Adam, and Jay for helping me collect data around the campus
and set up experiments every time I saw a new staircase. The results of
the thesis would only be complete with their help. I am also thankful for
all the technical advice that my teammate Joshua Spisak has provided
over the last two years. His insights have helped me become a better
coder overall.

I thank all my friends and colleagues from the Robotics Institute and the
Biorobotics lab. You all have been a great group of people to interact
and work with. Special thanks to one of my closest friends, Winnie; 1
appreciate your support over the last two years.

I want to thank my mom and family for supporting me throughout my life.
I would not be in this position today without Amma’s constant backing
that I currently rest on today.

Lastly, I am thankful to all of our robots, without whom these algorithms
would not serve any purpose.

vi

Contents

5.2.1 Multi-Robot Merging
5.2.2 Single-Robot Merging

1 Introduction
1.1 Motivationo
1.2 Thesis Statement
1.3 Contribution
2 Staircase Detection
2.1 Backgroundo
2.2 Detection Pipeline oo
2.2.1 Pre-Processing
2.2.2 Segmentation L o
2.2.3 Detection
2.3 Staircase Estimation and Validation
2.3.1 Estimation.
2.3.2 Validation
3 Multi-Detection Merging
3.1 Handling Multiple Staircase Detections
3.2 Merging Algorithm oo
3.3 Staircase Perception System 0L
4 Experimentation
4.1 System Overview
4.2 Experimental Setup oo
5 Results
5.1 Detection Results oo
5.1.1 Ascending Staircase
5.1.2 Descending Staircase L.
5.1.3 Hollow Staircase
5.1.4 Spiral Staircase
5.1.5 Dilapidated Staircase
5.2 Multi-Detection Merging Results

Tt W =

© 3~

Ne

13
17
17
18

21
21
23
24

27
27
29

31
31
31
33
34
36
37
40
41
43

Vil

5.3 Staircase System Evaluation for Large Staircases 45
6 Conclusions 51

Bibliography 53

When this dissertation is viewed as a PDF, the page header is a link to this Table of Contents.

viil

List of Figures

1.1

1.2

1.3
1.4

2.1
2.2
2.3
24

2.5

2.6

2.7

2.8

2.9

Staircases from historical structures: (a) Staircase on the Ziggurat
of Ur (Partially Restored), (b) Staircases on El Castillo Pyramid in
Mexico, (¢) A Spiral Staircase in the Tower of London 2
Different Robot Platforms capable of traversing staircases:
(a) Boston Dynamics’s Spot Robot (b) Unitree Robotics Gol Platform
(c) Tready tracked robot from HEBI Robotics. 3
Different types of staircases we intend to perceive

Two heterogeneous mobile robots around a staircase (left), A fully
detected staircase by the algorithm as shown by the white marker (right)

ot

Robot and its reference frame 10
Input point cloud of the staircase 10
Point cloud after first step of pre-processing (Top-down projection) . 10

Result point cloud after the second pre-processing step (Front/Range
Projection) 10

Result of pre-processing steps when input point cloud has ascending
and descending staircase. Left image shows the input point cloud.
Right image shows the result after pre-processing. 11

Segmented lines, grouped based on height. Blue lines indicate above
ground, green indicate on the ground and red lines indicate below the
ground. Left image shows lines segmented in a scene with ascending
staircase. Right image depicts lines segmented in a scene with both
ascending and descending staircases 13
Staircase model with its parameters labelled, pink lines represent stair
edges to be segmented. oL 14
Detected staircase, each white marker corresponds to a stair. Left
image shows detected ascending staircase with robot location shown
by the red arrow. Right image shows both ascending and descending
staircases with robot location depicted by the blue arrow. 16
Staircase Detection of regular staircase: (a) The input point cloud to
the algorithm (b) The stair edges that correspond to the detection as
reported by the algorithm 19

X

2.10

2.11

2.12

3.1

3.2

4.1
4.2

4.3
4.4
4.5

4.6

5.1

5.2

5.3

Point cloud of the scene, with pink cuboid showing the region of interest
calculated using the stair edge where surface density check will be
performed 19

Result point cloud after validation, where orange points indicate the
points on the surface that are counted to be traversable space on the
stalr 19

Staircase Detection of staircase with debris: (a) The input point cloud
to the algorithm (b) The detected stair edges shown as white lines
that correspond to the detection as reported by the algorithm with
pink cuboid shows the region of interest for surface density checks (c)
Validated point cloud with orange points indicating traversable region
on the staircase Lo L 20

Centralized architecture to run the staircase perception pipeline on

tworobots 24
Decentralized architecture to run the staircase perception pipeline on
two robots 25

A sensor payload with LiDAR sensor and a Nvidia Xavier compute . 27
A sensor payload with RealSense D455 RGBD sensor and a Intel NUC

compute 27
Spot Legged Robot with the LiDAR payload 28
Autonomous Wheeled Robot with the LiDAR payload 28
Heterogeneous robots moving around different types of staircase to

create adataseto 29

The Spot robot traversing a long staircase as a test of the staircase
system and it’s merging capabilities in real-time 30

Ascending staircase detected by the algorithm using LiDAR point
cloud. (a) Wheeled Robot in front of a staircase (b) Detected staircase
shown using blue cuboids, with blue arrow representing robot’s location 31

Outdoor ascending staircase detection using both LiDAR and Re-
alSense point clouds (a) Picture of the outdoor ascending staircase
(b) Staircase detected using the LiDAR point cloud as shown using
blue markers (c) Staircase detected using the RealSense point cloud as
shown by the blue markers 32

Descending staircase detected by the algorithm using LiDAR point
cloud. (a) Spot robot on top of a staircase (b) Detected staircase
shown using blue cuboids, with blue arrow representing robot’s location 33

0.4

2.5

2.6

5.7

2.8

2.9

5.10

5.11

5.12

5.13

Hollow staircase detected by the algorithm using LiDAR. point cloud.
(a) Wheeled robot near a hollow staircase (b) Detected staircase shown
using blue cuboids, with blue arrow representing robot’s location . . .
Hollow staircase detected by the algorithm using LiDAR point cloud.
(a) Spot near a hollow staircase (b) Detected staircase shown using
blue cuboids, with blue arrow representing robot’s location
Spiral staircase detected by the algorithm using LiDAR point cloud.
(a) Wheeled robot near a spiral staircase (b) Detected staircase shown
using blue cuboids, with blue arrow representing robot’s location . . .
Circular staircase detected by the algorithm using LiDAR point cloud.
(a) Image of the circular staircase (b) Detected staircase shown using
blue cuboids, with blue arrow representing robot’s location
Positive detection and validation of a staircase with debris using Re-
alSense pointcloud. (a) Image of the staircase that has boxes and debris
on its surfaces (b) Detected staircase shown using cuboids, blue cuboid
represents that the stair is free to traverse, red cuboid indicates that
the stair has some obstacles on them (c) Orange points represent the
points that are part of the stair surface as predicted by the validation
pipeline
Positive detection and validation of a staircase with rocks on top using
RealSense pointcloud as input. (a) Image of the staircase that has rocks
on its surfaces (b) Detected staircase shown using cuboids, blue cuboid
represents that the stair is free to traverse, red cuboid indicates that
the stair has some obstacles on them (c¢) Orange points represent the
points that are part of the stair surface as predicted by the validation
pipeline
Positive detection and validation of a simulated damaged staircase
using RealSense pointcloud. (a) Image of the staircase with damage
on its surfaces (b) Detected staircase shown using cuboids, blue cuboid
represents that the stair is free to traverse, red cuboid indicates that
the stair has damages on them (c¢) Orange points represent the points

34

36

that are part of the stair surface as predicted by the validation pipeline 39

Positive detection of staircase by the Spot. (a) Spot Robot looking
down at a staircase (b) Detected staircase shown using the blue marker
corresponding to the blue roboto
Positive detection of staircase by the wheeled robot. (a) Wheeled robot
in front of the staircase (b) Detected staircase shown using the pink
marker corresponding to the pink robot L.
Merged staircase using two detections from both Spot and the Wheeled
robot by the white markers. The colored arrows represent the robot’s
locations when the individual detections were reported.

42

x1

pall

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

5.27

Positive detection of staircase by the Spot. (a) Spot in front of the
staircase at the start of the run (b) Detected staircase shown using the
blue marker corresponding to the blue robot
Positive detection of staircase by Spot. (a) Spot in front of the staircase
in a different orientation (b) Detected staircase shown using the pink
marker corresponding to the pink robot
Merged staircase using two detections from the same robot across
different time-steps as indicated by the white markers. The colored
arrows represent the robot’s locations when the individual detections
were reported. L
Staircase system results at ¢ = 1; Spot robot climbing stair(left); Local
staircase detection (middle); Merged staircase in global frame (right)

Staircase system results at ¢ = 2; Spot robot climbing stair(left); Local
staircase detection (middle); Merged staircase in global frame (right)

Staircase system results at ¢ = 3; Spot robot climbing stair(left); Local
staircase detection (middle); Merged staircase in global frame (right)

Staircase system results at ¢ = 4; Spot robot climbing stair(left); Local
staircase detection (middle); Merged staircase in global frame (right)

Staircase system results at ¢ = 5; Spot robot climbing stair(left); Local
staircase detection (middle); Merged staircase in global frame (right)

Staircase system results at ¢ = 6; Spot robot climbing stair(left); Local
staircase detection (middle); Merged staircase in global frame (right)

Staircase system results at ¢ = 7; Spot robot climbing stair(left); Local
staircase detection (middle); Merged staircase in global frame (right)

Staircase system results at ¢ = 8; Spot robot climbing stair(left); Local
staircase detection (middle); Merged staircase in global frame (right)

Staircase system results at ¢ = 9; Spot robot climbing stair(left); Local
staircase detection (middle); Merged staircase in global frame (right)

Staircase system results at ¢ = 10; Spot robot climbing stair(left);

Local staircase detection (middle); Merged staircase in global frame
(right)
Final resulting staircases after successfully merging all detections of
three long staircases spanning two stories. The white markers are sized
based on the average height, depth and width of stair..

