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Abstract

Contemporary autonomous vehicle (AV) benchmarks have advanced tech-
niques for training 3D detectors, particularly on large-scale LiDAR data.
Surprisingly, although semantic class labels naturally follow a long-tailed
distribution, these benchmarks only focus on a few common classes (e.g.,
pedestrian and car) and neglect many rare classes in-the-tail (e.g.,
debris and stroller). However, in the real open world, AVs must still
detect rare classes to ensure safe operation. Moreover, semantic classes
are often organized within a hierarchy, e.g., tail classes such as child and
construction-worker are arguably subclasses of pedestrian. However,
such hierarchical relationships are often ignored, which may yield mislead-
ing estimates of performance and missed opportunities for algorithmic
innovation.

We address these challenges by formally studying the problem of Long-
Tailed 3D Detection (LT3D), which evaluates detection performance on all
classes, including those in-the-tail. We evaluate and innovate upon popular
3D detectors, such as CenterPoint and PointPillars, adapting them for
LT3D. We develop hierarchical losses that promote feature sharing across
common-vs-rare classes, as well as improved detection metrics that award
partial credit to “reasonable” mistakes respecting the hierarchy (e.g.,
mistaking a child for an adult). Finally, we point out that fine-grained
tail class accuracy is particularly improved via multimodal fusion of RGB
images with LiDAR; simply put, fine-grained classes are challenging to
identify from sparse (LiDAR) geometry alone, suggesting that multi-modal
cues are crucial to long-tailed 3D detection.

We empirically show that (a) high-resolution RGB images help recognize
rare objects, (b) LiDAR provides precise 3D localization, and (c) uni-modal
detectors can be trained with more diverse examples because they do not
require aligning and annotating multi-modal data. With these insights, we
propose a simple late-fusion framework that combines RGB and LiDAR
detections. We examine three critical components in this framework and
consider whether to train 2D or 3D RGB detectors, whether to match
RGB and LiDAR detections in the 2D image plane or 3D bird’s-eye-view
(BEV), and how to fuse matched detections. Our modifications improve
accuracy by 12.2% AP on average for all classes, and dramatically improve
AP for rare classes (e.g., stroller AP improves from 0.1 to 37.7)!
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Chapter 1

Introduction

3D object detection is a key component in many robotics systems such as autonomous

vehicles (AVs) [4, 16]. To facilitate research in this space, the AV industry has released

large-scale 3D annotated multi-modal datasets [4, 7, 56]. However, these datasets

often only benchmark on a few common classes such as pedestrian and car. In the

real open world, safe navigation [57, 67] requires AVs to also reliably detect rare

objects such as child and stroller. This motivates our study of Long-Tailed 3D

Detection (LT3D), a problem that requires detecting objects from both common and

rare classes.

Status Quo. Among contemporary AV datasets, nuScenes [4] has exhaustively

annotated objects of various classes crucial to AVs (Fig. 1.1) and organizes them

with a semantic hierarchy (Fig. 3.1). As it focuses on only a few (common) classes,

prior works miss opportunities to exploit this semantic hierarchy during training. We

argue that these benchmarking protocols are flawed because detecting fine-grained

classes is useful for downstream tasks such as motion planning. This motivates us to

study LT3D (LT3D) by re-purposing all annotated classes in nuScenes. Importantly,

this challenging new problem is not simply solved by training state-of-the-art (SOTA)

methods on more classes [43], e.g., TransFusion [2], a SOTA multi-modal transformer-

based detector, achieves only 3.0 AP on the rare child class despite attaining 84.4

AP on the common car class.

Protocol. LT3D requires 3D localization and recognition of objects from each

of the common (e.g., adult and car) and rare classes (e.g, child and stroller).

1
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Rare Objects
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Figure 1.1: nuScenes Dataset Statistics. According to the histogram of per-class object
counts (on the left), the nuScenes benchmark focuses on the common classes in cyan (e.g.,
car and barrier) but ignores rare ones in red (e.g., stroller and debris). In fact, the
benchmark creates a superclass pedestrian by grouping multiple classes in green, including
the common class adult and several rare classes (e.g., child and police-officer); this
complicates the analysis of detection performance as pedestrian performance is dominated
by adult. Moreover, the ignored superclass pushable-pullable also contains diverse
objects such as shopping-cart, dolly, luggage and trash-can as shown in the top row
(on the right). We argue that AVs should also detect rare classes as they can affect AV
behavior. Following [41], we report performance for three groups of classes based on their
cardinality (split by dotted lines): Many, Medium, and Few.

Moreover, for safety-critical robots such as autonomous vehicles, we believe detecting

but mis-classifying rare objects (e.g., mis-classifying a child as an adult) is prefer-

able to failing to detect them at all. Therefore, we propose a new metric to quantify

the severity of classification mistakes that exploits inter-class relationships to award

partial credit (Fig. 3.1). We use both the standard and proposed metrics to evaluate

3D detectors on all classes.

Technical Insights. To address LT3D, we first retrain state-of-the-art LiDAR-

based 3D detectors on all classes. Naively retraining detectors produces poor perfor-

mance on rare classes (e.g., yielding 0.1 AP on child and 0.1 AP on stroller). We

propose several algorithmic innovations to improve these results. First, to encourage

feature sharing across common-vs-rare classes, we learn a single feature trunk, adding

in hierarchical coarse classes that ensure features will be useful for both common

and rare classes. Second, we find that LiDAR data is simply too impoverished for

even humans to recognize certain small tail objects, such as strollers. We propose

2



1. Introduction

Late-fusion requires matching and fusing uni-modal detections.

RGB Detector LiDAR Detector
Figure 1.2: Late Fusion Overview. We extensively explore the simple late-fusion
framework for LT3D by ensembling RGB and LiDAR uni-modal detectors [43]. We
rigorously examine three critical components within this framework (Fig. 1.3) and propose a
simple method that fuses detections produced by a 2D RGB-detector (e.g., DINO [74]) and
a 3D LiDAR-detector (e.g., CenterPoint [72]). Our method achieves 51.4 mAP on LT3D
benchmarks based on the well-established nuScenes [4] dataset, significantly improving over
baselines by 12.2% (Table 4.1).

a simple late-fusion framework (Fig. 1.2) and study three critical design choices

(Fig. 1.3). First, we propose a simple approach that post-processes LiDAR-based

3D detections with monocular RGB-based 3D detections, filtering away detections

that are inconsistent across modalities. This significantly improves performance on

LT3D by 5 % AP on average, greatly boosting performance when allowing for partial

credit (e.g., achieving 16.9 / 38.8 AP for child / stroller). Next, we evaluate

the impact of using 2D RGB detectors instead of monocular 3D RGB detectors for

late-fusion, and find that the former is straightforward to train, can easily leverage

external data, and leads to higher AP averaged over all classes. This is practically

meaningful because annotating 2D boxes on RGB images is significantly cheaper

than aligning multi-modal RGB-LiDAR data and annotating them with 3D amodal

cuboids. Fourth, we consider the impact of matching RGB and LiDAR detections

on the 2D image plane instead of the 3D bird’s-eye-view (BEV). We contrast 2D

matching in the image-plane with prior work that performs 3D matching by lifting

3
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B. How do we match multi-modal detections?
3D RGB Detector2D RGB Detector Inflate 2D RGB detections

to 3D BEV
Project 3D LiDAR detections

to 2D image plane 2D RGB Detections 3D LiDAR Detections

C. How do we fuse multi-modal detections?

Bus 0.47

A. How do we incorporate RGB information?

Truck 0.83

Figure 1.3: Examining Late Fusion Strategies. We examine three key components in
effectively fusing RGB and LiDAR detectors. We explore: A. whether to train 2D or 3D
monocular RGB detectors for late-fusion, B. whether to match multi-modal detections in
the 2D image plane or 3D bird’s-eye-view (BEV), and C. how to optimally fuse matched
detections. Perhaps surprisingly, our exploration reveals that using 2D RGB detectors,
matching in the 2D image plane, and fusing scores probabilistically with calibration leads
to better LT3D performance.

