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Abstract

Remote sensing technologies can provide an automated approach
to monitor and analyze conditions in the forest environment over
a period of time for forest maintenance and wildfire mitigation
efforts. In particular, unmanned aerial vehicles (UAVs) are a
promising remote sensing modality since they can traverse uneven
terrain and provide on-demand high-resolution surveys of the
environment with various sensors.

In this work, we present the mechanical design and system inte-
gration of a multi-sensing payload to harness such capabilities of
UAVs and collect meaningful data in forest environments with the
ultimate aim of localizing clusters of flammable vegetation. Our
payload primarily consists of LiDAR, visual, and IMU sensors.
We use pose information from implementing a keyframe-based
SLAM algorithm on data, collected using our payload, to globally
register semantically labeled point clouds. Since the pose updates
from the keyframe-based SLAM system are sparse compared to
the semantically labeled point clouds, we implement a relative
frame pose correction interpolation method that uses keyframe
poses as constraints to derive corrected relative frame poses for
registration. We demonstrate our approach to real-world data
collected using our sensing payload on a UAV operating in forest
environments.
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Chapter 1

Introduction

In recent years, climate change has been a key driver in increasing the number

of wildfires due to the rise in global temperature and drastic weather changes

[28, 31]. Prolonged periods of higher temperatures and droughts create highly

combustible material in the forest which allows wildfires to thrive. These

conditions can cause wildfires to become more intense, frequent, and long-

lasting when left untreated, [19, 45]. Wildfires and the resulting irreversible

damage can be difficult to prevent and control without well-maintained and

active measures to monitor and manage the forest. However, orchestrating

systematic measures to control wildfires is especially challenging since forest

environments are typically large in size and the labor involved in preventa-

tive maintenance procedures is particularly labor intensive. Furthermore,

the danger posed by addressing wildfires on-the-fly is highly laborious and

dangerous.

Monitoring and managing forest fires by using remote sensing technologies

is an effective approach to studying the conditions and changes over large

geographic areas over a period or at a given time [11, 25]. Satellite imagery

has been a popular method of remote sensing due to its ability to cover large

regions. Past efforts at utilizing remote sensing to address the prevalence of
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1. Introduction

wildfires have commonly used satellite imagery to map fuel types [36, 38, 47],

burned areas [14, 32], vegetation recovery [46], assessments of fire risk [13, 44],

fire/burn severity [34, 40], and detection of wildfires [9, 62]. While satellite

imagery has previously been used for forest fire detection [10], and risk zone

mapping [41], the high operational costs and low spatial resolution can make

relying solely on this method to be inept in providing timely, precise mapping.

Unmanned aerial vehicles (UAVs) have shown promise as a remote sensing

approach since they can cover large areas and provide high-resolution surveys

of the environment on-demand with various sensing modalities (i.e., visual,

thermal, spectral, or laser range). They are especially useful for tasks that

require collecting information on difficult or dangerous to-access areas. Past

researchers have examined using UAVs to help in fire-fighting [53, 61], scout

and detect fires [12, 66], or capture data of the fire for fire modeling [59].

An alternative yet effective approach is to mitigate wildfires by reducing the

accumulation of highly combustible biomass in the forest environment. This

combustible biomass ranges from smaller biomass such as dried pine needles,

grasses, shrubs, and small twigs, to larger wood pieces, downed trees, and logs

[22]. Robotic forestry maintenance can play a key role in prevention tasks,

especially using a combination of aerial and ground vehicles since the forest

environment can be quite vast in size. Recently, researchers have proposed and

investigated a collaborative system in which a UAV will be used to survey the

environment to generate a multi-layer map comprising information including

traversability and areas with an accumulation of combustible material, and

an unmanned ground vehicle will receive this information and remove the

highly combustible material from the forest [6, 16, 54]. Works following this

have developed a perception system for an unmanned ground vehicle (UGV)

[6] and for a UAV [54] to generate a semantically labeled mapping of the

forest environment, indicating classes including ”fuel” or highly combustible

material, canopies, and trunks.

This thesis aims to expand on the research of the works [6, 54] by developing
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1. Introduction

a perception system for robotic systems, particularly UAVs, with a focus on

applying this to the forestry domain. The perception system includes the

hardware consisting of a suite of sensors, and an integrated Simultaneous

Localization and Mapping (SLAM) and semantic mapping system which is

used to generate a multi-layered mapping of the forest environment with

semantic labels localizing fuel clusters.

1.1 Summary of Contributions

In summary, our contributions are: (1) a custom-designed modular sensing

payload that includes visual, inertial, and LiDAR modalities; (2) and the

integration of SLAM and semantic mapping system with a pose correction

approach so that a dense globally registered map with semantic labels of fuel

clusters can be generated.

This thesis is organized as follows:

• Chapter 2 provides a background on using unmanned aerial vehicles

independently or in conjunction with unmanned ground vehicles for

forest fire management. Furthermore, this chapter also discusses the

existing works in SLAM and mapping frameworks.

• Chapter 3 details the sensing payload that was designed for our work,

including the mechanical design, system hardware, and assembly process.

• Chapter 4 provides an overview of the state-of-the-art Lidar Inertial

Odometry via Smoothing and Mapping (LIO-SAM), which is the SLAM

algorithm used in this study.

• Chapter 5 discusses the semantic mapping system and the implemented

pose correction approach.

• Chapter 6 follows with experiments and testing of the SLAM and

mapping system discussed in the previous two chapters.

• Chapter 7 reviews the results of implementing our system on our

3



1. Introduction

datasets.

• Finally, Chapter 8 ends with concluding notes on the future direction

of this research.
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Chapter 2

Background

2.1 Autonomous Robotic Systems for

Forestry Applications

Autonomous robotic systems present an attractive alternative to manual

workforce in the field of forestry for applications such as environmental

preservation, monitoring, inventory operations, and planting, pruning, and

harvesting [4, 42]. In addition, these systems could also be used for search

and rescue and disaster management in forest environments. Many mobile

robot platforms, including wheeled, tracked and legged robots that com-

prise unmanned ground vehicles (UGVs) can navigate along trails in forest

environments. While steep, uneven terrain and impassible ground from ex-

cessive vegetation and wetlands can present difficulties to UGVs [23], these

terrain challenges can be easily navigated with unmanned aerial vehicles

(UAVs). When used together, UGVs and UAVs are appealing options to

use in forest environments: both robots can be equipped with sensors (i.e.,

RGB-D, multispectral, and thermal cameras, LiDAR, IMU, etc.), cover large

regions in the forest, and create high-resolution maps of under-the-canopy

and over-the-canopy surveys.
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2. Background

There has been a growing effort to enable autonomous robotic platforms

to address the prevalence of large-scale wildfires in the United States and

Europe in recent years [35, 51]. Robots can play a key role in replacing

humans in tasks that are otherwise too physically demanding or dangerous

to mitigate or control wildfires. Many researchers have considered using

robots for a more active wildfire relief, including fire-fighting [5, 30, 52,

58]. Forestry maintenance can have a significant impact on controlling the

prevalence of wildfires since multiple studies have attributed the increase in

wildfire frequency and duration to climate change, with one of the key factors

being longer dry seasons which render vegetation to be highly combustible

[57]. Researchers have mapped potential fire-prone regions with combustible

vegetation using manual or remote sensing techniques (i.e., satellite imagery).

More recently, Couceiro et al. [17] have proposed using a collaborative system

of robotics in which a UAV will survey the environment and generate a

map that contains information on fire-prone regions with dry vegetation and

relay this information over to a UGV to clear the region of the combustible

vegetation. Additional works followed to enable this area of research [6, 50, 54].

2.2 Simultaneous Localization and Mapping

for Robotic Systems

A fundamental requirement to successfully deploy autonomous robotic systems

for forestry applications is for robots to perceive and navigate the forest

environment, which is often accomplished using mapping techniques. The

robot estimates its state using its suite of sensors and simultaneously generates

a mapping of the environment to use as a reference for localizing and planning.

The map, at its basis, captures low-level information such as spatial features

of the environment, but it can also contain high-level information that the

robot can use to achieve high-level tasks. For the robot to be able to use

the map for tasks in real-time, all the data structures and operations used to

6



2. Background

store and access the map must be lightweight and computationally efficient.

Implementing an autonomous framework in a forest environment is chal-

lenging since: (1) GPS signals can be weaker in certain areas of the forest,

especially under dense forest canopies. Using differential or Real Time Kine-

matics (RTK) GPS would require reliable communication with a base station;

(2) the environment dynamic (e.g., changing lighting conditions throughout

the day, moving objects in the scene such as leaves, etc); (3) the environment

can be cluttered.

Automating survey methods that involve deploying autonomous robotic

systems to navigate in the field requires the robots to have a robust Simul-

taneous Localization and Mapping (SLAM) system to estimate their state

in 3D space. Over the years, SLAM research has matured with the develop-

ment of different systems based on various combinations of sensor modalities

[18]. SLAM systems relying on LiDAR sensor measurements can be used

to capture very fine details and generate a 3D map with a large field of

view. LiDAR-based systems are invariant to lighting conditions, however, it is

susceptible to unstructured environments, especially with repeating features

[49]. Visual-based SLAM systems can provide rich information at a lower

price point and weight but fail in environments where rich texture information

is lacking and is sensitive to changes in lighting conditions, viewpoints, and

sudden rapid movements [8]. LiDAR and visual modalities are often fused

together with IMU measurements to improve the SLAM system’s performance

since IMU is unaffected by the environment’s visual and structural features

and can provide high-frequency precise pose estimation [18]. However, since

there are noise and bias in IMU sensors, errors and drift can accumulate over

time. The fusion of different sensing modalities can account for each of the

individual sensor’s weaknesses.

Generally, various fusion frameworks of SLAM algorithms are classified

as loosely coupled and tightly coupled schemes. In loosely-coupled sensor

fusion frameworks, the sensor data are processed independently by individual
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2. Background

sensor-specific modules which provide their own estimation of the robot’s

pose. Loosely coupled frameworks provide flexibility in choosing specific

sensor modalities which make it easier to integrate new sensors into the

system. The sensor fusion step is accomplished at a higher level when

sensor outputs are combined with sensor registration or probabilistic fusion

algorithms. LiDAR Odometry and Mapping (LOAM) [67] is a state-of-the-

art loosely-coupled LiDAR and inertial-based SLAM algorithm. In tightly-

coupled sensor fusion frameworks, sensor data from different modalities are

jointly processed and combined at a lower level, usually through a filtering or

optimization framework, to estimate the robot’s pose and update the map.

