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Abstract

Robots deployed in underground scenarios require a SLAM system that
can handle a variety of challenges, such as the absence of GPS, large scale
maps, bad illumination, and geometrically degenerate environments. It is
nearly impossible for any SLAM solution to handle all these challenges
perfectly, specially if the robot is exploring its environment for the first
time. In this case, the SLAM system must adapt to the diverse scenarios
it finds and recognize any eventual failure so the other robot modules can
handle it appropriately. Therefore, it is imperative to design fail-aware
SLAM systems. A common architecture for modern SLAM systems is to
separate a sensor-dependent front-end algorithm from a back-end based
on pose graph optimization (PGO). In these cases, the PGO needs to
estimate the uncertainty of the relative keypose transformation gener-
ated by the front-end. However, important state-of-the-art LIDAR-based
odometry algorithms do not provide this information at all. This work
proposes an algorithm that can estimate this uncertainty by analysing
only the sequence of odometry poses produced in the keyframe window
and comparing them to the gyroscope and accelerometer readings of an
inertial measurement unit (IMU). This uncertainty estimation (UE) algo-
rithm is used to build a complete SLAM solution, with LIDAR-inertial
SuperOdometry as the front-end, and a PGO back-end. Additionally,
underground place recognition capabilities are added this back-end via
a slightly modified ScanContext descriptor. The UE algorithm is tested
with the use of simulated and motion capture data, due to the availability
of a ground-truth in these cases. The back-end SLAM system, named Su-
perLoop, is tested with data from wheeled robots exploring an abandoned
hospital. The results show that the proposed UE algorithm may be better
than using a constant diagonal covariance, as is common practice. It is
also shown how it can detect odometry failure cases and may fix them
before they contaminate the back-end.
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Chapter 1

Introduction

1.1 Motivation

The DARPA Subterranean Challenge [9] represented an important research thrust

into resilient real-world SLAM systems. In this competition, teams were required

to deploy robotic systems that explored underground environments in search for

a pre-defined list of artifacts. Point were scored by reporting artifact locations

within a 5 meter error threshold. The robots were managed by a single human

operator via a computer interface. The most efficient solutions deployed multiple

robots simultaneously, and the human operator only sent high-level commands to

them. Therefore, each robot required enough autonomy to spend most of their time

unattended and still make progress towards their mission. This requirement imposed

several challenges for the SLAM system, since subterranean environments are large

scale GPS-denied environments. Solving these type of scenarios will increase the

deployment of robots in search-and-rescue missions, such as the Surfside Condo

building collapse in Florida [29].

The Challenge took place mainly over 3 separate events: the Tunnel Circuit

(2019); the Urban Circuit (2020) and the Final Event (2021). An additional Cave

Circuit event was supposed to take place in 2020, but it was cancelled due to concerns

regarding the COVID epidemic. A good review of the SLAM solutions developd by

all teams for the Final Event can be found in [16]. Carnegie Mellon University was

represented in the Challenge by Team Explorer [7].
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1. Introduction

Figure 1.1: Top: Complete map generated by Team Explorer after 30 minutes in the
Final Event. Multiple colors represent contributions from different robots. At this
stage, Team Explorer had reached 26 out of 28 map sectors, as defined by DARPA.
Bottom: Final complete map colorized by the deviation metric. Green are inlier
points, within 1 meter of ground truth. Orange are outlier points.

2



1. Introduction

The Tunnel Circuit consisted of a network of tunnels with extended length and

constrained passages, such as those found in mining operations. Team Explorer

achieved first place in this event and an additional award for most accurate artifact

location. The Urban Circuit took place in a an abandoned nuclear power plant,

representing man-made underground environments with vertical elements. The team

finished in second place. For both of these events, the SLAM submodule consisted

of a LOAM [37] front-end and a complementary back-end based on Pose Grapho

Optimizaiton (PGO) and a radius search loop closure method [31].

The Final Event featured a new SLAM front-end algorithm: SuperOdometry (SO)

[40]. SO was developed entirely within the backdrop of the DARPA Subterranean

Challenge to tackle data fusion challenges. Its first design principle is modularity.

It dictates the goal of being able to add new sensor modalities to the estimation

algorithm without modifying the existing framework, and with minimal dependencies

between them. The second design principle is resiliency. It expresses the idea that

failure in a single modality should not impact the whole system, as long as there is a

single working modality available. This is partly achieved by the first principle. The

key insight to SO is the focus on the IMU as a environment-independent sensor. This

leads to an IMU-centric architecture that combines advantages from loosely- and

tightly-coupled methods. It allows for easy integration of different sensor modules,

which can vary depending on the robot platform.

The back-end for the Final Event remained the same as the previous events,

however. Integration efforts ensured that each module operated mostly independent.

SO was heavily adapted to conform to the same LOAM output formats, ensuring

compatibility. This solution, named ExplorerSLAM, is described in more details

in [16]. Overall, our combined system achieved the deviation of 11.6% of the map

while covering 84.7% of the map, as can be seen in Fig. 1.1. The deviation metric

is defined by DARPA as the number of points that are further than 1 meter away

from any point in the ground truth pointcloud. All of our visual artifact detections

were correctly localized within the DARPA scoring tolerance. Most SLAM drift was

concentrated in 3 out of 7 robots, while the other 4 had near-perfect runs. Fig. 1.2

shows the evolution of the front-end and back-end components used by Team Explorer

during the DARPA Subterranean Challenge

These results put ExplorerSLAM performance in the Final Event as second only to

3



1. Introduction

LOAM [37]

Radius-search 
PGO back-end 

Tunnel (1st place) & 
Urban (2nd) Circuit 

[31]

SuperOdometry 
[40]

Radius-search 
PGO back-end

Final Event (4th place)
2nd best SLAM 

deviation [7,9,16]

SuperOdometry 
[40]

SuperLoop

Current Work

Front-End

Back-End

Figure 1.2: Evolution of SLAM Systems used by Team Explorer in the DARPA
Subterranean Challenge. The proposed method is highlighted in red.

Team CSIRO’s Data61 solution based on Wildcat SLAM [30], which is already in early

commercialization phase. Despite this good result, ExplorerSLAM still leaves room for

improvement, specially in the back-end component. During testing, important issues

arose that were not present in the Final Event, and remained unsolved. For instance,

long and geometrically degenerate corridors were a pain point for ExplorerSLAM.

They caused enough drift that the back-end found it impossible to recover, because it

exceeded the maximum radius allowed for loop closure detection, as seen in Fig. 1.3.

These issues motivated the research on a SuperOdometry-compatible back-end that

is better at handling odometry failure and possibly recovering from it.

Existing LIDAR-based SLAM systems such as LOAM and SuperOdometry do

not have an estimate of how good their own estimation is. When they do create

metrics, they are not directly translatable to the factor graph covariance formulation.

Therefore, the current practice has been for the SLAM engineer to choose a constant

diagonal matrix to be used in the back-end for all the odometric constraints. This is

done by trial-and-error method, and with the assumption that the test conditions will

be a good representation of the final deployment scenario. However, our preparation

for the Subterranean Challenge showed that a) the quality of pointcloud registration

varies heavily in the same run depending on environment geometry; and that b) it is

4



1. Introduction

Figure 1.3: Example of a failed SLAM result during preparation for the Subterranean
Challenge. The scale of the environment prevents closing the loop when the only
mechanism is a radius search.

very hard to predict and recreate the deployment scenario during the testing phase.

Thus, it is important to create algorithms that are robust to diverse geometry and,

when that is not possible, aware of its failure cases.

This work develops a SLAM back-end that improves Team Explorer’s solution

and improves its robustness and fail-aware capabilities in two ways. First, introducing

a place recognition mechanism that can work within the subterranean environment.

Second, developing a mechanism for uncertainty estimation that allows the SLAM

system to properly deal with low-quality sections of the map, decreasing the confidence

in the bad odometry results. Additionally, the uncertainty estimation method should

ideally generalize for different sensor types that might be used in the SLAM module

in the future.

5
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1.2 Related Work

1.2.1 Lidar-based SLAM State-of-the-Art

Modern SLAM research aims to design algorithms that can leverage the strengths of

different sensors and alleviate their weakness. Common exteroceptive sensors in use

are RGB and infrared cameras; radar; and LIDAR (“light detection and ranging”).

LIDAR sensors are relatively expensive, but also very reliable. As evidence, we

note that among the top 5 teams in the Subterranean Challenge, all of them relied

heavily on LIDARs, sometimes even deploying multiple copies in a single robot. A

detailed review of the solutions deployed in the Final Round of the Challenge is found

in [16]. The few robots that tried to use visual-inertial solutions without LIDAR

experienced severe issues during their runs. The LIDAR prevalence is due to the nature

of underground exploration, with its lack of illumination and visual degeneracies.

Additionally, the Challenge required artifacts with maximum error of 5 meters, and

most teams deemed that camera-based SLAM does not offer that guarantee. For these

reasons, LIDAR-based SLAM is still the benchmark for underground exploration.

Popular LIDAR-based SLAM algorithms are actually better characterized as

LIDAR-odometry, since the map is static and there are no loop closures. LOAM[37],

the best performing LIDAR algorithm in the KITTI benchmark, is a prime exam-

ple. SuperOdometry [40] is similar in this aspect. LOAM uses a loosely coupled

approach, where each sensor modality is processed with a separate optimization

module, generating an initial guess for the subsequent ones, ending with the LIDAR

module. SuperOdometry uses a combination of tightly- and loosely-coupled solutions,

and fuses information from different modules using an IMU-centric factor graph.

CompSLAM [18] was the solution used by the winners of the Subterranean Challenge.

It is based on LOAM, with the addition of visual odometry as prior to the LIDAR

processing and a D-optimality criterion for rejecting the visual estimates.

Other algorithms do include a loop closure step and may be considered a full

SLAM solution [28]. LIO-SAM [32] fuses LIDAR odometry, IMU preintegration

factors [17], GPS measurements and loop closure constraints in a single factor graph.

Its initial implementation only uses Euclidian distance-based loop closure detection,

but is designed to be compatible with arbitraty place recognition methods. Another

6
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example is WildcatSLAM [30], the SLAM solution from TEAM CSIRO that achieved

the smallest deviation result in the Final Round, according to DARPA’s metrics. It

uses a continuous-time trajectory formulation in its LIDAR registration process, and

pose graph optimization (PGO) in the back-end, with the possibility of integrating

ScanContext [19] place recognition. This method inspires some features of our

proposed method, such as the use of B-splines as a trajectory representation and

PGO.

1.2.2 SLAM Uncertainty Metrics

State-of-the-art SLAM systems such as the ones mentioned in the previous section

usually have modules dedicated to processing specific sensor modalities, such as

LIDAR Odometry (LO) and Visual odometry (LO). Another sensor fusion step is

required to merge the information from these different modules. This steps can

be implemented with a filter such as the EKF [10], factor graphs [32], or loosely-

coupled as an initialization value for another module optimization [37]. The merged

information may be in the form of pose estimates constraints or even raw constraints

such as landmarks associations. In any case, the merge step requires a model of

the uncertainty associated with each sensor modality. This model allows the sensor

fusion algorithm to appropriately weigh the redundant informtion from each module,

generating a consensus estimate.

Some of the uncertainty metrics in use are not defined properly as a distribution,

and act more like a quality measure. For instance, LOAM uses the eigenvalues of the

optimization covariance matrix as a way to determine degenerate directions [38]. Then,

these directions are not updated during the optimization, maintaining the estimates

from the previous modules in the pipeline. SuperOdometry and LIO-SAM assume

that the estimates from its exteroceptives modules are governed by a constant and

diagonal Gaussian noise, determined by hand-tuning and usually setting the LIDAR

with a relatively small covariance. During normal operation, this is a reasonable

assumption, but it is exactly during anormal operation that the estimation problem

becomes interesting.

One possibility is to estimate the uncertainty in LIDAR scan matching analysing

the properties of the underlying Iterative Closest Point (ICP) algorithm. For instance,

7



1. Introduction

some methods [2, 8] propose to use the Hessian matrix of the scan-matching error

function to derive a covariance estimate. Other methods [4, 25, 26] use sampling-based

approaches where a Monte Carlo-style method generates samples of pose parameters.

However, these methods are considered computationally expensive. An unscented

transform is to calculate the ICP covariance in [3], postulating that the covariance of

the initial estimate dominates the ICP error. The suitability of each of these methods

for sensor fusion purposes is still debatable. For instance, the authors of [28] find

that the method in [8] is over-optmistic, underestimating the actual uncertainty, and

thus it may lead to numerical issues in the factor graph optimization.

