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Abstract

Multi-Agent Path Finding (MAPF) and Combined Target-Assignment and Path-
Finding problem (TAPF) arise in many applications such as robotics, computer gam-
ing, warehouse automation and traffic management at road intersections. Combined
Target-Assignment and Path-Finding problem (TAPF) requires simultaneously as-
signing targets to agents and planning collision-free paths for agents from their start
locations to their assigned targets. As a leading approach to address TAPF, Conflict-
Based Search with Target Assignment (CBS-TA) leverages both K-best target as-
signments to create multiple search trees and Conflict-Based Search (CBS) to resolve
collisions in each search tree. While being able to find an optimal solution, CBS-TA
suffers from scalability due to the duplicated collision resolution in multiple trees and
the expensive computation of K-best assignments. We therefore develop Incremental
Target Assignment Conflict-Based Search (ITA-CBS) to bypass these two computa-
tional bottlenecks. ITA-CBS generates only a single search tree and avoids computing
K-best assignments by incrementally computing new 1-best assignments during the
search. We show that, in theory, ITA-CBS is guaranteed to find an optimal solution
and, in practice, is computationally efficient.
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Ch. 1 – Introduction

1.1 Introduction

Multi-Agent Path Finding problem (MAPF) requires planning collision-free paths
for multiple agents from their respective start locations to pre-assigned target lo-
cations while minimizing the sum of individual path costs [1]. Solving MAPF to
optimality is NP-hard [2], and many algorithms have been developed to handle this
computational challenge. Among them, Conflict-Based Search (CBS) [3] is an efficient
approach that finds an optimal solution to MAPF.

This work considers a variant of MAPF that is often referred to as Combined
Target-Assignment and Path-Finding problem (TAPF) [4, 5], where the target lo-
cations of the agents are not pre-assigned but need to be allocated during the com-
putation: TAPF requires assigning each agent a unique target (location) out of a
pre-specified set of candidate targets and then finds collision-free paths for the agents
so that the sum of path costs is minimized. When the candidate target set of each
agent contains only a single target, TAPF becomes MAPF and is thus NP-hard.

MAPF and TAPF arise in many applications such as robotics [6], computer gam-
ing [7], warehouse automation [8], traffic management at road intersections [9]. Sev-
eral attempts [5, 10] have been made to solve TAPF optimally by leveraging MAPF
algorithms such as CBS [3]. Among them, a leading approach is Conflict-Based Search
with Target Assignment (CBS-TA) [5], which simultaneously explores different tar-
get assignments and creates multiple search trees (i.e., a CBS forest), while planning
collision-free paths with respect to each assignment.

Specifically, given a target assignment, CBS-TA leverages a CBS-like search to
construct a constraint tree to resolve collisions. In the meanwhile, CBS-TA leverages
a K-best target assignment technique [11, 12] to compute the next cheapest target
assignment (by increasing K to K+1, intuitively speaking) during the CBS-like search
when necessary, which creates a new constraint tree. Consequently, CBS-TA gener-
ates multiple constraint trees by intelligently interleaving the CBS-like search and
K-best target assignment and is able to compute an optimal solution for TAPF.

CBS-TA suffers from scalability as the number of agents or targets increases for
the following two reasons. First, CBS-TA may resolve the same collision in multi-
ple search trees many times, leading to duplicated computation and low search effi-
ciency. Second, CBS-TA involves solving a K-best target assignment problem, which
is often computationally expensive. This work thus attempts to bypass these two
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Ch. 1 – Introduction

computational bottlenecks by exploring a new framework for integrating CBS with
target assignment. The resulting algorithm is called Incremental Target Assignment
Conflict-Based Search (ITA-CBS).

1.2 Thesis Contribution

In this thesis, we present a new algorithm for rapidly solving Combined Target-
Assignment and Path-Finding problem (TAPF) optimally. The primary characteris-
tics of our proposed approach are as follows:

1. ITA-CBS is complete and optimal.

2. ITA-CBS adopts a unique strategy wherein it creates only a single search tree
during the search process. This attribute is thus able to avoid duplicated colli-
sion resolution in different trees as in CBS-TA.

3. ITA-CBS completely avoids solving the K-best assignment problem, and in-
stead, ITA-CBS updates the target assignment in an incremental manner during
the CBS-like search, which further reduces the computational effort.