However, tightly-coupled frameworks require more complex algorithms and

computational resources to achieve joint estimation and optimization. The

LiDAR odometry via smoothing and mapping (LIO-SAM) [55] is a tightly-

coupled LiDAR and inertial-based SLAM algorithm which expands on the

LOAM framework by including loop closure methods and feedback from

absolute measurements such as the GPS and compass heading. Works have

also looked into fusing LiDAR, visual, and inertial modalities, such as [56]

which featured visual-inertial odometry (VIO) system and a LiDAR odometry

(LO) system. The VIO subsystem is tightly-coupled and serves as a motion

model for the LiDAR mapping which dewarps LiDAR points and registers

the scans to the global map.

2.3 Mapping Representations

Fusing semantic information is especially important for forest fire mitigation

efforts as it allows a 3D representation containing classification information

such as the location of fuel clusters and other classes with respect to a

globally-registered map of the forest environment. While semantic SLAM has

gained traction over the recent years and has been applied in areas such as

autonomous driving or assistive robotics, implementing SLAM with semantic
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2. Background

labels, including fuel clusters, directly into the forest domain is still in its

early stages.

Several approaches have been studied to map 3D environments. Earlier

works represent the environment using point clouds, elevation maps [26, 48],

multi-level surface maps [60], and in a volumetric manner [37, 39]. Among

these, the latter approach has gained traction since it can be used to represent

obstacle-free and previously unexplored places, are more memory-efficient,

and can fuse multiple measurements in a probabilistic manner to account

for sensor noise. In this approach, 3D space is divided into equally-sized

cubic volumes such as voxels, with each voxel storing the probability of

occupancy [39]. The voxel at the highest resolution is known as the leaf node.

[37] developed this avenue of work with octrees for 3D mapping, which is a

hierarchical data structure that recursively divides the 3D space into eight

octants and can allow queries at different resolutions. Following this, [27]

developed OctoMap, in which the voxels (or nodes) in the octree, store the

log-odds occupancy value to indicate whether a node is occupied, free, or

unknown. The use of log-odds occupancy can better handle sensor noise and

dynamic environments. The log-odds occupancy value is clamped to a value

to allow for pruning which happens when all eight of the node’s children are

the same. Pruning the tree leads to a smaller tree so that traversing the tree

is easier and memory usage is less. Using octree-based mapping allows for

explicit representation of free-space and unmapped areas, which is important

for exploration and collision avoidance tasks. However, creating an OctoMap

requires more computational resources than point-based representations due

to every depth measurement being ray-casted into the map.
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Chapter 3

Sensing Payload Design

3.1 System Overview

We developed a multi-sensor payload to implement our SLAM and semantic

mapping framework in the forest environment, as shown in Figure 3.1. Our

implementation draws inspiration from previous works [56], [55] and features

the combination of a LiDAR, an inertial measurement unit (IMU), and a

stereo camera pair tightly coupled in a factor graph scheme to derive 6DOF

pose information and 3D mapping of the environment using point clouds. We

chose to include all three sensors in our sensing payload to have a broad range

of sensing modalities with different fields of view, and spectral characteristics

and to account for situations where either of the sensors is susceptible to poor

performance. The aerial platforms we used in this study are the commercial

drones, DJI M600 Pro, and Freefly Alta X, due to their abilities to carry

larger payloads while sustaining longer flight times, as shown in Figure 3.2.

11
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Power Distribution Board

NVIDIA Jetson Xavier Development Kit

Time Synchronization Board

Multispectral Camera

IMU

LiDAR

Stereo Cameras

Ethernet Switch

Intel Core i7 NUC

Voltage Regulator

Figure 3.1: Multi-sensor payload

(a) (b)

Figure 3.2: Aerial platforms with sensing payload mounted: (a) DJI M600
Pro (b) Freefly Alta X

3.2 Design Requirements

The sensing payload will primarily be mounted onto an aerial platform.

Therefore, the design of the payload factors in the key requirement of being

low-weight and compact. A lighter payload will result in longer flight times.

Furthermore, a compact design will minimize the impact of adverse motion

of the UAV during flight. Additional design requirements hold to enable the

payload’s components to be accessible and conducive to experimental tests,

12



3. Sensing Payload Design

Figure 3.3: Estimated flight times for the DJI M600 Pro[2]

Figure 3.4: Estimated flight times for the Freefly Alta-X [3]

13
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and allow the payload to be integrated with the chosen aerial platforms. The

design requirements are summarized as follows:

1. Component placement: The stereo cameras need to be distanced

with a baseline of 25.0 cm, according to the desired depth of field

calculations. The IMU should ideally be close to the center of mass of

the payload. Furthermore, the components of the payload can be easily

accessed and removed. Finally, the ports of the components, which are

required for operation, can be easily accessed.

2. Structure and form factor: The design should be compact and the

center of mass of the payload is as close to the center of the payload as

the height where the axis of mounting is. The structure of the payload is

lightweight for mounting onto the aerial platform and robust to support

the components and sustain environmental and operating conditions.

3. Mounting: The payload can be easily mounted and unmounted onto

an aerial platform without interference, especially if it is mounted below

so that the landing gear can still be used. The design of the payload

should also have a mechanism to maintain and keep track of pitch angles

allowing the payload to collect data at different orientations, ranging

from horizontal level to nadir.

14
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3.3 Constraints

There were a number of constraints considered during the design process,

including the following:

1. Aerial platform: The two aerial platforms considered are the DJI

M600 Pro and the Freefly Alta X, as shown in Figure 3.2. These two

aerial platforms are larger and capable of supporting larger payloads.

The flight times are documented in Tables 3.2 and 3.1, and Figures 3.4

and 3.3.

2. Safety of operation: Mounting additional components on the UAV

should not significantly change the center of gravity of the UAV since

doing so would result in unfavorable effects on the UAV’s stability.

Furthermore, components added on should not interfere with the signals

and accessibility of the other components.

3. Vibration: Vibration is present during flight and can influence sensor

measurements. To mitigate the effects of vibration, including the

loosening of components, components were constrained very tightly

with split lock washers or with internal tooth washers and additional

Loctite. Furthermore, the vibration isolator unit was used when flying

with the Free Fly Alta X drone.

Table 3.1: DJI M600 Pro specifications

Specification Value
Weight* 9.5 kg
Max takeoff weight 15.5 kg
Diameter** 1668 mm
Battery capacity 4.5 Ah
Battery voltage 22.2 V
Hovering time 32 min (no payload), 16 min (6 kg payload)
* with six TB47S batteries
** including propellers

15
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Table 3.2: Freefly Alta X specifications

Specification Value
Weight* 19.8 kg
Max takeoff weight 34.86 kg
Diameter** 2273 mm
Battery capacity 16 Ah
Battery voltage 44.4 V
Hovering time 50 min (no payload), 26.6 min (6.8 kg pay-

load)
* with two 16 Ah batteries
** including propellers

3.4 System Hardware

Our sensing payload primarily comprises an inertial measurement unit (VN-

200 Rugged GNSS/INS), a three-dimensional laser range sensor with 32

channels (Velodyne VLP-32), a 20.2 Megapixel stereo camera with 8.5 mm

focal length lenses (Allied Vision Alvium 1800U-2040c), a multispectral

camera (Mapir Survey3W, R, G, NIR), two onboard computers (NVIDIA

Jetson Xavier Development Kit and the Intel NUC 11 Core i7), an ethernet

switch (BotBlox GigaBlox), voltage regulator board (Vishay SIC438AEVB-B),

and a custom time synchronization board.

Table 3.3: Sensors and operation frequency

Sensor Name Sensor Type Frequency (Hz)
VN-200 Rugged GNSS/INS IMU 400
Velodyne VLP-32C LiDAR 10
Allied Vision Alvium 1800 U-
2040c

RGB camera 10

Mapir Survey 3 multispectral camera 15
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3.4.1 Sensor Selection

Components were selected based on their performance, form factor, and

weight. An ethernet switch (BotBlox, GigaBlox) was used so that sensor

information can be exchanged between the two onboard computers. Table 3.3

shows the frequencies of all the sensor components included in the payload.

LiDAR

We have compared multiple LiDARs, such as the Velodyne Puck-32MR, Velo-

dyne Puck LITE, and Velodyne Ultra Puck, due to their superior performance.

Ultimately, the LiDAR selected is the Velodyne Ultra Puck (VLP-32C), as

shown in Figure 3.5. This LiDAR model is commonly used for state-of-the-art

robotic systems with the capability to perform SLAM due to its performance

and the ability to have a denser point cloud representation of the map. The

Velodyne Ultra Puck was chosen among the other options since it has a

compact form factor and can produce 32 channels to provide a full horizontal

view of the environment and generate accurate real-time 3D point cloud data

with a range of 200 m. In the forestry domain, the range and accuracy of this

particular LiDAR are excellent as a range of experiments, including under

and over-canopy surveys will be conducted.

Figure 3.5: Velodyne VLP-32c
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Table 3.4: Specifications for the LiDAR

Specifications Values
Number of channels 32
Range 200 m
Accuracy ± 3 cm
Horizontal field of view 360◦

Vertical field of view 40◦

Angular resolution (horizontal/azimuth) 0.1◦ − 0.4◦

Mass 925 g

Inertial Measurement Unit

Since we are implementing SLAM algorithms with our payload and fusing

IMU measurements with other sensor measurements, we are opting for a

robust, high-performance IMU. Furthermore, since we are collecting data on

our payload attached to a UAV flying in the forest environment, we are also

aiming to choose an IMU that can handle such conditions present. Two IMU

models stand out which are the Xsens Mti 30 AHRS and the Vectornav (VN)

200 Rugged GNSS/INSS. Ultimately, the VN-200 Rugged GNSS/INS was

selected since it offered a high heading, and pitch/roll accuracy, a small form

factor, and is lightweight. The VN-200 Rugged GNSS/INS is a combination

of MEMS inertial sensors and a high-sensitivity GNSS receiver. Having the

option of the GNSS receiver would be beneficial to provide ground truth data.

Figure 3.6: VN-200 Rugged GNSS/INS
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Table 3.5: Specifications for the IMU

Specifications Values
Horizontal position accuracy 1 m RMS
Vertical position accuracy 1.5 m RMS
Angular resolution 0.001◦

Velocity accuracy <0.05 m/s RMS
Heading accuracy 0.2◦

Pitch/roll accuracy 0.03◦

In-run bias stability gyroscope <10◦/h
Mass 16 g
GPS Yes

Stereo Cameras

The stereo cameras that were chosen in this study are the the Allied Vision

Alvium 1800 U-2040 with the TECHSPEC 8.5 mm fixed focal length lens.

