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Abstract

Estimating terrain traversability in off-road environments requires rea-
soning about complex interaction dynamics between the robot and these
terrains. However, it is challenging to build an accurate physics model, or
create informative labels to learn a model in a supervised manner, for these
interactions. We propose a method that learns to predict traversability
costmaps by combining exteroceptive environmental information with
proprioceptive terrain interaction feedback in a self-supervised manner.
Additionally, we propose a novel way of incorporating robot velocity in
the costmap prediction pipeline. We validate our method in multiple short
and large-scale navigation tasks on a large, autonomous all-terrain vehicle
(ATV) on challenging off-road terrains, and demonstrate ease of integra-
tion on a separate large ground robot. Our short-scale navigation results
show that using our learned costmaps leads to overall smoother navigation,
and provides the robot with a more fine-grained understanding of the
interactions between the robot and different terrain types, such as grass
and gravel. Our large-scale navigation trials show that we can reduce the
number of interventions by up to 57% compared to an occupancy-based
navigation baseline in challenging off-road courses ranging from 400 m to
3150 m.
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Chapter 1

Introduction

1.1 Off-Road Autonomy

An estimated 65% of roads in the world are unpaved [39]. This accounts for about

14 million kilometers of unpaved roads, serving primarily rural areas and developing

nations. In the state of Pennsylvania alone, there exist more than 25,000 miles of

unpaved roads [45]. Off-road driving is not only encountered in specific applications

such as agriculture, mining, exploration, humanitarian operations, or search and

rescue, but it is also the de facto mode of transportation for a large number of people

to navigate from point A to point B. Additionally, off-road navigation not only refers

to driving on clearly marked, yet unpaved, roads. It extends to the challenge of

determining the traversability of any natural terrain, given the capabilities of a vehicle

or robot.

On paved roads, autonomous driving brings the promise of increased safety,

reducing emissions, improving accessibility for the mobility impaired, freeing up

human driving time, improving logistics, and more [70]. If we want to provide these

and additional benefits to the remaining 65% of roads, which are more equitably

distributed across different populations and industries, we also need to focus our

efforts towards off-road autonomy.

Off-road driving can refer to a wide spectrum of terrains and environments,

ranging from well-marked, packed-dirt roads, to sticky mud or sloshy surfaces caused

by melting snow. On top of the inherent challenges associated with driving over

1



1. Introduction

terrains that are hard to model, these terrains are also more likely to deterioate

based on environmental conditions: rain can create puddles and turn dirt into mud,

snow cover and fallen leaves can significantly affect how slippery the terrain is, and

vegetation can occlude the ground, potentially hiding obstacles or terrain features.

The lack of artificial structure means that we cannot simply apply the same on-road

autonomous driving algorithms across for off-road driving. As such, our long term

goal is to develop algorithms that allow traversability in off-road environments to be

learned in scalable ways, without human supervision, to enable off-road autonomous

driving to keep improving continually as more data becomes available.

1.2 Contributions

The work in this thesis describes improvements to the perception pipeline for off-road

autonomous navigation. The key philosophy behind this work is to allow robots to

learn properties of off-road terrains directly from data, without human labels. As

more data becomes available for the off-road driving task, we believe that methods

that can take advantage of multiple modalities and temporal information will scale

and perform better than methods that rely on human-annotated data, such as image

or point cloud segmentations. To this end, we propose a method to learn traversability

costmaps for off-road driving directly from the robot’s experience, leveraging cross-

modality supervision from inertial measurement unit (IMU) measurements. We

conduct real-world experiments to validate our approach on two robot platforms, a

Yamaha Viking All-Terrain Vehicle (ATV), and a Clearpath Warthog UGV. In this

thesis, we present the following main contributions:

1. We present a novel method for learning to predict continuous traversability

costmaps for off-road autonomous navigation in a self-supervised manner.

2. We demonstrate the importance of conditioning the costmaps on the robot’s

velocity.

3. We conduct extensive, real-world evaluation of this method on two robot

platforms in a variety of outdoor environments.

The remainder of this thesis is based on the following published works:

• How Does It Feel? Self-Supervised Costmap Learning for Off-Road Vehicle

2



1. Introduction

Traversability, Guaman Castro et al., published as a conference paper at ICRA

2023 [8] (Main Contribution).

• Learning Risk-Aware Costmaps via Inverse Reinforcement Learning for Off-

Road Navigation, Triest et al., published as a conference paper at ICRA 2023

[60] (Background).

• TartanDrive 1.5: Improving Large Multimodal Robotics Dataset Collection

and Distribution, Sivaprakasam et al., published as a workshop paper at the

Pre-Training for Robotics workshop at ICRA 2023 [50] (Conclusion).
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Chapter 2

Background

In this chapter, we provide a brief overview of the relevant parts of our autonomy

stack. In particular, we describe how we formulate the autonomous navigation

task in off-road driving as a trajectory optimization problem, and we introduce the

subcomponents which support this formulation, such as state estimation, costmap

generation, and our local controller.

2.1 Autonomy Pipeline

2.1.1 Problem Formulation

We cast off-road autonomous navigation as a trajectory optimization problem. In

our formulation, a trajectory τ consists of consecutive state and action pairs (xt, at)

at a given time step t. We define the components of xt and at below. The state at

time t+ 1 after taking an action at from state st is given by the dynamics function

f(xt, at). We then specify a goal position g in the robot’s local frame. The objective

is then to choose actions which optimize for the following objective:

min
a1:T−1

J(x1:T , a1:T−1)

s.t. xt+1 = f(xt, at)

5



2. Background

In order to direct where and how to reach the goal position, we define a cost

function J which, if minimized, informs the robot on how to get to the goal in

a particular manner. To specify a goal, we can define a cost function directly

proportional to the Euclidean distance to the goal from the current state, as follows:

cg = Kg||p(st)− g||2

.

In this cost function to the goal (cg), Kg is a scalar, p(st) is a function that

extracts the position of the robot from the state st, and g is the goal position.

In order to specify how to reach this goal, we use costmaps, which are a spatial

representation of the ground plane in which the robot operates, represented as a grid

of locations at a given resolution. Therefore, every position in the ground plane of

the robot belongs to a cell in the costmap. For a given state, we can query the cost

for that state’s cell in a costmap Jmap(st).

We can then define the optimization objective as a linear combination of the goal

and costmap costs, to specify where to go and how to get there:

J(τ) = J(x1:T , a1:T−1) =
T∑
t=1

[Jmap(st)] +Kg||(p(sT )− g)||2

2.1.2 State Estimation

Despite having GPS sensors in our pipeline, state estimation algorithms allow us to

estimate odometry more accurately. For state estimation, we use Super Odometry [71],

and since the main purpose of this thesis is not related to the specific state estimation

algorithm, we refer the reader to this work for more details. State estimation is most

pertinent to our costmap prediction problem in two ways:

1. It allows us to aggregate perceptual inputs from different time steps at a higher

resolution by enabling us to have precise motion transforms.

