
Exploring Reinforcement Learning

approaches for Safety Critical

Environments

Shivesh Khaitan

CMU-RI-TR-23-28

June 22, 2023

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Prof. John M Dolan, chair

Prof. Jeff Schneider
Simin Liu

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright © 2023 Shivesh Khaitan. All rights reserved.

Abstract

Reinforcement Learning (RL) has emerged as a powerful paradigm for
addressing challenging decision-making and control tasks. By leveraging
the principles of trial-and-error learning, RL algorithms enable agents
to learn optimal strategies through interactions with an environment.
Over the years, RL has achieved remarkable successes in various domains,
ranging from game playing to robotics and beyond. However, despite
the success of these RL algorithms, their practical application in the real
world still faces several challenges such as sample inefficiency and the lack
of interpretability arising from the reactive nature of RL policies. RL
algorithms require a substantial number of interactions with the environ-
ment to learn effective policies. This limitation hinders the applicability
of RL in scenarios where data collection is expensive or time-consuming.
In some environments, this data collection can also be potentially unsafe.
Interpretability is crucial for understanding and trusting the decisions
made by RL agents. RL algorithms are regarded as black box reactive
policies, making it challenging to interpret the decision-making process,
understand the factors influencing agent behavior, or even carry out safety
checks before executing any commands. The impact of these challenges
are aggravated in safety-critical environments, which includes many appli-
cation areas within robotics. This work tries to address these challenges
in the practical application of RL, particularly in safety-critical environ-
ments involving robotics applications. Overcoming these challenges will
facilitate the adoption of RL in real-world settings, enabling intelligent
decision-making and control in safety-critical domains.

iii

iv

Acknowledgments

I would like to express my sincere gratitude to Professor John M Dolan,
my advisor for his consistent support and invaluable guidance throughout.
His constant feedback and encouragement have been instrumental in
shaping my research. His mentorship has had a profound impact on my
academic and personal growth, and I am truly honored to have had the
opportunity to work under his supervision.

I am immensely grateful to Professor Qin Lin as well who played a pivotal
role in guiding me during my time at CMU as a RISS student. Under his
mentorship, I was able to establish a strong foundation for my research
journey.

Additionally, I would like to extend sincere appreciation to the members
of my thesis committee Professor Jeff Schneider and Simin Liu, whose
valuable feedback and insightful perspectives have greatly contributed to
the refinement of my work. I am grateful for their dedicated time and
expertise in reviewing my research and providing constructive suggestions.

I would like to thank my research colleagues, Siddarth Venkatraman and
Ravi Tej Akella with whom I collaborated on my final project. I would also
like to extend my gratitude to the entire research group under Professor
Dolan for their diverse perspectives and collective expertise which have
enriched my research experience and contributed to the overall success of
this work.

I attribute my achievements to the unwavering support of my family,
whose presence and encouragement have been crucial in my journey thus
far. Without their steadfast support, I would not have been able to reach
this significant milestone.

v

vi

Funding

This work was supported by the CMU Argo AI Center for Autonomous
Vehicle Research.

vii

viii

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Preliminaries . 4
1.3 Contributions . 4

2 State Dropout-based Curriculum Reinforcement Learning 7
2.1 Introduction . 7
2.2 Related Work . 8

2.2.1 Transfer Learning . 8
2.2.2 Curriculum Learning . 8

2.3 Problem Definition . 9
2.3.1 Problem Statement . 9
2.3.2 Observation and Action space 10
2.3.3 Reward Structure . 12

2.4 State Dropout Curriculum . 12
2.4.1 Curriculum 1 . 13
2.4.2 Curriculum 2 . 13

2.5 Experiments . 14
2.5.1 Experimental Setup . 14
2.5.2 Network Architecture . 15
2.5.3 Training Details . 15
2.5.4 Performance Evaluation . 16
2.5.5 Discussion . 18

2.6 Conclusion . 19

3 Motion Primitives-based Reinforcement Learning 21
3.1 Introduction . 21
3.2 Related Work . 23

3.2.1 Model-based Reinforcement Learning 23
3.2.2 Hierarchical Reinforcement Learning 23

3.3 Problem Formulation . 24
3.4 Primitives-based RL . 25

3.4.1 Motion Primitive Embeddings 25
3.4.2 Online Optimal Primitive Selection 25

ix

3.4.3 Observation and Action space 27
3.4.4 Reward Structure . 27

3.5 Experiments . 29
3.5.1 Experimental Setup . 29
3.5.2 Motion Primitives Library . 29
3.5.3 Network Architecture . 30
3.5.4 Training Details . 31
3.5.5 CommonRoad Benchmarks . 31
3.5.6 Performance Evaluation . 31
3.5.7 Discussion . 34

3.6 Conclusion . 35

4 Offline Reinforcement Learning with Latent Diffusion 37
4.1 Related Work . 38

4.1.1 Offline reinforcement learning 38
4.1.2 Diffusion Probabilistic Models 39

4.2 Background . 40
4.2.1 Diffusion Probabilistic Models 40
4.2.2 Offline Reinforcement Learning 41

4.3 Latent Diffusion Reinforcement Learning 42
4.3.1 Two-Stage LDM training . 42
4.3.2 Latent Diffusion-Constrained Q-Learning (LDCQ) 44
4.3.3 Latent Diffusion Goal Conditioning (LDGC) 47
4.3.4 Latent Diffusion Constrained Planning (LDCP) 47
4.3.5 Visualizing Model Predictions 49

4.4 Experimental Evaluation and Analysis 50
4.4.1 Temporal abstraction induces multi-modality in latent space . 50
4.4.2 LDMs address multi-modality in latent space 51
4.4.3 Performance improvement with temporal abstraction 52
4.4.4 Network Architecture . 53
4.4.5 Offline RL benchmarks . 55

4.5 Conclusion . 61

5 Conclusions 63

Bibliography 65

When this dissertation is viewed as a PDF, the page header is a link to this Table of Contents.

x

List of Figures

1.1 Desirable properties of the proposed methods. 5

2.1 Visualization of T-intersection scenarios. 9

2.2 Visualization of Four-way intersection scenarios. 10

2.3 Training curves for T-intersection experiments 17

2.4 Success rates for T-intersection experiments 17

2.5 Training curves for four-way intersection experiments. 18

2.6 Success rates for four-way intersection experiments 18

3.1 Overview of our proposed framework. The PPO agent maps
the observation to an intermediate representation which is encoded
by the encoder into a primitive embedding. The embedding’s nearest
neighbor from among the feasible primitives is selected as the optimal
primitive for execution. 25

3.2 Visualization of sample motion primitives. 30

3.3 Search Planner failure case. This is a result of the limited search-
depth of the conventional planner. 34

4.1 Latent Diffusion Reinforcement Learning Overview a) We first
learn the latent space and low-level policy decoder by training a β-VAE
over H-length sequences from the demonstrator dataset. b) We train
a latent diffusion prior conditioned on s0 to predict latents generated
by the VAE encoder. c) After learning a Q function using LDCQ
(Algorithm 4), we score latents sampled by the prior with this Q
function and execute the low-level policy πθ conditioned on the argmax
latent. 44

4.2 Visualizing model predictions: Visualization of future states with
latents sampled from the diffusion prior at a T-intersection in antmaze-
large-diverse-v2 D4RL task. 49

4.3 Projection of latents across horizon. Latent projections of trajec-
tory snippets with different horizon lengths H. From the initial state
there are 3 tasks (Kettle, Microwave, Burner) which are randomly
selected at the start of each episode. These 3 primary modes emerge
as we increase H, with the distribution turning multi-modal. 51

xi

4.4 Visualization of projection of Ground truth latents 52
4.5 Visualization of projection of latents from the diffusion prior 52
4.6 Visualization of projection of latents from the VAE prior 53
4.7 D4RL score of LDCQ and BCQ-H on kitchen-mixed-v0 with varying

sequence horizon H . 54
4.8 LDCQ in kitchen-mixed-v0 environment. The sequence shows a

single episode where the agent completes the kettle task first followed
by burner and switch. 58

4.9 BCQ in kitchen-mixed-v0 environment. The sequence shows
a single episode where the agent completes the kettle task and then
tries to complete burner and switch. However the arm instead goes
in the middle of the burner and switch because the VAE is unable to
segregate the two tasks and chooses actions by averaging over the two
tasks. 59

4.10 Autoencoder training for image-based task 60

xii

List of Tables

2.1 Observation Space for the RL agent 11
2.2 Hyperparameters for training the RL agent 15
2.3 Comparison of success rates of methods with curriculum versus baselines 19

3.1 Observation Space for the RL agent 28
3.2 Hyperparameters for training the RL agent 31
3.3 Average computation time in seconds 32
3.4 Success Rate Comparison . 33
3.5 Trajectory Cost Comparison . 33

4.1 β-VAE hyperparameters . 56
4.2 Diffusion training hyperparameters 56
4.3 Q-Learning hyperparameters . 56
4.4 Performance comparison on D4RL tasks which require long-horizon

stitching with high multimodality. Goal conditioning (LDGC) and
Planning (LDCP) variant are evaluated in the navigation environments. 57

4.5 Performance comparison on the D4RL locomotion tasks. 60
4.6 Performance comparison on image-based CARLA task 61

xiii

xiv

Chapter 1

Introduction

1.1 Overview

Reinforcement Learning (RL) has emerged as a highly influential and effective

paradigm for tackling complex decision-making and control tasks. With their ability

to harness the principles of trial-and-error learning, RL algorithms empower agents

to acquire optimal strategies by engaging in iterative interactions with their environ-

ments. RL has been applied to a wide range of domains, including robotics, game

playing, finance, and healthcare. In robotics, RL has been used to train robots for

tasks such as object grasping and navigating challenging environments [4, 40]. In game

playing, RL algorithms have achieved remarkable successes, surpassing human-level

performance in games like chess and Go [45, 58, 61].

RL is particularly well suited for scenarios where explicit instruction or labeled

data is either scarce or non-existent. Instead of relying on pre-defined rules or expert

guidance, RL agents learn from experience, continuously refining their behavior to

maximize rewards or minimize costs. This process closely mimics how humans and

other intelligent beings learn through trial and error.

RL shows huge potential for complex robotic decision making tasks. These tasks

are often safety-critical, which can have severe consequences of incorrect actions

while training or testing RL agents in the real world. Recent research has focused

on developing RL methods that prioritize safety and avoid hazardous actions. For

example, the Safe Policy Improvement (SPI) algorithm incorporates safety constraints

1

1. Introduction

during policy optimization to ensure that the learned policies adhere to safety require-

ments [38]. Another approach, Constrained Policy Optimization (CPO), uses trust

region optimization to enforce safety constraints and prevent unsafe actions during

RL training [1]. These safety-aware RL techniques provide a valuable foundation for

developing intelligent systems that can make reliable and safe decisions in critical

domains.

Application of RL in safety-critical environments faces significant challenges.

Training agents using RL requires a lot of training data in the form of environment

interactions. However, data collection for robotics tasks is very expensive and can also

be unsafe, especially when the tasks involve other dynamic agents in the environment,

for example in autonomous driving tasks. Addressing sample inefficiency calls for the

development of novel algorithms and techniques that can leverage data more efficiently,

allowing agents to learn better and optimal policies with fewer samples. Previous

works have explored techniques for improving sample efficiency in RL agents. Rainbow

[26], a combination of improvements in deep RL, incorporates various techniques such

as prioritized experience replay and distributional reinforcement learning to enhance

sample efficiency. Additionally, Hindsight Experience Replay (HER) [6] enables RL

agents to learn from failures by replaying experiences with different goals, allowing

them to learn more efficiently from suboptimal outcomes. Curriculum Learning

[9] is an approach that aims to improve sample efficiency by guiding the learning

process through a curriculum of increasingly challenging tasks or environments. By

strategically sequencing the learning process, curriculum RL offers a promising avenue

to enhance sample efficiency and learn more effective policies while avoiding local

optima in training. These advancements and techniques contribute to mitigating

the sample efficiency problem in RL, enabling agents to learn effective policies with

reduced data requirements. In chapter 2, we explore a novel curriculum learning

technique for reinforcement learning in autonomous robotics tasks involving dynamic

agents.

Interpretability is an important aspect of reinforcement learning (RL), as it

enables us to understand and trust the decisions made by RL agents. Advancements

in interpretable RL algorithms and techniques are necessary to provide transparent

and interpretable decision-making in safety-critical applications. Reinforcement

learning (RL) with model-based approaches [46] has gained attention as a potential

2

1. Introduction

solution for improving interpretability in RL. By incorporating an explicit model

of the environment, model-based RL enables a structured representation of the

underlying dynamics and transitions between states. This explicit model can provide

insights and interpretability into the agent’s decision-making process and avoid the

problems of a completely reactive policy. Certain model-based methods are also more

sample-efficient, as the learnt model can be used for improving policies without new

environment interactions. Hierarchical learning [8] also tries to enable more structure

to the solution and allows for an interpretable decision-making process. In chapter 3,

we explore a method to combine a conventional motion primitives-based method for

planning with reinforcement learning which uses a model for generating primitives

and enables a high-level trajectory planning framework for the autonomous driving

task.

Apart from being expensive and time-consuming, sometimes real-world data

collection for RL agents can be entirely impossible. In such cases, offline reinforcement

learning offers a promising approach to learning policies from static datasets. These

offline reinforcement learning approaches [19, 35, 37] can learn effective policies from

data collected by other agents, which can be human experts or any suboptimal

controller. Developing safe and efficient offline RL methods that can leverage existing

data without relying heavily on real-world interactions is essential for practical

deployment in safety-critical environments. Previous methods have been unsuccessful

in long-horizon credit assignment with offline datasets and encounter the problem of

going out of support from the dataset, leading to poor agents. In chapter 4, we explore

a novel method for offline reinforcement learning by leveraging powerful generative

models. This method, while being able to learn from offline demonstrations, also

allows a model-based approach, which is suitable for safety-critical systems.