This camera has a Sony IMX541 CMOS sensor, which is a high resolution

sensor. The maximum frame rate is at 21 fps (however, as shown in Table

3.3, during operation, the frequency is 10 fps). Figure 3.9 shows the field

of view achieved when the object distance is 0.5 − 1.0 m away, with various

focal lengths. This focal length was chosen because it was appropriate for

the proximity the UAV will be flying to objects (i.e., trees, canopy, ground,

etc) in the forest environment while providing a wide-angle of view and

lower magnification. A wider view allows the UAV to capture representative

imagery of the environment. The baseline of the stereo pair was chosen to be

25.0 cm.

Figure 3.7: Allied Vision Alvium
1800 U-2040c

Figure 3.8: TECHSPEC 8.5 mm C
Series fixed focal length lens
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Table 3.6: Specifications for the stereo cameras

Specifications Values
Sensor type CMOS
Sensor model Sony IMX541
Sensor size 14.10 mm × 10.30 mm
Pixel size 2.74 ν× 2.74 ν
Resolution 4512 pixels (H) × 4512 pixels (V)
Max frame rate at full resolution 21 fps at 450 MByte/s, Mono8
Mass 65 g
Mass of lens 80 g

Figure 3.9: Alvium 1800 U-2040m/c with Type 1.1 (17.5 mm diagonal)
sensors: focal length vs. field of view [1]

Multispectral Camera

Multispectral cameras are used to measure light emissions and can be used

to aid in fuel mapping and vegetation classification in forests. We chose

the Mapir Survey 3W camera which has wide lenses and Red, Green, and

NIR bands. In the forest environment, this spectrum is especially useful

for detecting dry and flammable vegetation. This camera features a rolling

shutter and a resolution of 12 Megapixels.
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Figure 3.10: Mapir Survey 3W multispectral camera (RGN, NDVI)

3.4.2 Computers

We decided to include the two onboard computers, namely the NVIDIA Jetson

Xavier NX Development Kit and the Intel NUC 11 Core i7 (NUC11PAHi7

Panther Canyon Mini PC i7-1165G7), to divide the computing load for

recording and processing the data. These two computers were chosen because

they have excellent computational capabilities and the connection interfaces

allow the integration of the other components of the payload into the system.

Furthermore, their small form factor and low power consumption make these

two computers desirable for a UAV payload for forestry applications.

The NVIDIA Jetson Xavier NX Development Kit was chosen to run

machine learning models. The Xavier has the NVIDIA Volta architecture

with 384 NVIDIA CUDA cores and 48 Tensor cores, and the 6-core NVIDIA

Carmel ARM v8.2 64-bit CPU. The Intel NUC 11 computer was intended

to handle all the heavier CPU calculations (i.e., SLAM processes). This

computer’s processor is the 11th Generation Intel Core i7-1165G7 processor

2.8 GHz 4.7 GHz Turbo, which has 4 cores, 8 threads, and 12 MB Cache.
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(a) (b)

Figure 3.11: Onboard computers: (a) NVIDIA Jetson Xavier NX Development
Kit, (b) Intel NUC 11

3.4.3 Ethernet Switch

The ethernet switch was used as a router to connect the two onboard computers

together with the time synchronization board and the SSH port. This

allowed information and data acquisition between the two computers to be

synchronized. The ethernet switch that was used is the GigaBlox Small

GigaBit Switch, which is the most lightweight and has the smallest form

factor among many of the ethernet switchboards available.

Figure 3.12: BotBlox GigaBlox
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3.4.4 Synchronization Board

Figure 3.13: Custom synchronization board

Time synchronization among the sensors and computers is a critical issue

and has a significant impact on the quality of the SLAM system. Since we had

two separate onboard computers, a time synchronization board is necessary

to synchronize the time between the two. Furthermore, we needed a method

to trigger the stereo cameras. We designed a custom time synchronization

board featuring a microcontroller, Teensy 4.1 Development Board, that was

used to synchronize the two onboard computers, and therefore the sensors

connected, such as the LiDAR, IMU, and cameras by simulating Global

Positioning System (GPS) signals, namely, pulse per second (PPS) signals and

National Marine Electronics Association (NMEA) messages. NMEA messages

are a type of formatted data that is supported by all GPS manufacturers

and includes information such as position, velocity, and time. Having the

microcontroller mimic GPS signals is desirable since forest environments

can contain certain areas which would cause the GPS’ PPS signal to be

unreliable. Furthermore, the time synchronization board also contains the DC-

DC converters: PDQ30-Q24-S12-D (12V, 30W) and Mornsun URB2405MT-

3WR3 (5V, 3W).

The NVIDIA Jetson Xavier computer receives NMEA messages via serial

communication and the pulse-per-second (PPS) signal which is the main clock

source. The GPSD service is a service used to process GPS data from a

receiver and is used to read the NMEA strings and the PPS signals so that

they can be usable. The system time is synchronized with the NMEA strings
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and PPS signal by using the implementation of the Network Time Protocol

(NTP) called chrony. Chrony is typically used to synchronize the system clock

across different NTP servers.

3.4.5 Voltage Regulator

A voltage regulator board was used so that the appropriate voltage is dis-

tributed to the respective components. Figure 3.15 and Table 3.7 detail the

wiring and the voltage specifications for all components, respectively. The

wiring was designed so that the sensing payload can be powered by the UAV’s

batteries. This would decrease the total weight of the payload since a separate

battery is not required.

Figure 3.14: Vishay SIC438AEVB-B

Table 3.7: Voltage specifications for components

Component Voltage (V)
IMU 3.2 - 5.5
LiDAR 10.5 - 18..0
Stereo cameras 5.0
Multispectral camera 5.0
Xavier 9.0 - 20.0
Intel NUC 12.0 - 19.0
Ethernet board 5.0 - 60.0
Synchronization board 18.0 - 36.0
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Figure 3.15: Overview of voltage breakdown among components

Figure 3.16: Overview of connection type among components
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Figure 3.17: Overview of ROS connection among components

3.4.6 Wiring

The multi-sensor payload acquires its power from the drone’s battery. As

shown in Figure 3.15, the aerial platform, namely the DJI M600 Pro, provides

a voltage of 22.2 V, which is regulated using the power distribution board to

12 V for components such as the stereo cameras, Xavier board, the ethernet

board, and the IMU. The remaining components, such as the intel NUC,

and the LiDAR can operate on the unregulated 22.2 V. We note that the

Freefly Alta X does not need a voltage regulator since it is able to regulate

the voltage of the batteries to the appropriate voltages.

The ethernet board allows information to be communicated between the

xavier and the NUC computers. The two stereo cameras are connected

to the NUC computer, and the UAV’s built-in GPS (DJI SDK, etc). The

LiDAR, NUC and the Xavier are connected to the ethernet board. The

IMU, multispetral camera, and the synchronization board are connected to

the Xavier. The batteries of the drone can provide 22.2V for both aerial

platforms. Hence, the NUC and LiDAR can directly be connected to the
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drone’s batteries, while the remaining components need to be connected to

a voltage distribution board that regularizes the voltages to suitable values.

Figure 3.16 shows the connection type, and Figure 3.17 displays an overview

of the ROS connection. Since the Xavier is the ROS master and thus, will

allow ROS nodes to locate one another, the synchronization board is directly

connected to the Xavier.

3.5 Mechanical Design

The mechanical design of the sensing payload features a stacked, layered

design so that the weight of the sensing components can be distributed rather

than concentrated on a main base plate and the payload can feature a pitching

design. Carbon fiber was the main material used for the two levels of the

payload which contain stand-offs and mounting for the sensors, and computers

to reduce weight without compromising the structural integrity of the payload.

Two carbon fiber rods are used as the main support and to provide spacing

between the top and bottom platforms so that the IMU can be positioned

close to the center of mass of the payload. Positioning the IMU as close to the

center of mass of the payload will make processing transformations of sensor

information from the other components with respect to the IMU easier.

To satisfy the form factor requirement, the width and height were deter-

mined according to sensor requirements and how well the payload can be

integrated with the aerial platforms. In this manner, the width of the payload

was determined so that the stereo cameras can be placed with a baseline of

25.0 cm and the payload can fit underneath the payload with the landing

gear deployed for both aerial platforms. The height of the payload was kept

at a minimum to fit the components so that the center of mass is low and

the payload can be mounted at the bottom of the aerial platform. Mounting

the payload at the bottom of the aerial platform would allow the LiDAR to

have minimal occlusion when capturing scans during over-the-canopy flights.

27



3. Sensing Payload Design

Figure 3.18: Calculated center of mass of the sensing payload (isometric)

Figure 3.19: Calculated center of mass of the sensing payload (front)

Figure 3.20: Calculated center of mass of the sensing payload (side)
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Figure 3.21: Pitching the sensing payload: horizontal (left) to nadir (right)

Figure 3.22: Aluminum mounting side brackets for maintaining the angling
of the payload (exploded view)

Aluminum mounting brackets on the side of the payload feature holes in

increments of 15◦ so that the payload can be oriented at different pitch angles

with respect to the horizontal plane, as shown in Figure 3.21. As shown in

Figure 3.22, the aluminum mounting brackets on the side of the payload

consist of three main parts: the hand, the bracket with slots to keep track of

the pitch angles, and the connector support that connects to the sides of the

payload and stabilized the bracket.

The payload design is made so that sensors and components can be

removed without disassembling the entire payload. In order to prevent the
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components of the payload from having an adverse effect on the movement

of the aerial platform during flight, the components were placed so that the

center of mass of the payload was as close to its volumetric center as possible.

Table 3.8 provides a mass breakdown of the primary components. Figures

3.18, 3.19, and 3.20 show the location of the center of mass of the payload.