2. It allows us to track goal locations more accurately using our controller.

6



2. Background

2.1.3 Costmap Generation

A costmap is a spatial representation of 3D space that informs the costs of driving

over different areas of a ground plane, at a certain resolution (e.g. we can split the

ground plane into cells of area 1m2 and set costs for each of these cells). Traditionally,

costmaps specify which cells in a 2D plane are occupied, also called occupancy maps

[11, 15]. To obtain an estimate for whether a cell is occupied or not based on sensor

measurements, usually a height threshold is set, where everything above the threshold

is set to be occupied, and everything below is free space where the robot is free to

move. Then, occupied cells are assigned high costs in a costmap, and free cells are

assigned zero cost in a costmap. It is common to inflate these costmaps to encourage

robots to maintain a safe distance to obstacles.

One way to make costmaps more expressive than simply denoting occupation is to

assign different costs to different types of terrain. Recent work has looked into using

semantic classifiers from visual data to label different regions of 3D space, and assign

hand-picked costs to each of the different classes [38]. However, this relies on the

assumption that there are a limited number of terrain classes and that costs are fixed

for each of these classes, limiting their expressivity. In this thesis, we explore the idea

of learning costmaps for terrain traversability directly from the robot’s experience as

sensed through proprioception sensors, such as IMU.

2.1.4 Vehicle Model

Estimating a dynamics model for off-road driving is a challenging task, given the

variability of the environment and the complex robot-terrain interactions given by

the nature of the robot. However, we can approximate the dynamics function of an

Ackermann-steered robot using a simple kinematic bicycle model (KBM). This model

does not consider at all any of the forces involved in the robot-terrain interactions,

such as the effect of mud or the dampening of the robot’s shocks. Yet, this model

is popularly used in off-road driving as it is sufficiently effective in practice [40, 60].
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The basic formulation for a KBM is the following:

x =

pxpy
θ

 , u =

[
v

δ

]
, ẋ =

v cos(θ)v sin(θ)
v tan(δ)

L


In this equation, px and py correspond to position in the x and y axes, θ is the

robot’s yaw, v is the robot velocity, δ is the steering angle, and L is the vehicle’s

wheelbase.

This formulation assumes that the velocities and steering angles can be changed

instantaneously. This assumption does not hold in many real-world settings due to

actuator delays, so we modify the KBM to use desired velocity and steering using

proprotional controllers with appropriate gains, as follows:

x =


px

py

θ

v

δ

 , u =

[
vdes

δdes

]
, ẋ =


v cos(θ)

v sin(θ)
v tan(δ)

L

Kv(vdes − v)

Kδ(δdes − δ)



2.1.5 Controller

In this thesis, we mainly focus on model predictive path integral (MPPI) control, a

sampling-based formulation of model predictive control (MPC) [66]. This provides

us a controller that can handle non-convex cost functions, which fit our costmap

formulation. Additionally, we can control the latency of the controller on real hardware

by adjusting the number of samples used in the controller and the rollout length

considered for each sampled trajectory. We refer the reader to [66] for more details

on the controller.
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2.2 Learning from Unlabeled Data

In our setting, we aim to learn traverability costmaps from unlabeled datasets, which

are more scalable and easier to collect. In this section, we briefly describe some of

the philosophies behind this goal.

2.2.1 Learning from Demonstrations

In order to collect data for the off-road setting, a human must command the vehicle

in ways that already present the desiderata we would want in an autonomous driving

system. In other words, humans are already great at driving off-road, and if robots

exhibited the same behaviors, that would already solve a great part of the problem.

The key insight is that if humans are great at driving off-road, and humans have to

teleoperate the vehicle to collect data for learning-based algorithms, imitating the

human behavior from this data is a reasonable approach to solving the off-road au-

tonomous driving problem. There is extensive theory in learning from demonstrations

[43, 46, 52, 55, 56], including imitation learning, learning from interventions, and

inverse reinforcement learning.

In work led by my labmate Sam Triest [60], we consider the task of learning to

predict uncertainty-aware traversability costmaps directly from the human teleop-

erations using inverse reinforcement learning. Intuitively, under this formulation,

the robot learns where to drive based on the inherent preferences of the humans

who collected the dataset. In order to allow the user to control the risk-tolerance

levels that the autonomous robot should exhibit, we formulate uncertainty using

conditional value at risk (CVaR) via an ensemble of models. Although much of the

work in this literature requires learning from expert demonstrators, we empirically

show that by simply learning from the potentially suboptimal preferences shown

by the human teleoperators during data collection, we are able to improve off-road

navigation significantly. For more details, please refer to [60] .

2.2.2 Self-Supervision and Cross-Modal Supervision

In this thesis, we are mainly concerned with learning to predict traversability costmaps

by taking advantage of the multimodal and temporal nature of the data collected
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by the many sensors on our robot. While exteroceptive sensors such as lidar and

cameras provide rich information about the environment, proprioceptive sensors, such

as IMUs and wheel encoders, provide direct measurements of the effect of the terrain

on the vehicle. The main body of this thesis will describe this approach in detail.

2.3 On-Road vs Off-Road Autonomy

In this thesis, we consider the problem of autonomous off-road autonomy. While a

significant amount of effort has contributed to great strides in autonomous driving

in the last decades, most of these efforts have been focused on on-road driving.

Many of the advances in on-road autonomous driving can be attributed to industry

research and their ability to collect large amount of annotated data [6, 54, 67].

These large, annotated datasets have enabled state-of-the-art algorithms in bird’s-

eye-view (BEV) mapping [32, 33], 3D object detection and tracking [34, 69], and

motion prediction [23, 42], among other problems. A great part of what makes

on-road autonomous driving challenging is the existence of multiple agents in a

shared environment — including pedestrians, cyclists, and other vehicles — as well

as the extreme low-risk tolerance to ensure that autonomous vehicles do not pose

risks to other road users. This makes problems such as object detection and motion

forecasting important, leading to object-centric solutions to these problems, such

as achieving high segmentation-accuracy for other road users so that they can be

appropriately avoided.

Off-road autonomous driving poses fundamental and practical challenges that

differentiate it from its on-road counterpart. Off-road autonomous driving deals with

navigation in environments with a lack of artificial structure, such as roads, lanes,

and expected objects in the road. Instead, in these types of environments is no longer

clear where to drive, and subtle differences in the environment can drastically affect

the effects on the vehicle. This means that off-road autonomous robots need to reason

about the traversability properties of different types of terrain. The robot-terrain

interaction is determined both by the nature of the terrain as well as the capabilities

of the robot. In off-road environments, robots are bound to encounter challenging

terrains such as gravel, rugged roads, vegetation, water, mud, ice, and a diverse array

of smaller objects such as logs, pebbles, etc. A large, off-road side-by-side vehicle can
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likely navigate over most of these terrains. An even larger tank may be able to even

push down trees to make its way, while a small off-road RC car may not even be able

to traverse over tennis ball-sized pebbles.

