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Abstract

Real-time novel-view image synthesis on mobile devices is prohibitive due
to limited on-device computational power and storage. Using volumetric
rendering methods, such as NeRF and its derivatives, on mobile devices is
not suitable due to the high computational cost of volumetric rendering.
On the other hand, recent advances in neural light field representations
have shown promising real-time view synthesis results on mobile devices.
Neural light field methods learn a direct mapping from a ray representation
to the pixel color. The current choice of ray representation is either
stratified ray sampling or Plücker coordinates, overlooking the classic light
slab (two-plane) representation, the preferred representation to interpolate
between light field views. In this thesis, we find that using the light slab
representation is an efficient representation for learning a neural light field.
More importantly, it is a lower-dimensional ray representation enabling
us to learn the 4D ray space using feature grids which are significantly
faster to train and render. Although primarily designed for frontal views,
we show that the light-slab representation can be further extended to
non-frontal scenes using a divide-and-conquer strategy. Our method offers
superior rendering quality compared to previous light field methods and
achieves a significantly improved trade-off between rendering quality and
speed.
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Chapter 1

Introduction

Real-time rendering of photo-realistic 3D content on mobile devices such as phones is

crucial for mixed-reality applications. However, this presents a challenge due to the

limited computational power and memory of mobile devices. The current graphics

pipeline requires storing tens of thousands of meshes for complex scenes and performing

ray tracing for realistic lighting effects, which demands powerful graphics processing

power that is not feasible on current mobile devices. Recently, neural radiance field

(NeRF) [21] has been the next popular choice for photo-realistic view synthesis, which

offers a simplified rendering pipeline. However, the computational cost of integrating

the radiance field remains a bottleneck for real-time implementation on mobile devices.

There have been several attempts to reduce the computational cost of this integration

step, such as using more efficient radiance representations [5, 9, 12, 16, 26, 38] or

distilling meshes from radiance field [6, 25, 28, 33, 34, 37]. Among these approaches,

only a handful of mesh-based methods [6, 28] have demonstrated real-time rendering

capabilities on mobile phones, but with a significant sacrifice in rendering fidelity.

Moreover, all aforementioned methods require significant storage space (over 200MB),

which is undesirable for mobile devices with limited onboard storage.

Alternatively, researchers have used 4D light field1 (or lumigraph) to represent

radiance along rays in empty space [10, 11, 18, 22], rather than attempting to model

the 5D plenoptic function as in NeRF-based approaches. Essentially, the light field

1For the rest of the paper, we will use the term ‘light field’ to refer to the 4D light field, without
explicitly stating the dimensionality.
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Figure 1.1: Our LightSpeed approach demonstrates a superior trade-off between
on-device rendering quality and latency while maintaining a significantly reduced
training time and boosted rendering quality. (a) rendering quality and latency on
the 400× 400 Lego scene [21] running on an iPhone 13. (b) 60-L network training
curves for the 756× 1008 Fern scene [20].

provides a direct mapping from rays to pixel values since the radiance is constant along

rays in empty space. This makes the light field suitable for view synthesis, as long as

the cameras are placed outside the convex hull of the object of interest. Compared

to integrating radiance fields, rendering with light fields is more computationally

efficient. However, designing a representation of light field that compresses its storage

while maintaining high view-interpolation fidelity remains challenging. Previous

methods, such as image quilts [36] or multiplane images (MPI) [8, 15, 31, 39], suffer

from poor trade-offs between fidelity and storage due to the high number of views

or image planes required for reconstructing the complex light field signal. Recent

works [2, 4, 30, 35] have proposed training neural networks to represent light fields,

achieving realistic rendering with a relatively small memory footprint. Among those,

MobileR2L [4] uses less than 10MB of storage per scene, and it is currently the only

method that demonstrates real-time performance on mobile phones.

However, prior neural light field (NeLF) representations, including MobileR2L,

suffer from inefficiencies in learning due to the high number of layers (over 60 layers),

and consequently, a long training time is required to capture fine scene details.

One promising strategy to address this issue is utilizing grid-based representations,

which have proven to be effective in the context of training NeRFs [9, 16, 23, 29].
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1. Introduction

Nonetheless, incorporating such grid-based representation directly to prior NeLFs

is problematic due to the chosen ray parameterization. R2L [35] and MobileR2L [4]

parameterize light rays using a large number of stratified 3D points along the rays,

which were initially motivated by the discrete formulation of integrating radiance.

However, this motivation is unnecessary and undermines the simplicity of 4D light

fields because stratified sampling is redundant for rays with constant radiance. This

becomes problematic when attempting to incorporate grid-based representations for

more efficient learning, as the high-dimensional stratified-point representation is not

feasible for grid-based discretization. Similarly, the 6-dimensional Plücker coordinate

used by Sitzmann et al . [30] also presents issues for discretization due to the fact that

Plücker coordinates exist in a projective 5-space, rather than Euclidean space.

