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Abstract

Legged robotics has seen significant advancements in locomotion. However,
there remain significant gaps compared to their biological counterparts,
particularly in energy efficiency, natural motion, and the capacity for agile
skills. This thesis primarily focuses on two aspects: the unified control of
legged manipulators and the development of novel control algorithms for
multi-skill quadrupeds.

The first study presents a strong counter to the standard hierarchical
control pipeline for legged manipulators, which is characterized by immense
engineering to support coordination between the arm and legs, often
resulting in non-smooth unnatural motions. In this work, we propose
to learn a unified policy for whole-body control of a legged manipulator
using reinforcement learning. We propose Regularized Online Adaptation
to bridge the Sim2Real gap for high-DoF control, and Advantage Mixing
exploiting the causal dependency in the action space to overcome local
minima during training the whole-body system. We also present a simple
design for a low-cost legged manipulator, and find that our unified policy
can demonstrate dynamic and agile behaviors across several task setups.

The second study dives further into the field where robotic quadrupeds
are still far behind their biological counterparts, such as dogs, which
display a variety of agile skills and can use the legs beyond locomotion to
perform several basic manipulation tasks like interacting with objects and
climbing. We train quadruped robots not only to walk but also to use the
front legs to climb walls, press buttons, and perform object interaction in
the real world. To navigate this challenging optimization, we decouple
the skill learning broadly into locomotion, involving movement whether
via walking or climbing a wall, and manipulation, involving using one
leg to interact while balancing on the other three legs. We also devise
a behavior tree that encodes a high-level task hierarchy from one clean
expert demonstration, thereby combining these skills into a robust long-
term plan. Finally, we apply a sim2real variant that builds upon recent
locomotion success to transfer these skills to the real world. Evaluations
in both simulation and real-world settings exhibit successful executions of
both short and long-range tasks, underscoring the robustness confronting
external perturbations.

Altogether, these studies signify substantial progress towards more dex-
terous, efficient, and robust legged robots.
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Chapter 1

Introduction

Locomotion has seen impressive performance in the last decade with results in

challenging outdoor and indoor terrains, otherwise unreachable by their wheeled or

tracked counterparts. However, there are strong limitations to what a legged-only

robot can achieve since even the most basic everyday tasks, besides visual inspection,

require some form of manipulation.

This has led to widespread interest and progress towards building legged manipu-

lators, i.e., robots with both legs and arms, primarily achieved so far through physical

modeling of dynamics. However, modeling a legged robot with an attached arm is a

dynamic, high-DoF, and non-smooth control problem, requiring substantial domain

expertise and engineering effort on the part of the designer. The control frameworks

are often modular where kinematic constraints are dealt with separately for different

control spaces, thus limited to operating in constrained settings with limited general-

ization. Learning-based methods, such as reinforcement learning (RL), could help

lower the engineering burden while aiding generalization to diverse scenarios.

While the attached arm can greatly expand the agility of legged robots, their

biological counterparts can already use their legs more generally to achieve some

manipulation tasks, without the extra burden of the arm. Indeed, locomotion and

manipulation can be seen as dual of each other and share evolutionary origins where

frontal legs evolved to become arms in bipeds. Providing robotic quadrupeds a similar

ability would not only push the agility of robotic locomotion but can also greatly

expand the reach as well as functionality even if there is an arm already attached on

1



1. Introduction

top of the quadruped.

In this thesis, we focus on expanding the agility of quadruped robots with manip-

ulation capabilities by both adding an attached arm and utilizing quadrupeds’ own

frontal limbs.

• In Chapter 2, we present both a hardware setup for customized low-cost fully

untethered legged manipulators and a method for learning one unified policy

to control and coordinate both legs and arm, which is compatible with diverse

operating modes. We use our unified policy for whole-body control, i.e. to

control the joints of the quadruped legs as well as the manipulator to simultane-

ously take the arm end-effector to desired poses and command the quadruped

to move in desired velocities. The key insights of the method are that we can

exploit the causal structure in action space with respect to manipulation and

locomotion to stabilize and speed up learning, and adding regularization to

domain adaptation bridges the gap between simulation with full states and real

world with only partial observations.

• In Chapter 3, we focus on this joint problem of learning locomotion as well as

basic manipulation skills by expanding the capability of quadruped robots to

enable them to use their legs as manipulators. In particular, we focus on tasks

like climbing a wall with front legs, jumping on a wall to reach a button, using

a leg to push a button, etc; and then combining them to achieve long-range

behaviors. More broadly, we follow the popular approach of learning environment

latent conditioned policies in simulation using reinforcement learning (RL) and

then transferring them to the real world via sim2real.

• In Appendix A, we provide additional details for Deep Whole-Body Control

about Regularized Online Adaptation, Advantage Mixing, simulation and train-

ing, and real-world experiments.
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Chapter 2

Deep Whole-Body Control:

Learning a Unified Policy for

Manipulation and Locomotion

2.1 Introduction

Locomotion has seen impressive performance in the last decade with results in

challenging outdoor and indoor terrains, otherwise unreachable by their wheeled or

tracked counterparts. However, there are strong limitations to what a legged-only

robot can achieve since even the most basic everyday tasks, besides visual inspection,

require some form of manipulation. This has led to widespread interest and progress

towards building legged manipulators, i.e., robots with both legs and arms, primarily

achieved so far through physical modeling of dynamics [24, 27, 59, 70, 79, 89]. However,

modeling a legged robot with an attached arm is a dynamic, high-DoF, and non-

smooth control problem, requiring substantial domain expertise and engineering effort

on the part of the designer. The control frameworks are often hierarchical where

kinematic constraints are dealt with separately for different control spaces [74], thus

limited to operating in constrained settings with limited generalization. Learning-

based methods, such as reinforcement learning (RL), could help lower the engineering

burden while aiding generalization to diverse scenarios.

3



2. Deep Whole-Body Control: Learning a Unified Policy for Manipulation and
Locomotion

Figure 2.1: We present a framework for whole-body control of a legged robot with a
robot arm attached. Left half shows how whole-body control achieves larger workspace by
leg bending and stretching. Right half shows different real-world tasks, including wiping
whiteboard, picking up a cup, pressing door-open buttons, placing, throwing a cup into a
garbage bin and picking in clustered environments.

However, recent learning-based approaches for legged mobile manipulators [51]

have also followed their model-based counterparts [8, 95] by using hierarchical models

in a semi-coupled fashion to control the legs and arm. This is ineffective due to

several practical reasons including lack of coordination between the arm and legs,

error propagation across modules, and slow, non-smooth and unnatural motions.

Furthermore, it is far from the whole-body motor control in humans where studies

suggest strong coordination among limbs. In fact, the control of hands and legs is so

tied together that they form low-dimension synergies, as outlined over 70 years ago

in a seminal series of writings by Russian physiologist Nikolai Bernstein [9, 12, 41].

Perhaps the simplest example is how it is hard for humans to move one arm and the

corresponding leg in different motions while standing. The whole-body control should

not only allow coordination but also extend the capabilities of the individual parts.

For instance, our robot bends or stretches its legs with the movement of the arm to

extend the reach of the end-effector as shown in Figure 2.1.