One of the main practical challenges is the lack of publicly available, large datasets

to train machine learning models for off-road autonomy. In the last couple of years,

some datasets for off-road driving have been released [24, 28, 51, 59, 65]. However,

these datasets tend to be lacking in amount of data, diversity of locations where

the data is collected, or lack of important modalities and annotations. Yet, even if

we had large amounts of data, it is unclear how to annotate this data for off-road

autonomy. For instance, compliant bushes and vegetation may be easily traversable,

but the similar vegetation with rocks hidden underneath this vegetation may cause

damage to the vehicle if traversed over. These fundamental and practical challenges

exemplify the need to rethink perception, planning, and control methods for off-road

autonomous vehicles. This thesis is mainly concerned with the perception aspect of

the off-road autonomous driving problem.
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Chapter 3

How Does It Feel? Self-Supervised

Costmap Learning for Off-Road

Vehicle Traversability

3.1 Introduction

Outdoor, unstructured environments are challenging for robots to navigate. Rough

interactions with terrain can result in a number of undesirable effects, such as

rider discomfort, error in state estimation, or even failure of robot components.

Unfortunately, it can be challenging to predict these interactions a priori from

exteroceptive information alone. Certain characteristics of the terrain, such as slope,

irregularities in height, the deformability of the ground surface, and the compliance of

the objects on the ground, affect the dynamics of the robot as it traverses over these

features. While these terrain characteristics can be sensed by proprioceptive sensors

like Inertial Measurement Units (IMUs) and wheel encoders, these modalities require

direct contact with the terrain itself. Additionally, the robot’s interaction with the

ground leads to dynamic forces which are proportional to velocity and suspension

characteristics. In order to feel what navigating over some terrain at some velocity is

like, we argue that the robot must actually traverse over it.

Previous approaches for off-road traversability have focused on representing ex-
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Figure 3.1: We present a costmap learning method for off-road navigation. We
demonstrate the efficacy of our method on a large ATV (left), and on a Warthog
UGV robot (right).

teroceptive information as occupancy maps [13, 16], or learning semantic classifiers

from labeled data to map different terrains to different costs in a costmap [26, 38].

Yet, this abstracts away all the nuance of the interactions between the robot and

different terrain types. Under an occupancy-based paradigm, concrete, sand, and

mud would be equally traversable, whereas tall rocks, grass, and bushes would be

equally non-traversable. In reality, specific instances of a class may have varying

degrees of traversability (e.g. some bushes are traversable but not all).

Other approaches have characterized terrain roughness directly from geometric

features [17, 30, 31]. Yet, what we are really interested in capturing is roughness

as the vehicle experienced it, rather than capturing the appearance or geometry of

roughness. For instance, a point cloud of tall grass might appear rough, but traversing

over this grass could still lead to smooth navigation if the terrain under the grass

is smooth. Finally, other learning-based methods learn predictive models or direct

control policies for off-road navigation [25]. However, many of these do not take

into account robot dynamics, which are fundamental in scenarios where the state of

the robot, such as its velocity, can lead to a wide range of behaviors. For instance,

speeding up before driving over a bump in the terrain can lead to jumping, whereas

slowing down will usually result in smoother navigation.

In this paper, we propose a self-supervised method that predicts costmaps that

14



3. How Does It Feel? Self-Supervised Costmap Learning for Off-Road Vehicle
Traversability

reflect nuanced terrain interaction properties relevant to ground navigation. Motivated

by examples in legged locomotion [64], we approach this problem by learning a mapping

from rich exteroceptive information and robot velocity to a continuous traversability

cost derived from IMU data. We propose a learning architecture which combines a

CNN backbone to process high-dimensional exteroceptive information with a feed-

forward network that takes in a Fourier parameterization of the low-dimensional

velocity information, inspired by recent advances in implicit representation learning

[41, 57].

Our main contributions are: a) learning to aggregate visual, geometric, and velocity

information directly into a continuous-valued costmap, without human-annotated

labels, and b) demonstrating ease of integration into traditional navigation stacks

to improve navigation performance, due to our choice of using a top-down metric

representation. In the rest of this paper, we present our contributions in more detail

as follows:

• We present an IMU-derived traversability cost that can be used as a self-

supervised pseudo ground-truth for training.

• We demonstrate a novel way to combine low-dimensional dynamics information

with high-dimensional visual features through Fourier feature mapping [57].

• We propose a system that produces continuous-valued learned costmaps through

a combination of visual and geometric information, and robot velocity.

• We validate our method on outdoor navigation tasks using two different ground

robots.

3.2 Related Work

There exists over a decade of work in learning methods for off-road traversability

[3, 4, 10, 19, 21, 29, 53], much of which can be traced to the DARPA LAGR [22]

and Grand Challenge [58] programs. These methods learned lightweight terrain

traversability classifiers based on visual and geometric appearance [3, 4, 19, 21, 29, 53].

Other approaches directly estimate a terrain roughness score by analyzing planarity

[30] or eigenvalues of the terrain point cloud [31].

Much of the recent literature on learning for off-road traversability estimation
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has focused on semantic segmentation of visual data into discrete classes [35, 38].

However, it is not immediately obvious how to map human semantic classes into

costs that can be directly used for path planning and control, which often results in

hard-coded mappings. More recent work by Shaban et al. [48] aims to alleviate the

need for explicit mappings from human semantic classes to costs by directly learning

discrete traversability classes, such as low-cost and high-cost, in a metric space from

geometric data. Yet, these approaches require a large amount of labeled semantic

data for training, and lack expressiveness given the limited number of traversability

classes.

Recently, other works have looked into learning predictive models, control policies,

and risk-aware costmaps directly from visual and multimodal inputs for navigation

in challenging off-road environments. While BADGR-based methods [25, 49] learn

a boolean predictor for whether a specific sequence of actions will lead to a bumpy

trajectory, we learn a continuous value for traversability that is aggregated into a

costmap that can be used directly to optimize trajectories, without the need to query

the network for every sample of our MPPI optimizer [66]. Triest et al. [59] learn a

neural network-based dynamics model for a large ATV vehicle and explore the use of

different types of multimodal data as input to their neural network. Sivaprakasam

et al. [50] learn a dynamics model in simulation to derive a dynamics-aware cost

function for downstream planning tasks. Fan et al. [12] learn a traversability risk

costmap from lidar data, and Cai et al. [7] learn a speed distribution map that is

converted into a costmap using a conditional value at risk (CVaR) formulation. Triest

et al. [60] learn CVaR-based uncertainty-aware traversability costmaps from lidar

data using inverse reinforcement learning.