2D detections to 3D (e.g., by relying on depth imputed from LiDAR points that

project into the 2D detections [43, 65]) and find that 2D matching is more robust.

Lastly, we explore score calibration prior to fusion. We find that calibrating our

detection scores improves rare class detection and enables probabilistic fusion of

LiDAR and RGB detections. Notably, this boosts performance compared to the

standard non-maximum suppression (NMS) fusion strategy.

Contributions. We make three major contributions. First, we formulate the

problem of LT3D, emphasizing detection of both common and rare classes in safety-

critical applications like AVs. Second, we design LT3D’s benchmarking protocol

and develop a supplemental metric that awards partial credit depending on the

severity of misclassifications (e.g., misclassifying child-vs-adult is less problematic

than misclassifying child-vs-car). Third, we propose several architecture-agnostic

approaches to LT3D, including a simple multimodal fusion technique that generalizes

across different RGB and LiDAR architectures. We conduct extensive experiments

to ablate our design choices and demonstrate that our simple method achieves

state-of-the-art results on LT3D benchmarks.

4



Chapter 2

Related Works

2.1 3D Object Detection for AVs

Contemporary approaches for 3D object detection can be broadly classified as LiDAR-

only, RGB-only, and sensor-fusion methods. Recent work in 3D detection is heavily

inspired by prior work in 2D detection [6, 38, 77]. LiDAR-based detectors like

PointPillars [30], CBGS [80], and PVRCNN++ [55] adopt an SSD-like architecture [38]

that regresses amodal bounding boxes from a bird’s-eye-view (BEV) feature map.

More recently, CenterPoint [72] adopts a center-regression loss that is inspired by

CenterNet [77]. Despite significant progress, LiDAR-based detectors often produce

many false positives because it is difficult to distinguish foreground objects from

background given sparse LiDAR returns. Monocular RGB-based methods have

gained popularity in recent years due to increased interest in camera-only perception.

FCOS3D [63] extends FCOS [59] by additionally regressing the size, depth, and

rotation for each object. More recently, methods such as BEVDet and BEVFormer

[24, 25, 33] construct a BEV feature-map by estimating the per-pixel depth of each

image feature [44].

PolarFormer [26] introduces a polar-coordinate transformation that improves

near-field detection. Importantly, many of these state-of-the-art 3D RGB detectors

are commonly pre-trained on large external datasets like DDAD [18]. Monocular

RGB detectors accurately classify objects but struggle to estimate depth, particularly

for far-field detections [21]. Despite recent advances in LiDAR and RGB 3D detectors,

5



2. Related Works

we find that multi-modal fusion is essential for LT3D (detailed next). Importantly,

using both RGB (for better recognition) and LiDAR (for better 3D localization)

helps detect rare classes. We study the late-fusion framework described in Fig 1.2 to

determine how to effectively fuse RGB and LiDAR uni-modal detectors for LT3D.

2.2 Multimodal 3D Detection

Conventional wisdom suggests that fusing multimodal cues, particularly using LiDAR

and RGB, can improve 3D detection. Intuitively, LiDAR faithfully measures the 3D

world (although it has notoriously sparse point returns), and RGB has high-resolution

(but lacks 3D information). Multimodal fusion for 3D detection is an active field of

exploration. Popular approaches can be categorized as input-fusion, feature-fusion,

and late-fusion. Input-fusion methods typically augment LiDAR points using image-

level features. For example, PointPainting [61] projects LiDAR points onto the output

mask of a semantic segmentation model and appends corresponding class scores to

each point. MVP [73] densifies regions of LiDAR sweeps that correspond with objects

in semantic segmentation masks. In contrast, Frustum PointNets [46] leverage 2D

RGB detections to localize objects within the box frustum using PointNets [45].

Recent works show that feature-fusion can be more effective than input-fusion.

PointFusion [69] fuses global image and point-cloud features prior to detection and

MSMDFusion [27] fuses LiDAR and RGB features at multiple scales. TransFusion [2]

and BEVFusion [39] fuse features in the BEV space using multi-headed attention.

Despite the success of transformers for detecting common objects, [43] finds that

TransFusion struggles to detect rare classes. We posit that the transformer architec-

ture, as adopted in TransFusion and BEVFusion, suffers from limited training data

(particularly for classes in the long tail). For transformers to work well in practice,

they should be trained on diverse, large-scale datasets [12, 47]. Further, end-to-end

trained multi-modal detectors require paired multi-modal data for training. Therefore,

we opt to study late fusion of uni-modal detectors, which do not require aligned

RGB-LiDAR paired training data.

CLOCs [42] is a late-fusion method that learns a separate network to fuse RGB and

LiDAR detections, showing promising results for 3D detection. More recently, Peri et.

al. [43] introduces a simple non-learned filtering algorithm that effectively removes

6



2. Related Works

false-positive LiDAR-detections based on proximity to a 3D RGB detection. We

delve into this simple (non-learned) late-fusion framework, study three crucial design

choices, and present a method that significantly outperforms the state-of-the-art for

LT3D.

2.3 Long-Tailed Perception

AV datasets follow a long-tailed class distribution: a few classes like car and

pedestrian are dominant, while others like stroller and debris are rarely seen.

However, this problem is not unique to the AV domain. [50]. Long-Tailed Perception

(LTP) is a long-standing problem in the literature [41] and has been widely studied

through the lens of image classification, aiming for high accuracy averaged across

imbalanced classes [1, 41, 76].

Existing methods propose reweighting losses [5, 10, 23, 28, 29, 75], rebalancing

data sampling [8, 13, 22], balancing gradients computed from imbalanced classes [58],

and balancing network weights [1]. Others study LTP through the lens of 2D object

detection with RGB images [20]. Compared to 2D image-based recognition, 3D

long-tailed detection has unique opportunities and challenges because sensors such as

LiDAR directly provide geometric and ego-motion cues that are difficult to extract

from 2D images. Further, 2D detectors must detect objects of different scales due to

perspective image projection, dramatically increasing the complexity of the output

space (e.g., requiring more anchor boxes). In contrast, 3D objects do not exhibit

as much scale variation, but far-away objects tend to have sparse LiDAR returns,

imposing different challenges. Finally, 3D detectors often use class-aware heads (i.e.

each class has its own binary classifier) while 2D long-tail recognition approaches

typically use shared softmax heads.

Recently, CBGS [80] explicitly addresses rare-class 3D detection by up-sampling

LiDAR-sweeps with instances of rare classes, and pasting instances of rare objects

copied from different scenes. Although this works well for improving detection of

infrequently seen classes (e.g. classes with medium number of examples like bicycle

and construction vehicle), it does not provide significant improvement for classes

with only a few examples like debris and stroller. Additionally, rare classes, such

as child and stroller, are typically small in size and have a limited number of

7



2. Related Works

LiDAR returns. As a result, LiDAR-only detectors may struggle to accurately detect

these rare classes. In LT3D, we find a unique challenge: rare classes are not only

infrequent but are also difficult to distinguish using LiDAR alone. We address the

problem of LT3D in this work by fusing RGB and LiDAR uni-modal detectors.

8



Chapter 3

Method

To address LT3D, we first retrain SOTA 3D detectors on all classes, including

LiDAR-based detectors (PointPillars [30] and CenterPoint [72]), RGB-based detectors

(FCOS3D [63], PolarFormer [26], BEVFormer [33], YOLOV7 [62], and DINO [74]),

and multimodal detectors (TransFusion [2], BEVFusion [39], and DeepInteraction

[71]). We further introduce several modifications that consistently improve their

LT3D performance.

3.1 Grouping-Free Detector Head

Extending existing 3D detectors to train with more classes is surprisingly challenging.

Many contemporary networks use a multi-head architecture that groups classes of

similar size and shape to facilitate efficient feature sharing. For example, CenterPoint

groups pedestrian and traffic-cone since these objects are both tall and skinny.