Our experimental results show significant improvement in efficiency: ITA-CBS is
faster than CBS-TA in 96.1% testcases, 5 times faster in 38.7% testcases, and 100
times faster in 5.6% testcases than CBS-TA among 6,334 effective testcases which are
solved by at least one algorithm.
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Ch. 2 – Background

2.1 Multi-Agent Path Finding Problem (MAPF)

Multi-Agent Path Finding problem (MAPF) can be viewed as a special case of
TAPF where each agent can be assigned to only one target location. MAPF has a
long history [13, 14] and remains an active research problem [15, 16]. A variety of
methods are developed to address MAPF, trading off completeness and optimality
for runtime efficiency. These methods range from decoupled methods [14, 17, 18],
which plan a path for each agent independently and synthesize the paths, to coupled
methods [1], where all agents are planned together. Other methods [3, 19] consider
agents that are planned independently at first and then together only when needed
in order to resolve agent-agent conflicts. Conflict-Based Search (CBS) [3] is optimal
with respect to flowtime and forms the foundation of this paper.

CBS is a two-level search algorithm that finds an optimal solution with minimum
flowtime. Its low level plans a shortest path for an agent from its start location to
target location. Its high level searches a binary Constraint Tree (CT). Each CT node
H = (c, Ω, π) includes a scalar flowtime(cost) c, constraint set Ω and plan π which is
a set of paths for all agents from their start locations to target locations, satisfying
Ω. It is obvious that root CT node has an empty constraint set Ω and has the lowest
c among all CT nodes within a single Constraint Tree.

In each H, CBS only select and resolve the first conflict, even when multiple colli-
sions occur in the plan. To resolve a conflict in H, we can formulate two constraints,
wherein each constraint prohibits one agent from executing its originally intended
action at timestep t, and then add them individually to two successor CT nodes.
Here we also define two types of constraints, namely vertex constraint (i, v, t) that
prohibits agent i from occupying vertex v at timestep t and edge constraint (i, u, v, t)
that prohibits agent i from going from vertex u to vertex v at timestep t. These two
child CT nodes will be added to a priority queue sorted by cost. By maintaining this
priority queue, it can be proved that CBS is optimal with respect to the flowtime.

2.2 Assignment Problem

Given N agents, M tasks, and a N × M matrix Mc denoting the corresponding
assignment cost of each task to each agent, the task assignment problem [20–22] seeks
to allocate the tasks to agents such that each agent is assigned to a unique task and
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the total assignment cost is minimized. The assignment problem is also known as the
maximum weighted bipartite matching problem and it is a widely-studied problem
applicable to many domains [20]. Popular methods to address this problem include
Hungarian algorithm [21, 22] and Successive Shortest Path (SSP) algorithm [23, 24].
Additionally, the Dynamic Hungarian algorithm [25] seeks to quickly re-compute an
optimal assignment based on the existing assignment, when some entries change in
matrix Mc.

The Hungarian algorithm formulates the assignment problem as a bipartite graph
matching problem and solves it by finding a minimum-cost perfect matching with a
runtime complexity of O(n3), where n = max(N, M). In our TAPF problem setting,
the time complexity is O(M3). SSP algorithm formulates the assignment problem
as a minimum-cost flow problem and solves it via the well-known Dijkstra algorithm
with a runtime complexity of O(fn2), f is the max flow which is equal to N in
Assignment Problem, so the complexity is O(NM2). Dynamic Hungarian runs faster
than computing an assignment from scratch after matrix Mc changes [25]. And its
time complexity is O(kn2), where k is the number of changed row/column in Mc.

2.3 Target-Assignment and Path-Finding Problem
(TAPF)

Target-Assignment and Path-Finding (TAPF) can be viewed as a combination
of the MAPF problem and the assignment problem. While conventional MAPF has
a pre-defined target location for each agent, TAPF and its variants [5, 26–32] seek
to simultaneously allocate the targets to agents and find conflict-free paths for the
agents. Of close relevance to this work is CBS-TA [5], which is a leading algorithm
in the literature that solves TAPF to optimality respect to flowtime. Some work
[26, 33–36] follows the similar CBS forest idea, but none of them is designed to solve
TAPF optimally.