In this thesis, we present LightSpeed, the first NeLF method designed for mobile

devices that uses a grid-based representation. As shown in Fig. 1.1, our method

achieves a significantly better trade-off between rendering quality and speed compared

to prior NeLF methods, while also being faster to train. These advantages make it

well-suited for real-time applications on mobile devices. To achieve these results, we

propose the following design choices:

First, we revisit the classic 4D light-slab (or two-plane) representation [11, 18]

that has been largely overlooked by previous NeLF methods. This lower-dimensional

parameterization allows us to compactly represent the rays and efficiently represent

the light field using grids. To our knowledge, Attal et al . [2] is the only other NeLF

method that has experimented with the light-slab representation. However, they did

not take advantage of the grid-based representation, and their method is not designed

for real-time rendering. Second, to address the heavy storage consumption of 4D

light field grids, we take inspiration from k-planes [9] and propose decomposing the 4D

grids into six 2D feature grids. This ensures that our method remains competitive for

storage consumption compared to prior competing methods. Third, we incorporate

the super-resolution network proposed by MobileR2L [4], which significantly reduces

the computational cost when rendering high-resolution images. Finally, the light-slab

representation was originally designed for frontal-view scenes, but we demonstrate that

it can be easily extended to represent non-frontal scenes using a divide-and-conquer

strategy.

Our contributions pave the way for efficient and scalable light field representation

3



1. Introduction

and synthesis, making it feasible to generate high-quality images of real-world objects

and scenes on mobile devices. Our method achieves the highest PSNR and among

the highest frame rates (55 FPS on iPhone 14) on LLFF (frontal-view) and Blender

(360◦) scenes. We further show competitive performance on unbounded 360◦ scenes,

demonstrating the effectiveness of our approach.
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Chapter 2

Background

2.1 Light Fields

Light field representations have been studied extensively in the computer graphics and

computer vision communities [36]. Traditionally, light fields have been represented

using the 4D light slab representation, which parameterizes the light field by two

planes in 4D space [11, 18]. More recently, neural-based approaches have been

developed to synthesize novel views from the light field, leading to new light field

representations being proposed.

One popular representation is the multi-plane image (MPI) representation, which

discretizes the light field into a set of 2D planes. The MPI representation has

been used in several recent works, including [7, 8, 15, 31, 39]. However, the MPI

representation can require a large amount of memory, especially for high-resolution

light fields. Another recent approach that has gained substantial attention is NeRF [21]

(Neural Radiance Fields), which can synthesize novel views with high accuracy, but is

computationally expensive to render and train due to the need to integrate radiance

along viewing rays. There has been a substantial amount of works [2, 4, 5, 6, 9, 12,

16, 19, 24, 25, 26, 26, 28, 30, 33, 34, 35, 37, 38] studying how to accelerate training

and rendering of NeRF, but in the following, we focus on recent methods that achieve

real-time rendering with or without mobile devices.

5



2. Background

2.2 Grid Representation of Radiance Fields

The first group of methods trade speed with space, by precomputing and caching

radiance values using grid or voxel-like data structures such as sparse voxels [12, 29],

octrees [38], and hash tables [23]. Despite the efficient data structures, the memory

consumption for these methods is still high, and several approaches have been proposed

to address this issue. Chen et al . [5] and Fridovich-Keil et al . [9] decompose voxels

into matrices that are cheaper to store. Reiser et al . [27] represent unbounded scenes

as a combination of high-resolution 2D and low-resolution 3D grids to restrict storage

requirements. Takikawa et al . [32] performs quantization to compress feature grids.

These approaches have enabled real-time applications on desktop or server-class

GPUs, but they still require significant computational resources and are not suitable

for resource-constrained devices such as mobile or edge devices.

2.3 Baking High-Resolution Meshes

Another group of methods adopts the approach of extracting high-resolution meshes

from the learned radiance field [6, 25, 28, 34, 37]. The texture of the mesh stores the

plenoptic function to account for view-dependent rendering. While these approaches

have been demonstrated to run in real-time, with some of them running on mobile

devices, they sacrifice rendering quality, especially for semi-transparent objects, due

to the mesh-based representation. Additionally, storing high-resolution meshes with

features is memory-intensive, which limits the resolution and complexity of the mesh,

and sometimes even scenes that can be rendered.

2.4 Neural Light Fields.

Recent works such as R2L [35] and LFNS [30] have framed the view-synthesis problem

as directly predicting pixel colors from camera rays, making these approaches fast

at inference time without the need for multiple network passes to generate a pixel

color. However, due to the complexity of the 4D light field signal, the light field

network requires sufficient expressibility to be able to memorize the signal. As a

6



2. Background

result, Wang et al . [35] end up using as many as 88 network layers, which takes three

seconds to render one 200 × 200 image on iPhone 13. In this regard, Cao et al . [4]

introduce a novel network architecture that dramatically reduces R2L’s computation

through super-resolution. The deep networks are only evaluated on a low-resolution

ray bundle and then upsampled to the full image resolution. This approach, termed

MobileR2L, achieves real-time rendering on mobile phones. Both R2L and MobileR2L

use a pre-trained NeRF to generate pseudo-data for training the neural light field.