46

46

46

47

47

47

48

48

48

List of Tables

5.1

2.2

2.3

5.4

2.5

2.6

5.7

2.8

Table showing performance metrics of our algorithm compared to the
state-of-the-art for ascending staircases
Table showing performance metrics of our algorithm compared to the
state-of-the-art for descending staircases
Table showing performance metrics of our algorithm compared to the
state-of-the-art for hollow staircases
Table showing performance metrics of our algorithm compared to the
state-of-the-art for spiral staircases
Table showing performance metrics of our algorithm compared to the
state-of-the-art for dilapidated staircases
Table showing staircase parameters estimated by individual detections
from the different robots, parameters after successful merge and the
ground truth values
Table showing staircase parameters estimated by individual detections
from the same robot, parameters after successful merge and the ground
truth values
Table showing staircase parameters estimated by individual detections
from the same robot, parameters after successful merge and the ground
truth values

xiil

Xiv

Chapter 1

Introduction

1.1 Motivation

Staircases have been a prominent architectural element in almost every structure
throughout human history. They have been present for at least 4,000 years[3], as
seen on the Ziggurat of Ur in ancient Mesopotamia (2000s B.C.E.). They can also
be seen on the pyramids in Egypt, the Mayan pyramids, and many other ancient
structures (depicted in Fig. 1.1). Since then, staircases have evolved and featured
sophisticated designs, as evidenced by the spiral staircases in the Tower of London
(1000s C.E.). Staircases are versatile as they connect different levels of buildings and
facilitate movement in the third dimension. Consequently, they continue to play a
major role in today’s urban landscape.

In environments with staircases or otherwise, mobile robots have been predom-
inantly used to perform dangerous or hazardous tasks. For example, the 2011
Fukushima Daiichi nuclear disaster saw mobile robots being used to assess the dam-
age [21]. Additionally, they help enable access to places that are especially difficult
for humans to reach, aiding search and rescue operations. With mobile robots getting
increasingly sophisticated, they are now being deployed in a wide variety of real-
world environments [2| that were built for humans. These environments are complex
and usually consist of multi-level buildings. For robotic systems to operate in such
environments, they need the capability to traverse staircases autonomously.

There are various commercially available robot platforms that are reliable, ac-

1. Introduction

(b) ()

Figure 1.1: Staircases from historical structures: (a) Staircase on the Ziggurat
of Ur (Partially Restored), (b) Staircases on El Castillo Pyramid in Mexico, (c) A
Spiral Staircase in the Tower of London

cessible and can climb staircases on command. This includes quadruped platforms
like Boston Dynamics’ Spot, the quadruped robots by Unitree Robotics, and various
tracked robots like Tready by HEBI Robotics (all depicted in Fig. 1.2). However, most
of these platforms need trained human operators which makes them difficult to use in
emergency response operations. On the other hand, having a way to autonomously

navigate staircases will facilitate reliable and easier operation of these robot platforms.

In the 2020 DARPA Subterranean Challenge, teams of heterogeneous robots com-
prising wheeled, legged, and aerial robots explored unknown urban spaces. Challenges
like these typically operate in complex environments composed of underground spaces
and multi-level buildings. In environments where remote operation is unreliable,

robots need to perceive, analyze and make decisions autonomously. Navigating stair-

1. Introduction

(a) (b) (c)

Figure 1.2: Different Robot Platforms capable of traversing staircases:
(a) Boston Dynamics’s Spot Robot (b) Unitree Robotics Gol Platform
(c) Tready tracked robot from HEBI Robotics.

cases is a significant component of handling multi-floor environments. Knowledge of
staircases from wheeled robots that scout enables legged robots to navigate staircases
and explore environments that are not reachable by the scout robots. Achieving such
real-time coordination with advanced mobile robots requires a fast, robust method of
staircase detection.

Staircase detection and characterization are particularly challenging for au-
tonomous robot perception systems. Diversity in staircases, for instance, spiral
or hollow staircases, makes autonomous detection more challenging. Existing ap-
proaches can be too slow when implemented in compute-constrained mobile robots.
These approaches also do not address scenarios where information is obtained about
different parts of the staircases. This is the case when a robot is climbing a long stair-
case and new information is obtained as the robot climbs higher. This motivates the
need for a fast and robust staircase detection system that supports fusing detections

from multiple viewpoints.

1.2 Thesis Statement

This thesis aims at creating a computationally efficient and fast algorithm that can
detect all kinds of staircases, including ascending, descending, hollow and spiral

stairs. As opposed to conventional techniques, the algorithms put forth in this thesis

1. Introduction

exploit projections from different viewpoints in a point cloud to improve the speed of

detections. Figure 1.3 shows examples of different staircases we want to detect.

Further, we aim to accurately indicate the number of steps in a staircase and
estimate the size of the steps to help assess if the staircase can be traversed by the
robot. In addition to detecting and estimating staircases, we also focus on predicting
how many steps are traversable. We ensure the system can still run in real-time using
a simple density measure to predict traversability which aids in search and rescue

operations. Stairs in disaster sites often have debris on them (Fig. 1.3 (e)) or are

(a) Ascending Staircase (c) Hollow Staircase () Staircase with debris

(b) Descending Staircase (d) Spiral Staircase (f) Damaged Staircase

Figure 1.3: Different types of staircases we intend to perceive

1. Introduction

broken (Fig. 1.3 (f)). These dilapidated staircases prevent the robot from being able
to ascend or descend the staircase and, in worse cases, cause the robot to tumble,
rendering them unusable.

One of the end goals of this work is to have a staircase perception pipeline that
can be deployed on multiple robots operating together. To this end, we investigate
methods that enable merging between multiple detections of a single staircase. If a
new detection is spatially close to a previously detected staircase, we avoid duplicates
by finding a common pivot stair between the two detections and merging them. Fusing
information from different robots or viewpoints allows for a more accurate estimation
of a staircase, thereby enabling a better assessment of staircase traversability. Finally,
we propose an architecture for a complete staircase perception system implemented

on two heterogeneous robots, including a legged robot that can traverse staircases.

1.3 Contribution

The main contributions of this work are as follows. We first present an algorithm

to detect different types of staircases in real-time and estimate their geometry. This

Figure 1.4: Two heterogeneous mobile robots around a staircase (left), A fully detected
staircase by the algorithm as shown by the white marker (right)

1. Introduction

algorithm uses 3D point clouds as input to identify the staircase and its specific
characteristics, such as the number of steps, the step depth, width, and height. We
also propose a way to predict if the steps are traversable by predicting if any of the
stairs have debris or damage on it in real-time.

We next present a simple algorithm that can merge two detection instances of the
same staircase obtained by different robots or different viewpoints. This algorithm
allows the robots to detect long staircases that a single robot’s viewpoint would not
be able to capture otherwise. This also allows for better global registration of multiple
staircases in an environment without having duplicate detection. Figure 1.4 shows an
example of two heterogeneous robots looking at a staircase and the resulting detected
staircase obtained from merging information from both robots.

Lastly, we present a complete staircase perception pipeline deployed on two
heterogeneous robots. These robots can detect multiple staircases in an environment in
real-time while sharing information about the staircase to fuse them. This perception
pipeline can also detect and fuse long staircases that span over two stories that cannot

be detected in a single time step.

Chapter 2

Staircase Detection

2.1 Background

There has been considerable research carried out in the field of staircase detection. All
the methods can be classified based on the modality of the input. The two primary
modalities are either images or point clouds. Although both can be used to detect
staircases, estimating the parameters of the detected stairs, such as their height,
depth, and slope, requires depth information.

One of the first image-based approaches to staircase detection was put forth by
Cong et al. [4]. The primary idea of detecting stairs from an image is to capture the
edges formed by stairways in image space. There have been multiple attempts that
use different computer-vision techniques to segment the stair edges and use that to
detect staircases from images [23][6][15]. Murakami et al. [8] used a combination of
RGB and depth images to segment edges and successfully detected both ascending
and descending staircases.

Even contemporary learning-based algorithms have been used to detect staircases
from images. Ilyas et al. used a convolutional neural network (CNN) to predict
a bounding box around a staircase from image inputs [7]. Patil et al. used a tiny
YOLOv3 network to detect staircases and proposed a statistical image filter to enable
a robot to climb up a staircase [11]. These methods can only be used to detect
staircases, and they do not provide any way of estimating whether or not a staircase

is traversable.

2. Staircase Detection

The advantage of using image-based methods is the speed of the detections.
However, reliance on images makes the entire system environment dependent. The
system’s robustness goes down if the staircase is very reflective or in low-light
conditions. Image-based methods that employ machine learning require massive
datasets to work reliably, and their performance is as good as the training dataset.
Moreover, the lack of depth information in RGB images prohibits accurate geometry
or location estimation. The camera positioning also impacts the field of view of
detection, and image-based methods can be tricked into classifying parallel line
patterns as stairs.