Unlike legged locomotion, it is not straightforward to scale the standard sim2real

RL to whole-body control due to several challenges: (a) High-DoF control : Our robot

shown in Figure 2.3 has total 19 degrees of freedom. This problem is exacerbated in

legged manipulators because the control is dynamic, continuous and high-frequency,

4



2. Deep Whole-Body Control: Learning a Unified Policy for Manipulation and
Locomotion

Body Mass, 
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Figure 2.2: Whole-body control framework. During training, a unified policy is learned
by conditioned on environment extrinsics. During deployment, the adaptation module is
reused without any real-world fine-tuning. The robot can be commanded in various modes
including teleoperation, vision and demonstration replay.

which leads to an exponentially large search space even in few seconds of trajectory.

(b) Conflicting objectives and local minima: Consider when the arm tilts to the right,

the robot needs to change the walking gait to account for the weight balance. This

curbs the locomotion abilities and makes training prone to learn only one mode

(manipulation or locomotion) well. (c) Dependency : Consider picking an object on

the ground, the end-effector of the arm needs support from the torso by bending

legs. This means the absolute performance of manipulation is bounded until legs can

adapt.

In this work, we present both a hardware setup for customized low-cost fully

untethered legged manipulators and a method for learning one unified policy to control

and coordinate both legs and arm, which is compatible with diverse operating modes

as shown in Figure 2.1. We use our unified policy for whole-body control, i.e. to

control the joints of the quadruped legs as well as the manipulator to simultaneously

take the arm end-effector to desired poses and command the quadruped to move in

desired velocities. The key insights of the method are that we can exploit the causal

5



2. Deep Whole-Body Control: Learning a Unified Policy for Manipulation and
Locomotion

structure in action space with respect to manipulation and locomotion to stabilize

and speed up learning, and adding regularization to domain adaptation bridges the

gap between simulation with full states and real world with only partial observations.

We perform evaluation on our proposed legged manipulator. Despite immense

progress, there exists no easy-to-use legged manipulator for academic labs. Most

publicized robot is Spot Arm from Boston Dynamics [18], but the robot comes with

pre-designed controllers that cannot be changed. Another example is the ANYmal

robot with a custom arm [51] from ANYBotics. Notably, both these hardware setups

are expensive (more than 100K USD). We implement a simple design of low-cost

legged Go1 robot [82] with low-cost arm on top (hardware costs 6K USD). Our legged

manipulator can run fully untethered with modest on-board compute. We show the

effectiveness of our learned whole-body controller for teleoperation, vision-guided

control as well as open-loop control setup across tasks such as picking objects, throwing

garbage, pressing buttons on walls etc. Our robot exhibits dynamic and agile leg-arm

coordinated motions as shown in videos at https://maniploco.github.io.

2.2 Method: A Unified Policy for Coordinated

Manipulation and Locomotion

We formulate the unified policy π as one neural network where the inputs are current

base state sbaset ∈ R5 (row, pitch, and base angular velocities), arm state sarmt ∈ R12

(joint position and velocity of each arm joint), leg state slegt ∈ R28 (joint position

and velocity of each leg joint, and foot contact indicators), last action at−1 ∈ R18,

end-effector position and orientation command [pcmd, ocmd] ∈ SE(3), base velocity

command [vcmd
x , ωcmd

yaw ], and environment extrinsics zt ∈ R20 (details in Section 2.2.2).

The policy outputs target arm joint position aarmt ∈ R6 and target leg joint position

alegt ∈ R12, which are subsequently converted to torques using PD controllers. We use

joint-space position control for both legs and the arm. As opposed to operational

space control of the arm, joint-space control enables learning to avoid self-collision

and smaller Sim-to-Real gap, which is also found to be useful in other setups involving

multiple robot parts, like bimanual manipulation [35].

We use RL to train our policy π by maximizing the discounted expected return

6
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2. Deep Whole-Body Control: Learning a Unified Policy for Manipulation and
Locomotion

Command Following (rfollowing) Energy (renergy) Alive (ralive)

rmanip 0.5 · e−∥[p,o]−[pcmd,ocmd]∥1 −0.004 ·∑j∈arm joints |τj q̇j| 0

rloco −0.5 ·
∣∣vx − vcmd

x

∣∣+ 0.15 · e−|ωyaw−ωcmd
yaw | −0.00005 ·∑i∈leg joints |τiq̇i|

2 0.2 + 0.5 · vcmd
x

Table 2.1: Both manipulation and locomotion rewards follow: rfollowing+renergy+ralive, which
encourages command following while penalizes positive mechanical energy consumption
to enable smooth motion [21]. Denote forward base linear velocity vx, yaw angular base
velocity ωyaw, torque τ , joint angle velocity q̇.

Command Vars Training Ranges Test Ranges
vcmd
x [0, 0.9] [0.8, 1.0]

ωcmd
yaw [-1,0, 1.0] [-1, -.7] & [.7, 1]
l [0.2, 0.7] [0.6, 0.8]
p [−2π/5, 2π/5] [−2π/5, 2π/5]
y [−3π/5, 3π/5] [−3π/5, 3π/5]

Ttraj [1, 3] [0.5, 1]

Table 2.2: Ranges for uniform sampling of command variables

Eπ

[∑T−1
t=0 γtrt

]
, where rt is the reward at time step t, γ is the discount factor, and T

is the maximum episode length. The reward r is the sum of manipulation reward

rmanip and locomotion reward rloco as shown in Table 2.1. Notice that we use the

second power of energy consumption at each leg joint to encourage both lower average

and lower variance across all leg joints. We follow the simple reward design that

encourages minimizing energy consumption from [21].

Env Params Training Ranges Test Ranges

Base Extra Payload [-0.5, 3.0] [5.0, 6.0]
End-Effector Payload [0, 0.1] [0.2, 0.3]
Center of Base Mass [-0.15, 0.15] [0.20, 0.20]
Arm Motor Strength [0.7, 1.3] [0.6, 1.4]
Leg Motor Strength [0.9, 1.1] [0.7, 1.3]

Friction [0.25, 1.75] [0.05, 2.5]

Table 2.3: Ranges for uniform sampling of environment parameters
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We parameterize the end-effector position command pcmd in spherical coordinate

(l, p, y), where l is the radius of the sphere and p and y are the pitch and yaw angle.

The origin of the spherical coordinate system is set at the base of the arm, but

independent of torso’s height, row and pitch (details in Supplementary). We set the

end-effector pose command pcmd by interpolating between the current end-effector

position p and a randomly sampled end-effector position pend every Ttraj seconds:

pcmd
t =

t

Ttraj

p+

(
1− t

Ttraj

)
pend, t ∈ [0, Ttraj].

pend is resampled if any pcmd
t leads to self-collision or collision with the ground. ocmd

is uniformly sampled from SO(3) space. Table 3.1 lists the ranges for sampling of all

command variables.

2.2.1 Advantage Mixing for Policy Learning

Training a robust policy for a high-DoF robot is hard. In both manipulation and

locomotion learning literature, researchers have used curriculum learning to ease the

learning process by gradually increasing the difficulty of tasks so that the policy can

learn to solve simple tasks first and then tackle difficult tasks [4, 56, 71]. However,

most of these works require many manual tunings of a diverse set of the curriculum

parameters and careful design of the mechanism for automatic curriculum.