On the other hand, Sitzmann et al . use the Plücker ray representation to regress

the pixel colors in a light field setting. They further leverage a meta-learned neural

network that weakly enforces view-consistent renderings. However, their method is

limited to synthetic objects with poor extensibility to real-world scenes. One crucial

difference that might mitigate this lack of generalization is to leverage pseudo-data

from a pre-trained NeRF like the ResNet-based counterparts [4] [35]. While it’ll be

interesting to explore the effects of augmenting LFNS with additional pseudo-data,

Plücker representation still presents challenges in the discretization of the ray space

and eventually the use of feature grids for faster light field training. Hence, we omit

this line of experiments from our study.

Throughout this thesis, we will mainly compare our method to MobileR2L [4],

which is currently the state-of-the-art method for real-time rendering on mobile

devices and achieves the highest PSNR among existing methods.

It is important to note that training NeLFs requires densely sampled camera poses

in the training images and may not generalize well if the training images are sparse, as

NeLFs do not explicitly model geometry. While there have been works, such as those

by Attal et al . [2], that propose a mixture of NeRF and local NeLFs, allowing learning

from sparse inputs, we do not consider this to be a drawback since NeLFs focus on

photo-realistic rendering rather than reconstructing the light field from sparse inputs,

and they can leverage state-of-the-art reconstruction methods like NeRF to create

dense training images. However, it is a drawback for prior NeLFs [4, 35] that they

train extremely slowly, often taking more than two days to converge for a single scene.

This is where our new method comes into play, as it offers improvements in terms of

training efficiency and convergence speed.

7



2. Background
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Chapter 3

Method

3.1 Prerequisites

3.1.1 4D Light Fields

4D light fields or lumigraphs are a representation of light fields that capture the

radiance information along rays in empty space. They can be seen as a reduction of

the higher-dimensional plenoptic functions. While plenoptic functions describe the

amount of light (radiance) flowing in every direction through every point in space,

which typically has five degrees of freedom, 4D light fields assume that the radiance

is constant along the rays. Therefore, a 4D light field is a vector function that takes

a ray as input (with four degrees of freedom) and outputs the corresponding radiance

value. Specifically, assuming that the radiance c is represented in the RGB space, a

4D light field is mathematically defined as a function, i.e.:

F : r ∈ RM 7→ c ∈ R3, (3.1)

where r is M -dimensional coordinates of the ray depending how it is parameterized.

Generating images from the 4D light field is a straightforward process. For

each pixel on the image plane, we calculate the corresponding viewing ray r that

passes through the pixel, and the pixel value is obtained by evaluating the light field

function F(r). In this paper, our goal is to identify a suitable representation for F(r)

9



3. Method

that minimizes the number of parameters required for learning and facilitates faster

evaluation and training.

3.1.2 MobileR2L

We adopt the problem setup introduced by MobileR2L [6] and its predecessor R2L [35],

where the light field F(r) is modeled using neural networks. The training of the light

field network is framed as distillation, leveraging a large dataset that includes both

real images and images generated by a pre-trained NeRF. Both R2L and MobileR2L

represent r using stratified points, which involves concatenating the 3D positions of

points along the ray through stratified sampling. In addition, the 3D positions are

encoded using sinusoidal positional encoding [21]. Due to the complexity of the light

field, the network requires a high level of expressiveness to capture fine details in

the target scene. This leads to the use of very deep networks, with over 88 layers in

the case of R2L. While this allows for detailed rendering, it negatively impacts the

rendering speed since the network needs to be evaluated for every pixel in the image.

To address this issue, MobileR2L proposes an alternative approach. Instead

of directly using deep networks to generate high-resolution pixels, they employ

deep networks to generate a low-resolution feature map, which is subsequently up-

sampled to obtain high-resolution images using shallow super-resolution modules.

This approach greatly reduces the computational requirements and enables real-time

rendering on mobile devices. In our work, we adopt a similar architecture, with a

specific focus on improving the efficiency of generating the low-resolution feature

map.

3.2 LightSpeed

We first describe the light-slab ray representation for both frontal and non-frontal

scenes in Section 3.2.1. Next, we detail our grid representation for the light-slab

in Section 3.2.2 and explain the procedure for synthesizing images from this grid

representation in Section 3.2.3. Refer to Figure 3.1 for a visual overview.
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Figure 3.1: LightSpeed Model for Frontal Scenes: Taking a low-resolution
ray bundle as input, our approach formulates rays in two-plane ray representation.
This enables us to encode each ray using multi-scale feature grids, as shown. The
encoded ray bundle is fed into a decoder network consisting of convolutions and
super-resolution modules yielding the high-resolution image.

3.2.1 Ray Parameterization

Light Slab (Two-Plane Representation)

Instead of utilizing stratified points or Plücker coordinates, we represent each directed

light ray using the classic two-plane parameterization[18] as an ordered pair of

intersection points with two fixed planes. Formally,

r = (x, y, u, v), (3.2)

where (x, y) ∈ R2 and (u, v) ∈ R2 are ray intersection points with fixed planes P1

and P2 in their respective coordinate systems. We refer to these four numbers as the

ray coordinates in the 4D ray space. To accommodate unbounded scenes, we utilize

normalized device coordinates (NDC) and select the planes P1 and P2 as the near

and far planes (at infinity) defined in NDC.

Divided light slabs for non-frontal scenes.