When using pointclouds as the modality, staircases can be detected by segmenting
planes that form the staircase. Using point clouds also aids in estimating the staircase’s
geometry and location, which can be used as an input for navigation. Point clouds
are typically collected from LiDAR sensors or depth cameras. OBwald et al. [10] first
explored and experimented on two different plane segmentation methods to detect
staircase risers.

Different variations of Random Sample Consensus (RANSAC) have also been
extensively used to segment planes and then detect staircases [18][13]. RANSAC-based
methods have been used to estimate staircase location for navigation by different
robots [17][20][16]. Fourre et al. [5] even devised a way to localize industrial stairways
with no risers. Even though RANSAC is a simple and efficient algorithm, it is
non-deterministic. It does not guarantee a best solution or have a fixed time-bound.
This is not a great way to detect stairways in scenarios that are time critical. These
algorithms also have prerequisites on which part of the staircase needs to be visible
to the sensor.

Westfechtel et al. [19] were the first to successfully achieve detection and estimation
of staircases in all directions (360°). They compared three different segmentation
methods to detect planes in LiDAR point clouds and used a graph-based strategy
to detect staircases of all types. Their estimates of the staircase location and the
geometry were the best among all the previous work. Consequently, we can consider
this work to be the current state-of-the-art for staircase detection. Although, their
biggest drawback was the speed of the detection. The robot was expected to be
static during the entire process, and plane analysis took around 4-8 seconds. This

is entirely not feasible in search-and-rescue scenarios where every second is crucial.

2. Staircase Detection

This method also does not address scenarios when the staircases might be broken or
filled with debris which is necessary to predict the traversability of a staircase.
None of the plane-based methods discuss detection speed, which is essential,
especially to allow for deployment on real robots. Additionally, all previous work
treats staircase detection as a one-off algorithm. They do not address cases where
robots can only see part of the staircase at one time and combine multiple detections to
be able to perceive the entire staircase. There has not been much research conducted
on multi-robot scenarios. Two robots with different viewpoints can help achieve a
better estimation of a staircase by fusing both instances. All of these aspects are

important to enable autonomous navigation of staircases.

2.2 Detection Pipeline

We present an algorithm that detects staircases from 3D point clouds and accurately
estimates the staircase parameters such as location, height, and depth. The input 3D
point cloud can either be obtained by stacking multiple LiDAR scans into a voxel grid,
or can directly use RGB-D sensors to get a dense 3D point cloud. The main intuition
behind our algorithm is to segment only the edges formed by the staircase surfaces.

The pipeline has three major steps: pre-processing, segmentation, and detection.

2.2.1 Pre-Processing

Let’s first define the robot’s frame. As shown in Fig. 2.1, the x-axis coincides with
the robot’s heading, the z-axis faces upwards and y-axis is to its left. The input point
cloud (accumulated from multiple LIiDAR scans) is converted into a 3D voxel grid
with fixed voxel size (leaf size). Using the assumption that the robot has a fixed
height, we also compute the location of the ground. This input point cloud is shown
in Fig. 2.2.

The first step in pre-processing is to perform a top-down projection of the point
cloud to get rid of vertical surfaces. This step eliminates all the points that are not
visible from a top view of the point cloud. All the planes perpendicular to the ground
are reduced to a line parallel to the ground while the other planes are intact. We

apply this technique to the point cloud shown in Fig. 2.2 and the resulting point

2. Staircase Detection

Figure 2.1: Robot and its ref- Figure 2.2: Input point cloud
erence frame of the staircase

cloud is shown in Fig. 2.3.
The next step is to perform a range projection from the robot’s viewpoint. To do
this, we organize this point cloud into a 2D array around the robot using cylindrical

coordinates. The z-axis is discretised into rows of the array, while the columns are

Figure 2.3: Point cloud after Figure 2.4: Result point cloud
first step of pre-processing (Top- after the second pre-processing
down projection) step (Front/Range Projection)

10

2. Staircase Detection

indexed using the azimuth angle # which is given by tan™'(%). We also compute
the range p (= /22 + y2) of all the points. In each row (points with similar z), we
retain the proximal points (smallest range value p for every 6) if the row is above the
ground as these points correspond to the front edge of an ascending staircase. In the
case when the row is below the ground, we retain all the distal points (highest range
value p for each 0) as it corresponds to the front edge of a descending staircase.
This pre-processing step reduces all the horizontal planes (stairs) into a single
edge. The two pre-processing steps should reduce the 3D point cloud to points that
belong to the stair edges. Figure 2.4 shows the final processed cloud for a regular
ascending staircase. Figure 2.5 shows a top-down view of the processed cloud when

there are both ascending and descending staircases in the view.

(a) Top-down view of the input point (b) Top-down view of the output point
cloud with two staircases cloud after pre-processing stage

Figure 2.5: Result of pre-processing steps when input point cloud has ascending and
descending staircase. Left image shows the input point cloud. Right image shows the
result after pre-processing.

2.2.2 Segmentation

As mentioned before, the point cloud is organized into a 2D array structure that can

be thought of as an unwrapped cylinder with the robot at its center. Each row index

11

2. Staircase Detection

corresponds to a fixed z height, and the column indices represent the azimuth angle
spanning from —180° to 180°. Consequently, a full row of this array can be treated
as single 2D laser scan. Furthermore, since all points in each row have approximately
equal z-values, we can fit lines in the zy space and add the height information later.

To extract lines from a 2D laser-scan, we use a modified version of Iterative-End-
Point Fit [14][9]. Given N points in a scan, we fit a line between the first and last
points. We then find the point with the maximum distance to this line. If the distance
is more than a threshold (d,), the points are split into two groups until the number of
points in each set is greater than a limit (V,,;,) or if all the points are at a distance
less than a threshold d,,.

Typically, if all the points are close to the line, the loop stops and returns the
line. We modify this behavior to use weighted line fitting to estimate a line with
all the points. Weighted line fitting is a version of least square line fitting with the
uncertainty of a point used as weights. The uncertainty models the inaccuracies
from the sensor being used to obtain the point clouds. We refer to [12] for a detailed
discussion of the problem.

The merging is usually done if the points forming the two lines are collinear. We
modify this to use the merging criteria provided by weighted line fitting. The main
advantage of weighted line fitting is that it outputs a covariance for each line. This
allows us to estimate the similarity between two lines better and merge it better. We

represent each line fit using this method by the parameters below:

e 3D start point of the line - p,

¢ 3D end point of the line - p.

¢ Orientation « - angle between the line with the xy plane
e Covariance Matrix P;,

This line segmentation algorithm is run separately on each row (2D scan) of the
point cloud array. All the resulting lines are added to a single list £. As a result, we
get lines parallel to the ground plane. Since staircase edges also have to be parallel
to the ground, it eliminates the need to check for line altitudes. If the point cloud
has Z rows and 7' columns, the time complexity of this algorithm is O(ZT'log(T)).

After all the lines are segmented, we group them into three groups based on their

height in the 3D space. Assuming that the robot has a fixed height, it is trivial to

12

2. Staircase Detection

(a) (b)

Figure 2.6: Segmented lines, grouped based on height. Blue lines indicate above
ground, green indicate on the ground and red lines indicate below the ground. Left
image shows lines segmented in a scene with ascending staircase. Right image depicts
lines segmented in a scene with both ascending and descending staircases

group lines that are above the ground (L,,), below the ground (L), and that are
part of the ground plane (£,). This makes it easier to search for staircases that are
ascending and descending. Figure 2.6 shows the lines detected by our algorithm in
that scene. Blue represents lines above the ground, the green represents lines on the

ground plane and the red lines indicates lines below the ground.

2.2.3 Detection

We start searching for staircases in the segmented lines from the previous step. We
first describe the model of our staircase as follows. Figure 2.7 also describes these
parameters.

e Step Height, h

e Step Depth, d

e Step Width, w

13

2. Staircase Detection

e List of Lines £, Each line [; represents a stair and is described by 3D start
(ps) point, 3D end (p.?) point and it’s orientation () in the XY plane

* Stair Slope, ¢ = tan™'(h/d)

Figure 2.7: Staircase model with its parameters labelled, pink lines represent stair
edges to be segmented.