CBS-TA operates on this principle: a fixed Target Assignment solution transforms
a TAPF problem into a MAPF problem, and each MAPF problem has a binary
Constraint Tree (CT). CBS-TA maintains one priority queue to store nodes from all
CTs and generates root CT nodes for different target assignments lazily. Since a root
CT node has the lowest flowtime for the given TA, if it is higher than all CT nodes in
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our priority queue, we do not expand it. Therefore, CBS-TA generates root CT nodes
in ascending order of their costs and only needs to generate the next root CT node
if the current one is expanded. That is, given a root CT node with a TA, CBS-TA
needs to compute the next best TA efficiently. So CBS-TA can efficiently explores all
nodes of various CTs (CBS forest) by enumerating every TA solution.

Each CT node in CBS-TA, denoted H = (c, Ω, π, r, πta), has two extra fields
compared to CBS algorithm: a root flag r signifying if the node is a root, and a TA
solution πta. CBS-TA keeps a priority queue for storing H from all CTs and lazily
generates root H for varying πta. Motivated by K-best task assignment algorithms [11,
12] and SSP with Dijkstra algorithm, CBS-TA finds the succeeding optimal TA with
O(N2M2).

7
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3.1 Problem Definition

We define the Combined Target-Assignment and Path-Finding problem (TAPF)
as follows. Let I = {1, 2, · · · , N} denote a set of N agents. Let G = (V, E) denote an
undirected graph, where each vertex v ∈ V represents a possible location of an agent
in the workspace, and each edge e ∈ E is a unit-length edge between two vertices
that moves an agent from one vertex to the other. Self-loop edges are allowed, which
represent “wait-in-place” actions. Each agent i ∈ I has a unique start location si ∈ V .
Let {gj ∈ V |j ∈ {1, 2, ..., M}}, M ≥ N , denote the set of all M target locations. Let
A denote a binary N ×M matrix, where each entry aij (the i-th row and j-th column
in A) is one if agent i is eligible to be assigned to target gj and zero otherwise. Our
task is to assign each agent i a unique target gj while ensuring aij = 1 and plan
corresponding collision-free paths.

Each action of agents, either waiting in place or moving to an adjacent vertex,
takes a time unit. Let pi = [vi

0, vi
1, ..., vi

T i ], vi
k ∈ V denote a path of agent i from

vi
0 to vi

T i with the arrival time T i. This work considers two types of agent-agent
conflicts along their paths. The first type is the vertex conflict, where two agents i, j

occupy the same vertex at the same time. The second type is the edge conflict, where
two agents go through the same edge from opposite directions at the same time (i.e.
vi

t = vj
t+1 and vi

t+1 = vj
t ).

The goal of the TAPF problem is to find a set of paths {pi|i ∈ I} for all agents
such that, for each agent i:

1. vi
0 = si (i.e., agent i starts from its start location);

2. vi
t = gj, ∀t ∈ [T i, max{T k|∀k ∈ I}] and aij = 1 (i.e., agent i stops at a target

location gj, which is eligible to be assigned to i, until all agents reach their
goals);

3. Every pair of adjacent vertices in path pi is either identical or connected by an
edge (i.e., vi

k = vi
k+1 ∨ (vi

k, vi
k+1) ∈ E, ∀k ∈ [0, T i − 1]);

4. {pi|i ∈ I} is conflict-free;

5. The flowtime ∑N
i=1 T i is minimized.

Note that no two agents can share the same target location, otherwise their paths
must have conflicts.
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3.2 Incremental Target Assignment Conflict-Based
Search (ITA-CBS)

Our ITA-CBS, as shown in Algorithms 1 and 2, has the same low-level shortest
path search as CBS and CBS-TA algorithm, but its high-level search is different. Each
CT node H = (c, Ω, π, πta, Mc) in ITA-CBS has two additional fields compared to that
in CBS: a TA (i.e., Target Assignment) solution and a N × M cost matrix Mc, where
each entry describes the length of the shortest path from the corresponding start to
target locations that satisfies the constraint set Ω. ITA-CBS begins by creating the
first CT node with an empty Ω and the corresponding Mc and πta (Algorithm 1;
Line 1-6). ITA-CBS maintains one priority queue to store all CT nodes that are
generated during the search (Algorithm 1; Line 7-9, 24). ITA-CBS selects a CT
node Hcur with the minimum cost from the priority queue and checks if it includes
a conflict-free solution. If so, ITA-CBS is guaranteed to find an optimal solution
(Algorithm 1; Line 10-13). Otherwise, ITA-CBS uses the first detected conflict to
create two new constraints (Algorithm 1; Line 14) as in CBS. Then ITA-CBS creates
two child nodes identical to the current node H and adds each constraint respectively
into the constraint set of the two child nodes (Algorithm 1; Line 15-21).