Our method abstracts away the sensor modality, and looks only at the sequence

of pose estimates it produces. This was done because it could later be applied to

other sensor types such as cameras and GPS. Therefore, it mainly manipulates the

uncertainty quantities expressed in the SE(3) manifold and its derivatives. The

Lie Algebra formulation of uncertainty offers accuracy advantages compared to pure

Cartesian coordinates [24]. Mangelson et al. [27] develops expressions for the resulting

covariances from pose composition, pose inversion, and relative pose operations using

Lie groups. It expands upon [1] by modeling correlated poses. A practical summary of

the Lie Algebra and its applications to robotics can be found in [33]. These concepts

are used in this work to model the uncertainty in the rigid body motion group SE(3).

1.3 Contributions

The main contributions of this thesis are:

1. A method for estimating the uncertainty in a sequence of pose estimates

using the IMU sensor as an arbitrator. It creates continuous-time trajectories

from the odometry data using B-splines. Then these splines are efficiently

differentiated to provide linear acceleration and angular velocity estimates at

the IMU timestamps. A covariance estimate is calculated by comparing the

spline-based estimates and the IMU measurements inside a given window of

time. This is explained in Chapter 3.

2. SuperLoop, a LIDAR-based SLAM back-end that works synergistically with

SuperOdometry. It has built-in place recognition via ScanContext that has been

8



1. Introduction

adapted for underground environments. Also, it uses our uncertainty estimation

method to build its internal factor graph. Finally, it can handle some level of

SLAM failure and recover from it. This is presented in Chapter 4.
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Chapter 2

Background

This chapter presents theoretical background information necessary to understand the

methods proposed in this work. Section 2.1 introduces to the basic concepts of Lie

Algebra; and Section 2.2 summarizes the theory of B-spline interpolation. These are

required to understand the Uncertainty Estimation method presented in Chapter 3.

Section 2.3 presents the Factor Graph theory that underpins a large part of modern

SLAM systems. Finally, Section 2.4 describes the ScanContext place recognition

module. These last two sections are important to understand the SLAM system

presented in Chapter 4.

2.1 Lie Algebra

One important challenge that arises in the formulation of estimation algorithms relates

to the mathematical nature of rotations. A rotation matrix R ∈ SO(3) is 3×3 matrix

with 9 elements, but only 3 degrees of freedom (DOF), thus it is overparameterized.

This is contrast to translation, typically described with a vector t ∈ R3, and has

exactly 3 parameters for 3 DOF. Overparameterization causes issues in mathematical

optimization, and wrong formulations may result in situations where a variable that

should represent a physical rotation becomes a 3 × 3 matrix that is no longer in

SO(3). An additional projection step is needed in this case to bring the variable back

into the SO(3) space.

However, there is an important property of the SO(3) that allows for a better
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2. Background

modeling of the problem. These spaces are manifolds, i.e. every point in it has

a neighborhood that is homeomorphic to Euclidian space. Therefore, around any

given point it is possible to build a vector space (the tangent space) representing

incremental changes that can be mapped back to the manifold. As will be shown,

using this mechanism allows us to avoid the overparameterization issue and properly

perform optimizations and model uncertainties.

These ideas give rise to the Lie Theory, formulated by mathematician Sophus Lie

in the XIX century and currently an important tool in estimation theory. A better

practical introduction on Lie Theory can be found in [33]. This section introduces

only the parts of the theory that are relevant to understanding the proposed methods.

2.1.1 Lie Group and Lie Algebra

A Lie Group is a smooth manifold whose elements satisfy the group axioms. A smooth

manifold is a topological space that is locally similar to an Euclidian (i.e. linear)

space. A group (G, ◦) is composed of a set G and a composition operation ◦ such that

the following axioms are valid:

• Closure under ◦: The composition of any two elements of the group remains

in the group

a, b ∈ G ∩ a ◦ b = c =⇒ c ∈ G

• Identity: There exists an identity element that whenever composed with

another element of the group, returns that same element.

∃i ∈ G : a ◦ i = i ◦ a = a; ∀a ∈ G

• Inverse: For every element of the group, there exists exactly one other element

such that composition of the two result in the identity element:

∀a ∈ G =⇒ ∃b ∈ G : a ◦ b = b ◦ a = i

• Associativity: In an expression containing multiple occurrences of the com-

position, the order in which these operations are performed does not alter the

final result.

∀a, b, c ∈ G =⇒ (a ◦ b) ◦ c = a ◦ (b ◦ c)

Lie groups bridge the properties of smooth manifolds making it possible to perform
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2. Background

calculus with these mathematical entities. Given a Lie Group M, the tangent space

at the identity, TEM, is the Lie algebra of M, and noted m, such that m ≜ TEM.

The folowing remarks connect the Lie Algebra and its group:

• The Lie Algebra m is a vector space and therefore its elements can be identified

to Rm, where m is exactly the number of DOF in the manifold M.

• The is an operation called the exponential map exp : m → M that exactly

converts elements of the Lie Algebra into elements of the group and its inverse

is the logarithmic map.

• Vectors of the tangent space at X ∈ M can be transformed to the tangent space

at identity I through a linear transform called the adjoint transformation.

A Lie Algebra can be defined in any point X of the manifold, creating a vector

space for the tangent space TXM. One can observe how the structure of the Lie

algebra arises using the SO(3) group as an example.

The SO(3) rotation group All elements of this group respect the orthonormality

condition R⊤R = I. Taking the time derivative of this expression yields: R⊤Ṙ =

−(R⊤Ṙ)⊤. This implies that the expression R⊤Ṙ is the negative of its transpose,

a property known as skew-symmetry. These special matrices in 3-dimensions are

commonly written as:

[ω]× =

 0 −ωz ωy

ωz 0 −ωx

ωy ωx 0

 ; ω = [ωx, ωy, ωz]
⊤ (2.1)

Therefore R⊤Ṙ = [ω]× and Ṙ = R[ω]×. This last expression gives us the form of

the tangent space for a given element R ∈ SO(3). For the identity case where R = I,

we obtain the Lie algebra of SO(3), denoted so(3):

Ṙ = [ω]× =⇒ [ω]× ∈ so(3) (2.2)

The DOF of this Lie algebra is 3, and therefore it can be related to R3. For this

purpose, the hat and vee operators are defined.

• Hat Operator ∧: R3 → so(3); ω 7→ ω∧ = [ω]×

• Vee Operator ∨: so(3) → R3; [ω]× 7→ [ω]∨× = ω

13
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Note that the skew-symmetric nature of the tangent space here is a direct conse-

quence of the group constraint of SO(3) and therefore might be different for different

Lie Groups. Also the hat and vee operators are always available in any Lie Groups,

although their specific format will vary accordingly. More generally, they can be

defined by considering the derivatives around the origin of the Lie group M in the

i-th direction Ei, also known as the generators of m. Thus we can rewrite the hat

and vee operators for any Lie algebra as:

• Hat: Rm → m;τττ 7→ τττ∧ =
∑m

i=1 τiEi

• Vee: m → Rm;τττ∧ 7→ (τττ∧)∨ = τττ =
∑m

i=1 τiei

The vectors ei form the basis of Rm. This shows how the Lie algebra m is isomor-

phic to the vector space Rm. This allow the two spaces to be used interchangeably,

and Rm is typically preferred in this work.

2.1.2 Exponential and Logarithmic Map

The exponential and the logarithmic maps are operations that allow us to convert

elements from the Lie algebra to the group and vice-versa. The exponential map can

be derived by considering the inverse equation and taking its derivative. Let X be an

element of the Lie Group M and I the group’s identity. Then:

X−1X = I (2.3)

X−1Ẋ + ˙X−1X = 0 (2.4)

X−1Ẋ = − ˙X−1X = (2.5)

Ẋ = Xτττ∧ (2.6)

This derivation is very similar as the one shown for the SO(3) rotation group.

This is a generalization of that one. The last equation may be recognized as an

ordinary differential equation (ODE) and its solution is:

X (t) = X (0) exp(τττ∧) (2.7)

exp(τττ∧) = X (0)−1X (t) (2.8)

Therefore, by the group property, exp(τττ∧) is also a group member and the

exponential map takes an element of the Lie algebra and returns an element of the

Lie group. The inverse process is the logarithmic map, and they can be summarized
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as:

• Exponential Map exp: m → M;τττ∧ 7→ X = exp(τττ∧)

• Logarithmic Map log : M → m;X 7→ τττ∧ = log(X )

The exponential map may be calculated using the Taylor series:

exp(τττ∧) = I + τττ∧ +
1

2
τττ∧

2
+ . . . (2.9)

Some properties of the exponential map are intuitive:

exp((t+ s)τττ∧) = exp(tτττ∧)exp(sτττ∧) (2.10)

exp(tτττ∧) = exp(τττ∧)t (2.11)

exp(−τττ∧) = exp(τττ∧)−1 (2.12)

with t, s being scalars. On the other hand, a less intuitive property of the exponential

map is:

exp(Xτττ∧X−1) = X exp(τττ∧)X−1 (2.13)

Following the convention in [33], we define the capitalized exponential and log-

arithmic maps, that map directly from and to Rm to the Lie group. This is just a

shortcut that simplifies the notation.

• Exp: Rm → M : Exp(τττ) ≜ exp(τττ∧) = X

• Log: M → Rm : Log(X ) ≜ log(X )∨ = τττ

2.1.3 Group and Increment Operations

Using the theory presented so far, it is possible to create operations that compose

Lie group elements with small increments in the Lie algebra, which is particularly

important for optimization and uncertainty modeling. Specifically, we define plus

and minus operators, and these can be separated into right- and left- versions. The

right operators are:

• right-⊕:

Y = X ⊕ Xτττ ≜ X ◦ Exp(Xτττ) ∈ M

• right-⊖:
Xτττ = Y ⊖ X ≜ Log(X−1 ◦ Y) ∈ TXM

For the right operators, the increment Xτττ is an element of the tangent space at
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X , indicated by the left-side superscript. It is also common practice to say that the

increment is expressed in the local frame at X .

The left operators are:

• left-⊕:

Y = Iτττ ⊕X ≜ Exp(Iτττ) ◦ X ∈ M

• left-⊖:
Iτττ = Y ⊖ X ≜ Log(Y ◦ X−1) ∈ TIM

For the left operators, the increments are defined in the tangent space of the identity

element I of the Lie group. The increment is now expressed in the global frame. In

the physical spaces considered in this work, the identity is the origin of the reference

frame. Most of the time in this work, the ⊕ and ⊖ operators will be referring to the

right-forms, except when noted otherwise.

2.1.4 The Adjoint Operation

The adjoint operation enables a transformation of the increments between the global

and local frames. Its derivation is:

Iτττ ⊕X = X ⊕ Xτττ (2.14)

Exp(Iτττ)X = X Exp(Xτττ) (2.15)

exp(Iτττ∧) = X exp(Xτττ∧)X−1 = exp(X Xτττ∧ X−1) (2.16)

Iτττ∧ = X Xτττ∧ X−1 (2.17)

Where the property from Eq. 2.13 was used. Now we can define the adjoint of M
at X :

AdjX : m → m; τττ∧ 7→ AdjX (τττ
∧) ≜ X τττ∧ X−1 (2.18)

and therefore Iτττ∧ = AdjX (
Xτττ∧). The adjoint is a linear operator, and has an

equivalent matrix operator that acts on the Rm vectors Iτττ and Xτττ .

AdjX ∈ Rm×m : Rm → Rm; Xτττ 7→ Iτττ = AdjX
Xτττ (2.19)
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2.1.5 Uncertainty in Manifolds

Lie theory allows us to obtain a unified formulation for dealing with uncertainties. A

noise model can be defined by considering considering a local perturbation τττ ∈ TXM
around a mean value X ∈ M. In this work, we denote noisy estimates with a ∼ over

the variable. This allows us to write:

X̃ = X ⊕ τττ ⇐⇒ τττ = X̃ ⊖ X (2.20)

With this formulation, covariance can be obtained with its standard definition

using the expectation operation E[·]

Cov(X̃ ) ≜ ΣX̃ = E[(X̃ ⊖ E[X̃ ])(X̃ ⊖ E[X̃ ])⊤] (2.21)

= E[(X̃ ⊖ X )(X̃ ⊖ X )⊤] (2.22)

= E[ττττττ⊤] (2.23)

Therefore, ΣX̃ ∈ Rm×m and it is possible to define a Gaussian distribution on

the manifold such that X̃ ∼ N (X ,ΣX̃ ). Note that the covariance is defined in the

tangent space instead of the manifold space itself.

