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Abstract

Robotic manipulation of cloth has applications ranging from fabrics man-
ufacturing to handling blankets and laundry. Cloth manipulation is
challenging for robots largely due to their high degrees of freedom, com-
plex dynamics, and severe self-occlusions when in folded or crumpled
configurations. Prior work on robotic manipulation of cloth relies primar-
ily on vision sensors alone, which may pose challenges for fine-grained
manipulation tasks such as grasping a desired number of cloth layers
from a stack of cloth. In this paper, we propose to use tactile sensing for
cloth manipulation; we attach a tactile sensor (ReSkin) to one of the two
fingertips of a Franka robot and train a classifier to determine whether
the robot is grasping a specific number of cloth layers. During test-time
experiments, the robot uses this classifier as part of its policy to grasp one
or two cloth layers using tactile feedback to determine suitable grasping
points. Experimental results over 180 physical trials suggest that the
proposed method outperforms baselines that do not use tactile feedback
and has better generalization to unseen cloth compared to methods that
use image classifiers.
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Chapter 1

Introduction

Tactile sensing is one of the most important forms of sensing for humans. Multiple

studies such as Westling and Johansson [56],van Erp and van Veen [52], have shown

that without tactile sensing humans are incapable of performing simple everyday

tasks, such as performing a stable grasp of objects or using tools. However most

industrial robots and even research robotic arms do not incorporate any form of

tactile sensing. The reasons for this are varied and numerous. A non exhaustive list

of these reasons would be:

• Tactile sensors tend to break easily when subjected to excess shear or longitudinal

forces.

• Tactile sensors are quite expensive for the small patch of area that they generally

cover.

• Tactile sensors barring a few, do not generally provide the resolution capable

by the human skin.

• Tactile Sensors cannot replicate the sensing of diverse modalities such as pressure,

temperature, electrostatics which human skin is capable of doing.

• Often tactile sensor data is hard to interpret and does not directly measure

values we may care about such as force, pressure etc.

• Current tactile sensors are not very stable and we often observe a change in the

data distribution over time.

1



1. Introduction

• A general lack of appreciation of the advantages tactile sensors provide to

robotics.

We explore these above challenges and strategies to overcome these challenges in

detail in this thesis. Particularly we focus on using tactile sensors in the manipulation

of deformable objects such as cloths.

A deformable object is an object that does not have a fixed shape, and can easily

change shape upon the application of external force. Examples of deformable objects

are liquids, clay, elastic objects, fabrics etc;. Manipulating them is quite different from

manipulation of rigid objects, as we cannot use notions of rigid body dynamics and

kinematics to describe the motion of deformable objects. For example a rigid object

can be described in terms of it’s 6-dimensional pose and we can use well understood

Newton’s Laws of Motion to calculate the change in the object’s pose over time. For a

deformable object such as a cloth, the 6D pose representation is no longer applicable.

The ideal representation to describe the dynamics and kinematics of a cloth is an

open research problem and you can refer to Long et al. [27] to get a survey of this

field. Once we have determined the appropriate representation, (such as say meshes)

we also need to determine the appropriate physics model to simulate the cloth. This

too is an open research problem with a variety of methods such as Finite Element

Analysis [49], Position Based Dynamics [37] etc being used to model cloth dynamics.

Due to the difficulties in cloth representation and dynamics, researchers have tried to

apply learning based methods to robot cloth manipulation. This is the approach that

we also use in this thesis document, where instead of modelling cloth dynamics in

high detail, we instead apply machine learning algorithms that learn a model from

large amounts of collected data in order to manipulate cloth.

In robot learning one dominant paradigm is the ”sim-to-real” approach. This involves

simulation of the task with an accurate physics model and learning a policy in simu-

lation that is then transferred into the real world. Compared to simulation of rigid

objects, it is much harder to simulate deformable objects. Progress has been made in

simulating deformable objects, particularly with Huang et al. [17], Lin et al. [26], Hu

et al. [16] however in our experience, there are still a lot of difficulties in trying to

implement the sim-to-real approach for deformable object manipulation. In addition,

simulating realistic tactile sensor data is an open research problem as of writing this

thesis. Thus in this thesis we focus on data collection in the real world. We develop

2



1. Introduction

a system to collect millions of annotated tactile sensor datapoints automatically and

use the collected data to train tactile classifier algorithms. Once we have collected the

annotated tactile sensor we need to determine an appropriate method of processing

this data. In this thesis we experiment with both classical machine learning and

deep learning algorithms to process the tactile sensor data. We find specialized deep

learning architectures to handily beat classical machine learning algorithms, however

naive architectures such as fully connected multi-layer perceptrons perform poorly

in processing annotated tactile sensor data. We perform a detailed ablation study

on our deep learning network architectures to aid future researchers in choosing an

appropriate architecture for processing tactile sensor data.

While not a major focus of this thesis, we use a novel gripper mechanism in ma-

nipulation of deformable objects. The gripper mechanism is based on the proposed

architure from Mannam et al. [33]. It consists of 2 parallel-linkage based delta robots

and we find the additional degrees of freedom afforded by the novel gripper to be

useful in manipulation of fine deformable objects. A brief overview of the mechanism

and it’s advantages is provided background section of this thesis.

All the above collection, analysis and processing of tactile sensor data culminates in

developing a robotic system capable of grasping a specific number of layers of cloth

from a stack of cloth present on a table. We show significantly improved performance

using our system, as opposed to a system based on cameras and vision sensing. This

led to a paper publication and a best paper award in a workshop on Deformable

Object Manipulation in IROS 2022 conference.

The outline of my thesis is as follows:

• Chapter 2 covers relevant background to understand my thesis. I discuss the

various available tactile sensors that are being used today and the different

trade-offs involved in using them. I give a short overview of our unique compliant

gripper and finally go through the relevant machine learning algorithms for my

thesis.

• In Chapter 3 I discuss how I applied the ReSkin sensor to grasp a specific

number of layers of cloth from a stack of cloth and how this compares against

techniques that use primarily vision based sensing.

• In Chapter 4 I discuss what is still holding tactile sensors back from being widely

3
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used in industry and by researchers. I highlight potential research directions

that can be pursued by interested researchers.

4



Chapter 2

Background

In this chapter we give a brief overview of different Tactile sensors, prior research

work done on cloth manipulation, a short overview of the mechanisms used by our

gripper system and a small primer on machine learning and deep learning required to

understand the results of our thesis.

