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Abstract

In order to provide personalized assistance that is capable of adapting
to the needs of unique individuals, it is necessary to understand peoples’
preferences for different tasks. Robot assistance often assumes a static
model of the individual, while in the real world, people have different
capabilities and needs that may change over time. Learning an individ-
ual’s task preferences enables the agent to detect when the individual has
deviated from their usual behavior, and subsequently understand how
to proactively provide assistance when needed. Our work proposes an
approach to learn peoples’ preferences for commonplace real-world meal
preparation tasks from few demonstrations. We provide two learning
methods – mixture-of-experts and meta learning – that condition a model
on an individual’s preferences and determine the next step towards com-
pleting the task sequence. We evaluate our methods in an in-person user
study and data collection with a diverse population of users and real-world
kitchen environment on two different tasks. The results highlight the
importance of incorporating a representation of users’ implicit preferences
into personalized predictive models of their behavior.
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Chapter 1

Introduction

Imagine a scenario where you come back home after a long day at work, head to your

kitchen, and start to prepare dinner for yourself. You reach for a box of pasta to make

one of your usual meals, and a robot assistant is already preparing a pot of water to

boil on the stove. Later, after the meal is cooked, the robot has set the dinner table

exactly where you usually sit, in a manner that’s just how you like it. This imagined

scenario illustrates a future that we hope is possible for intelligent robot assistants

– one where seamless interaction in line with our preferences is commonplace and

natural.

In order for intelligent agents to effectively and intuitively interact with humans in

the real world, it is necessary for them to be able to act in line with individuals’ unique

preferences. Of particular importance are assistive applications, where understanding

an individual’s typical habits, behaviors, and preferences is essential to (1) personalize

a model to reflect peoples’ varying needs and abilities or (2) determine when critical

mistakes or deviations occur.

Preferences are as diverse and complex as the humans who exhibit them – for

example, they can range from discrete attributes such as deliberately choosing a

certain object over another, or be as nuanced as someone’s current mental state/mood.

Thus in this work, we constrain the definition of preferences to temporal ones, meaning

an individual’s chosen order of actions.

In recent years, preference learning has become an exciting new area of research,

with a number of efforts dedicated to learning from human feedback [6], preference
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1. Introduction

inference for assistance [32], and learning representations for implicit preferences

[3]. However, many of these approaches are not grounded in the real world, and

test on toy tasks and environments that have limited nuance or range in individuals’

preferences. They also often involve repeatedly querying the user, or require the user

to assign a score to an agent’s actions, both of which can be noisy, low signal, or

unintuitive [4].

To address these gaps, we present a method to learn peoples’ preferences from few

demonstrations by clustering them from a latent space via an autoencoder, and pair

this with a mixture of experts algorithm to predict the user’s next action in a manner

that is conditioned on their preference type. We additionally employ a meta learning

model to adapt to new preference types. Instead of continually seeking feedback from

the user, we aim to learn preferences implicitly by observing the human carrying out

the task in a natural setting, such as their own home or kitchen.

Furthermore, it is challenging to find task datasets in human-centric, real-world

environments. Such datasets are often small, lack annotations, or have limited

instances per person – thus making it challenging to learn individuals’ preferences. To

address these issues with lack of viable datasets, we present a two-fold solution: firstly,

we provide a data augmentation approach to generate large-scale simulated data that

reflects an underlying probability distribution seen in real-world data. Secondly, we

contribute a large-scale, real-world dataset of 17 people performing 2 different meal

preparation tasks, annotated with actions, timestamps, and including self-reported

preferences. The resulting 170-video dataset will be provided as an open-source

contribution.

To address the limitations in existing methods for preference learning, we present

two contributions. We first develop a method to learn implicit preference types via an

autoencoder. Secondly, we propose two modeling approaches – a mixture-of-experts

and a meta-learning algorithm – to respectively learn a preference-based model and

enable adaptation to new preference types. Each component is evaluated on both the

real-world dataset and a larger-scale simulated dataset of diverse task demonstrations.

We find that the autoencoder enables us to learn human-interpretable preference

groups in both datasets. Furthermore, our results suggest that a model conditioned

on preference type via mixture-of-experts is able to achieve better predictive accuracy

than the baseline model. Lastly, we highlight suggestions for promising future

2



1. Introduction

applications in assistive technology and human-robot interaction.

1.1 Learning Preferences for Personalized

Assistance

In order for assistive agents to effectively operate with humans, it is important that

they are capable of learning in a manner that aligns with the preferences of unique

individuals. Furthermore, to be practical in the real world, assistive agents should

be able to learn from few initial observations so as to minimize the burden on the

user. Thus we first describe a technique to learn preferences in an unsupervised

manner from real-world human data, and subsequently propose a method that learns

preferences via a mixture-of-experts or meta learning algorithm.

Understanding individual preferences is key to providing assistance to a diverse

population of users, especially in highly sensitive applications such as caregiving.

For example, consider a scenario in which a robot must learn when to intervene if a

user performs an unexpected action within a daily routine. In such a setting, it is

not always appropriate to assume that the optimal behavior is the human’s desired

behavior [5], especially if the optimal model is static, and thus cannot adapt to the

human’s preferences. However, learning a model for assistance that incorporates the

user’s unique preferences and abilities remains a challenging problem. We focus on

household tasks in order to constrain the definition of task preferences and ground

this work in a natural setting for user assistance.

1.2 Learning Preferences to Monitor Health

The population of older adults worldwide is rapidly increasing, and according to the

World Health Organization, is expected to reach 78 million individuals by 2030 [19].

In order to support this, one promising avenue is to develop technology that enables

older adults and their caretakers to maintain independent lives in their own homes

by providing assistance that detects changes in their behavior.