For each new node Q (with a constraint on agent i added), the low-level search is
invoked for agent i to recompute its optimal paths subject to the new constraint set
from its start to all possible targets (Algorithm 2). The cost of these planned paths
are then used to update the cost matrix Mc in Q. Since Mc changes, the TA solution
πta should also be updated. We use dynamic Hungarian algorithm [25] to get the
assignment solution more efficiently, and compute the solution path and total cost
(Algorithm 1; Line 22-24).

3.3 ITA-CBS Example

An example of our algorithm is shown in Figure 3.1. The map has 5 vertices,
a, b, c, d, e, and there are 2 agents 1 and 2. Agent 1’s target location set is {d, e} and
agent 2’s set is {c, e}. Each blue rounded rectangle in our figure represents a CT node

10
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Algorithm 1 ITA-CBS Algorithm
Input: Graph, start and target locations
Output: Optimal path for each agent

1: OPEN = PriorityQueue()
2: Ω0 = ∅
3: M0

c = findAllShortestPath(Ω0)
4: π0

ta = assignAlgorithm(M0
c )

5: c0, π0 = getSolutionPath(π0
ta, M0

c )
6: H0 = {c0, Ω0, π0, π0

ta, M0
c }

7: Insert H0 to OPEN
8: while OPEN not empty do
9: Hcur = OPEN front node; OPEN.pop()

10: Validate the paths in Hcur until a conflict occurs
11: if Hcur has no conflict then
12: return Hcur.π

13: Conflict = (i, j, vt−1
i , vt

i , vt−1
j , vt

j, t) from Hcur

14: for each agent i in Conflict do
15: Q = Hcur

16: if Conflict is vertex collision then
17: Q.Ω = Q.Ω ∪ (i, vt

i , t)
18: else
19: Q.Ω = Q.Ω ∪ (i, vt−1

i , vt
i , t)

20: Q.Mc = updateCostMatrix(Q.Mc, Q.Ω)
21: Q.πta = assignAlgorithm(Q.Mc)
22: Q.c, Q.π = getSolutionPath(Q.πta, Q.Mc)
23: Insert Q to OPEN
24: return No valid solution

Algorithm 2 updateCostMatrix
Input: costMatrix M in

c , constraint set Ω
Output: M out

c

1: idx = Ω.last.i
2: M out

c = M in
c

3: for each target location j do
4: M out

c [idx][j] = shortestPathSearch(idx, j)
5: return M out

c
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Figure 3.1: (1) Leftmost: A simple map with 5 cells (a, b, c, d, e) and 2 agents (1, 2).
Agent 1’s target location set is {d, e} and agent 2’s set is {c, e}. (2) Each blue rounded
rectangle represents a CT node H. Within each CT node, we have: a constraint set
Ω, a cost matrix Mc in the upper left corner, which has been updated with Ω, a
TA result πta calculated from the cost matrix, a path diagram in the right corner
representing a possible path solution, and the total cost c on the bottom.

12



Ch. 3 – Problem Definition and Method

H. Within each H, we have a constraint set Ω, a cost matrix M associated with Ω,
a TA solution πta, and the total cost (flowtime) c.

Initially, we create the first node H1. Conflicts can arise in our initial solution,
so we use the first conflict, where agent 1 and agent 2 collide at timestep 2, to
establish 2 constraints. Then we create 2 new CT nodes (H2, H3) and add these 2
constraints into each constraint set separately and update each cost matrix with the
new constraint. The new cost matrix only has one row different from the previous
cost matrix. Because the cost matrix changed, we will obtain a new TA result by
dynamic Hungarian algorithm. Then we push new H into our priority queue.