2.1 Different Types of Tactile Sensors

We first start with a brief review of the available tactile sensors for robotics and the

considerations involved in choosing an appropriate sensor for your task:

2.1.1 Optical Gel Based Sensors

This class of sensors uses small cameras to collect images of deformation of a gel

patch when in contact with objects. These images are then processed to determine

pressure, texture, force and other tactile properties of the object. Examples of such

sensors include GelSight [62], GelSlim [6], and DIGIT [22], which have been used by

researchers for cloth perception, such as in Yuan et al. [64], Yuan et al. [63] and Luo

et al. [28]. The prime advantage of gel sight based sensors are that these sensors are

capable of providing much higher resolution data than other types of sensors, making

them a good candidate for manipulation tasks that require high fidelity. These sensors

are also easy to setup and use, requiring the user to only connect a USB cable to
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2. Background

Figure 2.1: Different Optical Gel Based sensors. Gelslim, Digit and Gelsight from
left to right.

a computer to read the sensor data with no additional circuitry or installation of

firmware. If the system is capable of reading data from a webcam, it can read the

images generated by the GelSight tactile sensor. The gel being deformable makes this

sensor a good fit for handling soft objects. On the negative side, these sensors tend

to be bulky as they need to house a camera inside them. This makes them unsuitable

for handling fine objects such as thin cloth. They are also fragile, the gel being quite

susceptible to shear force and tearing. It is also not straightforward to parse the data

produced by these sensors, and often deep convolutional networks are used to parse

the tactile image data as shown in [63] . Images of this sensor are shown in Figure

2.1. Examples of data collected by this sensor is shown in Figure 2.2.

2.1.2 ReSkin Sensor

Recently, Bhirangi et al. [1] proposed the ReSkin, a class of magnetic sensors for

tactile sensing. The ReSkin consists of 5 magnetometers capable of measuring the

X,Y and Z components of the magnetic flux in the near vicinity of the sensor. It

also consists of a ”magnetic skin”, a thin deformable foam sprinkled with magnetic

particles. The deformation of the skin causes changes in the readings of the magnetic

flux measured by the 5 magnetometers. The changes of these readings can later be

parsed to estimate tactile sensing data. One of the major advantages of using the

ReSkin is it’s form factor, with a thickness of < 3mm, ReSkin are one of thinnest

6



2. Background

Figure 2.2: Image taken from [62]. The gel is peppered with uniformly distributed
black dots. By measuring the displacement of the dots from the image collected by
the camera, we can estimate the 3D structure of the object in contact. Note the high
resolution of the 3D structure obtained by the Gelsight sensors.

tactile sensors aailable and are quite suitable for manipulating fine objects like thin

fabrics. ReSkin is also relatively low cost, and can cover relatively large surface areas

compared to Gelsight sensors. The main disadvantage of the Reskin sensor is it’s

lack of resolution. The ReSkin data at every timestep is a 15 dimensional magnetic

flux vector. The sensor tries to solve it’s lack of resolution by collecting data at

a much higher frequency than other sensors. The frequency of the ReSkin sensor

is 400Hz compared to 60Hz of the GelSight sensor. Thus when using the ReSkin

sensor, we consider a timeseries of data as opposed to data from a single time-step.

ReSkin data is also very hard to interpret. Often ReSkin data can only be interpreted

using Machine Learning Algorithms, and there is no simple conversion from magnetic

flux to contact location/ force etc. In this thesis we use the ReSkin sensor for cloth

manipulation, primarily because of it’s superior form factor and resolution being

sufficient enough for our task in hand. In general if the task at hand requires only a

single contact region, such as grasping then we find the ReSkin data to be adequate.

Figure 2.4 shows the reskin sensor and Figure 2.3 shows an example of the data

collected by the reskin sensor.

7



2. Background

Figure 2.3: Example of the data collected by a ReSkin Sensor

2.1.3 BioTac Sensor

BioTac [48] is a popular tactile sensor used in industry and research. It is a multi-

modal tactile sensor capable of measuring forces, vibrations and heat-flow of the

elastomeric skin that comes into contact with various different objects. This fingertip

shaped sensor consists of a flexible rubber skin, ionically conductive fluidic layer and a

rigid core. The sensor makes it measurements with 23 electrodes located on the outer

surface of the core. As the fluidic layer changes shape upon contact, the voltages at

the electrodes change in a complex manner which can be parsed to determine the

surface contact points and the forces involved on the sensor. The main advantage

of this sensor is it’s multimodal measurements and commercialization. BioTac is

robust, accurate and used by many industrial robots in the automotive, cosmetics

and apparel industries. The main disadvantage of using this sensor, is that the skin

is fragile and often requires reapplication in between trials. It is also quite expensive

at around 10000$ per sensor. We choose to not use BioTac sensors because they are

expensive, bulky and not easily replacable. The image of the BioTac sensor is present

in Fig 2.5.

2.1.4 Other Types of Sensors

There are several other types of tactile sensors that have been developed for various

applications. Some examples include:

• Resistive sensors: These sensors use a conductive material that changes resis-

tance when deformed by touch. They are low-cost and simple to implement,

but their resolution and sensitivity may not be as high as other types of sensors.

8



2. Background

Figure 2.4: Images taken from [1], A cross sectional view of the ReSkin sensor
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2. Background

Figure 2.5: Image taken from company website. This image depicts the bioTac sensor.

• Capacitive sensors: These sensors measure changes in capacitance when a

material comes into contact with them. They can provide high-resolution data

and are commonly used in touchscreens. They however are not deformable but

are instead brittle, thus making them not very appropriate for robot arm use

cases.

• Piezoelectric sensors: These sensors generate an electric charge when mechanical

stress is applied to them. They are sensitive and can provide fast response

times, and are used in BioTac. However they are quite expensive and require

significant signal conditioning and tuning to be used.

• Force-sensitive resistors: These sensors change resistance based on the force

applied to them. They are simple and inexpensive, but their accuracy and

resolution is limited. They often only measure force at a specific contact point.

To obtain a more detailed review on all the available tactile sensors for manipula-

tion, please refer to Roberts et al. [41],Yamaguchi and Atkeson [58] and Dahiya et al.

[4].

2.1.5 Determining the appropriate sensor for our use case

We choose to compare the sensors on five characteristics as shown in Table 2.1. We

compare each sensor along form factor, cost, sensitivity, robustness and resolution.