However, multi-headed grouping strategies may not work for diverse classes like

pushable-pullable and debris and are difficult to scale for a large number of

classes. Therefore, we first consider making each class its own group to avoid hand-

crafted grouping heuristics. However, learning a class-specific head easily overfits

to rare-classes. Our solution is to merge all classes into a single group with a

proportionally heavier (single) detector head to simplify training. Our group-free

(i.e. single-head) architecture has a shared backbone across all classes, and each

class has only one linear layer per-class. This significantly reduces the number of

9
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Figure 3.1: nuScenes Semantic Hierarchy. nuScenes defines a semantic hierarchy (on
the left) for all annotated classes (Fig. 1.1). We highlight common classes in white and
rare classes in gold. The standard nuScenes benchmark makes two choices for dealing with
rare classes: (1) ignore them (e.g., stroller and pushable-pullable), or (2) group them
into coarse-grained classes (e.g., adult, child, construction-worker, police-officer
are grouped as pedestrian). Since the pedestrian class is dominated by adult (Fig. 1.1),
the standard benchmarking protocol masks the challenge of detecting rare classes like
child and police-officer. We leverage this hierarchy during training (on the right) by
predicting class labels at multiple levels of the hierarchy. Specifically, we train detectors to
predict three labels for each object: its fine-grained label (e.g., child), its coarse class (e.g.,
pedestrian), and the root-level class object. This means that the final vocabulary of
classes is no longer mutually exclusive, complicating the application of multi-class softmax
losses. To address this, use a sigmoid focal loss that learns separate spatial heatmaps for
each class.

parameters and allows learning the shared feature backbone collaboratively with all

classes, effectively mitigating overfitting to rare-classes. Adding a new class is as

simple as adding a single linear layer to the detector head. In addition, we show

that our grouping-free detector head achieves improved accuracy over grouping-based

methods.

3.2 Training with Semantic Hierarchies

nuScenes defines a semantic hierarchy (Fig. 3.1) for all classes, grouping semantically

similar classes under coarse-grained categories. We leverage this hierarchy during

training. Specifically, we train detectors to predict three labels for each object: its

fine-grained label (e.g., child), its coarse class (e.g., pedestrian), and the root class

object. We adopt a grouping-free detector head that outputs separate “multitask”

heatmaps for each class, and use a per-class sigmoid focal loss rather than multi-class

10
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cross-entropy loss. It is worth noting that this simple “multitask” learning strategy

does not necessarily enforce a hierarchy, and can be extend to more complex label

relationships. Crucially, because we do not employ softmax losses, adding a vehicle

heatmap does not directly interfere with the car heatmap (as they would with a

multi-class softmax loss). However, this might produce repeated detections on the

same test object. We address that by simply ignoring coarse detections at test time.

We explore alternatives and conclude that they achieve similar LT3D performance.

Perhaps surprisingly, this training method improves detection performance not only

for rare classes, but also for common classes.

3.3 Augmentation Schedule

Class-balanced resampling is a common technique in learning with long-tailed distri-

butions. This augmentation strategy increases the number of rare objects seen in

training but skews the class distribution and leads to more false positives for rare

classes in inference. Prior works [2, 61] suggest disabling class-balanced resampling

for the last few training epochs to better match the real class distribution, reducing

false positives. We validate this approach in training 3D detectors and find that

it often improves performance for rare classes at the cost of common classes. This

further suggests that strategies that work for common classes may not work in the

long-tail, further emphasizing the need to study LT3D.

3.4 Late-Fusion of RGB and LiDAR for LT3D

As depicted in Fig. 1.2, our simple late-fusion framework ensembles uni-modal RGB

and LiDAR detectors respectively. Within this framework, we investigate three crucial

design choices previewed in Fig. 1.3. We first describe the benefits and drawbacks of

using 2D and monocular 3D RGB detectors in Sec 3.4.1, present simple algorithms

for matching RGB and LiDAR-detections in Sec. 3.4.2, and finally describe score

calibration and fusion in Sec. 3.4.3.
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3.4.1 How Do We Incorporate RGB Information?

Although LiDAR offers accurate localization, contemporary LiDAR detectors predict

numerous false positives due to the challenging task of distinguishing foreground

objects from the background using sparse LiDAR points alone. RGB images provide

complementary information that is essential for identifying objects and disambiguating

semantically similar classes. Therefore, we focus on identifying which RGB detectors

can be best fused with 3D LiDAR detectors. We compare the impact of using

monocular 3D RGB detectors and 2D RGB detectors below.

2D RGB Detectors. 2D object detection is a fundamental problem in computer

vision [15, 35, 51] that has matured in recent years. Large-scale 2D detection datasets

are widely available, and model trade-offs are well understood [37, 38, 49, 51]. As 2D

detectors do not predict 3D attributes like depth and rotation, understanding how to

best leverage 2D detectors in the context of long-tailed 3D detection is a key challenge.

In this work, we consider two state-of-the-art 2D RGB detectors, YOLOV7 [62] and

DINO [74]. YOLOV7 is a real-time detector that identifies a number of training

tricks that nearly doubles the inference efficiency over prior work without sacrificing

performance. Similarly, DINO is a recent transformer-based detector that improves

upon DETR [6] using denoising anchor boxes.

3D RGB Detectors. RGB-based 3D object detection is more complex than

conventional 2D detection, as it requires additional predictions such as depth and

orientation [3, 63]. Importantly, 3D RGB detection is an ill-posed problem due

to the inconsistency between the 2D input data and the 3D output predictions.

To address this problem, FCOS3D transforms the commonly defined 7-DoF 3D

targets to the image domain and decouples them as 2D and 3D attributes [63].

Moreover, 3D RGB detection is challenging because it relies on accurate sensor

extrinsics to transform 3D detections between the global and image coordinate frame.

Since annotating 3D amodal cuboids is both expensive and non-trivial (compared to

bounding-box annotations for 2D detection), datasets for monocular 3D RGB detection

are considerably smaller and less diverse than their 2D detection counterparts. For

example, nuScenes (published in 2020) annotates 144K RGB images of 23 classes

[4] while COCO (an early 2D detection dataset published in 2014) annotates 330K

images [35] of 80 classes.
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Figure 3.2: Qualitative Improvement From Multi-Modal Late Fusion. Late-fusion
of 2D RGB and 3D LiDAR detections improves LT3D performance. Projecting 3D LiDAR
detections onto the image-plane makes matching RGB and LiDAR detections more robust.
In contrast, matching inflated 2D RGB detections in the 3D BEV is more challenging due
to noisy depth estimates. We find that late-fusion is able to boost the confidence score of
LiDAR-based detections when both LiDAR and RGB detections agree, and correct labels
when they don’t agree. For example, our late fusion algorithm correctly relabels predictions
with semantically similar (according to the nuScenes labeling hierarchy [43]), but visually
distinct classes like adult and stroller, or adult and child.

Although adapting these 2D detectors for multi-modal filtering of 3D LiDAR-based

detections is challenging, training 2D RGB detectors only requires 2D bounding box

annotations, which is significantly cheaper to collect than 3D cuboids used for 3D

RGB-detector training [63]. In addition, 2D RGB detectors can leverage diverse,

publicly available 2D detection datasets to train better 2D detectors [31, 48, 64, 70, 79].

We further demonstrate that using “freely available” 2D detection datasets helps

train stronger 2D detectors that further improve LT3D performance. Particularly,

when scaling up the 2D training data, late-fusion boosts average performance by 2.6

mAP, and improves rare class mAP by 3.5%.

3.4.2 How Do We Match Multi-Modal Detections?

Small fine-grained classes are challenging to identify from sparse (LiDAR) geometry

alone, suggesting that multimodal cues can improve long-tailed detection. We evaluate
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several multimodal fusion algorithms, but find that a simple strategy of post-hoc

fusion works remarkably well. Finding correspondence between two sets of uni-modal

detections is an essential step prior to late-fusion (Fig. 1.3A). However, this matching

process is non-trivial when considering RGB and LiDAR-based detections. We

present two approaches for matching between modalities, and empirically evaluate

the effectiveness of each method.