Among older adults, those who experience mild cognitive impairment (MCI) face

more challenges in performing household tasks independently. For example, people

3



1. Introduction

with MCI may find difficulty in remembering the next step of a meal preparation

task, or make critical mistakes that endanger themselves or their caretakers. Such

mistakes such as forgetting to turn off a stove or neglecting appliances could be more

easily noticeable if there is an accurate model of the person’s typical routines and

preferences within their home.

1.3 Real-World Datasets

There are a number of simulators for realistic environments, such as Isaac Sim, AI2-

THOR, and Virtual Home, but these present setbacks for learning preferences in a

human-centric manner. Although Isaac Sim contains the ability to simulate humans,

it lacks human-centric environments such as households or kitchens [18]. AI2-THOR

has a variety of human-centric environments to choose from – including kitchens,

bedrooms, bathrooms and living rooms – but it contains a limited action space for

interacting with the environment [16]. Virtual Home lacks a first-person interface,

which is crucial to support interaction with the simulator in a user study setting [21].

Additionally, each of these simulators experience the general issue of low fidelity in

comparison to real world environments. These factors motivate the need to carry

out real-world evaluation especially when human-centric factors, such as individuals’

preferences, are a key component.

However, the majority of real-world datasets and user studies will still face the

problem of scale of data. Thus this work additionally includes an approach to

generate simulated data at larger scale than previously described datasets. The

resulting simulated dataset aims to be an approximation to augment the underlying

real-world task dataset.

1.4 Research Contributions

• We provide a method for generating large, customizable quantities of simulated

data that approximates real-world data, and can be used to augment existing

datasets.

• We run an in-person data collection initiative, resulting in a real-world task
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dataset comprised of 17 individuals performing 2 meal preparation tasks over

5 instances each. We plan to release the resulting dataset of 170 videos as an

open-source contribution. Data from each individual is annotated with their

self-reported preferences for ground truth evaluation.

• We present an approach for learning implicit preference types via an autoencoder

combined with clustering on the latent space.

• We develop two models: (1) a mixture-of-experts model conditioned on prefer-

ence type and (2) a meta learning model that learns over a broad distribution of

different preference types, and evaluate the predictive accuracy of each algorithm

on simulated and real-world data.
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Chapter 2

Background

2.1 Defining Preferences

The concept of preferences is broad, and many current definitions of preferences are

highly task-dependent [29]. Generally, preferences can be thought of as an individual’s

usual manner of performing a task within the set of possible task execution types.

2.2 Types of Preferences

Object-Based Preferences This category covers an individual’s preferences for

specific objects in the environment. This may include particular task-dependent tools,

utensils, or ingredients that are available to the individual.

Example: someone may prefer to use chopsticks instead of a spatula to cook

scrambled eggs.

Action-Based Preferences This category encompasses an individual’s preference

for taking a specific action out of a set of other viable actions that would also complete

the task.

Example: someone may prefer to do their daily commute by biking instead of

taking public transit.

7



2. Background

Style-Based Preferences This category includes personality-based stylistic ten-

dencies for a task.

Example: someone may drive more aggressively than others in the general popula-

tion.

Temporal Preferences In a sequential or hierarchical task, an individual may pre-

fer to perform certain steps in a particular order. These are perhaps best demonstrated

in longitudinal interactions, such as day-long household routines.

Example 1: someone may prefer to add peanut butter before jelly when making a

PB&J sandwich, instead of vice versa.

Example 2: (in the context of assistive robotics) someone may usually make

their coffee before eating breakfast; thus making coffee may be indicative of the robot

proactively retrieving breakfast ingredients.

2.3 Preference Learning

Preference learning refers to the concept of computing a representation of an individ-

ual’s default manner for performing a task. By learning a representation that reflects

peoples’ preferences, we propose that it is possible to also predict their actions in a

manner that is more accurate than a general-purpose baseline model for the task.

However, we acknowledge that the definition of preferences is very broad, and

defining preferences as the subject of a learning problem is a challenging topic in

itself. We dedicate a section to an ontology of other preference types that may be

applied to future work in Section 2.2.

Among the many different types of preferences, in this work we choose to focus

on preferences as temporal patterns of behavior, i.e. the predominantly-chosen order

of the user’s actions while performing a step-by-step task, such as a daily routine or

recipe. Although the other types of preferences are also important to study, we select

temporal preferences due to the intended downstream applications of this work and

the nature of publicly-available datasets, which are further described in Section 2.6.1.
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2. Background

2.3.1 Related Work

Previous approaches to preference learning use trajectory preference queries for

feedback, and often have low signal to noise ratio, thus requiring several hundred to

several thousand trajectory segments per task per human evaluator [6, 28]. Some

works have tried to address this by optimizing for adaptation by incrementally

updating learned preferences via maximum a posteriori (MAP) estimate, inferred

from physical human perturbations [2]. However, this approach also requires repeated

querying of the human.

Other methods use a similarity-based approach to determine which of two com-

pared trajectories an individual prefers [3]. However, this approach uses binary

comparisons – i.e., the user is presented with two different instances of how the task

may be performed and asked to select which one they prefer. This provides sparse

information with limited nuance, and also places burden on the user to continually

specify their preferences.

Additionally, past works on preference learning have been tested using games, toy

problems, or in simulation, which limits the types of preferences and intuitiveness for

the participant [31]. Work by Fitzgerald et al. suggests that different query types

such as demonstrations, corrections, or preference queries have varying levels of utility

for getting feedback from people in interactive settings [9].

2.4 Mixture-of-Experts

A mixture-of-experts (MoE) model consists of a number of ”experts”, each of which

is a different network, combined with a belief weighting mechanism which is used

to update the model and subsequently select an ”expert” to process each input.