We find that for our task of grasping a specific number of layers of cloth, we do not

need high resolution and are fine with medium sensitivity, cost and robustness. We

10



2. Background

Name Thickness (mm) Sensitivity (N) Robustness Resolution (mm) Cost ($)
GelSight 40 0.05N Low 0.03 800
BioTac 30 0.01N High 2 10000
ReSkin 3 0.2N High 1 6

Table 2.1: Comparison of the sensors across the five criteria is shown above.

do however need a very small form factor. The ReSkin sensor has the smallest form

factor of all the sensors we compared and thus we chose to go ahead with the ReSkin

sensor for our task. The higher robustness, and extremely low cost of the the ReSkin

sensors are an added bonus.

2.2 Cloth Manipulation with Robot Learning

Manipulation of deformable objects such as cloth has a long history in robotics;

see Yin et al. [60] and Zhu et al. [65] for representative surveys.

2.2.1 Cloth Manipulation Policies

In early research on cloth manipulation, a common strategy was to utilize a bimanual

robot to grip cloth in midair to smooth it using gravity. This standardizes the configu-

ration of cloth and exposes its corners, which can then facilitate planning subsequent

manipulation tasks such as smoothing and folding [7, 31]. Other researchers have

relied on using geometric features of cloth, such as by fitting polygon contours to

clothing [36]. While these works showed impressive results, such approaches may be

time-consuming or require strong assumptions on cloth configurations. With the rise

of deep learning, researchers have recently employed data driven techniques to obtain

large amounts of interaction data with cloth to learn manipulation policies using

powerful function approximators, often with the help of simulators [24, 50]. These

works tend to learn quasi-static pick-and-place policies, which allow the cloth to

settle between robot actions [11, 15, 25, 29, 38, 44, 45, 55, 57, 59]. Other researchers

have learned continuous servoing policies [34], dynamic policies [13] or have explored

learning cloth manipulation from purely real world interaction [23].

In contrast to these works which employ vision-manipulation policies, we focus on

11



2. Background

tactile sensing for cloth grasping.

2.2.2 Grasping for Cloth Manipulation

Perhaps the most important part of cloth manipulation tasks is cloth grasping, since a

suitable grasp is necessary for subsequent actions such as dragging or lifting. Defining

and identifying ideal cloth grasps remains challenging and is the subject of extensive

research [2]. Early cloth manipulation research focused on vertically smoothing via

gravity. A common such grasping strategy to reliably standardize cloth was to hold it

with one gripper while iteratively grasping the lowest hanging corner with the other

gripper [3, 19, 20, 31].

Other cloth grasping techniques do not require assuming that the cloth is lifted

in midair. For example Ramisa et al. [40] and Sun et al. [47] determine suitable

grasping points for cloth on a flat table by detecting wrinkles and edges using depth

and classical computer vision techniques. Other applications of cloth manipulation

may utilize specialized gripper designs [21] or may simplify the process by assuming

that cloth is gripped in advance of the task [18].

Recently, Qian et al. [39] study how to robustly grasp cloth using dense segmen-

tation of images to distinguish between edges and interior creases. Their method

involves a self-supervised labeling procedure and a sliding grasp. Nonetheless, robustly

grasping cloth remains challenging, particularly when the goal is to generalize to

a wide variety of types and configurations of cloth. Prior work has reported that

a typical failure cases is grasping the wrong number of cloth layers, particularly

when unfolding [34, 44, 55]. Furthermore, many works employ heuristics such as

hand-tuning the gripper design and grasp depth [11].

Prior work has also investigated learning to grasp one cloth from a stack using

grasping and scooping actions from vision input only [5], as well as designing a robot

system to turn a single book page using vision and force sensing [12]. In this work, we

consider the novel task of grasping more than one cloth layer, and show the benefits

of tactile sensing without requiring vision.
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2.3 Specialized Grippers for Fine Manipulation

The human hand is extremely impressive in it’s degrees of freedom, compliance and

robustness that researchers have tried to match with their grippers over the years.

Building grippers with the same properties as the human hand has turned out to be

extremely difficult. At the same time simple parallel jaw grippers used extensively

in industry is often found inadequate for fine manipulation tasks that we desire of

our robots. In this section we give a brief overview of the available grippers and the

reasoning behind using the novel Delta Grippers in this work.

2.3.1 Anthropomorphic Dextrous Hands

The simplest solution to creating grippers capable of fine manipulation is to mimic

the design of the human hand. There are a number of popular grippers that aim

to do that such as the shadow hand and Allegro Hand. These arms are capable of

mimicking the degrees of freedom of a human hand but face a number of challenges

in usage for fine manipulation tasks such as:

• They are not robust and are prone to breaking very easily upon application of

high forces

• They are extremely expensive. Shadown Hand costs around 100, 000$, Allegro

Hand 25000$ and so.

• The high degrees of freedom creates additional challenges of control due to the

large number of possible points of contact.

Due to the above reasons we choose not to go ahead with anthropomorphic dextrous

hands for this project.

2.3.2 Delta Gripper

Delta Robots are parallel linkages that are capable of three translational degrees

of freedom as described in Merlet [35]. These robots are regularly used in industry

to pick and place objects from conveyor belts due to their high speed and accurate

placement. The Delta Gripper is a novel gripper made from two delta robots where

each finger has 3 degrees of freedom in the translational axis. Thus the delta gripper

13



2. Background

Figure 2.6: Image taken from [33] depicting the specialized gripper used in our setup.

possesses 6 actuators. The specific delta gripper used in this paper uses linear

actuators, it is however possible to use rotary actuators though this will cause a

larger form factor than using linear actuators. The materials used for the gripper

links is TPU, Thermoplastic Polyurethane which is very compliant compared to hard

plastic and metals. The joint is created using a thin plastic layer that acts as an

hinge to minimize the number of moving parts in a structure. The entire gripper

can be built for 300$ as opposed to the 100, 000$ required by the shadow hand and

30, 000$ required by the allegro hand. An arduino is used to interface with the linear

actuators and the gripper is setup with it’s own power source. An image of this

gripper is present in Fig 2.6

2.4 Machine Learning and Deep Learning Primer

2.4.1 Classical Machine Learning

A number of classical machine learning algorithms are used in this thesis. We give

a brief description of each algorithm we use in this thesis below. To determine the

most appropriate algorithm we calculate statistics such as F1 Score and accuracy in
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real world robot trials across the different algorithms and datasets.

K-Nearest Neighbours

K-Nearest Neighbours (K-NN) is a non-parametric algorithm that classifies a data

point based on how its neighbors are classified. The algorithm works by finding the k

closest points to the data point in question and classifying it based on the majority

class of its neighbours. It can be applied to both classification and regression problems.