Global-frame covariances can also be defined using the left- operators. In this

case, we have:

X̃ = Iτττ ⊕X ⇐⇒ Iτττ = X̃ ⊖ X (2.24)

IΣX̃ = E[Iτττ Iτττ⊤] (2.25)

Using the adjoint operation, it is possible to convert the global covariance to local

and vice-versa:

IΣX̃ = AdjX̃
XΣX̃ Adj⊤X̃ (2.26)

2.1.6 Derivatives and Jacobians in Lie Groups

Given a function f that maps elements from a manifold M to a manifold N , it is

possible to define a Jacobian matrix of f : M → N using the right-⊕,⊖ operators,

using a form similar to the standard derivative.

XDf(X )

DX
≜ lim

τττ→0

f(X ⊕ τττ)⊖ f(X )

τττ
(2.27)

This the right Jacobian of f. It maps variations in the local tangent space TXM
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to the local tangent space of its image Tf(X )N . It is a n×m matrix, where n and m

are the DOF of N and M, respectively.

This allows for the small-tau Xτττ → 0 approximation:

f(X ⊕ Xτττ) ≈ f(X )⊕
XDf(X )

DX
Xτττ (2.28)

When f = Exp(τττ), then we have the right Jacobian of M.

Jr(τττ) ≜
τττD Exp(τττ)

Dτττ
∈ Rm×m (2.29)

The right Jacobian of M allows for the following approximations:

Exp(τττ + δτττ) ≈ Exp(τττ) Exp(Jr(τττ)δτττ) (2.30)

Exp(τττ) Exp(δτττ) ≈ Exp(τττ + J−1
r (τττ)δτττ) (2.31)

2.1.7 The SE(3) Rigid Motion Lie Group Properties

This section summarizes the application of Lie Theory to the 3D rigid motion space,

SE(3). This is the space of interest in this work, as it describe the motion of our

robots.

An element X = {R, t} of SE(3) is fully described by a 4 × 4 matrix M such

that:

M =

[
R t

0 1

]
(2.32)

where R ∈ SO(3) and t ∈ R3. The group constraint, inherited from SO(3), is

R⊤R = I. This results in the element having size of 16, but only 6 DOF. The tangent

space is R6, where the perturbation τττ is defined. It has two components:

τττ =

[
ρρρ

θθθ

]
; ρρρ,θθθ ∈ R3 (2.33)

The translational component is ρρρ and the rotational one is θθθ. The element τττ∧ of

the Lie algebra m is:

τττ∧ =

[
[θθθ]× ρρρ

0 0

]
(2.34)

The inverse of X is a consequence of matrix inversion and establishes that:

X−1 = {R⊤,−R⊤t} (2.35)
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The composition of X = {Rx, tx} ∈ SE(3) with Y = {Ry, ty} ∈ SE(3) is similarly

obtained:

X ◦ Y = {RxRy, tx +Rxty} (2.36)

The Exp and Log operations maps from the vector tangent space R6 to the SE(3)

elements.

M = Exp(τττ) ≜

[
Exp(θθθ) V(θθθ)ρρρ

0 1

]
(2.37)

τττ = Log(M) ≜

[
V−1(θθθt)

Log(R)

]
(2.38)

Note that Log(R) = θθθ = θu, with θ a scalar and u a unit vector. And V(θθθ) is

defined as:

V(θθθ) = I+
1− cos(θ)

θ2
[θθθ]× +

θ − sin θ

θ3
[θθθ]2× (2.39)

When there is no rotational component, θθθ = 0, then V(0) = I and the operations

simplify to the 3D translation space.

The adjoint is calculated by taking the right-hand side of Eq. 2.18, applying the

vee operator to it, and isolating τττ = [ρρρ⊤, θθθ⊤]⊤.

AdjM τττ = (Mτττ∧M−1)∨ (2.40)

=

[
Rρρρ+ [t]×Rθθθ

Rθθθ

]
(2.41)

=

[
R [t]×R

0 R

][
ρρρ

θθθ

]
(2.42)

AdjM =

[
R [t]×R

0 R

]
∈ R6×6 (2.43)

The right Jacobian Jr(ρρρ,θθθ) of SE(3) has the form

Jr(ρρρ,θθθ) =

[
V(−θθθ) Q(−ρρρ,−θθθ)

0 V(−θθθ)

]
(2.44)
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Q(ρρρ,θθθ) =
1

2
ρρρ× +

θ − sin θ

θ3
(θθθ×ρρρ× + ρρρ×θθθ× + θθθ×ρρρ×θθθ×)

−
1− θ2

2
− cos θ

θ4
(θθθ2×ρρρ× + ρρρ×θθθ

2
× − 3θθθ×ρρρ×θθθ×)

−1

2

(
1− θ2

2
− cos θ

θ4
− 3

θ − sin θ − θ3

6

θ5

)
(θθθ×ρρρ×θθθ

2
× + θθθ2×ρρρ×θθθ×)

(2.45)

2.2 B-Spline Interpolation

B-splines are functions that allow us to represent continuous trajectories p(t) from

discrete inputs (knots) pi, and have a number of desirable properties. The first one is

locality. It dictates that the value of the function at a given time is only controlled

by a small subset of knots. The number of knots k in this subset is the order of the

spline. Another desirable property is that B-splines are Ck−1 smooth. This means

that derivatives are guaranteed to exist for the function p(t) up to the k − 1 order.

We define a uniform B-spline as

p(t) =
N∑
i=0

Bi,k(t)pi, 0 ≤ i ≤ N (2.46)

where Bi,k(t) are the spline coefficients. In the uniform spline, each control point pi

is associated with time ti = t0 + i∆t, such that the knots are uniformly spaced in

time. The coefficients are given by the De Boor-Cox [11, 12] recurrence relation:

Bi,0(t) =

1 for ti ≤ t < ti+1

0 otherwise
(2.47)

Bi,j(t) =
t− ti
j∆t

Bi,j−1(t) +
ti+j+1 − t

j∆t
Bi+1,j−1(t) (2.48)

It is possible to represent B-splins using a matrix representation. First, note that

at time t ∈ [ti, ti+1), the value of p(t) depends only on pi, . . . ,pi+k−1. A simpler time

unit is defined as s(t) := (t− t0)/∆t, such that the time instants ti transform to i.

The temporal variable u(t) := s(t)− i then represents the time since the start of the

segment [ti, ti+1]. Now, it is possible to write

p(u) = [pi pi+1 . . . pi+k−1]M
(k)u (2.49)

where u is a column vector such that un = un and M (k) is a blending matrix with
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the entry at the s-th column and n-th row equal to

m(k)
s,n =

k−1∑
l=s

(−1)l−sC l−s
k (k − 1− l)k−1−n, Cs

k =
k!

s!(k − s)!
(2.50)

An alternative representation is the cumulative B-spline, where the difference

between knots is used, instead of their absolute values. This representation is:

p(t) = B̃0,k(t)p0 ⊕
N∑
i=1

B̃i,k(t)(pi ⊖ pi−1) (2.51)

B̃i,k(t) =
N∑
s=i

Bs,k(t) (2.52)

These equations also admit a matrix representation, using the cumulative matrix

M̃(k) with entries m̃
(k)
s,n =

∑k−1
s=j and difference vectors di

j = pi+j ⊖ pi+j−1 such that

p(u) = [pi d
i
1 di

2 . . . di
k−1]M̃

(k)u (2.53)

p(u) = [pi d
i
1 di

2 . . . di
k−1]λλλ(u) (2.54)

p(u) = pi(u)⊕
k−1∑
j=1

λj(u)d
i
j (2.55)

where this derivation uses the fact that λ0(u) = 1. Eq. 2.55 has the added

benefit of allowing for functions over Lie groups. Note that it is not possible to use

Eq. 2.49 because there are no scaling operations of Lie Group elements. Therefore it

is necessary to scale the increments in the Lie algebra (obtained with the ⊖) and add

them together with the ⊕ operation.

To obtain derivatives of B-splines, it suffices to use the time derivative of u, such

that

ṗ(u) = [pi d
i
1 di

2 . . . di
k−1]M̃

(k)u̇ (2.56)

p̈(u) = [pi d
i
1 di

2 . . . di
k−1]M̃

(k)ü (2.57)

An efficient method for calculating these derivatives for Lie groups is proposed

in [34] and their computational package is used in this work whenever a B-spline

interpolation is calculated.
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2.3 Factor Graphs

In recent years, factor graphs have become prevalent in the SLAM domain. SLAM

typically involves optimizing a set of 3D poses that represent the trajectory of a robot.

The information used to perform this optimization usually comes from observing

distances and angles to landmarks in the environment, obtaining pose constraints. All

these observations carry their own uncertainty, and therefore it is common to optimize

the robot and landmark poses using a MAP (maximum a posteriori) formulation.

An important insight into the structure of these problems lead to the emergence

of factor graphs as a modeling tool: the locality property. Although there are many

variables in the SLAM problem, most of them only depend on a small subset of

other variables and measurements. For example, a odometry estimate relates two

consecutive poses in a trajectory that might contain hundreds of them.

Factor graphs contain variables and factors. Variables are quantities that will

be estimated and factors represent constraints on these variables. An edge always

connects a variable and a factor, indicating that the factor depends on that variable.

The locality property allows this graph to be relatively sparse, and in this case specific

techniques are used to solve the underlying optimization problem.

2.3.1 Definition

A factor graph is a bipartite graph F = {U ,V , E} with two types of nodes: factors

ϕi ∈ U and variables xj ∈ V. Additionally, edges eij ∈ E connect a factor ϕi and

variable xj. Then, a factor graph F defines the factorization

ϕ(X) =
∏
i

ϕi(Xi) (2.58)

where Xi are all the variables that connect to ϕi. Typically, the factors ϕ(Xi) have

the form

ϕi(Xi) ∝ exp

(
−1

2
∥hi(Xi)⊖ zi∥2Σi

)
(2.59)

where hi is a measurement prediction function that takes a subset of variables Xi

and outputs the expected measurement. zi is the actual measurement received and

Σi is the covariance of the zero-mean Gaussian noise involved in the measurement

function. Applying the logarithm to Eq. 2.59 and replacing it in Eq. 2.58 allows
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us to understand the equivalency between the factor graph and a sum of nonlinear

least-squares

log(ϕ(X)) =
∑
i

ri(Xi), ri := −1

2
∥hi(Xi)⊖ zi∥2Σi

(2.60)

2.3.2 Pose Graph Optimization

Odometry 
Constraints

Loop Closure 
Constraints

State Variables

Figure 2.1: PoseSLAM Factor Graph

PoseSLAM is an instance of the SLAM problem where only the robot’s trajectory

is optimized. When it is solved through the factor graph formulation, it gives rise to

the Pose Graph Optimization (PGO) problem. The estimated variables are poses

Ti = {Ri, ti} ∈ SE(3) and the set of variables is X := {xi := Ti}. Typically, there
are two factor types. Both involve the relative pose measurement prediction function

h(X).

h(Ti,Tj) = T−1
i Tj (2.61)

The factor types are:
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• Odometry Factors U : Relates two consecutive pose variables Ti and Ti+1 with

a relative pose measurement D̃i. The measurement model is:

D̃i = h(Ti,Ti+1)⊕ ξi, ξi ∼ N (0,Σi) (2.62)

It adds a residual to the optimization problem in the form

ui(Ti,Ti+1) = ∥D̃i ⊖ h(Ti,Ti+1)∥2Σi
(2.63)

where Σi is the covariance of the measurement noise ξi that affects this specific

relative keypose measurement.

• Loop Closure Factors Q: Relates arbitrary pose variables Ti and Tj with a

relative loop measurement Q. The naive measurement model would be:

Q̃l = h(Ti,Tj)⊕ ξql , ξql ∼ N (0,Σql) (2.64)

It adds a residual to the optimization in the form

ql(Ti,Tj) = ∥Q̃l ⊖ h(Ti,Tj)∥2Σql
(2.65)

where Σql is the covariance of the loop closure measurement noise ξql that affects

this loop closure pose measurement. However, loop closure constraints are

known to contain a large amount of outliers. Therefore, it is common practice

to use a M-estimator. In this case, the noise ξql is not Gaussian anymore, and

would be modeled with another distribution such as Cauchy [23, 39]. The

residual is then modified to:

ql(Ti,Tj) = ρ(∥Q̃l ⊖ h(Ti,Tj)∥2Σql
) (2.66)

where ρ(.) is a robust loss function that down-weighs large error values, pre-

venting outliers from having a disproportional effect on the optimization result.

Fig. 2.1 shows a factor graph example containing all the aforementioned elements.