Option 1: Spatial Matching in the 2D Image Plane. We explore two

potential implementations of this below. Using the provided sensor extrinstics, we

can project 3D LiDAR detections onto the 2D image plane [42]. Next, we use the

IoU metric to determine overlap between (projected) LiDAR and 2D RGB detections.

We determine that a 2D RGB detection and (projected) 3D LiDAR detection match

if the IoU is greater than a fixed threshold. Although conceptually simple, we find

that it works well.

In principle, we can project 3D RGB detections onto the 2D image plane, but we

find that using 2D RGB detections works better in practice.

Option 2: Spatial Matching in 3D BEV. We explore two potential implemen-

tations of this below. First, we can use a 3D RGB detector to filter out high-scoring

false-positive LiDAR detections by leveraging two insights: (1) LiDAR-based 3D-

detectors are accurate w.r.t 3D localization and yield high recall (though classification

is poor), and (2) RGB-based 3D-detections are accurate w.r.t recognition (though

3D localization is poor). Fig. 3.3 demonstrates this matching strategy. For each

RGB-based detection, we keep LiDAR-based detections within a radius of m meters

and remove all the others (that are not close to any RGB-based detections).

Similarly, matching 2D RGB detections in the 3D BEV is an ill-posed problem

because it is impossible to precisely estimate depth using a single monocular RGB

image. Instead, we inflate the 2D RGB detection using the mediod of the LiDAR

points within the frustum of the 2D predicted boxes [46]. We find that it is crucial to

filter out LiDAR returns from (far-away) background points (c.f. Fig. 4.1). Specifically,

since LiDAR points on the edge of an object produce a depth discontinuity (adding

noise to the depth prediction), we opt to estimate depth using points in a small region

around the center of the bounding box.

We empirically evaluate both options and find that spatially matching 2D RGB

detections and 3D LiDAR detections in the 2D image plane works best in practice.
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LiDAR-based Dets. RGB-based Dets. Filtered LiDAR-based Dets.RGB Detections Filtered LiDAR DetectionsLiDAR Detections

Figure 3.3: Multi-Modal Filtering. Spatial matching in 3D BEV effectively removes
high-scoring false-positive LiDAR detections. The green boxes are ground-truth strollers,
while the blue boxes are stroller detections from our best performing models, LiDAR-
based detector CenterPoint [72] (left) and RGB-based detector FCOS3D [63] (mid). The
final filtered result removes LiDAR detections not within m meters of any RGB detection
(right).

Handling Unmatched Detections. After spatially matching RGB and Li-

DAR detections, we often have three categories of detections to consider: matched

detection, unmatched RGB detections, and unmatched LiDAR detections. For 2D

RGB-detections that do not match with any LiDAR-detections, we simply remove

these predictions. Since LiDAR detectors achieve high recall, any RGB detections

that are unmatched are likely to be false positives On the other hand, for 3D Li-

DAR detections that do not match with any RGB-detections, we down-weight their

confidence scores by multiplying by w which is tuned via validation (w = 0.4).

Semantic Matching. As illustrated by Fig. 1.3C, detections may match spatially,

but not semantically. To address this, we propose a semantic matching heuristic to

better fuse LiDAR and RGB detections. Given a pair of spatially matched RGB

and LiDAR detections, we consider two cases. If both modalities predict the same

semantic class, we perform score-fusion (which we describe next). Otherwise, if both

modalities predict different semantic classes, we use the confidence score and label of

the RGB prediction. Intuitively, we expect that RGB detectors can more reliably

predict semantics from high resolution images. This simple method helps correct

misclassifications produced by the 3D LiDAR-detector, as shown in Fig. 3.2.
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3.4.3 How Do We Fuse Multi-Modal Detections?

Although LiDAR-based detectors are widely adopted for 3D detection, we find

that they produce many high-scoring false positives (FPs) for rare classes due to

misclassification. We address these FPs by either removing them via multi-modal

filtering [43], or down-weighting their confidence via score calibration and fusion. We

empirically evaluate the effectiveness of each method and find that score calibration

and fusion works the best.

Score Calibration and Fusion. Score calibration of matched detections pro-

duced by different uni-modal detectors is required to accurately compare detec-

tions w.r.t their confidence scores for late-fusion. We explore score calibration of

matched RGB detections xRGB and LiDAR detections xLiDAR in the context of late-

fusion (cf. Fig. 1.3C) below. Following [9], we assume independent class prior

p(c), and conditional independence given the class label, i.e., p(xRGB, xLiDAR|c) =
p(xRGB|c)p(xLiDAR|c). We denote the posteriors for class-c as p(c|xRGB) and p(c|xLiDAR),

and the fused score / posterior p(c|xLiDAR, xLiDAR). We have

p(c|xLiDAR, xLiDAR) (3.1)

=
p(xLiDAR, xLiDAR|c)p(c)

p(xLiDAR, xLiDAR)
Bayes Rule (3.2)

∝ p(xLiDAR, xLiDAR|c)p(c) (3.3)

∝ p(c|xRGB)p(c|xLiDAR)

p(c)
Conditional Independence (3.4)

∝ p(c|xRGB)p(c|xLiDAR)

p(c)
(3.5)

This suggests that optimal calibration requires tuning class prior p(c). However,

tuning class priors p(c) is exponentially expensive w.r.t an mAP measure. Therefore,

we tune them greedily, one by one ordered by class cardinality. Further, we also tune

a temperature on the logits [9, 19]. The overall score calibration improves LT3D

performance from 44.6 to 45.0 in mAP. After calibrating all classes, we fuse scores for

matched uni-modal detections. Inspired by [9], we explore probabilistic fusion and

non-maximal suppression (NMS). Intuitively, fusing scores with NMS is equivalent

to performing a max-pooling operation on matched detections. In contrast, if two
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detections fire on the same object, the fused score should be larger than the individual

scores because there is more evidence. We find that probabilistic fusion results in an

additional 0.5 AP improvement averaged over all classes compared to NMS.
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Chapter 4

Experiments

We conduct extensive experiments to better understand the LT3D problem, and gain

insights by validating our techniques described in Chapter 3. Specifically, we aim to

answer the following questions:1

1. Are rare classes more difficult to detect than common classes?

2. Are objects from rare classes sufficiently localized but mis-classified?

3. Does training with the semantic hierarchy improve detection performance for

LT3D?

4. Does multimodal fusion help detect rare classes?

4.1 Implementation Details.

We follow the training procedure of the respective detectors which have open-source

code. We describe important implementation details below.

• Input. We adopt 10-frame aggregation for LiDAR densification when training

LiDAR-based detectors on nuScenes and a 5-frame aggregation on Argoverse 2.

We assume that we are provided with ego-vehicle poses for prior frames to align

all LiDAR sweeps to the current ego-vehicle pose. Since LiDAR returns are

sparse, this densification step is essential for accurate 3D detection. By default,

we train the 2D RGB detectors on the 2D bounding boxes derived by projecting

1Answers: yes, yes, yes, yes.
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3D annotations to the 2D image plane and additionally train with 2D bounding

boxes from nuImages where denoted. Our 2D RGB detectors YOLOV7 and

DINO are pre-trained on the ImageNet [11] and COCO [34] datasets.

• Model Architecture. We adopt the architecture in [80] but make an important

modification. The original architecture (for the standard nuScenes benchmark)

has six heads designed for ten classes; each head has 64 filters. We first adapted

this architecture for LT3D using seven heads designed for 18 classes. We then

replace these seven heads with a single head consisting of 512 filters shared by

all classes.

• Training Losses. We use the sigmoid focal loss (for recognition) [37] and L1

regression loss (for localization) below. Existing works also use the same losses

but only with fine labels; we apply the loss to both coarse and fine labels.

Concretely, our loss function for CenterPoint is as follows: L = LHM + λLREG,

where LHM =
∑C

i=0 SigmoidFocalLoss(Xi, Yi) and LREG = |XBOX − YBOX |,
where Xi and Yi are the ith class’ predicted and ground-truth heat maps, while

XBOX and YBOX are the predicted and ground-truth box attributes. Without

our hierarchical loss, C=18. With our hierarchical loss, C=22 (18 fine grained

+ 3 coarse + 1 object class). λ is set to 0.25. Modifications for other detectors

similarly follow.