A single light slab is only suitable for modeling a frontal scene and cannot capture light

rays that are parallel to the planes. To model non-frontal scenes, we employ a divide-

and-conquer strategy by using a composition of multiple light slab representations to

11
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∞

Final

Figure 3.2: Space Partitioning for Non-frontal scenes: We partition object-
centric 360◦ scenes into 5 parts as shown. Each colored face of the trapezoidal prism
corresponds to a partitioning plane. Each scene subset is subsequently learned as a
separate NeLF

learn the full light field. We partition the light fields into subsets, and each subset is

learned using a separate NeLF model. The partitions ensure sufficient overlap between

sub-scenes, resulting in a continuous light field representation without additional

losses while maintaining the frontal scene assumption. To perform view synthesis,

we identify the scene subset of the viewing ray and query the corresponding NeLF

to generate pixel values. Unlike Attal et al . [2], we do not perform alpha blending

of multiple local light fields because our division is based on ray space rather than

partitioning 3D space.

For object-centric 360◦ scenes, we propose to partition the scene into 5 parts using

surfaces of a near-isometric trapezoidal prism and approximate each sub-scene as

frontal (as illustrated in Fig. 3.2). For unbounded 360◦ scenes, we perform partitioning

using k-means clustering based on camera orientation and position. We refer the

reader to the ablations section and supplementary material for more details on our

choice of space partitioning.

3.2.2 Feature grids for light field representation

Storing the 4D light slab directly using a high-resolution grid is impractical in terms

of storage and inefficient for learning due to the excessive number of parameters to

optimize. The primary concern arises from the fact that the 4D grid size increases

quartically with respect to resolutions. To address this, we suggest the following design
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choices to achieve a compact representation of the light slab without exponentially

increasing the parameter count.

Lower resolution feature grids.

Instead of storing grids at full resolution, we choose to utilize low-resolution feature

grids to take advantage of the quartic reduction in storage achieved through resolution

reduction. We anticipate that the decrease in resolution can be compensated by

employing high-dimensional features. In our implementation, we have determined that

feature grids of size 1284 are suitable for synthesizing full HD images. Additionally,

we adopt the approach from Instant-NGP [23] to incorporate multi-resolution grids,

which enables an efficient representation of both global and local scene structures.

Decompose 4D grids into 2D grids.

Taking inspiration from k-planes [9], we propose to decompose the 4D feature grid

using
(
4
2

)
= 6 number of 2D grids, with each 2D grid representing a sub-space of the

4D ray space. This results in a storage complexity of O(6N2), greatly reducing the

storage required to deploy our grid-based approach to mobile devices.

3.2.3 View synthesis using feature grids

Similar to MobileR2L [4], LightSpeed takes two steps to render a high-resolution

image (see Fig. 3.1).

Encoding Low-Resolution Ray Bundles

The first step is to render a low-resolution (HL ×WL) feature map from the feature

grids. This is accomplished by generating ray bundles at a reduced resolution, where

each ray corresponds to a pixel in a downsampled image. We project each ray’s 4D

coordinates r = (x, y, u, v) onto 6 2D feature grids Gxy,Gxu,Gxv,Gyu,Gyv,Guv to

obtain feature vectors from corresponding sub-spaces. The feature values undergo

bilinear interpolation from the 2D grids, resulting in six interpolated F -dimensional

features. These features are subsequently concatenated to form a 6F -dimensional

feature vector. As the feature grids are multi-resolutional with L levels, features

13
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gl(r) ∈ R6F from different levels (indexed by l) are concatenated together to create

a single feature g(r) ∈ R6LF . Combining the features from all rays generates a

low-resolution 2D feature map G̃ ∈ RHL×WL×6LF , which is then processed further in

the subsequent step.

Decoding high-resolution image.

To mitigate the approximation introduced by decomposing 4D grids into 2D grids,

the features g(r) undergo additional processing through an MLP. This is implemented

by applying a series of 1× 1 convolutional layers to the low-resolution feature map .

Subsequently, the processed feature map is passed through a sequence of upsampling

layers (similar to MobileR2L [4]) to generate a high-resolution image.
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Chapter 4

Experimental Evaluation and

Analysis

4.1 Experimental Setup

4.1.1 Training Details

We follow a similar training scheme as MobileR2L: train the LightSpeed model using

pseudo-data mined from a pre-trained NeRF teacher. We specifically train MipNeRF

teachers to sample 10k pseudo-data points for the LLFF dataset. For synthetic

and unbounded 360◦ scenes, we mine 30k samples per scene using Instant-NGP [23]

teachers. Following this, we fine-tune the model on the original data. We optimize

for the mean-squared error between generated and ground truth images. We refer

the reader to the supplementary material for more training details.