Aggregating the residuals leads to the PoseSLAM minimization problem:

X∗ = argmin
X

|U |−1∑
i=0

ui +

|Q|−1∑
l=0

ql (2.67)

which resembles Eq. 2.60, without the −1/2 factor that is not important for the

minimization. This is a sum of nonlinear least-squares minimization problem. It is

typically solved by a) choosing an initial solution guess, b) linearizing the equations

around the current solution point and c) calculated the solution increment by inverting
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the equations. The presence of a robust loss slightly modifies this basic algorithm by

deploying Iteratively Reweighted Least Squares techniques (IRLS). Using the factor

graph formulation is helpful specifically because it exploits the problem sparsity with

dedicated techniques. For more details into factor graph theory and its applicability

to robotic estimation problems, see [15] and [13]. There are many computational

packages readily available nowadays to tackle this problem. In this work, we have

used GTSAM [14].

2.4 ScanContext

Place recognition (PR) is the mechanism by which a SLAM algorithm may understand

the topology of the environment. It allows the robot to realize it has visited the same

place multiple times. Without it, the robot will assume it is always exploring new

territory.

The PR problem is a form of long-term data association. It builds a database from

sensor measurements as the robot traverses the environment. Each measurement zt

is considered a place when combined with time t and location lt. The goal is, given a

query place, decide if the robot has already visited it, and return an existing entry in

the place database that matches the query place. In the implementation side, the

criteria for same place is usually defined within a Euclidian distance threshold.

There are two steps involved in PR: database insertion and database retrieval.

Insertion is the process where a sensor measurement is typically encoded into a more

compact representation. Common sensors used in this step are LIDAR and cameras,

and suffer from noise and large raw data size. The compact representation is called a

descriptor ft = f(zt). Retrieval relies on a distance function D(fi, fj) that allows the

query database entry to be efficiently compared to all other entries in the database,

returning a match if one exists in a timely manner. When this distance is lower than

a predefined threshold ϵ, the match is obtained.

This work uses the ScanContext (SC) descriptor[20]. It is a LIDAR-only place

recognition system that was originally designed for outdoor use, specifically for self-

driving cars. Only a small modification was needed to adapt it to our underground

use-case, as will be shown in Chapter 4. Here, we briefly describe how the insertion

and retrieval steps work for SC.
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2.4.1 Database Insertion

The idea of the SC descriptor is to encode the raw pointcloud data into a top-down

“image”. Consider the scan C := {pi} as a set of unordered points pi = [xi, yi, zi]
⊤

produced by the LIDAR sensor. SC divides it into azimuthal and radial bins Pij , with

i ∈ {1, . . . , Nr} and j ∈ {1, . . . , Ns} centered around the sensor origin, along the XY

plane. Ns and Nr are the number of sectors (radial divisions) and rings (azimuthal

divisions). For example, Ns = 60 implies that each sector comprises an angle of

360o/60 = 6o. Each ring has a thickness of Lmax/Nr, where Lmax is the maximum

sensing range of the LIDAR sensor. Fig. 2.2a illustrates the partitioning mechanism.

For each bin Pij, a single real value is chosen to represent all the bin elements.

The SC original selection function is:

s(Pij) = max
p∈Pij

z(p) (2.68)

where z(p) is a function that extracts the z-value from point p. This selection function

simply chooses the highest height value of any point in the bin to build its descriptor.

The final descriptor, as shown in Fig. 2.2b is an image I such that

I = (aij) ∈ RNr×Ns , aij = s(Pij) (2.69)

2.4.2 Database Retrieval

The distance function takes in the query descriptor image Iq and a given element from

the database Ic and outputs a disparity measure. For SC, this is done by considering

each sector at a time, and obtaining the cosine distance between the vectors cqj and c
c
j ,

which are the j − th column vector of each image. These columns vectors represent

the heights along all the rings for a single sector. The cosine distance is similarity

value between −1 and 1. The distance function subtracts the cosine distance from 1,

making it a proper disparity measure, and averages it over all columns (sectors). Its

final form is

d(Iq, Ic) =
1

Ns

Ns∑
j=1

(
1−

cqj · ccj
∥cqj∥∥ccj∥

)
(2.70)

This distance function is sensitive to the orientation of the robot when data

acquisition happened. To remedy this, the distance is taken along all possible

column-shifted descriptor images and the minimum among them is returned as the
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(a) Partitioning of the pointcloud in sectors and rings, using a top-down
view.

(b) Scan Context descriptor generated. An image of size Nr ×Ns, where each pixel value is
the maximum height of all points in the associated partition.

Figure 2.2: Scan Context Descriptor. Reproduced from Kim et al. [19]. Copyright ©
2018 IEE.
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final distance. This process has the byproduct of roughly estimating the yaw offset

between the two robot poses, which can be used to initialize a more precise pointcloud

registration later.

ScanContext uses another encoding mechanism to speed up the comparisons. It

uses the occupancy ratio of each ring to build another descriptor. A ring is a row of

the image descriptor, and has length equal to the number of sectors. The occupancy

ratio ψ(ri) is the number of non-zero elements of the ring divided by the number of

sectors. Then, the ring key descriptor k is built as

k = [ψ(r1), . . . , ψ(rNr)] ∈ RNr (2.71)

The ring key descriptor is used in the first step of the retrieval. It is used to build

a KD tree structure that is searched for the closest N matches in ring key space.

These matches are the only ones where the full distance function from Eq. 2.70 is

applied, and the final match is obtained by taking the smallest distance among them.

More details about ScanContext can be found in [19, 20, 21].
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Chapter 3

IMU-centric Trajectory

Uncertainty Estimation

3.1 Introduction

A common process in SLAM systems is merging multiple sources of information,

specifically trajectory information. Typically, there are redundant sensor modalities

that can serve as input for trajectory estimation, such as cameras and lidar. In order

to fuse these information successfully in a probabilistic framework, it is important

to obtain an estimation of the uncertainty associated with each estimate. This is

usually modeled as a Gaussian distribution characterized by a covariance and a mean

estimate. However, many visual- and lidar-odometry methods such as SuperOdometry

and LOAM are single point estimates and do not provide this covariance information.

For the methods that do provide the uncertainty estimation, the calculation is

typically custom tailored to that method and depends on the environment[28, 36]. For

optimization-based methods, the Fisher information matrix may be used to build an

uncertainty estimation[35]. In LIDAR and Visual odometry, the covariance depends

on the spatial distribution of features and its ability to constrain all the 6 DOFs.

The key idea used in our solution is to abstract away the particularities of each

method and/or sensors and consider only the sequence of estimates generated by it.

Thus, this method may work independently of the sensor type, under a reasonable
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3. IMU-centric Trajectory Uncertainty Estimation

set of assumptions. A possible downside is that we need to accumulate a number of

pose estimates before calculating the uncertainty.

The core insight of the method is to follow the same principle as SuperOdometry

and use an IMU-centric approach. Therefore, we use the inertial data as the arbitrator

to evaluate different trajectories. To accomplish this, we create a continuous-time

trajectory using B-splines from the low-frequency (10Hz or 5Hz) odometric data. We

then differentiate this trajectory at the imu timestamps (200Hz) to obtain acceleration

and angular velocity estimates. Finally, we obtain a covariance measurement using

the sample covariance of the residual between the imu measurements and the values

obtained from the splines.

3.2 Problem Definition

Consider a robot exploring its environment. We define the state of this robot at

time t as the pose X(t) = {R(t), t(t)} ∈ SE(3), containing the 3D position t(t) and

orientation R(t) of its body frame B w.r.t to a world frame W . For convenience, the

body frame is defined to coincide with the IMU frame. An odometry (or front-end)

algorithm produces a sequence of points estimates X̃i = X̃(i∆t) of the true pose in

regular intervals ∆t. An inertial measuerement unit (IMU) uses an accelerometer and

a gyroscope to produce estimates of its linear acceleration ã(t) ∈ R3 and the angular

velocity ω̃ωω(t) ∈ R3 of frame B relative to W. Both quantities are expressed in the

body frame.

A back-end algorithm consumes the estimates X̃i and uses a keyframe process to

select specific estimates as keyposes, which we write as T̃k := keyframe(X̃i, k). Each

keyframe is associated with its time tk. The interval between two consecutives keyposes

is referred to as the keyframe window K := {tk < t < tk+1}. The estimated relative

transformation D̃k connects two consecutive keyposes such that: D̃k = T̃−1
k T̃k+1.

Similarly, the true relative transformation Dk connects the true robot poses at times

tk and tk+1, such that Dk = T−1
k Tk+1. Typically, the back-end algorithm requires an

indication of how D̃k is related to the true value Dk. This relation is referred to as

the noise model. In this work, the noise model used is:

D̃k = Dk ⊕ ξk = Dk Exp(ξk), ξk ∼ N (0,Σk) (3.1)
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Thus, the relative keypose transformation noise ξk ∈ R6 follows a zero-mean

normal distribution with covariance Σk ∈ R6×6. This noise is defined in the tangent

space of Dk and is mapped onto SE(3) via the exponential map.

We can now define our uncertainty estimation problem as the estimation of the

keyframe covariance Σk from the sequence of odometry estimates {X̃i} and IMU

measurements {ã(t)} and {ω̃ωω(t)}, with i∆t, t ∈ K.
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Ground Truth Poses Keyframe Poses

Keyframe Relative 
Transformation

Robot Motion

(a) The robot moves in the environment, and its ground truth trajectory is discretized to
create sequence Xi ∈ SE(3). Some of the poses are selected to be keyposes Ti and originate
keyframes. The keyframe relative transform Di is relevant to the Pose Graph Optimization.

  

 

 

 

 

Ground Truth Poses Odometry Pose Estimates

Keyframe Relative 
Transformation

Robot Motion

 
Odometry 

Covariance

(b) An odometry algorithm produces pose estimates X̃i ∼ N (Xi,ΣXi) that are normally
distributed around the ground truth. An estimate of the keyframe relative transform
D̃i = T̃−1

i T̃i+1 is created from two noisy odometry estimates.

Figure 3.1: Illustration of the Absolute Noise model for odometry estimates.
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Ground Truth Poses Keyframe Pose Estimate

Ground Truth 
Relative Transform

 
Odometry 

Covariance

Keyframe Estimated 
Relative Transformation

Keyframe 
Covariance

(c) The keyframe covariance Σk characterizes the distribution of the keyframe relative
transform error ξ = D̃k ⊖Dk and is the quantity to be determined in the proposed method.

Figure 3.1: Illustration of the Absolute Noise model for odometry estimates.
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3.3 Odometry Absolute Noise Model

For simplicity, we will consider a keyframing processing based on a fixed-time interval.

If our odometry estimates are produced with frequency f = 1/∆t, and our keyframing

selects keyposes every T seconds, then we have:

Tk = XNk, with N =
T

∆t
(3.2)

The number N = T
∆t

defines the keyframe window size. Therefore, a keyframe

window is comprised of odometry estimates {Xm| m ∈ {i, i+ 1, . . . , i+N} }, where
the first and last poses in the window (Xi and Xi+N ) are also keyposes (Tk and Tk+1,

respectively). Fig. 3.1a illustrates this keyframing process.

We propose the following noise model for the odometry results:

X̃i = Xi ⊕ ξXi
, ξXi

∼ N (0,ΣXi
) (3.3)

The noise ξXi
is defined in the tangent space of Xi. This noise model is typically

more appropriate for sensors and/or methods that are able to gauge the absolute

position of the robot directly, such as GPS, or Ultra Wide Band sensors. Pure

odometry algorithms, on the other hand, are better characterized by an relative

noise model, where the error is accrued incrementally. However, we argue that

this model is acceptable for a sensor such as Lidar when the proportion of newly

observed environment in each sensor acquisition is small compared to the previously

observed section. This is common when the robot observes the same room with Lidar

continously, or explores large areas with slower speeds. This noise model is shown in

Fig. 3.1b.

Moreover, we will make the simplifying assumption that the noises ξXi
are constant

throughout a keyframe window. In this case, determining this odometry noise will be

enough to determine the keyframe covariance. Consider a given keyframe defined by
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the start keypose T̃0 and end keypose T̃1, the relative transform is

D̃0 = T̃−1
0 T̃1 (3.4)

= (T0 ⊕ ξ0)
−1(T1 ⊕ ξ1) (3.5)

= Exp(−ξ0)T−1
0 T1 Exp(ξ1) (3.6)

= Exp(−ξ0)D0 Exp(ξ1) (3.7)

= D0 Exp(−Adj−1
D0
ξ0) Exp(ξ1) (3.8)

D̃0 = D0 Exp(τ + Jl(τ)ξ1), with τ = −Adj−1
D0
ξ0 (3.9)

Now, we can determine the covariance of D0.