Most recently, traversability estimation for off-road robots has shifted towards

learning continuous costmaps in a self-supervised manner with IMU signals as learning

targets, with these methods learning from RGB data [47, 64, 68], or point clouds [61],

and [47, 61] conditioning on robot speed similar to our approach. We use both RGB

and point cloud data in our approach to generate high-resolution, continuous costmaps,

and we demonstrate our approach in large-scale, challenging off-road courses at much

higher speeds on two different large robot platforms.
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3.3 Costmap Learning

We now introduce our self-supervised costmap learning method, which associates

a proprioception-derived cost to high-dimensional visual and geometric data, and

robot velocity. In the following section, we will describe our costmap learning pipeline

(Figure 3.2), which consists of:

1. Derivation of a cost function from proprioception,

2. Extraction of a map-based representation from visual and geometric data,

3. Representation of velocity as an input to our model, and

4. Training a neural network to predict traversability cost.

Figure 3.2: System Overview: During training, the network takes in patches
cropped from a top-down colored map and height map along the driving trajectory,
as well as the parameterized velocity corresponding to each patch. The network
predicts a traversability cost for each patch, supervised by a pseudo ground-truth cost
generated from IMU data. During testing, the whole map is subsampled into small
patches, which are fed into the network to generate a dense, continuous costmap.

3.3.1 Pseudo-Ground Truth Traversability Cost

We aim to learn a continuous, normalized traversability cost that describes the

interactions between the ground and the robot, and which can be directly used for

path planning. As shown in previous work [10, 53, 64], linear acceleration in the z axis,
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as well as its frequency response, capture traversability properties of the environment

that not only depend on the characteristics of the ground, but also on the speed

of the robot. To obtain a single scalar value that generally describes traversability

properties of the terrain, such as the roughness, bumpiness, and deformability, we

use the bandpower of the IMU linear acceleration of the robot in the z axis:

ĉ =

∫ fmax

fmin

SW
az (f) df, (3.1)

where ĉ is our estimated traversability cost, SW
az is the power spectral density

(PSD) of the linear acceleration az in the z axis, calculated using Welch’s method [63],

, and fmin and fmax describe the frequency band used to compute bandpower. We use

a frequency range of 1-30 Hz, since this range highly correlates with human-labeled

roughness scores, and normalize based on data statistics from recorded trajectories,

as detailed in the Appendix.

3.3.2 Mapping

We represent the exteroceptive information about the environment in bird’s eye view

(BEV), which allows us to aggregate visual and geometric information in the same

space, which we refer to as the “local map.” We use a stereo matching network [9]

to obtain a disparity image, from which we estimate the camera odometry using

TartanVO [62], a learning-based visual odometry algorithm. We use this odometry

and the RGB data to register and colorize a dense point cloud which we then project

into a BEV local map. The local map consists of a stacked RGB map, containing the

average RGB value of each cell, and a height map, containing the minimum, maximum,

mean, and standard deviation of the height of the points in each cell, ignoring all

points 2 meters above the ground surface to deal with overhangs. Additionally, we

include a boolean mask that describes areas in the local map for which we have no

information, either due to occlusions or limited field of view of the sensors.

3.3.3 Velocity Parameterization

At high speeds, rough terrain leads to higher shock sensed by the vehicle, proportional

to its speed, as explored in [53]. We obtain velocity-conditioned costmaps by including
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robot velocity as an input to our network.

In order to balance the high-dimensional local map input and the low-dimensional

velocity input, we use Fourier feature mapping [57] on the robot’s velocity. Recent ad-

vances in implicit neural representations have shown that mapping a low-dimensional

vector (or scalar) to a higher dimensional representation using Fourier features can

modulate the spectral bias of MLPs (which is usually biased towards low-frequency

functions [44]) towards higher frequencies by adjusting the scale of the Fourier fre-

quencies. Intuitively, we hypothesize that this parameterization lets the netwrok

learn a function that more readily adjusts to subtle changes in velocity input, and

prevents the network’s predictions from being dominated by the high-dimensional 2D

inputs. We use the following parameterization:

γ(v) =



cos(2πb1v)

sin(2πb1v)
...

cos(2πbmv)

sin(2πbmv)


(3.2)

In Equation 3.2, v corresponds to the norm of the 3D velocity vector, bi ∼ N (0, σ2)

are sampled from a Gaussian distribution with tunable scale σ, and m corresponds to

the number of frequencies used to map the scalar velocity value into a 2m dimensional

vector.

3.3.4 Costmap Learning

Our costmap learning pipeline consists of three parts: a) obtaining local map patches

from robot trajectories, b) training a network to predict traversability costs from a

set of patches and associated pseudo ground-truth labels, and c) populating a cost

map using the trained network at test time.

Local Map Patches: We extract 2x2 meter patches (roughly the robot footprint)

of the local map corresponding to the parts of the environment that the robot traversed

over during the dataset generation. Since the patch under the robot is not observable

from a front-facing view, we first register all the local maps into an aggregated map.

We use the robot odometry to locate and extract the patch in the global map at
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a given 2D position and orientation. At each of these positions, we use a sliding

window of the last one second of IMU linear acceleration data to obtain a pseudo

ground-truth traversability cost as described in Section 3.3.1. We also record the

velocity at these positions for training.

Cost Learning: We train a deep neural network fθ(P, v) parameterized by

weights θ, as shown in Figure 3.2, that takes in as input local map terrain patches

P ∈ P and corresponding Fourier-parameterized velocities γ(v), γ : R+ → R2m, and

predicts the traversability cost of each patch ĉ = fθ(P, γ), fθ : P × R2m → R+. We

use a ResNet18 [20] backbone to extract features from the patches, and a 3-layer

MLP to extract features from the parameterized velocity. Finally, we concatenate

these features and pass them through a fully-connected layer with sigmoid activation

to obtain a normalized scalar value representing the learned traversability cost. We

train this network using a Mean Squared Error (MSE) loss between the predicted

costs and the pseudo ground-truth values using the Adam [27] optimizer.

Costmap Prediction: We produce costmaps at test time by taking the current

local map in front of the robot, extracting patches at uniformly sampled positions

(with the same orientation as the robot’s current orientation), and passing them

into the network. We then reshape each of the cost predictions into a costmap that

corresponds to the original local map. We find that it is important to add a stride in

the sampling process to allow the patch cost querying through the network to run

in real time. In our experiments, we subsample the local map with a stride of 0.2m,

and upsample the reshaped predicted cost values back to the shape of the local map,

which allows us to produce costmaps at 7-8 Hz on an onboard NVIDIA GeForce RTX

3080 Laptop GPU.

3.4 Experimental Results

3.4.1 Training Data

To train our network, we use TartanDrive [59], a large-scale off-road dataset containing

roughly 5 hours of rough terrain traversal using a commercial ATV with a sensor suite.

We use the stereo images in the dataset to obtain dense point clouds using TartanVO

[62] (section 3.3.2), as well as the IMU and odometry data to obtain traversability
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costs and velocities, respectively. In order to effectively train our network, we find it

necessary to augment and balance the data with respect to the pseudo ground-truth

traversability cost. We enforce a 2:1 ratio of high to low cost frames, resulting in

15K training frames, and 3K validation frames. Additionally, we fine-tune the base

model with 9.5K training frames and 1.3K validation frames collected on the Warthog

platform for our Warthog experiments.