Table 3.8: Mass of payload components

Component Mass (g)
IMU 16
LiDAR 925
Stereo cameras (L) 145
Stereo cameras (R) 145
Multispectral camera 49.8
Xavier 180
Intel NUC 600
Ethernet board 18
Synchronization board 63
Voltage regulator board 25
Voltage distribution board 20
External SSD 10
Wiring and structure 1,635.2
Total 3,832

3.6 Integration with Aerial Platform

The aerial platforms considered in this study are the DJI M600 Pro and

the Alta X. A mounting plate was machined out of carbon fiber using the

CNC router machine. There are two distinct mounting plates used to connect

the payload system to the two different aerial platforms. Figure 3.23 is

the mounting plate designed for the DJI M600 Pro, and Figure 3.24 is the

mounting plate designed for the Alta X which is attached to the landing gear.
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(a) (b)

Figure 3.23: Mounting plate for DJI M600: (a) top view, (b) isometric view

(a) (b)

Figure 3.24: Mounting plate for Freefly Alta X: (a) top view, (b) isometric
view

3.6.1 Material Selection

The multi-sensor payload’s main structure is composed of carbon fiber due

to its high strength-to-weight ratio. Aluminum was also used as supports on

the sides and parts were used as connections because it is lightweight, has

good strength, and is corrosion-resistant. The remaining integral parts used

for the assembly process, including screws, nuts, and bolts were chosen to be
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high-strength anti-corrosive stainless steel.

Figure 3.25: Front view of the main structure of the sensing payload. Color
code: aluminum (yellow), nylon (cyan), carbon fiber (red/black), steel (orange)

Figure 3.26: Isometric view of the main structure of the sensing payload.
Color code: aluminum (yellow), nylon (cyan), carbon fiber (red/black), steel
(orange)

3.6.2 FEA Analysis

Finite element analysis (FEA) was performed using SolidWorks to determine

how well the sensing payload’s structure behaves under loading conditions

from the weight of all the components. Tables A.4, A.3, A.2 and A.1 show the

material properties of all the relevant materials. As a preliminary step, the

structural rigidity of the main carbon fiber plate as a standalone was tested.

Following this, FEA was conducted on the main carbon fiber plate with two

carbon fiber tubes added. Adding the carbon fiber tubes will help improve

the payload’s structural rigidity, and provide clearance to fit the IMU close

to the center of mass of the payload and allow the payload to be rotated on

an axis to vary the pitch.
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The material properties selected to conduct FEA were chosen based on

the discussion in the Material Selection section. The loading conditions across

the FEA studies on the base plate and the base plate with the carbon fiber

rods were such that the loads represented the components that were placed

in specific areas on the base plate while keeping the sides of the payload

constrained. In this sense, the total mass of all the components, shown in

Table 3.8, excluding the weight of the structure and the wiring, was used to

determine the load. This load value was then multiplied by a factor of two

for a conservative study.

Figure 3.27 shows the results, and Table 3.9 summarizes the results from

this study. From the results, it is evident that adding the two carbon fiber

rods as supports reduce the maximum displacement values, however, the stress

appears to be higher. This may be a result of the stress being concentrated

along certain corners of the payload since the assembly with the supports

is more complex. Figure 3.27 shows that much of the main structure of the

base plate is at the lower end of the stress range.

Table 3.9: FEA results for base plate studies

Static Study Total
load (N)

Max
stress
(MPa)

Max displacement
(mm)

Base plate 43.454 16.92 0.07627
Base plate with sup-
ports

43.454 39.79 0.06020
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Figure 3.27: Base plate (left) and reinforced base plate (right) of the sensing
payload - stress (top) and displacement (bottom) results: constraints (green),
loads (purple)

FEA was also performed to determine the behavior of the mounting

plates for the DJI M600 Pro and Freefly Alta X under loading conditions

that simulated the entire weight of the payload, including the supports to

connect the sensing payload to the payload plate. Figures 3.28 are the results

corresponding to the mounting plate for both aerial platforms. Table 3.28

summarized the results for both mounting plates. These results show that the

mounting plates designed for both aerial platforms can support the weight of

the sensing payload.
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Figure 3.28: Freefly Alta X mounting plate (left) and DJI M600 Pro mounting
plate (right) stress (top) and displacement (bottom) results

Table 3.10: FEA results for mounting plate studies

Static Study Total
load (N)

Max
stress
(MPa)

Max displacement
(mm)

DJI M600 Pro Mount-
ing

60 3.738 0.005783

Freefly Alta X Mount-
ing

60 4.517 0.01288

3.7 Assembly

Figure 3.29 shows the placement of all the components in the payload. The

IMU is oriented underneath the NUC onboard computer so that it is close

to the center of mass of the payload. To access the IMU, the sides of the

payload need to be removed. Ideally, the IMU should include the wiring

before mounting onto the payload.
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Figure 3.29: Exploded view of payload showing the removable plates for the
NUC computer and the LiDAR

3.8 Fabrication

Carbon fiber was used as the main structure of the payload. The payload

consists of two layers, fabricated using carbon fiber sheets and supported

with two carbon fiber rods. The CNC router was used to cut the carbon

fiber plates from the carbon fiber sheet. Rivet nuts were used to connect

the carbon fiber plates together without the use of hex nuts. Standoffs were

chosen so that there was enough clearance below the boards so that there

can be circulation underneath the board and the components can be stacked.

Epoxy was used to hold the carbon fiber tube supports which connect the

main structure of the payload to the mounting plate.

The sides of the payload are manufactured out of aluminum since it is

lightweight and rigid. An aluminum column was used as the side brackets

and then modified by cutting holes to insert the knob and screw so that the

payload can be angled to have different pitching degrees and be fixed.

Many of the mountings for components such as the power distribution

board, and the multispectral camera had mounts that were 3D printed. This

allowed the mountings to be custom-designed and lightweight.
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Chapter 4

Simultaneous Localization and

Mapping Framework

4.1 System Overview

In our study, we chose to focus on LiDAR-inertial-based SLAM systems. While

cameras are excellent at providing color and texture information about the

environment, they are susceptible to changing and unfavorable illumination

conditions such as dim or too bright lighting conditions and motion blur.

LiDARs are robust and invariant to illumination conditions and can obtain

accurate depth information of the scene. Results from [54] have found that the

visual odometry had higher RMSE compared with LiDAR odometry. Hence,

we use LIO-SAM, which is a state-of-the-art SLAM algorithm. Furthermore,

as will be discussed in our results section, we have compared LIO-SAM with

another state-of-the-art SLAM algorithm, Fast LiDAR Inertial Odometry

with Scan Context (FASTLIO-SC) [33, 64], on our datasets with ground truth

and have determined that LIO-SAM has consistently had lower RMSE errors

[7].

LIO-SAM performs scan matching and state smoothing and mapping
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using a factor graph approach where relative and absolute measurements

are used as factors [55]. The IMU measurements provide an initial guess

of the robot’s pose and are used to deskew point clouds. The initial guess

is then integrated over the LiDAR scan rate and further optimized using

LiDAR measurements. Hence, since the IMU measurement are used in the

optimization process, this algorithm is tightly coupled. The resulting LiDAR

odometry is subsequently used to estimate the bias of the IMU which is

jointly optimized with the LiDAR odometry factors in the factor graph. GPS

measurements are optionally included to further refine the estimated pose.

FASTLIO-SC is also a tightly coupled SLAM algorithm that derives a

kinematic model, similar to LIO-SAM, with the IMU measurements, and then

uses this estimation in a backpropagation which estimates the LiDAR pose of

each point in the LiDAR scan with respect to the pose at the scan at the end

time based on IMU measurements The iterated Kalman Filter approach is

then used to propagate on each IMU measurement and perform an iterated

update on each LiDAR scan to derive the LiDAR odometry. The estimated

odometry can then be improved by GPS measurements and the movement

restrictions imposed by a scan context approach [33]. FASTLIO-SC, unlike

LIO-SAM, does not use the LiDAR odometry as feedback for estimating the

IMU bias.

Due to LIO-SAM having better performance, as will be discussed in the

results section of this thesis, we have primarily used LIO-SAM for deriving

the poses of the UAV and semantic map generation in the forest environment.

This chapter will primarily focus on discussing the fundamental theory of

LIO-SAM.

LIO-SAM estimates the state of the robot based on sensor data from a 3D

LiDAR, an IMU, and GPS (optional). The state estimation is formulated as

a maximum a posteriori (MAP) problem, with the assumption of a Gaussian

noise model. The state of the robot is optimized in a factor graph scheme,

where there are four factors: (1) IMU preintegration factors; (2) LiDAR
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Figure 4.1: LIO-SAM system overview

odometry factors; (3) GPS Factors; and the (4) loop closure factors. The

state node x is added to the factor graph when there is a significant change

in the robot’s pose such that the change exceeds a user-specified threshold.

Figure 4.1 shows an overview of the factors involved in LIO-SAM and details

LIO-SAM’s system.

The robot state is defined by a 6 DoF, consisting of the position and the

rotation described as a quaternion. The world frame is given as W and the

body frame of the robot is B. We assume that the IMU frame is the same as

the body frame B of the robot. Therefore, the robot state is expressed as,

x = [RT , tT ,vT ,bT ]T . (4.1)

In this expression, the rotation matrix is in the special orthogonal group,

R ∈ SO(3), the position vector is t, the velocity vector is v, and the IMU

bias is b. The vectors, t, v, and b are ∈ R3. Note that the odometry values

outputted in SLAM contain R and t, which can form the transformation

matrix T . We also have a transformation TWB which is used to transform

the robot state from frame B to frame W . This transformation TWB is in the
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special Euclidean group, TWB ∈ SE(3), and is expressed as,

TWB =

[
RWB tWB

0 1

]
(4.2)

where RWB is the rotation matrix that transforms the robot state from

frame B to frame W , and tWB is the translation vector that translates

the robot state from frame B to frame W . Note that this notation in the

transformation matrix is used in the pose correction section of this thesis.

4.2 Factor Graphs

The factor graph is modelled as maximum a posteriori optimization (MAP)

problem. The MAP estimators requires the densities of the measurement

models to be defined as well as their log-likelihood.

When optimizing using the MAP problem formulation, we have the fol-

lowing where we are trying to find the x̂∗ which maximizes the probability of

x̂ given the measurement z.

x̂∗ = argmax
x̂

p(x̂|z) (4.3)

= argmax
x̂

1

p(z)
p(z|x̂)p(x̂)

= argmax
x̂

p(z|x̂)p(x̂)

= argmax
x̂

p(x̂)Πip(zi|x̂)

= argmin
x̂

(− log(p(x̂)Πip(zi|x̂)))

= argmin
x̂

(− log(p(x̂)) −
∑
i

log(p(zi|x̂)))

We assume that the measurements are normally distributed, hence, we

have,
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p(zi|x̂) ∼ N(µ = zi, σ) =
1√

(2π)n|
∑

|
e−

1
2
(hi(x̂)−zi)

T
∑−1(hi(x̂)−zi)) (4.4)

When we account for this, we have,

x̂∗ = argmin
x̂

(− log(p(x̂)) −
∑
i

log(p(zi|x̂)))

= argmin
x̂

(− log(p(x̂)) −
∑
i

(hi(x̂) − zi)
TΣ−1(hi(x̂) − zi)) + c (4.5)

where c is a constant. Note that the term (hi(x̂− zi) is the residual and

the factor. hi(x̂) is the observation model, and Σ is the covariance matrix.