This method was first introduced in 1991 by Jacobs et al. as a supervised learning

procedure that learns how to handle a subset of a complete set of training cases [14].

MoE can be thought of as a divide-and-conquer approach to learning, which has been

noted to have advantages over deep learning methods in that it is interpretable and

less computationally complex [15].

9
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2.4.1 Related Work

Prior work has shown that by transforming action sequences into a lower-dimensional

space, one can recognize strategies without any prior knowledge of the possible

strategy types – a technique also known as strategy matching [33].

In this work, we apply strategy matching to a new task domain, and additionally

extend upon prior work by using an autoencoder instead of a Hidden Markov Model

in order to learn preference types.

2.5 Meta Learning

Meta learning is a machine learning method where a model learns a better initial

parametrization given multiple training samples, also known as ”learning to learn”

[8]. It was first introduced in 1987 by Schmidhuber as self-referential learning, where

a model receives its own weights as inputs and predicts an update for these weights

[23]. In the meta learning paradigm, a model is able to leverage all training data and

is optimized to adapt with few inputs, a method also known as few shot learning

[20, 27]. By using meta learning, we aim to train a single model that is sensitive to

changes in the input such that few gradient updates can more substantially correct

predictions in the direction of gradient loss. We apply this technique to develop a

model optimized for rapid adaptation in order to improve personalized predictions

for assistance in household tasks.

2.5.1 Related Work

Prior work in meta learning has focused primarily on classification problems such as

multi-class image recognition, object detection, and segmentation [13]. The introduc-

tion of model-agnostic meta learning (MAML) [8] has increased the applications for

meta learning towards other domains such as regression and reinforcement learning

problems. In this work, we use MAML to formulate our approach as a classification

problem with the action space of the task as the different classes that the model can

predict.

10



2. Background

2.6 Real-World Datasets

In this work, our criteria for choosing a dataset was that it must contain several

instances of one task, rather than a few instances of many tasks, in order to place the

emphasis on learning user preferences within a single activity. Additionally, it must

contain multiple instances per individual, in order to evaluate preference alignment.

We specifically looked for datasets that encompass meal preparation tasks because

recipes typically follow a predictable structure in their number and order of steps.

Despite this, many meal preparation tasks can also be completed with sufficient

variation such that distinctive temporal preferences may arise without diverging from

the end goal. For example, within a recipe for preparing vegetable stew, an individual

may prefer to peel all vegetables, then cut all vegetables, and finally add them to

the pot together; others may prefer to process each ingredient individually, i.e. first

peel/cut/add the carrots, then peel/cut/add the potatoes, and lastly peel/cut/add

the onions.

For these reasons, we chose the 50 Salads Dataset [25] as the basis for one of

the tasks. The 50 Salads Dataset contains RGB-D videos of 25 people performing

2 instances of the same salad-preparation task, yielding a total of 50 videos. The

videos include timestamped annotations, accelerometer data, and depth maps. To

create the initial dataset for this study, we extracted the raw text annotations for

each video and used these to represent each instance of the task.

However, a limitation of this dataset is its small size relative to datasets typically

used for training models. This problem is not unique to this domain, as labeled

real-world data is often difficult to find, expensive to collect, or time-consuming to

annotate. Thus in the following chapter we outline our method for addressing this

by developing a generative model of activity sequences to yield a larger, simulated

dataset for the same task.

2.6.1 Related Work

Most of the relevant datasets that we surveyed optimize for breadth of the data rather

than depth. For example, the Ego4D dataset is large at 3670 hours of video, but it

lacks multiple task instances from single individuals, thus is not ideal for learning
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2. Background

someone’s preferences [11]. Other household task datasets such as Carnegie Mellon

University Multimodal Activity (CMU-MMAC) [17] and EPIC-KITCHENS [7] also

have this limitation.

Others face the issue of lacking ground truth labels for evaluating a model. For

example, the YouCook2 dataset contains videos sourced from YouTube including

89 different recipes with an average of 22 videos per recipe, but the videos are not

annotated timestep by timestep [34]. Finally, other task datasets, such as ”Something-

something”, only have short snippets of an activity, such as an instance of someone

picking up a mug or closing a door, rather than a full end-to-end sequence of someone

performing a household routine from start to finish [10].

12

http://kitchen.cs.cmu.edu/
http://kitchen.cs.cmu.edu/
https://epic-kitchens.github.io/2023
http://youcook2.eecs.umich.edu/
https://paperswithcode.com/paper/the-something-something-video-database-for
https://paperswithcode.com/paper/the-something-something-video-database-for


Chapter 3

Methodology

3.1 Overview

In this section, we describe two categories of contributions: data-based and modeling-

based approaches. Firstly, we present a method for augmenting data and generating

a simulated dataset, in order to address some of the issues around lack of large, viable

datasets for preference learning. Secondly, we detail our collection of a real-world

task dataset comprised of 17 individuals performing two different meal preparation

tasks in a real kitchen.

In our modeling-based approaches, we describe a representation learning method

that uses an autoencoder to identify different preference types within a task dataset.

Lastly, we present two different learning approaches – mixture-of-experts and meta

learning – for action prediction that is conditioned on preference type.

3.2 Creating a Simulated Dataset

Real-world annotated data is notoriously difficult, time-consuming, and expensive

to collect, even more so for human-centric task data. To mitigate this problem, we

formulate a method to generate simulated data based on the sequences seen in an

underlying task dataset. As the first step to generating simulated data, we formulate a

Markov-model based approach to approximate the transition probability distribution

13



3. Methodology

of the original dataset.