Cov(D0) = E
[
(τ + Jl(τ)ξ1)(τ + Jl(τ)ξ1)

⊤] (3.10)

≈ E
[
ττ⊤

]
+ E

[
Jlξ1ξ

⊤
1 J

⊤
l

]
(3.11)

≈ Adj−1
D0
Cov(T0)Adj−⊤

D0
+ E

[
Jlξ1ξ

⊤
1 J

⊤
l

]
(3.12)

The above expression allows us to obtain the keyframe uncertainty once we have

obtained the odometry covariances at the start and end poses that define the keyframe,

as shown in Fig. 3.1c. It also agrees with the composition rule proposed in [27], if we

consider the noises affecting the keyposes to be uncorrelated. The next section will

explain how the proposed method estimates these odometry covariances.

3.4 Odometry Covariances

As explained in the previous section, it is assumed that the odometry estimates

X̃i = {R̃i, t̃i} ∈ SE(3) have the following noise model:

X̃i = Xi ⊕ ξXi
, ξXi

∼ N (0,ΣXi
) (3.13)

The proposed method will estimate the odometry covariance as:

ΣXi
=

[
Σti 0

0 ΣRi

]
(3.14)

This is done considering the covariances of the position Σti ∈ R3×3 and orientation

ΣRi
∈ R3×3 parts separately. Note that we have applied the simplifying assumption

that the position and orientation noises are uncorrelated. First, the IMU gyroscope

values are used to determine the rotational uncertainty, and then the accelerometer
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is used for the position uncertainty. Finally, they are merged together to produce the

desired result.

3.4.1 Rotational Covariance

In this section, we will look at the rotational component separately, such that the

relevant odometry model becomes:

R̃i = Ri ⊕ ξRi
; ξRi

∼ N (0,ΣRi
); ξRi

∈ R3,ΣRi
∈ R3×3 (3.15)

The first step is to build a B-Spline from the odometry estimates. This creates

a spline interpolation function that produces an estimate of the orientation and its

derivatives at the same timestamps as the IMU measurements. In this case, the

value that we are interested in interpolating with the B-spline is the angular velocity

expressed in body frame ω̃ωωs(t). The interpolation function f has the following form,

with Ri being the rotational component of odometry pose Xi:

ω̃ωωs(t) = fωωω(Ri, . . . ,Ri+N , t) (3.16)

Remember that B-Spline uses only a subset of the odometry estimates Ri for the

interpolation at any given time. We assume that this estimate of the angular velocity

has the following noise model:

ω̃ωωs = ωωω + ϵϵϵωs , ϵϵϵωs ∼ N(0,Σωs) (3.17)

where ωωω is the true body-frame angular velocity and ϵωs a zero-mean Gaussian noise

with covariance Σωs ∈ R3.

Now, we turn to the IMU gyroscope noise model. The body-frame angular velocity

measurements ω̃ωωIMU(t) are affected by bias bω ∈ R3 and white noise ϵϵϵωIMU
∈ R3.

ω̃ωωIMU(t) = ωωω + bω + ϵϵϵωIMU
, ϵϵϵωIMU

∼ N(0,ΣωωωIMU
), ΣωωωIMU

∈ R3×3 (3.18)

We define a residual rω and obtain its noise model:

rωωω(t) := ω̃ωωs(t)− ω̃ωωIMU(t) + bωωω(t) (3.19)

rωωω(t) = ωωω(t) + ϵϵϵωωωs(t)− (ωωω(t) + bωωω(t) + ϵϵϵωωωIMU
(t)) + bωωω(t) (3.20)

rωωω(t) = ϵϵϵωωωs(t)− ϵϵϵωωωIMU
(t) (3.21)
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Therefore, the covariances of the residual are:

Σrωωω(t) = Σωωωs(t) + ΣωωωIMU
(3.22)

Σωωωs(t) = Σrωωω(t)− ΣωωωIMU
(3.23)

This relation will allow us to later estimate the odometry rotation covariance ΣRi
.

3.4.2 Positional Covariance

Now, we handle the positional covariance. First, consider the interpolation function

that is able to produce linear acceleration measurements in world frame wãs from the

odometry position estimates t̃i.

wãs(t) = fa(t̃i, . . . , t̃i+N , t) (3.24)

We model the noise on the odometry position estimates as:

t̃i = ti + wξt, wξt ∼ N (0,w Σti) (3.25)

We make the simplifying assumption that wΣti is constant inside the keyframe

window. Note that this is different from the position covariance in Eq. 3.14, which is

defined in the local frame. This assumption implies that the position noise distribution

in the world frame is the same. It is is the result of experimental observation that the

environment geometry is determinant in the types of errors that odometry algorithms

makes, specially LIDAR-based ones.

We assume that the spline-based estimate of linear acceleration has the following

noise model:

wãs = wa+ ϵϵϵas , ϵϵϵas ∈ N (0,Σas) (3.26)

where wa is the true world-frame acceleration and Σas ∈ R3×3 is the covariance of the

spline-based estimate. It will also be necessary to estimate the body-to-world rotation

with timestamps that match the IMU data. For this, the B-spline interpolation is

again used:

R̃s(t) = fR(Ri, . . . ,Ri+N , t) (3.27)

The IMU accelerometer noise model is:

BãIMU = R⊤(wa− wg) + ba + ϵaIMU
, ϵaIMU

∼ N (0,ΣaIMU
) (3.28)

where wg ∈ R3 is the gravity vector; ba ∈ R3 is the IMU bias, and ϵaIMU
∈ R3 is a

zero-mean Gaussian noise with covariance ΣaIMU
. Similarly as before, we define a
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residual ra as:

wra = wãs − R̃s(BãIMU − ba)− wg (3.29)

wra = wa+ ϵas − R̃s(R
⊤(wa− wg) + ba + ϵaIMU

− ba)− wg (3.30)

wra = wa+ ϵas − R̃s(R
⊤(wa− wg) + ϵaIMU

)− wg (3.31)

wra ≈ ϵas − R̃sϵaIMU
(3.32)

Therefore, the covariance of the residual is:

wΣra ≈ Σas + R̃sΣaIMU
R̃⊤

s (3.33)

Σas ≈ wΣra + R̃sΣaIMU
R̃⊤

s (3.34)

In this derivation, we considered the approximation R̃sR
⊤ ≈ I and ignored the

extra noise term that arises when the noise model of R̃s is considered.

3.4.3 Recovering Pose Covariances from Spline Derivative

Covariances

In the proposed method, B-Splines are used to provide estimates of orientation, linear

acceleration and angular velocity at the same timestamps as IMU measurements,

from sparse odometry estimates. We want to derive a relationship between the

uncertainty of these splines derivatives and the uncertainty in the odometry estimates.

In order to this, consider the matrix representation of a cubic B-spline when it is

desired to obtain an interpolation at a given time t ∈ [ti, ti+1). The control points

are pi+k with k ∈ {0, 1, 2, 3}. We use an uniform representation for time such that

s(t) = (t− t0)/∆t. After doing this, the control points are transformed into pn with

n ∈ {0, 1, 2, 3}. Then, we define u(t) = s(t)− i as the normalized time elapsed since

the start of the segment [ti, ti+1) and start using u as the time variable. For instance,

if t = ti then u = 0 and as approaches t = ti+1 then u approaches 1. It will be useful

to create a column vector u = [1, u, u2, u3]⊤. Then, the interpolate p(u) becomes:

p(u) = [p0 p1 p2 p3]M
(4)


1

u

u2

u3

 (3.35)
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where M (4) is a 4 × 4 blending matrix with pre-defined entries. Note from this

structure that obtaining a derivative is as easy as differentiating vector u, such that

u̇ = [0, 1, 2u, 3u2]⊤ and ü = [0, 0, 2, 6u]⊤ and replacing it appropriately in the equation

above. Now, we can combine the two matrices on the right to obtain:

p(u) = [p0 p1 p2 p3]c(u) (3.36)

p(u) =
∑
n

cn(u)pn (3.37)

Consider that the control points are actually estimates with the identical noise

model such that p̃n ∼ N (pn,Σp). Then, we can obtain the covariance of the

interpolate at time u:

Cov(p̃(u)) =
∑
n

c2n(u)Σp (3.38)

= Σp

∑
n

c2n(u) (3.39)

This shows that the covariance of the interpolate will change in the interval

u ∈ [0, 1). We obtain the average covariance Cov(p̃) in that interval by:

Cov(p̃) =

∫ 1

0

Σp

∑
n

c2n(u)du (3.40)

= Σp

∫ 1

0

∑
n

c2n(u)du (3.41)

= ΣpC (3.42)

where C is the resulting constant from the integral. Note that if the interpolate is

a derivative of the control points (such as velocity or acceleration), then the only

difference is that we would replace functions cn(u) with their derivatives. But the

final result of the integral will still be a single constant. Now, we examine the concrete

cases where the interpolated values of interest are the angular velocities ωs(t) and

the linear acceleration as(t).

First, consider the spline-based interpolation of the angular velocity, as presented

in Eq. 3.16. In this case p := ωωωs. Consider that there are M angular velocity

measurements in the keyframe window. In the following derivation, we omit the index

i, applying the assumption that the body-frame rotational covariance is constant
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inside the keyframe window (ΣRi
≡ ΣR). Thus, we can write:

ΣpC = Cov(p̃) (3.43)

ΣRCR = Cov(ω̃ωωs) (3.44)

≈ 1

M

∑
t

Σωωωs(t) (3.45)

≈ 1

M

∑
t

(Σrωωω(t)− ΣωωωIMU
) (3.46)

≈ 1

M

∑
t

(
rωωω(t)rωωω(t)

⊤ − ΣωωωIMU

)
(3.47)

ΣR ≈ 1

CRM

∑
t

(
rωωω(t)rωωω(t)

⊤ − ΣωωωIMU

)
(3.48)

For the case of linear acceleration, we now consider that the world-frame positional

covariance is constant inside the keyframe window, such that wΣti ≡ wΣt:

ΣpC = Cov(p̃) (3.49)

wΣtCt = Cov(ãs) (3.50)

≈ 1

M

∑
t

Σas(t) (3.51)

≈ 1

M

∑
t

(
wΣra + R̃s(t)ΣaIMU

R̃s(t)
⊤
)

(3.52)

≈ 1

M

∑
t

(
wra(t)wra(t)

⊤ + R̃s(t)ΣaIMU
R̃s(t)

⊤
)

(3.53)

wΣt ≈
1

CtM

∑
t

(
wra(t) wra(t)

⊤ + R̃s(t)ΣaIMU
R̃s(t)

⊤
)

(3.54)
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3.4.4 Transformation to Body-Frame and Covariance

Composition

The final part of our method assures we are expressing the uncertainty correctly as

in the format shown in Eq. 3.3 and Eq. 3.14:

X̃ = X⊕ ξX (3.55)[
R̃ t̃

0 1

]
=

[
R t

0 1

]
Exp(ξX) (3.56)[

R̃ t̃

0 1

]
=

[
R Exp(ξR) t+RV(ξR)ξt

0 1

]
(3.57)

It is possible to recognize that the noise model as shown in Eq. 3.57 is exactly the

same as described in Eq. 3.15. Therefore, the previously obtained ΣR is already in

the format it needs to be.

For the translational part, note that its noise model was previously defined as

t̃ = t + wξt. Comparing this with Eq. 3.57, then wξt = RV(ξR)ξt. From this, it is

possible to calculate the body-frame covariance Σt which results in:

Σt = R⊤
wΣtR (3.58)

Defining the error in the world frame is equivalent to considering left-⊕ operation.

The Adjoint can then be used to move it to the right-side such that: X̃ = ξX ⊕X =

X⊕ (Adj−1
X ξX). And this produces the same result as Eq. 3.58.