To leverage factor graphs to only update a typically small subset of vari-

ables impacted by a new measurement, incremental smoothing and mapping

with the Bayes tree (iSAM2) is used. Incremental Smoothing and Mapping

decreases the computational complexity of solving the MAP problem as a

sparse nonlinear optimization and allows fast incremental updates of the

square root information matrix. Using the Bayes tree instead of a Bay net

structure allows the MAP problem to be relinearized with a reduced set of

variables and maintain sparsity and accuracy.

4.2.1 IMU Preintegration Factor

The motion of the robot is first estimated using the measurements from the

IMU, which typically includes a three-axis accelerometer and a three-axis

gyroscope. This would give us measurements such as the acceleration and

rotation rate of the sensor with respect to an inertial frame. Thus, we have

the following measurements defined, where Bâ(t) is the measurement of the

acceleration, and Bω̂(t) is the measurement of the rotation rate of the IMU

in the body frame B.
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Bâ(t) = RBW (t)(Wa(t) −W g) + ba(t) + ηa(t) (4.6)

Bω̂(t) = Bω(t) + bω(t) + ηω(t) (4.7)

.

These two measurements, Bâ(t) and Bω̂(t), are affected by additive white

noise η and a slowly varying sensor bias b. RBW (t) is the rotation matrix from

frame B to frame W. In our context, we define frame B to be the frame of the

body and frame W to be the frame of the world, since we are neglecting the

effects due to earth’s rotation. The gravity vector in the frame W is defined

by Wg.

From this point, we introduce the following kinematics equations, so that

we can further derive the motion of the robot using the IMU measurements,

ṘWB = RWB(t)[Bω(t)]× (4.8)

W v̇(t) =W a(t) (4.9)

W ṗ(t) =W v(t) (4.10)

If we assume that Wa and BωWB are constant in the time interval [t, t+∆t],

we have the following motion models derived from applying Euler integration

on the IMU measurements,

Wv(t + ∆t) = Wv(t) +W g∆t + RWB(t)(Bâ(t) − ba(t)

−ηa∗(t))∆t (4.11)

Wp(t + ∆t) = Wp(t) +W v(t)∆t (4.12)

+
1

2W
g∆t2 +

1

2
RWB(t)(Bâ(t) − ba(t) − ηa∗(t))∆t2

R(t + ∆t)WB = RWB(t)exp((Bω̂WB(t) − bω(t) − nω∗(t))∆t) (4.13)
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Note that the η(t)a∗, η(t)ω∗ are the noise terms for discrete-time. Hence,

the covariance of the noise is a function of the sampling rate and relates to

the continuous time noise by Cov(ηa∗(t)) = 1
∆t
Cov(ηa(t)) and Cov(ηω∗(t)) =

1
∆t
Cov(ηω(t)). The full derivation of the previous equations can be found in

[20]. We note that the left subscript to denote the world frame may not be

consistent in the semantic mapping pose correction section of this thesis. For

convenience and ease of representation, especially with additional subscripts

and superscripts, we have opted to use the left subscript to denote the world

frame in this section.

To obtain a constraint in the factor graph using this motion model, we

show that the motion constraint between two consecutive measurements with

distinct change, which we will term keyframes k, at times k = i and k = i+ 1,

can be expressed as a single measurement which is the preintegrated IMU

measurement. Assuming that the IMU is synchronized with the camera and

that it provides measurements at discrete times k, we can derive the following,

as shown in [20],

∆vi,i+1 = RT
i (vi+1 − vi − g∆ti,i+1)

=

(i+1)−1∑
k=i

∆Rik(âk − bak − ηa∗k )∆t (4.14)

∆pi,i+1 = RT
i (pi+1 − pi − vi∆ti,i+1 −

1

2
g∆t2i,i+1)

=

(i+1)−1∑
k=i

[∆vi,i+1∆t +
1

2
∆Rik(âk − bak − ηa∗k )∆t2] (4.15)

∆Ri,i+1 = RT
i Ri+1

= Π
(i+1)−1
k=i exp((ω̂k − bωk − ηω∗k )∆t) (4.16)

We assume that the bias remains constant between two keyframes. Thus

we have, for a set of m keyframes,
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bai = bai+1 = ... = bai+m, b
ω
i = bωi+1 = ... = bωi+m

A more thorough discussion on accounting for the bias by assuming that

bi is known, and avoiding the repeating integration when the bias estimate

changes can be found in [20].

The residuals correlated to the IMU preintegration factors are given by,

r∆Ri,i+1
= log

(
∆Ri,i+1(b

ω
k )exp(

∂∆Ri,i+1

∂bωk
δbωk ))TRT

i Ri+1

)
(4.17)

r∆vi,i+1
= RT

i (vi+1 − vi − g∆ti,i+1) − (∆vi,i+1(b
ω
k , b

a
k) (4.18)

+
∂∆vi,i+1

∂bak
δbak +

∂∆vi,i+1

∂bωi
δbωi )

r∆pi,i+1
= RT

k (pi+1 − pi − vi∆ti,i+1 −
1

2
g∆t2i,i+1) (4.19)

−(∆pi,i+1(b
ω
k , b

a
k) +

∂∆pi,i+1

∂bak
δbak +

∂∆pi,i+1

∂bωk
δbωk )

||rbi,i+1
|| = ||bωi+1 − bωi ||2∑bω∗ + ||bai+1 − bai ||2Σba∗ (4.20)

4.2.2 LiDAR Odometry

To compute the LiDAR odometry, during each sweep of the laser scan, the

combined point cloud during sweep k forms Pk. Following this, Pk is processed

by first computing the motion between two consecutive sweeps, and then

the estimated motion is used to correct the distortion in Pk. Afterward,

the Pk with the distortions corrected are further processed by matching and

registering the local undistorted cloud onto a global cloud. The final odometry

is given by the LiDAR pose from the undistorted LiDAR scan with respect

to the global map.

Since we would like to compute the motion between two consecutive sweeps,

we first perform feature extraction on the point cloud, Pk, by extracting a

set of feature points that are either edge or planar features. We denote X(k,i)
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to be a 3D point, i ∈ Pk. We determine the smoothness of the points over

a local region within the range of S number of adjacent points to X(k,i) by

calculating the smoothness value c with the following equation,

c =
1

|S| · ||Xk,i||
||Σj∈S,j ̸=i(Xk,i −Xk,j)|| (4.21)

Half of the points of S are on either side of X(k,i). We calculate the

smoothness value for all the points X(k,i) in the point cloud Pk. Note that

X(k,i) contains the 3D position of the point in the point cloud. From this point,

each of these sub-scans are assigned the value c that denotes the smoothness

value. A threshold cth is used to distinguish between edge features and planar

features. Thus, if c is larger than cth, then it is classified as an edge features;

otherwise, it will be classified as a planar feature. The threshold cth was

chosen so that the feature points within the scan are evenly distributed and

the scans are separated into subregions where each subregion can have a

maximum number of edge points and planar points. Points that are unreliable

and not classified as a feature point are: (1) points that lie on a surface

that is roughly parallel to the LiDAR’s laser beam; (2) points that lie on the

edge/boundary of an occluded region.

Following feature extraction, we need to find correspondences between

two LiDAR clouds. Given a point cloud Pk, we combine all the features

extracted from the point cloud Pk at time k into a frame in the frame L,

LFk = {LF e
k ,L F

p
k }, with LF

e
k denoting edge features and LF

p
k denoting planar

features from the scans at time k.

To calculate the odometry, we need a relationship relating the previous

frame to the current frame. If we use every LiDAR frame to compute factors

to the factor graph for optimization, this would be computationally expensive.

We use keyframes, which are frames where the change in the robot’s pose

from the previous state exceeds a defined threshold. Let Fi+1 be the keyframe

associated with the robot state xi+1, and the preceding keyframe and robot

state are Fi and xi, respectively. The frames in between in which the robot
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does not have a significant change in position and rotation are discarded.

We transform the keyframes {LF e
i ,L F

p
i } which is in the frame of the LiDAR

to world frame with the extrinsic relating the LiDAR to the IMU, and the

calculated robot motion Ti from the IMU, which is Equation 4.12.

A sliding-window approach and sub keyframes are also used for com-

putational efficiency. In this manner, a fixed number n of recent LiDAR

scans, called sub-keyframes or relative frames (which we note in the semantic

mapping and pose correction sections of this thesis) are extracted. The set

of relative frames, {Fj, ..., Fj+n} are registered into the world frame W with

the transformations {Tj, ..., Tj+n} into a voxel map, Mj. The transforma-

tion {Tj, ..., Tj+n} between the two relative frames is found by finding the

corresponding features for each point, using scan-matching methods such as

the iterative closest point (ICP). The key concept of ICP is to compute the

transformation that minimizes the distance between corresponding points in

the two frames Fj and Fj+1.

Therefore, Mj contains sub voxel maps with edge features M e
j and planar

features Mp
j . We have,

Mj = {M e
j ,M

p
j }, (4.22)

M e
j = WF e

j ∪W F e
j−1 ∪ ... ∪W F e

j−n (4.23)

Mp
j = WF p

j ∪W F p
j−1 ∪ ... ∪W F p

j−n (4.24)

Let Ej and Ej+1 denote the set of edge points and its corresponding edge

points at time j and j + 1, respectively. Similarly, we have Hj and Hj+1

denoting the set of planar points and their correspondences. We can derive a

geometric correlation between the set of edge points Ej+1 and Ej. Given that

the corresponding edge points at the indices p at time j + 1 are indices q and

r at time j, compute the distance of the edge points as the following,
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dEj
=

|(Xe
j+1,p −Xe

j,q) × (Xe
j+1,p −Xe

j,r)|
|Xe

j,q −Xe
j,r|

(4.25)

In this equation Xe
j+1,p denotes the 3D point p projected at time j + 1,

and Xe
j,q and Xe

j,r are the corresponding edge points, q and r, of p in time j.