In order to start grouping a set of lines that form a staircase, we define the
parameter limits of a staircase based on the standards set by OSHA[L].
Definition 1 Given two lines I (p;V, p.V, o) and ly(p,?, p.?, a?)), we compute
the height h; given by the difference in z between the lines, the depth d; given by the
zy distance between the lines and the slope ¢; = tan™(h;/d;). Any two lines that
satisfy the five conditions is defined as a stair:

1. 0.11 m < h; <0.30 m

2. 015 m<d; <045 m

3. 25° < ¢; < 60°

4. |a® —a@| < 10°

5. There is no other line in between l; and ly that satisfy the above conditions W

Depending on whether we want to detect an ascending or descending staircase,
we pick the appropriate list (L,, or Ly,) of segmented lines. The algorithm to detect
staircases has two parts, initialization, and extension. In the initialization stage,

we create a subset of lines that are below 2.5 A, in the z-direction called the

14

2. Staircase Detection

Algorithm 1 Detect ascending staircase from list of lines

Input: Set of above ground lines - L,

Output: Staircase § with N lines
1: Initialize list £; with all lines (L4 < 2.5R42)
2: while £; not empty do

®

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

Initialize empty staircase set S
stairy,; < false
while stair;,; is false do
Pick 2 lines, l1, [y from L;
if [; and [; form a stair (Definition 1) then
stair;n = true
Add l; and ls to S
end if
if No valid pair exits then
return S
end if
end while
Reorder lines in £,, by ascending order of height(z)
for Every line I, in £,, do
lprev < last line in S
if loyrr and Iy, form a stair (Definition 1) then
Add ., to Set S
end if
end for
if Total stairs in S > 4 then
return S
else
Remove the initialized stair lines from L;
end if

Initialize empty staircase list S

28: end while
29: return S

initialization list. Here h,,q, is the maximum step height allowable (0.3 m). We

then look for two lines in this initial list that can form a staircase as per Definition

1. If two such lines exist, we add them to a staircase list S. Although, the limit of

2.5 hpaee performed well on the data, it can be replaced as a tunable hyper-parameter

if necessary.

Once we have the first two steps of the staircase, we perform an extension. For

15

2. Staircase Detection

(a) (b)

Figure 2.8: Detected staircase, each white marker corresponds to a stair. Left image
shows detected ascending staircase with robot location shown by the red arrow. Right
image shows both ascending and descending staircases with robot location depicted
by the blue arrow.

every line in the increasing z-direction, we check if it forms a staircase with the
previous line in the staircase set using Definition 1. If it complies, we add the new
line to the set and repeat the extension until all lines are exhausted. If there are
more than four lines in the staircase list, it is a successful staircase detection, and use
this to estimate the staircase geometry. The minimum number of stairs can also be

set by the user to detect smaller staircases.

If the initialized staircase does not extend, i.e., the set only has two stairs,
we remove the lines from the initialization list and repeat the process until the
initialization list is empty. The pseudo-code of this method is presented in Algorithm
1. To detect descending staircases, we switch the set of lines to Ly, and run the same
algorithm, but the lines are checked in decreasing z-direction. Figure 2.8 shows the
detected staircases in two scenarios. The first one only has ascending staircase and

the second scenarios has two staircases, one ascending and one descending.

16

2. Staircase Detection

2.3 Staircase Estimation and Validation

Once the detection algorithm returns a positive detection, the next step in the pipeline
is to predict if a robot can traverse the staircase. This can be done using two things -
estimation and validation. In the estimation step, we predict the parameters of the
staircase such as its height, depth and width. These parameters can serve as a check
to identify if a robot can climb a staircase, as most robots have a known limit on the
stepping height. In the validation step, we try to estimate the area on the stair that
is actually traversable. This is necessary as stairs may have positive obstructions
such as an eruption or a piece of debris resting on the surface. Additionally, negative
obstructions, such as cavities or other damaged areas, may exist on the surface of the

stair that cause it to be unable to support the weight of the traversing robot

2.3.1 Estimation

The detection algorithm returns a list of lines that correspond to each stair edge of
the staircase. As noted before in Fig. 2.7, we can estimate the parameters of the
staircase using the location of these lines. Given a list of stair lines & with k lines
and assuming that all stairs in a stairway have similar dimensions, we compute the

parameters as shown below:

S 10 = gD + [l — D,

stair height, h =

2k
k=11~ (i = (i ~ (i = (i
stair depth, d — onmt B = B Ollay + 1D = 0y
’ 2k
k =~ (i = (i
> [155% = pe Dy

stair width, w =

k

where ||py — pol|. is the 1D distance in z azis

where ||p1 — pal|oy is the euclidean distance in zy plane

We can also define the location of the staircase (S,) as the center of the first
stair. The first line is picked relative to an ascending or descending staircase. This
location is useful as it can be sent as the first target waypoint for a robot to climb

that staircase. This can be computed as shown below:

17

2. Staircase Detection

Sy = (0. + 5)/2

These equations for estimation as based on the assumptions that the stair param-
eters are equal over the entire staircase. In other scenarios, the stair edges still have
sufficient information to estimate the height, depth and width of each step and a

appropriate model can be in those cases.

2.3.2 Validation

The main intuition behind the validation step is to estimate the free space on a stair
surface using a simple point density measure. We want to identify the number the
points that reside close to the surface of the stair and compute its ratio with the
number of points that a stair would have if it was healthy. This ratio provides a good

indication of whether the surface of the stair is freespace.

As noted previously, our algorithm returns a set of lines that correspond to the
stair edges when it detects a staircase. An example is depicted in Fig. 2.9. We also
have the information about the stair depth and width as given by the estimation step.
We can combine these information to define a region-of-interest(ROI) on each stair to
compute the density metric. The ROI is defined as a thin cuboid whose edge overlaps
with the stair edge. The depth and width of the ROI is equal to the stair’s depth
and width, and the depth of the ROI is set to the voxel size (5cm in our case) to
account for noise. Figure 2.10 shows the computed ROI for each stair in the detected

staircase.

Once the ROI has been computed, we simply count the number of points that
exist within each ROI in the original input voxel grid. We can also use the top-down
projection point cloud that was obtained by performing the first pre-processing step.
We next also compute the number of expected points using the size of the ROI and
the voxel size of the voxel grid. This is then used to compute the ratio as shown

below:

18

2. Staircase Detection

(a) (b)

Figure 2.9: Staircase Detection of regular staircase: (a) The input point cloud to the
algorithm (b) The stair edges that correspond to the detection as reported by the
algorithm

Figure 2.10: Point cloud of the Figure 2.11: Result point cloud af-
scene, with pink cuboid showing the ter validation, where orange points
region of interest calculated using indicate the points on the surface
the stair edge where surface density that are counted to be traversable
check will be performed space on the stair

Number of points in ROI of stair
Ezxpected number of points in ROI

Stair surface density ratio =

where,

Depth of ROI " Width of ROI 19

FExpected number of points in ROI = : :
voxel size voxel size

2. Staircase Detection

We label a stair as healthy if the ratio is greater than 0.7 and if the ratio is less
than 0.15 we infer that the stair is non existent. If the ratio is in between 0.7 and
0.15, we label it as a damaged stair as it infers that even though the stair surface
exists, it either has some debris or cavities implying that the stair cannot be traversed.
The output surface points after this validation step are in shown using orange points
in the Fig. 2.11. Figure 2.12 provides an example for the validation pipeline when
there are actually debris on the staircase. The surface points (orange points) shown
on the right most image of Fig. 2.12 are incomplete as compared to Fig. 2.11.

The use of a point density metric keeps the algorithm lightweight and still achieves
real-time performance. However, this step expects the point cloud to be dense and
might not provide correct results if parts of the point cloud around the staircase
is incomplete. This step only acts as validation step as the output is discrete on
whether the stair surface can be traversed. This step does not localize or nor provide

any information about where the free space on the stair exists.

(a) (b) (c)

Figure 2.12: Staircase Detection of staircase with debris: (a) The input point cloud
to the algorithm (b) The detected stair edges shown as white lines that correspond
to the detection as reported by the algorithm with pink cuboid shows the region
of interest for surface density checks (c¢) Validated point cloud with orange points
indicating traversable region on the staircase

20

Chapter 3

Multi-Detection Merging

The staircase algorithm presented previously can detect staircases locally. It will
detect a staircase that is present in the input point cloud. However, it does not
have any context about previously detected staircases, nor does it understand that
staircases can be longer than the point cloud’s field of view. In this chapter, we
address these scenarios where a detected staircase can be globally registered without
duplicates and also improve the estimation by using information across multiple

detection instances.

3.1 Handling Multiple Staircase Detections

The first step in handling multiple staircases is transforming the locally detected
staircase into a global frame. We do this using the odometry of the robot. Once
we have the staircase detection information in the global frame, we next identify if
this detection belongs to an already existing registered staircase or if this is a new
staircase.

If the number of registered staircases is empty, we directly register the incoming
detection and assign it an ID which helps query it later. If multiple staircases are
registered, we match the new staircase to the existing ones using a combination
of different distance metrics between two staircases. We first estimate specific
parameters for each detected staircase to compute these metrics. We represent a

staircase’s location using the following parameters.

21

3. Multi-Detection Merging

Staircase Start, Ssiart = [Ts, Ys, 2s] Given by center of starting stair edge

Staircase End, Sena = [Te, Ye, Ze| Given by center of last stair edge

Staircase Center, Scenter = |Te, Ye, 2c] Given by the average of start and end
Staircase Direction, 1) = tan’l(w)

We can only merge two detections if they belong to the same staircase. To predict
if two detections belong to the same staircase, we use the parameters of the staircase
to check if they are in the same spatial location. We define this step as staircase
matching. Any two staircases with locations A(s(l) s g 1)) and

starty end’ ©center»
B(s2 s @

starts Sends> Scenter (2)) ‘are considered to be a match if they satisfy the three

conditions below.

L |p® — W] < 30°

2. Distance from any point in B to the line formed by sg) and sgl)d < K,

art

3. Euclidean distance from any point in A to any point in B < Ky

The first condition ensures that the two staircases face the same direction. The
second condition tries to estimate the closeness of the second staircase to the first one.
Using the line distance provides a better estimate than the Euclidean distance, as
the latter is spherical and staircases are planar in nature. The last condition ensures
that both staircases are close to each other and have an overlap with at least some
stairs, as the second condition cannot guarantee that. In the case of spiral staircases,
only the third condition needs to be satisfied to be considered a match, as the line

metric does not hold any meaning.