To summarize, this research investigates innovative approaches to tackle important

challenges in reinforcement learning, with a specific emphasis on safety-critical robotic

tasks. We first propose the novel curriculum for improving sample efficiency which

performs well, but is still a reactive planner. Next we investigate a RL based method

to generate trajectory sequences using motion primitives. Finally, we move to a novel

offline RL method which does not require any real-world interactions and is able to

generate trajectory sequences which can be used for safety checks with the learnt

model. This is highly suitable for safety critical systems. While aiming to improve

3

1. Introduction

sample efficiency and get interpretable trajectories, we also look into the real-time

performance and optimality of these methods as these are crucial for final deployment

of the agents.

1.2 Preliminaries

The reinforcement learning (RL) problem can be formulated as a Markov decision

process (MDP). This MDP is a tuple ⟨ρ0,S,A, r, P, γ⟩, where ρ0 is the initial state

distribution, S is a set of states, A is a set of actions, r : S ×A → R is the reward

function, P : S ×A×S → [0, 1] is the transition function that defines the probability

of moving from one state to another after taking an action, and γ ∈ [0, 1) is the

discount factor that determines the importance of future rewards. The goal in RL is

to learn a policy, i.e., a mapping from states to actions, that maximizes the expected

cumulative discounted reward.

1.3 Contributions

In this work, we explore three novel methods for reinforcement learning in safety-

critical robotic tasks. As shown in fig. 1.1, the different methods have different

desirable properties which usually requires trade-offs.

1. State Dropout-based Curriculum Reinforcement Learning: In chap-

ter 2, we present a novel curriculum reinforcement learning method which

improves an RL agent’s sample efficiency and learns better policies as compared

to a nominal agent trained without our proposed curriculum.

2. Motion Primitives-based Reinforcement Learning: In chapter 3, we

present a hybrid method combining motion primitives with reinforcement

learning for decision making which can be used for generating longer trajectory

sequences (as opposed to reactive policies) which are desired for safety checks.

3. Offline Reinforcement Learning with Latent Diffusion: In chapter 4,

we present a novel offline reinforcement learning method for robotic control

tasks which learns policies for agents without any real-world interactions. This

4

1. Introduction

Figure 1.1: Desirable properties of the proposed methods.

method also allows for learning temporally extended dynamic models which

can be used for obtaining interpretable solutions. This is crucial for enabling

certain intelligent agents for safety critical systems.

In essence, this work explores improvements in reinforcement learning for safety-

critical robotic tasks which offer a powerful framework for addressing decision-making

and control problems contributing to the development of more intelligent and adaptive

reinforcement learning agents.

5

1. Introduction

6

Chapter 2

State Dropout-based Curriculum

Reinforcement Learning

2.1 Introduction

A major drawback of RL methods is long training periods requiring a lot of environ-

ment interactions and convergence to sub-optimal policies. This prohibits the usage

of RL in safety-critical systems, as the systems might be required to enter unsafe

states while the agent trains. To accelerate the training process, curriculum learning

[9] has been proposed. The basic idea in curriculum learning is to design the training

process as a set of graduated steps with increasing complexity of tasks. It draws

inspiration from the way humans learn by starting with easier tasks and gradually

increasing the complexity to become an expert. The idea of curriculum learning has

also been applied to reinforcement learning. For a detailed review on the applications

of curriculum for reinforcement learning, see [47]. Apart from accelerating the training

process, it has also been proposed that using a curriculum can help find better local

minima as compared to training without curriculum [9].

Previously, most works have used hand-designed task-based curricula for training,

which rely on segregating the tasks at hand based on their difficulty and training

sequentially with increasing levels of difficulty. Such manual segregation of tasks

can be laborious and time-consuming. In this work, we propose a unique automated

7

2. State Dropout-based Curriculum Reinforcement Learning

curriculum for training, that is easy to design and is also more effective. Our

curriculum is specifically focused on environments with other dynamic actors involved.

In these environments, learning the dynamics of other agents possess a significant

challenge and it takes a sufficient number of interactions with the environment

before the agent can understand the dynamics to improve its policy. Our proposed

curriculum makes it easier for the RL agent to learn the environment dynamics. For

our experiments, we consider an unsignalized intersection traversal task in autonomous

driving on the CommonRoad-RL benchmark [71].

The rest of this chapter is organized as follows. Section 2.2 provides a review of

some important related work. Section 2.3 gives an introduction to the intersection

problem addressed in this work. Section 2.4 presents the proposed curriculum. Section

2.5 presents the experimental results. The conclusion is in Section 2.6.

2.2 Related Work

This section summarizes relevant previous work which proposes techniques for accel-

erating training for learning agents.

2.2.1 Transfer Learning

Transfer learning (TL) is a technique which pretrains a network on a different task

before training on the target task. The network benefits by using the skills acquired

during pretraining. For a comprehensive literature review on transfer learning for RL,

see [72]. Apart from just having the advantage of faster training time, using transfer

learning also leads to better generalization and better performance than an agent

trained without using the pretrained network.

2.2.2 Curriculum Learning

Curriculum learning [9] draws inspiration from how humans learn to do complex

tasks by “starting small” [16]. The main idea is that once the agent has learned to

do a simple task well, it will take fewer iterations to adapt to a harder task having

the simpler task as a subset because of the stability of the training process. Apart

8

2. State Dropout-based Curriculum Reinforcement Learning

from just accelerating the training process, it has also been shown that certain tasks

have been nearly impossible to train without following a curriculum [4]. [64] used

curriculum reinforcement learning for overtaking in an autonomous racing scenario.

However, hand-segregating tasks for designing a curriculum might be cumbersome, as

deciding the difficulty level of a task might not be trivial. [50] proposes an automatic

curriculum generator that tries to alleviate the problem.

In this work, we propose novel automated curricula for autonomous driving at

unsignalized intersections. The curricula are easier to train and reduce the training

time while converging to better policies.

2.3 Problem Definition

2.3.1 Problem Statement

The problem which we consider is generating control commands for an ego-vehicle to

traverse unsignalized intersections and reach a predefined goal state. We consider two

types of intersection scenarios, as shown in Fig. 2.1 and Fig. 2.2. The ego-vehicle is

depicted in green, target vehicles are in blue and the goal region is in yellow. The

dotted lines starting from target vehicles show their future trajectories, which do not

change in response to the ego-vehicle behavior. This increases the difficulty level of

the problem significantly.

T-intersection These scenarios are adopted from the CommonRoad benchmarks:

ZAM Tjunction (Fig. 2.1).

Figure 2.1: Visualization of T-intersection scenarios.

Four-way intersection These are four-way intersection scenarios, (Fig. 2.2)

9

2. State Dropout-based Curriculum Reinforcement Learning

custom-generated using the CommonRoad scenario designer tool [60]. The goal state

for these scenarios can be in the left, straight-ahead, or right lane. The ego-vehicle

has to reach the goal region within ±11.45◦ of the road lane orientation to successfully

complete a scenario. The limits on orientation ensure that the ego-vehicle does not

reach the goal with an arbitrary orientation, which can make it harder for the vehicle

to correct the orientation when moving further in the goal lane. The scenario has to

be completed before a time-out of 150 sec.

Figure 2.2: Visualization of Four-way intersection scenarios.

2.3.2 Observation and Action space

The observation space for the RL agent is as defined in Table 2.1. The observations can

be divided into four categories: 1) ego-vehicle state; 2) goal and reference path-related

observations; 3) surrounding vehicles-related observations; and 4) road network-

related observations. The dynamics constraints are based on the kinematic bicycle

model (KS1) as described in [5]. The reference path observation consists of waypoints

from the path generated by A∗ search over the lanelet network in Commonroad. The

distance advancements for longitudinal and lateral directions are calculated along this

reference path. For the surrounding vehicles, we include the current and future states

(for 5 time-steps with a time discretization of 0.1 sec) of each of the five vehicles in

the ego-vehicle frame. The information in future states is as described in section 2.4.

The action space for the agent consists of acceleration and steering for the ego-

vehicle A = {accel, steer}. The controls are continuous.

10

2. State Dropout-based Curriculum Reinforcement Learning

Table 2.1: Observation Space for the RL agent

Variable Description Values

vt Ego-vehicle absolute velocity R
at−1 Ego-vehicle previous acceleration R
δt−1 Ego-vehicle previous steering R
θt Ego-vehicle orientation R

r Reference path waypoints (x, y, θ) in ego-vehicle frame R15

dθt Ego-vehicle orientation deviation from reference path R
dlong Longitudinal distance advancement towards goal R
dlat Latitudinal distance advancement towards goal R
tout Time remaining before time-out R

c Lane curvature R
lo Ego-vehicle offset from lane centerline R
rl Ego-vehicle distance from left road boundary R
rr Ego-vehicle distance from right road boundary R
ll Ego-vehicle distance from left lane boundary R
lr Ego-vehicle distance from right lane boundary R

o Target vehicles’ current and future states∗(x, y, v, θ) R100

∗ The information in future states depends on the curriculum

11

2. State Dropout-based Curriculum Reinforcement Learning

2.3.3 Reward Structure

The components of the reward function are as follows:

• A positive reward for distance advancement along the reference path as described

in section 2.3.2. The reward is calculated as ρ1dlong + ρ2dlat where ρ1 and ρ2

are positive constants.

• A constant negative reward σ1 for collision with obstacles, going off-road, and

violating dynamics constraints.

• A constant negative reward σ2 for time-out.

• A constant positive reward ϕ for reaching the goal within the allowed orientation

error.

An episode is terminated when any one of the following conditions is met: ego-

vehicle reaches the goal within allowed orientation error, ego-vehicle goes off-road, ego-

vehicle collides with another obstacle, applied controls violate dynamics constraints

or time-out.

2.4 State Dropout Curriculum

Our curriculum is based on the idea that when the dynamics of the environment

are known, it is easier for the RL agent to learn a policy. The RL agent can have

access to this information from the observation space where the future trajectories

of the dynamic actors in the environment can be incorporated as observations.

However, in practice, getting this privileged information is not possible during

testing. Nevertheless, it is possible to get this information during the training phase

through simulations or artificially created real world testing environments. Our

curriculum incorporates this future trajectory information about dynamic actors into

the observation space and learns a policy to complete the task. Gradually, it learns

to complete the task without having access to the privileged information by forgetting

to use it through State Dropout. We propose two curricula to forget this privileged

information while training such that by the end of the training phase, the agent can

complete the task without any privileged information.

12

2. State Dropout-based Curriculum Reinforcement Learning

Algorithm 1 Step function for curriculum 1

1: procedure step(action, phase)
2: Apply acceleration and steering from action
3: obs = Observe()
4: reward, done = Reward(obs)
5: for i← (N − phase+ 1) to N do
6: Drop ith future prediction from obs
7: end for
8: return obs, reward, done
9: end procedure

2.4.1 Curriculum 1

In this method we train the agent in N + 1 phases starting with phase 0. We begin

training with the future state information for N time-steps. After phase 0, we drop

the N th future state information and continue training. In the subsequent phases we

keep on dropping more future state information and in the final phase fine-tune the

agent without any future state information. Algorithm 1 describes the STEP function

for this method.

2.4.2 Curriculum 2

In this method, instead of dropping the future state information sequentially after

each phase, we augment the action space of the agent with an additional action such

that the augmented action space is A = {accel, steer, pred}. Here pred determines

which future state information for the surrounding vehicles will be dropped from the

observation in the next step. The reward structure as defined in section 2.3.3 is also

augmented to add constant positive rewards ψi for choosing to drop the future states

from the ith to the N th time-step. The decision is based on parameters κi. Here,

∀i ∈ [2, N].

ψi < ψi−1 (2.1)

κi < κi−1 (2.2)

13

2. State Dropout-based Curriculum Reinforcement Learning

Algorithm 2 Step function for curriculum 2

1: procedure step(action)
2: Apply acceleration and steering from action
3: obs = Observe()
4: reward, done = Reward(obs)
5: for i← 1 to N do
6: if action.pred ≥ κi then
7: Drop ith future prediction from obs
8: reward = reward + ψi
9: end if
10: end for
11: return obs, reward, done
12: end procedure

This incentivizes the agent to drop more future states. Algorithm 2 defines the

modified STEP function for this method. Thus we let the network choose when to drop

the future states. At the beginning of training, when the agent has not learned to

predict the behavior of the vehicles, it chooses to use the future information. As the

training progresses and the agent learns to control the ego-vehicle, ψi incentivizes the

agent to learn to predict the driving intention as well in order to get higher rewards.

An added advantage of this method is that the pred value can be used at test time

to determine whether the agent understands the behavior of the other vehicles or not.

This can further be used as a confidence score for the agent commands.

2.5 Experiments

The curriculum was tested on the CommonRoad simulator for unsignalized T-

intersections and four-way intersections. We use a PPO policy [51] for the agents for

our testing; however, the curriculum can be used with other reinforcement learning

methods as well.

2.5.1 Experimental Setup

For the T-intersections, we have 544 ZAM Tjunction scenarios from the CommonRoad

benchmarks, which have scenarios with ego-vehicles and target-vehicles initialized at

14

2. State Dropout-based Curriculum Reinforcement Learning

different positions with different velocities. 380 scenarios are used for training, and

the rest are used for testing.

We generated 2000 four-way intersection scenarios. For each scenario, the ego-

vehicle is spawned at a randomly sampled location in lane 1 (Fig. 2.2) with appropriate

orientation. The ego-vehicle always starts at rest. The obstacles are spawned at

randomly sampled locations in lanes 2, 3 and 4 with appropriate orientation and

randomly sampled initial velocities ∈ [5, 10] m/s. 1400 scenarios were used for training

and the rest were used for testing.

2.5.2 Network Architecture

To represent the policies, we used fully-connected (FC) networks with 8 hidden layers

of 64 units each and tanh nonlinearities. The hyperparameter values for training the

PPO agent are listed in table 2.2. The empirically best-performing hyperparameters

and network architecture were chosen for the experimental results.

2.5.3 Training Details

The training was done on a desktop with 3.5 GHz AMD Ryzen 9 5900hs CPU.