The advantages of using this algorithm are its simplicity and lack of assumptions

about the underlying data distribution. However, it is computationally intensive,

especially for large datasets, sensitive to irrelevant features and the scale of the data,

and the choice of k can greatly affect the results.

Logistic Regression

Logistic Regression is a statistical method used for modeling binary outcomes. By

using a logistic function, it models the probability that the dependent variable

belongs to a particular category. The advantages of using Logistic Regression are its

simplicity, interpretability, and efficiency, requiring less computational resources. It is

particularly well-suited for binary classification problems. However, it may struggle

with non-linear relationships, be prone to overfitting in high-dimensional datasets,

and is sensitive to outliers.

Support Vector Machines

Support Vector Machines (SVM) are supervised learning models used for classification

and regression. By finding the hyperplane that best divides a dataset into classes,

SVM is particularly effective in high-dimensional spaces. The advantages of using

SVM are that they are effective in high-dimensional spaces, robust to outliers, and

can handle both linear and non-linear relationships between variables. However, SVM

requires careful tuning of parameters, is computationally intensive, particularly for

large datasets, and may be difficult to interpret.
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Random Forest Classifier

Random Forest is an ensemble learning method that consists of numerous decision

trees. The more uncorrelated trees in the forest, the more accurate the model.

Random Forest is particularly known for its flexibility and can handle a mixture

of numerical and categorical features. The advantages of using the Random Forest

algorithm are its high predictive accuracy, robustness to overfitting, and its ability

to effectively handle both classification and regression tasks. On the other hand,

it can be slow in creating predictions once trained, may be complex, require more

computational resources, and necessitate careful tuning of different hyperparameters.

2.4.2 Deep Learning

Deep learning is a relatively new paradigm that employs neural networks and large

datasets to learn complex function approximators. Compared to classical machine

learning algorithms, neural networks have demonstrated superior performance, partic-

ularly in handling large-scale data. This thesis bears witness to these results. There

are numerous possible neural network architectures, and we describe a few of the

architectures that we explore in this thesis.

Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) is a class of feedforward artificial neural networks.

It consists of at least three layers of nodes: an input layer, hidden layer(s), and an

output layer. The advantages of using an MLP include its ability to model non-linear

relationships and its adaptability to various kinds of data. However, MLPs can be

prone to overfitting, especially with insufficient training data, and they often require

careful tuning of hyperparameters, such as the learning rate and the number of hidden

layers and nodes.

Convolutional Network

Convolutional Networks (ConvNets or CNNs) are a category of neural networks that

have proven highly effective in areas such as image recognition and classification.

CNNs apply a convolutional layer that filters inputs to create feature maps, thereby
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preserving the relationship between pixels by learning image features using small

squares of input data. The advantages of using CNNs include their ability to auto-

matically and adaptively learn spatial hierarchies of features. They are particularly

powerful for tasks like image classification. However, CNNs can be computationally

intensive to train, and their performance is highly dependent on the careful tuning of

hyperparameters.

LSTM (Long Short Term Memory)

Long Short Term Memory (LSTM) networks are a type of recurrent neural network

(RNN) well-suited to classifying, processing, and predicting time series given lags

of unknown size and duration between events. LSTMs are explicitly designed to

avoid long-term dependency issues, making them effective for sequence prediction

tasks. The advantages of using LSTMs include their ability to capture long-term

dependencies in sequence data, handle sequences of various lengths, and work with a

large amount of data. On the downside, LSTMs can be computationally expensive to

train and may require substantial tuning and experimentation to find the optimal

architecture and parameters.
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Chapter 3

Applying Tactile Feedback to Cloth

Grasping

3.1 Introduction

Cloth manipulation remains an active research area in robotics with significant real

world applications, including folding laundry [7, 31], assistive dressing [8, 9, 10, 61],

bed-making [43], and manufacturing fabrics [51]. Cloth manipulation is challenging

because it is difficult to infer the complete configuration of the cloth from robot

observations when the cloth is in a crumpled or folded state, due to the high degrees

of freedom and self-occlusions [2, 42].

In light of these challenges, researchers have recently proposed numerous data-

driven methods for canonical cloth manipulation tasks such as smoothing [44, 57]

and folding [23, 34, 55]. While showing promising results, many prior works focus on

top-down grasping of one cloth. Such grasping may be ineffective for manipulation

tasks involving multiple cloths, such as picking a desired number of layers of a stack

of cloth, because performance is extremely sensitive to the height of the gripper when

it grasps. Indeed, a common failure case reported in prior work [11, 55] is picking

the wrong number of layers. Yet, manipulating a specific number of cloth layers

is common in daily life, such as in folding and unfolding tasks, or handling piles

of stacked clothing in stores. How, then, can robots achieve accurate grasping of
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3. Applying Tactile Feedback to Cloth Grasping

Figure 3.1: We present a tactile-based cloth manipulation system. The robot utilizes a
ReSkin [1] sensor attached to the lower one of its two fingertips, which is visualized in
more detail in the upper right inset. We train a classifier to distinguish among grasping
different numbers of cloth layers from tactile feedback (no images are provided as
input). The robot then uses this classifier at test time to determine suitable grasping
points for obtaining a desired number of cloth layers.

multiple layers of cloth?

Incorporating tactile sensing is an under-explored direction for deformable object

manipulation. While there has been recent work on optical-based tactile sensors such

as GelSight [62] and DIGIT [22], these sensors have primarily been applied to cloth

perception [28, 64] instead of cloth manipulation. Recent work on magnetometer-based

sensors such as ReSkin [1] have benefits over optical sensors, such as lower-dimensional

sensor readings, more direct measurements of normal and shear forces, and a compact

form factor. However, research into the applications of magnetometer-based sensors

for deformable object manipulation is currently limited.

In this chapter, we study the application of magnetometer-based tactile sensing

for deformable cloth manipulation. We focus on precisely grasping and lifting layers

of stacked cloth; due to the flexibility of cloth and unpredictable crumpling behavior,

this task is challenging while being a well-defined manipulation problem. Furthermore,
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Figure 3.2: The proposed tactile-based cloth manipulation pipeline. A 7-DOF Franka
robot uses a mini-Delta [32] gripper with two finger tips, the lower one of which
has a ReSkin [1] sensor (see yellow circle and zoomed-in inset). Using this gripper,
we collect tactile data from the ReSkin by performing grasps of different categories:
grasping nothing, or pinching 1, 2, or 3 cloth layers (see Fig. 3.3 for more examples).
The graphs above visualize the tactile time series data. At test time, the robot uses
the trained tactile-based classifier to grasp a desired number of cloth layers.

precise grasping of layers of cloth is a prerequisite for many downstream manipulation

tasks (folding cloth in half twice).