We use 63× 84 (12× downsampled from the desired 756× 1008 resolution) input

ray bundles for the forward-facing scenes. For 360◦ scenes, we use 100 × 100 (8×
downsampled from the desired 800×800 image resolution) ray bundles. For unbounded

scenes, we use ray bundles 12× downsampled from the image resolution we use. We

train our frontal LightSpeed models as well as each sub-scene model in non-frontal

scenes for 200k iterations.
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4.1.2 Datasets

We benchmark our approach on the real-world forward-facing [20] [21], the realistic

synthetic 360◦ datasets [21] and unbounded 360◦ scenes [3]. The forward-facing

dataset consists of 8 real-world scenes captured using cellphones, with 20-60 images

per scene and 1/8th of the images used for testing. The synthetic 360◦ dataset has 8

scenes, each having 100 training views and 200 testing views. The unbounded 360◦

dataset consists of 5 outdoor and 4 indoor scenes with a central object and a detailed

background. Each scene has between 100 to 300 images, with 1 in 8 images used for

testing. We use 756× 1008 LLFF dataset images, 800× 800 resolution for the 360◦

scenes, and 1/4th of the original resolution for the unbounded 360◦ scenes.

We compare our method’s performance on bounded scenes with MobileR2L[6],

MobileNeRF[6] and SNeRG[12]. We evaluate our method for rendering quality using

three metrics: PSNR, LPIPS, and SSIM.

For unbounded scenes, we report the PSNR metric on 6 scenes and compare it

with MobileNeRF [6] and NeRFMeshing [25]. To further demonstrate the effectiveness

of our approach, we compare our approach with others on two other criteria:

• On-device Rendering speed: We report and compare average inference

times per rendered frame on various mobile chips, including Apple A15, Apple

M1 Pro and Snapdragon SM8450 chips; and

• Efficient Training: We compare the number of iterations LightSpeed and

MobileR2L require to reach a target PSNR. We pick Lego scene from 360◦

scenes and Fern from forward-facing scenes as representative scenes to compare.

We also report the storage requirements of our method per frontal scene and

compare it with baselines.

4.2 Results and Analysis

4.2.1 Rendering Quality

As in Tab. 4.1, we obtain better results on all rendering fidelity metrics on the two

bounded datasets. We also outperform MobileNeRF and NeRFMeshing on 4 out of

6 unbounded 360◦ scenes. We refer the reader to Fig. 4.1for a visual comparison of
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GT: Paper

GT: Paper

GT: Paper

GT: Paper

(a) Scene (b) Ground truth (c) NeRF (d) MobileR2L (e) LightSpeed

Figure 4.1: Qualitative Results on frontal and non-frontal scenes: Zoomed-in
comparison between NeRF [21], MobileR2L [4] and our LightSpeed approach.

our approach with MobileR2L and NeRF. Our method has much better rendering

quality, capturing fine-level details where MobileR2L, and in some cases, even the

original NeRF model, fails. Note that we use Instant-NGP teachers for 360◦ scenes,

which have slightly inferior performance to MipNeRF teachers used by MobileR2L.

This further shows the robustness of our approach to inferior NeRF teachers.

4.2.2 Storage Cost

We report storage requirements in Tab. 4.1. Our approach has a competitive on-device

storage to the MobileR2L model. Specifically, we require a total of 16.3 MB of storage

per frontal scene. The increase in storage is expected since we’re using grids to encode

our light field. We also report storage values for lighter LightSpeed networks in the

ablation study (see Tab. 4.5), all of which have similar or better rendering quality

than the full-sized MobileR2L network.
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4.2.3 Training Speed

We benchmark the training times and the number of iterations required for LightSpeed

and MobileR2L in Tab. 4.2 with a target PSNR of 24 for Fern scene and 32 for the

Lego scene. Our approach demonstrates a training speed-up of 2.5× on both scenes.

Since we are modeling 360◦ scenes as a composition of 5 light fields, we can train

them in parallel (which is not possible for MobileR2L), further trimming down the

training time. Moreover, the training speedup reaches ∼ 4× when networks are

trained beyond the mentioned target PSNR (see Fig. 1.1).

4.2.4 Inference Speed

Tab. 4.3 shows our method’s inference time as compared to MobileR2L and MobileN-

eRF. We maintain a comparable runtime as MobileR2L while having better rendering

fidelity. Since on-device inference is crucial to our problem setting, we also report

rendering times of a smaller 30-layered decoder network that has similar rendering

quality as the MobileR2L model (see Tab. 4.5).

4.3 Ablations

We perform ablation studies to experimentally show how our design choices affect

the network performance. We use half-resolution (400 × 400) images of one Lego

sub-scene (partitioned using our trapezoidal prism) from the 360◦ dataset for the

ablation. All networks are trained for 200k iterations.

4.3.1 Data Requirements

We use 10k samples as used by MobileR2L to train LightField models for frontal

scenes. However, for non-frontal scenes, we resort to using 30k pseudo-data samples

per scene. Dividing 10k samples amongst 5 sub-scenes assigns too few samplers per

sub-scene, which is detrimental to grid learning. We experimentally validate data

requirements by comparing MobileR2L and LightSpeed trained for different amounts

of pseudo-data. We train one sub-scene from the Lego scene with 1/5th of 10k and 30k

samples, i.e., 2k and 6k samples. Tab. 4.4 exhibits significantly decreased rendering
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Table 4.1: Quantitative comparison on Forward-facing, Synthetic 360◦ and Un-
bounded 360◦ Datasets. LighSpeed achieves the best rendering quality with com-
petitive storage. We use an out-of-the-box Instant-NGP [23] implementation [1] (as
teachers for 360◦ scenes) which dose not report SSIM and LPIPS values. We omit
storage for NeRF-based methods since they are not comparable.