In Fig. 3.1, both new nodes H2 and H3 have the same total cost. Consider H2

is first selected from the priority queue for expansion. Two new nodes H4, H5 are
generated from H2. Among {H3, H4, H5}, H3 has the smallest flowtime and is thus
selected for expansion, which leads to H6, H7. Now, the priority queue has 4 nodes:
{H4, H5, H6, H7}, and H4, H5, H7 have the same lowest flowtime 6.

When H4 is selected for expansion, it has 2 equal TAs: {1 → d, 2 → c} and
{1 → d, 2 → e}. In ITA-CBS, ties are broken at random and consider the case
{1 → d, 2 → e} without losing generality. In this case, there is no conflict, and ITA-
CBS returns the solution: {1 → d, 2 → e} with flowtime is 6, which is an optimal
solution.

3.4 Incremental Target Assignment

During the search, when a new constraint is added to an agent i, only the row
in the cost matrix corresponding to agent i may change. One can run Hungarian
algorithm from scratch based on the new cost matrix to compute the assignment.
However, it’s too costly for ITA-CBS to execute the algorithm at each CT node.
To expedite the computation, we employ the dynamic Hungarian algorithm [25, 37]
to reuse previous assignment and quickly update the assignment after cost matrix
changes.

Specifically, Hungarian algorithm assigns each vertex i a value l(i) which should
satisfy Mc(u, v) ≤ l(u)+l(v), where u, v are different vertices, Mc is the cost matrix. A
special subgraph is formed that includes all vertices and edges meeting the condition
Mc(u, v) = l(u) + l(v). [22] proved that if the special subgraph’s matching is a
perfect matching, this matching is the optimal matching in original weight graph.

13
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Hungarian algorithm aims to adjust vertex values to achieve a perfect match in the
special subgraph. For dynamic Hungarian algorithm, if k rows and columns are
changed, these k affected vertexes will be unmatched. Then dynamic Hungarian
algorithm will adjust the vertex value l(i) for each affected vertex i, ensuring that
Mc(u, v) ≤ l(u)+l(v) still holds. The complexity will be O(kM2) to get a new optimal
matching. In ITA-CBS, time complexity is O(M2) since a new conflict only impacts
one row in Mc, which is faster than original Hungarian algorithm with O(M3).

3.5 Properties of ITA-CBS

This section shows that ITA-CBS is guaranteed to find an optimal TAPF solution
if one exists.

Lemma 3.5.1. The cost of each CT node is a lower bound on the flowtime of all
solutions that satisfy the node’s constraints.

Proof Sketch. Since the entries of the cost matrix of a CT node correspond to the
shortest paths that ignore collisions, for any solution that satisfies the node’s con-
straints, its flowtime cannot be smaller than the flowtime of its corresponding target
assignment. Since we find the best target assignment at each node, its flowtime is a
lower bound on the flowtime of all solutions that satisfy the node’s constraints. It is
easy to prove that the cost of a CT node is equal to the flowtime of its best target
assignment. Therefore, the lemma holds.

Lemma 3.5.2. Every collision-free set of paths that satisfies the constraints of a CT
node must also satisfy at least one of its child nodes’ constraints.

Proof Sketch. We prove by contradiction and assume that there is a collision-free
solution {pi} that satisfies the constraints of a node Hx but does not satisfy the
constraints of either child node. Suppose the collision chosen to resolve in Hx is
between agents i and j at vertex v (or edge e) at timestep t. Since each child node
has only one additional constraint compared to node Hx, we know that {pi} violates
both additional constraints. That is, both path pi and path pj visit vertex v (or edge
e) at timestep t, which leads to a collision and contradicts the assumption that {pi}
is collision-free. Therefore, the lemma holds.
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Lemma 3.5.3. At any iteration of the high-level search, every collision-free solution
must satisfy at least one CT node’s constraints in the OPEN list.

Proof Sketch. Since the root CT node has no constraints, all solutions satisfy the
constraints of the root CT node. When we pop a CT node from the OPEN list, we
will insert its child nodes back into the OPEN list. According to Lemma 3.5.3, this
lemma holds.

Theorem 3.5.4. ITA-CBS guarantees to find an optimal TAPF solution if exists.