Instead of introducing a large number of curricula on the learning and environment

setups, we rely on only one curriculum with only one parameter to expedite the

policy learning. Since we know that manipulation tasks are mostly related to the arm

actions and locomotion tasks largely depends on leg actions, we can formulate this

inductive bias in policy optimization by mixing advantage functions for manipulation

and locomotion to speed up policy learning. Formally, for a policy with diagonal

Gaussian noise and a sampled transition batch D, the training objective with respect

to policy’s parameters θπ is

J(θπ) =
1

|D|
∑

(st,at)∈D

log π(aarmt | st)
(
Amanip + βAloco

)
+ log π(alegt | st)

(
βAmanip + Aloco

)
β is the curriculum parameter that linearly increases from 0 to 1 over timesteps

8
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Tmix: β = min(t/Tmix, 1). A
manip and Aloco are advantage functions based on rmanip

and rloco respectively. Intuitively, the Advantage Mixing reduces the credit assignment

complexity by first attributing difference in manipulation returns to arm actions and

difference in locomotion returns to leg actions, and then gradually anneal the weighted

advantage sum to encourage learning arm and leg actions that help locomotion and

manipulation respectively. We optimize this RL objective by PPO [73].

2.2.2 Regularized Online Adaptation for Sim-to-Real

Transfer

Much prior work on Sim-to-Real transfer utilize the two-phase teacher-student scheme

to first train a teacher network by RL using privileged information that is only available

in simulation, and then the student network using onboard observation history imitates

the teacher policy either in explicit action space or latent space [39, 43, 55, 58]. Due to

the information gap between the full state available to the teacher network and partial

observability of onboard sensories, the teacher network may provide supervision that

is impossible for the student network to predict, resulting in a realizability gap. This

problem is also noted in Embodied Agent community [83]. In addition, the second

phase can only start after the convergence of the first phase, yielding extra burdens

for both training and deployment.

To tackle the realizability gap and to remove the two-phase pipeline, we propose

Regularized Online Adaptation (shown in Figure 2.2). Concretely, the encoder µ

takes the privileged information e as input and predict an enviornment extrinsics

latent zµ for the unified policy to adapt its behavior in different environments. The

adaptation module ϕ estimates the environment extrinsics latent zϕ by only condition

on recent observation history from robot’s onboard sensories. We jointly train µ with

the unified policy π end-to-end by RL and regularize zµ to avoid large deviation

from zϕ estimated by the adaptation module. The adaption module ϕ is trained by

imitating zµ online. We formulate the loss function of the whole learning pipeline

with respect to policy’s parameters θπ, privileged information encoder’s parameters

θµ, and adaptation module’s parameters θϕ as

L(θπ, θµ, θϕ) = −J(θπ, θµ) + λ||zµ − sg[zϕ]||2 + ||sg[zµ]− zϕ||2 ,

9
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where J(θπ, θµ) is the RL objective discussed in Section 2.2.1, sg[·] is the stop

gradient operator, and λ is the Laguagrian multiplier acting as regularization strength.

The loss function can be minimized by using dual gradient descent: θπ, θµ ←
argminθπ ,θµ E(s,a)∼π(...,zµ)[L], θϕ ← argminθϕ E(s,a)∼π(...,zϕ)[L], and λ← λ+ α∂L

∂λ
with

step size α. This optimization process is known to converge under mild condi-

tions [46, 81]. In practice, we alternate the optimization process of the unified policy

π and encoder µ and the one of adaptation module ϕ by a fixed number of gradient

steps. λ increases from 0 to 1 by a fixed linear scheme. Notice that RMA [39] is a

special case of Regularized Online Adaptation, in which the Laguagrian multiplier

λ is set to be constant zero and the adaptation module ϕ starts training only after

convergence of the policy π and the encoder µ.

Deployment During deployment, the unified policy and adaptation module exe-

cutes jointly onboard. To specify commands, we develop three interfaces: teleopertion

by joysticks, closed-loop control by using RGB tracking, and open-loop reply of

human demonstrations. Details are in Section 2.3.3.

2.3 Experimental Results

2.3.1 Robot System Setup

The robot platform is comprised of a Unitree Go1 quadraped [82] with 12 actuatable

DoFs, and a robot arm which is the 6-DoF Interbotix WidowX 250s [1] with a parallel

gripper. We mount the arm on top of the quadruped. The RealSense D435 provides

RGB visual information and is mounted close to the gripper of WidowX. Both power

of Go1 and WidowX are provided by Go1’s onboard battery. Neural network inference

is also done onboard of Go1. Our robot system uses only onboard computation and

power so it is fully untethered.

2.3.2 Simulation Experiments

The purpose of our simulation experiments is to address the following questions:

10
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RGB Camera
Onboard 

Compute & 
Power

6DoF Arm

Go1 
Quadruped

Rail 
Mount

Figure 2.3: Robot system setup

• Does the unified policy improves over separate policies for the arm and legs? If so,

how?

• How Advantage Mixing helps learning the unified policy?

• What’s the performance of Regularized Online Adaptation compared with other

Sim2Real methods?

Survival ↑ Base Accel. ↓ Vel Error ↓ EE Error ↓ Tot. Energy ↓
Unified (Ours) 97.1± 0.61 1.00± 0.03 0.31± 0.03 0.63± 0.02 50± 0.90

Separate 92.0± 0.90 1.40± 0.04 0.43± 0.07 0.92± 0.10 51± 0.30
Uncoordinated 94.9± 0.61 1.03± 0.01 0.33± 0.01 0.73± 0.02 50± 0.28

Table 2.4: Comparison of unified policy with separate policies for legs-arm, and one
uncoordinated policy. The unified policy achieves the best performance given same energy
consumption. The test ranges are in Table 3.1.

Baselines and Metrics: We compare our method with the following baselines:
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Arm workspace (m3) ↑ Survival under perturb ↑
Unified (Ours) 0.82± 0.02 0.87± 0.04

Separate 0.58± 0.10 0.64± 0.06
Uncoordinated 0.65± 0.02 0.77± 0.06

Table 2.5: In unified policy, legs help increase the arm workspace and the arm helps the
quadruped to stabilize.

1. Separate policies for legs and the arm: one policy controls legs based on the

quadraped observation, and another policy controls the arm based on arm obser-

vation.

2. One uncoordinated policy: Same as unified policy which observes aggregate state

of base, legs and the arm, but only rmanip is used to train arm actions, and only

rloco for leg actions.

3. Rapid Motor Adaptation (RMA) [39]: Two-phase teacher-student baseline.

4. Expert policy: the unified policy using the privileged information encoder zµ.

5. Domain Randomization: the unified policy trained without environment extrinsics

z.

We report following metrics: (1) survival percentage, (2) Base Accel: angular

acceleration of base, (3) Vel Error: L1 error between base velocity commands and

actual base velocity, (4) EE Error: L1 error between end-effector (EE) command and

actual EE pose, (5) Tot. Energy: total energy consumed by legs and the arm. All

metrics are normalized by episode length. All experiments are tested over 3 randomly

initialized networks and 1000 episodes each. Details of simulation and training are in

Supplementary.

Improvements of the Unified Policy over Baselines: In Table 2.4, our unified

policy outperforms separate and uncoordinated policies because both the arm and leg

actions are trained with the sum of reward for manipulation and locomotion are given

with observations for the arm, legs and the quadraped base, while baselines struggle to

maintain a small base acceleration, which results in larger error in command velocity

following and inaccurate EE pose following.

12
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Unified Policy Increases Whole-body Coordination: Table 2.5 shows that our

unified policy promotes whole-body coordination where (1) leg actions will help the

arm to achieve a larger workspace via bending for lower EE commands and standing

up high for higher EE commands, and (2) arm will help the robot balance under

larger perturbation (1.0 m/s initial velocity of base) resulting in higher survival rate

of the unified policy. We estimate the the arm workspace via calculating the volume

of the convex hull of 1000 sampled EE poses, subtracted by the volume of a cube

that encloses the quadruped.