We use the 50 Salads Dataset as the base dataset in this work. This dataset

contains 50 instances of annotated videos where 25 people prepare 2 salads each.

Before further using the data, we apply initial preprocessing in order to format the

sequences in a consistent manner for the simulated data generation algorithm. We

extract the annotations corresponding to the low-level activity for each sequence in

the dataset, merge the pre-, core-, and post- phases into a single annotation, and

eliminate adjacent duplicate annotations. The preprocessed data was organized into

a dictionary of sequences mapped to participant ID and formatted into a JSON file.

In order to closely reproduce the natural variation seen within the original dataset

and in the real-world population, we approach the simulated data generation problem

through the lens of a Markov process. We first create a probability matrix based on

the transition counts between each possible pair of annotations, or actions, in the

sequences of the original dataset. The transition probability at the (i, j)-th index

represents the probability of performing action j following action i. These counts are

then normalized so that the corresponding probabilities for each annotation sum to 1.

Using the action transition matrix, sequences are probabilistically generated via

sampling such that they are complete (i.e., achieve the task) and valid. To enforce

the validity of each generated sequence and avoid extraneous repetition, we use a

constraint tree to eliminate implausible transitions (e.g. mixing an ingredient before

it has been added to the bowl). Our task-based constraint tree allows for incomplete

or invalid sequences to be pruned, while including probabilistically unlikely sequences

to account for a broad range of preference types in the simulated dataset. High-level

pseudocode for this algorithm is provided in Algorithm 1.

Using this method, we create an augmented dataset containing simulated sequences

for the salad preparation task, which serves as our augmented training set for the

subsequent learning algorithms. Section 3.4 details the analysis of the dataset to

identify patterns of preferences within these tasks.

Additionally, it is important to note that this approach produces sequences that are

not seen in the original dataset. Furthermore, because of the constraints that we apply

within the simulated dataset generational algorithm, the task’s probability distribution

of is shifted from that of the underlying data. We mention these limitations as a

consideration for future applications of this work. Due to the inherent limitations
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3. Methodology

of simulated data, we also collect a real-world dataset described in Section 3.3 that

addresses the drawbacks (detailed in Section 2.6.1) of other datasets for preference

learning.

Algorithm 1 Simulated dataset generation algorithm

Assume: Transition probability matrix T from datasetD with annotation

set A

sequence = [start token]

while end of sequence not end token do:

next a = randomly sample A weighted by T

if next a not valid, randomly sample until next a is valid

append next a to sequence

return sequence

end while

3.3 Real-World Dataset Collection

As previously described in Section 2.6.1, it is challenging to find high-quality existing

task datasets in human-centric environments. Despite starting with the 50 Salads

Dataset, we found that this dataset was not ideal for learning preferences at the

individual user level, because it contains only two instances per participant. We

ran our own real-world data collection initiative with 17 participants performing 2

different meal preparation tasks in a real kitchen.

Our goal was for the tasks to encompass something familiar such that most people

would have prior knowledge and preferences for the task, and be able to perform the

task naturally with minimal instruction. We also chose the tasks to be simple enough

for a 1-hour session per participant, yet complex enough to possess innate variation

in personal preferences.

Based on these requirements, we selected salad preparation (similar to that of

the 50 Salads Dataset) and peanut butter and jelly sandwich preparation as the two

tasks for the data collection. Each participant performed each task 5 times, resulting

in a total of 170 videos. The data was subsequently annotated with the high-level
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actions performed at each step of the task. An in-depth report of the data collection

initiative is described in Chapter 4.

3.4 Preference Type Analysis

We formulate the concept of learning preference types as a mapping from a high

to lower-dimensional representation of task demonstrations. In order to determine

the high-level strategies in which individuals perform each of the two tasks, we

implemented two unsupervised learning methods described below, both of which aim

to learn a lower-dimensional representation of preference types from a large dataset

of task demonstrations.

The high-level idea is to learn a representation as clusters within the latent space

of the task sequences. The resulting clusters were analyzed via manually inspecting

their constituent sequences and further validated by sampling the top 5 sequences

closest to the centroid within each cluster to determine a predominant preference

type.

3.4.1 Autoencoder

The goal of this component is to learn a low-dimensional representation of the task

in latent space, then cluster into distinct preference groups. The key idea of an

autoencoder is to perform dimensionality reduction by training a neural network to

reconstruct its input [22]. Using an implementation proposed by Zhao as an extension

to prior work [33], we trained an autoencoder to assign each task sequence to a latent

variable K. Given sequential data, or task demonstrations, as input, the autoencoder

reconstructs the original sequence after summarizing the data as a fixed-length vector

in selected number of dimensions [30]. For our autoencoder we use mean squared

error (MSE) loss, the Adam optimizer with learning rate 0.001, and a 2D latent

space.

We applied K-Means clustering to the latent space in order to give rise to groups

of distinct preferences. Finally, we used the elbow method with silhouette score to

determine the optimal number of clusters as K = 3. The elbow method is a heuristic

that is used to determine the optimal number of clusters in a dataset after applying
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a dimensionality reduction method [26]. By using this approach to determine the

optimal value for K, we found that K = 3 was ideal within the simulated data, and

K = 5 was ideal within the real-world data for eliciting intuitive preference groups

without overfitting to individual people.

Further analysis by qualitative inspection indicated implicit preference types

represented by each resultant cluster. By performing cluster-wise inspection to the

resulting preference groups, we found that the clusters produced by the autoencoder

method were human-interpretable at the scale of data used in this work. We subse-

quently use this autoencoder method to generate the clusters – or preference groups

– in our proposed preference learning approach.