We can also derive a geometric correlation between the set of planar points,

Hj+1 and Hj. When the corresponding planar points of the points in indices

p at time j + 1 are points of the indices q, r, and s at time j.

dHj
=

∣∣∣∣∣ Xe
j+1,p −Xe

j,q

(Xj,q −Xj,r) × (Xj,q −Xj,s)

∣∣∣∣∣
|(Xj,q −Xj,r) × (Xj,q −Xj,s)|

(4.26)

The scan-to-motion estimation is found with this geometric correlation

by minimizing the overall distances of these feature points. Therefore, we

use the following Gauss-Newton method to solve for the transformation that

minimizes the following expression,

min
Tj+1

{
∑

Xe
j+1,p∈WF e

j+1

dEj
+

∑
Xp

j+1,p∈WF p
j+1

dHj
} (4.27)

Hence, we compute the relative transformation, which is the LiDAR

odometry factor, between the two states, xj and xj+1 as the following,

∆Tj,j+1 = T T
j Tj+1 (4.28)

4.2.3 GPS Factor

As an added measure in case the state estimation and mapping system suffers

drift during longer duration tasks, GPS measurements are used to derive

a factor. Although GPS is typically weaker in forest environments with

dense canopies, we were able to have reliable GPS measurements in the

environments we tested. Furthermore, typically, the drift of the odometry
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from the LiDAR and IMU grows very slowly and a GPS factor is added only

when the estimated position covariance is greater than the GPS position

covariance.

To utilize the GPS measurements into a factor graph scheme, the transfor-

mation between ground truth (GPS measurements) and the state estimated

from the IMU and LiDAR is introduced as a new node in the factor graph.

If there is no direct synchronization between the GPS signal and the Li-

DAR frames, the GPS measurements are interpolated linearly based on the

timestamp of the LiDAR frames.

4.2.4 Loop Closure Factor

The loop closure factor is especially useful to correct drift in the robot’s

altitude and when the GPS is the only ground truth available. The loop

closure factor is calculated with a Euclidean distance-based approach in which

prior states which are close to the new state xi+1 in Euclidean space are

searched. Suppose the prior state, x2 is the state that is the closest to xi+1

in Euclidean space, then the corresponding keyframe WFi+1 is scan-matched

to the sub-keyframes F2−u, ..., F2, ..., F2+u, where u is a user-defined search

index and is correlated to the search distance. The relative transformation

∆T2,i+1 is obtained and added as a loop closure factor in the factor graph.
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Chapter 5

Semantic Mapping

5.1 System Overview

Russell et al. [54] have developed a semantic mapping system that is able

to generate a detailed global mapping of the environment that contains

geometric, semantic, and temporal information to capture and localize regions

of flammable materials in the forest environment. The semantic mapping

system is designed to be modular so that it reads odometry or pose information

from a SLAM system to generate the global map. Octomap is used in this

system to discretize the semantic point cloud into voxels [27, 65]. This type of

representation was chosen over other 3D representations since it is lightweight

and computationally efficient to handle multiple dimensions of information.

When a new local semantic point cloud is generated, it is registered into the

world frame and used to update the global Octomap.

We build upon our semantic mapping system by improving the integration

of our semantic mapping system with the SLAM system. Since our semantic

mapping system reads in pose information from the front-end of the SLAM

system instead of backend poses and does not have the ability to optimize and

correct for drift which may accumulate over time, this may lead to unwanted
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artifacts propagating over to the semantic global map. Thus, our contribution

in this area is a proof-of-concept offline approach that stores the history of

poses and relays the corrected poses to the semantic mapping system. We

have implemented the works of [29] in our contribution.

5.2 Semantic Segmentation

The primary objective of the semantic segmentation pipeline is to identify

flammable regions, or fuel clusters, and localize these regions within the

environment so that they can be ultimately removed by a UGV. To achieve

this, we used a semantic segmentation networks SegFormer [63] and SegNeXt

[24].

The SegFormer network is based on a transformer architecture. This

was chosen due to its robust performance on benchmark datasets and good

generalization capabilities, especially since we have a relatively limited number

of trained data from real-world images. Our model trained with SegFormer

uses the default parameters in the MMSegmentation implementation [43].

We trained this model using 151 real images in the Porto region by manually

labeling classes with polygons.

For a more recent set of data collected, we also trained with SegNeXt with

three compressed classes (i.e., fuel, canopies, and background) since SegNeXt

has shown to outperform SegFormer [24]. SegNeXt is a convolutional neural

network architecture-based approach specifically for semantic segmentation

and identifies the predicted class for each pixel in the image. SegNeXt is

similarly able to generalize to a limited number of trained data from real-

world images. Our model trained with SegNext was trained with 40 images,

from the Pittsburgh and Coimbra regions, with pre-trained weights from the

CityScapes datasets [15].
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5.3 Integrating Semantics to Simultaneous

Localization and Mapping

In this system, we used a SLAM system to generate pose estimates of the

UAV that were then used to globally register the 3D mapping generated in

the semantic mapping system.

The integration of the SLAM system with the semantic mapping system

developed in [54] is shown in Figures 5.1. RGB images from the stereo cameras

are used to produce the semantically segmented images. These images are

then projected to the point cloud generated from LiDAR measurements

through LiDAR-camera registration. This allows each point in the point

cloud within the camera’s field of view to store information visual information

captured by the stereo cameras. To accomplish LiDAR-camera registration,

two separate calibrations were performed between the LiDAR and IMU and

the camera and IMU. We calibrated the sensors in this manner since the

IMU is positioned to be as close to the center of mass of the payload and is

assumed to be the origin of the UAV in our system, which is the body-frame.

Furthermore, having the IMU be the intermediary step allows the calibration

process to be modular. In this way, the LiDAR-IMU and the camera-IMU

calibration results can be used for separate systems. For example, LIO-SAM

required the LiDAR and IMU transform, while different SLAM systems that

involve the camera and IMU will require the camera-IMU transform.

The camera-IMU calibration was accomplished using Kalibr [21]. In

this manner, the camera/IMU calibration determines the relative rotation,

translation, and time offset between the sensors. Further details on how

this is accomplished can be found in [21]. The LiDAR-IMU calibration was

accomplished by referring to the SolidWorks CAD file and determining the

extrinsic values relating to the two components. With the results from the

two, we can derive the transformation relating the camera to LiDAR.

Once the semantic point cloud is registered using the poses from the
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Figure 5.1: LIO-SAM integration with semantic mapping

SLAM system, which is in world-frame, a 3D representation with semantic

information is constructed using Octomap. Octomap is based on the octree

data structure, where 3D space is recursively divided into eight partitions and

each node in the octree data structure consists of eight children. Octomap

can explicitly represent free and unknown areas and uses a probabilistic

occupancy estimation. In our semantic mapping implementation, Octomap is

used to discretize the semantic point cloud into voxels, where each voxel has

a resolution of 0.05 m and contains the aggregated predicted classification

information. When a new semantic point cloud is created as a result of the

robot covering new areas of the environment, the global octomap is updated by

registering the voxelized semantic point cloud using the pose information from

SLAM. In this manner, we are using a Bayesian method where a probability

distribution over all the classes considered is used. When a new observation

is received, it is multiplied by the current distribution, renormalized and the

most probably class is used to label the voxel.
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5.4 Problem Formulation and Proposal

LIO-SAM is a keyframe-based SLAM system that has a frontend and a

backend. As noted in the previous chapter, keyframes are defined as frames

where the pose information exceeds a user-defined threshold when compared

to the previous pose. Many SLAM algorithms adopt keyframes to preserve

performance while reducing computation time. Poses given in the frontend

are denoted as relative frame poses, which are not optimized by the factor

graph scheme. These relative frame poses fall in between the keyframe poses.

In this sense, keyframe poses are sparse in comparison to relative frame poses

if the user-defined threshold is large. Keyframe poses are optimized in the

backend in a factor graph scheme, which combines the IMU odometry factor,

LiDAR odometry factor, loop closure factor, and, optionally, the GPS factor.

The semantic mapping system in [54] currently reads in poses from the

frontend of the SLAM system, which are called relative frame poses to register

the semantically labeled point cloud and generate a global mapping of the

environment. Registration using relative frame poses allows the global map

to be dense since the relative frame poses are dense and high-frequency in

comparison to the sparse and low-frequency optimized keyframe poses.

Since sensor measurements are prone to errors, over time, these errors

can propagate over time. Furthermore, since our SLAM system, LIO-SAM,

adopts a keyframe approach for computational efficiency, corrections do not

propagate to the relative frames between keyframes. This can contribute

to global map drifts or unwanted artifacts in the semantic mapping system

since the non-optimized relative frame poses are used for registration. As it

currently stands, our semantic mapping system does not have the ability to

correct the relative frame poses used for registration.

We implement an offline approach in [29], that involves storing the

keyframe and relative frame poses, using the keyframe poses are constraints

to correct the relative frame poses, and registering the semantically labeled
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Figure 5.2: Framework of the pose correction module added

point cloud using the corrected relative frame poses. While our system is

offline, it serves as a proof-of-concept to show improvement over the current

implementation.

5.5 Semantic Mapping Pose Correction

Figure 5.3 shows an overview of the pose correction approach. Frames, in

world-frame, are denoted fW . Two consecutive keyframes with respect to the

world-frame are denoted fW
i and fW

(i+1), and the relative frame is denoted as

fW
j . The optimized consecutive keyframes and the corrected relative frame

are denoted, f ∗
i
W and f(i+1)∗

W , and fW
j∗ , respectively.

We denote the robot state or pose, defined by a 6 DoF vector, of the

keyframe fW
i as xKF

i , and the poses correlated to the jth relative frame as

xRF
j . We are assuming these variables are all in the world frame, so the

superscript is dropped. The time associated with the poses xKF
i and xRF

j are

denoted as tKF
i and tRF

j . In our approach, we are saving all the robot states

54



5. Semantic Mapping

Figure 5.3: Overview of pose correction from [29]. fi
W and f(i+1)

W denotes
two consecutive keyframes in world frame and f ∗

i
W and f(i+1)∗

W denote the
corresponding optimized keyframes. fW

j denotes the relative frame in world
frame and fW

j∗ is the resulting corrected relative frame.

from all keyframes and relative frames. Since we are doing this offline, the

poses associated with all of our keyframes are optimized and corrected after

processing our data through the SLAM system. The poses associated with

the relative frames are used for the semantic mapping system and are not

optimized. The set of robot states from the keyframes and relative frames are

denoted as XKF = {xKF
i , ..., xKF

i+m} and XRF = {xRF
j , ..., xRF

j+n}, respectively.

Since the keyframes are sparse, m < n. The set of times correlated to this

are denoted tKF = {tKF
i , ..., tKF

i+m} for keyframes and tRF = {tRF
j , ..., tRF

j+n} for

relative frames. We also note that TKF ⊂ TRF .