Figure 2.4: Advantage Mixing helps the unified policy to learn to follow the command
velocity much faster (aggregated Vel Error over episodes decreases sharply) than without
mixing.

Advantage Mixing Helps Learning the Unified Policy: Without Advantage

Mixing, the unified policy has difficulty in credit assignment, resulting in the policy

first learns EE command following but ignores the locomotion task. As shown in

Figure 2.4, Advantage Mixing helps the policy to focus on each task first and then

merge them together, which induces a curriculum-like mechanism to speed up training.

Details in Supplementary.

Robust OOD Performance of Regularized Online Adaptation: We find that

our Regularized Online Adaptation is more robust than RMA and Domain Random-
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Realizability Gap
∥zµ − zϕ∥2 ↓ Survival ↑ Base Accel. ↓ Vel Error ↓ EE Error ↓ Tot. Energy ↓

Domain Randomization - 95.8± 0.2 0.44± 0.00 0.46± 0.00 0.40± 0.00 21.9± 0.53
RMA [39] 0.31± 0.01 95.2± 0.2 0.54± 0.02 0.44± 0.00 0.26± 0.04 27.3± 0.95
Regularized Online Adapt (Ours) 2e-4 ±0.00 97.4± 0.1 0.51± 0.02 0.39± 0.01 0.21± 0.00 25.9± 0.56

Expert w/ Reg. - 97.8± 0.2 0.52± 0.02 0.40± 0.01 0.21± 0.00 25.8± 0.49
Expert w/o Reg. - 98.3± 0.2 0.51± 0.02 0.39± 0.00 0.21± 0.00 25.6± 0.30

Table 2.6: Regularized Online Adaptation outperforms other baselines with the smallest
imitation error which helps it to have the same performance as the expert policy which
uses privileged information to predict environment extrinsics. Expert policy trained with
regularization term ∥zµ − sg[zϕ]∥2 has negligible performance degradation compared with
the expert trained without regularization. Test ranges in Table 2.3. Domain Randomization
learns to just stand in most cases, hence, trivially collapsing to low Tot. Energy and Base
Accel.

ization (DR), tested in environments with out-of-distribution (OOD) environment

parameters in Table 2.3. In RMA, it is not guaranteed the estimated environment

extrinsics by the adaptation module can imitates the one learned by the expert. With

Regularized Online Adaptation, the expert learns to predict environment extrinsics

with regularization from the adaptation module, thus tiny imitation error, resulting

in 20% reduction in EE Error. Table 2.6 shows that adding regularization

to expert has negligible negative impact on performance, while every metric gets

improved compared to RMA due to smaller latent imitation error. Note that DR

has better base acceleration and total energy as it just stands in place under difficult

environments.

2.3.3 Real-World Experiments

We use the built-in Go1 MPC controller and the IK solver for operational space

control of WidowX as the baseline in the real world, which we refer to as MPC+IK.

More details are in the Supplementary.

Teleoperation: We specify EE position command pcmd
t by parameterizing pcmd

t+1 =

pcmd
t +∆p, where ∆p = (∆l,∆p,∆y) is specified by two joysticks. With human in the

loop, we can command the end-effector to reach points within or outside of training

distribution. In Figure 2.5, we analyze the whole-body control in the real world,

and show that the quadruped’s base rotation (rquad, pquad, yquad) strongly correlates

14



2. Deep Whole-Body Control: Learning a Unified Policy for Manipulation and
Locomotion

(a) Body pitch pquad correlates with com-
mand EE pitch p with various lengths
l.

(b) Body pitch rquad correlates with com-
mand EE pitch p with various yaws y.

Figure 2.5: Real-world whole-body control analysis. (a) We fix command EE yaw y = 0 and
change command EE pitch p and length l. When p has a large magnitude, the quadruped
will pitch upward or downward to help the arm reach for its goal. With larger l (goal far
away), the quadruped will pitch more to help. (b) When the magnitude of command EE
yaw y is closer to 1.578 (arm turns to a side of the torso), the quadruped will roll more to
help the arm. When y = 0, the quadruped pitches downward instead of roll sideways to
help the arm.

with the EE position command pcmd
t . This indicates that our unified policy enables

whole-body coordination where the leg joints, as well as the arm joints, help reaching.

Vision-Guided Tracking: In addition to joystick control by humans, we also show

successful picking tasks using visual feedback from an RGB camera. We mount a

Realsense D435i camera near the gripper of the arm and use AprilTag [62] to get the

relative position between the gripper and the object to be picked up. AprilTag is a

visual fiducial system popular in robotics research using simple 2D black and white

blocks to encode pose information. We first get the translation of the AprilTag in the

camera frame ptag = [xtag, ytag, ztag]T . Then we design and use a simple yet effective

position feedback controller to set the current EE position command pcmd
t = KTptag,

where K = [−1.5,−1.5, 0.1]T is a gain vector for position control. In Figure 2.6 and

Table 2.7, we compare our method and the baseline (MPC+IK) in several pick-up

tasks by measuring the success rate, average time to to completion (TTC), IK failure

rate, and self-collision rate for every setting. We initialize the robot to the same
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Success
Rate

↑ TTC ↓ IK Failure
Rate

↓ Self-Collision
Rate

↓

Easy tasks (tested on 3 points)
Ours 0.8 5s - 0
MPC+IK 0.3 17s 0.4 0.3

Hard tasks (tested on 5 points)
Ours 0.8 5.6s - 0
MPC+IK 0.1 22.0s 0.2 0.5

Table 2.7: Comparison of our method v.s. MPC+IK on pick-up tasks. pend is the goal
position sampled from the points on the ground. TTC is the average time to completion.
Each task performance is averaged on 10 real-world trials.

default configuration and before execution.

Analysis of Success and Failure Modes: Our method succeeds most of times on

easy tasks without visible performance drop in hard task. The failed trials of our

method are largely due to the mismatch between the actual cup position and the

AprilTag position, which can be mitigated by using two AprilTags and averaging

their poses (details in the Supplementary). Since the visual estimation is not the

focus of this work, we infer that our method has higher precision and higher efficiency

on pick-up tasks than MPC+IK. MPC+IK succeeds in some of the easy tasks and

fails due to IK singularity or self-collision. In hard tasks, the major failure cause is

self-collision given the cup is too close to the body. Notice that the TTC of MPC+IK

is also longer than our method because solving online IK and operational space control

more computationally demanding than joint position control (ours).

Open-loop Control from Demonstration: In this part, we analyze how agile

walking is coupled with dynamic arm movement. The robot is given a pre-defined end-

effector trajectory to follow in an open-loop manner while being commanded to walk

at the same time. Results in Figure 2.7 show agility and dynamic coordination of

our legged manipulator on uneven grass terrain powered by our whole-body control

method.
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: Easy Tasks : Hard Tasks

SuccessSuccess Fail Fail

(a) Our method: success in both easy and
hard tasks with coordinated behaviors.

: Easy Tasks : Hard Tasks

SuccessSuccess Fail Fail

(b) MPC+IK: failure in both scenarios.
Left: fail due to missed cup. Right:
fail due to self-collision.