Therefore, the covariance for any odometry estimate in the keyframe window may

be written as:

ΣXi
=

[
ΣRi

0

0 R⊤
i wΣtRi

]
(3.59)

Then, the keyframe covariance is given by Eq. 3.12, with the starting keyframe

pose T̃0 = X̃i and the endpoint one T̃1 = X̃i+N . With an abuse of notation, let’s

denote D̃0 = T̃−1
0 T̃1 ≡ {R01, t01} and AdjD0

=

[
R01 [t01]×R01

0 R01

]
.
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Cov(D0) ≈ AdjD0
Cov(T0)Adj⊤D0

+ E
[
Jlξ1ξ

⊤
1 J

⊤
l

]
(3.60)

ΣD0 ≈ AdjD0

[
ΣR 0

0 R⊤
0 wΣtR0

]
Adj⊤D0

+ E
[
Jlξ1ξ

⊤
1 J

⊤
l

]
(3.61)

≈ AdjD0

[
ΣR 0

0 R⊤
0 wΣtR0

]
Adj⊤D0

+ ΣT1 (3.62)

≈ AdjD0

[
ΣR 0

0 R⊤
0 wΣtR0

]
Adj⊤D0

+

[
ΣR 0

0 R⊤
1 wΣtR1

]
(3.63)

This completes the proposed method, that calculates the keyframe covariance ΣD0

using the IMU gyroscope and linear acceleration measurements and the odometry

estimates in the keyframe window.
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SuperLoop

SuperOdometry

LIDAR

IMU

SuperLoop

Keyframe 
Selection 

Uncertainty 
Estimation

PGO

Loop Closure 
Detection

Undistorted Scans

Odometry Estimates

Quality Index

Odometry Constraints

Loop Closing Constraints

Loop Closed 
Trajectory

Keyframes

Figure 4.1: Flowchart of SuperLoop components. SuperOdometry takes in the sensor
data and produces odometry estimates, quality metric and undistorted pointclouds.
These are consumed by SuperLoop, which generates a loop closed trajectory.

A complete modern SLAM system is typically comprised of two components:

the front and the back-end. The former is responsible for interpreting the sensor

data and extracting useful estimation constraints. The latter uses these constraints

to produce the final trajectory and/or map of the environment[6]. The back-end

typically is able to refine its own estimates as it receives more constraints (such as

in a loop-closure), whilst the front-end will likely process each data point only once,

providing an initialization point for the back-end.

The aim of this work is to design a SLAM back-end that works in tandem with

SuperOdometry as the front-end. This back-end will use a PoseSLAM formulation
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[15]. It means the algorithm will only optimize the robot poses. Therefore, no

landmark information (lidar or visual) is passed over from SuperOdometry to the

back-end. This design choice is done to maintain the principle of abstracting away

the exteroceptive data type and using only an IMU sensor to evaluate the information

quality. The proposed back-end algorithm has been named SuperLoop.

In the DARPA Subterranean Challenge, Team Explorer SLAM subsystem used

SuperOdometry as a front-end and a LOAM-based back-end. That back-end was also

formulated as a PoseSLAM. The main contributions of SuperLoop when compared to

that algorithm are:

• Use of uncertainty estimation to determine the covariance matrix used in the

PoseSLAM factor-graph.

• Ability to perform lidar-based place recognition, via a modified ScanContext

algorithm.

• Ability to detect an odometry failure and recovery mechanism.

4.1 Overview

SuperLoop is an extension of SC-LiDAR-SLAM[21], a front-end agnostic LIDAR

SLAM system that uses the ScanContext++ algorithm[20] as the main place recogni-

tion mechanism. The components of SuperLoop, as shown in Fig. 4.1, are:

1. Keyframe Selection and Uncertainty Estimation.

2. Pose Graph Construction and Optimization (PGO).

3. Loop Closure Detection.

4. Failure Detection.

SuperOdometry provides the following information as input to SuperLoop: a)

undistorted LIDAR Scans at 5 Hz, b) pose estimates for each LIDAR scan. c)

Geometric degeneracy quality metric for the pose estimates. Additionally, the IMU

measurements at 200 Hz are also fed to SuperLoop, since they play an important

part in the Uncertainty Estimation.

The main output of SuperLoop is a loop-closed trajectory composed of keyframes,

from which a loop-closed pointcloud can be built. A finer trajectory may also be
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obtained via interpolation from the 5 Hz odometry estimates.

4.2 KeyFrame Selection and Uncertainty

Estimation

At this stage, the 5Hz outputs from SuperOdometry are processed with the goal of

obtaining keyframes, coarser representations of the data. As explained in Section 3.2

SO provides an odometry estimate X̃i = X̃(t = 0.2i) ∈ SE(3) with a 5Hz frequency.

This result is obtained by registering a raw LIDAR scan P̂i with an internally

accumulated map. This raw pointcloud is first undistorted using SO motion prediction

mechanism, generating an undistorted estimate of the raw pointcloud P̃i. Finally, SO

extracts line and surface features from P̃i, and performs a non-linear optimization

to align it to the accumulated map. It is common practice to output the registered

LIDAR scan also. This is not of interest for SuperLoop, however. SuperLoop instead

will use the undistorted pointclouds, since they have been motion corrected. Then, it

will refine the registration result obtained by SuperOdometry, replacing it with more

up-to-date estimates.

The final piece of information that SO relays to SuperLoop is a quality metric

mi ∈ R6. This is a six dimensional vector where each entry is the quality index

of a given dimension in SE(3). To obtain this index, SO counts the number of

geometric features that contribute to the estimation of each dimension, according

to its own methodology. Then, the quality index is the ratio between the counts for

each dimension and the maximum count between them. Therefore, the index ranges

between 0 and 1.

The keyframing process consists of selecting a subset of the incoming SO data,

turning them into keyframes. The actual process in the current implementation of

SuperLoop has two criteria: a new keyframe is selected either after the robot moves

2 meters or 10 seconds have passed since the last one. The latter criteria is used to

avoid buffering issues in the uncertainty estimation method. This is an area that can

be improved in future versions, specially to utilize the uncertainty information itself

to select a new keyframe.

Let us denote the odometry, pointcloud and quality index estimate selected
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by the keyframing process as X∗
i , P̃

∗
i , m∗

i . Then we obtain the new keyframe

Fk+1 = {T̃k+1 = X̃∗
i , Sk+1 = P̃ ∗

i ,qk+1 = m∗
i , tk+1 = 0.2i}. Once the new keyframe is

obtained, the uncertainty estimator algorithm will process the sequence of odometry

estimates and imu measurements produced since the last keyframe and obtain an

covariance Σk ≡ ΣDk
, corresponding to the uncertainty associated with the relative

pose D̃k = T̃−1
k T̃k+1, also referred to as the keyframe relative pose measurement. The

keyframe sequence {Fk} with k ∈ {0, . . . , K} is stored by SuperLoop for its entire

execution, including the pointclouds, as they are important for loop closure detections

(see Section 4.4).

4.3 Pose Graph Construction

SuperLoop formulates the SLAM problem as a maximum a posteriori (MAP) estima-

tion problem, and solves it via the formalism of pose graphs, a specialization of factor

graphs. The unknown variable X estimated is the trajectory of the robot, defined

here as the keypose sequence, such that X = {T0, . . . ,Tm}. The set of measurements

is Z = {U,Q}. where U contains relative poses estimates from SuperOdometry, and

Q contains loop closure constraints added by SuperLoop itself. Therefore, the MAP

problem solved by SuperLoop is to determine X ∗ such that:

X∗ = argmax
X

p(X|Z) (4.1)

X∗ = argmax
X

p(Z|X)p(X)

p(X)
(4.2)

X∗ = argmax
X

p(Z|X)p(X) (4.3)

X∗ = argmax
X

p(U |X)p(Q|X)p(X) (4.4)

X∗ = argmax
X

p(X)
K−1∏
k=0

p(uk|X)
L−1∏
l=0

p(ql|X) (4.5)

This derivation used the assumption that measurements are independent. The

measurement uk are in fact the keyframe relative pose measurement D̃k and its

likelihood is given by:

p(uk|X) ∝ exp(−1

2
∥D̃k ⊖T−1

k Tk+1∥2Σk
) (4.6)
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Note that the term T−1
k Tk+1 uses the true state of the robot, and not the estimates

produced by SuperOdometry. When solving this problem, value D̃k is a constant

input and the state variables are the optimized outputs. Also note that this is where

the covariance Σk estimated by the proposed method is used.

The measurements ql are similar, except they relate non-consecutive pose variables.

The next section explains how they are obtained. Also, since they are more likely to

have outliers, a robust Cauchy loss function[39] is used. In this case the likelihood

function is modified to use the weight wl:

p(ql|X) ∝ exp
(
−wl

2
∥Ql ⊖T−1

l Tc∥2Σloop

)
(4.7)

The weight is calculated as in [23]. With these likelihood equations, Eq. 4.5 can

be further factorized. Note that the argmax function only cares about maximum

values, thus the probabilities can be replaced by the negative log likelihood.

X ∗ = argmax
X

p(X)
K−1∏
k=0

p(uk|X)
L−1∏
l=0

p(ql|X) (4.8)

X ∗ = argmin
X

− log(p(X)
K−1∏
k=0

p(uk|X)
L−1∏
l=0

p(ql|X)) (4.9)

X ∗ = argmin
X

K−1∑
k=0

∥D̃k ⊖T−1
k Tk+1∥2Σk

+
L−1∑
l=0

wl∥Ql ⊖T−1
l Tc∥2Σloop

(4.10)

This is a nonlinear least squares problem, due to the nature of pose compositions

in SE(3). The structure of this problem is sparse, since there are K state variables,

and each one connects, i.e. appears in equations together, to few others. In fact, for

index k, odometry connections are made with k− 1 and k+1 and possible additional

connections are made via loop closures, but these are usually an order of magnitude

less than the number of state variables. This sparse structure lends itself to solution

via factor graphs [15]. SuperLoop uses GTSAM [14] as its factor graph solver.

4.4 Loop Closures

An important part of any complete SLAM system is loop closure detection. It helps

the robot understand the topology of its environment. Loop Closures are a form

of long term data association. It creates a constraint between non-consecutive pose
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variables in the factor graph. SuperLoop creates this constraint in two ways: a)

Radius search and b) via ScanContext descriptors.

4.4.1 Radius Search Detection

Consider the most recent keyframe Fk = {T̃k, Sk,qk, tk}. Radius search detection

works by looking at the list of previous keyframes and finding the set R of keyframe

poses such that the Euclidian distance between their positions and the most recent

one is less than a threshold (20 meters in this method). The time elapsed between

must also exceed 30 seconds. This is to avoid creating excessive loop closures.

Mathematically, R = {Fi | ∥t̃k − t̃i∥ < 20 ∩ tk − ti > 30}. Then, it chooses the

oldest element of this set as a loop closure candidate. This creates a larger loop with

the goal of correcting the error among more pose variables.

4.4.2 Scan Context Detection

Before detecting loop closures with ScanContext (SC), there is a descriptor creation

step. Every time a new keyframe Fk is created, its point cloud Sk is passed onto

the SC place descriptor [20]. It works by partitioning the LIDAR scan into sections

using polar coordinates. Given a LIDAR point s = [x, y, z]⊤, its polar coordinates

are: radius ρ =
√
x2 + y2 and azimuth θ = atan(x, y). Then, bins are created by

selecting a number of rings (partitions along the radius) and sectors (partitions along

the azimuth). In this project, there are 20 rings and 60 sectors, making a total of 1200

partitions. The maximum radius considered is 40 meter. Therefore, the partitions

sizes is 2 meter × 6 degrees. In the original ScanContext formulation, the maximum

z-value of all points in each partition is taken as its representative value. Instead,

the proposed method caps the maximum height allowed at 2 meters. This is done

to avoid the effect of the ceiling in underground environments, which decreases the

descriminating power of the descriptor. This process builds an array of size 1200,

which is the SC descriptor. It is added to the SC database for future comparisons

and retrieval.

Afterwards, the actual loop closure detection occurs. This step is only allowed to

happen if no candidates were generated by the radius search. First, the quality index

qk is evaluated. If the minimum value qmin = min(qk) is smaller than 0.5, then no
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loop closure is allowed to happen. This is important to avoid loops to be detected

in geometrically degenerate environments, such as long featureless corridors. These

are very common in subterranean man-made environments scenarios. Next, if the

quality index is deemed good enough, the ScanContext algorithm will produce a loop

closure candidate index c by comparing the current descriptor against the ones in the

database. It will also provide an yaw offset estimate.

4.4.3 Validation and Optimization

If the detection steps generate a candidate, then it is necessary to either estimate

the relative transform Q̃k between current frame Fk and the candidate Fc or reject

this loop. Two sets of pointclouds are used to estimate the transform. The first S̄k

comes from stacking the pointclouds of the 3 latest keyframes Sk, Sk−2 and Sk−1.

The second pointcloud S̄c comes from stacking the pointclouds of up to 2 neighboring

keyframes on each side of Fc, such that S̄c = Sc−2 ∩ Sc−1 ∩ Sc ∩ Sc+1 ∩ Sc+2.

Then, the FastGICP[22] algorithm is used to estimate Q̃k between S̄k and S̄c. Two

tests are applied to validate the result and accept the k → c loop: if the FastGICP

optimization has converged and if the fitness score is lower than a threshold of 0.3m.

The fitness score is the average distance of inlier nearest neighbors between the

registered pointclouds.