3.5 Models

3.5.1 Baseline

In order to benchmark the performance of both the mixture of experts and meta

learning methods, we chose to use an LSTM as the baseline model. We used an

LSTM with a sliding window over partial sequences as input. The output of the

model is a prediction for the next action towards completing the task sequence. This

baseline model was trained on an aggregate dataset of all task sequences at once,

rather than first processing the data into preference group clusters.

Our LSTM uses 4 hidden state features, 1 layer, and 19 output classes. The input

size was 95 for the simulated data and 90 for the real-world data. We use 80% of

data for training and the remaining 20% for evaluation. The model was trained over

40, 000 epochs with a learning rate of 0.0001 using cross entropy loss and the Adam

optimizer.

3.5.2 Mixture of Experts

The Mixture of Experts (MoE) paradigm is a type of algorithm where the type of

model is chosen based on a sample input [24]. In this work, we utilize and extend

upon an MoE method devised by Zhao et al. in [33].

We use a long short term memory (LSTM) network [12] as the base model for
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our approach. LSTMs are widely used for sequential modeling because they employ

an attention mechanism that learns variable-range long-term dependencies by using

previous history to inform the current prediction. Since this component aims to learn

the temporal context within a sequence, LSTMs are a viable candidate for predicting

the most probable next action within a sequential task, such as the ones included

in this study. Additionally, we apply a sliding-window modification to the LSTM in

order to account for variable-length sequences seen in real-world data. For consistent

evaluation, the MoE model uses the same parameters as described previously for the

baseline model.

An overview of this method is shown in Figure 3.1. In summary, an autoencoder

with 2-dimensional latent space is trained on a dataset of human demonstrations.

After applying K-Means on the latent space, the resultant clusters are used in a

mixture-of-experts model. This approach selects a model from a policy library of

different models, each trained on a subset of data that corresponds to a different

preference group.

3.5.3 Meta Learning

Meta learning is a paradigm where a model can ”learn to learn” [8]. In other words, its

objective is to improve an underlying learning algorithm after experiencing multiple

learning episodes. Training data for meta learning is composed of support sets, which

in our approach are the preference groups resulting from the clustering step. This

setup enables the model to be trained on the samples provided in the support sets,

then test how well it can make predictions on the query set. In this work, we use

meta learning as a means of adapting to out-of-distribution behaviors or preference

types.

Initial adaptation of this component was led by Michelle Zhao. The implementation

for our meta learning approach is extended from the learn2learn library [1], which

uses MAML as the base learner. In this algorithm, there are two types of parameter

updates – the outer loop updates the initialization of the model’s parameters and the

inner loop uses the outer loop parameters to adapt to samples seen during training.

Since this base meta learning formulation performs classification, we modify our

model to do multi-class classification of annotations from the action space of 19
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3. Methodology

Figure 3.1: Overview of the approach displaying preference type identification with
an autoencoder and preference learning via the mixture of experts algorithm. (Figure
courtesy of Michelle Zhao.)

19



3. Methodology

annotations using a fully-connected network (FCN). We train the model on a subset

of preference groups, and then provide it with the held out groups in order to evaluate

its performance on unseen preference types.

The meta learning model uses an input size of 54 with 19 output classes. The

architecture is a 4-layer FCN. We used 2 out of 3 support sets for training on the

simulated data, and 3 out of 5 for the real-world data. The model was trained over

400 epochs with a meta learning rate of α = 0.01 for the outer loop and learning rate

of β = 0.001 for the inner loop using cross entropy loss and the Adam optimizer.
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Chapter 4

Real-World Data Collection

4.1 Overview

We conducted an evaluative data collection to obtain a real-world dataset of diverse

task demonstrations. The following sections describe the study design. Our learning

algorithms were evaluated post-hoc on the annotated collected data.

4.2 Task Design

We selected two different meal preparation tasks to evaluate our method – (1)

preparing a salad and (2) preparing a peanut butter and jelly (PB & J) sandwich,

using real ingredients and utensils for both. We chose these tasks because they possess

inherent variation in manners of how they are performed – e.g. choice of utensil,

selection of ingredients, and order of steps. They are also fairly common dishes that

are presumably familiar to most people, even those who do not cook regularly.

Furthermore, we designed these tasks based on additional constraints for practi-

cality in a user study setting. Each task does not require the use of a stove, does not

require a precise recipe nor niche expertise, and the required ingredients were within

a reasonable cost for the scale of data collection. Additionally, these tasks meet

IRB-recommended safety considerations which were important factors in recruiting a

diverse population of participants for our study. Perhaps most significantly, these
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4. Real-World Data Collection

Figure 4.1: Participants’ answer to the following question: How would you describe
your primary racial group?

tasks also have relevant downstream applications to assistance, as they are proxies

for regular real-world human-centric routines that people often perform in their own

homes.

4.3 Participant Information

The participant demographics were selected to approximate the real-world popula-

tion. We recruited 17 individuals from Carnegie Mellon University and the broader

Pittsburgh community, primarily using the CBDR recruitment platform. Participant

ages ranged from 19− 82, where notably 6 participants were older adults over the

age of 50. Mean age was 37.5 years old with a standard deviation of 21.2 years. The

ratio of male- to female-identifying individuals was 11 : 6. The majority (52.9%) of

participants were students. Additional demographic information is provided in the

corresponding Figures 4.1, 4.2, 4.3.

4.4 Procedure

Participants were briefed about the study details and completed an informed consent

form in accordance with the Institutional Review Board protocol. Participants were
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4. Real-World Data Collection

Figure 4.2: Participants’ answer to the following question: What is your highest level
of education?