We used a customized version of the CommonRoad-RL framework for training and

testing.

Table 2.2: Hyperparameters for training the RL agent

Parameter Value

Training Iterations (T-intersections) 600
Training Iterations (Four-way intersections) 650

Discount (γ) 0.99
GAE parameter (λ) 0.95
Clipping parameter 0.2

Learning-rate 0.0005
No. of environments 32

Time horizon 512
Batch size 16384*

* Batch size = Time Horizon × No. of environments

15

2. State Dropout-based Curriculum Reinforcement Learning

We trained three different agents:

1. A standard PPO agent without any curriculum. The target vehicles’ future

state information is dropped by default in the standard agent.

2. A PPO agent using curriculum 1 with N = 4. The agent is thus trained in 5

phases.

3. A PPO agent using curriculum 2 with N = 4.

2.5.4 Performance Evaluation

To understand the impact of the proposed curricula, we compare the training curves

of the agents trained using the curricula with the training curve of the standard

PPO agent. We also compare the success rate and mean reward to evaluate the

performance of our method. The results presented are the best results obtained

by repeating each experiment 3 times with a random seed for the network. The

future states of the surrounding vehicles are not available during testing for all three

methods.

T-intersection

The training curves for the three methods are shown in Fig. 2.3. The rewards are

averaged across 10 updates. It can be seen that both the curriculum-based methods

outperform the standard PPO baseline in terms of sample efficiency. While PPO

agents with the curricula start converging around 6000000 steps, the baseline standard

PPO converges around 8250000 steps.

Fig. 2.4 shows the success rate of the methods on 164 testing scenarios. Both

the curricula outperform the standard PPO baseline with their best performance of

99.39% as compared to 92.68% success rate for the baseline.

Four-way intersection

The training curves for the three methods are shown in Fig. 2.5. The rewards are

averaged across 10 updates. It can be seen that both the curriculum based methods

outperform the standard PPO baseline in terms of sample efficiency. While PPO

16

2. State Dropout-based Curriculum Reinforcement Learning

Figure 2.3: Training curves for T-intersection experiments

Figure 2.4: Success rates for T-intersection experiments

17

2. State Dropout-based Curriculum Reinforcement Learning

with curriculum 1 starts converging around 7250000 steps, the curriculum 2 approach

converges around 8500000 steps. The baseline converges around 9250000 steps.

Figure 2.5: Training curves for four-way intersection experiments.

Fig. 2.6 shows the performance of the methods on the 600 testing scenarios.

Curriculum 2 shows the best performance, with its best model having a success rate

of 93.83%. Curriculum 1 achieves 92.66% and the baseline achieves 81.33%.

Figure 2.6: Success rates for four-way intersection experiments

We also compare the results with the rule-based TTC method [39] in Table 2.3.

2.5.5 Discussion

The training curves and success rates of the curriculum-based agents show that using

the curriculum results in higher sample efficiency, with the agents converging much

18

2. State Dropout-based Curriculum Reinforcement Learning

Table 2.3: Comparison of success rates of methods with curriculum versus baselines

Method T-intersection (%) Four-way intersection (%)

TTC 90.85 84.33
Standard PPO 92.68 81.33
Curriculum 1 99.39 92.66
Curriculum 2 99.39 93.83

faster as compared to the baseline agent. Also, both the curricula have higher success

rates than the baselines in both the scenarios. This shows that the agents converge to

better optima as the curriculum makes the training stable. Though we used ground

truth prediction for the target vehicles available in the simulation, for real-world

training, predictions from the perception layer can be used. Further avenues of

privileged information, e.g., bird’s-eye view in the augmented observation space, can

also be experimented with.

2.6 Conclusion

In this chapter, we explored a novel curriculum for training a deep reinforcement

learning agent where future state predictions can be used to achieve faster training and

avoid convergence to suboptimal policies. We test the performance of the curriculum

on the unsignalized intersection traversal task for autonomous driving. The curriculum

outperforms the standard baseline in sample efficiency and test time performance.

Though in this work we show the application of the curriculum to the intersection

traversal task only, it has a broader scope and can be generally applied to other

safety-critical tasks as well.

19

2. State Dropout-based Curriculum Reinforcement Learning

20

Chapter 3

Motion Primitives-based

Reinforcement Learning

3.1 Introduction

Reinforcement learning (RL) has been combined with conventional planning ap-

proaches to leverage the strengths of both paradigms. By integrating RL with

classical planning techniques, the strengths of both approaches can be leveraged

to achieve more effective and interpretable solutions. RL can handle complex and

uncertain environments, while planning algorithms excel at reasoning and generating

structured plans. The combination of RL and planning enables agents to learn from

interactions with the environment while also using prior knowledge or domain-specific

rules potentially reducing the amount of data or real-world interactions required for

training. Monte Carlo Tree Search (MCTS) [10] has been used in RL agents for

decision-making, allowing for some of the most advanced game-playing intelligent

agents [61]. Hierarchical RL [8] involves decomposing complex tasks into subtasks

or skills, enabling a more structured and interpretable representation of the agent’s

decision-making process. These hybrid approaches provide a synergistic combination

of RL and conventional planning, leading to more interpretable and efficient solutions

for decision-making tasks.

Such combination of reinforcement learning and planning approaches is highly

21

3. Motion Primitives-based Reinforcement Learning

beneficial for safety critical environments, where prior planning, hierarchical and

model-based approaches can be used for increasing sample efficiency, incorporating

safety, dynamic feasibility and improving overall policies.

Researchers in the past have experimented with several methods which generate

high-level trajectories using learning-based approaches while the control commands

are generated by a traditional control module. These trajectories can then be

easily checked for collision before the execution of the control commands. Also

these approaches allow for faster credit assignment, which is a major challenge in

reinforcement learning [43, 44].

Motion Primitives are a popular choice for conventional planning in robotic tasks.

This involves using offline pre-computed trajectories generated using an available

model of the robot and sequencing optimal combinations of them online. The online

sequencing often requires a graph-search in a spatio-temporal lattice constructed out

of the offline primitives. The path selection is done using hand-engineered evaluation

functions which can account for multiple objectives including safety. The complexity

of the graph search limits the number of primitives that can be used, thereby limiting

the performance of the planner. While several recent works have addressed the

generation of optimal offline primitives, including data-driven methods for primitive

generation, there has been limited work in improving the graph-search for constructing

the trajectory online.

In this work, we propose a framework for generating high-level trajectories for

robotic control using reinforcement learning. To the best of our knowledge, this is

the first work which demonstrates how reinforcement learning can be used with large

motion primitive libraries to generate interpretable trajectories. For our experiments,

we consider an unsignalized intersection traversal task in autonomous driving on

the CommonRoad-RL benchmark [71]. We demonstrate the effectiveness of our

method by testing it using CommonRoad-RL [71] on unsignalized T-intersections and

four-way intersections and compare it with the CommonRoad-Search planner, which

uses conventional search for sequencing the optimal primitives and a conventional

classification agent.

The rest of this chapter is organized as follows. Section 3.2 provides a review

of some important related work. Section 3.3 gives an introduction to the problem

formulation for motion primitive-based planning. Section 3.4 describes our primitives-

22

3. Motion Primitives-based Reinforcement Learning

based reinforcement learning method. Section 3.5 presents the experimental results.

The conclusions are in Section 3.6.

3.2 Related Work

This section summarizes relevant previous work which combines reinforcement learning

with conventional planning techniques.

3.2.1 Model-based Reinforcement Learning

Model-based reinforcement learning (RL) approaches have gained significant attention

as a means to enhance sample efficiency and improve decision-making. By building

an explicit model of the environment, these methods capture the dynamics and

transitions between states, enabling agents to plan and simulate potential trajectories

before taking actions. Different model-based approaches leverage the learnt model in

different ways. For example, a class of methods use the model to artificially generate

more training samples for the learning agent [22, 66], while [12] and [23] use the

learned model during the actual execution phase, where the learned models are used

to generating final control commands. These approaches ultimately enhance the

performance of RL agents by increasing sample efficiency, or making the framework

more interpretable.

3.2.2 Hierarchical Reinforcement Learning

By explicitly defining a hierarchy of goals and actions, interpretable policies can be

constructed at different levels of abstraction [14]. These modular frameworks often

use learning for generating high-level plans or trajectories to be tracked by low-level

controllers [13, 30, 48]. This makes the system more transparent, as the high-level

trajectory can be further optimized or checked for feasibility and collisions before

execution. These trajectories are also more generalizable to different robotic systems

and environments than an end-to-end controller. [69] proposed a classification agent

which scores a set of primitives and chooses the best primitives using the output score.

However, the size of the motion primitives library considered is very small, which is

not scalable to highly dynamic robotic environments like autonomous driving.

23

3. Motion Primitives-based Reinforcement Learning

In this work, we demonstrate how reinforcement learning can be used for generating

such trajectories in a motion primitive-based planning framework consisting of a

large motion primitives library. To the best of our knowledge, our work is the first to

demonstrate how learning can be used for selecting the optimal primitive from among

thousands of offline generated primitives. This has the advantage of being faster than

traditional lattice search methods and still being interpretable and generalizable to

changing environments without manual hand-tuning.

For our experiments, we use Proximal Policy Optimization (PPO) [59], which is

a variant of the actor-critic family and uses an adaptive KL divergence penalty to

control the change of policy at each iteration.

3.3 Problem Formulation

We consider the problem of goal reaching for a robotic system with dynamics defined

as ẋ = f(x, u) where x ∈ X and u ∈ U . Here X ∈ Rn represents the robot state space

and U ∈ Rm represents the control space. Along with the robot’s state space, there

exists uncontrolled environment E. A robot state and environment state combined

is denoted as an observation O. For a given initial condition the planner needs to

generate a collision-free trajectory which drives the robot to the goal. We assume

access to a library of motion primitives L constructed using the available dynamics

model of the system. Every primitive l ∈ L is defined by a sequence of states

{x0, x1, . . . xt} such that the sequence is a dynamically feasible trajectory starting at

x0 and ending at xt.

The planning problem which we consider is generating trajectories for an au-

tonomous driving intersection traversal scenario. This was chosen because it is a

highly dynamic scenario with narrow available drivable space and hence tests the

limits of the primitives. However, this method can be generally applied to other

robotic environments making use of motion primitives. The ego-vehicle has to tra-

verse unsignalized intersections and reach a predefined goal state. We consider the

intersection scenarios as described in section 2.3.1.

24

3. Motion Primitives-based Reinforcement Learning

3.4 Primitives-based RL

We present a planning policy which maps the current state of the robot and environ-

ment (observation) to an optimal motion primitive O → L. To deal with the large

number of discrete actions, we use a modified version of the Wolpertinger architecture

[15] as described in this section further. Fig. 3.1 shows an overview of our framework.

Figure 3.1: Overview of our proposed framework. The PPO agent maps the
observation to an intermediate representation which is encoded by the encoder into
a primitive embedding. The embedding’s nearest neighbor from among the feasible
primitives is selected as the optimal primitive for execution.

3.4.1 Motion Primitive Embeddings

We train an autoencoder to generate low-dimensional embeddings for the motion

primitives. This gives us a mapping from L → Z. Let Z ∈ Rp. Once trained, the

encoder fθ is used offline to generate embeddings for all the primitives in L. The latent

space representation for primitives allows the framework to deal with long-duration

primitives.

3.4.2 Online Optimal Primitive Selection

The optimal primitive needs to be selected online during planning at each step. We

learn a policy (πϕ) using PPO to select the primitive from the library of offline

primitives. However, directly mapping the observation to a primitive with a discrete

action space agent is difficult, as the primitive library is very large and only a small

subset of primitives is feasible for a particular robot state. Thus, the PPO agent is

25

3. Motion Primitives-based Reinforcement Learning

trained to first map the observations (O) to Y where Y ∈ Rnt. Thus

πϕ : O → Y

The agent’s output is then encoded using the encoder from offline training. This

gives us an optimal motion primitive embedding ẑ ∈ Rp

fθ : Y → Rp

This embedding is then compared with all the feasible primitive embeddings (Z ′) in

Z and the nearest neighbor z of ẑ is selected. The motion primitive corresponding to

ẑ is used for execution

l̂ = g(arg min
z∈Z′
∥z − ẑ∥2)

where g maps the primitive embedding back to the corresponding primitive.

Comparing ẑ with only the feasible motion primitive embeddings ensures that

the selected motion primitive is always feasible for execution. We do not check for

collision when filtering the primitives. Only dynamic feasibility from the current

state is checked, as it is computationally inexpensive to compute. The feasibility

of a primitive l ∈ L is decided by a weighted distance between the current state

of the robot and the first state in the primitive. If the weighted distance is less

than a threshold lthresh, the trajectory is considered feasible. The parameter lthresh

can be decided based on the robustness of the controller. This filtering prunes the

search space and allows us to use the nearest neighbor instead of computing k-nearest

neighbor and training another Q-function as in the original Wolpertinger architecture.

Policy parameters ϕ is trained to maximize the rewards as described in section

3.4.4 using PPO. During training, the rewards are delayed until a primitive is executed.

However, an episode can terminate while a primitive is getting executed if any of the

termination criteria are satisfied. The encoder layers are frozen during the policy

training. Algorithm 3 summarizes the step function for the planner, which receives

an observation and selects and executes the primitive.

26

3. Motion Primitives-based Reinforcement Learning

Algorithm 3 Step function for the agent

1: procedure step(obs : O)
2: Filter Z ′ from Z
3: a = πϕ(obs)
4: ẑ = fθ(a)
5: z′ = arg minz∈Z′ ∥z − ẑ∥2
6: l̂ = g(z′)
7: Execute l̂
8: end procedure

3.4.3 Observation and Action space

The observation space for the RL agent is as defined in Table 3.1. The observation

space is similar to that in chapter 2 with changes to remove the use of the curriculum

for training. The observations can be divided into four categories: 1) ego-vehicle

state; 2) goal and reference path-related observations; 3) surrounding vehicles-related

observations; and 4) road network-related observations. The dynamics constraints

are based on the kinematic bicycle model (KS2) as described in [5]. The reference

path observation consists of waypoints from the path generated by A-star search over

the lanelet network in Commonroad. The distance advancements for longitudinal

and lateral directions are calculated along this reference path. For the surrounding

vehicles, we include the current state of each of the five vehicles in the ego-vehicle’s

frame.