The thresholds K; and K5 were picked after experimenting with different merging
scenarios. The value of K was set to 1.25m and K5 was set to 1.5m. These thresholds
can also be made more granular by splitting the xy and z components for distances.
This filtering is necessary to match the incoming detected staircase with an existing
staircase in memory. These two staircases are then passed to the merging algorithm

to perform stair matching, after which the merging is complete.

22

3. Multi-Detection Merging

3.2 Merging Algorithm

Once the incoming detection is matched, we use the algorithm presented in this
section to merge the two different detection instances of the same staircase. The
detections can be either by the same robot during different time instances or by using
different robots with different viewpoints. We would first like to define a criteria to

classify two individual stairs as similar.

Definition 2 Given two stairs l,(p,"V,p.V,aM) and ly(p,?,p.?,a?), we first
compute the height h; given by the difference in z between the stairs, the depth d;
given by the zy distance between the stairs. Any two stairs that satisfy the following
three conditions are considered to be the same stair:

1. h; <0.05m

2. d; <0.05m

3. oM —a®| < 10° [|

Algorithm 2 describes the way to combine two detection instances. The main
idea is to find the location of the intersection for two detections. We do this by

iteratively finding two lines, one from each detection, that are similar. This common

Algorithm 2 Merging staircases

Input: Two Staircase Detections S, with k stairs and S, with m stairs with £ < m
Output: Fused Staircase S if successful, else NO_MATCH

1: match < false

2: for Every stair [, in S, do
for Every stair [, in S, do
4 if [, and [, are similar stairs (Definition 2) then
5 match < true > Stair match found
6: i < index(l,) and j < index(ly)
7: break and goto 10
8
9

@

end if
end for
10: end for
11: if match is false return NO_MATCH
12: § < {ly,--- ,merge(l;,1;), merge(lis1,lj+1), -+ ,ln} where 2 stairs are merged
using [12]
13: Re-estimate parameters of Staircase S and return S

23

3. Multi-Detection Merging

line (stair) between detections will act as an anchor point to merge the two detections.
Any technique can be used to merge two individual stairs once the anchor point is
found. In our implementation, we average the two lines that correspond to the stair.
Once merged, if any more stairs do not have a corresponding pair, it is appropriately
appended to the end/start of the list. The staircase parameters are re-estimated after
this merge.

This algorithm allows the merging of any two detections irrespective of the time
of the detection or the robot’s viewpoint as long as the point clouds are registered in
the same global frame and there is at least one common stair between the detections.
This merging algorithm is also agnostic to the detection algorithm and can merge
detected staircases from different algorithms as long as the detection outputs use our

representation of the staircase.

3.3 Staircase Perception System

All the previously discussed components can be combined to create a complete staircase
perception system deployable on multiple mobile robots. Although these individual
algorithms can be used in different configurations, we propose two model architectures

that detects, estimates and merges staircases from different heterogeneous robots.

)
o
@
o
=
o
=
>
Q
o}
=
—
=
=

Central Basestation

1

: Staircase Matching +
__________________________ ' : Merging

:

1

1

Fused

Y

; Edge [Staircase]
Detection Algorithm : : Vizualizer |

Figure 3.1: Centralized architecture to run the staircase perception pipeline on two
robots

24

3. Multi-Detection Merging

Figure 3.1 shows the block diagram for a centralized staircase perception system
where a central basestation handles detected staircases from all robots. Each robot
runs an instance of the detection algorithm and the merging pipeline to filter and
fuse multiple detections. The robots then relay the fused staircases back to the
basestation, which also runs an instance of the merging pipeline to merge staircases
detected by different robots. The basestation also has a visualizer which can display
all the staircases and can be used to command a robot to traverse a staircase that is
fused by using information from different robots.

This system can be decentralized by eliminating the basestation and establishing
communication between robots. Fig. 3.2 shows a decentralized version of the
architecture. Each robot in the system sends the detected staircases to all the other
robots to ensure every robot knows about every staircase detected in the environment.
However, this increases the communication bandwidth required for functioning as
the information must be sent to every robot, making it infeasible as the number of
robots in the system goes above 3. The bandwidth required for communication is
slightly lesser in a centralized system compared to a fully connected decentralized

system as each robot only talks to a basestation.

Detection Algorithm]

[Staircase Matching + Merging]

Fused
Staircase

Edges Robot 2

Detection Algorithm]

[Staircase Matching + Merging]

Figure 3.2: Decentralized architecture to run the staircase perception pipeline on two
robots

25

3. Multi-Detection Merging

26

Chapter 4

Experimentation

4.1 System Overview

To test the performance of the algorithm, we decided to test it with two different
sensors that are capable of providing 3D point clouds. The first sensor payload
primarily uses a LIDAR sensor to obtain three-dimensional scans of the environment.
It houses a Jetson AGX Xavier as the processor that performs SLAM using Super
Odometry [22] and other autonomy tasks. This payload is shown in the Fig. 4.1. The

Figure 4.1: A sensor payload with Li- Figure 4.2: A sensor payload with Re-
DAR sensor and a Nvidia Xavier com- alSense D455 RGBD sensor and a Intel
pute NUC compute

27

4. Experimentation

advantage of using a LiDAR is that it does not depend on environment’s lighting
to have good accuracy and can support detecting staircases in all directions(360°).
Although, it requires a good SLAM algorithm to achieve dense point cloud stacking
and is susceptible to noise if SLAM output is noisy.

The second sensor payload we used is shown in Fig. 4.2. This payload houses
a Intel NUC compute and uses a RealSense D455 RGBD sensor to produce dense
point clouds. This sensor does not need any SLAM algorithm to obtain dense point
clouds and hence can used to perform detections locally and fast. Although, the
stereo nature of the sensor causes inaccuracies at farther distances and also is affected
by the environment lighting and texture of the staircase.

To test our full staircase system, we make use of heterogeneous robots with
identical perception sensor payloads. Figure 4.3 shows the Boston Dynamics Spot
legged robot. This robot is capable of climbing staircases once the staircase’s location
has been estimated. Figure 4.4 shows the wheeled ground robot. The vehicle is
capable of moving at up to 6m/s autonomously. Robots travelling at such speeds
require the staircase algorithm to detect staircases really fast for it to be to deployable.
These robots also have the capability of exchange messages, and share the same map

thereby providing a good test-bench for the multi-stair merging pipeline.

Figure 4.3: Spot Legged Figure 4.4: Autonomous
Robot with the LiDAR pay- Wheeled Robot with the Li-
load DAR payload

28

4. Experimentation

4.2 Experimental Setup

We tested our detection algorithm on five different types of staircases and performed
a comparison with the state-of-the-art [19]. The five different types are ascending
staircases, descending staircases, hollow staircases, spiral staircases and dilapidated
staircases which includes staircases with debris and damaged staircases (Fig. 1.3).
We have at least two different staircase for each type, and we tested it with both the
LiDAR and the RealSense payload.

As the robots move around these five staircase types, we create a dataset that
spans multiple distance points and orientations in front of the staircase. To compare
performance, we use the stair parameters output by each algorithm and compare it
with the ground truth. An essential aspect of our comparison is the time taken to
obtain a detection as we want to run our algorithm in real-time. Figure 4.5 shows

examples of heterogeneous robots moving around different types of staircases.

To test the merging pipeline, we setup different experiments where a robot looks

at the staircase from different locations and then run the merging algorithm. On top

(a) (b) (c)

Figure 4.5: Heterogeneous robots moving around different types of staircase to create
a dataset

29

4. Experimentation

Figure 4.6: The Spot robot traversing a long staircase as a test of the staircase system
and it’s merging capabilities in real-time

of checking for a successful merge, we also compare the staircase parameters output
by individual detections, and the parameters obtained after merging. We also test the
same pipeline using heterogeneous robots that look at the staircase from the top and
bottom simultaneously. In the last experiment, we run the Spot robot on a very long
staircase that is about two stories tall to evaluate the performance of our proposed

staircase perception system. An aerial snapshot of this experiment is shown in Fig.

4.6

30

Chapter 5

Results

5.1 Detection Results

5.1.1 Ascending Staircase

We first describe the results for an ascending staircase using both the sensors. Figure

5.1 shows the wheeled robot in front of a staircase, and it’s corresponding staircase

(a) (b)

Figure 5.1: Ascending staircase detected by the algorithm using LiDAR point cloud.
(a) Wheeled Robot in front of a staircase (b) Detected staircase shown using blue
cuboids, with blue arrow representing robot’s location

31

5. Results

detection using the point cloud on the right. The blue marker represent the detected
stairs, which are resized to match the algorithm’s estimation results. The blue arrow
represents the location at which the staircase was detected. The LiDAR was the
primary sensor in this scenario. We were also able to successfully detect staircases
using the RealSense point cloud as shown in Figure 5.2 (¢). From Fig. 5.2, its evident
that the RealSense has much smaller field of view and is able to detect staircase in
that range.