• Optimization. We train all LiDAR-only detectors for 20 epoch using an

AdamW optimizer and a cyclic learning rate. We adopt a basic set of data

augmentations, including global 3D tranformations, flip in BEV, and point

shuffling during training. We train our model with 8 RTX 3090 GPUs and a

batch size of 1 per GPU. The training noise (from random seed and system

scheduling) is < 1% of the accuracy (standard deviation normalized by the

mean).

• Post-processing. We use non-maximum suppression (NMS) on detections within

each class to suppress lower-scoring detections. In contrast, existing works

apply NMS on all detections across classes, i.e., suppressing detections overlap-

ping other classes’ detections (e.g., a pedestrian detection can suppress other

pedestrian and traffic cone detections).

Datasets. We use nuScenes [4] and Argoverse 2 (AV2) [66] to explore LT3D. Both
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have fine-grained classes (18 and 26 classes in nuScenes and AV2 respectively) that

follow long-tailed distributions. To quantify the long-tail, we calculate the imbalance

factor (IF), defined as the ratio between the numbers of annotations of the max-

class and min-class [5]; nuScenes and AV2 have IF=1670 and 2500 respectively –

significantly more imbalanced than existing long-tail image recognition benchmarks,

e.g., iNaturalist (IF=500) [60] and ImageNet-LT (IF=1000) [40]. NuScenes arranges

classes in a semantic hierarchy (Fig. 3.1); AV2 does not provide a semantic hierarchy

but we construct one based on the nuScenes’ hierarchy. Following prior work, we use

official train-sets for training and evaluate on the official val-sets.

4.2 Evaluation Metrics

Conceptually, LT3D extends the traditional 3D detection problem, which focuses

on identifying objects from K common classes, by further requiring detection of N

rare classes. As LT3D emphasizes detection performance on all classes, we report

the metrics for three groups of classes based on their cardinality (Fig. 1.1-left): many

(>50k instances per class), medium (5k∼50k), and few (<5k). We describe the metrics

below.

Standard Detection Metrics. Mean average precision (mAP) is an established

metric for object detection [14, 16, 36]. For 3D detection on LiDAR sweeps, a true

positive (TP) is defined as a detection that has a center distance within a distance

threshold on the ground-plane to a ground-truth annotation [4]. mAP computes the

mean of AP over classes, where per-class AP is the area under the precision-recall

curve, and distance thresholds of [0.5, 1, 2, 4] meters.

Hierarchical Mean Average Precision (mAPH). For safety critical applica-

tions, although correctly localizing and classifying an object is ideal, detecting but

misclassifying some object is more desirable than a missed detection (e.g., detecting

but misclassifying a child as an adult is better than not detecting this child). There-

fore, we introduce hierarchical AP (APH) which considers such semantic relationships

across classes to award partial credit.

To encode these relationships between classes, we leverage the semantic hierarchy

(Fig. 3.1) defined by nuScenes. We derive partial credit as a function of semantic

similarity using the least common ancestor (LCA) distance metric. Hierarchical
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metrics have been proposed for image classification [53], but have not been extensively

explored for object detection. Extending this metric for object detection is challenging

because we must consider how to jointly evaluate semantic and spatial overlap. For

clarity, we will describe the procedure in context of computing APH for some arbitrary

class C.

• LCA=0: Consider the predictions and ground-truth boxes for C. Label the

set of predictions that overlap with ground-truth boxes for C as true positives.

Other predictions are false positives. This is identical to the standard AP

metric.

• LCA=1: Consider the predictions for C, and ground-truth boxes for C and

all sibling classes of C (that have LCA distance to C of 1). Label the set of

predictions that overlap a ground-truth box of C as a true positive. Label

the set of predictions that overlap sibling classes as ignored [36]. All other

predictions for C are false positives.

• LCA=2: Consider the predictions for C and ground-truth boxes for C and all

sibling classes of C (that have LCA distance to C less than 2. For nuScenes,

this includes all classes.) Label the set of predictions that overlap ground-truth

boxes for C as true positives. Label the set of predictions that overlap other

classes as ignored. All other predictions for C are false positives.

4.3 nuScenes Results

We first start by evaluating existing uni-modal and multi-modal models on the popular

nuScenes dataset. Benchmarking SOTA models yields poor performance for rare

classes on the nuScenes-LT3D benchmark, highlighting the importance of addressing

3D detection in the long tail setting rather than only focusing on common categories.

Retraining State-Of-The-Art 3D Detectors for LT3D. We retrain several 3D

detectors, namely FCOS3D [63], PolarFormer [26], BEVFormer [33], PointPillars [30],

CenterPoint [72], TransFusion [2], and DeepInteraction [71]. FCOS3D, PolarFormer

and BEVFormer operate on monocular images. PointPillars and CenterPoint take

an aggregated stack of LiDAR-sweeps as input. TransFusion and DeepInteraction

take both RGB frames and LiDAR sweeps as input. All models predict 3D bounding
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Table 4.1: Comparison with the nuScenes State-of-the-Art. We find that our
late-fusion approach of fusing 3D LiDAR and 2D RGB detections in the 2D image plane
using score calibration and probabilistic ensembling performs the best on all categories,
notably improving performance for classes with medium and few examples.

Method MM Many Medium Few All

FCOS3D (RGB-only) [43] 39.0 23.3 2.9 20.9
BEVFormer (RGB-only) [33] 52.3 31.6 1.4 27.3
PolarFormer (RGB-only) [26] 54.0 31.6 2.2 28.0

PointPillars (LiDAR-only) [30] 64.2 28.4 3.4 30.0
CenterPoint (LiDAR-only) [43] 76.4 43.1 3.5 39.2

TransFusion (LiDAR + RGB) [2] ✓ 73.9 41.2 9.8 39.8
DeepInteraction (LiDAR + RGB) [71] ✓ 76.2 51.1 7.9 43.7

Multi-Modal Late-Fusion (Ours) ✓ 77.9 59.4 20.0 51.4

boxes for 18 classes as defined by the nuScenes LT3D protocol. As shown in Table

4.1, LiDAR-based detectors perform well on common classes, but struggle on classes

with few examples. This is unsurprising as it is difficult to identify rare objects from

sparse LiDAR points alone. However, we find that multi-modal models achieve strong

performance across all cateogires.

End-to-End Multi-Modal Methods. We find that TransFusion [2] and DeepIn-

teraction [71], which fuses both RGB and LiDAR, are able to perform better than the

LiDAR-only models, suggesting that multi-modal input can improve object detection

by removing false positives. TransFusion marginally improves over CenterPoint over-

all, but provides considerable performance gains for rare classes, improving by 6.4%.

DeepInteraction provides modest improvements over TransFusion, notably improving

on classes with many examples by 2.3% and medium examples by 9.9%. Although

DeepInteraction beats CenterPoint by 3.5% overall, it requires complex multi-stage

training pipelines and paired multi-modal data. We aim to simplify multi-modal

training via late fusion, which we describe below.

Multi-Modal Late-Fusion. Our late-fusion approach combines 3D LiDAR

detections with 2D RGB detections in the 2D image plane using score calibration

and probabilistic ensembling. We compare our approach against other methods in

Table 4.1 and provide qualitative results in Fig. 3.2. By carefully considering design

choices outlined in Fig. 1.3, we are able to improve over the prior state-of-the-art by
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Figure 4.1: Failure Mode of Inflating 2D Detections via LiDAR Points. We find
that 3D BEV filtering using inflated 2D detections does not work well due to noisy depth
predictions. For example, background points on fences and on trees leads to imperfect
depth prediction from inflation. Attempting to filter 3D LiDAR detections using these
noisy inflated 2D RGB detections in the BEV introduces many missed-detections and false
positives.