The action space for the PPO agent is a continuous action space of R30, which

represents the size of a primitive vector.

3.4.4 Reward Structure

The components of the reward function for PPO are as follows:

• A positive reward for distance advancement along the reference path as described

in section 3.4.3. The reward is calculated as ρ1dlong + ρ2dlat where ρ1 and ρ2

are positive constants.

• A constant positive reward ρ3 for reaching the goal within the allowed orientation

error.

27

3. Motion Primitives-based Reinforcement Learning

Table 3.1: Observation Space for the RL agent

Variable Description Values

vt Ego-vehicle absolute velocity R
at−1 Ego-vehicle previous acceleration R
δt−1 Ego-vehicle previous steering R
θt Ego-vehicle orientation R
θ̇t Ego-vehicle turn-rate R

r Reference path waypoints (x, y, θ) in ego-vehicle frame R15

dθt Ego-vehicle orientation deviation from reference path R
dlong Longitudinal distance advancement towards goal R
dlat Latitudinal distance advancement towards goal R
tout Time remaining before time-out R
vref Velocity deviation from reference R

c Lane curvature R
lo Ego-vehicle offset from lane centerline R
rl Ego-vehicle distance from left road boundary R
rr Ego-vehicle distance from right road boundary R
ll Ego-vehicle distance from left lane boundary R
lr Ego-vehicle distance from right lane boundary R

o Target vehicles’ states(x, y, v, θ) R20

28

3. Motion Primitives-based Reinforcement Learning

• A constant negative reward σ1 for collision with obstacles and going off-road.

• A constant negative reward σ2 for time-out.

• A negative reward for high acceleration (σ3a
2
t), steering-angle (σ4δ

2
t) and steering-

angle turn rate (σ5δ̇t
2
).

An episode is terminated when any one of the following conditions is met: ego-

vehicle reaches the goal within allowed orientation error, ego-vehicle goes off-road,

ego-vehicle collides with another obstacle or time-out.

3.5 Experiments

We test our method on the CommonRoad simulator for unsignalized T-intersections

and four-way intersections planning and compare it with the CommonRoad leader-

board and nominal motion primitive lattice planner available in CommonRoad. We

use the kinematic single-track vehicle BMW320i for our experiments. We also perform

an ablation study to compare our method against using a classifier-based reinforcement

learning agent.

3.5.1 Experimental Setup

We use the same experimental setup for scenarios as described in section 2.5.1.

3.5.2 Motion Primitives Library

We used the CommonRoad-Search package in the simulator to generate the motion

primitives for a fair comparison with their search planner. However, the method can

be used with any other motion primitive library. In Figure 3.2, we show some motion

primitives for a particular state of the autonomous vehicle.

The motion primitives are generated by sampling different combinations of initial

and target states. They have varying initial and final velocities ranging from 0 - 10

m/s and varying steering angles between -1.0 and 1.0 radians. Each primitive has a

duration of 0.5 seconds with a discretization of 0.1 seconds. The control inputs are

constant during this period. The motion primitives are generated for all combinations

of the velocities and steering angles at the initial state and the final state. We used a

29

3. Motion Primitives-based Reinforcement Learning

Figure 3.2: Visualization of sample motion primitives.

discretization of 0.25 m/s for the velocity samples and 0.1 radians for steering angles.

This makes a total of 41 possible velocities and 21 steering angles for the initial and

final states. Thus the total number of initial and final states considered is (41 ×
21 = 861) each. Hence, the total number of primitives considered is (861 × 861 =

741321). Since all possible final states are not reachable from every initial state, the

final number of primitives after pruning equals 58810. Two motion primitives are

considered connectable if the velocity and the steering angle of the final state of the

preceding primitive are equal to those of the initial state of the following primitive

within a given threshold.

Each primitive is defined by initial state, final state and four intermediate way-

points l ∈ R30. Each state/waypoint consists of position, velocity, orientation and

steering angle.

3.5.3 Network Architecture

We used a two-layer encoder with ReLU activation to compress the primitives from

R30 to R10. The decoder is similar to an encoder with the opposite configuration.

To represent the PPO policy, we used a fully-connected (FC) network with 8

hidden layers of 64 units each and ReLU nonlinearities. The output layer consists

of 30 units and is used as an input to the encoder to generate the optimal primitive

embedding. The hyperparameter values for PPO are listed in table 3.2.

30

3. Motion Primitives-based Reinforcement Learning

Table 3.2: Hyperparameters for training the RL agent

Parameter Value

Training Iterations 1200
Discount (γ) 0.99

GAE parameter (λ) 0.95
Clipping parameter 0.2

Learning-rate 0.0005
No. of parallel environments 32

Time horizon 512
Batch size 16384

3.5.4 Training Details

All training and benchmarking was done on a desktop with a 3.5 GHz AMD Ryzen 9

5900hs CPU. We used a customized version of the CommonRoad-RL framework for

training and testing.

3.5.5 CommonRoad Benchmarks

We evaluate our method on the CommonRoad Benchmarks leaderboard and also

compare it with the CommonRoad search planner for a more thorough comparison, as

we do not have access to the planners from other participants. The default planner is

designed for solving entire scenarios together, which is not feasible for the autonomous

driving use case, as the planning horizon is very long. We implement a closed-loop

version of the search-based planner for comparison by integrating the CommonRoad

route planner, which generates intermediate goals to follow. The waypoints for the

PPO agent are also computed using the same route planner. The search method used

is A-star.

3.5.6 Performance Evaluation

The metrics used for comparison are trajectory computation time, success rate and

trajectory cost. For T-intersections, we also consider the ranking of the method

in the leaderboard. The ranking is decided for each test scenario independently.

31

3. Motion Primitives-based Reinforcement Learning

Our method uses 58810 primitives in all comparisons. We compare against multiple

different configurations of primitives in the search planner, which are as follows:

1. SP-A: The default configuration of our method with 58810 primitives.

2. SP-B: 20814 primitives with velocity discretization of 0.5 m/s and steering

discretization of 0.1 radians.

3. SP-C: 25509 primitives with velocity discretization of 0.25 m/s and steering

discretization of 0.2 radians.

The results presented are for 164 T-intersection testing scenarios and 600 Four-way

intersection scenarios. For leaderboard, the metrics are computed for the best solution

before our method is submitted to each of the planning scenarios.

Computation Time

Table 3.3 shows the average trajectory computation time comparison for completing

the scenarios.

Table 3.3: Average computation time in seconds

Scenario T-intersections Four-way intersections

Our method 0.96 0.98
Leaderboard 8.01 -

SP-A 3.53 3.92
SP-B 1.76 2.55
SP-C 2.23 2.85

Success Rate

A test problem is considered successful when the ego-vehicle reaches the goal region

within the required orientation, velocity and time-interval without any collision or

going off-road. Table 3.4 shows the performance of the methods.

For the ablation study, we use a PPO agent as a nominal classifier with 512

feasible primitives generated in a manner similar to our method, but with a coarser

resolution. A lower number of primitives is used, as the classifier is unable to handle

32

3. Motion Primitives-based Reinforcement Learning

a larger primitive library. For the PPO agent, we use a fully-connected (FC) network

with 2 hidden layers of 1024 units each and ReLU nonlinearities. The output head

consists of 512 units with a softmax nonlinearity.

Table 3.4: Success Rate Comparison

Scenario T-intersections(%) Four-way intersections (%)

Our method 99.39 90.16
Leaderboard 100.00 -

SP-A 97.56 92.83
SP-B 93.29 87.00
SP-C 91.46 85.66

PPO Classifier 45.12 37.81

The direct classifier performs poorly in comparison to all the methods. This is

because of the large number of possible primitives under consideration, establishing

the need for our method.

Cost Evaluation

We use the SM1 cost evaluation function of CommonRoad for comparison. The cost is

calculated as a weighted sum of acceleration, steering angle, steering turn rate, offset

from lane center, velocity offset and distance from obstacles. Table 3.5 shows the

average cost for the methods.

Table 3.5: Trajectory Cost Comparison

Scenario T-intersections Four-way intersections

Our method 16826.37 4392.65
Leaderboard 17770.78 -

SP-A 16974.61 4223.31
SP-B 23177.22 5440.01
SP-C 25718.78 4480.26

In addition to having the lowest average cost, for 108 out of 164 T-intersection

test scenarios, our solution is the best-performing (least cost) among all submissions

on the leaderboard.

33

3. Motion Primitives-based Reinforcement Learning

The major drawback of the search-based method is the limited search depth of

the planner. Fig. 3.3 shows a failure case of the planner. Due to the planner’s limited

depth, the planner decides to drive (path in blue) towards an incoming vehicle at a

high-velocity. This drives the vehicle to a state from which the primitives are unable

to recover it. However, the learnt agent is able to do long-term planning better, thus

leading to a higher success rate.

Figure 3.3: Search Planner failure case. This is a result of the limited search-depth
of the conventional planner.

3.5.7 Discussion

The results above show that the biggest advantage of our method over using the

traditional search planner is the reduction in computation time. This is because of

the RL agent’s being able to learn the appropriate primitive to execute. Our method

is almost 8x faster than the best leaderboard solution and 4x faster than the closed

loop planner. The success rate and the trajectory cost results also show that this

reduction in computation time does not affect the performance significantly. For

T-intersections, our method has comparable performance with the Leaderboard and

better performance than the closed-loop search planner in all configurations. The

overall cost is also much lower compared to other methods. Though the success

rate of our solution in four-way intersections is lower than that of SP-A, the high

computation time of SP-A makes it unfit for real-world use cases. The trajectory cost

of our method is comparable to SP-A. The comparisons also confirm that decreasing

the number of primitives to make the search-based approach feasible in real-time

significantly degrades the performance. Our method has the advantage of considering

a large number of primitives as compared to traditional search methods without

affecting the run-time significantly.

34

3. Motion Primitives-based Reinforcement Learning

3.6 Conclusion

In this work, we propose a reinforcement learning framework for motion primitive-

based planning. It demonstrates how reinforcement learning can be used with large

motion primitive libraries to generate primitives-based trajectories for self-driving

much faster than traditional search without compromising the performance of the

planner. The framework, unlike end-to-end frameworks, can also be used for safety-

critical systems, as the trajectory generated can be further optimized or checked for

collisions before execution. We test the performance of our framework on the highly

dynamic intersection traversal task for autonomous driving in the CommonRoad

simulator. The framework outperforms the CommonRoad leaderboard benchmarks

in the T-intersection scenarios and performs comparably to the best search-based

planner in the four-way intersection scenarios. Moreover, its computation time is

much lower for both the scenarios, making it fit for real-world applications.

35

3. Motion Primitives-based Reinforcement Learning

36

Chapter 4

Offline Reinforcement Learning

with Latent Diffusion

In certain safety-critical systems, any form of online data collection for RL training

might not be possible. Offline reinforcement learning (RL) offers a promising approach

to learning policies from static datasets. These datasets are often comprised of

undirected demonstrations and suboptimal sequences collected using different behavior

policies. Several methods [19, 35, 37] have been proposed for offline RL, all of which

aim to strike a balance between constraining the learned policy to the support of

the behavior policy and improving upon it. At the core of many of these approaches

is an attempt to mitigate the extrapolation error which arises while querying the

learned Q-function on out-of-support samples for policy improvement. For example,

in order to extract the best policy from the data, Q-learning uses an argmax over

actions to obtain the temporal-difference target. However, querying the Q-function on

out-of-support state-actions can lead to errors via exploiting an imperfect Q-function

[19].

Batch-Constrained deep Q-Learning (BCQ) [19] was proposed to model the data

distribution using a state-conditioned generative model which can propose candidate

actions conditioned on the states. During evaluation, the candidate state-actions

pairs are scored using a learnt Q-function on the dataset. Since the generative

model is trained on the trajectory dataset, the candidates are expected to be in-

support where the Q-function is accurate, avoiding extrapolation error. However, this

37

4. Offline Reinforcement Learning with Latent Diffusion

relies on the assumption that sampling from the generative model does not sample

out-of-distribution samples.

Another challenge in offline RL arises while stitching portions of demonstrations

to improve over the behavior policy. Such stitching can be much more easily achieved

over high-level behaviors instead of low-level policies, as there is a clearer distinction

among behaviors at high-level and credit-assignment is easier. We demonstrate this

further with our experiments.

Thus, a straightforward approach to offline RL would be doing Batch-Constrained

Q-Learning over learnt high-level latent spaces. However, as we show in section 4.4.2,

such high-level behaviors are multi-modal and proposed VAEs are unable to learn

good state-conditioned priors for such spaces.

In this work, we present a novel method for achieving batch-constraining in

latent space for offline RL. Our method uses Latent Diffusion Models [53], which are

currently state-of-the-art generative models for image-generation [52, 55], to achieve

modeling complex latent distributions and sample from the diffusion model to generate

candidates for evaluation using a learnt Q-function which in turn is also learnt using

samples from the diffusion model. Learning the Q-function using in-support samples

generated from the diffusion model ensures that extrapolation or bootstrapping error

is mitigated. Further, our method also allows for learning temporally extended world

models, making our method more interpretable. Our method significantly improves

results over previous offline RL methods, which suffer from extrapolation error or

have difficulty in credit assignment in long-horizon sparse reward tasks.

4.1 Related Work

4.1.1 Offline reinforcement learning

As discussed previously, offline RL poses the challenge of distributional shift while

stitching suboptimal trajectories together. Conservative Q-Learning (CQL) [37] tries

to constrain the policy to the behavioral support by learning a pessimistic Q-function

that lower-bounds the optimal value function. Implicit Q-Learning (IQL) [70] tries to

avoid extrapolation error by performing a trade-off between SARSA and DQN using

expectile regression. However, it achieves the optimal batch-constrained policy only as

38

4. Offline Reinforcement Learning with Latent Diffusion

their expectile parameter τ → 1, which leads to an increasingly difficult-to-optimize

objective. Our method instead learns the optimal batch-constrained Q-function

without introducing any pessimism or trade-off.