Method Synthetic 360◦ Forward-Facing

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Storage ↓

NeRF [21] 31.01 0.947 0.081 26.50 0.811 0.250 -
NeRF-PyTorch 30.92 0.991 0.045 26.26 0.965 0.153 -

SNeRG [12] 30.38 0.950 0.050 25.63 0.818 0.183 337.3 MB
MobileNeRF [6] 30.90 0.947 0.062 25.91 0.825 0.183 201.5 MB
MobileR2L [4] 31.34 0.993 0.051 26.15 0.966 0.187 8.2 MB

LightSpeed (Ours) 32.23 0.994 0.038 26.50 0.968 0.173 16.3 MB

Our Teacher 32.96 - - 26.85 0.827 0.226 -

Unbounded 360◦

Method Bicycle Garden Stump Bonsai Counter Kitchen

MobileNeRF [6] 21.70 23.54 23.95 - - -
NeRFMeshing [25] 21.15 22.91 22.66 25.58 20.00 23.59

LightSpeed (Ours) 22.51 24.54 22.22 28.24 25.46 27.82

Instant-NGP (Our teacher) [23] 21.70 23.40 23.20 27.4 25.80 27.50

quality for the LightSpeed network as compared to MobileR2L when provided with

less pseudo-data.

4.3.2 Decoder Network Size

We further analyze the trade-off between inference speed and rendering quality of

our method and MobileR2L. To this end, we experiment with decoders of different

depths and widths. Each network is trained for 200k iterations and benchmarked on

an iPhone 13. Tab. 4.5 shows that a 30-layered LightSpeed model has a much better

inference speed and rendering quality as compared to the 60-layered MobileR2L

model. This 30-layered variant further occupies less storage as compared to its

full-sized counterpart. Furthermore, lighter LightSpeed networks obtain a comparable

performance as the 60-layered MobileR2L. Note that reducing the network capacity
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Table 4.2: Training Time for Lego and Fern scenes with 32 and 24 target PSNRs.
LightSpeed trains significantly faster than MobileR2L. It achieves even greater speedup
when trained in parallel for 360◦ scenes (parallel training is not applicable for frontal
scenes).

Forward-Facing: Fern Synthetic 360◦: Lego

Method Duration ↓ Iterations ↓ Duration ↓ Iterations ↓

MobileR2L 12.5 hours 70k 192 hours 860k
LightSpeed 4 hours 27k 75 hours 425k
LightSpeed (Parallelized) - - 15 hours 85k

Table 4.3: Rendering Latency Analysis: LightSpeed maintains a competitive
rendering latency (ms) to prior works. MobileNeRF is not able to render 2 out of
8 real-world scenes (N

M
in table) due to memory constraints, and no numbers are

reported for M1 Pro and Snapdragon chip.

Forward-Facing Synthetic 360◦

Chip MobileNeRF MobileR2L Ours Ours (30-L) MobileNeRF MobileR2L Ours Ours (30-L)

Apple A15(Low-end) 27.15 2
8

18.04 19.05 15.28 17.54 26.21 27.10 20.15
Apple A15(High-end) 20.98 2

8
16.48 17.68 15.03 16.67 22.65 26.47 20.35

Apple M1 Pro - 17.65 17.08 13.86 - 27.37 27.14 20.13
Snapdragon SM8450 - 39.14 45.65 32.89 - 40.86 41.26 33.87

of MobileR2L results in significant drops in performance. This means that we can

get the same rendering quality as MobileR2L with considerably reduced on-device

resources, paving the way for a much better trade-off between rendering quality and

on-device inference speed.
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Table 4.4: Pseudo-Data Requirement for Non-Frontal Scenes: We analyze
the importance of mining more pseudo-data for non-frontal scenes. Using 1/5th of
10k and 30k sampled pseudo-data points, we find more pseudo-data is crucial for the
boosted performance of the LightSpeed model.

2k Samples 6k Samples

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

MobileR2L 30.19 0.9894 0.0354 30.56 0.9898 0.0336
LightSpeed (Ours) 30.44 0.9899 0.0299 31.2 0.9906 0.0284

Table 4.5: Decoder Network Size: Our approach maintains a much better tradeoff
between inference speeds v/s rendering quality with our smallest network achieving
comparable quality to the MobileR2L. Benchmarking done on an iPhone 13. L is
network depth and W is network width.