3.4.2 Navigation Stack

We validate our learned costmaps in off-road navigation tasks, where the goal is to

navigate to a target location. For state estimation, we use Super Odometry [71] on

the commercial ATV and a pose graph-based SLAM system on the Warthog [18]. For

path planning and control, we use model predictive path integral control (MPPI) [66].

We plan through a kinematic bicycle model with actuator limits on both the ATV and

the Warthog. In order to obtain costs that can be used for the MPPI optimization

objective, we query the learned costmap via Equation 3.3. This cost function queries

the costmap for each state-action pair in the trajectory τ and sums it with a weighted

Euclidean distance between the final state and the goal g (where p(s) extracts the

x-y position of state s). Since our learned costmap only learns costs for parts of the

terrain it has driven over, it will not know what cost to assign to obstacles that the

robot is incapable of traversing over. We alleviate this by composing our learned

costmap with a lethal height costmap for obstacle avoidance (with a high threshold),

resulting in costmap Jmap. Kg is found empirically.

J(τ) =
T∑
t=0

[Jmap(st, at)] +Kg||(p(sT )− g)||2 (3.3)

3.4.3 Robot Platforms

We demonstrate our system on two different ground robots autonomously operating

at 3 m/s: a large all-terrain autonomous commercial vehicle (ATV), and a Clearpath

Warthog robot [1], a large unmanned ground vehicle (UGV). For more hardware

details, please see our Appendix.
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Figure 3.3: Learned Traversability Costmaps: a), b), and c) show the robot’s front-
facing view, the corresponding RGB map, and the predicted costmap respectively. d),
e), and f) show a manually annotated version of a), b), and c) for easier visualization
of the different traversability properties that our costmap captures. We set the
unknown regions to have a cost of 0.5 as shown in c), which we mask out in f).
Brighter shades of pink correspond to higher cost regions, and darker shades of purple
correspond to lower cost regions.

3.4.4 Results

In our experiments, we are interested in answering the following questions:

1. Do our learned costmaps capture more nuance than the baseline lethal-height

costmaps?

2. How much of an effect does velocity have in our predicted costmaps?

3. Do we obtain more intuitive behaviors and better navigation performance using

learned costmaps inside a full navigation stack?

4. How well does our method transfer to other robots?
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Roughness Estimator Val. Loss (×10−2)
σz[14] + v 6.08

σz[14] + RGB + v 5.92
Ours 4.82

Table 3.1: Comparison to other appearance-based roughness estimators. Our method
outperforms both a geometric, as well as a geometric and visual roughness estimators.

Do learned costmaps show more nuance?

To observe trends in the learned costmap, we tele-operated the ATV around our

test site and visually analyzed the predicted costmaps in different environments. We

observe that our learned costmaps are able to estimate different costs for terrains

of the same height but with different traversability properties. In Figure 3.3, we

show a scenario with gravel, smooth dirt, and vegetation, where our costmap predicts

different costs for these different terrains.

We notice some particular trends in our experiments. Transitions in texture from

one terrain to another are usually discernible in our costmaps. Terrains covered in

grass exhibit a higher cost than smooth dirt paths. Finally, terrains with higher

frequency textures, such as large patches of gravel, are predicted to have higher costs

than smooth terrains.

Does velocity affect the predicted costmaps?

We evaluate whether adding velocity as an input to our network improves the loss

achieved in the validation set. We analyze three different models:

1. patch-model: just the ResNet backbone for patch feature extraction.

2. patch-vel-model: combines the ResNet backbone with an MLP to processes

normalized velocity.

3. patch-Fourier-vel-model: combines the ResNet backbone with an MLP that

processes Fourier-parameterized normalized velocity.

Training results for all three models and ablations are shown for five random

seeds in the Appendix. We find that adding velocity as an input to the network

leads to better performance than using local map patches alone, and that the

patch-Fourier-vel-model performs best as measured by the validation loss. Our
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ablations show that using both RGB and height statistics performs slightly better

than using just RGB, and that the scale and number of frequencies used for Fourier

parameter mapping of velocity do not make much of a difference.

We compare our method with two appearance-based roughness baselines to

evaluate whether our network captures more accurately the robot-terrain interactions.

The first baseline characterizes roughness as the standard deviation of height in a

given patch [14]. We extend this metric with the average RGB values in a patch for

our second baseline. For a fair comparison, we add normalized velocity as an input to

both baselines. We learn the weights for a linear combination of these inputs through

logistic regression. We compare with our best learned model in the validation set

(Table 3.1).

We also evaluate the effect of robot speed in the predicted costmaps in a real-

robot experiment. In this experiment, we command the ATV different velocities and

aggregate the average predicted cost over a straight 200 m trail with similar terrain

characteristics throughout. Additionally, we integrate the sum of costs of the entire

costmap (energy) along the trajectory. We summarize the results in Table 3.2, and

show the resulting costmaps predicted at different velocities in Figure 3.4. We find

that traversability cost and overall costmap energy generally increase as robot speed

increases.

Figure 3.4: Costmaps at different velocities, as predicted by the patch-Fourier-vel
model. The left block shows front-facing image, lethal-height costmap, and a top-
down RGB map. The right block shows four costmaps of the same scenario at
increasing speeds. Brighter means higher cost. Higher cost at the top of the costmaps
is produced by artifacts in registration.

Do learned costmaps improve short-scale navigation?

We deploy our learned costmaps within a full navigation stack in two different

navigation tasks, and compare the performance against a navigation stack which
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Velocity Pred. Traj. Cost GT Traj. Cost Costmap Energy
3 m/s 0.093 0.038 0.185
5 m/s 0.163 0.055 0.250
7 m/s 0.201 0.084 0.289
10 m/s 0.195 0.106 0.266

Table 3.2: Effect of velocity on the predicted costmap in a real-robot experiment.
Higher speeds generally result in higher costs, both on the robot’s trajectory and
the costmap as a whole. Note that while the IMU-based ground truth cost increases
monotonically as velocity increases, the predicted cost stops increasing after 7 m/s
likely due to lack of enough training data at higher speeds.

uses just a baseline geometric occupancy-based costmap. When using our learned

costmaps, we compose them with the occupancy-based costmap to provide basic

obstacle avoidance capabilities. We set the lethal height to be 1.5 m and all unknown

regions to have a cost of 0.5 for all experiments.

We set up two navigation courses for the ATV, ATV-Warehouse (Figure 3.5)

and ATV-Pole, where the task is to simply move 400m and 200m straight ahead,

respectively. We design these controlled courses such that a straight path would lead

the robot to go over rougher terrain or patches of vegetation, but reasoning about

the terrain would lead the robot to take a detour to stay on smoother trails. For

ATV-Warehouse, we run five trials with our learned costmap and five trials with the

baseline costmap, and for ATV-Pole, we run three trials for each costmap.

The baseline costmap leads the robot to navigate in a straight line (with some

noise), which leads straight into the patch of vegetation. Additionally, this baseline

stack leads to less consistent navigation, which occurs because most of the terrain

in front of the robot appears to be “traversable,” since there are no obstacles above

the 1.5 m lethal height, which leads to many different “optimal” paths. On the other

hand, our learned costmaps cause the robot to consistently navigate around the patch,

staying on marked paths, and even moving away from parts of the path with gravel

towards smoother sections of the trail.