Inspired by notable achievements of generative models in various domains including

text-generation [68], speech synthesis [34] and image-generation [52, 55], [11] proposed

to use a generative model for offline RL and bypass the need for Q-learning or

bootstrapping altogether with return-conditioning [36, 65]. While these ideas have

found success, getting a good return estimate for arbitrary states is not trivial

and conditioning on returns outside the support of the training dataset can lead

to the generative model’s producing low-value out-of-distribution sequences. Our

method instead avoids return-conditioning and formulates a solution with batch-

constraining which uses generative models to model the data distribution and use

it to generate candidate actions to learn a Q-function without extrapolation-error

[19]. This formulation relies on the assumption that sampling from the generative

model does not sample out-of-support samples, which has been difficult to achieve

with previously used generative models in offline RL. Our method circumvents this

problem with the latent diffusion model.

Further, to effectively address the problem of stitching, [49] and [3] proposed

learning policies in latent-trajectory spaces. However, they have to rely on a highly

constrained latent space, which is not rich enough for the downstream policy. This is

due to the limitations of the generative model used, like VAEs. Our proposed method

to use latent diffusion, which can model complex distributions, allows for the needed

flexibility in the latent space for effective Q-learning and the final policy. We show

that as we increase the horizon for temporal abstraction, the corresponding latent

spaces incorporate rich multimodal behavioral representations that can facilitate

simpler credit assignment and skill stitching.

4.1.2 Diffusion Probabilistic Models

Recently, diffusion models [62, 63] have emerged as state-of-the-art generative models

for conditional image-generation [52, 55], super-resolution [56] and inpainting [42].

They are a much more powerful class of generative model compared to Variational

Autoencoders (VAEs) [33], and benefit from a more stable training process as compared

39

4. Offline Reinforcement Learning with Latent Diffusion

to Generative Adversarial Networks (GANs) [21]. Recent works in offline RL [31], [2]

have proposed using diffusion to model trajectories and showcased its effectiveness in

stitching together behaviors to improve upon suboptimal demonstrations. However,

[31] makes the assumption that the value function is learnt using other offline Q-

learning methods and their classifier-guided diffusion requires querying the value

function on noisy samples, which can lead to extrapolation error. Similarly, [2] can

suffer from distributional shift, as it relies on return-conditioning, and maximum

returns from arbitrary states can be unknown without having access to a value function.

Our work proposes a method for learning Q-functions in latent trajectory space

with latent diffusion while avoiding extrapolation error and facilitating long-horizon

trajectory stitching and credit assignment. The idea is to diffuse over semantically

rich latent representations while relying on powerful decoders for high-frequency

details.

In summary, rather than avoiding Q-learning, we model the behavioral policy

with diffusion and use this to avoid extrapolation error through batch-constraining.

We also harness the expressivity of powerful diffusion generative models to reason

with temporal abstraction and improve credit assignment. Further, prior works which

explored diffusion for offline RL [2, 31] directly diffused over the raw state-action

space, and their architectural considerations for effective diffusion models limited the

networks to be simple U-Nets [54]. The separation of the diffusion model from the

low-level policy allows us to model the low-level policy using a powerful autoregressive

decoder.

4.2 Background

4.2.1 Diffusion Probabilistic Models

Diffusion models [62, 63] are a class of latent variable generative model which learn

to generate samples from a probability distribution p(x) by mapping Gaussian

noise to the target distribution through an iterative process. They are of the form

pψ(x0) :=
∫
pψ(x0:T)dx1:T where x0, . . .xT are latent variables and the model defines

the approximate posterior q(x1:T | x0) through a fixed Markov chain which adds

Gaussian noise to the data according to a variance schedule β1, . . . , βT . This process

40

4. Offline Reinforcement Learning with Latent Diffusion

is called the forward diffusion process :

q(x1:T | x0) :=
T∏
t=1

q(xt | xt−1), q(xt | xt−1) := N (xt;
√

1− βtxt−1, βtI) (4.1)

The forward distribution can be computed for an arbitrary timestep t in closed form.

Let αt = 1− βt and ᾱt =
∏t

i=1 αi. Then q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I).

Diffusion models learn to sample from the target distribution p(x) by starting

from Gaussian noise p(xT) ∼ N (0, I) and iteratively denoising the noise to generate

in-distribution samples. This is defined as the reverse diffusion process pψ(xt−1 | xt):

pψ(x0:T) := p(xT)
T∏
t=1

pψ(xt−1 | xt), pψ(xt−1 | xt) := N (xt−1;µψ(xt, t),Σψ(xt, t))

(4.2)

The reverse process is trained by minimizing a surrogate loss-function [29]:

L(ψ) = Et∼[1,T],x0∼q(x0),ϵ∼N (0,I) || ϵ− ϵψ(xt, t) ||2 (4.3)

Diffusion can be performed in a compressed latent space z [53] instead of the final

high-dimensional output space of x. This separates the reverse diffusion model

pψ(zt−1 | zt) from the decoder pθ(x | z). The training is done in two stages, where the

decoder is jointly trained with an encoder, similar to a β-Variational Autoencoder

[27, 33] with a low β. The prior is then trained to fit the optimized latents of this

model. We explain this two-stage training in more detail in section 4.3.1.

4.2.2 Offline Reinforcement Learning

Offline RL [41] is an extension of the RL problem described in section 1.2. In this

setting, the agent has access to a static dataset D = {sit,ait, sit+1, r
i
t} of transitions

generated by a unknown behavior policy πβ(a | s) and the goal is to learn a new

policy using only this dataset without interacting with the environment. Unlike

behavioral cloning, offline RL methods seek to improve upon the behavior policy used

to collect the offline dataset. The distribution mismatch between the behavior policy

41

4. Offline Reinforcement Learning with Latent Diffusion

and the training policy can result in problems such as querying the target Q-function

with actions not supported in the offline dataset, leading to the extrapolation error

problem.

4.3 Latent Diffusion Reinforcement Learning

We begin by describing the two-stage training process for obtaining the low-level

policy and the high-level latent diffusion prior. Next, we discuss how to use this prior

to train a temporally abstract Q-function while avoiding bootstrapping error, and then

use this Q-function during the policy execution phase. We finally describe additional

methods to use the latent diffusion prior with goal-conditioning and model-based

planning, which are more suitable for certain navigation tasks.

4.3.1 Two-Stage LDM training

Latent Representation and Low-Level Policy. The first stage in training the

latent diffusion model is comprised of learning a latent trajectory representation.

This means, given a dataset D of H -length trajectories τH represented as sequences

of states and actions, s0, a0, s1, a1, · · · sH−1, aH−1, we want to learn a low-level policy

πθ(a|s, z) such that z represents high-level behaviors in the trajectory. This is done

using a β-Variational Autoencoder (VAE) [27, 33]. Specifically, we maximize the

evidence lower bound (ELBO):

L(θ, ϕ, ω) = EτH∼D[Eqϕ(z|τH)[
H−1∑
t=0

log πθ(at | st, z)]− βDKL(qϕ(z | τH) || pω(z | s0))]

(4.4)

where qϕ represents our approximate posterior over z given τH , and pω represents

our conditional Gaussian prior over z, given s0. Note that unlike BCQ, which uses

a VAE’s conditional Gaussian prior as the state-conditioned generative model, our

latent diffusion model only uses the β-VAE to learn a latent space to diffuse over.

As such, the prior pω is simply a loose regularization of this latent space, and not a

strong constraint. This is facilitated by the ability of latent diffusion models to later

sample from such complex latent distributions. Prior works [3, 49] have learned latent

42

4. Offline Reinforcement Learning with Latent Diffusion

space representations of skills using VAEs. Their use of weaker Gaussian priors forces

them to use higher values of the KL penalty multiplier β to ensure the latents are

well regularized. However, doing so restricts the information capacity of the latent,

which limits the variation in behaviors captured by the latents. As we show in section

4.4.1, increasing the horizon H reveals a clear separation of useful behavioral modes

when the latents are weakly constrained.

The low-level policy πθ is represented as an autoregressive model which can capture

the fine details across the action dimensions, and is similar to the decoders used by

[20] and [3]. While all the environments we test in this work use continuous action

spaces, the use of latent diffusion allows the method to easily translate to discrete

action spaces too, since the decoder can simply be altered to output a categorical

distribution while the diffusion process remains unchanged.

Latent Diffusion Prior. For training the diffusion model, we collect a dataset

of state-latent pairs (s0, z) such that τH ∼ D is a H-length trajectory snippet,

z ∼ qϕ(z | τH) where qϕ is the VAE encoder trained earlier, and s0 is the first state in

τH . We want to model the prior p(z | s0), which is the distribution of the learnt latent

space z conditioned on a state s0. This effectively represents the different behaviors

possible from the state s0 as supported by the behavioral policy that collected the

dataset. To this end, we learn a conditional latent diffusion model pψ(z | s0) by

learning the time-dependent denoising function µψ(zt, s0, t), which takes as input

the current diffusion latent estimate zt and the diffusion timestep t to predict the

original latent z0. Like [52] and [32], we found predicting the original latent z0 works

better than predicting the noise ϵ. We reweigh the objective based on the noise level

according to the Min-SNR-γ strategy [24]. This re-balances the objective, which

otherwise is dominated by the loss terms corresponding to diffusion time steps closer

to T . Concretely, we modify the objective in Eq. 4.3 to minimize:

L(ψ) = Et∼[1,T],τH∼D,z0∼qϕ(z|τH),zt∼q(zt|z0)[min{SNR(t), γ}(|| z0 − µψ(zt, s0, t) ||2)]
(4.5)

Note that qϕ(z | τH) is different from q(zt | z0), the former being the approximate

posterior of the trained VAE, while the latter is the forward Gaussian diffusion noising

process. We use DDPM [29] to sample from the diffusion prior in this work due

to its simple implementation. As proposed in [28], we use classifier-free guidance

43

4. Offline Reinforcement Learning with Latent Diffusion

for diffusion. This modifies the original training setup to learn both a conditional

µψ(zt, s0, t) and an unconditional model. The unconditional version is represented as

µψ(zt,Ø, t) where a dummy token Ø takes the place of s0. The following update is

then used to generate samples: µψ(zt,Ø, t) +w(µψ(zt, s0, t)− µψ(zt,Ø, t)), where w is

a tunable hyper-parameter. Increasing w results in reduced sample diversity, in favor

of samples with high conditional density.

a

s

𝜋θ(a | s, z)

q𝛟(z | 𝝉)

Forward Diffusion Process

Denoising Process

Denoising
Network

x T times

Z

Z0
ZT

Z0 ZTZjZj-1
Diffusion Model

p𝛙 (z | s)

zi

argmax Q(s, zi)

a) Latent Space Representation Training b) Latent Diffusion Model Training

a

s

a

s

s

s

s

a

a

a ss

a

s

N candidates

𝜋θ(a | s, z)

0 1 H-1

0 1 H-1

0

1

H-1

0

1

H-1 0

. .

.

.

. .

.

.Policy Decoder

Noised
Latent.

.

. .

c) Policy Execution

Figure 4.1: Latent Diffusion Reinforcement Learning Overview a) We first
learn the latent space and low-level policy decoder by training a β-VAE over H-
length sequences from the demonstrator dataset. b) We train a latent diffusion prior
conditioned on s0 to predict latents generated by the VAE encoder. c) After learning
a Q function using LDCQ (Algorithm 4), we score latents sampled by the prior with
this Q function and execute the low-level policy πθ conditioned on the argmax latent.

4.3.2 Latent Diffusion-Constrained Q-Learning (LDCQ)

In batch-constrained Q-learning (BCQ), the target Q-function is constrained to only

be maximized using actions that were taken by the demonstrator from the given state

[19].

π(s) = argmax
a

s.t.(s,a)∈D

Q(s, a) (4.6)

44

4. Offline Reinforcement Learning with Latent Diffusion

In a deterministic MDP setting, BCQ is theoretically guaranteed to converge to the

optimal batch-constrained policy. In any non-trivial setting, constraining the policy

to actions having support from a given state in the dataset is not feasible, especially

if the states are continuous. Instead, a function of the form πψ(a | s) must be learned

on the demonstrator data and samples from this model are used as candidates for

the argmax:

π(s) = argmax
ai∼πψ(a|s)

Q(s, ai) (4.7)

However, in many offline RL datasets, the behavior policy is highly multimodal either

due to the demonstrations being undirected, or because the behavior policy is actually

a mixture of unimodal policies, making it difficult for previously used generative

models like VAEs to sample from the distribution accurately. The multimodality of

this policy is further exacerbated with increases in temporal abstraction in the latent

space, as we show in section 4.4.1. We propose using latent diffusion to model this

distribution, as diffusion is well suited for modelling such multi-modal distributions.

We propose to learn a Q-function in the latent action space with latents sampled

from the diffusion model. Specifically, we learn a Q-function Q(s, z), which represents

the action-value of a latent action sequence z given state s. At test time, we generate

candidate latents from the diffusion prior pψ(z | s) and select the one which maximizes

the learnt Q-function. We then use this latent with the low-level policy πθ(ai | si, z)

to generate the action sequence for H timesteps.

Training. We collect a replay buffer B for the dataset D of H-length trajectories

and store transition tuples (st, z, rt:t+H , st+H) from τH ∼ D, where st is the first state

in τH , z ∼ qϕ(z | τH) is the latent sampled from the VAE approximate posterior,

rt:t+H represents the γ-discounted sum of rewards accumulated over the H time-steps

in τH , and st+H represents the state at the end of the H-length trajectory snippet.