Across all the samples for ascending staircases, we were able to detect staircases
within 21 milliseconds where as the SOTA [19] took around 1569 milliseconds. We
measured the average error on our estimated parameters for all samples with respect
to the ground truth and compared it to the SOTA. It is shown in the Table 5.1. The

(a) (c)

Figure 5.2: Outdoor ascending staircase detection using both LiDAR and RealSense
point clouds (a) Picture of the outdoor ascending staircase (b) Staircase detected
using the LiDAR point cloud as shown using blue markers (c) Staircase detected
using the RealSense point cloud as shown by the blue markers

32

5. Results

table also notes the performance difference using the number of true detections and

false positives. The SOTA algorithm had a large amount of false positives especially

in outdoor cluttered environments.

| Ascending Staircase |

| Performance Metric || Our Method | Westfechtel et al.[19] |
Detection Time (ms) 21 1569
Height Error (cm) 1.101 1.527
Depth Error (cm) 2.804 2.564
Width Error (cm) 38.125 7.023
True Detections over Samples 15/15 15/15
False Positives over Samples 0/15 10/15

Table 5.1: Table showing performance metrics of our algorithm compared to the
state-of-the-art for ascending staircases

5.1.2 Descending Staircase

Figure 5.3 shows our algorithm’s performance on descending staircase. The average

detection speeds for descending staircase was around 10 milliseconds. The reason for

(a) (b)

Figure 5.3: Descending staircase detected by the algorithm using LiDAR point cloud.

(a) Spot robot on top of a staircase (b) Detected staircase shown using blue cuboids,
with blue arrow representing robot’s location

33

5. Results

’ Descending Staircase ‘

| Performance Metric || Our Method | Westfechtel et al.[19] |
Detection Time (ms) 10 623
Height Error (cm) 2.367 1.517
Depth Error (cm) 2.653 4.470
Width Error (cm) 27.773 15.437
True Detections over Samples 14/14 12/14
False Positives over Samples 0/14 3/14

Table 5.2: Table showing performance metrics of our algorithm compared to the
state-of-the-art for descending staircases

this is due to the point clouds being sparser when looking at descending staircase.
The different errors in the parameter estimation for descending staircases are shown
in the Table 5.2. We were successfully able to detect descending staircases, while
trading blows in errors compared to the SOTA. The speed of detection was also

significantly faster compared to the SOTA without having any false positives.

5.1.3 Hollow Staircase

Our algorithm is able to successfully detect staircases that are slightly more sophisti-

cated. Figure 5.4 shows the result of the detection algorithm on a staircase that has

(a) (b)

Figure 5.4: Hollow staircase detected by the algorithm using LiDAR point cloud.
(a) Wheeled robot near a hollow staircase (b) Detected staircase shown using blue
cuboids, with blue arrow representing robot’s location

34

5. Results

no backing, and is hollow. This is possible as we use edges to detect staircases rather
than planes. Figure 5.5 shows a different example of hollow staircase that is detected
by the Spot robot. In this example, the robot can detect 10 stairs from a single point

cloud.

(a) (b)

Figure 5.5: Hollow staircase detected by the algorithm using LiDAR point cloud. (a)
Spot near a hollow staircase (b) Detected staircase shown using blue cuboids, with
blue arrow representing robot’s location

Compared to the SOTA, we perform significantly better for hollow staircases. The
SOTA was not able to detect staircases in multiple scenarios as the hollow staircases
lacked enough points to form planes. Even when the SOTA did detect the staircase, it
took about 1009 milliseconds compared to the 18 milliseconds taken by our algorithm.
We also estimate all the parameters much more accurately than the SOTA. These

metrics are shown in the Table 5.3.

’ Hollow Staircase ‘

| Performance Metric || Our Method | Westfechtel et al.[19] |
Detection Time (ms) 18 1009
Height Error (cm) 0.982 7.673
Depth Error (cm) 0.839 13.760
Width Error (cm) 15.121 41.233
True Detections over Samples 17/17 3/17
False Positives over Samples 1/17 1/17

Table 5.3: Table showing performance metrics of our algorithm compared to the
state-of-the-art for hollow staircases
35

5. Results

5.1.4 Spiral Staircase

We can successfully detect curved staircases or those arranged in a spiral orientation.
Figure 5.6 shows a spiral staircase successfully detected by the wheeled robot. This
detection only took around 15 milliseconds and we could also estimate the stair height

significantly more accurately than the SOTA.

(a) (b)

Figure 5.6: Spiral staircase detected by the algorithm using LiDAR point cloud. (a)
Wheeled robot near a spiral staircase (b) Detected staircase shown using blue cuboids,
with blue arrow representing robot’s location

Figure 5.7 shows the algorithm successfully detecting a circular staircase. Our
algorithm is significantly faster than the SOTA, and we estimate the parameters of
the staircase better than the SOTA as shown in Table 5.4

’ Spiral Staircase ‘

| Performance Metric || Our Method | Westfechtel et al.[19] |
Detection Time (ms) 15 1005
Height Error (cm) 0.490 3.357
Depth Error (cm) 3.467 2.687
Width Error (cm) 11.040 27.667
True Detections over Samples 15/15 15/15
False Positives over Samples 0/15 14/15

Table 5.4: Table showing performance metrics of our algorithm compared to the
state-of-the-art for spiral staircases

36

5. Results

(a) (b)

Figure 5.7: Circular staircase detected by the algorithm using LiDAR point cloud.
(a) Image of the circular staircase (b) Detected staircase shown using blue cuboids,
with blue arrow representing robot’s location

5.1.5 Dilapidated Staircase

We successfully detected and validated dilapidated staircases using both LiDAR
and RealSense pointclouds. We used the RealSense payload for all the experiments
involving the validation pipeline. For the first result, boxes of varying sizes were
placed on different stairs as shown in Fig. 5.8(a). Figure 5.8 shows successful detection
of the staircases with boxes on some of the stairs. The blue markers in the detection
indicate that the stair has no obstacles and is traversable, while the red marker
indicates that the surface of the stair is not entirely free. Figure 5.8(c) shows the
output of the validation pipeline, where the orange points indicate the points that
belong to the stair. As expected, there are no orange points in the locations of the

boxes

In the second result, rocks were used as debris to simulate a search and rescue
environment. We successfully detected the staircase in this scenario, as shown in
the Fig. 5.9. The scene presented in Fig. 5.9(a) shows only one single rock on the
second stair, which in reality, should not affect the traversability of the stair. This is
reflected in our validation algorithm as we can see from Fig. 5.9(b) that the second
stair is classified as healthy (blue marker). In contrast, the other stairs are classified

correctly as having obstacles (red marker). Fig. 5.9(c) again shows the points that

37

5. Results

(a) (b) (c)

Figure 5.8: Positive detection and validation of a staircase with debris using RealSense
pointcloud. (a) Image of the staircase that has boxes and debris on its surfaces (b)
Detected staircase shown using cuboids, blue cuboid represents that the stair is free
to traverse, red cuboid indicates that the stair has some obstacles on them (c¢) Orange
points represent the points that are part of the stair surface as predicted by the
validation pipeline

belong to the stair surface using the orange points.

(a) (b) ()

Figure 5.9: Positive detection and validation of a staircase with rocks on top using
RealSense pointcloud as input. (a) Image of the staircase that has rocks on its surfaces
(b) Detected staircase shown using cuboids, blue cuboid represents that the stair is
free to traverse, red cuboid indicates that the stair has some obstacles on them (c)
Orange points represent the points that are part of the stair surface as predicted by
the validation pipeline

38

5. Results

Lastly, we also tested the validation pipeline with a broken staircase. As shown
in Fig. 5.10(a), the staircase has damage on the second and fourth stairs, rendering
them untraversable. Our detection and validation algorithm successfully detects and
classifies the stair correctly. Figure 5.10(b) shows the detected staircase with the
healthy stair marked by blue, and the second and fourth stairs are marked using red
to indicate damage. Figure 5.10(c) shows the output of the validation pipeline with
orange points representing the points that belong to the stair surface. As expected,

the orange points have a cavity in them due to the stairs’ damage.

Even though the state-of-the-art algorithm detected these staircases, it does not
provide any understanding of the traversability of the stair. Table 5.5 shows the
error in the parameter estimation for these staircases. Our proposed method still
detects significantly faster and has a slightly better estimation. The SOTA algorithm
also suffers from false positives in cluttered and noisy environments. In contrast, our
validation pipeline can help reject false positives by checking if the detected stair

surface has no points. This is reflected in all our comparisons, where we recorded

(a) (b) (c)

Figure 5.10: Positive detection and validation of a simulated damaged staircase using
RealSense pointcloud. (a) Image of the staircase with damage on its surfaces (b)
Detected staircase shown using cuboids, blue cuboid represents that the stair is free to
traverse, red cuboid indicates that the stair has damages on them (c¢) Orange points
represent the points that are part of the stair surface as predicted by the validation
pipeline

39

5. Results

’ Dilapidated Staircase ‘

’ Performance Metric H Our Method \ Westfechtel et al.[19] ‘
Detection Time (ms) 32 2202
Height Error (cm) 2.980 3.660
Depth Error (cm) 2.362 3.736
Width Error (cm) 9.312 11.270
True Detections over Samples 10/10 10/10
False Positives over Samples 1/10 10/10

Table 5.5: Table showing performance metrics of our algorithm compared to the
state-of-the-art for dilapidated staircases

only a few false positives.