Figure 2.6: Comparison of our method and the baseline controller (MPC+IK) in vision-
guided pick-up tasks. We sample different points around the robot as the target pick-up
position. Easy tasks: 3 points are in normal distance from the robot. Hard tasks: when
the point is very close to the front feet and are hard to reach without whole-body control.
More hard tasks are in the Supplementary. Videos are at https://maniploco.github.io

2.4 Related Work

Legged Locomotion Traditional model-based control methods for legged robots

have shown success but often require controllers to be meticulously designed and

many manual tunings [5, 6, 10, 24, 27, 29, 30, 34, 36, 59, 70, 79, 89]. The extra

weight and movement of a robot arm on top of the legged robot will make such design

process more challenging. Recent advances in reinforcement learning enable legged

robots to traverse challenging terrains and adapt to changing dynamics [14, 21, 22, 28,

39, 43, 48, 64, 77, 78, 87, 90, 91, 92, 93, 94]. However these works only focus on the

mobility part and few interactions with objects or the environment by manipulation

are studied.

Mobile Manipulation Adding mobility to manipulation is studied in [3, 8, 11,

16, 17, 26, 51, 80, 84, 85, 95]. Advances have also been made in the field of biped

humanoid [13, 19, 37, 69]. More recently, Ma et al. [51] proposed using an MPC

controller to track the desired end-effector position of the arm mounted on a quadruped

with a RL policy to maintain balance. However, the controllers for legs (RL) and arm

(model-based) are separate modules and no dynamic movements are demonstrated.

In [3], language models are used to guide a mobile robot to finish different tasks
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Figure 2.7: The arm follows a demonstration trajectory to pick up a cup while walking.
The start position is p = (0.5,−0.5,−1.2), at the right upper side of the robot and the
end position is pend = (0.55,−0.9, 0.4), on the left lower front side close to the ground.
Ttraj = 2.5s. The robot initially stands on the ground and then is commanded by a constant
forward velocity vcmd

x = 0.35. Meanwhile the EE position command changes. When EE
position command is high, the quadruped starts to walk without significant tilting behavior
with a natural walking gait. As the EE position command moves below the torso, the
quadruped starts to pitch downwards, roll to the left and yaw slightly to the right to help
the arm reach the goal.

using the arm. However, the manipulation and mobility are utilized in a decoupled

step-by-step manner.

2.5 Discussion and Limitations

We proposed a hardware setup as well as an algorithm to learn whole-body control

of a legged robot with robotic arm. Our policy shows coordination between legs

and arm while being able to control them in a dynamic manner. Although we have

shown preliminary results on object interaction (e.g. picking, pressing, erasing),

incorporating general-purpose object interaction (e.g. occlusion and soft object) into

the our unified policy is a challenging open research direction. There are several ways

in which the current methodology could be extended, such as, learning vision-based

policies from the egocentric camera mounted on torso [2] and on the arm, climbing on

the obstacle using front legs to pick something up on the table where the arm alone
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cannot reach, and etc. We believe this paper provides a first step towards several of

such future directions.
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Chapter 3

Legs as Manipulator: Pushing

Quadrupedal Agility Beyond

Locomotion

3.1 Introduction

Robotic quadrupeds and bipeds can walk across challenging scenarios ranging from

hiking on hills to walking over rocky surfaces near river beds [2, 21, 31, 38, 47, 49,

54, 58, 63, 71, 88]. What is next for legged systems? Despite being highly effective

walkers, legged robots are far behind the dexterity and agility of quadrupeds in the

animal kingdom, such as dogs or cats, who can use their legs more generally than just

for the task of walking. In particular, quadrupeds sometimes use their legs to open a

door, dig a hole, pull an object, etc. [68]. Indeed, locomotion and manipulation can

be seen as dual of each other [33, 50] and share evolutionary origins where frontal legs

evolved to become arms in bipeds. Providing robotic quadrupeds a similar ability

would not only push the agility of robotic locomotion but can also greatly expand

the reach as well as functionality even if there is an arm already attached on top of

the quadruped.

In this work, we focus on this joint problem of learning locomotion as well as

basic manipulation skills by expanding the capability of quadruped robots to enable
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Figure 3.1: Examples of real-world skills. Top row: Robot climbs high on the wall to
operate a wheelchair access button using its leg and then get off the wall to walk out of
the door. Bottom left: Robot climbs on the wall and uses its weight to press the button.
Bottom middle: Robot kicks a ball on the ground. Bottom right: Robot climbs a door and
opens it using its weight and then walk indoors.

them to use their legs as manipulators. In particular, as shown in Fig. 3.1, we focus

on tasks like climbing a wall with front legs, jumping on a wall to reach a button,

using a leg to push a button, etc; and then combining them to achieve long-range

behaviors. More broadly, we follow the popular approach of learning environment

latent conditioned policies in simulation using reinforcement learning (RL) and then

transferring them to the real world via sim2real [38, 42].

A major challenge in this technique for training legs to simultaneously walk and

perform skills like climbing is that the RL can get stuck in local minima. To get around

this issue, we decouple the skill policy training into locomotion and manipulation

using legs. Locomotion policy captures anything that involves movement such as

walking or climbing onto a wall and is conditioned on the commanded linear as well

as angular velocity commands. On the other hand, the manipulation policy captures

moving a single leg for tasks like pressing the button using one foot while balancing
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Figure 3.2: Overview of the method. Left: Skill learning framework where the two policies
are trained separately with their own observations olt and omt in simulation. The user
commands include boolean values to control different modes of walking (walk vs climb),
to activate button pressing, and velocity commands. Middle: Learning a behavior tree
from a single high-level demonstration which is primarily responsible for selecting between
the walking and manipulating policies, as well as the mode to activate. Right: Once
the behavior tree is learned, we execute the behavior tree under external interruptions
and perturbations to show robust execution. The −→ represents a Sequence node that
executes its children in left-to-right order until all children return success. The ? is a
Selector node that returns success or running whichever it encounters first in its children.
The oval is a condition node that returns success when the condition is met and failure
otherwise. The rectangle is the execution node that always return running. Videos
at https://robot-skills.github.io/.

on other legs. This button pressing can be performed on a horizontal ground or a

vertical wall.

We train these skills in simulation and transfer them to the real world. However,

skills like climbing are highly agile and diverse in their behavior, thus relying on

just onboard sensors is not sufficient. To stabilize the training, we need additional

state estimates (velocity and foot contacts) which may not be directly available via a

sensor. To resolve this, we follow an approach similar to RMA [38] to get an estimate

of a unified state estimator (USE) via proprioception history, which can then be

reliably computed onboard. Once we have policies that work in simulation, we use

our proposed variant of regularized online adaptation (ROA) [23] to achieve a higher

performance than off-the-shelf methods such as RMA [38].

Once we have a quadruped that can perform diverse skills, it must also figure out
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how to stitch these skills together to perform long-term planning tasks in a manner

that is robust to the failures in underlying skills [65, 66, 67]. We propose to leverage

the classic idea of behavior trees [7, 15] and adapt it to our learning paradigm. In

particular, after training low-level skills, we learn a behavior tree from a single clean

demonstration of a long-range task and show a robust replay of the behavior despite

interruptions by introducing visually matched preconditions, recording the success of

a low-level skill on completion, and a recursive backing up behavior under unexpected

interruptions and perturbations.

We show extensive evaluation in both simulation and the real world. We use the

learned skills to perform a variety of real-world tasks where robot climbs and presses

buttons on walls or the ground.

3.2 Related Work

Many works study locomotion and some works study using legs for manipulation. How-

ever, few works have truly investigated how to combine locomotion and manipulation

skills for real-world tasks. We review these below.