We present a robotic system consisting of a 7-DOF Franka arm, a mini-Delta

gripper [32], and a Reskin [1] sensor on the gripper finger to perform precise cloth

grasping (see Fig. 3.1). The system uses a tactile classifier as feedback for a grasp-

ing policy. We show that simple approaches to both classifying tactile data and

incorporating feedback into the policy (as a termination condition) work surprisingly

well.

This chapter makes the following contributions:

1. A robot hardware system which incorporates ReSkin tactile sensors for cloth

manipulation.

2. A training procedure for developing a classifier based on this hardware to use

in a grasping policy.

3. Experiments showing success on the task of grasping a desired number of cloth

layers.
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3.2 Problem Statement

We study the task of grasping a desired number of layers from a stack of cloths.

Given a set of at least 3 cloth layers stacked on each other, the goal is to grasp the

top k ∈ {1, 2} cloth layers. For each trial (a given instance of the task), we specify

a target value for k. We assume a robot has a two-finger gripper where one of the

gripper tips is equipped with a tactile sensor. We assume each trial begins with the

robot’s tactile sensor facing a set of edges from a stack of cloth layers, as shown in

Fig. 3.1. A trial is a success when the robot grasps exactly k cloth layers and is able

to lift its gripper upwards by 4 cm while preserving its grasp of the k layers.

3.3 Method

This proposed system for tactile sensing involves designing hardware with tactile

data (Sec. 3.3.1), training a classifier to distinguish grasping cloth layers (Sec. 3.3.2),

then using this classifier for a grasping policy (Sec. 3.3.3). See Fig. 3.2 for the overall

pipeline.

3.3.1 Hardware

The proposed system uses a ReSkin [1] sensor, which comprises of a soft magnetized

skin and a circuit board with a 5-magnetometer array (see bottom-left inset of Fig. 3.2).

The board sits beneath the skin, and any deformations caused by normal/shear forces

are read via distortions in magnetic fields. For each of the 5 magnetometers, 3

magnetic flux values ⟨BX , BY , BZ⟩ are reported, corresponding to flux in the X-, Y-,

and Z- magnetometer coordinate axes. Concatenating these values for a single time

step t results in a 15-dim vector B(t) ∈ R15. ReSkin publishes these values at up to

400Hz.

We attach ReSkin to a finger on a mini-Delta gripper [32]. We use the mini-Delta

largely due to its length and form factor, since it facilitates grasping a layered stack

of cloth folds by approaching it from the side, instead of top-down. The mini-Delta

has 3 DOFs for each finger, and is compliant due to the 3D-printed soft links (blue

component in Fig. 3.1). The gripper and attached sensor are mounted on a 7-DOF
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Figure 3.3: Examples of collecting data for tactile-based classification, with the
ReSkin attached to the bottom gripper finger tip. From left to right, we show two
examples each of collecting data with (1) contact, but without cloth, (2) 1 cloth layer,
(3) 2 cloth layers, and (4) 3 cloth layers. The classifier only takes as input the data
collected from the ReSkin sensor B(t) at any give time step. The images above are
collected with a webcam and are used both to visualize the tactile data collection,
and also are the RGB inputs to the image classifiers that we train as baselines for
comparison. See Sec. 3.3 and Sec. 3.4 for further details.

Franka robot.

3.3.2 Grasp Classifier Training

We train a classifier to predict the number of cloth layers grasped to use as part of the

grasp policy (Sec. 3.3.3). The classifier takes as input a tactile reading from a single

time step B(t). While analyzing sensory data across a time series seems natural for

the tactile modality, we find that predictions based on point estimates are surprisingly

effective, as we later show in Sec. 3.5. We do not take proprioceptive data as input,

as this modality is not currently available with the mini-Delta gripper: the compliant

links can bend from their commanded position given sufficiently high external force,

and estimating proprioception for these types of compliant links is an area of active

research.
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The classifier uses the tactile readings to predict how the gripper is interacting

with the cloth, among 4 classes: (1) pinching with no cloth between the fingers, (2)

pinching 1 cloth layer, (3) pinching 2 cloth layers, and (4) pinching 3 cloth layers.

We limit the number of cloth layers under consideration to 3 to make classification

tractable, while also allowing feedback-based policies to recover if they overshoot

when grasping two layers. We leave classifying an arbitrary number of layers to future

work.

We collect training data in the real world for the classifier due to the lack of a

suitable simulator.1 We define a single “training episode” as the process of getting

a set of tactile data from one grasp. First, a human stacks several layers of cloth

with edges facing the gripper. The height at which the robot approaches the cloth is

uniformly sampled per attempt within a ±2mm range to collect a variety of grasps.

The robot then approaches the cloth, closes its fingertips to grasp firmly, records

ReSkin data during the grasp, then releases. Each training episode lasts roughly 5

seconds and produces approximately 350 sensor readings of 15 values each (3 per

magnetometer). We visually inspect videos from the recorded data to determine the

number of grasped cloth layers, and we label all points from a training episode with

the same label, speeding up annotation time and effort. See Fig. 3.3 for example

visualizations of training episodes for all classes.

We then use this collected data to train a classifier to distinguish the numbers

of layers grasped from the tactile readings. We experimented with various types

of classifiers, including k-Nearest Neighbor (kNN), SVM, Logistic Regression, and

Random Forests, and we found the performance to be fairly similar across classifiers.

For simplicity, we use a k-Nearest Neighbor (kNN) classifier with k = 10 neighbors.

3.3.3 Proposed Grasp Policy

Next we describe how we use the above trained classifier to enable the robot to grasp

the desired number of layers. We divide the robot trajectory into three parts. First,

the gripper moves vertically down by a distance dvert, then horizontally towards the

cloth stack by a distance dslide, then lifts up by a distance dlift, then closes its gripper

1While there has been progress in developing high-fidelity simulators for tactile sensors [46, 54]
and for deformables [24, 30], simulating both is challenging and to our knowledge has not yet been
shown.
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Figure 3.4: The proposed grasp policy parameterization (described in Sec. 3.3.3),
visualized with a frame-by-frame overview of an example trial from the experiments.
Each row, consisting of four frames, shows one action. The first part of an action
(shown in frames 1 and 5) adjusts the initial gripper height by dvert, possibly from
prior tactile feedback. The second part of an action (shown in frames 2 and 6) moves
towards the cloth stack by some distance dslide. Then, the third part (frames 3 and
7) lifts upwards by dlift and closes the grippers. At this point, the robot queries the
classifier and may decide to release and re-attempt the grasp (frames 4 and 5) or the
robot concludes that it has grasped the correct number of layers and further lifts the
cloth to end the trial (frame 8).

tips (see Fig. 3.4 for a visualization). At this point, we record tactile data and classify

the number of layers that are grasped. If the predicted number of grasped layers

(according to the classifier) matches the target number of grasped layers, it lifts the

gripper further by 4 cm to indicate the end of the trial; otherwise, it resets the gripper

back to the starting position and tries again (see below for details). The values of

dslide and dlift are tuned and fixed ahead of time by a human operator, while dvert is

determined by the policy, as explained below.