To summarize our algorithm’s estimation accuracy and detection speed compared
to the SOTA, we estimate the height and depth better than the SOTA overall. While
both algorithms trade blows with standard ascending and descending staircases, we
perform much better than the SOTA in other cases. Our algorithm has significantly
higher estimation accuracy when it comes to hollow or spiral staircases. We also
performed better in the case of dilapidated staircases. Our algorithm detects all
staircases with an average computation time of 20.64 ms as opposed to the 1281.66 ms
using SOTA. These detection speeds are faster by at least two orders of magnitude.
All of the results shown above only discuss local detections, i.e. detections are different

at each time-step.

5.2 Multi-Detection Merging Results

We also evaluated the performance of our merging algorithm. We were successfully
able to merge two different detection instances into one staircase. In this section,
we present results for two types of merging - multi-robot merging and single robot
merging. In single robot case, we show results of merging detections of the same
staircase provided by the same robot across multiple time steps. In the multi-robot
case, we present results of the merging detections from two different robots looking

at a staircase from different viewpoints.

40

5. Results

5.2.1 Multi-Robot Merging

The Spot robot first detects a descending staircase from the top. This is shown in Fig.
5.11(a). Due to its limited viewpoint, the spot successfully detects five of the eight
stairs on the entire staircase. Specifically, the spot detects the bottom five stairs.
Fig. 5.11(b) shows the detected staircase using the blue marker. While the Spot
detects the staircase, the wheeled robot comes in from the bottom and successfully
detects the same staircase as shown in Fig. 5.12(a). The successful detection is shown
using pink markers corresponding to the pink arrow that depicts the wheeled robot’s
location as depicted by Fig. 5.12(b). The wheeled robot detects seven of the eight

stairs as it misses the bottom most stair.

(a) (b)
Figure 5.11: Positive detection of staircase by the Spot. (a) Spot Robot looking down

at a staircase (b) Detected staircase shown using the blue marker corresponding to
the blue robot

The two detections are passed to the merging algorithm to combine them. Figure
5.13 shows the successfully merged staircase that is obtained by fusing both detections.
The merging is successful, as the merged staircase has a total of 8 stairs which the
individual detections did not have. The bottom most stair was detected by Spot and
was added to the fused staircase, while the information about the top three stairs are
obtained from the wheeled robot’s detection.

Table 5.6 shows the estimated parameters of the staircase from the individual

detections and the parameters of the staircase after merging and shows the measured

41

5. Results

ground truth values of the staircase. It is evident that the merging algorithm gives
a better estimate of the staircase as the merged parameters are much closer to the
ground truth than the individual estimated parameters. Since the lines are merged

by averaging, the width of the stair is equal to the average width between two stairs.

(a) (b)

Figure 5.12: Positive detection of staircase by the wheeled robot. (a) Wheeled
robot in front of the staircase (b) Detected staircase shown using the pink marker
corresponding to the pink robot

Figure 5.13: Merged staircase using two detections from both Spot and the Wheeled
robot by the white markers. The colored arrows represent the robot’s locations when
the individual detections were reported.

42

5. Results

9 9
Staircase Spot’s | Wheeled Robot’s Merged | Ground
Detected Detected .
Parameters] . Staircase | Truth
Staircase Staircase
Stair Count 5 7 8 8
Stair Height (cm) 18.16 17.9 17.8 17.78
Stair Depth (Cm) 27.54 29.39 29 29.21
Stair Width (cm) 91.69 120 116 129.54

Table 5.6: Table showing staircase parameters estimated by individual detections
from the different robots, parameters after successful merge and the ground truth

values

5.2.2 Single-Robot Merging

The merging algorithm can successfully merge detections from two separate time steps

one second apart. At t = 1, the spot robot stands before the staircase, as shown in

Fig. 5.14(a). At this time step, the detection algorithm can only see the bottom four

stairs and reports the detection. This detection is shown using blue markers in Fig.

5.14(b). At the next time-step ¢ = 2, the spot turns around and detects five stairs on

(a)

(b)

Figure 5.14: Positive detection of staircase by the Spot. (a) Spot in front of the
staircase at the start of the run (b) Detected staircase shown using the blue marker
corresponding to the blue robot

43

5. Results

(a) (b)

Figure 5.15: Positive detection of staircase by Spot. (a) Spot in front of the staircase
in a different orientation (b) Detected staircase shown using the pink marker corre-
sponding to the pink robot

the upper half of the staircase. Figure 5.15 shows the spot in the new orientation
and its corresponding detection using the pink markers. These two detections have
one stair in common, which the merging algorithm uses as a pivot to merge the two
detections.

The merging algorithm successfully fuses the detections, and the merged staircase
is shown using white markers in Fig. 5.16. The combined staircase has eight stairs in
total, as there was only one common stair across both time steps. Table 5.7 shows the
staircase parameters from the individual detections and merged detections alongside

the ground truth. The update of parameters is not as significant because of only one

Staircase Det.ected Det.ected Merged | Ground
Staircase | Staircase .
Parameters Staircase Truth
t=1 t=2
Stair Count 4 5 8 8
Stair Height (cm) 16.12 20.19 18.57 17.78
Stair Depth (cm) 24.09 27.23 26.06 27.94
Stair Width (cm) 89.71 79.28 83.77 106.68

Table 5.7: Table showing staircase parameters estimated by individual detections
from the same robot, parameters after successful merge and the ground truth values

44

5. Results

Figure 5.16: Merged staircase using two detections from the same robot across
different time-steps as indicated by the white markers. The colored arrows represent
the robot’s locations when the individual detections were reported.

stair match. Although, the merged estimates are still closer to the ground truth than

the estimated parameters by the individual detections.

5.3 Staircase System Evaluation for Large

Staircases

Our proposed staircase perception system successfully detected, estimated, and merged
three long staircases consisting of a total of 54 stairs that span across two stories in
the real world. The system performs everything in real-time and on board the Xavier
compute on the sensor payload. Figures 5.17 - 5.26 represent ten snapshots in time
of the system spanning over 45 seconds for the entire run. On the left is an image of
the robot on the staircase; the middle figure shows the local detection indicated by a
blue marker at that time step, and the right figure shows the incrementally merged
staircase using the white markers as the robot climbs up the staircase.

Figure 5.27 shows the resulting staircases at the end of the run. Our staircase

system was successfully able to detect all 52 out of the 54 stairs across three staircases

45

5. Results

Figure 5.17: Staircase system results at t = 1; Spot robot climbing stair(left); Local
staircase detection (middle); Merged staircase in global frame (right)

Figure 5.18: Staircase system results at t = 2; Spot robot climbing stair(left); Local
staircase detection (middle); Merged staircase in global frame (right)

Figure 5.19: Staircase system results at ¢ = 3; Spot robot climbing stair(left); Local
staircase detection (middle); Merged staircase in global frame (right)

46

5. Results

Figure 5.20: Staircase system results at ¢ = 4; Spot robot climbing stair(left); Local
staircase detection (middle); Merged staircase in global frame (right)

Figure 5.21: Staircase system results at ¢ = 5; Spot robot climbing stair(left); Local
staircase detection (middle); Merged staircase in global frame (right)

Figure 5.22: Staircase system results at ¢ = 6; Spot robot climbing stair(left); Local
staircase detection (middle); Merged staircase in global frame (right)

47

5. Results

Figure 5.23: Staircase system results at t = 7; Spot robot climbing stair(left); Local
staircase detection (middle); Merged staircase in global frame (right)

Figure 5.24: Staircase system results at ¢ = 8; Spot robot climbing stair(left); Local
staircase detection (middle); Merged staircase in global frame (right)

Figure 5.25: Staircase system results at t = 9; Spot robot climbing stair(left); Local
staircase detection (middle); Merged staircase in global frame (right)

48

5. Results

Figure 5.26: Staircase system results at ¢ = 10; Spot robot climbing stair(left); Local
staircase detection (middle); Merged staircase in global frame (right)

Figure 5.27: Final resulting staircases after successfully merging all detections of
three long staircases spanning two stories. The white markers are sized based on the
average height, depth and width of stair.

and estimate the parameters. The last 2 stairs were not visible in the field of view
of the velodyne, thereby causing the algorithm to miss them. The white markers
used for representing the globally merged staircases are sized based on the average

parameters estimated by the algorithm, which is in contrast to the local detections

49

5. Results

where the blue markers are sized based on the individual stair parameters. The

estimated parameters at the end of run alongside the ground truth are mentioned in

Table 5.8.

Staircase Merged | Ground
Parameters Staircase | Truth
Stair Count 52 54

Stair Height (cm) | 14.20 cm 16 cm
Stair Depth (cm) | 28.13 cm 29 cm

Table 5.8: Table showing staircase parameters estimated by individual detections
from the same robot, parameters after successful merge and the ground truth values

20

Chapter 6

Conclusions

Staircase detection and estimation is the first step in enabling robots to traverse
staircases autonomously. In this thesis, we first presented an algorithm that suc-
cessfully detected staircases. By exploiting the different projections of the point
cloud, we reduced the segmentation process from 3D to 2D, enabling the algorithm
to run in real-time. The algorithm could detect various staircases and estimate their
parameters, such as their height, depth, and width. We also successfully devised a
technique that predicted the traversability of each stair using a simple point density
measure. This validation pipeline could correctly predict traversability on dilapidated
staircases that were either broken or had obstacles on individual steps.