Legged Locomotion

Recent advances in reinforcement learning have enabled a set of works that train a

neural network based walking controller for legged robots [2, 21, 31, 38, 47, 58, 63, 71].

How to achieve various gait patterns for quadrupedal robots that are emergent on real

dogs is studied in [21, 54, 88]. [47, 54] train gait parameters conditioned policies to get

diverse walking behavior that can achieve simple object manipulation such as pitching

down to unload a ball on the back of the robot. However, these emergent individual

skills are not dexterous enough and have not been synthesized to accomplish more

complex tasks.

Legged Manipulation

Manipulation via locomotion has been studied in [16, 32, 60, 76, 86]. [76] proposed to

use all the four legs of a quadrupedal robot as a dexterous manipulator by lying the

robot back on the ground. However this scarifies the mobility of the legged system
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and makes it no difference from a four finger manipulator. [32] enables the quadruped

to kick a ball to a goal with real-world finetuning but is still a single skill result

without any agility in locomotion and lacks generalization to long-horizon tasks.

Skill Synthesizing

The ability to synthesize a vast variety of motor skills is important to achieve long-

horizon complex behaviors for robots. Prior works [65, 66] combine adversarial

imitation learning and unsupervised reinforcement learning to develop skill embed-

dings, and then train a high level policy to synthesize these low-level skill conditioned

on task-specific rewards. [44, 45] aim to address the problem of transitions between

different skills to chain long-horizon tasks whose success rate can be exponentially

reducing due to transition failures.

Behavior Trees

Long-horizon tasks can be expressed with various forms of abstractions including

decision trees, finite state machines or a neural network. Behavior trees are one of these

forms that are firstly vastly used in game industry for non-player character control.

With its modularity, transparency and execution speed, they are starting to be used

more in robotics [7, 15, 20, 57]. The modularity helps the user to modify the behaviors

without affecting other parts. The transparency gives more ease understanding the

behaviors. And execution speed ensures reactive behaviors encountered with unknown

environment changes.

3.3 Method: Legs as Manipulators

Our proposed skill learning and composition framework is shown in Fig. 3.2. We

first learn low level skills in simulation and transfer them to the real world via online

adaptation. Once we have these skills available in the real world, we then use behavior

trees to learn to compose these skills from a single clean demonstration, and show

robust replay in the real world despite interruptions and perturbations. We will now

describe each component in detail.
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3.3.1 Learning Low-level Skills

Walking and manipulation using legs include drastically different joint angle behaviors.

Hence, for training stability, we decouple the problem into locomotion policy πl

to walk, and a policy to manipulate with legs πm. Locomotion skill deals with

movements, i.e. both walking and climbing, while manipulation involves using one

leg to interact while using others to balance. Inspired by RMA [38], we want to

learn adaptive policies which use an online estimate of environment to adapt their

behaviors appropriately. Such polices can walk in the real world under a diverse set

of conditions. Concretely, each policy takes the current state ot (roll, pitch, base

angular velocities, velocity commands, joint positions and velocities, base velocity, feet

contact indicators), the extrinsics vector zt (which is an estimate of the environment

parameters), and additional task specific inputs. Then each policy outputs the target

joint angles at ∈ R12 at 50Hz. We train these policies in simulation using model

free reinforcement learning [72]. We will now describe the RL training setup which

includes the additional task specific inputs, as well as the task specific reward terms

which are used in addition to the following reward terms shared between both the

policies to encourage smooth and energy efficient motions:

• Joint Acceleration: −||q̈t||2
• Action Rate: −||at − at−1||2
• Hip Position: −||qhip||2
• Work: −|τTt · q̇t|
• Z Velocity: −||vz||2

where vz is vertical linear velocity, q̇t, q̈t, τt are the joint velocities, accelerations and

torques, and qhip is the position of the hip motor. These reward terms are respectively

weighted with 2.5e-7, 5e-3, 0.1, 3e-3, 1.

Locomotion Policy The goal of the locomotion policy πl is to follow a target

command velocity (vcmd
x , vcmd

y , ω̇cmd
yaw ). The terrain in simulation is half fractal terrains,

and the other half is slopes of different incline θslope. The robot is initialized in the

plane and its task is to walk closer to the wall and then climb it. Once it climbs the

wall stably, it is commanded to de-climb the wall. To avoid local minima, we introduce

Terrain Curriculum (TC) where the incline of the slope is gradually increased during

the course of the training all the way to a vertical wall.
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In addition to ot and zt described above, the robot observes, dw, the closest

distance from robot’s base to wall edge (where the terrain starts to incline) clipped

in [0.25, 0.65]m. We add the following task specific rewards:

• Linear Velocity Tracking: exp(−5||vxy − vcmd
xy ||2)

• Angular Velocity Tracking: exp(−5||ω̇yaw − ω̇cmd
yaw ||2)

• Goal Reaching: 1 if dl > dthresh & dr > dthresh else 0

• Feet Air :
∑4

f=0 (tair,f − 0.5)

• Slope State Regularization: −||qt − qmanip||2 if robot is holding on the wall

where vxy = [vx, vy]
T are the base linear velocities, vcmd

xy = [vcmd
x , vcmd

y ]T is the

commanded velocity, ω̇yaw is the yaw rate and ω̇cmd
yaw is the commanded yaw velocity,

tair,f is the time in air for foot f . qt is the joint position. dl and dr are the distances

from the front left and right foot to the wall. dthresh = 0.7 and qmanip is the resting

pose on the wall from which πm will get initialized.The weight values for each of the

reward terms are: 1.5, 0.5, 1.5, 1.0 and 0.3 respectively.

Manipulation Policy Manipulation policy’s goal is to follow a desired end-

effector position pcmd
foot(t) = [px(t), py(t), pz(t)]

T such that the foot can track any

arbitrary pre-planned trajectory, even while resting on an inclined wall. For simplicity,

we formulate all the trajectories as a sinusoidal trajectory in [0, π] resulting in a

behavior that first lifts the foot and then drop it. By specifying a start point

pcmd
foot(0) = [px(0), py(0), pz(0)]

T and an end point pcmd
foot(T ) = [px(T ), py(T ), pz(T )]

T ,

we can interpolate a sinusoidal trajectory, parameterized by foot lift height H and

duration T .

pcmd
foot(t) = [s∆x+ px(0), s∆y + py(0), H sin(πs)] (3.1)

s =
min(t, T )

T
, ∆x = px(T )− px(0), ∆y = py(T )− py(0)

where t goes from 0 to T . Regardless of slope angle θslope, we always want the foot

lift direction to be perpendicular to the slope plane. So pcmd
foot(0) and pcmd

foot(T ) are all

defined in the coordination frame whose origin is on the wall edge and xy axes are on

the slope plane. Along with ot and zt described above, the policy additionally takes

the timer variable s, foot lift height H, end point position viewed from robot’s base

frame pcmd
footbase

(T ) as inputs. We add following rewards:
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• Trajectory Tracking: exp(−10(pcmd
foot(t)− pfoot(t))

• Slope States Regularization: −||qt − qmanip||2
where pfoot(t) is the foot position in the same frame mentioned above. The weights

for the terms are 2.0, 0.5. The sampling ranges for low-level commands are in Tab.

3.1.