The grasping policy uses the output of the grasp classifier (Sec. 3.3.2) to determine

the vertical distance that the gripper lowers before grasping, dvert. For a target number

of layers k to grasp, the robot begins at some height with the grippers open, moves

towards the cloth stack, and attempts a grasp. If the grasp classifier determines that

it has not grasped the correct number of layers, then the robot releases, moves back,

and adjusts the gripper height (dvert). If the classifier predicts that it has grasped

too many layers, dvert is decremented by a small value to decrease the grasp height; if
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it has grasped too few, dvert is incremented by a small value. The policy continues

until either the classifier determines that it has grasped the desired number of layers

and ends the trial, or until the maximum number of grasp attempts is reached.

During each grasp attempt on the physical system, the classifier starts predicting

the class once the gripper closes, and stops predicting after the robot lifts by dvert.

This results in a set of about 160 separate predictions. We use the mode of all the

predictions as the final prediction to determine whether to raise or lower the grasp

height.

3.4 Physical Experiments

We evaluate the methods using the physical system described in Sec. 3.3.1. The

experiments are designed to answer the following questions:

• Can magnetometer-based tactile sensing with ReSkin sensors provide sufficient

information about grasping a target number of cloth layers?

• What are the benefits of the proposed method that uses tactile-based feedback

to adjust the gripper height?

• Can a classifier trained on tactile feedback generalize to different cloths?

3.4.1 Experiment Protocol

We train our tactile classifier on a gray cloth; we then evaluate our system on the

gray training cloth and on two other unseen cloths to measure the generalization of

our method to new cloths (see Fig. 3.6). We use the same training data from the gray

cloth for all of the tactile-based method variations described in Sec. 3.4.2. The tactile

data collection results in a total of 18,838 such B(t) readings. We train a classifier on

95% of the training episodes (to allow for a small validation set). We normalize the

tactile data so that each of the 15 features has mean 0 and variance 1 in the training

set.

We perform two sets of experiments, in which we set the desired number of cloth

layers to grasp as one layer and two layers, respectively. Each trial begins with a

human arranging folded cloths on the workspace with edges exposed and facing the
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robot gripper. The number of folded cloths is the same across trials, but variations

in the depth of the layers up to 1.5mm can occur due to slight differences in the

initial cloth configuration. We initialize the robot’s gripper at an angle (30◦) which

increases the likelihood that a horizontal motion can slide the robot finger tips in

between layers of cloth.

Each experiment set consists of comparing several grasping methods (see Sec. 3.4.2).

When running experiments, we randomly sample the method to run in the given trial

after the cloths have been set, to reduce potential human bias in the data initialization.

The robot employs the selected method to grasp the appropriate number of cloth

layers. The robot is allowed up to T = 10 actions per trial, though it can terminate

earlier if the classifier estimates that it has grasped the appropriate number of layers.

Upon termination, the robot lifts the gripper by 4 cm and a human measures this as

a success if the correct number of layers are still grasped. All other cases result in

the trial as a failure.

We categorize failures into two types, prediction and grasping failures. Prediction

failures are a result of mis-predictions by the trained classifier, where it either: (1)

incorrectly predicts that the robot has grasped the desired number of layers and

terminates the trial prematurely, or (2) the classifier incorrectly predicts that the

robot has grasped the wrong number of layers, causing unnecessary regrasps and

leading to the robot reaching the max number of attempts for the trial. Grasping

failures are due to either failing to grasp the desired number of layers at the last time

step in a trial, or failing to robustly grasp the cloth, such that cloth layers slip out of

the robot’s control when lifting (see Fig. 3.5).

3.4.2 Methods and Baselines

We evaluate the following methods for grasping 1 and 2 cloth layers:

1. Fixed-Open-Loop: Initialize the gripper at a fixed height, manually tuned for

grasping 1 or 2 cloth layers: d
(1)
vert and d

(2)
vert respectively. This method terminates

after a single trial as it has no access to feedback.

2. Random-Tactile: Randomly try different gripper heights within the range[
d
(2)
vert − 2mm, d

(1)
vert + 2mm

]
until the tactile classifier determines that the cor-

rect number of layers have been grasped.
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Figure 3.5: An example grasping failure case of the task. Due to an insufficiently
robust grasp when lifting (left), the layers may slip out of the robot’s control during
the lifting portion (right).

3. Random-Image: Same as Random-Tactile, but uses an image classifier (instead

of a tactile classifier) to determine when the correct number of layers has been

grasped. The image classifier is an 18-layer ResNet [14] pre-trained on ImageNet

and finetuned on the images (see Figure 3.3) from the same training episodes

used to train the tactile classifier.

4. Feedback-Image: Same as Feedback-Tactile (our method, below) except with

the image classifier.

5. (Ours) Feedback-Tactile: Initialize the gripper height to d
(1)
vert + 2mm; use

the grasp policy described in Sec. 3.3.3 to adjust the height per grasp (±2mm)

based on the tactile classifier predictions.

3.5 Results

We first present results from training a classifier on ReSkin data followed by physical

experiment results in which we run 10 trials for each method and condition.

3.5.1 The Tactile Classifier

To better understand the kNN performance, we perform 100 folds of cross-validation

and average the validation performance. Each entire training episode is assigned to

either the training or validation set.
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Figure 3.6: The cloths we use for experiments. We use the gray towel (left) for
training, and test on all 3 cloths for evaluation. The white towel and patterned cloth
test generalizing to novel cloths. The cloths have thicknesses between 3-5 mm and
variation in surface texture and stiffness.