We also presented a pipeline that could match multiple staircases and merge
two different detections of the same staircase. These detections could be from
different robots or the same robot that moved around the staircases. The proposed
merging algorithm was agnostic to the detection method and only depended on
the representation of a staircase. We successfully deployed our algorithms on two
heterogeneous robots and evaluated the accuracy of our estimation. Compared to
the state-of-the-art, our algorithm is faster in detecting a staircase by order of two
magnitudes while having better accuracy on sophisticated staircases such as hollow
or spiral staircases. However, the state-of-the-art algorithm had better accuracy in
estimating the width of the stairs.

We also proposed a framework that combined these algorithms and implemented

them on heterogeneous mobile robots. This system was successfully deployed on

o1

6. Conclusions

compute-constrained robots, and it could detect and merge long staircases in real
time that a single instance of a point cloud cannot capture.

The use of projections limits the use of our algorithm in scenarios where the
risers or treads of the stairs are sloped. In these cases, the segmented lines would
be noisy, resulting in failed detections. We want to address these scenarios in future
work by using methods to estimate ground plane orientation. Although, that might
increase the detection time significantly. Additionally, the segmentation algorithm
assumes that the stair edges are straight lines and the algorithm does not work with
curved stairs. We would like to address this problem by using splines instead of lines.
Further, the current merging algorithm uses averaging to combine two stairs, and we
can improve the merging algorithm by using a Kalman filter that can help in noisy
environments.

In the future, in addition to just detecting debris or damage on a stair, we would
also like to investigate techniques that can quickly localize the debris or damage
on the stair to provide a better traversability estimate in the validation pipeline.
The validation pipeline currently assumes that the input point clouds are dense to
correctly predict the traversability of the stair. This might not be true when robots
quickly move past a staircase and might not be able to accumulate sufficient scans.
We would like to address this in the future by using probabilistic methods to capture

the uncertainty in the prediction and use that information to make better decisions.

52

Bibliography

1]

[7]

8]

1910.25 - Stairways. — Occupational Safety and Health Administra-
tion. https://www.osha.gov/laws-regs/regulations/standardnumber/
1910/1910.25. Accessed: 2022-09-11. 2.2.3

Automating the Way We Work - Bostondynamics. https://bostondynamics.
com/webinars/automating-the-way-we-work/. Accessed: 2023-07-25. 1.1

James WP Campbell and Michael Tutton. Staircases: History, repair and
conservation. Routledge, 2013. 1.1

Yang Cong, Xiaomao Li, Ji Liu, and Yandong Tang. A stairway detection
algorithm based on vision for ugv stair climbing. In 2008 IEEE International
Conference on Networking, Sensing and Control, pages 1806-1811. IEEE, 2008.
2.1

Jérémy Fourre, Vincent Vauchey, Yohan Dupuis, and Xavier Savatier. Au-
tonomous rghd-based industrial staircase localization from tracked robots. In
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 10691-10696. IEEE, 2020. 2.1

Hannes Harms, Eike Rehder, Tobias Schwarze, and Martin Lauer. Detection of
ascending stairs using stereo vision. In 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2496-2502. IEEE, 2015. 2.1

Muhammad Ilyas, Anirudh Krishna Lakshmanan, Anh Vu Le, and Rajesh Elara
Mohan. Staircase recognition and localization using convolution neural network
(cnn) for cleaning robot application. Preprints, 2018. 2.1

Soichiro Murakami, Manabu Shimakawa, Kimivasu Kivota, and Takashi Kato.
Study on stairs detection using rgb-depth images. In 2014 Joint 7th International
Conference on Soft Computing and Intelligent Systems (SCIS) and 15th Inter-
national Symposium on Advanced Intelligent Systems (ISIS), pages 1186-1191.
IEEE, 2014. 2.1

Viet Nguyen, Agostino Martinelli, Nicola Tomatis, and Roland Siegwart. A
comparison of line extraction algorithms using 2d laser rangefinder for indoor
mobile robotics. In 2005 IEEE/RSJ International Conference on Intelligent

93

https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.25
https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.25
https://bostondynamics.com/webinars/automating-the-way-we-work/
https://bostondynamics.com/webinars/automating-the-way-we-work/

Bibliography

[10]

[11]

[14]

[15]

[16]

[17]

[18]

[19]

o4

Robots and Systems, pages 1929-1934. IEEE, 2005. 2.2.2

Stefan Ofiwald, Jens-Steffen Gutmann, Armin Hornung, and Maren Bennewitz.
From 3d point clouds to climbing stairs: A comparison of plane segmentation
approaches for humanoids. In 2011 11th IEEE-RAS International Conference
on Humanoid Robots, pages 93-98. IEEE, 2011. 2.1

Unmesh Patil, Aniket Gujarathi, Akshay Kulkarni, Aman Jain, Lokeshkumar
Malke, Radhika Tekade, Kartik Paigwar, and Pradyumn Chaturvedi. Deep
learning based stair detection and statistical image filtering for autonomous stair
climbing. In 2019 Third IEEE International Conference on Robotic Computing
(IRC), pages 159-166. IEEE, 2019. 2.1

Samuel T Pfister, Stergios I Roumeliotis, and Joel W Burdick. Weighted line
fitting algorithms for mobile robot map building and efficient data representation.
In 2003 IEEE International Conference on Robotics and Automation (Cat. No.
03CH37422), volume 1, pages 1304-1311. IEEE, 2003. 2.2.2, 12

Xiangfei Qian and Cang Ye. Ncc-ransac: A fast plane extraction method for 3-d
range data segmentation. [EEFE transactions on cybernetics, 44(12):2771-2783,
2014. 2.1

Urs Ramer. An iterative procedure for the polygonal approximation of plane
curves. Computer graphics and image processing, 1(3):244-256, 1972. 2.2.2

W Samakming and J Srinonchat. Development image processing technique for
climbing stair of small humaniod robot. In 2008 International Conference on
Computer Science and Information Technology, pages 616-619. IEEE, 2008. 2.1

José Armando Sanchez-Rojas, José Anibal Arias-Aguilar, Hiroshi Takemura, and
Alberto Elias Petrilli-Barceld. Staircase detection, characterization and approach
pipeline for search and rescue robots. Applied Sciences, 11(22):10736, 2021. 2.1

Bishwajit Sharma and Imran A Syed. Where to begin climbing? computing start-
of-stair position for robotic platforms. In 2019 11th International Conference
on Computational Intelligence and Communication Networks (CICN), pages
110-116. IEEE, 2019. 2.1

Michiel Vlaminck, Ljubomir Jovanov, Peter Van Hese, Bart Goossens, Wilfried
Philips, and Aleksandra Pizurica. Obstacle detection for pedestrians with a
visual impairment based on 3d imaging. In 2013 International Conference on
3D Imaging, pages 1-7. IEEE, 2013. 2.1

Thomas Westfechtel, Kazunori Ohno, Béarbel Mertsching, Ryunosuke Hamada,
Daniel Nickchen, Shotaro Kojima, and Satoshi Tadokoro. Robust stairway-
detection and localization method for mobile robots using a graph-based model

and competing initializations. The International Journal of Robotics Research,
37(12):1463-1483, 2018. 2.1, 4.2, 5.1.1, 72, 27,27 2?27 77

[20]

[21]

22]

[23]

Bibliography

Seungjun Woo, Jinjae Shin, Yoon Haeng Lee, Young Hun Lee, Hyunyong Lee,
Hansol Kang, Hyouk Ryeol Choi, and Hyungpil Moon. Stair-mapping with point-
cloud data and stair-modeling for quadruped robot. In 2019 16th international
conference on ubiquitous robots (UR), pages 81-86. IEEE, 2019. 2.1

Yasuyoshi Yokokohji. The use of robots to respond to nuclear accidents: Applying
the lessons of the past to the fukushima daiichi nuclear power station. Annual
Review of Control, Robotics, and Autonomous Systems, 4:681-710, 2021. 1.1

Shibo Zhao, Hengrui Zhang, Peng Wang, Lucas Nogueira, and Sebastian Scherer.
Super odometry: Imu-centric lidar-visual-inertial estimator for challenging envi-
ronments. In 2021 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 8729-8736. IEEE, 2021. 4.1

Chen Zhong, Yan Zhuang, and Wei Wang. Stairway detection using gabor filter
and ffpg. In 2011 International Conference of Soft Computing and Pattern
Recognition (SoCPaR), pages 578-582. IEEE, 2011. 2.1

95

	1 Introduction
	1.1 Motivation
	1.2 Thesis Statement
	1.3 Contribution

	2 Staircase Detection
	2.1 Background
	2.2 Detection Pipeline
	2.2.1 Pre-Processing
	2.2.2 Segmentation
	2.2.3 Detection

	2.3 Staircase Estimation and Validation
	2.3.1 Estimation
	2.3.2 Validation

	3 Multi-Detection Merging
	3.1 Handling Multiple Staircase Detections
	3.2 Merging Algorithm
	3.3 Staircase Perception System

	4 Experimentation
	4.1 System Overview
	4.2 Experimental Setup

	5 Results
	5.1 Detection Results
	5.1.1 Ascending Staircase
	5.1.2 Descending Staircase
	5.1.3 Hollow Staircase
	5.1.4 Spiral Staircase
	5.1.5 Dilapidated Staircase

	5.2 Multi-Detection Merging Results
	5.2.1 Multi-Robot Merging
	5.2.2 Single-Robot Merging

	5.3 Staircase System Evaluation for Large Staircases

	6 Conclusions
	Bibliography