Proof Sketch. According to Lemmas 3.5.1 and 3.5.3, the cost of the CT node with the
smallest cost in the OPEN list is a lower bound on the flowtime of all collision-free
solutions. Therefore, when ITA-CBS terminates, its returned solution is guaranteed
to be optimal.
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We evaluate the performance of ITA-CBS and CBS-TA. We implement ITA-CBS
and CBS-TA in C++ based on the existing CBS-TA implementation.1 Our CBS-TA
implementation outperforms the original based on our tests. To our best knowledge,
CBS-TA is the only existing work that solves TAPF optimally for flowtime, and thus
we only compare ITA-CBS with CBS-TA in our experiments. We classify a testcase
as a failure if no solution is found within 30 seconds and we mark the runtime for this
testcase as 30 seconds. All experiments were executed on a computer with Ubuntu
20.04.1, AMD Ryzen 3990X 64-Core Processor, 64G RAM with 2133 MHz.

We use 8 different maps from MAPF Benchmark Sets [38]: (1) den312d is from
video game Dragon Age Origins (DAO), (2) random-32-32-10 and empty-32-32 are
open grids with and without random obstacles, (3) maze-32-32-2 is a maze-like grid,
(4) room-64-64-8 is a room-like grid, (5) warehouse-10-20-10-2-1 is inspired by real-
world autonomous warehouse applications and (6) orz900d and Boston-0-256 are the
first and second largest maps among all benchmark map files. All maps are shown in
Figure 4.1 and Figure 4.2.

4.1 Test Scenarios

We develop 2 test scenarios: (1) Group Test: We divide all agents into groups, and
each group shares the same target location set. (2) Common Target Test: Each agent
receives a target set of equal size. All agents have some common target locations.
We evaluate the performance of the ITA-CBS and CBS-TA algorithms by altering
the proportion of common targets in target sets. In each testcase, we randomly select
the start and goal locations for every agent. We generate a set of 20 testcases for a
given map using a specific test configuration. The success rate is calculated as the
percentage of completed tests out of the total 20 test cases.

1The CBS-TA source code is publicly available at https://github.com/whoenig/
libMultiRobotPlanning. We will open source our code at https://github.com/TachikakaMin.

17

https://github.com/whoenig/libMultiRobotPlanning
https://github.com/whoenig/libMultiRobotPlanning
https://github.com/TachikakaMin


Ch. 4 – Results and Discussion

(a) den312d (b) room-64-64-8

(c) empty-32-32 (d) maze-32-32-2

Figure 4.1: (1) den312d is from video game Dragon Age Origins (DAO), (2) random-
32-32-10 is open grids with random obstacles, (3) empty-32-32 is open grids without
any obstacle, (4) maze-32-32-2 is a maze-like grid
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(a) random-32-32-10 (b) warehouse-10-20-10-2-1

(c) orz900d (d) Boston-0-256

Figure 4.2: (1) room-64-64-8 is a room-like grid, (2) warehouse-10-20-10-2-1 is inspired
by real-world autonomous warehouse applications, (3) orz900d is the largest map
among all benchmark map files, (4) Boston-0-256 is a city-like grid and is the second
largest map in mapf benchmark dataset
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Figure 4.3: Result for group test and common target test. G ITA-CBS and G CBS-
TA represent group test result using black lines. Others are common target test
results. Numbers before algorithm names in legends are common target percentages.
000 represents there is no common target for all agents and 100 represents all agents
share the same target set. The map is in the bottom left corner of each subgraph.
The X-axis is agent number and the Y-axis is success rate of algorithms. For most
test scenarios, ITA-CBS outperforms CBS-TA.
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4.1.1 Group Test

In this test scenario, we put every 5 agents into one group, and the agents in
each group share 5 different target locations. Different groups have different target
locations. We increase the agent number with 5 intervals and all numbers can be found
in Figure 4.3. Since groups do not share the same target locations, testcases grow
increasingly complicated as the number of agents increases. The black lines reflect
the success rates of both algorithms. Figure 4.3 shows that ITA-CBS outperformed
CBS-TA on all test maps.