3.3.2 Simulation to Real Transfer

We do not have access to the latent extrinsics zt in the real world to deploy the above

policies. To resolve this, we follow [38] and learn to estimate zt from proprioception

history. This is done by the adaptation module which we can train in simulation itself

using supervised learning since we have access to ground truth values. However, we

find that the adaptation module might not be able to faithfully reconstruct zt, leading

to an inferior overall performance. One way to recover the performance is to add a

third phase by finetuning the motor policy with the estimate ẑt instead of ground

truth zt, as in A-RMA [40]. However, in this paper, we simplify the setup by reducing

three phases into a joint single stage training which internally alternates between

training a teacher policy with ground truth environment dynamics parameters (zt)

and an estimator of zt from proprioception history, inspired from Regularized Online

Adaptation (ROA) [23]. Specifically, the privileged information encoder µ encodes

information about the environment et into a latent vector zt ∈ R20 and then passes

to the base policy (πl or πm). The adaptation module ϕ trained using supervised

learning by zt = µ(et), while the privileged info encoder µ is encouraged to be close

to ϕ(xt−10, at−11, · · · , xt−1, at−2). The ranges of environment dynamics randomization

is same as [38].

However, unlike [23], our robot needs to perform highly varying and agile tasks

like climbing during which on-board sensing can be noisy. Hence, we need a way to

estimate the values such as robot’s velocity or foot contacts in an online manner itself.

To facilitate this, we train an additional unified estimator ω to estimate unavailable

robot states (such as velocity and foot position). The estimated robot states are the

base linear velocity vbase = [vx, vy, vz]
T for locomotion policy πl, and manipulation

foot position pfoot = [xfoot, yfoot, zfoot]
T in robot’s base frame. Similar to [31], we

learn an estimator of vbase and pfoot from proprioception history in simulation. We
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Policy Command Vars Training Ranges Test Ranges

Loco
vcmd
x (m/s) [-1.0, 1.0] [-1.5, 1.5]
vcmd
y (m/s) [-0.6, 0.6] [-1.0, 1.0]

ω̇cmd
yaw (rad/s) [-0.5, 0.5] [-0.6, 0.6]

Manip

∆x (m) [-0.1, 0.3] [-0.15, 0.3]
∆y (m) [-0.1, 0.15] [-0.2, 0.2]
H (m) [0.06, 0.2] [0.05, 0.22]
T (s) [0.5, 2.0] [0.3, 3.0]

Common θslope (rad) [0, 1.57] [0, 1.57]

Table 3.1: Uniform sampling ranges of low-level commands

call this Unified State Estimator (USE). We show that USE, ROA, and TC, all are

integral to achieving good performance.

3.3.3 Composing Skills into High-Level Behaviors

Finally, we combine the above learned skills into long-range behaviors from only one

demonstration. Note this single long-range demonstration is only in the high-level

action space where human chooses what skill to follow and when, the low-level

control is taken care of by the skills (πl, πm) learned above. We distill this single

demonstration into a behavior tree [15] to learn to robustly complete the task.

Behavior Tree Execution We assume our tasks are sequential and formulate

our tree structure shown in Fig. 3.2. The behavior tree executes from the starting

root node, sequentially checking the children’s condition node to see which ones have

succeeded, and executing the one yet to be completed. If all children of the root node

returns success, then the entire task will be completed.

Behavior Tree Learning The human gives one demonstration of a long-term task.

During the demonstration, we record the human commands and the corresponding

visual representation vectors from the second to last layer of ResNet18 [25, 75]

vr ∈ R512. From the demonstrations, we create a tree whose number of children is
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(a) Tracking performance (b) Terrain difficulty

Figure 3.3: USE helps the locomotion policy to achieve better performance and also boosts
the training speed. The Normalized Terrain Difficulty ntd indicates the maximum slope
angle that the policy can climb θslope. ntd = 1 means θslope is uniformly sampled from the
range in Tab. 3.1. USE accelerates the policy learning, showing faster convergence to final
performance for linear and angular velocity tracking. USE also helps the policy to advance
to more challenging terrains with a larger Slope Angle θslope faster.

equal to the number of skills executed ns. The goal of child node i ∈ [0, ns − 1] is to

execute the ith high-level command until the corresponding condition node Task icond

returns true. The criteria for deciding Task icond is a visual representation score

in the form of cosine distance between current representation vector vrt and that of

expert’s Dr[i] when its subskill is complete, scorei = 1− vrt ·Dr[i]

||vrt ||2·||Dr[i]||2 .

Task icond =

True, scorei < 0.16

False, Otherwise

Robustness via Task Precondition Every task has a precondition Task ipre =

f(C[i], ot, pt, ct), which is a function of the current robot states. If Task ipre == True

is not satisfied, we rewind to the previous task recursively until we find a proper task

that satisfy its own precondition. The tree structure introduced above is robust to

interruptions or perturbations by design. For example, if the robot slips right before

pressing the button high up on the wall, then the precondition variable Task ipre of

climbing on the wall will be False, and that will allow the behavior tree to backup,

and re-execute the nodes which are incomplete.
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Figure 3.4: Our method outperforms baseline methods and achieves the highest subskills
completion rate. The red dashed line indicates the trajectory of the robot base. The blue
line indicates the manipulation foot trajectory when πm is in use. We list all the subskills
at the bottom and also list the sequence of skills needed for each long-range task next to it.
Subskills Completed measures the fraction of selector nodes marked as a success. The data
is averaged during 5 real-world trials for each task.

3.4 Results, Setup and Analysis

We quantitatively analyze a) the benefit of USE, ROA, and TC in simulation, b)

compare our method with baselines on long-range tasks with interruptions, and

c) show the robustness of our method on a very long-range task in the real world

to show how our method enables the quadruped to expand its reach in real-world

environments.

Hardware and Simulation Details We use the Unitree Go1 quadrupedal robot

and one forward-facing Realsense D435i camera to estimate distance to the wall

and another side-facing one to detect an AprilTag[61] for button location. We use

IsaacGym [53] as our simulation platform.
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Vel Error↓ Traj Error↓ zt loss ↓
Loco

zt loss ↓
Manip

Ours 29± 11 3.1± 3.0 8.6± 6.3 6.5± 6.0
w/o USE 32± 19 3.7± 3.9 7.2± 3.6 6.8± 7.1

RMA ([38]) 39± 30 4.7± 6.1 92± 33 53± 27
w/o TC 58± 17 - 9.3± 5.5 -
DR 41± 31 5.8± 8.8 - -

Ours (priv) 24± 9.0 3.2± 3.3 - -
RMA (priv) 23± 6.8 3.1± 3.4 - -

Table 3.2: Low-level commands tracking performance in simulation (1e − 2). Our
method outperforms all baselines in tracking error. The zt loss is defined as ||µ(et) −
ϕ(xt−10, at−11, · · · , xt−1, at−2)||2. We collect data equivalent to 10 hours real-world time.
In Domain Rand, the robot does not observe environment extrinsics zt.

3.4.1 Simulation Experiments

We show the quantitative importance of the Unified State Estimator (USE), Regular-

ized Online Adaptation (ROA), and Terrain Curriculum (TC) in learning low-level

skill execution in simulation across the following metrics: a) velocity tracking error, b)

trajectory tracking error, c) z regression error. We also compare to DR (Domain Ran-

domization), and Policies with ground truth extrinsics zt (Ours-priv and RMA-priv).

We add external pushes during evaluation (Tab 3.2).

Regularized Online Adaptation The regularization does not degrade the ex-

pert’s performance in ROA, while still showing a significant improvement in the

student policy (about 30% for πl and πm) compared to RMA [38], achieving an order

of magnitude improvement in regressing to zt.