Figure 4.3: Participants’ answer to the following question: What is your primary
occupational status?
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4. Real-World Data Collection

Figure 4.4: Example start configuration for the salad preparation task.

given an opportunity to ask questions before proceeding with the study.

Each participant was prompted to initiate the task using the following statement:

”Please make the {salad, sandwich} naturally as if you were making a meal for

yourself in your own home.” Participants performed each of the 2 tasks 5 times each,

resulting in 10 instances per participant. Data was collected using a combination of

two cameras: one ceiling-mounted above the kitchen countertop area to provide a

third-person view, and a second head-mounted GoPro camera worn by the individual

for a first-person view. The resulting video data was annotated post-hoc, as described

in Section 4.6.

Following the study, each participant completed a post-study questionnaire con-

taining qualitative questions to reflect the measures described in Section 4.5. The

initial setup for each of the two tasks is shown in the corresponding Figures 4.4 and

4.5. The displayed examples are from the third-person camera configuration.
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Figure 4.5: Example start configuration for the sandwich preparation task.

4.5 Qualitative Evaluation

Each session concluded with a questionnaire containing the following qualitative

factors:

• Participant time spent on personal meal preparation tasks

• Consistency of participant cooking style

• Degree of preference that participant has for how they make their meals

We use these attributes to determine the extent to which each participant is

expected to have preferences for the selected tasks.

4.6 Data Annotation

Annotations are discretized as words which represent the possible action space for

each task. Figure 4.6 displays sample frames from the dataset. We define the following

action space sets for the two tasks:
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Figure 4.6: Frames captured from the real-world dataset collection.

• Salad task: {start, serve salad onto plate, add dressing, mix dressing, add salt,

add pepper, add oil, add vinegar, mix ingredients, place tomato into bowl,

place cucumber into bowl, place lettuce into bowl, place cheese into bowl, cut cheese,

cut lettuce, cut tomato, cut cucumber, peel cucumber, end}

• Sandwich task: {start, put pb on bread, put jelly on bread, spread pb on bread,

spread jelly on bread, put slices together, cut sandwich, serve sandwich onto plate,

end}

Thus the total action space size is N = 19 for the salad preparation task and

N = 9 for the sandwich preparation task. We note that this level of granularity for

annotations was chosen to fit the requirements of this study, but could be extended

to include more fine-grained annotations in future work.
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Chapter 5

Results

5.1 Overview

In this chapter, we present the results from evaluating our approaches on both the

simulated data and the real-world data; the results are organized into these respective

subsections. Within this, we first evaluate our method for learning implicit preference

types via an autoencoder. Additionally, we evaluate two approaches for predicting

an individual’s next action in a task sequence – first where the model is conditioned

on the person’s preference type using a mixture of experts model, and secondly

via meta-learning a better initial parametrization over the different preference type

distributions.

5.2 Simulated Data

We generated an augmented dataset of N = 100, 000 simulated sequences for the

salad preparation task using the approach described in 3.2. This dataset is used to

produce the results throughout this section.

5.2.1 Preference Learning via Autoencoder

Using the elbow method with silhouette score and testing K = 2 to K = 9, we

found that using K = 3 for the autoencoder yielded the optimal number of clusters.
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Baseline (Aggregate) MoE Meta Learning

Accuracy (%) 72.28 77.28 62.71

Table 5.1: Results displaying the accuracy comparison between the two learning
algorithms against the baseline aggregate model; all trained on the simulated dataset.

Group 0 Group 1 Group 2 MoE

Accuracy (%) 56.16 44.48 56.76 77.28

Table 5.2: Results comparing the accuracy between the MoE and group-specific
models; all trained on the simulated dataset.

Silhouette score analysis is shown in Figure 5.1.

The resultant clusters are displayed in Figure 5.2. In summary, the three preference

types that were found from inspecting each cluster are:

• Preparing dressing before salad

• Preparing salad then dressing, where cucumber is cut before cheese

• Preparing salad then dressing, where cheese is cut before cucumber

5.2.2 Mixture-of-Experts

Accuracy for the mixture-of-experts (MoE) model compared to the baseline and meta

learning models is shown in Table 5.1. The results for MoE compared to the three

group-specific models are shown in Table 5.2. Group-specific models were trained only

on data within a single cluster, i.e. preference type. These findings demonstrate that

the MoE model obtained higher accuracy, 77.28%, than both the baseline aggregate

model (72.28%) and models trained over individual preference groups. These results

indicate that MoE, by conditioning a model on preference type, can more accurately

predict what action an individual will perform next after being trained on a diverse

distribution of data.
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Figure 5.1: Silhouette score analysis demonstrating a clear peak at K = 3 for the
simulated data and K = 5 for the real-world data, indicating the optimal number of
clusters.

Figure 5.2: Preference groups for K = 3 on the simulated salad task data. The
red cluster represents the preference type for preparing dressing before salad; the
blue cluster represents the preference type for preparing salad then dressing, where
cucumber is cut before cheese; the green cluster represents the preference type for
preparing salad then dressing, where cheese is cut before the cucumber.
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Baseline (Aggregate) MoE Meta Learning

Accuracy (%) 80.82 94.87 68.28

Table 5.3: Results displaying the test set accuracy comparison between the two
learning algorithms – Mixture of Experts and Meta Learning – against the baseline
model. All models trained on the real-world data.

5.2.3 Meta Learning

By using meta learning in order to learn a model over a variety of preference groups

(i.e. support sets in meta learning terminology), we find that we obtain accuracy of

62.71% that shows lower performance than the baseline model’s 72.28%. The meta

learning model also results in lower performance than the MoE model when trained

over the simulated data.