4.1.2 Common Target Test

In this test scenario, we give each agent one target set with a fixed size and adjust
the proportion of common targets. The size of the fixed target set is determined by
dividing the total valid grid count of the map by the maximum number of agents. For
the maze map, agent numbers vary from 15 to 35 with an increment of 5. For other
maps, the agent number is from 15 to 60 with an increment of 5. Correspondingly,
the target set sizes are {15, 15, 80, 40, 15, 50, 20, 20} for {empty, random, warehouse,
den312d, maze, room, orz900d, boston}. The percentage of common targets among
all targets are: 0, 30%, 60% and 100%. Figure 4.3 shows that as common targets
increase, the total success rates decrease, and ITA-CBS outperformed the CBS-TA
under most proportions.

4.2 Test Overall Situation

We also show all testcases in Figure 4.4. The X-axis represents ITA-CBS running
time in seconds, and the Y-axis represents CBS-TA algorithm running time. We have
a total of 7,600 testcases, including 5,134 testcases both algorithms solved, 1,191
testcases ITA-CBS solved only, 9 testcases CBS-TA solved only and 1266 testcases
both algorithms failed.. For the 6,334 effective testcases which are solved by at least
one algorithm, ITA-CBS is faster in 96.1% testcases, 5 times faster in 38.7% testcases,
and 100 times faster in 5.6% testcases than CBS-TA.
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Figure 4.4: All testcases running time for ITA-CBS and CBS-TA. The X-axis repre-
sents ITA-CBS running time in seconds, and the Y-axis represents CBS-TA algorithm
running time. We record their running time as 30s for timeout testcases, so there is
a line in the figure top. ITA-CBS is faster in 96.1% testcases, 5 times faster in 38.7%
testcases, and 100 times faster in 5.6% testcases than CBS-TA among 6,334 effective
testcases.
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4.3 Program Profile

For this section, all time and CT node number related data are from the previous 2
scenarios’ test data. For this test, we only use 5,134 testcases in which both algorithms
successfully find optimal solutions within the given runtime limit and take the average
of these data.

4.3.1 Running Time of Various Parts

Now we show the average running time for various parts of each algorithm pro-
gram in Figure 4.5. We divide the program running time into 4 parts: time of target
assignment, time of low-level path search, and time of collision detaction and other
time. The average time for CBS-TA and ITA-CBS are {1.2s, 0.51s, 0.22s, 0.058s} and
{0.006s, 0.36s, 0.032s, 0.027s}. This result shows that our dynamic Hungarian algo-
rithm largely reduced the time taken by target assignment. Because ITA-CBS and
CBS-TA may have different numbers of CT nodes which may result in an unfair com-
parison of target assignment, we also show their target assignment average runtime
in Figure 4.6. The figure shows that ITA-CBS is an order of magnitude faster than
CBS-TA. And for time of collision detaction, since this action will be invoked for each
CT node, the result matches the CT node numbers in Figure 4.6.

4.3.2 The number of Constraint Tree (CT) nodes and CTs

Figure 4.6 also shows the numbers of CT nodes and Constraint Trees(CTs) for
each test case. CBS-TA runs target assignment only when it needs a new CT, and
ITA-CBS runs it in every CT node update. So we compare the number of ITA-CBS
CT nodes with CBS-TA’s numbers of CTs and CT nodes. The result shows that
even comparing the number of ITA-CBS CT nodes with CBS-TA CTs, ITA-CBS
has fewer target assignment than CBS-TA, which can imply constraints in low-level
search can reduce target assignment search space. We also found the ratio of the
root node number and total CT node number may be very high for CBS-TA. For
all 5,134 testcases, the ratio will be 37.7% with 2226 mean TA times compare with
ITA-CBS 862 times. This result explains CBS-TA has a very large TA partition in
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0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Mean Time

ITACBS
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Comparison of Mean Times

TA Time
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Collision Detaction time
Other Time

Figure 4.5: TA Time (time of target assignment), Search Time (time of low-
level shortest path search), Collision detection Time and Other Time. The
average time for CBS-TA and ITA-CBS are {1.2s, 0.51s, 0.22s, 0.058s} and
{0.006s, 0.36s, 0.032s, 0.027s}.
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Figure 4.6: Left subfigure: X-axis is ITA-CBS per TA time and Y-axis is CBS-TA per
TA time, and almost all tests ITA-CBS dynamic Hungarian algorithm outperforms
CBS-TA SSP algorithm. Middle subfigure: X-axis is ITA-CBS CT node number and
Y-axis is CBS CT node number. Right subfigure: X-axis is ITA-CBS TA times equal
to total CT node number and Y-axis is CBS-TA root node number which is equal to
its TA times. This shows CBS has more root CT nodes and requires more calls to
the TA algorithm.
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total runtime.