12.2%. As shown in Fig. 3.2, we find that RGB-based depth predictions are often

incorrect, leading to suboptimal matching and filtering. Naively using LIDAR depth

to inflate 2D detections into the 3D BEV for matching and filtering yields poor results

due to noisy LiDAR returns (c.f. Fig. 4.1). As a result, we simply opt to project all

detections onto the 2D image plane to factor out the impact of depth estimation on

matching.
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Table 4.2: nuScenes Per-Class Breakdown. Multi-modal models like DeepInteraction
and our late-fusion approach achieve the highest per-class AP on 8 out of 10 classes shown
below. Out late-fusion approach significantly improves over DeepInteraction, improving
bicycle accuracy by 5.8%, construction worker by 15.2 %, stroller by 6.8 %, and
pushable-pullable by 17.3 %. Note, CV is construction vehicle, MC is motorcycle, PP
is pushable-pullable, CW is construction-worker, and Stro. is stroller. We highlight
classes with Medium and Few examples per class in blue.

Method Car Adult Truck CV Bicy MC Child CW Stro. PP

FCOS3D [63] 52.1 46.5 28.7 10.0 31.4 37.2 2.1 20.2 4.4 26.6
CenterPoint[72] 87.7 86.7 61.6 28.4 49.6 65.9 1.1 28.5 5.1 34.9
TransFusion [2] 84.4 84.2 58.4 24.5 46.7 60.8 3.1 21.6 13.3 25.3
DeepInteraction [71] 84.9 85.9 63.2 35.3 64.3 76.2 6.0 30.7 30.9 30.8
Ours 86.3 86.2 60.6 35.3 70.1 75.9 8.8 55.9 37.7 58.1

Table 4.3: Comparison with the Argoverse 2 State-of-the-Art. We present results
AV2 evaluated at 50 meters. FCOS3D achieves poor performance, likely due to inaccurate
depth estimates. In contrast, CenterPoint achieves strong performance on all classes.
Our multi-modal fusion approach significantly improves over CenterPoint, achiving 8.3%
improvement averaged over all classes. These results on AV2 are consistent with those on
nuScenes (cf. Table 4.1), demonstrating the general applicability of our approach.

Method Multimodal Many Medium Few All

FCOS3D [63] (RGB-only) 27.4 17.0 7.8 14.6

CenterPoint [72] (LiDAR-only) 77.4 46.9 30.2 44.0

Multi-Modal Late Fusion (Ours) ✓ 89.4 54.2 38.7 52.3

4.4 Argoverse 2 Results

We present results on the large-scale Argoverse 2 (AV2) dataset, another long-tailed

dataset developed for autonomous vehicle research (Fig. 4.2 on the left). AV2

evaluates on 26 classes, which follow the long-tailed distribution. As AV2 does not

provide a semantic hierarchy, we construct one (cf. Fig. 4.2 on the right) by adapting

the nuSccenes hierarchy. As show in Table 4.3, our main conclusions from nuScenes

still hold for AV2. FCOS3D yields poor performance on all classes, likely due to

inaccurate depth estimates. CenterPoint performs considerably better, achieving high

accuracy on classes with many examples. Notably, CenterPoint performs better on

AV2’s rare classes (30.2 AP) compared to nuScenes’s rare classes (3.5 AP), likely
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Figure 4.2: Argoverse 2 Dataset Statistics. According to the histogram of per-class
object counts (on the left), classes in Argoverse 2.0 (AV2) follow a long tailed distribution.
Following [41] and nuScenes (Fig. 1.1), we report performance for three groups of classes
based on their cardinality (split by dotted lines): Many, Medium, and Few. As AV2 does
not provide a class hierarchy, we construct one by referring to the nuScenes hierarchy (cf.
Fig. 4.2 on the right).

because AV2 has more examples per-class in-the-tail. Lastly, our proposed late-fusion

approach yields an 8.3% improvement overall, improving performance for classes of

all cardinalities. These new results on AV2 are consistent with those on nuScenes,

demonstrating the general applicability of our approach.

4.5 Ablation Studies

We design a set of experiments to understand the impact of hierarchies, network

architecture, and ablate different strategies for late fusion. We perform all ablation

experiments on the nuScenes dataset.

4.5.1 Analysis on Hierarchies

Semantic classes are often organized within a hierarchy, e.g., tail classes such as

child and construction-worker are arguably subclasses of pedestrian. However, such

hierarchical relationships are often ignored, which may yield misleading estimates

of performance and missed opportunities for algorithmic innovation. We develop
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Table 4.4: Impact of Semantic Hierarchies and Data Aug. (measured by mAP).
Training with the semantic hierarchy improves all methods for LT3D, e.g., improving by
1% AP averaged over All classes. Data augmentation schedules do not necessarily improve
LT3D performance, demonstrating the challenge of 3D detection in the long-tail.

Method Multimodal Many Medium Few All

PointPillars (LiDAR-only) [30] 64.2 28.4 3.4 30.0
+ Hierarchy 66.4 30.4 2.9 31.2

w/ Data Aug. 54.4 24.2 1.8 25.1

CenterPoint (LiDAR-only) [72] 76.4 43.1 3.5 39.2
+ Hierarchy 77.1 45.1 4.3 40.4

w/ Data Aug. 73.8 44.5 7.4 40.3

hierarchical losses that promote feature sharing across common-vs-rare classes, as

well as improved detection metrics that award partial credit to “reasonable” mistakes

respecting the hierarchy (e.g., mistaking a child for an adult).

Training with Semantic Hierarchy. We modify our LiDAR-based detectors to

jointly predict class labels at different levels of the semantic hierarchy. For example,

we modify the detector to additionally classify stroller as pedestrian and object.

The semantic hierarchy naturally groups classes based on shared attributes and may

have complementary features. Moreover, training with the semantic hierarchy allows

rare classes within each group to learn better features by sharing with common classes.

This approach is generally effective, as shown in Table 4.4, improving accuracy for

classes with Many examples by 2%, Medium examples by 2% and Few examples by 1%.

Data Augmentation Schedule. Prior works [2, 69] suggest disabling copy-paste

augmentation for the last few epochs of training to reduce the number of false positive

detections. We validate this claim for various detector architectures and find that

although it seems to help rare classes by 3% AP, but hurts common classes by 4%

AP (c.f. CenterPoint).

Analysis of Misclassifications. For 3D detection, localization and classification

are two important measures of 3D detection performance. In practice, we cannot

achieve perfect performance for either. In safety-critical applications, detecting

but misclassifying objects (as a semantically related category) is more desirable

than a missed detection (e.g., detect but misclassify a child as adult versus not

detecting this child). Therefore, we introduce hierarchical AP (APH), which considers
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Figure 4.3: Breakdown Analysis of Misclassifications within Superclasses. Fine-
grained classes are most often confused by the dominant class (in blue) in each superclass:
(left) Vehicle is dominated by car, (mid) Pedestrian is dominated by adult, and (right)
Movable is dominated by barrier. We find that class confusions are reasonable. Car is often
mistaken for truck. Similarly, truck, construction-vehicle and emergency-vehicle

are most often mistaken for car. Bicycle and motorcycle are sometimes misclassified as
car, presumably because they are sometimes spatially close (within the 2m match threshold)
to cars. Adults have similar appearance to police-officer and construction-worker,
and they are often co-localized with child and stroller; all of these might cause significant
class confusion.

such semantic relationships across classes to award partial credit. Applying this

hierarchical AP reveals that classes are most often misclassified as their LCA=1

siblings within coarse-grained superclasses. We use confusion matrices to further

analyze the misclassifications within superclasses, as shown in Fig. 4.3. Below, we

explain how to compute a confusion matrix for the detection task.

For each superclass, we make a confusion matrix, in which the entry (i, j) indicates

the misclassification rate of class-i objects as class-j. Specifically, given a fine-grained

class i, we find its predictions that match ground-truth boxes within 2m center-distance

of class-i and all its sibling classes (LCA=1, within the corresponding superclass);

we ignore all unmatched detections. This allows us to count the misclassifications of

class-i objects into class-j.