Class \ Prediction 0 1 2 3

0 (0 Layers) 1.000 0.000 0.000 0.000
1 (1 Layer) 0.000 0.999 0.000 0.001
2 (2 Layers) 0.030 0.003 0.866 0.100
3 (3 Layers) 0.128 0.256 0.138 0.478

Table 3.1: The average normalized confusion matrix from the cross-validation training
results for the k-nearest neighbor classifier we use for tactile-based experiments.

Table 3.1 demonstrates the average normalized confusion matrix obtained from

these 100 cross-validation runs, and also reports the average per-class accuracy.

We also computed the average balanced accuracy metric [53] to consider the data

imbalance and obtain 0.84± 0.06. Inspecting the confusion matrix, we find that the

tactile classifier can classify classes 0 (pinching with no cloth between the fingers)

and 1 (pinching 1 cloth layer) with extremely high effectiveness. Results for classes 2

and 3 suggest that identifying 2 and 3 cloth layers is more challenging.

3.5.2 Grasping 1 Cloth Layer

In the first set of physical experiments, we report the success and failures of methods

on grasping and lifting the top layer of cloth from a stack. See Table 3.2 for results.

Our method, Feedback-Tactile, succeeds at grasping one layer of cloth in all 10 trials,

whereas all competing ablations have lower success rates. Methods with the tactile

classifier outperform those using the image classifier, with most failures attributed to

mis-prediction rather than poor grasping.
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Cloth Type Method
Success Prediction Grasp

Attempts ↓
Rate ↑ Failure Failure

Gray Towel (Train)

Fixed-Open-Loop 6/10 - 4/10 1 (fixed)
Random-Image 5/10 5/10 0/10 1.8±0.7
Random-Tactile 6/10 3/10 1/10 4.8±2.8
Feedback-Image 8/10 2/10 0/10 2.3±0.8
Feedback-Tactile 10/10 0/10 0/10 3.1±1.0

White Towel (Generalization)
Feedback-Image 3/10 5/10 2/10 1.6±0.5
Feedback-Tactile 8/10 0/10 2/10 2.3±0.8

Patterned Cloth (Generalization)
Feedback-Image 2/10 8/10 0/10 5.1±4.3
Feedback-Tactile 7/10 2/10 1/10 4.6±3.2

Table 3.2: Results for the first set of physical experiments described in Sec. 3.5.2
with grasping at 1 cloth layer. We run all methods for 10 trials each and report the
success rate, the failure types (grasping and prediction), and the average number of
grasp attempts per trial.

The fixed-height open loop method (Fixed-Open-Loop) poorly handles variations

in the initial cloth configuration. There can be up to 1.5mm variation in the height

of the cloth stack based on how they are placed at the start of the trial, which

can lead to failures in the open loop grasping method. Both random grasping

approaches, Random-Image (5/10) and Random-Tactile (6/10) have lower success

rates compared to using feedback-based height adjustment with Feedback-Image

(8/10) and Feedback-Tactile (10/10).

For testing generalization, Feedback-Tactile significantly outperforms Feedback-

Image on the white towel and patterned cloth. Feedback-Tactile obtains 8/10 and 7/10

success rates for the white towel and patterned cloth, respectively, while Feedback-

Image only succeeds in 3/10 and 2/10 trials.

We have analyzed the failure types of each method in Table 3.2. Grasping failures

are rare for most methods on 1-layer grasping; grasping failures can occur if the robot

does not robustly grip the cloth, and cloth slips out of the grasp when the robot lifts

it (see Fig. 3.5). Our method (Feedback-Tactile), also has few prediction failures

when generalizing to unseen cloths compared to Feedback-Image.
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Cloth Type Method
Success Prediction Grasp

Attempts ↓
Rate ↑ Failure Failure

Gray Towel (Train)

Fixed-Open-Loop 7/10 - 3/10 1 (fixed)
Random-Image 6/10 1/10 3/10 5.3±3.0
Random-Tactile 4/10 4/10 2/10 6.0±3.0
Feedback-Image 9/10 0/10 1/10 4.7±0.9
Feedback-Tactile 7/10 1/10 2/10 6.4±2.6

White Towel (Generalization)
Feedback-Image 0/10 8/10 2/10 9.2±1.8
Feedback-Tactile 4/10 2/10 4/10 5.0±3.4

Patterned Cloth (Generalization)
Feedback-Image 0/10 10/10 0/10 10.0±0.0
Feedback-Tactile 1/10 3/10 6/10 6.4±3.6

Table 3.3: Experimental results for grasping at the top 2 cloth layers as described in
Sec. 3.5.3. Besides the change of 1 to 2 layers, the results are formatted in the same
way as in Table 3.2.

3.5.3 Grasping 2 Cloth Layers

In the next set of experiments, we evaluate grasping and lifting the top two layers of

cloth. The results in Table 3.3 suggest that the methods achieve success rates similar

to 1-layer grasping (Table 3.2) for the gray towel, but performance is lower on the

unseen cloths. While Feedback-Image performs slightly better than Feedback-Tactile

on the gray towel, Feedback-Tactile performs slightly better on unseen cloths.

Table 3.3 shows that both prediction and grasping failures lead to errors for our

method (Feedback-Tactile), though grasping failures are more common (accounting

for 2/3 of our total failures). The higher incidence of grasp failures by our method in

this experiment suggests that 2-layer grasping is more difficult than 1-layer grasping.

Fig. 3.7 highlights some challenges with grasping two layers; for example, we observe

that failures tend to occur due to crumpling the fabric when attempting to grasp 2

layers. Furthermore, the top layer of cloth can push downwards on the layer below

it, which reduces the gap between the second and third layers; this reduced gap can

make it difficult to grasp 2 layers. These observations and results suggest that further

innovation on grasp policies may be necessary to improve 2-layer grasp performance

on unseen cloths.
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Architecture Accuracy on Test Set
Vanilla LSTM 0.33
Bi-Directional LSTM 0.94
LSTM + CNN 0.98
MLP 0.24
1D CNN 0.72
GRU 0.55
GRU + CNN 0.96

Table 3.4: Variation of accuracy with different deep learning architectures.

3.5.4 Deep Learning based Tactile Classifiers

Here we evaluate Deep Learning based classifiers for the collected dataset. Note, we

do not evaluate the deep learning classifiers on the robot trials, thus we cannot do a

comparison between success rates using classical machine learning classifiers and deep

learning based classifiers. However we can compare the accuracies of the classical

classifiers compared to the deep learning based classifiers on the dataset collected to

train the classifiers. We perform this comparison in this section.