Method PSNR ↑ SSIM ↑ LPIPS ↓ Latency ↓ Storage ↓

15-L W-256 MobileR2L 28.91 0.9855 0.0645 7.44 ms 2.4 MB
30-L W-128 MobileR2L 28.78 0.9860 0.0666 7.46 ms 1.4 MB
30-L W-256 MobileR2L 29.41 0.9875 0.0477 11.26 ms 4.5 MB
60-L W-256 MobileR2L 30.56 0.9898 0.0336 18.12 ms 8.2 MB

15-L W-256 LightSpeed 30.55 0.9889 0.0453 7.88 ms 10.5 MB
30-L W-128 LightSpeed 30.39 0.9884 0.0482 7.87 ms 9.5 MB
30-L W-256 LightSpeed 31.05 0.9900 0.0338 11.80 ms 12.6 MB
60-L W-256 LightSpeed 31.20 0.9906 0.0284 18.55 ms 16.3 MB
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Chapter 5

Discussion and Conclusion

In this thesis, we propose an efficient method, LightSpeed, to learn neural light fields

using the classic two-plane ray representation. Our approach leverages grid-based

light field representations to accelerate light field training and boost rendering quality.

We demonstrate the advantages of our approach not only on frontal scenes but

also on non-frontal scenes by following a divide-and-conquer strategy and modeling

them as frontal sub-scenes. Our method achieves state-of-the-art rendering quality

amongst prior works at the same time, providing a significantly better trade-off

between rendering fidelity and latency, paving the way for real-time view synthesis

on resource-constrained mobile devices.

5.1 Limitations and Future Work

While LightSpeed excels at efficiently modeling frontal and 360◦ light fields, the light

field representation cannot handle free camera trajectories since the same ray can

correspond to entirely different colors depending on the camera pose. LightSpeed has

larger storage requirements as compared to prior works and might be prone to aliasing

effects while rendering images at different resolutions. The method is also limited to

static scenes without the ability to model deformable objects such as humans. We

plan to explore these directions in future work.
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5. Discussion and Conclusion

5.2 Broader Impact

Focused on finding efficiencies in novel view synthesis, our study could significantly

reduce costs, enabling wider access to this technology. However, potential misuse,

like unsolicited impersonations, must be mitigated.
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Appendix A

Appendix

A.1 Additional Implementation Details

Our multi-scale feature grids have 16 levels, with resolutions exponentially growing

from 16 to 256, and 4-D features in every grid. Our LightSpeed network follows

a similar architecture to MobileR2L: 60 point-wise residual convolutions with 256

channels and BatchNorm [14]and GeLU [13] activation interleaved. The convolutions

are followed by 3 super-resolution modules to upsample the low-resolution input to

the desired resolution. The first two super-resolution modules upsample the input

by 2× and consist of transposed convolution layers with 4× 4 kernel size followed

by 2 residual convolution layers each. The third super-resolution module consists of

transposed kernel size with 4× 4 kernel size (upsample by 2×) for 360◦ scenes (both

bounded and unbounded) and 3× 3 kernel size (upsample by 3×) for forward-facing

[20] scenes.

We use Adam [17] optimizer with a batch size of 32 to train the feature grids

and decoder network. We use an initial learning rate of 1e-5 with 100 warmup steps

taking the learning rate to 5e-4. Beyond that, the learning rate decays linearly until

the training finishes. All our experiments are conducted on Nvidia V100s and A100s.
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A.2 Choice of Splitting Planes

We discuss two aspects of dividing non-frontal scenes into separate light fields: the

number of parts to divide the scene into and the placement of the splitting planes.

We find the optimal number of splits for 360◦ scenes to be 5 since more number of

splits would mean increased storage cost, which is detrimental to mobile deployment.

We also want the scene splits to be collectively exhaustive (but not mutually exclusive

to maintain continuity while switching from one light field to another) in the poses

sampled around the object. Consequently, fewer planes would mean placing the

splitting planes near the scene origin to cover the entire scene, which starts to violate

the frontal assumption for each sub-scene.

Given poses distributed on the surface of a sphere with radius r, we propose

assigning each pose to (possibly multiple) sub-scenes based on the camera origin

satisfying one or more of the 5 following criteria:
0 0
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These five hyperplanes form the surface of a near-isometric trapezoidal prism,

as shown in Fig. 3 (main paper). We experimentally show the effect of the choice

of splitting plane by training LightSpeed models on a Lego sub-scene with different

plane placements and compare with the corresponding MobileR2L models trained

on the same data. Specifically, we choose two axis-aligned planes at a distance of
radius√

2
and radius√

3
from the scene origin and train models with 6k pseudo data points

sampled independently from the two resulting sub-scenes. As shown in Tab. A.1,

placing the splitting plane at a distance of radius√
3

results in inferior performance as

compared to placing the splitting plane at a distance of radius√
2

from the origin. This

suggests that frontal sub-scene approximation starts to break down as we move the

splitting plane closer to the origin.
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Table A.1: Choice of Splitting Planes. We experiment with two planes parallel
to the x-y sub-space and at the distances as mentioned. The further scene from the
origin works better.

LF Representation PSNR ↑ SSIM ↑ LPIPS ↓

radius /
√
2 30.44 0.9903 0.028

radius /
√
3 30.23 0.9899 0.031

A.3 Per-Scene Quantitative Results

We provide a per-scene quantitative comparison between LightSpeed, MobileR2L [6]

and NeRF [21] on the synthetic 360◦ dataset (Tab. A.2, Tab. A.3 and Tab. A.4)

and forward-facing dataset (Tab. A.5, Tab. A.6 and Tab. A.7). We use PSNR,

LPIPS, and SSIM as comparison metrics. As can be seen from the comparisons,

LighSpeed (our approach) outperforms MobileR2L [4] on almost all the metrics.