5.3 Real-World Data

5.3.1 Preference Learning via Autoencoder

Using the autoencoder to learn a lower-dimensional representation over the real-world

salad task data, and subsequently applying K-Means clustering, we find that there

are K = 5 preference groups. This is validated using silhouette score analysis with

the elbow method, shown in Figure 5.1. The resulting clusters are shown in Figure

5.3.

In summary, the five preference types found from inspecting each cluster are:

• Cluster 0: Preparing vegetables then cheese, followed by dressing last

• Cluster 1: Preparing vegetables and dressing in parallel

• Cluster 2: Preparing vegetables then dressing

• Cluster 3: Preparing vegetables, then only salt/pepper for dressing

• Cluster 4: Preparing salad without cheese or dressing
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Figure 5.3: Preference groups for K = 5 on the real-world salad task data. The
semantic labels for these clusters are detailed in Section 5.3.1.

5.3.2 Mixture-of-Experts

Compared to the baseline aggregate model’s accuracy of 80.82%, the MoE model

achieves 94.87% accuracy as shown in Table 5.3. Similarly as seen within the simulated

data, these results suggest that MoE is better able to predict the next action in a task

sequence compared to the baseline model due to conditioning on preference type. The

MoE model obtained higher accuracy when trained on the real-world data, despite

being a smaller dataset than the simulated data.

5.3.3 Meta Learning

We find that the meta learning model is achieves lower predictive accuracy of 68.28%

compared to the baseline aggregate model’s 80.82% accuracy. As seen within the

simulated data results, the meta learning model obtained lower accuracy than the

MoE approach. However, as was the case for MoE, our meta learning model also

resulted in higher performance when trained on real-world data.
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5.4 User Study Qualitative Observations

5.4.1 Overview

We found that the majority (58.8%) of participants reported that they had some

preferences within their meal preparation habits, yet only 35.3% reported that they

had strong preferences. The remainder, 5.9%, reported that they do not have

preferences within their meal preparation habits. These results are presented in

Figure 5.6. Additional participant responses to qualitative survey questions are

displayed in Figures 5.4, 5.5, and 5.7.

5.4.2 Salad Task

In the following subsection, we provide a per-participant analysis of corresponding

preference type. We additionally describe participant consistency in order to under-

stand whether individuals behave in a manner that reflects our assumption on how

to learn preferences in the real world.

Consistency, reported in the right-most column, is determined by whether the

participant performs the task in the same manner (reflected by all demonstrations

belonging to one cluster). If the majority of participant sequences belong to a single

cluster, they are reported as mostly consistent. If the demonstrations belong to three

or more clusters, the participant is reported as being inconsistent.

These findings indicate that the majority – 10 out of 17 participants – behaved

consistently across each instance of the task. Two participants behaved inconsis-

tently. Out of the five participants that behaved in a mostly consistent manner, two

individuals (participants 1 and 16) performed the task differently for only the first

instance, then proceeded to execute the task consistently for the remainder of the

study session. If individuals who behave consistently and mostly consistently are

included in the definition of consistent behavior, then the self-reported participant

responses in Figure 5.5 (88.2%, or 15 out of 17 individuals) support these results.

The results suggest that most people behave in a consistent manner for the meal

preparation task examined in this study. For participants who do not act consistently,

future work in preference learning could address this challenge by investigating new
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Participant ID Instance 1 Instance 2 Instance 3 Instance 4 Instance 5 Consistent

1 Cluster 3 Cluster 1 Cluster 1 Cluster 1 Cluster 1 Mostly
2 Cluster 2 Cluster 2 Cluster 0 Cluster 1 Cluster 1 No
3 Cluster 0 Cluster 0 Cluster 0 Cluster 0 Cluster 0 Yes
4 Cluster 2 Cluster 0 Cluster 3 Cluster 3 Cluster 3 No
5 Cluster 2 Cluster 2 Cluster 2 Cluster 2 Cluster 2 Yes
6 Cluster 1 Cluster 1 Cluster 1 Cluster 1 Cluster 1 Yes
7 Cluster 1 Cluster 1 Cluster 1 Cluster 1 Cluster 1 Yes
8 Cluster 4 Cluster 4 Cluster 4 Cluster 4 Cluster 4 Yes
9 Cluster 1 Cluster 3 Cluster 1 Cluster 3 Cluster 1 Mostly
10 Cluster 2 Cluster 2 Cluster 2 Cluster 2 Cluster 2 Yes
11 Cluster 3 Cluster 3 Cluster 3 Cluster 3 Cluster 3 Yes
12 Cluster 1 Cluster 1 Cluster 1 Cluster 1 Cluster 1 Yes
13 Cluster 1 Cluster 1 Cluster 1 Cluster 1 Cluster 1 Yes
14 Cluster 2 Cluster 2 Cluster 1 Cluster 2 Cluster 1 Mostly
15 Cluster 2 Cluster 2 Cluster 2 Cluster 2 Cluster 2 Yes
16 Cluster 2 Cluster 1 Cluster 1 Cluster 1 Cluster 1 Mostly
17 Cluster 1 Cluster 2 Cluster 1 Cluster 1 Cluster 1 Mostly

Table 5.4: Per-participant preference type analysis.

learning paradigms or learning to adapt over longer time horizons of observing the

user performing the task.

5.4.3 Survey Results

The self-reported results from the post-study questionnaire show that the majority

of individuals (73.7%) follow the ”salad then dressing” preference type in the salad

preparation task. The demonstrations in the actual collected dataset support this

result. A majority, 64.7%, of participants reported that they either agree or strongly

agree to spending a significant amount of time cooking, and nearly all (94.1%) of

participants stated that they had either some or strong preferences for how they

perform meal preparation.
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Figure 5.4: Participant responses to the prompt, ”Choose the method which best
describes how you typically make salad at home”.