We measure the cross-track error (CTE) as a way of measuring the deviation of

the chosen path from a näıve, straight path to the goal. In this case, lower is not

necessarily better, since the experiment is explicitly designed for the robot to deviate

from the straight path to find the smoother trails if it is able to reason about different
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Figure 3.5: Short-scale navigation experiment (ATV-Warehouse). When using our
costmap, the robot deviates from the straight path to the goal and chooses the
smoother dirt path (e) over the patch of vegetation (d) to get to the goal. a) Sketch
of the trajectories taken when using the baseline stack (blue) and our stack (red).
The green square is the start position, and the pink cross is the goal position. One
trajectory ends in an intervention (triangle) due to the robot taking an equally-smooth
dirt path to avoid the grass. b), d), and e) show front-facing views at those points in
the trajectory. c) shows all trajectories, as well as the direct path to the goal (black).

terrains. We show the preferred paths in Figure 3.5, and numerical results in Table

3.3. The results for the ATV-Warehouse experiment are shown in Figure 3.6, and the

results for the ATV-Pole experiment are shown in Figure 3.7). Below, we describe

these two experiments in more detail.

ATV-Warehouse: In this experiment, there was a patch of grass directly in front

of the robot, and there were two smoother dirt paths at each side. As seen in Figure

3.6a, in most cases, the robot running our learned costmaps took the dirt path to the

Course Nav. Stack Avg. CTE (m)

ATV-Warehouse Baseline 1.29± 1.02
ATV-Warehouse HDIF (Ours) 3.39± 0.94

ATV-Pole Baseline 2.44± 2.25
ATV-Pole HDIF (Ours) 2.68± 0.41

Table 3.3: Avg. Cross-track error (CTE) between planned paths and the shortest
path to goal. Learned costmaps resulted in trajectories that deviated more from the
shortest path to avoid areas of higher cost, e.g. grass or gravel.
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right of the patch of grass. In one occasion, the robot took the path to the left. While

at first this avoided the patch of grass, eventually the robot needed to cut into the

patch to get to the goal. This run was stopped early due to an intervention to prevent

damaging the robot. When using the baseline costmap, the robot consistently drove

straight over the patch of grass. We ran the navigation course five times for each

costmap. As observed from the cross track error in Figure 3.6b, the robot consistently

takes a path that strays away from the nominal path to go over smoother terrain.

(a) Paths taken by the robots. Nominal tra-
jectory (black) represents the straight
path between the origin and the goal.

(b) Average cross-track error between the
nominal trajectory and each of the paths
taken by the robot over time.

Figure 3.6: ATV-Warehouse experiment.

ATV-Pole: In this experiment, there was also a patch of grass in between the

robot and its goal, with two dirt paths surrounding it. However, the dirt paths

were also bordered with loose gravel. As seen in the supplemental video, the robot

identifies both the grass and the loose gravel as having higher cost than the smooth

dirt path, which leads the robot to avoid it. Figure 3.7a shows the paths that the

robot took. One of the baseline runs was stopped early to prevent damage to the

robot. We ran the navigation course three times for each costmap.

Do learned costmaps improve large-scale navigation?

To provide a direct measurement of navigation performance, we set up three large

scale navigation experiments in three challenging off-road courses, with waypoints

every 50 m, and measure our navigation performance using number of interventions,

as is common practice [5, 30].
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(a) Paths taken by the robots. Nominal tra-
jectory (black) represents the straight
path between the origin and the goal.

(b) Average cross-track error between the
nominal trajectory and each of the paths
taken by the robot over time.

Figure 3.7: ATV-Pole experiment.

Figure 3.8: Overview of large-scale navigation experiments. The leftmost figure shows
a satellite view of the three courses: red, blue, and green. The top row shows sample
aerial views of the courses, while the bottom row shows sample first-person robot
images. The color of the rectangle around the picture denotes the course.

Red Course: The red course consists of flat forest trails of finer gravel, with

vegetation on the sides of the trails. One of the main challenges of this 400 m trail is

that it has a couple of tight turns, which are challenging for both the baseline and

our proposed navigation stack.

Blue Course: This 3150 m course consists of flat and hilly terrain, which ranges

from smooth gravel to large pebbles, notably in the sloped sections. Additionally,

part of the course is covered in vegetation about 1 m tall.

Green Course: The main challenge of this 900 m trail is that about half the

trail is covered in tall vegetation.
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Navigation Stack Course Interventions Course Length (m)

Baseline Red 7 400
HDIF (Ours) Red 3 400

Baseline Blue 9 3150
HDIF (Ours) Blue 6 3150

Baseline Green 11 950
HDIF (Ours) Green 7 950

Table 3.4: Number of interventions (lower is better) in three large-scale navigation
courses with varying degrees of difficulty and different types of environment features,
such as slopes, vegetation, and tight turns. Our How Does It Feel (HDIF) navigation
stack achieves lower number of interventions in all courses compared to the baseline
stack.

The safety driver was directed to only intervene when either: a) the robot missed a

waypoint by over 4 m, or b) a collision with a non-traversable obstacle was imminent.

These courses (Figure 3.8) include flat and hilly terrain, loose material ranging from

fine gravel to large cobbles, and vegetation of various dimensions. For both navigation

stacks, we set the target speed to 3.5 m/s, lethal height to 0.5 m and fill unknown

values of our costmap to 0.5. We observe that in all three courses, our navigation

stack with learned costmaps outperforms the baseline stack in terms of number of

interventions, as detailed in Table 3.4. Our learned costmaps lead the robot to stay

on smoother paths and avoid vegetation if possible, which leads to an overall decrease

in intervention events. In practice, this leads to the robot taking wider turns, staying

on clear paths, and avoiding rough features that lead to bumpy navigation, such as

large cobbles. We urge the reader to watch the videos for these experiments on our

website.

How well does our method transfer to other robots?

We set up two additional short-scale navigation experiments using the Warthog, with

a fine-tuned model as detailed in Section 3.4.1. We used a separate geometry-based

autonomy stack [2] as the baseline, and for our stack we simply composed their

lidar-based binary costmap with our learned costmap. Despite the Warthog being a

skid-steer robot, we treat it as if it had an Ackermann steering geometry, similar to

the ATV, since its cameras only face forward.
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UGV-Hill-Base-Right: In this experiment (Figure 3.9a), the Warthog robot

was given a GPS waypoint as a goal about 50 m diagonally to the right. This goal

was located along a concrete path that surrounds a patch of vegetation. The baseline

navigation stack immediately starts turning and navigates straight to the goal, going

over the vegetation, since it does not reason about the difference in traversability

properties between the smooth concrete and the grass. We ran a single trial using

the baseline, and five using our learned costmaps. As seen in Figure 3.9b, in all

five runs with our costmaps, the robot takes a longer path that deviates from the

nominal straight line path, avoiding the grass and instead taking instead the smoother

concrete path to the goal.