The Q-function is learned with temporal-difference updates [67], where we sample

a batch of latents for the target argmax using the diffusion prior pψ(z | st+H). This

should only sample latents which are under the support of the behavioral policy, and

hence with the right temporal abstraction, this allows for stitching skills to learn

an optimal policy grounded on the data support. The resulting Q update can be

45

4. Offline Reinforcement Learning with Latent Diffusion

summarized as:

Q(st, z)← (rt:t+H + γHQ(st+H , argmax
zi∼pψ(z|st+H)

(Q(st+H , zi)))) (4.8)

We use Clipped Double Q-learning as proposed in [18] to further reduce overestimation

bias during training. We also use Prioritized Experience Replay [57] to accelerate the

training in sparse-reward tasks like AntMaze and FrankaKitchen. We summarize our

proposed LDCQ method in Algorithm 4.

Algorithm 4 Latent Diffusion-Constrained Q-Learning (LDCQ)

1: Input: prioritized-replay-buffer B, horizon H, target network update-rate ρ, mini-
batch sizeN , number of sampled latents n, maximum iterationsM , discount-factor
γ, latent diffusion denoising function µψ, variance schedule α1, . . . , αT , ᾱ1, . . . , ᾱT ,
β1, . . . , βT .

2: Initialize Q-networks QΘ1 and QΘ2 with random parameters QΘ1 , QΘ2 and target
Q-networks QΘtarget1

and QΘtarget2
with Θtarget

1 ← Θ1, Θtarget
2 ← Θ2

3: for iter = 1 to M do
4: Sample a minibatch of N transitions {(st, z, rt:t+H , st+H)} from B
5: Sample n latents for each transition: zT ∼ N (0, I)
6: for t = T to 1 do ▷ DDPM Sampling
7: ẑ = µψ(zt,Ø, t) + w(µψ(zt, st+H , t)− µψ(zt,Ø, t))

8: zt−1 ∼ N (
√
αt(1−ᾱt−1)

1−ᾱt zt +
√
ᾱt−1βt
1−ᾱt ẑ, I(t > 1)βtI)

9: end for
10: Compute the target values y = rt:t+H + γH{max

z0
{min
j=1,2

QΘtargetj
(st+H , z0)}}

11: Update Q-networks by minimizing the loss: 1
N
||y −QΘ(st, z)||22

12: Update target Q-networks: Θtarget ← ρΘ + (1− ρ)Θtarget

13: end for

Policy Execution. The final policy for LDCQ comprises generating candidate

latents z for a particular state s using the latent diffusion prior z ∼ pψ(z | s). These

latents are then scored using the learnt Q-function and the best latent zmax is decoded

using the VAE autoregressive decoder a ∼ πθ(a | s, zmax) to obtain H-length action

sequences which are executed sequentially. Note that the latent diffusion model

is used both during training the Q-function and during the final evaluation phase,

ensuring that the sampled latents do not go out-of-support.

46

4. Offline Reinforcement Learning with Latent Diffusion

4.3.3 Latent Diffusion Goal Conditioning (LDGC)

Diffuser [31] proposed framing certain navigation problems as a sequence inpainting

task, where the last state of the diffused trajectory is set to be the goal during

sampling. We can similarly condition our diffusion prior on the goal to sample from

feasible latents that lead to the goal. This prior is of the form pψ(z | s0, sg), where

sg is the target goal state. Since with latent diffusion, the training of the low-level

policy alongside the VAE is done separately from the diffusion prior training, we

can reuse the same VAE posterior to train different diffusion models, such as this

goal-conditioned variant. At test time, we perform classifer-free guidance to further

push the sampling towards high-density goal-conditioned latents. For tasks which

are suited to goal conditioning, this can be simpler to implement and achieves better

performance than Q-learning. Also, unlike Diffuser, our method does not need to

have the goal within the planning horizon of the trajectory. This allows our method

to be used for arbitrarily long-horizon tasks.

4.3.4 Latent Diffusion Constrained Planning (LDCP)

We explore another method to derive a policy for offline RL with latent diffusion

with a model-based approach which learns a temporally abstract world model of the

environment from offline data. Specifically, we learn a temporally abstract world

model pη(st+H | st, z) that predicts the state outcome of executing a particular latent

behavior after H steps. That is, given the current state st and a latent behavior z

the model predicts the distribution of the state st+H . This is trained in a supervised

manner by sampling transition tuples (st, z, st+H) from τH ∼ D and minimizing the

objective:

L(η) = EτH∼D || pη(st+H | st, z)− st+H ||2 (4.9)

where η are the parameters of the temporally abstract world model pη.

In goal-reaching environments, we leverage this model to do planning using the

diffusion prior. We sample n latents zi (1 ≤ i ≤ n) using the diffusion prior for the

current state st, and use the learnt dynamics model to compute predicted future state

sit+H for each latent zi. These final states are then scored using a cost-function J
and the latent corresponding to the best final state is chosen for execution. Note that

47

4. Offline Reinforcement Learning with Latent Diffusion

sampling latents from the diffusion prior ensures that the world model is not queried

on out-of-support data. We refer to this method as Latent Diffusion-Constrained

Planning (LDCP). The planning procedure is summarized in Algorithm 5.

Algorithm 5 Latent Diffusion-Constrained Planning (LDCP)

1: Input: horizon H, number of latents to sample n, maximum iterations M , cost-
function J , policy decoder πθ, temporally abstract world model pη, latent diffusion
denoising function µψ, variance schedule α1, . . . , αT , ᾱ1, . . . , ᾱT , β1, . . . , βT .

2: done = False
3: while not done do
4: Observe environment state s0
5: Sample n latents: zT ∼ N (0, I)
6: for t = T to 1 do ▷ DDPM Sampling
7: ẑ = µψ(zt,Ø, t) + w(µψ(zt, s0, t)− µψ(zt,Ø, t))

8: zt−1 ∼ N (
√
αt(1−ᾱt−1)

1−ᾱt zt +
√
ᾱt−1βt
1−ᾱt ẑ, I(t > 1)βtI)

9: end for
10: Compute future states for each latent zi0: siH = pη(s

i
H | s0, zi0)

11: Find best latent based on the cost-function: i = argmin
i

J (siH)

12: Compute action-sequence using policy decoder πθ(a | s0, zi0)
13: h = 0
14: while h < Hand not done do
15: Execute action ah
16: Update done
17: h = h+ 1
18: end while
19: end while

The cost-function which we use for the goal-reaching environments is the Euclidean

distance to the goal. We can also extend this planning to horizons greater than H by

further sampling latents for each future state sit+H (1 ≤ i ≤ n). This means, after

sampling n latents for st with the diffusion prior, we further sample n more latents for

each of the future states sit+H . This increases the ‘planning depth’ d. The final states

at the last level of planning are then scored using the cost-function and the latent at

the first level which led to that final state is chosen for execution. This procedure

complexity grows exponentially and thus the planning depth has to be restricted.

48

4. Offline Reinforcement Learning with Latent Diffusion

4.3.5 Visualizing Model Predictions

Learning a world model also allows us to visualize the effect of executing any given

latent behavior. This means, even when the model is not used for planning, like in

LDCQ, it can be used to compute the final state that will be reached for every latent

behavior from a particular state. This information can be used to understand if the

model is learning reasonable behavior modes. During testing as well, this can be used

for safety checks.

Figure 4.2: Visualizing model predictions: Visualization of future states with
latents sampled from the diffusion prior at a T-intersection in antmaze-large-diverse-v2
D4RL task.

We plot the xy-coordinates of our abstract world model pη(st+H | st, z) predictions

at a T -intersection in the AntMaze large environment for latents sampled from our

diffusion prior z ∼ pψ(z | st) in Figure 4.2 to demonstrate this. The plot shows

that the diffusion prior sampled latents which go in all the three directions at the

T-intersection.

49

4. Offline Reinforcement Learning with Latent Diffusion

4.4 Experimental Evaluation and Analysis

In our experiments, we focus on 1) studying the effect of temporal abstraction on

the latent space (section 4.4.1) 2) understanding the need for diffusion to model

the latent space (section 4.4.2 and 4.4.3) and 3) evaluating the performance of our

method in the D4RL offline RL benchmarks (section 4.4.5).

4.4.1 Temporal abstraction induces multi-modality in latent

space

In this section, we study how the horizon length H affects the latent space and provide

empirical justification for learning long-horizon latent space representations. For our

experiment, we consider the kitchen-mixed-v0 task from the D4RL benchmark suite

[17]. The goal in this task is to control a 9-DoF robotic arm to manipulate multiple

objects (microwave, kettle, burner and a switch) sequentially, in a single episode

to reach a desired configuration, with only sparse 0-1 completion reward for every

object that attains the target configuration. As [17] states, there is a high degree

of multi-modality in this task arising from the demonstration trajectories because

different trajectories in the dataset complete the tasks in a random order. Thus,

before starting to solve any task, the policy implicitly needs to choose which task

to solve and then generate the actions to solve the task. Given a state, the dataset

can consist of multiple behavior modes, and averaging over these modes leads to

suboptimal action sequences. Hence, being able to differentiate between these tasks

is desirable.

We hypothesize that as we increase our sequence horizon H, we should see better

separation between the modes. In Figure 4.3, we plot a 2D (PCA) projection of

the VAE encoder latents of the starting state-action sequences in the kitchen-mixed

dataset. With a lower horizon, these modes are difficult to isolate and the latents

appear to be drawn from a Normal distribution (Figure 4.3). However, as we increase

temporal abstraction from H = 1 to H = 20, we can see three distinct modes emerge,

which when cross-referenced with the dataset correspond to the three common tasks

executed from the starting state by the behavioral policy (microwave, kettle, and

burner). These modes capture underlying variation in an action sequence, and having

50

4. Offline Reinforcement Learning with Latent Diffusion

picked one we can run our low-level policy to execute it. As demonstrated in our

experiments, such temporal abstraction facilitates easier Q-stitching, with better

asymptotic performance. However, in order to train these abstract Q functions, it

becomes necessary to sample from the complex multi-modal distribution and the

conventional VAE conditional Gaussian prior is no longer adequate for this purpose,

as shown in section 4.4.2.

Figure 4.3: Projection of latents across horizon. Latent projections of trajectory
snippets with different horizon lengths H. From the initial state there are 3 tasks
(Kettle, Microwave, Burner) which are randomly selected at the start of each episode.
These 3 primary modes emerge as we increase H, with the distribution turning
multi-modal.

4.4.2 LDMs address multi-modality in latent space

In this section, we provide empirical evidence that latent diffusion models are superior

in modelling multi-modal distributions as compared to VAEs.

For our experiment, we again consider the kitchen-mixed-v0 task. The goal of

the generative model here is to learn the prior distribution p(z | s) and sample from

it such that we can get candidate latents corresponding to state s belonging to the

support of the dataset. However, as demonstrated earlier, the multi-modality in the

latent spaces increases with the horizon. We visualize the latents from the initial

states of all trajectories in the dataset in Figure 4.4 using PCA with H = 20. The

three clusters in the figure correspond to the latents of three different tasks, namely

microwave, kettle and burner. Similarly, we also visualize the latents predicted by the

diffusion model (Figure 4.5) and the VAE conditional prior (Figure 4.6) for the same

initial states by projecting them onto the principal components of the ground truth

latents. We can see that the diffusion prior is able to sample effectively all modes

51

4. Offline Reinforcement Learning with Latent Diffusion

from the ground truth latent distribution, while the VAE prior spreads its mass over

the three modes, and thus samples out of distribution in between the three modes.

Using latents sampled from the VAE prior to learning the Q-function can thus lead

to sampling from out of the support, leading to extrapolation error.

Figure 4.4: Visualization of projection of Ground truth latents

Figure 4.5: Visualization of projection of latents from the diffusion prior

4.4.3 Performance improvement with temporal abstraction

We empirically demonstrate the importance of temporal abstraction and the perfor-

mance improvement with diffusion on modelling temporally abstract latent spaces.

We compare our method with a variant of BCQ which uses temporal abstraction

(H > 1), which we refer to as BCQ-H. We use the same VAE architecture here as

52

4. Offline Reinforcement Learning with Latent Diffusion

Figure 4.6: Visualization of projection of latents from the VAE prior

LDCQ, and fit the conditional Gaussian prior with a network having comparable

parameters to our diffusion model. We find that generally, increasing the horizon H

results in better performance, both in BCQ-H and LDCQ, and both of them eventually

saturate and degrade, possibly due to the limited decoder capacity. With H = 1, the

latent distribution is roughly Normal as discussed earlier and our diffusion prior is

essentially equivalent to the Gaussian prior in BCQ, so we see similar performance.

As we increase H, however, the diffusion prior is able to efficiently sample from the

more complex latent distribution that emerges, which allows the resulting policies to

benefit from temporal abstraction. BCQ-H, while also seeing a performance boost

with increased temporal abstraction, lags behind LDCQ. We plot D4RL score-vs-H

for BCQ-H and LDCQ evaluated on the kitchen-mixed-v0 task in Figure 4.7.

4.4.4 Network Architecture

Variational Autoencoder

Encoder. For learning the latent trajectory representation, our VAE uses an

architecture similar to [3]. The encoder consists of two stacked bidirectional GRU

layers, followed by mean and standard deviation heads which are each a 2 layer

MLP with RELU activation for the hidden layers. The mean output head is a linear

layer. The standard deviation output head is followed by a SoftPlus activation

function to ensure it is always positive. The hidden layer dimension is fixed to 256.

53

4. Offline Reinforcement Learning with Latent Diffusion

Figure 4.7: D4RL score of LDCQ and BCQ-H on kitchen-mixed-v0 with varying
sequence horizon H

Decoder. For the low-level policy decoder, we use an auto-regressive policy network

similar to that described in EMAQ [20], in which each element of the action vector

has its own MLP network, taking as input the current state, latent representation,

and all previously-sampled action elements. The complete action vector is sampled

element-by-element, with the most recently sampled element becoming an input to

the network for the next element. These MLP networks consists of 2 layers followed

by 2 layers of mean and standard deviation heads similar to the encoder network.

The mean output head is a linear layer and the standard deviation output head is

followed by a SoftPlus activation. Again, ReLU activation is used after all hidden

layer and the hidden dimension is fixed to 256.