An additional check is performed when the loop candidate is generated by the

ScanContext algorithm. It uses the marginal translational covariance Σtk of current

frame k as estimated by GTSAM. Then, it calculates the Mahalanobis distance

d =
√
(tk − tc)⊤Σ

−1
tk
(tk − tc). If d > 3, the loop candidate is rejected.

If the loop candidate is accepted, then a new factor is added to the factor

graph between state variables T̃k and T̃c using the relative transform Q̃k and a

robust noise model with the Cauchy M-estimator and a pre-defined covariance

Σloop = diag(0.01, 0.01, 0.01, 0.01, 0.01, 0.01). Finally, GTSAM optimizes the updated

factor graph and new estimates for the sequence {T̃i} are obtained.
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4.5 Odometry Failure Handling

SuperLoop proposes a mechanism to handle LIDAR odometry failures. It starts when

the uncertainty estimation algorithm signals a failure. In this case, the keyframe

relative pose measurement D̃k is disregarded. A replacement measurement is generated

by FastGICP considering only Sk and Sk+1. Note that no cloud stacking occurs here.

The covariance estimate Σk is kept. However, the Cauchy M-estimator is used to

create the new factor in the graph. This allows the GTSAM optimizer to assign a

larger correction to this transform in the future, when it has more information.
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Datasets

This section introduces the datasets used in our experiments. The focus here is

on datasets that contain pose estimates and IMU data. These are our uncertainty

estimation inputs. We also try to use datasets that contain ground-truth trajectories

derived from motion capture devices whenever possible. For long-term operations,

the dataset is captured in a representative disaster scenario that we have previously

mapped multiple times with LIDAR sensors and obtained control points with Total

Stations. In this case, the map itself serves the function of ground-truth.

5.1 EUROC Dataset

The EUROC dataset [5] was generated by ETH-Zurich and contains visual and

inertial measurements collected from micro aerial vehicles (MAV). Ground Truth is

also obtained for the trajectories using a VICON motion capture system. The data is

post-processed to achieve temporal alignment. It also provides accurate ground-truth

for the structures, but that is not used in this work. The specific dataset used is the

VICON Room 1-01, shown in Fig. 5.1.
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Figure 5.1: Trajectory and structure ground-truth from the VICON Room 1-01
sequence from the Euroc dataset. Trajectory color indicates time.

5.2 Lidar-Visual-Inertial Dataset with Motion

Capture Ground-Truth

For this dataset, we mounted our lidar-visual-inertial payload on a Boston Dynamics’

Spot robot and used an OptiTrack motion capture environment to obtain ground-

truth data, as seen in Fig. 5.2a. Then, we were able to generate 5 runs in this setting.

The sensor data allows us to run an odometry algorithm and generate an estimated

trajectory. Indeed, we used SuperOdometry while capturing the data to generate

an online pointcloud reconstruction and trajectory estimation. An example of the

pointcloud obtained is shown in Fig. 5.2b. Figure 5.3 shows the trajectories generated

from the ground truth motion capture system and the online odometry estimation

from SuperOdometry.
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(a) Boston Dynamics Spot used in OptiTrack motion capture environment to generate a
dataset with ground-truth data.

(b) Pointcloud reconstruction of the motion capture environment, with the robot trajectory
colorized by time.

Figure 5.2: Lidar-Visual-Inertial Dataset obtained in a OptiTrack motion capture
arena from a payload mounted on a Boston Dynamics’ Spot robot dog.
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(a) Run 1 (b) Run 2

(c) Run 3 (d) Run 4

(e) Run 5

Figure 5.3: XY trajectories for the motion capture datasets.
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5.3 Abandoned Hospital Lidar-Visual-Inertial

Datasets

These datasets were obtained by mounting LIDAR-inertial payloads on ground robots

and driving them around an abandoned hospital in Pittsburgh, PA. Two of these

robots (R1 and R3) were used in the Subterranean Challenge [7]. Another robot used

a radio-controller car-like platform. These datasets do not contain ground truth, but

they are more representative of actual applications of the complete SLAM system.

The topology of the area is characterized by long and featureless corridors that do not

intersect often. This implicates that the front-end algorithm may drift by a significant

amount before having the chance to close the loop. Perceptual aliasing is another

important component of the dataset, since the corridors and rooms of the hospital

are very similar to one another, specially after it has been emptied.

5.3.1 R1 Loop Around

This dataset was acquired with the R1 robot platform, used in the Subterranean

Challenge. We generate an initial map using SuperOdometry. This is shown in

Fig. 5.4. The robot starts in a relatively large room, simulating the Challenge staging

area. It then traverses the whole hospital complex in a loop, returning to the same

room through another door. The odometry drift is relatively small, considering the

traversed distance, but still significant for the purposes of the Challenge.

5.3.2 R3 Loop Around

This dataset was acquired with the R3 robot platform. It notable for the much larger

drift it incurs, compared to the other platforms used by Team Explorer. In fact,

R3 drift in the final Subterranean Challenge was responsible for most of the map

deviation of the team. Fig. 5.5 shows the map generated by SuperOdometry for this

dataset.
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Figure 5.4: R1 pointcloud map created by the front-end odometry algorithm. Col-
orized by acquisition time (blue to red). Notice the drift at the map endpoints.

5.3.3 Indoor-Outdoor with Failure

This dataset was acquired with an RC car platform. It was teleoperated so that its

motion did not depend on having a good position estimate. The trajectory was such

that it purposefully goes through an outdoor area with few geometrical landmarks.

This causes a singular failure in the odometry algorithm, thus creating at least two

separate sections of the map that do not agree with each other. This dataset is used

to evaluate if our algorithm can correctly detect the estimation failure and use that

information to create a coherent map via loop closing. Fig. 5.6 shows the result of

the odometry algorithm after processing the sensor data.
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Figure 5.5: R3 pointcloud map created by the front-end odometry algorithm. Col-
orized by acquisition time (blue to red). Notice both the odometry drift and the map
bending effect on the corridors.
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Figure 5.6: Indoor-Outdoor With Failure dataset. Pointcloud is colorized by point
acquisition time. Robot trajectory is shown in white. Notice the section where the
trajectory becomes discontinuous, which leads to drift and failure in mapping.
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Chapter 6

Results

6.1 Uncertainty Estimation Using Simulated Data

This experiment aims to validate the proposed method by generating a synthetic

pose estimation that follows our noise models. The EuRoC dataset provides just

the ground-truth pose and imu sequences for this experiment. First, we subsample

the ground-truth poses in regular intervals of 0.1 seconds, obtaining a simulated

odometry sequence Xi ∈ SE(3). Then, for each sampled pose, we perturb it with a

noise vector ξXi
= [ρ⊤ θ⊤]⊤ ∈ R6. This noise vector is sampled from a multivariate

normal distribution with mean µ = 0 and a covariance Σi = F (t = 0.1i), where F is

constructed manually, as we will see. Therefore, we have ξi ∼ N (0, F (0.1i)). The

synthetic pose estimate X̃i is then obtained by:

X̃i = Xi ⊕ ξXi
(6.1)

X̃i = Xi exp

([
[θi]× ρi

0 0

])
(6.2)

The distribution of the noise is set by adjusting the covariance through the function

F (t). This function generates a diagonal covariance matrix. The elements of the

diagonal are σ2
n(t), with n ∈ {0, . . . , 5}. The formula used to obtain these variances

is:

σn(t) = K(n)

[
1 + sin

(
t+ 100n

50

)]
(6.3)
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(a) Scattered points indicate simulated
noisy odometry. Smooth line is ground
truth trajectory. Color indicates time
progression from blue to red.

(b) Keyposes (yellow) selected from the
noisy pose estimates (red), using a 3 sec-
ond interval. Ground truth trajectory
(green) shown for reference.

(c) Ground truth keyposes (green dots)
compared to estimated keyposes (red).
Ground truth trajectory (green line)
shown for reference.

Figure 6.1: Trajectories generated from the EuRoC dataset.

where K(n) is a scalar used to set the magnitude of the sine wave for each dimension

independently. The 100n term inside the sine ensures that each dimension achieves its

peak separately from the others, so we can better observe the uncertainty estimation

properties of our method. Fig. 6.1a shows the synthetic trajectory obtained for

K(n) = 0.1.

The next step in the trajectory pre-processing is the keyframe extraction. From

the estimated trajectory, we select one keyframe after every 3 seconds, generating a

sequence of poses T̃k ∈ SE(3). This is shown in Fig. 6.1b. Then, for each keyframe

pair, we obtain the relative transformation D̃k = T̃−1
k T̃k+1. Similarly, we obtain

a sequence of ground-truth poses Tk. We use interpolation on the ground truth
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trajectory such that the timestamp of Tk is the same as that of T̃k. Again, we

obtain the ground-truth relative transformation Dk = T−1
k Tk+1. These two sequences

generated by the keyframe extraction can be seen in Fig. 6.1c.

Now, we calculate the relative keypose tranformation error of the estimation

algorithm by comparing D̃k and Dk such that

ξk = D̃k ⊖Dk = Log(D−1
k D̃k) ∈ R6 (6.4)

The main goal of our proposed method is to estimate a covariance matrix Σk that

represents the distribution of ξk, such that xik ∼ N (0,Σk). Knowledge about its

distribution can be used to solve a pose-graph created from the keyposes. However,

our method also internally estimates the distribution of the local odometry noise ξXi
,

which is the estimation error at any given time instant, when compared to the ground

truth pose.

We visualize well how our algorithm estimates both of these quantities, by plotting

the estimated errors against the estimated standard deviations. In practice, we plot

3 times the standard deviation of each dimension, which should contain the error

99.7% of the time. Figure 6.2 shows the result of the local noise ϵϵϵ. From this graph,

we can see the shape of the function F (t) that defines the covariance of the noise.

Our estimates of the covariance match reasonably with the real uncertainty most of

the time.

In Figure 6.3a we observe the uncertainty estimate final result: the covariance of

the relative transform. We compare it with the relative transform estimation error.

The goal here is that our estimate can provide a tight bound on the possible range of

error values, such that we can feed this onto a pose graph solver and it can adequately

distribute the error along the trajectory. Here, we see that the 3 standard deviations

bound encompasses all the errors observed, while not by a large margin. In effect, if

we estimated a really large covariance, the errors would almost be guaranteed to be

inside it, but the result would not actually be useful.

Given the zero-mean error ξk and its true covariance Σk, the Mahalanobis distance

can be calculated as d =
√
ξ⊤k Σ

−1
k ξk. In this case, d2 will follow a 6 DOF Chi-Squared

distribution. Therefore, one way of evaluating the quality of our covariance estimation

is to calculate this distance for every relative transform error-covariance pair in the

trajectory, and visualize how well does it track the theoretical distribution. This
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Figure 6.2: Estimation of the local noise ξXi
. The noise injected artificially into the

pose estimates is shown in red. The covariance function F (t) noise is shown in green
as the 3-standard-deviation level. The estimates of the uncertainty made by the
proposed method are shown in yellow.
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comparison is shown in Fig. 6.3b. It can be seen that it mostly tracks the desired

curve, except for two details: the peak at around a Mahalanobis distance of 6.5 and

the existence of outliers above 20. This could be an indication that the model used is

insufficient in specific parts of the trajectory.
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(a) Estimation of the covariance of the relative position error ξk. The
error (blue) is obtained by comparing the true relative transform and
its estimate. Notice that the sine wave we insert in the local pose is not
directly observable here, since the relative transform composes two noisy
estimates.

(b) Histogram of the Mahalanobis distances of the relative transformation
errors, using our estimated covariances. Ideally, it approaches a Chi-
Squared distribution with 6 DOF, also shown for comparison.

Figure 6.3: Covariance Estimation results from the simulated EuRoC data
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6.2 Uncertainty Estimation Using Motion

Capture Ground Truth

The goal of this experiment is to analyse if the proposed method produces acceptable

predictions on the expected size of the error made by the estimation algorithm. In

order to accomplish this, the data generated at the motion capture arena is used.

For each of these datasets, the inputs used are a) the 200Hz imu sensor data; b) the

5 Hz estimated laser odometry results and c) the ground truth position. Fig. 6.4

shows the 3 standard deviation bounds estimated by our proposed methods and the

actual error ξk incurred for each dimension. Ideally, this graph would show 99.7% the

errors inside the bounds. Fig. 6.5 shows the same bounds around the true relative

translational motion of Dk. This allows us to compare the scale of the variance, the

error and the motion pattern of the robot.

Again, we calculate the Mahalanobis distances d2 = ξ⊤k Σ̃
−1
k ξk of the relative

keypose tranformation error for each keyframe k in each run. We create histograms of

the values of d2 and compare it to the graph of the 6 DOF Chi-squared distribution.