UGV-Forest-Fork: In this experiment (Figure 3.10a), the Warthog is placed

before a fork in a forest trail, where both sides of the fork lead to the same spot.

We artificially litter the left path of the fork with tree branches, rocks, and fallen

leaves. On the other hand, we clear the path on the right of all obstacles to make it

as smooth and possible. Note that none of the small obstacles on the left path would

be registered as lethal obstacles using a geometry-based lethal-height binary costmap.

We ran three trials with the baseline stack, and three trials with our costmap. When

using our costmaps, we first move the robot left-to-right in-place manually to fill in

the RGB map (since the visual range is shorter than that of the lidar-based baseline

stack). We observe that in all three runs, the robot prefers the smoother path to

reach the goal. The trajectories are shown in Figure 3.10b.

We observe that with the baseline stack, the robot uniformly chooses either of the

paths to get to a goal at the other end of the fork in the trail. On the other hand,

with our costmaps, the robot consistently chooses the clear path on the right to get

to the other side of the trail. Note that a visual semantic classifier would label both

of these trails as belonging to the same class, but the subtle differences in the features

of the trails cause different amounts of roughness.

In both experiments, it is clear that our costmaps lead the robot to choose

smoother paths by reasoning about the different traversability properties of different

terrains. We urge the reader to visit our website for experiment videos.
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(a) UGV-Hill-Base-Right experiment, where
the goal is about 50 m diagonally to the
right.

(b) Paths taken by the Warthog robot. Nom-
inal trajectory (black) represents the
straight path between the origin and the
goal.

Figure 3.9: UGV Warthog Hill-Base-Right experiment description and paths taken.

(a) UGV-Forest-Fork experiment, where the
goal is straight ahead.

(b) Paths taken by the Warthog robot. Nom-
inal trajectory (black) represents the
straight path between the origin and the
goal.

Figure 3.10: UGV Warthog Forest-Fork experiment description and paths taken.
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Chapter 4

Conclusions

4.1 Summary

In this work we present a costmap prediction system that predicts what the interactions

between the ground and the robot feel like based on environmental characteristics

and robot dynamics. To achieve this, we train a network that combines exteroception

and information about the robot’s velocity to predict a traversability cost derived

directly from robot proprioception. We demonstrate that our costmaps enable for

more nuanced and diverse navigation behaviors compared to a common baseline.

With this work, we hope to push the community towards methods that rely less on

human-annotated dataset, and, instead, make use of the multiple sensory modalities

in off-road vehicles and temporal correlations to estimate traversability.

4.2 Future Work

One drawback of our method is that it relies on good BEV mapping, which is very

sensitive to the ability of the stereo matching algorithm used to find correspondences.

One potential future line of work is to enable our method to also make use of front-

facing images for prediction, since these front-facing images are more reliable and

have longer range. Another weakness is that our predictions are made using patches

of terrain rather than the whole BEV map, which could be improved by predicting
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a costmap directly from the BEV local map. Finally, our method currently only

predicts traversability based on bumpiness, but other similar formulations could be

implemented for traversability in terms of slip, or modeling error.

Future work includes online adaptation for better generalization, uncertainty

estimation, as well as improved representations for exteroceptive data to overcome our

current perception limitations. One key aspect of using self-supervision or cross-modal

supervision is that this opens the door to learn models online, since they do not rely

on human annotated data. One interesting direction is to study the sample complexity

needed to learn local models that perhaps overfit to their current environment but

can keep adapting to any environment that the robot encounters. Finally, we have

begun work on collecting a larger dataset for off-road navigation to include more

modalities, such as lidar and voice annotations, as well as improved infrastructure for

training models with this dataset [51].

4.3 Impact

As mentioned at the beginning of this thesis, off-road driving, and more generally,

outdoor autonomy has the potential of improving the living conditions of large

amounts of the world population. It will also have significant impact in specific

applications such as agriculture and humanitarian operations. At the same time,

much of this technology has been historically used for defense applications. While

this is a significant funding source and consumer of this technology, we hope that

the people building upon this work consider applications that benefit humanity over

destructive technologies.
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Appendix

A.1 Traversability Cost Analysis

To decide the best frequency band for our traversability cost, we collect an evaluation

set of 220 5-second trajectories on our robot, spanning smooth, bumpy, sloped, and

grassy trails at different speeds. Each of these trajectories is annotated by three

human labelers with a score of 1-5 as to how traversable they were, with 5 meaning

most difficult to traverse. We calculate the correlation between the average human

score and different frequency ranges to tune the frequency range used in our cost

function. We found the best frequency range to be 1-30 Hz, which had a Pearson

correlation coefficient of 0.66, as shown in Figure A.1. Finally, we use the evaluation

set to obtain statistics that we use to normalize the traversability cost function

between 0 and 1.

A.2 Mapping

Our method relies on having a dense, colorized point cloud from which we can extract

corresponding color and height information about the environment. We experiment

with two different setups. When the robot contains a lidar which produces dense

point clouds, we can simply colorize these points using the RGB information from a

calibrated monocular camera. When the robot is not outfitted with a lidar, or the lidar
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Figure A.1: Correlation between the average of three human-labeled traversability
scores (1-5) and our IMU traversability cost function. There is a strong correlation
between the two scores, with a Pearson correlation coefficient of 0.66.

produces only sparse point clouds in the near-range, we use a stereo matching network

[9] to obtain a disparirty image, from which we estimate the camera odometry using

TartanVO [62], a learning-based visual odometry algorithm. We use this odometry

and the RGB data to register and colorize a dense point cloud which we then project

into a top-down view.

In our setup, we use a 12× 12 meter local map with a resolution of 0.02 meters.

This results in a 600× 600 cell local map consisting of eight channels: three channels

for RGB information, four channels containing the minimum, maximum, mean, and

standard deviation of the height of the points in each cell, and a channel describing
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Algorithm 1 Kinematic Bicycle Model

Current state s = [x, y, θ, v, δ] (position, orientation, velocity and steering angle), Con-
trol a = [vdes, δdes] (velocity and steering setpoints), Hyperparameters L (wheelbase),
Kv (velocity gain), Kδ (steer angle gain) Time derivative of state ṡ = f(s, a)

ṡ =


ẋ
ẏ

θ̇
v̇

δ̇

 =


vcos(θ)
vsin(θ)
vtan(δ)

L

Kv(vdes − v)
Kδ(δdes − δ)

 (A.1)

whether each cell in the local map is unknown. The dimensions of the local map

match the dimensions of the learned costmap that will be used directly for path

planning.