Figure 5.5: Participant responses to the prompt, ”Choose the option that best
describes your style in the kitchen”.
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Figure 5.6: Participant responses to the prompt, ”Choose the option that best
describes your meal preparation habits”.

Figure 5.7: Participant responses to the prompt, ”I spend a significant amount of
time cooking”.
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Chapter 6

Future Work

Potential directions for future work include running a subsequent user study with

humans in the loop in order to qualitatively evaluate whether the model reflects

individuals’ preferences, not solely on the basis of the model’s predictive accuracy.

It could be insightful to further assess this approach from additional human-centric

perspectives (such as trust, relevance, intuitiveness) in order to measure the model’s

alignment with the human’s preferences. Evaluating on other types of tasks, such

as the sandwich preparation data provided in this work, could also provide an

understanding of how well this approach may work on different problems.

Furthermore, long-term future work could include an embodied agent, such as a

social robot, which interacts with the participant through providing verbal suggestions

from the model’s predictions or providing proactive assistance. This component would

also be well-matched with a more comprehensive qualitative evaluation to understand

whether the suggestions provided by the assistive robot are indeed considered relevant,

intuitive, and helpful by the user.

Additionally, this work could be applied to alternative demographics of partic-

ipants, such as older adults or those with memory impairment issues. For such

applications, it could be insightful to study routines over longer time horizons, such

as those that occur over multiple days or weeks. This could also potentially enable

insights on monitoring deviations in peoples’ routines as a means of detecting health

anomalies. Another direction that could arise from this is ensuring that the resultant

preference types are semantically understandable, as they are in this work, even as
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the model’s input data becomes more complex. Such safety considerations would be

especially important in health-focused applications.

We would also like for future work to include a different, per-participant evaluation

scheme for both the mixture of experts and meta learning methods, in which each

model is provided with 1 additional demonstration from each individual, and the

resulting fine-tuned model is compared to a baseline model without per-participant

fine-tuning.

Lastly, this work explores preference learning from a temporal context. In the

future, it would be interesting to include additional features, a more fine-grained

action space of annotations, or other data modalities in the model to determine

whether it is possible to learn a more robust model of individuals’ preferences. Such

extensions would also require a large dataset of labeled data, with repeated task

instances per individual; we hope that our work provides steps in the right direction

towards this objective.

Limitations

While learning individuals’ preferences is an important problem, there are some

critical assumptions we make in this study that should be further investigated in later

work, namely: while demonstrations are typically more informative than repeatedly

querying the human, not all humans behave rationally. Thus it is important to avoid

overestimating rational or consistent behavior when deploying interactive preference-

based systems in the future.

By nature of transforming a high-dimensional state space to a lower-dimensional

representation, the learned implicit representations may not always be easily inter-

pretable nor semantically understandable preference types. This would be particularly

evident for more complex tasks, especially those with less deterministic outcomes.

Additionally, although the study was conducted in the real world, in-person, and

in a real kitchen, it is important to note certain factors that may have influenced

the participants to act in a manner that is different from how they do in their own

homes – for example, the user study kitchen was set up in a simplified manner that

could be different from what users are accustomed to. In the future, a followup

study could address this by running the full data collection and online evaluation
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process in individuals’ own homes. Furthermore, people often don’t repeat things

over and over in the real world as they did in our data collection process, thus a

more realistic followup study would be conducted over a longer time frame to observe

people performing routine household tasks across multiple days or weeks.

Lastly, people do not always have a clear or definitive internal model of their own

preferences, so including a more robust ground truth human-in-the-loop evaluation

would be an important next step. Accounting for this qualitative component would

enable us to determine whether the approaches outlined in this work are indeed better

– and subjectively preferred – beyond simply using accuracy as a metric.
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Chapter 7

Conclusion

In conclusion, this work presents a methodology for learning and evaluating implicit

preference types. We present an approach to generate customizable quantities of

simulated human task sequences, starting from existing real-world datasets, which

are smaller and challenging to find for preference learning problems. Additionally, we

share a 170-video dataset comprised of real humans performing multiple instances of

two different real-world, commonplace household tasks. We build upon prior work by

applying strategy matching techniques to preference identification from real-world

task data, and further demonstrate that learning a representation by transforming

trajectories into lower-dimensional output via an autoencoder produces clusters that

represent human-interpretable implicit preference types.

Furthermore, we present two learning methods for action prediction conditioned on

preference type – mixture of experts and meta learning. We compare our approaches

on both the simulated data and real-world data, and evaluate their effectiveness in

both data regimes. In the first method, mixture-of-experts, we find that the model

is capable of more accurately predicting the next action towards completing a task

sequence compared to a baseline model that is agnostic to preference type. In the

second approach, meta learning, we find that the model obtains lower predictive

accuracy than the baseline aggregate model. We postulate that this is due to the

evaluation scheme used in this work, but future directions may extend this by using

meta learning to evaluate on a per-individual basis. Additionally, for both learning

methods, we find that the models achieve higher performance when trained on real-
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world data, indicating that for both models being trained on a smaller, yet higher

quality and more realistic dataset yields better accuracy than equivalent models

trained on simulated data. This highlights the limitations of using simulated data

and the importance of using real human data in human-centric domains, such as

preference learning in household tasks. While the MoE results are promising and

show improvement over the baseline model, we suggest directions for future work

that build upon these findings by integrating a human-in-the-loop evaluation in order

to consider additional factors, such as subjective preference alignment.

Ultimately, we posit that human preferences are an important factor to consider

and integrate into future research. We hope that the contributions outlined in this

work pave the way for future applications that integrate preferences into interactive

learning scenarios between humans and their robot partners.
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