Further, LightSpeed performs comparably or even better than NeRF [21].

Table A.2: Per-scene PSNR ↑ comparison on the Synthetic 360◦ dataset between
NeRF [21], MobileR2L [4], and our approach.

Method Chair Drums Ficus Hotdog Lego Materials Mic Ship Average

NeRF [21] 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65 31.01
MobileR2L [4] 33.66 25.05 29.80 36.84 32.18 30.54 34.37 28.75 31.34
LightSpeed (Ours) 34.21 25.63 32.82 36.77 34.35 29.51 35.65 28.90 32.23

Table A.3: Per-scene SSIM ↑ comparison on the Synthetic 360◦ dataset between
NeRF [21], MobileR2L [4], and our approach.

Method Chair Drums Ficus Hotdog Lego Materials Mic Ship Average

NeRF [21] 0.967 0.925 0.964 0.974 0.961 0.949 0.980 0.856 0.947
MobileR2L [4] 0.998 0.986 0.996 0.998 0.992 0.992 0.997 0.982 0.993
LightSpeed (Ours) 0.998 0.988 0.998 0.998 0.994 0.990 0.998 0.984 0.994
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Table A.4: Per-scene LPIPS ↓ comparison on the Synthetic 360◦ dataset between
NeRF [21], MobileR2L [4], and our approach.

Method Chair Drums Ficus Hotdog Lego Materials Mic Ship Average

NeRF [21] 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206 0.081
MobileR2L [4] 0.027 0.083 0.025 0.026 0.043 0.029 0.012 0.162 0.051
LightSpeed (Ours) 0.017 0.061 0.016 0.023 0.019 0.030 0.007 0.138 0.039

Table A.5: Per-scene PSNR ↑ comparison on the forward-facing dataset between
NeRF [21], MobileR2L [4], and our approach.

Method Room Fern Leaves Fortress Orchids Flower T-Rex Horns Average

NeRF [21] 32.70 25.17 20.92 31.16 20.36 27.40 26.80 27.45 26.50
MobileR2L [4] 32.09 24.39 20.52 30.81 20.06 27.61 26.71 27.01 26.15
LightSpeed (Ours) 32.32 25.05 21.01 31.45 20.33 27.88 26.93 27.04 26.50

Table A.6: Per-scene SSIM ↑ comparison on the forward-facing dataset between NeRF
[21], MobileR2L [4], and our approach.

Method Room Fern Leaves Fortress Orchids Flower T-Rex Horns Average

NeRF [21] 0.948 0.792 0.690 0.881 0.641 0.827 0.880 0.828 0.811
MobileR2L [4] 0.995 0.973 0.923 0.995 0.916 0.971 0.973 0.982 0.966
LightSpeed (Ours) 0.991 0.976 0.931 0.996 0.921 0.972 0.975 0.983 0.968

Table A.7: Per-scene LPIPS ↓ comparison on the forward-facing dataset between
NeRF [21], MobileR2L [4], and our approach.

Method Room Fern Leaves Fortress Orchids Flower T-Rex Horns Average

NeRF [21] 0.178 0.280 0.316 0.171 0.321 0.219 0.249 0.268 0.250
MobileR2L [4] 0.088 0.239 0.280 0.103 0.296 0.150 0.121 0.217 0.187
LightSpeed (Ours) 0.085 0.211 0.255 0.093 0.272 0.145 0.119 0.209 0.173

A.4 Additional Visual Results

We show additional novel view images generated from LightSpeed for Blender scenes

in Figures A.1 and A.2, LLFF scenes in Figures A.3 and A.4, and Unbounded 360◦

scenes in Figure A.5. Our method generates images with high visual quality while

capable of running on mobile devices in real-time. Please refer to the project web-page

for full-resolution novel view video results.
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(a) Lego (b) Mic

(c) Ship (d) Materials

Figure A.1: Qualitative Results on Synthetic 360◦ scenes: (a) Lego, (b) Mic,
(c) Ship, and (d) Materials. Images are generated from novel views not present in the
given dataset.
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(a) Chair (b) Drums

(c) Hotdog (d) Ficus

Figure A.2: Qualitative Results on Synthetic 360◦ scenes: (a) Chair, (b) Drums,
(c) Hotdog, and (d) Ficus. Images are generated from novel views not present in the
given dataset.
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(a) Fern (b) Flower

(c) Fortress (d) Horns

Figure A.3: Qualitative Results on LLFF scenes: (a) Fern, (b) Flower, (c)
Fortress, and (d) Horns. Images are generated from novel views not present in the
given dataset.
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(a) Leaves (b) Orchids

(c) Room (d) T-Rex

Figure A.4: Qualitative Results on LLFF scenes: (a) Leaves, (b) Orchids, (c)
Room, and (d) T-Rex. Images are generated from novel views not present in the
given dataset.
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(a) Bicycle (b) Kitchen

(c) Bonsai (d) Counter

(e) Garden (f) Stump

Figure A.5: Qualitative Results on Unbounded 360◦ scenes: Images are
generated from novel views not present in the given dataset.
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