A.3 Robot Platform

We perform experiments on two different ground robots: a large, Yamaha Viking

side-by-side all-terrain vehicle (ATV) modified for autonomous driving by Mai et

al. [36], and a Clearpath Robotics Warthog unmanned ground vehicle (UGV). The

ATV contains a front-facing Carnegie Robotics Multisense S21 stereo camera, a

Velodyne Ultra Puck lidar, a NovAtel PROPAK-V3-RT2i GNSS unit providing IMU

data and global pose estimates, as well as an onboard computer with an NVIDIA

Geforce RTX3080 Laptop GPU. The Warthog UGV has two FLIR Blackfly S cameras

providing a stereo pair with an approximately 53cm baseline, an Ouster OS1-64

LiDAR, a Microstrain 3DM-GX5-35 IMU which provides linear acceleration data and

robot odometry measurements, and two Neousys Nuvo 7166GC onboard computers,

each with an Intel i9 CPU and NVidia Tesla T4 GPU.

A.4 Navigation Stack

The kinematic bicycle model for the ATV vehicle and the Warthog UGV is shown in

Algorithm 1.
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Model Train Loss (×10−2) Val. Loss (×10−2)

Random 22.0± 0.14 22.0± 0.14
Patch 4.0± 0.059 5.7± 0.43

Patch-vel 3.9± 0.074 5.2± 0.15
Patch-Fourier-vel 3.8± 0.09 5.0± 0.11

Table A.1: Training and validation losses for three different models with different
inputs. All models were trained with five random seeds. Adding velocity as an
input improves training results, and the model which includes Fourier-parameterized
velocity performs best (lower is better).

A.5 Training results

(a) Training loss curves. (b) Validation loss curves.

Figure A.2: Training and validation curves for the different model variations. Including
velocity as an input improves both training and validation loss, and including Fourier-
parameterized velocity achieves the best results.

We compared three models with different inputs: patch, patch-vel, and

patch-Fourier-vel. All of these models used the Torchvision [37] implementation

of ResNet18 [20], and were trained using the Adam optimizer [27]. The results are

shown in Table A.1. The training hyperparameters for all three models are specified

in Table A.2.

We performed an ablation on the inputs to the network to verify whether adding

height information improved performance over using just RGB data. As shown in
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Hyperparameter Value Model

Epochs 50 all
Learning Rate 3× 10−4 all

γ (Learning Rate Decay) 0.99 all
MLP Num. Layers 3 all
MLP Num. Units 512 all

CNN Embedding Size 512 all
m (Number of Frequencies) 16 patch-Fourier-vel

σ (Frequency Scale) 10 patch-Fourier-vel

Table A.2: Hyperparameters used in training three models: patch, patch-vel, and
patch-Fourier-vel.

Model Train Loss (×10−2) Val. Loss (×10−2)

RGB-Fourier-vel 4.0± 0.083 4.9± 0.06
Patch-Fourier-vel 3.8± 0.09 5.0± 0.11

Table A.3: Ablation over model inputs. RGB-Fourier-vel uses only the RGB local
map information, whereas Patch-Fourier-vel uses RGB and height statistics extracted
from the point cloud. Using both RGB and height information results in slightly
better performance in the training set, but comparable performance in the test set.

Table A.3, adding height statistics results in significant improvement at training time,

but similar performance at test time. We performed an additional ablation over the

parameters for our Fourier frequency parameterization and found that varying the

scale of Fourier frequencies does not change performance significantly, and neither

did varying the number of sampled frequencies m, as reported in Table A.4.

A.6 High-Resolution Examples

In this section, we show two high-resolution examples comparing the top-down RGB

map and the predicted costmap side-by-side, in Figures A.3 and A.4.
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Hyperparameter Value Train Loss (×10−2) Val. Loss (×10−2)

σ 1 3.8± 0.09 4.9± 0.06
σ 10 3.8± 0.09 5.0± 0.11
σ 100 3.7± 0.09 5.2± 0.17

m 8 3.8± 0.04 5.0± 0.24
m 16 3.8± 0.09 5.0± 0.11
m 32 3.8± 0.06 5.2± 0.37

Table A.4: Ablation over Fourier parameterization parameters. Each hyperparameter
choice was evaluated for 5 random seeds. Changing the scale of either the sampled
frequencies σ or the number of frequencies samlpled m did not significantly affect
performance.
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Figure A.3: Side-by-side comparison of front-facing view (top row), RGB map (bottom
left) and our predicted costmap (bottom right), with approximate hand-annotations
separating the different types of terrain. The white lines enclose the invalid regions,
the green lines enclose the regions with vegetation, and the blue lines enclose areas
with gravel in the terrain. The predicted costmap predicts a higher cost for grass and
gravel. Notice that gravel appears as a higher-frequency texture in the RGB map.
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Figure A.4: Side-by-side comparison of front-facing view (top row), RGB map (bottom
left) and our predicted costmap (bottom right), with approximate hand-annotations
separating the different types of terrain. The white lines enclose the invalid regions,
the green lines enclose the regions with vegetation, and the blue lines enclose areas
with gravel in the terrain. The predicted costmap predicts a higher cost for grass and
gravel. Notice that gravel appears as a higher-frequency texture in the RGB map.
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[37] Sébastien Marcel and Yann Rodriguez. Torchvision the machine-vision package
of torch. In Proceedings of the 18th ACM international conference on Multimedia,
pages 1485–1488, 2010. A.5

[38] Daniel Maturana, Po-Wei Chou, Masashi Uenoyama, and Sebastian Scherer.
Real-time semantic mapping for autonomous off-road navigation. In Field and
Service Robotics, pages 335–350. Springer, 2018. 2.1.3, 3.1, 3.2

[39] Johan R Meijer, Mark AJ Huijbregts, Kees CGJ Schotten, and Aafke M Schipper.
Global patterns of current and future road infrastructure. Environmental Research
Letters, 13(6):064006, 2018. 1.1

[40] Xiangyun Meng, Nathan Hatch, Alexander Lambert, Anqi Li, Nolan Wagener,
Matthew Schmittle, JoonHo Lee, Wentao Yuan, Zoey Chen, Samuel Deng,
et al. Terrainnet: Visual modeling of complex terrain for high-speed, off-road
navigation. arXiv preprint arXiv:2303.15771, 2023. 2.1.4

[41] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields
for view synthesis. In European conference on computer vision, pages 405–421.
Springer, 2020. 3.1

[42] Jiquan Ngiam, Vijay Vasudevan, Benjamin Caine, Zhengdong Zhang, Hao-
Tien Lewis Chiang, Jeffrey Ling, Rebecca Roelofs, Alex Bewley, Chenxi Liu,
Ashish Venugopal, et al. Scene transformer: A unified architecture for predicting
future trajectories of multiple agents. In International Conference on Learning
Representations, 2021. 2.3

[43] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network.

46



Bibliography

Advances in neural information processing systems, 1, 1988. 2.2.1

[44] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred
Hamprecht, Yoshua Bengio, and Aaron Courville. On the spectral bias of neural
networks. In International Conference on Machine Learning, pages 5301–5310.
PMLR, 2019. 3.3.3

[45] Roy Richardson. Dirt, gravel amp; low volume road maintenance
program. URL https://www.agriculture.pa.gov/Plants_Land_Water/

StateConservationCommission/DGRMP/Pages/default.aspx. 1.1
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