4.4 Limitation

In this section, we address certain limitations observed during our experiments.
A predominant issue shared by all CBS algorithms is that the selection order of CT
nodes with identical costs can significantly impact the overall performance. In all ex-
periments referenced earlier, we employed the default comparison function from the
Boost library for CT nodes with equal costs. Subsequently, we will introduce two dis-
tinct comparison functions and their respective experimental results to demonstrate
the profound impact of selection order on the outcomes. Firstly, every CT node is
assigned an increasing index number upon its creation. The initial comparison func-
tion prioritizes CT nodes with smaller index numbers when two nodes share the same
cost, this function is termed ”bfs”. Conversely, the second function selects the CT
node with the larger index number, and we refer to it as ”dfs”.

We present the running times of two ITA-CBS versions using different comparison
functions across 7600 test cases in Section 4.4. Clearly, the dfs version outperforms the
bfs version. When examining the CT node counts for these two versions in Section 4.4,
we observed that in some test cases, the bfs version has an order of magnitude (two
to three times more) CT nodes than the dfs version. This illustrates that the search
order profoundly influences the number of CT nodes, leading to notable disparities
in the final runtime performance.

Another limitation of ITA-CBS, when contrasted with CBS-TA, is the necessity to
store a cost matrix within each CT node. A new TA solution must be recalculated in
each CT node. Common sub-optimal CBS variants, like ECBS or ECBS-TA, utilize
epsilon a-star (ϵ-A∗ search) integrated with an auxiliary score function for bounded
sub-optimal shortest path searches. This scoring mechanism primarily hinges on the
conflict number between the new path and pre-existing ones. Every CT node in ITA-
CBS has its own TA solution. This makes using the regular ϵ-A∗ search to find the
best path difficult. Because TA solutions can change, old conflict numbers might be
based on out-of-date TA solutions. This is a big problem and should be considered
when creating a new algorithm based on ITA-CBS.
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Figure 4.7: Left subfigure: The X-axis represents the running time of the ITA-CBS
dfs version, while the Y-axis denotes the running time of the ITA-CBS bfs version.
Each point corresponds to a single testcase. Right subfigure: The X-axis indicates
the number of CT nodes in the ITA-CBS dfs version, and the Y-axis represents the
ratio of CT node numbers between the bfs and dfs versions. A ratio greater than
one suggests that the bfs version has more CT nodes, whereas a ratio less than one
indicates that the dfs version has more CT nodes.
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5.1 Conclusion and Future Work

This work develops a new algorithm called Incremental Target Assignment CBS
(ITA-CBS) to solve the TAPF problem to optimality. We show that our algorithm
(1) avoids duplicate effort in conflict resolution and (2) updates target assignment
incrementally, thus leading to guarantees of optimality as well as efficient computa-
tion, as attensted by our experimental results. ITA-CBS differs from the previous
leading algorithm CBS-TA in the following 2 aspects. First, ITA-CBS creates only
a single constraint tree during the search and is thus able to avoid duplicated con-
flict resolution in different trees as in CBS-TA. Second, ITA-CBS avoids solving the
K-best assignment problem, and instead, ITA-CBS updates the target assignment in
an incremental manner during the CBS-like search, which further reduces the com-
putational effort. We show that ITA-CBS is guaranteed to find an optimal solution
to TAPF and verify the algorithm with extensive tests. The numerical results show
that our ITA-CBS is faster in 96.1% testcases, 5 times faster in 38.7% testcases, and
100 times faster in 5.6% testcases than CBS-TA in 6,334 effective testcases.

In terms of future developments, we intend to incorporate parallel techniques into
our ITA-CBS algorithm. Given that ITA-CBS operates on a single binary constraint
tree, where each CT node is only associated with its parent node, it presents a ripe
opportunity for parallelism. Additionally, we propose to explore the development of a
suboptimal version of ITA-CBS and investigate the application of various optimization
methods within our algorithm. These proposed advancements hold the potential to
extend the application of ITA-CBS to realistic, complex scenarios. Specifically, they
could aid in the planning and navigation of robots operating in dynamic and uncertain
environments, such as warehouses.
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