Impact of Hierarchical Training and Inference. Classic methods train a

hierarchical softmax (in contrast to our simple approach of sigmoid focal loss with

both fine and coarse classes), where one multiplies the class probabilities of the

hierarchical predictions during training and inference [68]. We implemented such an
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Table 4.5: Diagnosis using the mAPH metric on selected classes. We analyze the
best-performing LiDAR-only model CenterPoint with and without our hierarchical loss.
Comparing the rows of LCA=0, we see our techniques bring significantly improvements on
classes with medium and few examples such as construction-vehicle (CV), bicycle,
motorcycle (MC), construction-worker (CW), stroller, and pushable-pullable

(PP). Moreover, performance increases significantly from LCA=0 to LCA=1 compared
against LCA=1 to LCA=2, confirming that objects from rare classes are often detected
but misclassified as some sibling classes.

Method mAPH Car Adult Truck CV Bicycle MC Child CW Stroller PP

CenterPoint
LCA=0 82.4 81.2 49.4 19.7 33.6 48.9 0.1 14.2 0.1 21.7

OTS
LCA=1 83.9 82.0 58.7 20.5 35.2 50.5 0.1 18.3 0.1 22.0
LCA=2 84.0 82.4 58.8 20.7 36.4 51.0 0.1 19.5 0.1 22.6

CenterPoint
LCA=0 88.1 86.3 62.7 24.5 48.5 62.8 0.1 22.2 4.3 32.7

Group-Free
LCA=1 89.0 87.1 71.6 26.7 50.2 64.7 0.1 29.4 4.5 32.9
LCA=2 89.1 87.5 71.7 26.8 51.1 65.2 0.1 30.5 4.8 33.4

CenterPoint
LCA=0 88.6 86.9 63.4 25.7 50.2 63.2 0.1 25.3 8.7 36.8

w/ Hierarchy
LCA=1 89.5 87.6 72.4 27.5 52.2 65.2 0.1 32.4 9.4 37.0
LCA=2 89.6 88.0 72.5 27.7 53.2 65.7 0.1 34.0 9.8 37.6

approach, but found the training did not converge. Interestingly, [68] shows such

a hierarchical softmax loss has little impact on long-tailed object detection (in 2D

images), which is one reason they have not been historically adopted. Instead, we

found better results using the method from [32] (a winning 2D object detection

system on the LVIS [20] benchmark) which multiples class probabilities of predictions

(e.g. PCAR = POBJ ∗ PCAR) at test-time, even when such predictions are not trained

with a hierarchical softmax. We tested three additional variants and compared it to

our approach (which recall, uses only fine-grained class probabilities at inference).

Table 4.6 compares their performance for LT3D.

(a) Ours (e.g., Finegrain score only)

(b) Object score * Finegrain score ([32], e.g. PCAR = POBJ ∗ PCAR)

(c) Coarse score * Finegrain score (Variant-1 of [32], e.g. PCAR = PV EHICLE ∗PCAR)

(d) Object score * Coarse score * Finegrain score (Variant-2 of [32], e.g. PCAR =

POBJ ∗ PV EHICLE ∗ PCAR)

Unlike [32, 68] which require a strict label hierarchy, our approach is not limited
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Table 4.6: Impact of Hierarchical Softmax. Different variants achieve similar per-
formance. We note that other methods do improve accuracy in the tail by sacrificing
performance in the head, suggesting that hybrid approaches that apply different techniques
for head-vs-tail classes may further improve accuracy. Unlike [32, 68] which requires a strict
label hierarchy, our approach is not limited to a hierarchy.

Method Hierarchy Many Medium Few All

CenterPoint (w/o Hierarchy) [72] n/a 76.4 43.1 3.5 39.2

CenterPoint w/ Hierarchy

(a) 77.1 45.1 4.3 40.4
(b) 76.4 45.0 5.3 40.5
(c) 76.5 45.2 5.2 40.6
(d) 74.5 43.5 5.6 39.5

to a hierarchy. We find that other hierarchical methods improve accuracy in the tail

by sacrificing performance in the head, suggesting that hybrid approaches that apply

different techniques for head-vs-tail classes may further improve accuracy.

4.5.2 Analysis on Architecture

Many contemporary networks use a multi-head architecture that groups classes of

similar size and shape to facilitate efficient feature sharing. For example, CenterPoint

groups pedestrian and traffic-cone since these objects are both tall and skinny.

We study the impact of grouping for both the standard and LT3D problem setups.

We define the groups used for this study below. Each group is enclosed in curly

braces. Our group-free head includes all classes into a single group.

• Original: {Car}, {Truck, Construction Vehicle}, {Bus, Trailer}, {Barrier},
{Motorcycle, Bicycle}, {Pedestrian, Traffic Cone}

• LT3D: {Car}, {Truck, Construction Vehicle}, {Bus, Trailer}, {Barrier},
{Motorcycle, Bicycle}, {Adult, Child, Construction Worker, Police Officer,

Traffic Cone}, {Pushable Pullable, Debris, Stroller, Personal Mobility,

Emergency Vehicle}

We use the class groups proposed by prior works [72, 80] for the standard bench-

mark and adapt this grouping for LT3D. Our proposed group-free detector head

architecture consistently outperforms grouping-based approaches on both the stan-

dard and LT3D benchmarks. We note that sub-optimal grouping strategies (such as
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Table 4.7: Group-Free vs. Group-Based Architecture. Our proposed group-free
detector head architecture consistently outperforms grouping-based approaches on both
the standard and LT3D benchmarks. We note that sub-optimal grouping strategies (such
as those adopted for LT3D) may yield significantly diminished performance, whereas opti-
mized grouping strategies (such as those adopted for the standard setup) have comparable
performance to the group-free approach. Note, TC is traffic-cone, CV is construction
vehicle, MC is motorcycle, PP is pushable-pullable, CW is construction-worker, and
PO is police-officer. We highlight classes with Medium and Few examples per class in
blue.

CenterPoint MH Car Ped. Barrier TC Truck Bus Trailer CV MC Bicycle

Original ✓ 87.7 87.7 70.7 74.0 63.6 72.7 45.1 26.3 64.7 47.9
89.1 88.4 70.8 74.3 64.8 72.9 42.0 25.7 65.9 53.6

for LT3D ✓ 82.4 — 62.0 60.1 49.4 55.7 28.9 19.7 48.9 33.6
88.1 — 72.4 72.7 62.7 70.8 40.2 24.5 62.8 48.5

Adult PP CW Debris Child Stroller PO EV PM All

Original ✓ — — — — — — — — — 64.0
— — — — — — — — — 64.8

for LT3D ✓ 81.2 21.7 14.2 1.1 0.1 0.1 1.3 0.1 0.1 31.2
86.3 32.7 22.2 4.3 0.1 4.3 1.8 10.3 0.1 39.2

those adopted for LT3D) may yield significantly diminished performance, whereas

optimized grouping strategies (such as those adopted for the standard setup) have com-

parable performance to the group-free approach. The group-free approach simplifies

architecture design, while also providing competitive performance.

Two insights allow us to train the group-free architecture. First, we make the

group-free head proportionally larger to train more classes. The standard grouping

setup contains 6 heads, each with 64 convolutional filters. Scaling up to the nearest

power of two, our group-free head has 512 convolutional filters. Second, we do not

perform between-class NMS. The standard setup performs NMS between classes in

each group (e.g., since pedestrians and traffic cones are tall and skinny, the model

should only predict that an object is either a traffic cone or a pedestrian). However,

performing NMS between classes requires that confidence scores are calibrated, which

is not the case. Moreover, for LT3D, score calibration becomes more important for

rare classes as these classes have lower confidence scores than common classes on
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Table 4.8: Ablation on Multi-Modal Fusion. Our analysis confirms that 2D RGB are
better suited for late-fusion (c-e vs. f), matching projected 3D LiDAR detections in the 2D
image-plane outperforms matching 2D RGB detections inflated to the 3D BEV, and score
calibration prior to probabilistic fusion improves performance.