Diffusion Prior

The diffusion prior is a deep ResNet [25] architecture consisting of 8 residual blocks.

It takes as input a vector representing a latent trajectory z and outputs a denoised

version of the latent. The hidden blocks are of dimensions: [128, 32, 16, 8, 16, 32,

128]. Similar to a U-Net [54], the initial blocks are connected by residual connections

to the later blocks having the same hidden dimension. The diffusion timestep t is

encoded with a 256-dimensional sinusoidal embedding and then further encoded with

a 2-layer MLP. The conditioning state s is also encoded by a 2 layer MLP. In each

residual block, the state and time encodings are concatenated with the current layer

activation for conditioning. When training the unconditional diffusion model for

54

4. Offline Reinforcement Learning with Latent Diffusion

classifier-free guidance, the state input is given as a vector of zeros to represent a null

vector.

Q-networks

The Q-networks take as input the state s, latent z and consist of a 5 layer MLP

with 256 hidden units in the first 3 layers, 32 hidden units in the third layer, and

finally a linear output layer. We use GELU activation function between hidden layers.

LayerNorm [7] is applied before each activation.

4.4.5 Offline RL benchmarks

In this section, we investigate the effectiveness of our Latent Diffusion Reinforcement

Learning methods on the D4RL offline RL benchmark suite [17]. We compare with

Behavior Cloning and several state-of-the-art offline RL methods: Batch Constrained

Q-Learning (BCQ) [19], Conservative Q-Learning (CQL) [37], Implicit Q-Learning

(IQL) [35], Decision Transformer (DT) [11], Diffuser [31] and Decision Diffuser [2].

The last two algorithms are previous trajectory diffusion methods.

Hyperparameters

We found that our method does not require much hyperparameter tuning and only

had to vary the sequence horizon H across tasks. In maze2d, AntMaze and Carla

tasks we use H = 30, in kitchen tasks we use H = 20 and in locomotion tasks we

use H = 10. We train our diffusion prior with T = 200 diffusion steps. The other

hyperparameters which are constant across tasks are provided in Tables 4.1, 4.2 and

4.3.

Hardware

The models were trained on NVIDIA RTX A6000. Since different tasks have different

dataset sizes, the model training times changes across tasks. Depending on the task,

training the β-VAE took between 3-7 hours, the diffusion prior took between 4-12

hours and the Q-Learning took between 3-5 hours.

55

4. Offline Reinforcement Learning with Latent Diffusion

Table 4.1: β-VAE hyperparameters

Parameter Value

Learning rate 5e-5
Batch size 128
Epochs 100
Latent dimension (z) 16
β 0.05
Hidden layer dimension 256

Table 4.2: Diffusion training hyperparameters

Parameter Value

Learning rate 1e-4
Batch size 32
Epochs 300
Diffusion steps (T) 500
Drop probability (For unconditional prior) 0.1
Variance schedule linear
Sampling algorithm DDPM
γ (For Min-SNR-γ weighing) 5

Table 4.3: Q-Learning hyperparameters

Parameter Value

Learning rate 5e-4
Batch size 128
Discount factor (γ) 0.995
Target net update rate (ρ) 0.995
PER buffer α 0.7
PER buffer β Linearly increased from 0.3 to 1, Grows by 0.03 every 3000 steps
Diffusion samples for batch argmax 500

56

4. Offline Reinforcement Learning with Latent Diffusion

Results

In Table 4.4, we show results on the sparse-reward tasks in D4RL which require

long-horizon trajectory stitching. In particular, we look at tasks in Maze2d, AntMaze

and FrankaKitchen environments which are known to be the most difficult in D4RL,

with most algorithms performing poorly. Maze2d and AntMaze consist of undirected

demonstrations controlling the agent to navigate to random locations in a maze.

AntMaze is quite difficult because the agent must learn the high-level trajectory

stitching task alongside low-level control of the ant robot with 8-DoF. In the maze

navigation tasks, we also evaluate the performance of our goal-conditioned (LDGC)

and planning (LDCP) variants. For Diffuser runs we use the goal-conditioned

inpainting version proposed by the authors since the classifier-guided version yielded

poor results. We found our implementation of BCQ improved over previous reported

scores in kitchen tasks.

Table 4.4: Performance comparison on D4RL tasks which require long-horizon stitch-
ing with high multimodality. Goal conditioning (LDGC) and Planning (LDCP)
variant are evaluated in the navigation environments.

Dataset BC BCQ CQL IQL DT Diffuser DD LDCQ (Ours) LDGC (Ours) LDCP (Ours)

maze2d-large-v1 5.0 6.2 12.5 58.6 18.1 123.0 - 150.1 ± 2.9 206.8 ± 3.1 184.3 ± 3.8

antmaze-medium-diverse-v2 0.0 0.0 53.7 70.0 0.0 45.5 24.6 68.9 ± 0.7 75.6 ± 0.9 77.0 ± 1.1
antmaze-large-diverse-v2 0.0 2.2 14.9 47.5 0.0 22.0 7.5 57.7 ± 1.8 73.6 ± 1.3 59.7 ± 1.3

kitchen-partial-v0 38.0 31.7 50.1 46.3 42.0 - 57.0 67.8 ± 0.8 - -
kitchen-mixed-v0 51.5 34.5 52.4 51.0 50.7 - 65.0 62.3 ± 0.5 - -

All our methods (LDCQ, LDGC, LDCP) achieve state-of-the-art results in all

sparse-reward D4RL tasks. The goal-conditioned and planning variants outperform

all others in maze2d and AntMaze. These variants are do not require Q-learning and

are ideal for goal-reaching tasks.

We visualize the performance of our method (Fig. 4.8) compared to BCQ (Fig.

4.9) in the kitchen-mixed-v0 task. We see that while LDCQ is able to do the tasks

sequentially and complete 3 tasks successfully, the BCQ agent after completing the

kettle task gets stuck in the middle of switch and burner. This is a result of averaging

between different tasks as we also see in section 4.4.2.

We also provide an evaluation of our method on the D4RL locomotion suite

(Table 4.5). While these tasks are not specifically focused on trajectory-stitching,

57

4. Offline Reinforcement Learning with Latent Diffusion

Figure 4.8: LDCQ in kitchen-mixed-v0 environment. The sequence shows a
single episode where the agent completes the kettle task first followed by burner and
switch.

58

4. Offline Reinforcement Learning with Latent Diffusion

Figure 4.9: BCQ in kitchen-mixed-v0 environment. The sequence shows a
single episode where the agent completes the kettle task and then tries to complete
burner and switch. However the arm instead goes in the middle of the burner and
switch because the VAE is unable to segregate the two tasks and chooses actions by
averaging over the two tasks.

59

4. Offline Reinforcement Learning with Latent Diffusion

our method is competitive with other offline RL methods. We only run the LDCQ

variant here since they are not goal-reaching tasks.

Table 4.5: Performance comparison on the D4RL locomotion tasks.

Dataset BC BCQ CQL IQL DT Diffuser DD LDCQ (Ours)

halfcheetah-medium-expert-v2 55.2 64.7 91.6 86.7 86.8 88.9 90.6 90.2 ± 0.9
walker2d-medium-expert-v2 107.5 57.5 108.8 109.6 108.1 106.9 108.8 109.3 ± 0.4
hopper-medium-expert-v2 52.5 110.9 105.4 91.5 107.6 103.3 111.8 111.3 ± 0.2

halfcheetah-medium-v2 42.6 40.7 44.0 47.4 42.6 42.8 49.1 42.8 ± 0.7
walker2d-medium-v2 75.3 53.1 72.5 78.3 74.0 79.6 82.5 69.4 ± 3.5
hopper-medium-v2 52.9 54.5 58.5 66.3 67.6 74.3 79.3 66.2 ± 1.7

halfcheetah-medium-replay-v2 36.6 38.2 45.5 44.2 36.6 37.7 39.3 41.8 ± 0.4
walker2d-medium-replay-v2 26.0 15.0 77.2 73.9 66.6 70.6 75.0 68.5 ± 4.3
hopper-medium-replay-v2 18.1 33.1 95.0 94.7 82.7 93.6 100.0 86.2 ± 2.5

To extend our method for tasks with high-dimensional image input spaces, we

propose to compress the image space using an autoencoder such that our method

operates on a compressed state space. This essentially means we create a low-

dimensional compressed representation using an encoder E before using the LDCQ

framework. Note that this encoder operates on a single image and not on a temporal

sequence of images (Figure 4.10). The downstream framework of LDCQ, however,

operates on the temporal compressed image sequences.

qƐ(s | o)o s qƐʼ(oʼ | s) oʼ

Reconstruction

Figure 4.10: Autoencoder training for image-based task

We evaluate the performance of our method on the CARLA autonomous driving

D4RL task. The task consists of an agent which has control to the throttle (gas pedal),

the steering, and the brake pedal for the car. It receives 48 × 48 RGB images from

the driver’s perspective as observations. We use a U-net autoencoder architecture to

60

4. Offline Reinforcement Learning with Latent Diffusion

create a 32-dimensional compressed state for this task. The horizon for LDCQ is set

to H = 30. The results are tabulated in Table 4.6.

Table 4.6: Performance comparison on image-based CARLA task

Dataset BC BCQ CQL IQL LDCQ (Ours)

carla-lane-v0 17.2 -0.1 20.9 18.6 24.7

4.5 Conclusion

In this work, we showed that offline RL datasets comprised of suboptimal demon-

strations have expressive multi-modal latent spaces which can be captured with

temporal abstraction and are well suited for learning high-reward policies. With a

powerful conditional generative model to capture the richness of this latent space,

we demonstrated that the simple batch-constrained Q-learning framework can be

directly used to obtain strong performance. Our biggest improvements come from

long-horizon sparse-reward tasks, which most prior offline RL methods struggled

with, even previous raw trajectory diffusion methods. Our approach also required

no task-specific tuning, except for the sequence horizon H. We believe that latent

diffusion has enormous potential in offline RL and our work has barely scratched the

surface of possibilities. This method is highly suited for learning policies in safety-

critical environments, as it does not rely on online training interactions. Further, the

learnt model can also be used for safety checks during the execution phase. However,

offline methods are significantly worse in performance when compared to online RL

methods. Thus while being the best in terms of safety during training, we have to

trade-off in terms of obtaining optimal policies.

61

4. Offline Reinforcement Learning with Latent Diffusion

62

Chapter 5

Conclusions

In this work, we explored innovative methods to enhance reinforcement learning in

safety-critical environments. The proposed methods improved the sample efficiency,

interpretability, and reliability of RL algorithms, making them suitable for training

and deployment in safety critical environments. In chapter 2, we presented a novel

curriculum learning method for environments where other dynamic agents are present.

Our method was able to improve the sample efficiency of a nominal RL approach and

also converged to a better policy. However, this method still being a reactive policy

does not give interpretable trajectories. In chapter 3, we presented a hybrid method

combining motion primitives with reinforcement learning for decision making that

allows a high-level trajectory planning approach with reinforcement learning desired

for long horizon tasks and interpretability. It improves over traditional graph-search

methods and extends RL with motion primitives with a large primitives library.

However, the training procedure in this case is very unstable and thus the method

is very sample-inefficient. In chapter 4, we presented a novel offline reinforcement

learning method for robotic control tasks which learns policies without any real-world

interactions and allows learning world models which can be used for safety checks

during execution. While a complete offline approach might not result in optimal

policies as compared to online RL approaches, this is crucial for enabling intelligent

agents for safety critical systems when collecting online data is not possible. In

terms of real-time performance as well, our offline method which relies on diffusion is

comparatively slower as compared to other methods. However this can be improved

63

5. Conclusions

with using better and faster diffusion techniques not explored in this work. Hence,

for safety critical environments, we are currently able to enhance RL algorithms, but

there are trade-offs associated with them. A combination of these methods can be

used to achieve a better algorithm.

Collectively, our research explores advancements in reinforcement learning for

safety critical robotic tasks, providing a powerful frameworks to address decision-

making and control problems. The proposed methods enhance sample efficiency,

interpretability, and reliability, contributing to the development of more intelligent

and adaptive RL agents that can be deployed in safety-critical environments.

64

Bibliography

[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy
optimization. In Doina Precup and Yee Whye Teh, editors, Proceedings of the
34th International Conference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 22–31. PMLR, 06–11 Aug 2017. URL
https://proceedings.mlr.press/v70/achiam17a.html. 1.1

[2] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B Tenenbaum, Tommi S Jaakkola,
and Pulkit Agrawal. Is conditional generative modeling all you need for decision-
making? In NeurIPS 2022 Foundation Models for Decision Making Workshop, .
4.1.2, 4.4.5

[3] Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum.
Opal: Offline primitive discovery for accelerating offline reinforcement learning.
In International Conference on Learning Representations, . 4.1.1, 4.3.1, 4.4.4

[4] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob Mc-
Grew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael
Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint
arXiv:1910.07113, 2019. 1.1, 2.2.2

[5] Matthias Althoff, Markus Koschi, and Stefanie Manzinger. Commonroad: Com-
posable benchmarks for motion planning on roads. In Proc. of the IEEE Intelligent
Vehicles Symposium, 2017. ISBN 9781509048045. doi: 10.1109/ivs.2017.7995802.
2.3.2, 3.4.3

[6] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,
Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech
Zaremba. Hindsight experience replay. Advances in neural information processing
systems, 30, 2017. 1.1

[7] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016. 4.4.4

[8] Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical
reinforcement learning. Discrete event dynamic systems, 13(1-2):41–77, 2003.
1.1, 3.1

65

https://proceedings.mlr.press/v70/achiam17a.html

Bibliography

[9] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Cur-
riculum learning. In Proceedings of the 26th annual international conference on
machine learning, pages 41–48, 2009. 1.1, 2.1, 2.2.2

[10] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas,
Peter I Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon
Samothrakis, and Simon Colton. A survey of monte carlo tree search methods.
IEEE Transactions on Computational Intelligence and AI in games, 4(1):1–43,
2012. 3.1

[11] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael
Laskin, P. Abbeel, A. Srinivas, and Igor Mordatch. Decision transformer: Re-
inforcement learning via sequence modeling. In Neural Information Processing
Systems, 2021. 4.1.1, 4.4.5

[12] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep
reinforcement learning in a handful of trials using probabilistic dynamics models.
Advances in neural information processing systems, 31, 2018. 3.2.1

[13] Josiah Coad, Zhiqian Qiao, and John M Dolan. Safe trajectory planning using
reinforcement learning for self driving. arXiv preprint arXiv:2011.04702, 2020.
3.2.2

[14] Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. Advances
in neural information processing systems, 5, 1992. 3.2.2

[15] Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy
Lillicrap, Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas Degris,
and Ben Coppin. Deep reinforcement learning in large discrete action spaces.
arXiv preprint arXiv:1512.07679, 2015. 3.4

[16] Jeffrey L Elman. Learning and development in neural networks: The importance
of starting small. Cognition, 48(1), 1993. 2.2.2

[17] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl:
Datasets for deep data-driven reinforcement learning. 4.4.1, 4.4.5

[18] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approxi-
mation error in actor-critic methods. In International conference on machine
learning, pages 1587–1596. PMLR, 2018. 4.3.2

[19] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement
learning without exploration. In International conference on machine learning,
pages 2052–2062. PMLR, 2019. 1.1, 4, 4.1.1, 4.3.2, 4.4.5

[20] Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu.
Emaq: Expected-max q-learning operator for simple yet effective offline and
online rl. In International Conference on Machine Learning, pages 3682–3691.