The semantic mapping system uses the poses from the relative frames

to register the semantic point cloud. Hence, we implement an offline pose

integration approach in [29], where the forward and backward keyframe

poses are used as constraints to correct the poses in the relative frame.

This implementation allows the optimized keyframe poses to be used for

interpolation rather than solely using the uncorrected relative frames poses.

In a keyframe SLAM algorithm, the frontend provides the uncorrected
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poses, which consist of the original keyframe and relative poses in the world

frame. For two consecutive keyframes, i and i + 1, and the relative frames

j, j + 1, ..., j + n, we can obtain {Ri, ti}, {R(i+1), t(i+1)}, {Rj, tj} and so forth

from the frontend. The backend contains the graph optimization which

corrects keyframe poses and relays some of these updated corrections over to

improve the LiDAR odometry estimates. Note that all of the keyframe poses in

the backend are continuously getting updated in the graph optimization, while

the relative frame LiDAR odometries are not. For two consecutive corrected

keyframes, i∗ and (i + 1)∗, the backend provides the set of the rotation

matrix and translation matrices {Ri∗ , ti∗} and {R(i+1)∗ , t(i+1)∗}. Without

further elaboration, the asterisk (*) superscripts denoted corrected, and the

keyframes i and i + 1 are consecutive.

If we combine the information in the frontend, we can derive a transfor-

mation matrix of the form,

T =

[
R t

0 1

]
∈ SE(3).

Thus, we have the following transformations we can use from the frontend

to relate the keyframes i and (i + 1) to the relative frame j.

Ti,j = T−1
i Tj (5.1)

T(i+1),j = T−1
(i+1)Tj (5.2)

Ti,(i+1) = T−1
i T(i+1) (5.3)

From the backend, we can derive the following relationships,

Ti∗,(i+1)∗ = T−1
i∗ T(i+1)∗ (5.4)
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The proposed pose correction approach requires that the frame poses are

expressed in SE(3); however, since interpolating the rotation matrix has SO(3)

constraints by definition (det(R) = +1 and RTR = I), it must be converted

to a vector space in the form of quaternions, or Euler angles. LIO-SAM

outputs rotation values with Euler angles, and for the convenience of our

implementation, we have converted this to quaternions.

The pose correction approach derives a close-form solution constraint

using the frontend and backend pose values, in which we will refer to [29]

for more details and notes on derivations. These assumptions are based

on the observation that the depth value of the visual feature increases as

the translational difference between the corresponding keyframes to which

the visual feature is observed increases, and that the homogeneous pixel

coordinates of a visual feature in an image remain the same regardless of

optimization updates from SLAM. The scaling factor, si which relates the

corrected keyframe i translation and the corrected relative frame j to the

original keyframe i and relative frame j translation, is found by assuming

that the translation ratio and the depth ratio are equal. This scaling factor

is given by,

si =
||ti∗,(i+1)∗||
||ti,(i+1)||

(5.5)

In this equation, ti∗,(i+1)∗ is the translation from the corrected keyframe i

to the corrected keyframe i + 1, which we can obtain from Equation 5.4. The

term, ti,(i+1) can be calculated from Equation 5.3. Furthermore, we have the

interpolation factor, αi,j, which is the ratio of the distance from the frame

fj to the frame fi, and the distance from the frame fj to the frame f(i+1).

This was assigned based on the observation that the number of reliable edges

increases as the distance between frames decreases since there is an increase

in the number of shared features [29]. αi,j is defined in the following.
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αi,j =
||ti,j||

||t(i+1),j||
(5.6)

In this expression, we have the translation from the original keyframe i to

the original relative frame j, denoted ti,j derived from Equation 5.1, and the

translation from the original keyframe i + 1 to the original relative frame j,

denoted t(i+1),j derived from Equation 5.2. Essentially, αi,j is a ratio of the

distance between the original keyframe i to the original relative frame j to

the distance between the original keyframe i+ 1 to the original relative frame

j.

Lastly, we also define the terms δR and δt, which account for the gap

resulting from the measurement constraint assumptions. In this respect, δR

and δt are defined below,

δR = RT
i∗,j∗Ri∗,(i+1)∗R(i+1)∗,j∗

= RT
i,jRi∗,(i+1)∗R(i+1),j (5.7)

δt = ti∗,j∗ + Rj∗,i∗ti∗(i+1)∗ + Rj∗,(i+1)∗t(i+1)∗,j∗

= Rj∗,i∗(ti∗,(i+1)∗ − si(ti,j −Ri∗,(i+1)∗t(i+1,i))) (5.8)

Therefore, we can find the corrected fW
j∗ , through spherical and linear

interpolation, given by,

Ri∗,j∗ = SLERP(Ri,j, δR, αi,j) (5.9)

ti∗,j∗ = LERP(ti∗,j∗ , Ri∗,j∗ , δt, αi,j) (5.10)

In this expression, SLERP is spherical linear interpolation, while LERP

is linear interpolation. The interpolation parameter of SLERP is αi,j, which
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must be constrained to a value between (0, 1). Note that you would need to

first compute Ri∗,j∗ using known information from the frontend and backend

processes, from Equations 5.9, 5.6, and 5.1 before computing δt. Further-

more, to register these values in world-frame, since for example, Ti∗,j∗ is the

transformation relating the corrected keyframe i to corrected relative frame

j, we have,

Tj∗ = T−1
i∗ Ti∗,j∗ (5.11)

Note that we have dropped the W superscript to denote the world-frame.
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Chapter 6

Experiments

We have conducted a set of experiments to verify our contributions, namely, the

performance of the sensing payload and the improved integration of the SLAM

system and semantic mapping system. The objective of our experiments is

two-fold: (1) to verify that the custom-designed multi-sensing payload can

withstand the conditions present during field testing and can record sensor

measurements for post-processing; (2) to qualitatively demonstrate that the

pose correction algorithm helps with artifacts resulting from the current

integration of the semantic mapping system with the SLAM system.

6.1 Datasets

We tested and collected data using our multi-sensing payload mounted on the

DJI M600 Pro and the Freefly Alta X. Data was collected in three primary

locations. We had two locations in Portugal which were Porto (41°13’00.9”N

8°31’38.6”W), and Coimbra (40°11’05.9”N 8°24’50.5”W). The remaining loca-

tion was in Pittsburgh, United States (40°27’24.6”N 79°47’22.1”W). Among

the three locations tested, the Porto location contained the most dense and

tall canopies. The Pittsburgh location was also rural, but contained canopies
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that were not as high. Lastly, the Coimbra test region was semi-urban, and

featured a more structured landscape which makes this a low-complexity case

for our experiments. Both the Pittsburgh and Porto test locations have an

unstructured and wild landscape, which makes them more challenging to

perform extraction and subsequent scan matching of the employed SLAM

approaches.

In these testing locations, we have conducted under-the-canopy surveys

(in the Porto and Coimbra datasets) and over-the-canopy surveys (in the

Pittsburgh dataset). Under-the-canopy surveys consist of a simple loop back

to the starting of the flight and were conducted by an experience UAV pilot.

Over-the-canopy surveys typically involved flying in a lawn-mower pattern

and were done using UAV autopilot software. For each of the surveys in

the Coimbra and Pittsburgh regions, the altitude, ground speed, and lateral

distances were about 30 m, 3.0 m/s, and 20 m, respectively. For the surveys

in Porto, the altitude, ground speed, and lateral distances were about 10 m,

1.0 m/s, and 50 m. The payload was oriented 30◦ for all flights.

We also have data collected using our past payload in [56] in the Porto

(41°13’00.9”N 8°31’38.6”W) location. The UAV was flown under-the-canopy

in this dataset at an approximate altitude, ground speed, and lateral distance

of 10 m, 1.0 m/s, and 50 m. We will examine the pose correction algorithm

on this dataset.

All the datasets were processed using a consumer-grade computer with an

Intel Core i7-10870H CPU with 16M Cache, up to 5.00 GHz.

6.2 Benchmarking Results

We will rely on both qualitative and quantitative measures to evaluate our

two objectives. For instance, to validate the performance of the multi-sensing

payload, we require that the payload can be used multiple times for field

testing and can reliably collect sensor measurements. Furthermore, we require
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Figure 6.1: Testing locations: Porto, Portugal (left), Coimbra, Portugal
(middle), and Pittsburgh, United States (right).

that the sensor measurement from the sensing payload can be processed

using a state-of-the-art SLAM system and our semantic mapping system.

We decided to test two state-of-the-art SLAM, LIO-SAM and FASTLIO-SC

in datasets containing ground truth, such as the Coimbra and Pittsburgh

datasets. We compare the pose estimations from LIO-SAM and FASTLIO-SC

with the postion measurements from a real-time kinematics (RTK) device that

provides centimeter-level-accuracy ground truth. The main metric we used

to evaluate the system localization is the root mean square error (RMSE).

The equation for computing the RMSE is shown below, where X(i) is the ith

measurement, ˆX(i) is the estimated ith measurement, and N is the number

of data points.

RMSE =

√∑N
i=1 ||X(i) − ˆX(i)||2

N

We will qualitatively show that the current integration of the semantic

mapping system with LIO-SAM has drifting and can be corrected using

our offline approach. This is done by comparing the point clouds processed

without the offline approach with the offline approach with trajectory plots.
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Chapter 7

Results

7.1 Sensing Payload Verification

We have successfully used our sensing payload to record data in the testing

locations. We have data acquired using the DJI M600 Pro for the locations

in Coimbra and Porto, and the Freefly Alta X for the location in Pittsburgh.

Figures in 7.1 show the sensing payload attached to the DJI M600 Pro and

the Freefly Alta X.

7.1.1 Implementing LiDAR-based SLAM in Forest

Environment

We have implemented the Fast LiDAR Inertial Odometry with Scan Context

(FASTLIO-SC) [33, 64], and LIO-SAM [55] both of which are state-of-the-art

LiDAR-based SLAM systems. Tables 7.1 and 7.2 show an overview of the

results of implementing this approach on the data collected in Coimbra and

Pittsburgh, which contain ground truth measurements from the real-time kine-

matics (RTK) device. These results indicate that LIO-SAM performed better

than FASTLIO-SC. A qualitative comparison of the two SLAM algorithms is
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shown in Figure 7.3.