The results are shown in Fig. 6.6.
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(a) Run 1 (b) Run 2

(c) Run 3 (d) Run 4

(e) Run 5

Figure 6.4: Uncertainty Estimation Results from motion capture datasets.
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(a) Run 1 (b) Run 2

(c) Run 3 (d) Run 4

(e) Run 5

Figure 6.5: Estimated error bounds around the relative motion.
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(a) Run 1 (b) Run 2

(c) Run 3 (d) Run 4

(e) Run 5

Figure 6.6: Comparison of histogram of Mahalanobis Distance and 6 degrees-of-
freedom Chi-squared distribution for each motion capture run.
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6.3 SuperLoop Results

6.3.1 R1 Loop

In this experiment, we perform an ablation study to evaluate the impact of using the

proposed uncertainty estimation (UE) algorithm versus using a constant diagonal

covariance matrix in the odometry constraints in SuperLoop’s pose graph. The

constant covariance matrices are built such that Σk = diag([σ2, σ2, σ2, σ2, σ2, σ2]).

The values chosen for σ2 are: 10−2, 10−3, 10−4 and 10−5. Fig. 6.7 shows the resulting

maps. In all cases, the map generated using the uncertainty estimation method is

shown in blue. Fig. 6.7a shows the maps generated by the first two covariances values

(10−2, 10−3) alongside our method. From this figure, it can be observed that these

values are actually too large. This causes the algorithm to be more permissive with

its loop closure possibilities and a false positive loop is created, distorting the entire

map.

Fig. 6.7b shows the comparison against a constant covariance of 10−4. The results

are nearly identical, although there are some discrepancies in the bottom left section.

Finally, Fig. 6.7c compares our method against a constant covariance of 10−5. This

result shows that this is an underestimation of the covariance, and that when the

loop closure does occur at the end, the factor graph does not distribute the error

correctly, since it believes the odometry to be more correct than it actually is. This

causes the initial area to be duplicated and a clearly wrong result is generated also.

Additionally, the loop-closed maps are compared with a ground truth map. For

this purpose, the deviation metric is used, as popularized by DARPA during the

Subterranean Challenge. The deviation metric considers two pointclouds: a test and a

reference one. The deviation is the number of points in the test cloud whose distance

to any point in the reference cloud is less than a threshold, divided by the total

number of points in the test cloud. Therefore, the deviation metric is a percentage of

inliers points in the test cloud. The ground truth maps only encompass the main

corridor loop that connects the hospital buildings and therefore does not contain other

areas that the robots visited. Because of this, we use the ground truth cloud as test

cloud and the clouds produced by each version of the algorithm as references. The

loop-closed maps are trimmed to contain only the main corridor also. The threshold
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used is 20cm.

The results are summarized in Table 6.1, and the pointcloud comparison is shown

in Fig. 6.8. First, note that there is a section of the loop that is not covered in this

experiment by R1. Therefore, it is expected that we get a relatively high deviation as

the baseline. Next, we observe that the best performing version of the algorithm is the

one with constant diagonal covariance with σ2 = 0.0001. The version of SuperLoop

using the proposed UE method is the second-best. These results shows that the

our UE method is capable of reasonably assessing the correct covariance levels of

this dataset. In controlled scenarios, the SLAM engineer can post-process the data

with different covariance values until a reasonable result is achieved. However, in a

real life search-and-rescue scenario, this cannot be done, and a dynamic method for

estimating the uncertainty can increase the SLAM solution robustness.

(a) (Blue): Ours
(Red): σ2 = 0.01

(Orange): σ2 = 0.001

(b) (Blue): Ours
(Yellow): σ2 = 0.0001

(c) (Blue): Ours
(Brown): σ2 = 0.00001

Figure 6.7: Comparison of loop closing results using the proposed uncertainty estima-
tion method versus used a constant diagonal covariance matrix.
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Covariance Type Deviation (%)

Our 19.38
σ2 = 0.01 98.52
σ2 = 0.001 90.53
σ2 = 0.0001 12.93
σ2 = 0.00001 26.85

Table 6.1: Deviation metric comparison for the R1 Loop dataset. Deviation is
calculated as the percentage of points in the test pointcloud that are farther than 0.2
meters from any point in the reference cloud.

(a) Our method (b) σ2 = 0.01 (c) σ2 = 0.001

(d) σ2 = 0.0001 (e) σ2 = 0.00001

Figure 6.8: Deviation Metric Visualization: red points indicate outliers, and yellow
points indicate indicate inliers. The reference cloud is shown in white, containing
the loop-closed map generated by the algorithms. It is only noticeable in some cases
where the map makes large mistakes.

6.3.2 R3 Loop

The same experiment described in the previous section is repeated for the R3 loop

dataset. The most noticeable difference between the datasets is that the R3 robot

had the largest drift rate of all the platforms used by Team Explorer. So, this

experiment aims to evaluate if the proposed uncertainty estimation method can detect

this different behavior correctly.
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Fig. 6.9 shows the results obtained. The map in blue is generated by the proposed

method. Then, we compare it with the same algorithm but using a constant diagonal

matrix with variances σ2 valued 10−2, 10−3, 10−4 and 10−5. Fig. 6.9a shows the

comparison with a σ2 = 10−5. In this case, the algorithm becomes overconfident and

rejects possible loop-closures, basically maintaining the initial odometry result.

In Fig. 6.9b the results of the comparison with σ2 = 10−3 and σ2 = 10−4 are shown.

In this case, both values are capable of generating a loop closure at the end of the

trajectory. There are minor differences in the result shown in the detail of Fig. 6.9c.

Lastly, the result of using σ2 = 10−2 is not shown because the large covariance caused

an erroneous loop-closure to be accepted which ended up completely distorting the

final map. The deviation metric comparison in shown in Table 6.2. In this experiment,

the proposed method was the best performing one. Notice from the other results that

the best result for constant covariance is 10−3, which is a different behavior than the

R1 test. Even in this case, the algorithm is able to estimate the covariance correctly.

The deviation itself can be viewed in Fig. 6.10

Covariance Type Deviation (%)

Our 13.14
σ2 = 0.001 25.14
σ2 = 0.0001 27.63
σ2 = 0.00001 83.13

Table 6.2: Deviation metric comparison for the R3 Loop dataset. Deviation is
calculated as the percentage of points in the test pointcloud that are farther than 0.2
meters from any point in the reference cloud.

6.3.3 Failure Detection

This experiments evaluates the capability of the proposed method for odometry failure

detection. The dataset presented in Sec. 5.3.3 is used. In this dataset, there is a clear

single-point failure when the RC car visits the outdoor area and turns rapidly. This

causes a large drift error in the mapping result, which is most visible in the mismatch

of the large room observed by the robot at the start and end of its trajectory.

Fig. 6.11 shows the result of an ablation test of the failure detection mechanism.

The original pointcloud produced by the odometry method is shown in red. This
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(a) (Blue): Ours
(Brown): σ2 = 0.00001

(b) (Blue): Ours
(Orange): σ2 = 0.001
(Yellow): σ2 = 0.0001

(c) Detail showing the mapping differences for each
uncertainty level.

Figure 6.9: Comparison of loop closing results using the proposed uncertainty estima-
tion method versus used a constant diagonal covariance matrix for R3 loop around
the hospital complex.

result is used as an input to the proposed loop closure method. The yellow result is

produced by disabling the failure detection feature, while the green result does use

this feature. It can be observed that the green result produces the best result, as it

retains continuity in the trajectory and properly closes the loop at the end points.

Fig. 6.12 gives some insight into how the algorithm works. The failure detection

works on each edge of the factor graph, analyzing the mean of the acceleration residual

of the measurements in that interval. When that mean is larger than a threshold, we
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(a) Our method (b) σ2 = 0.01

(c) σ2 = 0.001 (d) σ2 = 0.0001

Figure 6.10: Deviation Metric Visualization: red points indicate outliers, and yellow
points indicate indicate inliers. The reference cloud is shown in white, containing the
loop-closed map generated by the algorithms. It is only visible in some cases where
the map makes large mistakes.

consider our model to be violated, and we trigger a failure flag. Then, the relative

transform from the odometry is thrown away, and replaced with a FastGICP method

between the keyposes. The covariance from the uncertainty estimation method is

still used, but a robust Cauchy kernel is used to indicate to the algorithm that this is

likely to be an outlier. The factor graph solver can them better distribute the errors

to the failure edges.
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Figure 6.11: Effect of using the proposed failure detection. (red): Odometry result.
(yellow): Loop Closure without failure detection. (green): Loop Closure with failure
detection enabled.
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Figure 6.12: The failure detection algorithm indicates edges of the factor graph
that are likely to be erroneous and applies a simple ICP procedure to obtain a new
transform between the nodes, and applies a robust kernel model for the uncertainty.
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Chapter 7

Conclusions and Future Work

This work introduced a SLAM back-end that is compatible with SuperOdometry. It

improves upon the one used during the Subterranean Challenge by providing place

recognition via a modified ScanContext descriptor. Its main contribution is a method

for calculating the keyframe relative pose uncertainty using the sequence of odometry

pose estimates and the IMU as an arbitrator. It is shown that using this uncertainty

estimation may work better than a one-size-fits-all constant and diagonal covariance

matrix when building the SLAM factor graph, as is the current practice.

However, since the method compares the derivatives of pose estimates with IMU

measurements, it will be overly optimistic in cases where the pose estimates are

generated with algorithms that are tightly-coupled with the same IMU. Therefore, it

is more suitable to methods such as LOAM and SuperOdometry, that generate its

pose estimates using a LIDAR scan matching process, and IMU integration is used

only for initialization. One possible way to circumvent this issue is to use separate

IMUs or separate a subset of the IMU data for the uncertainty estimation process.

Some ideas to further improve SuperLoop and the Uncertainty Estimation algo-

rithm include:

Diverse Testing Environments The results presented in this work pertain to

the man-made subdomain of underground environments. If we use the DARPA

Subterranean Challenge as a reference, there still remains at least the cave and tunnel

environments where SuperLoop needs to be tested. The challenge in those cases lies
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in obtaining good ground truth for the whole trajectory or the entire map, which is

quite challenging to do in these scenarios.

Relative Noise Model We presented in Section 3.3 the absolute noise model for

the local odometry covariance. This model is similar to a GPS sensor, and we applied

it here with the assumption that the underlying LIDAR-based odometry holds a local

pointcloud map in its memory, and therefore it is closer to a localization algorithm in

the short term. However, when the robot is constantly exploring new environments,

this assumption may not hold. In these cases, a relative noise model might be needed,

where we consider that the noise is added to the relative odometry transformations.

This is a more orthodox model, but the derivation of an Uncertainty Estimation

method in this case becomes more complex due to the integration of noise that arises.

Improving Repeatabilty of the Failure Recover Mechanism The failure

detection and recovering mechanism presented in this work is still very experimental,

and although promising, it is fragile and will clearly not recover from any given

odometry failure. Therefore, more work is needed to ensure results are repeatable

and the recover mechanism more reliable. In the very least, we should learn more

about what are the scenarios when the recover mechanism should work, and when it

cannot.

Characterizing the Effects of Different Interpolation Schemes In this work,

we used B-splines of order 4 to create continuous trajectories from the discrete

odometry estimates. The guiding principle was to use the lowest order number that

still gives out satisfactory results. This is due to the fact that more poses are needed

when the order is higher, which increases the minimum window size also. However,

other interpolation schemes are possible, and analyzing the impact of the choice for

B-spline interpolation with odometry poses as knots is important to understand if we

are making the best choice here.

Application to Sensor Fusion This work was initially developed with the intention

of devising an algorithm that could arbitrate between different odometry sources

such as LIDAR-, visual- or wheel-odometry. This algorithm would take in the latest
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estimates and decide which of these algorithms are more likely to be performing

well. However, we ran into the limitation explained above, where an estimation

algorithm that is tightly-coupled with the IMU will almost always produce a lower

uncertainty estimate than loosely-coupled ones. Therefore, it would not be possible

to compare them using this algorithm. However, it may still be possible to compare

different loosely-coupled algorithms, or even two versions of the same LIDAR-odometry

algorithm with different parameters, and then carefully selecting the best performing

one.

Application to Multi-Robot SLAM Similarly to the previous paragraph, one

possible future research direction is the application of the Uncertainty Estimation

method in Multi-Robot SLAM. In this application, all robots are running the same

underlying odometry algorithm, and UE may be used to appropriately weigh the

information from each robot when fusing that information. This is a common process

in Multi-Robot SLAM that requires a lot of attention, as different robots have

traversed the environment using different pathways and thus might have accrued

different levels of SLAM drift.
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