66

Bibliography

PMLR, 2021. 4.3.1, 4.4.4

[21] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative
adversarial nets. In NIPS, 2014. 4.1.2

[22] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi.
Dream to control: Learning behaviors by latent imagination. arXiv preprint
arXiv:1912.01603, 2019. 3.2.1

[23] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha,
Honglak Lee, and James Davidson. Learning latent dynamics for planning from
pixels. In International conference on machine learning, pages 2555–2565. PMLR,
2019. 3.2.1

[24] Tiankai Hang, Shuyang Gu, Chen Li, Jianmin Bao, Dong Chen, Han Hu, Xin
Geng, and Baining Guo. Efficient diffusion training via min-snr weighting strategy.
arXiv preprint arXiv:2303.09556, 2023. 4.3.1

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016. 4.4.4

[26] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rain-
bow: Combining improvements in deep reinforcement learning. In Proceedings
of the AAAI conference on artificial intelligence, volume 32, 2018. 1.1

[27] Irina Higgins, Löıc Matthey, Arka Pal, Christopher P. Burgess, Xavier Glorot,
Matthew M. Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae:
Learning basic visual concepts with a constrained variational framework. In
International Conference on Learning Representations, 2016. 4.2.1, 4.3.1

[28] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS
2021 Workshop on Deep Generative Models and Downstream Applications. 4.3.1

[29] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic
models. Advances in Neural Information Processing Systems, 33:6840–6851, 2020.
4.2.1, 4.3.1

[30] León Illanes, Xi Yan, Rodrigo Toro Icarte, and Sheila A McIlraith. Symbolic
plans as high-level instructions for reinforcement learning. In Proceedings of
the international conference on automated planning and scheduling, volume 30,
pages 540–550, 2020. 3.2.2

[31] Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning
with diffusion for flexible behavior synthesis. In International Conference on
Machine Learning, pages 9902–9915. PMLR, 2022. 4.1.2, 4.3.3, 4.4.5

67

Bibliography

[32] Heewoo Jun and Alex Nichol. Shap-e: Generating conditional 3d implicit
functions. arXiv preprint arXiv:2305.02463, 2023. 4.3.1

[33] Diederik P Kingma and Max Welling. Auto-encoding variational {Bayes}. In
Int. Conf. on Learning Representations. 4.1.2, 4.2.1, 4.3.1

[34] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Dif-
fwave: A versatile diffusion model for audio synthesis. In International Conference
on Learning Representations. 4.1.1

[35] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning
with implicit q-learning. In International Conference on Learning Representations.
1.1, 4, 4.4.5

[36] Aviral Kumar, Xue Bin Peng, and Sergey Levine. Reward-conditioned policies.
arXiv preprint arXiv:1912.13465, 2019. 4.1.1

[37] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative
q-learning for offline reinforcement learning. Advances in Neural Information
Processing Systems, 33:1179–1191, 2020. 1.1, 4, 4.1.1, 4.4.5

[38] Romain Laroche, Paul Trichelair, and Remi Tachet Des Combes. Safe policy
improvement with baseline bootstrapping. In International conference on machine
learning, pages 3652–3661. PMLR, 2019. 1.1

[39] David N Lee. A theory of visual control of braking based on information about
time-to-collision. Perception, 5(4):437–459, 1976. 2.5.4

[40] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end
training of deep visuomotor policies. The Journal of Machine Learning Research,
17(1):1334–1373, 2016. 1.1

[41] Sergey Levine, Aviral Kumar, G. Tucker, and Justin Fu. Offline reinforce-
ment learning: Tutorial, review, and perspectives on open problems. ArXiv,
abs/2005.01643, 2020. 4.2.2

[42] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte,
and Luc Van Gool. Repaint: Inpainting using denoising diffusion probabilistic
models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11461–11471, 2022. 4.1.2

[43] Marlos C Machado, André Barreto, Doina Precup, and Michael Bowling. Tem-
poral abstraction in reinforcement learning with the successor representation.
Journal of Machine Learning Research, 24(80):1–69, 2023. 3.1

[44] Timothy Mann and Shie Mannor. Scaling up approximate value iteration with
options: Better policies with fewer iterations. In International conference on
machine learning, pages 127–135. PMLR, 2014. 3.1

[45] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

68

Bibliography

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013. 1.1

[46] Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al.
Model-based reinforcement learning: A survey. Foundations and Trends® in
Machine Learning, 16(1):1–118, 2023. 1.1

[47] Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor,
and Peter Stone. Curriculum learning for reinforcement learning domains: A
framework and survey. arXiv preprint arXiv:2003.04960, 2020. 2.1

[48] Kaleb Ben Naveed, Zhiqian Qiao, and John M. Dolan. Trajectory planning
for autonomous vehicles using hierarchical reinforcement learning. In 2021
IEEE International Intelligent Transportation Systems Conference (ITSC), pages
601–606, 2021. doi: 10.1109/ITSC48978.2021.9564634. 3.2.2

[49] Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement
learning with learned skill priors. In Jens Kober, Fabio Ramos, and Claire
Tomlin, editors, Proceedings of the 2020 Conference on Robot Learning, volume
155 of Proceedings of Machine Learning Research, pages 188–204. PMLR, 16–
18 Nov 2021. URL https://proceedings.mlr.press/v155/pertsch21a.html.
4.1.1, 4.3.1

[50] Zhiqian Qiao, Katharina Muelling, John M. Dolan, Praveen Palanisamy, and
Priyantha Mudalige. Automatically generated curriculum based reinforcement
learning for autonomous vehicles in urban environment. In 2018 IEEE Intelligent
Vehicles Symposium (IV), pages 1233–1238, 2018. doi: 10.1109/IVS.2018.8500603.
2.2.2

[51] Duy Quang Tran and Sang-Hoon Bae. Proximal policy optimization through a
deep reinforcement learning framework for multiple autonomous vehicles at a
non-signalized intersection. Applied Sciences, 10(16):5722, 2020. 2.5

[52] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen.
Hierarchical text-conditional image generation with clip latents. arXiv preprint
arXiv:2204.06125, 2022. 4, 4.1.1, 4.1.2, 4.3.1

[53] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and
Björn Ommer. High-resolution image synthesis with latent diffusion models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022. 4, 4.2.1

[54] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. volume 9351, pages 234–241, 10
2015. ISBN 978-3-319-24573-7. doi: 10.1007/978-3-319-24574-4 28. 4.1.2, 4.4.4

[55] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L
Denton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan,

69

https://proceedings.mlr.press/v155/pertsch21a.html

Bibliography

Tim Salimans, et al. Photorealistic text-to-image diffusion models with deep
language understanding. Advances in Neural Information Processing Systems,
35:36479–36494, 2022. 4, 4.1.1, 4.1.2

[56] Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet,
and Mohammad Norouzi. Image super-resolution via iterative refinement. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2022. 4.1.2

[57] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized
experience replay. arXiv preprint arXiv:1511.05952, 2015. 4.3.2

[58] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,
Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis,
Thore Graepel, et al. Mastering atari, go, chess and shogi by planning with a
learned model. Nature, 588(7839):604–609, 2020. 1.1

[59] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.
3.2.2

[60] Moritz Klischat Sebastian Maierhofer and Matthias Althoff. Commonroad
scenario designer: An open-source toolbox for map conversion and scenario
creation for autonomous vehicles. In Proc. of the IEEE Int. Conf. on Intelligent
Transportation Systems, pages 3176–3182, 2021. doi: https://doi.org/10.1109/
itsc48978.2021.9564885. 2.3.1

[61] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. nature, 529(7587):484–489, 2016. 1.1, 3.1

[62] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli.
Deep unsupervised learning using nonequilibrium thermodynamics. In Francis
Bach and David Blei, editors, Proceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages
2256–2265, Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.

mlr.press/v37/sohl-dickstein15.html. 4.1.2, 4.2.1

[63] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of
the data distribution. Advances in neural information processing systems, 32,
2019. 4.1.2, 4.2.1

[64] Yunlong Song, HaoChih Lin, Elia Kaufmann, Peter Dürr, and Davide Scaramuzza.
Autonomous overtaking in gran turismo sport using curriculum reinforcement
learning. In 2021 IEEE International Conference on Robotics and Automation
(ICRA), pages 9403–9409. IEEE, 2021. 2.2.2

[65] Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Wojciech Jaśkowski, and

70

https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.mlr.press/v37/sohl-dickstein15.html

Bibliography

Jürgen Schmidhuber. Training agents using upside-down reinforcement learning.
arXiv preprint arXiv:1912.02877, 2019. 4.1.1

[66] Richard S Sutton. Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming. In Machine learning proceedings
1990, pages 216–224. Elsevier, 1990. 3.2.1

[67] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018. 4.3.2

[68] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
Advances in neural information processing systems, 30, 2017. 4.1.1

[69] Sushant Veer and Anirudha Majumdar. Probably approximately correct vision-
based planning using motion primitives. arXiv preprint arXiv:2002.12852, 2020.
3.2.2

[70] Nino Vieillard, Marcin Andrychowicz, Anton Raichuk, Olivier Pietquin, and
Matthieu Geist. Implicitly regularized rl with implicit q-values. In Gustau
Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera, editors, Proceedings of The
25th International Conference on Artificial Intelligence and Statistics, volume 151
of Proceedings of Machine Learning Research, pages 1380–1402. PMLR, 28–30
Mar 2022. URL https://proceedings.mlr.press/v151/vieillard22a.html.
4.1.1

[71] Xiao Wang, Hanna Krasowski, and Matthias Althoff. Commonroad-rl: A config-
urable reinforcement learning environment for motion planning of autonomous
vehicles. In IEEE International Conference on Intelligent Transportation Systems
(ITSC), 2021. doi: 10.1109/ITSC48978.2021.9564898. 2.1, 3.1

[72] Zhuangdi Zhu, Kaixiang Lin, and Jiayu Zhou. Transfer learning in deep rein-
forcement learning: A survey. arXiv preprint arXiv:2009.07888, 2020. 2.2.1

71

https://proceedings.mlr.press/v151/vieillard22a.html

	1 Introduction
	1.1 Overview
	1.2 Preliminaries
	1.3 Contributions

	2 State Dropout-based Curriculum Reinforcement Learning
	2.1 Introduction
	2.2 Related Work
	2.2.1 Transfer Learning
	2.2.2 Curriculum Learning

	2.3 Problem Definition
	2.3.1 Problem Statement
	2.3.2 Observation and Action space
	2.3.3 Reward Structure

	2.4 State Dropout Curriculum
	2.4.1 Curriculum 1
	2.4.2 Curriculum 2

	2.5 Experiments
	2.5.1 Experimental Setup
	2.5.2 Network Architecture
	2.5.3 Training Details
	2.5.4 Performance Evaluation
	2.5.5 Discussion

	2.6 Conclusion

	3 Motion Primitives-based Reinforcement Learning
	3.1 Introduction
	3.2 Related Work
	3.2.1 Model-based Reinforcement Learning
	3.2.2 Hierarchical Reinforcement Learning

	3.3 Problem Formulation
	3.4 Primitives-based RL
	3.4.1 Motion Primitive Embeddings
	3.4.2 Online Optimal Primitive Selection
	3.4.3 Observation and Action space
	3.4.4 Reward Structure

	3.5 Experiments
	3.5.1 Experimental Setup
	3.5.2 Motion Primitives Library
	3.5.3 Network Architecture
	3.5.4 Training Details
	3.5.5 CommonRoad Benchmarks
	3.5.6 Performance Evaluation
	3.5.7 Discussion

	3.6 Conclusion

	4 Offline Reinforcement Learning with Latent Diffusion
	4.1 Related Work
	4.1.1 Offline reinforcement learning
	4.1.2 Diffusion Probabilistic Models

	4.2 Background
	4.2.1 Diffusion Probabilistic Models
	4.2.2 Offline Reinforcement Learning

	4.3 Latent Diffusion Reinforcement Learning
	4.3.1 Two-Stage LDM training
	4.3.2 Latent Diffusion-Constrained Q-Learning (LDCQ)
	4.3.3 Latent Diffusion Goal Conditioning (LDGC)
	4.3.4 Latent Diffusion Constrained Planning (LDCP)
	4.3.5 Visualizing Model Predictions

	4.4 Experimental Evaluation and Analysis
	4.4.1 Temporal abstraction induces multi-modality in latent space
	4.4.2 LDMs address multi-modality in latent space
	4.4.3 Performance improvement with temporal abstraction
	4.4.4 Network Architecture
	4.4.5 Offline RL benchmarks

	4.5 Conclusion

	5 Conclusions
	Bibliography