We test out Multi-Layer Perceptron networks, Convolution Networks and Multi Layer

LSTM networks as shown in table 3.4. Convolution Networks have the best results

among them but none of them beat classical machine learning based approaches. We

use 1 Dimensional convolution, across the time axis. Then we tested out Convolution

networks as the first layer, whose output is sent into an LSTM network. Effectively

the convolution network finds useful features over time, and the LSTM network using

these features makes predictions every timestep. This approach turns out to be

successful. We reach a very high accuracy of 98%, completely beating out all the

classical machine learning approaches on test accuracy with this network architecture

as shown in table 3.4. We find that the LSTM’s can be replaced with GRU’s with no

significant loss in performance. In table 3.5 we vary the number of hidden layers of

the CNN and check the accuracy on the test set. We find 4 CNN layers followed by 2

LSTM layers to be optimal in accuracy. In table 3.6, we vary the dimensions of the

hidden layer with accuracy on the test set and find a dimension of 256 to be optimal

in accuracy.
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LSTM+CNN Depth Layers Accuracy
1 0.88
2 0.96
4 0.96
8 0.94

Table 3.5: Variation of accuracy with number of layers in network architecture. The
number of LSTM layers is fixed at 2 as we see deterioration of performance with too
many layers. The number of CNN layers are varied as shown above.

LSTM+CNN Hidden Dimension Accuracy
256 0.96
512 0.95
128 0.92

Table 3.6: Variation of accuracy with the hidden layers dimension. The input is 5
dimensional, output is 1 dimensional and the hidden dimension of the CNN and the
LSTM is shown above.

Figure 3.7: A qualitative example of how the task is challenging, particularly with
grasping two layers. Because of the horizontal motion of the gripper, layers of cloth
can be pushed apart (left), creating air pockets between the top and second layer
after the action has finished (right). This gap makes it easier to grasp the top layer
but harder to grasp the top two layers, due to a smaller gap between the second and
third layers (see overlaid yellow circle).
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Chapter 4

Conclusions and Future Work

In this thesis, we present a robotic system that uses a magnetometer-based tactile

sensor for precisely grasping the desired layers of cloth given a stack of cloth. Our

broad approach can be categorized with 3 major steps:

• Collect a large amount of annotated Tactile Sensor Data.

• Train a classifier given the annotated dataset.

• Use the classifier in control algorithms.

. Thus in this work we train a classifier on 1 million+ data points that we collect

and label automatically. We use a plethora of classical machine learning algorithms

such as K Nearest Neighbours, Support Vector Machines and deep learning based

algorithms such as LSTM’s and CNN’s on learning the dataset. Finally we apply the

learnt classifier on a simple test time control algorithm in order to grasp the desired

number of layers of cloth. The test time control algorithm chooses a random height

and performs a grasp. Then it queries the classifier to find out the number of layers

of cloth grasped. If it grasped a lesser number of layers than the desired number,

we increase the height, else we decrease the height and so on. This simple method

proves to be quite capable in grasping 1 and 2 layers of cloth given a stack of cloth.

Crucially we compare our results to a vision baseline that instead of using a tactile

based classifier, uses a vision based classifier. The vision based classifier achieves

similar train and test accuracies on the dataset but fails to perform in real robot trials.

We see that the vision baseline struggles mainly in generalizing to cloths of different
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textures, colours and shapes, something the tactile sensor is capable of adapting

to. The vision baseline is also susceptible to changes in lighting and viewpoint that

reduce it’s performance relative to the tactile baseline.

Moving forward, we think there are a large variety of fine manipulation tasks that

can benefit from using tactile sensing as opposed to vision based sensing. One simple

example is riffing through pages of a notebook. This task seems unapproachable

using vision based sensing but might be fairly easy to do with a good tactile sensor

and dataset. Apart from this, we think there are big benefits available in accurately

simulating tactile sensors so that we can collect large amounts of annotated data in

simulation as opposed to in the real world. In simulation, it is very easy to collect

annotated data and thus we can broaden the range of possible fine manipulation

tasks that our robot can do with a good deformable object tactile sensing simulator.

Finally, we think there are possible improvements to be made to the tactile sensors

themselves. Juxtaposing with the human skin, our sensors fall short in resolution,

sensitivity and many other criteria. We think creating a human skin like tactile sensor

is one of the big impactful and hard problems that robotics researchers can tackle.
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Appendix A

Sensor Data Details

A.1 ReSkin Data Details

In Section 3.3.2, we describe the real-world procedure for collecting a training dataset

of ReSkin sensor readings. Each training episode lasts for about 5 seconds to complete

the approach, grasp, and release cycle. The grasp stage lasts for 1 second, resulting

in approximately 350 sensor readings of 15 values each (3 per magnetometer). We

filter out training episodes where no cloth was grasped. Combining all episodes into

a dataset results in a total of 18,838 ReSkin tactile sensor readings, each of which

is 15-D. The readings in the dataset are separated into training and validation sets,

grouped by episode to prevent data leakage. Thus, all time steps in one episode

are either all in training or all in validation. We train classifiers taking individual

readings as input and found that this input outperformed our baselines on the cloth

singulation task; classification on time-series inputs are a promising area of future

work.

A.2 Image Classifier Details

In Section 3.4.2, we introduce the Random-Image and Feedback-Image baseline

methods. These use images instead of tactile data, but the objective is the same: to

predict the number of cloth layers grasped. When collecting tactile-based data, we
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simultaneously collect image data, so the data collection time for image data is the

same as the time that was spent on collecting the Reskin data. We mount a webcam

approximately 30 cm away from the starting position of the ReSkin, which queries

images of the robot when it is collecting data. See Fig. 3.3 for examples of what the

RGB images look like.

The image classifier is an 18-layer ResNet [14]. We use an off-the-shelf ResNet-18

from PyTorch which has been pre-trained on ImageNet, and change the last layer to

output 4 dimensions instead of 1000. This results in a total of 11,178,564 trainable

parameters. The RGB input images are first cropped to 360 × 360 such that the

ReSkin sensor is located roughly in the middle, then images are further resized to

224× 224 before being passed as input to the ResNet.

There is about 7-8X more tactile data compared to image-based data because

the ReSkin can query data much faster than the webcam. This may be an inherent

advantage of the ReSkin sensor over most commercial webcams. To strengthen the

image-based baseline, we use data augmentation (which the tactile classifiers do not

use). In training, we employ random crops by selecting random 224 × 224 crops

within the 360× 360 image. We also use random horizontal flips. At test time, we

only use center crops for consistency. We train for 30 epochs, use a batch size of 64,

and optimize using Adam with learning rate 0.001.
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