Figure 7.1: Sensing payload on UAVs: in Porto, Portugal (left), and in
Pittsburgh, United States (right)

Table 7.1: Quantitative odometry results of LIO-SAM and FASTLIO-SC
approaches on Coimbra dataset. Bold values denote the lowest RMSE [credits:
Tito Arevalo-Ramirez] [7]

Coimbra
Survey 1 Survey 2

LIO-SAM FASTLIO-SC LIO-SAM FASTLIO-SC
X 0.26 1.79 0.67 42.51
Y 0.24 3.49 0.90 27.50
Z 0.33 4.13 0.63 7.88

Average 0.28 3.14 0.73 25.96

Since LIO-SAM has performed well, we have primarily implemented this

SLAM system in our forest datasets. Figures 7.5 and 7.6 show the trajectory

results of implementing the pose correction on relative frame odometries from

LIO-SAM on under-the-canopy and over-the-canopy data, respectively. Note

that the relative frame is denoted RF. Figure 7.4 shows the results from

implementing LIO-SAM in the Porto location, which indicates that the point
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Figure 7.2: DJI M600 Pro flying with the sensing payload

Table 7.2: Quantitative odometry results of LIO-SAM and FASTLIO-SC
approaches on Pittsburgh dataset. Bold values denote the lowest RMSE
[credits: Tito Arevalo-Ramirez] [7]

Pittsburgh
Survey 1 Survey 2 Survey 3

LIO-SAM FASTLIO-SC LIO-SAM FASTLIO-SC LIO-SAM FASTLIO-SC
X 1.33 2.67 0.73 0.75 0.72 1.80
Y 0.79 5.39 1.51 5.70 0.40 6.02
Z 1.60 4.64 3.53 3.00 1.91 5.88

Average 1.24 4.23 1.92 3.15 1.01 4.57

cloud generated can capture the shape of the canopies well. We have generated

a global point cloud of the forest environment after implementing LIO-SAM,

as shown in Figure 7.4. Figure 7.5 shows that the key pose trajectory (blue)

aligns better with the GPS odometry (green). However, since this dataset was

collected under the canopy, GPS may not be as reliable, as shown towards

the bottom right which is not representative of the UAV’s actual trajectory
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(a)

(b)

Figure 7.3: Qualitative odometry results of LIO-SAM and FASTLIO-SC
approaches. To avoid figure over-stacking, two representative cases of the
study sites are shown. Figure 7.3a and 7.3b shows the odometry of survey
2 for the semi-urban area and survey 2 for the rural area, respectively. The
golden arrows indicate the direction of travel of the post computed using
FASTLIO-SC. [credits: Tito Arevalo-Ramirez] [7]

during flight. Figure 7.5 shows that the z values in the GPS odometry deviate

significantly from the relative frame odometry and the keyframe odometry.

Figure 7.6 contains the trajectory plots for over-the-canopy data. In this

setting, the GPS signal is more reliable. These figures so that generally, the

keyframe odometries align better with the GPS odometry.

These figures also show the corrected relative frame (RF) odometry com-
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Figure 7.4: Global map of forest environment in Porto generated from under-
the-canopy data

Figure 7.5: Trajectory results for under-the-canopy flight in Porto

Figure 7.6: Trajectory results for over-the-canopy flight in Porto
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pared with the original relative frame odometry. In Figure 7.5, it is apparent

that the corrected RF odometry follows a smoother path, especially at the

beginning of the trajectory where the corrected RF odometry is more represen-

tative of the actual trajectory. Furthermore, in Figure 7.6, it is evident that

towards the beginning of the trajectory, the corrected KF odometry aligns

better with the GPS odometry, which is reliable since this is over-the-canopy.

We note that the semantic point clouds were not generated using this dataset

due to timing, which is an area for future work.

7.2 Semantic Mapping Pose Correction

We implemented the semantic mapping pose correction on the data that

we collected using a previous payload featured in the following work [56].

This payload also features stereo cameras, IMU and LiDAR. Figure 7.7 was

generated by running LIO-SAM and the semantic mapping system on the data

collected under the canopy in Porto from this payload. The corresponding

trajectory plots of this dataset are shown in figure 7.8, which overlays the

keyframe (KF) odometry with

Figure 7.13 show an overlap of the original point cloud registered with

the semantic point cloud that has had its pose corrected. Figure 7.8 show

the trajectory plot of the corresponding dataset with the pose corrected. The

total distance traveled in this trajectory is approximately 50 m. The following

figures 7.9, 7.10, 7.11, and 7.12 show close-up portions of the trajectory

plot which shows that the corrected RF odometry generally aligns to the KF

odometry more than the original RF odometry. In addition, we can see that in

figure 7.10, the corrected RF odometry does not contain the artifact trajectory

shown in the original RF odometry. The resulting semantic map generated

using the original RF odometry for registration is compared with that from

using the corrected RF odometry. Although it may be difficult to readily see

obvious artifacts, we suspect that the corrected RF odometry will be helpful
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for registration when the original RF odometry displays non-representative

trajectories.

Canopy Trunks Fuel Background

Figure 7.7: RGB point cloud (top) and semantic point cloud (bottom)
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Figure 7.8: Trajectory plot of Porto dataset with a comparison of original,
corrected, and keyframe odometries

Figure 7.9: Close-up view of the top left portion towards the start of the
trajectory
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Figure 7.10: Close-up view of the top left portion towards the end of the
trajectory

Figure 7.11: Close-up view of the top left portion of the trajectory after the
UAV has departed from the starting point

Figure 7.12: Close-up view of the bottom right portion of the trajectory as
the UAV reaches the span of the trajectory
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Canopy Trunks Fuel Background

Figure 7.13: Original pose registered (top) and corrected pose registered with
original pose registered overlayed (bottom)
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Conclusions

In our work, we have developed a modular multi-sensor payload that features

LiDAR, inertial, and visual modalities. We have tested such a system in

real forest environments in Porto, Portugal, and Pittsburgh, United States,

and have verified the performance of the payload. Furthermore, we have

implemented a pose correction method that uses the key poses as constraints

and interpolates the relative frames in between the keyframe poses from SLAM.

This pose correction method will be beneficial as we integrate state-of-the-art

SLAM systems into our existing semantic mapping system.

8.1 Future Work

Future directions of this work include developing a visual-inertial-LiDAR

SLAM system and fusing the SLAM and semantic mapping system with pose

correction updates in real-time. Furthermore, there could be opportunities

to utilize other sensors in our payload or add additional sensors to improve

the performance of the SLAM system or semantic mapping system in the

forest environment. In this sense, the multispectral camera could possibly be

used to improve visual odometry since it may not be as sensitive to visible
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lighting changes as a standard RGB camera. Multispectral cameras could

also provide semantic information and be used to better aid the classification

of fuel clusters instead of relying solely on RGB values since dried vegetation

can fall under a specific vegetation index.

We note the following areas of improvement in the mechanical design and

pose correction integration:

1. Mechanical design improvements: We acknowledge that vibrations

are present during flight and a thorough vibration analysis would be

beneficial to make the payload design more robust. Padding connections

with a dampening medium can also warrant the payload and sensor

measurements from unwanted vibrations present during flight. As the

payload design currently stands, there could be some flexing present in

the four carbon fiber tubes connecting the mounting plate to the base

of the brackets on the side of the payload. A different mounting style

for the stereo cameras can also be implemented: instead of mounting

the stereo cameras directly onto the main payload base, the stereo

cameras should be mounted on separate detachable plates, similar to

how the LiDAR and NUC were mounted. This can also apply to

other components. Although we have not encountered significant issues

resulting from this during all of our field tests with the payload so far,

improving the payload in this area could bolster its performance and

prevent issues that may propagate over to the sensors.

2. Semantic mapping integration improvements: The semantic map-

ping integration can be improved in two aspects. The first aspect notes

improving the datasets tested. Although it was difficult to readily iden-

tify obvious corrections in the semantic point cloud if we tested a dataset

with more loop closures and significant updates, the improvements may

possibly be more apparent. From the previous section, we note that a

robust calibration with the current sensor payload is the next immediate

step. A demonstration of the pose correction implemented in the seman-
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tic mapping system can be further demonstrated by obtaining datasets

with ground truth point clouds and trajectories. This can be achieved

by using precise measurement devices such as the FARO scanner or an

RTK system similar to the one we used for the Pittsburgh, PA dataset.

The second aspect notes implementing the SLAM, semantic mapping,

and pose correction online rather than offline. This would allow our

system to be implemented on our UAVs in real-time in the field.
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Appendix A

Additional Information

Table A.1: Material properties of carbon fiber plate

Property Value
Elastic modulus 2.275269908 × 1011 N/m2

Poisson’s ratio 0.27
Shear modulus 3.159998269 × 103 N/m2

Mass density 1605.434926 kg/m3

Tensile strength 3.447378648 × 109 N/m2

Compressive strength -
Yield strength -

Table A.2: Material properties of carbon fiber tube

Property Value
Elastic modulus 1.349999985 × 1011 N/m2

Poisson’s ratio 0.3
Shear modulus 1.0 × 1010 N/m2

Mass density 1600 kg/m3

Tensile strength 1.5 × 109 N/m2

Compressive strength -
Yield strength 1.2 × 109 N/m2
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Table A.3: Material properties of 1060 aluminum alloy

Property Value
Elastic modulus 6.9 × 1010 N/m2

Poisson’s ratio 0.33
Shear modulus 2.7 × 1010 N/m2

Mass density 2700 kg/m3

Tensile strength 6.89356 × 107 N/m2

Compressive strength -
Yield strength 2.75742 × 107 N/m2

Table A.4: Material properties of alloy steel

Property Value
Elastic modulus 2.1 × 1011 N/m2

Poisson’s ratio 0.28
Shear modulus 7.9 × 1010 N/m2

Mass density 7700 kg/m3

Tensile strength 7.238256 × 108 N/m2

Compressive strength -
Yield strength 6.20422 × 108 N/m2

Table A.5: Material properties of nylon 101

Property Value
Elastic modulus 1.0 × 109 N/m2

Poisson’s ratio 0.3
Shear modulus -
Mass density 1150 kg/m3

Tensile strength 7.9289709 × 107 N/m2

Compressive strength -
Yield strength 6.0 × 107 N/m2
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Salas, M Pilar Mart́ın, Lara Vilar, Javier Mart́ınez, Susana Mart́ın,
Paloma Ibarra, et al. Development of a framework for fire risk assessment
using remote sensing and geographic information system technologies.
Ecological modelling, 221(1):46–58, 2010. 1

[14] Emilio Chuvieco, Florent Mouillot, Guido R. van der Werf, Jesús San
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[51] Marcos Rodrigues, Àngel Cunill Camprub́ı, Rodrigo Balaguer-Romano,
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