Method Many Medium Few All

(A) CenterPoint [72] 76.4 43.1 3.5 39.2

(B) + Hierarchy 77.1 45.1 4.3 40.4

(C) w/ 3D BEV Filtering w/ FCOS3D 76.6 48.7 8.1 42.9

(D) w/ 3D BEV Filtering w/ BEVFormer 76.9 50.8 6.3 43.2

(E) w/ 3D BEV Filtering w/ PolarFormer 76.8 50.0 6.1 42.8

(F) w/ 3D BEV Filtering w/ YOLOV7 76.3 44.7 5.8 40.5

(G) w/ 2D Img. Filtering using YOLOV7 77.0 51.3 9.8 44.6

(H) + Score Calibration 77.0 51.2 11.1 45.0

(I) + External Data 77.4 54.6 14.6 47.6

(J) w/ 2D Img. Filtering using DINO 77.8 58.2 18.7 50.5

(K) + Prob. En. 77.9 59.4 20.0 51.4

average, meaning that common objects will likely suppress rare objects within the

same group. Our solution is to only perform within-class NMS, which is standard for

2D detectors [52].

4.5.3 Analysis on Multi-Modal Fusion

We design a set of experiments to study the trade off between using 2D and monocular

3D RGB detectors, and matching in the 2D image and 3D BEV plane. Further, we

examine the impact of using additional data and study different fusion strategies. Our

analysis confirms that 2D RGB are better suited for late-fusion, matching projected

3D LiDAR detections in the 2D image-plane outperforms matching 2D RGB detections

inflated to the 3D BEV, and score calibration prior to probabilistic fusion improves

performance.

How Do We Incorporate RGB Information? Although LiDAR-based

detectors are widely adopted for 3D detection, we find that they produce many

high-scoring false positives (FPs) for rare classes due to misclassification. We focus
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Figure 4.4: Correlation Between 2D AP and 3D AP. Although nuScenes is a 3D
detection benchmark, we can generate 2D annotations using the provided sensor extrinsics
by projecting the 3D annotations to the 2D image plane. We find that evaluating 2D
detectors using these 2D nuScenes annotations is a good proxy task (x-axis) that is
positively correlated with the downstream performance of the full late-fusion pipeline
(y-axis). Concretely training 2D detectors with more data (e.g. training with nuScenes
and nuImages), and using stronger 2D detectors (e.g. DINO) improves performance on the
proxy task as well as the downstream late-fusion algorithm.

on removing such FPs. To this end, we use an RGB-based detector to filter out high-

scoring false-positive LiDAR detections by leveraging two insights: (1) LiDAR-based

3D are accurate w.r.t 3D localization and yield high recall (though classification is

poor), and (2) RGB-based 3D-detections are accurate w.r.t recognition (though 3D

localization is poor). We first attempt to filter out 3D LiDAR detections in the BEV

using monocular 3D detections (c.f. Table 4.8C-E). For each RGB-based detection,

we keep LiDAR-based detections within a radius of m meters and remove all the

others (that are not close to any RGB-based detections). Although this provides a

3% performance improvement over the LiDAR-only baseline Table 4.8B), we explore

using 2D detectors as an alternative.

How Do We Match Multi-Modal Detections? We consider matching 3D

LiDAR and 2D RGB detections in both the 3D BEV and 2D image plane. Naively

lifting 2D RGB detections into 3D leads to imprecise depth estimates that leads to
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Figure 4.5: Failure Cases. Both our method (columns 1-3) and TransFusion [2] (columns
4 -5) have the same failure cases. In the first and second row, the 2D RGB-detector DINO
detects the heavily occluded cars but 3D LiDAR-detector fails to detect them. As a result,
the late-fusion predictions miss these cars because our method throws away unmatched
RGB-detections for which we do not have accurate 3D information. In the third row, we see
that although both the LiDAR and RGB detectors fire on the object (whose ground-truth
label is police-officer), LiDAR-detector predicts it as adult and RGB-detector predicts
it as construction-worker. As a result, the final detection is incorrect w.r.t the predicted
categorical label. TransFusion also misclassifies this object and predicts it as an adult.

missed-detections and false positives (Table 4.8F). As shown in Fig. 4.1, matching

3D LiDAR and 2D RGB detections in the 3D BEV does not work well in practice.

Instead, we project the 3D LiDAR detections to the 2D image plane and filter using

IoU (c.f. Table 4.8G). Two detections are considered matched if their spatial overlap

exceeds a fixed threshold. We find that this approach performs considerably better

than either of the approaches that perform fusion in the 3D BEV. Notably, we find

that 2D image filtering with YOLOV7 improves over the 3D BEV filtering with

YOLOV7 by 7.1% mAP and improves over the 3D BEV filtering with FCOS3D by

5.6% AP. Using better 2D detectors (e.g. DINO) and training with external data (c.f.

Figure 4.4) yields better performance in both 3D BEV and 2D image based filtering

(Table 4.8I-J).

How Do We Fuse Multi-Modal Detections? We evaluate multi-modal fusion

using non-maximal suppression (NMS) and probabilistic ensembling (Prob. En.)

(Table 4.8J vs. Table 4.8K). Prior to fusion, we first project all detections to the

2D image plane and calibrate the scores of LiDAR and RGB detections to ensure

that they are comparable. Next, we pool both RGB and LiDAR detections together
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and match them based on their 2D IoU. If using NMS, only the highest confidence

detections are kept and all lower confidence overlapping detections are removed.

If using Prob. En. we use bayesian fusion to reasoning about the final score of

ovelapping detections. Concretely, if two matched detections fire in the same place,

the fused score should be higher than the individual scores because there is twice the

evidence of an object at that particular spatial location. After score calibration, we

find that Prob. En. achieves 0.5 mAP higher than NMS averaged over all classes.

Notably, Prob. En. provides a considerable 1.3% AP improvement for rare classes.

Failure Cases and Visualizations We visualize common failure cases of our

late-fusion approach and compare it with the failure cases of TransFusion, an end-

to-end trained multi-modal detector. We find that our method fails in cases of

occlusions (where there is no 3D information) and in cases where the 2D RGB-

detector misclassifies the object. See Figure 4.5 for detailed analysis.
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Conclusion

In this work, we explore the problem of long-tailed 3D detection (LT3D), detecting

objects not only from common classes but also from many rare classes. This problem

is motivated by the operational safety of autonomous vehicles (AVs), but has broad

applications, (e.g., elder-assistive robots [54] that fetch diverse items [17] should

address LT3D). To study LT3D, we establish rigorous evaluation protocols that allow

for partial credit to better diagnose 3D detectors. We propose several algorithmic

innovations to improve LT3D, including a group-free detector head, hierarchical losses

that promote feature sharing across long-tailed classes, and a simple multimodal fusion

method that effectively combines 2D RGB-based and 3D LiDAR-based detections,

achieving significant improvements for LT3D. We find that 2D RGB detectors are

better suited for late-fusion than monocular 3D RGB detectors, matching projected

3D LiDAR detections in the 2D image-plane outperforms matching 2D RGB detections

inflated to the 3D BEV, and score claibration prior to probabilistic fusion yields

better results. Our simple late-fusion approach achieves state-of-the-art performance,

improving over prior work by 12.2% mAP.

Limitations. LT3D emphasizes object detection for rare classes which can

be safety-critical for downstream AV tasks such as motion planning and collision

avoidance. However, our work does not study how solving LT3D directly affects

these tasks. Another limitation, shared by contemporary benchmarks, is that our

setup does not consider the correlation between individual classes. For example, the

rare-class stroller is often pushed by an adult. One may argue that detecting
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5. Conclusion

adult is sufficient for safe navigation. However, edge cases can occur in the real

world where a stroller can be unattended.

Future Work. LT3D remains a challenging problem that requires further study

by the community. Building end-to-end multi-modal models that leverages the design

principles outlined in this paper may achieve better results. Further, leveraging

temporal information to interpolate missed-detections and remove false positives

in each modality can help improve late-fusion. Recent work in large-scale vision

language models [31, 78] show promising zero-shot results in detecting rare classes.

Identifying ways of incorporating foundation models into our late-fusion framework can

greatly improve LT3D. Lastly, future should consider how LT3D impacts downstream

forecasting and motion planning tasks.
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