Unified State Estimator To demonstrate the effectiveness of using USE in

locomotion policy, we compare how USE improves policy learning during training as

shown in Fig. 3.3. With USE the policy reaches similar performance 10% faster than

the baseline method which does not employ USE.

Terrain Curriculum Without TC, the velocity error is 107% larger than our

method since the policy simply learns to walk until approaching the wall and stop.
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With TC, the robot can learn to climb the relatively challenging vertical wall by first

learning to climb a slope with a lesser incline.

3.4.2 Evaluating Robust Skill Composition in Real World

We first compare our method with baselines on long-range tasks with interruptions

to test the robustness in the real world. We define 4 setups that require the use

of legs for manipulation (Fig 3.4) with the number of subskills ns ∈ {3, 5, 7}. For

each of these settings, we learn the behavior tree from one clean demonstration and

evaluate the performance of our method with the stated interruption. Since we only

have one interruption per task, we simplify our experiment design and define only

one precondition corresponding to the subskill affected by the interruption. This

precondition can be used to determine if the behavior tree needs to rollback.

Fig. 3.4 compares our method’s performance to baselines:

• w/o RB: Use behavior tree to specify high-level commands but without task

precondition. This version runs the nodes in sequence, switching only when the

current task is completed, but fails to roll back to redo a previously finished

task in case of an interruption.

• Replay: Record the expert’s high-level commands with time stamps, and simply

replays them for the same amount of time as in the demonstration.

We measure the subskill completion rate, as well as the overall task completion rate

for each of the tasks across 5 trials (Fig. 3.4). We can see that our method achieves the

highest subskills completion rate across trials. While w/o RB can complete subskills

until the interruption, it is unable to complete the entire task. In a), w/o RB can

sometimes climb the wall with the box obstacle under its body. In comparison, our

method can switch back to walking mode and find another spot without an obstacle

to complete the task. In b), w/o RB stretches its leg to the limit and manages to

press the button if the robot is not moved too far away, while our method will switch

back to walking when the button is too far. In c), w/o RB will never climb the wall

again when it is removed off the wall while our method falls back to climbing again

and then completing the task. Replay performs the worst since it uses no feedback

on task completion. It naively executes the commands with the same timestamps as

recorded during the expert demonstration.
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Figure 3.5: Demonstration of a long horizon door-opening task with learned behavior tree
from expert demonstration. The subskill tuples are specified in bottom left of Fig. 3.4. The
score is the cosine distance between the current visual representation vector and that of
the expert’s when the expert activates that subskill. Pitch is the pitch angle of the robot
base. Subskill indicates which skill in the behavior tree is currently executing. Note that
for subskill 6 there is no score because that is the last one.

3.4.3 Analysis on a Long-Horizon Task in the Real World

We now show a detailed analysis of how our framework works on a task that involves

7 subskills and 6 skill switches as shown in Fig. 3.5. This task shows the expanded

capability enabled by our low-level skills as well as the robustness of skill composition.

The robot is able to press a wheelchair access button that is 0.95m above the ground

and walk out of a door. This task itself requires the robot to utilize two rear legs to

raise the base (which is otherwise only 0.5m high), and then use its legs for interaction.

It stretches the left front leg to reach the otherwise impossible-to-reach button and

then presses it. The button is located in a corner surrounded by walls on three

sides. The space is about 2m long and 0.5m wide, which tight relative to the robot’s

dimensions (0.5m long and 0.3m wide). The accurate low-level command tracking

performance makes it precise enough to enable movement in this tight space.

In detail, the robot first needs to walk from an open field to this narrow corner

as shown in Snapshot (1). This is recorded by the behavior tree as a success after
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verifying that the visual representation score is smaller than the threshold. The

robot then switches to climbing and climbs onto the wall ((2), (3)). At this time,

we manually perturb the robot and remove it off the wall and on the flat ground.

Without task precondition, the behavior tree continues to try to press the button,

although it first needs to climb the wall again. This leads to unpredictable and unsafe

joint movements since it has never been trained in this scenario. However, with task

precondition (ours), the removal from the wall violates the precondition for button

pressing, since the pitch angle of the robot exceeds -1. The behavior tree goes back

to the previous task that satisfies its own precondition ((4)), and re-runs through the

tree from that node. Consequently, the robot starts over to climb the wall ((5), (6)),

presses the button ((7)), and gets off the wall to go out the opened door ((8), (9)).

The system can handle multiple external perturbations, although, we only show 1

successful recovery here.

3.5 Conclusion

In this paper, we present a framework for synthesizing low-level skills for quadrupedal

robots that involve locomotion and manipulation using legs. We then compose these

skills to achieve long-range complicated tasks that gives robots more capability to

access human environments. Our framework is both agile and robust and aims to

push the limits of robotic quadrupeds. Our robot performs a set of useful real-world

tasks including opening doors by pressing various types of buttons of different heights

and interacting with moving objects. Rigorous evaluations are performed both in

simulation as well as real world scenarios. A limitation is that we currently decouple

high-level decision making and low-level command tracking and making it fully

end-to-end is an exciting future direction.

35



3. Legs as Manipulator: Pushing Quadrupedal Agility Beyond Locomotion

36



Appendix A

Appendix for Deep-Whole Body

Control

A.1 Experiment Videos

We perform thorough real-world analysis of our framework and our custom-built

legged manipulator. We urge the reader to look at the compiled result videos at

https://maniploco.github.io . As we can see in the video, legs and arm function

in coordination with each other where legs bend and stretch to increase the reach of

the arm as well as to attain stability.

A.2 Regularized Online Adaptation Details

We presented the details of Regularized Online Adaptation (Section 2.2 of the main

paper) in Algorithm 1. We set H to be 20. The regularization coefficient λ follows a

linear curriculum which starts at 0 and stops at 1: λ = min(max( itr−5000
5000

, 0), 1).

A.3 Simulation Details

We obtained URDF files for the quadraped and the robot arm from Unitree and

Interbotix separately. We customized the URDF files to connect the two parts rigidly.
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Algorithm 1 Regularized Online Adaptation

1: Randomly initialize privileged information encoder µ, adaptation module ϕ,
unified policy π

2: Initialize with empty replay buffer D
3: for itr = 1, 2, . . . do
4: for i = 1, 2, . . . , Nenv do
5: s0, e0 ← envs[i].reset()
6: for t = 0, 1, . . . , T do
7: if itr mod H == 0 then
8: zϕt ← ϕ(st−10:t−1, at−11:t−2)
9: at ← π((st, at−1, z

ϕ
t ))

10: else
11: zµt ← µ(et)
12: at ← π((st, at−1, z

µ
t ))

13: end if
14: st+1, rt ← envs[i].step(at)
15: Store ((st, et), at, rt, (st+1, et+1), z

ϕ
t , z

µ
t ) in D

16: end for
17: end for
18: if itr mod H == 0 then
19: Update θϕ by optimizing ||sg[zµt ]− zϕt ||2
20: else
21: Update θπ, θµ by optimizing −J(θπ, θµ) + λ||zµt − sg[zϕt ]||2, where J(θπ, θµ)

is the
22: advantage mixing RL objective in Section 2.1 of the main paper
23: end if
24: Empty D
25: λ← Linear Curriculum(itr)
26: end for

38



A. Appendix for Deep-Whole Body Control

Shown in Figure A.1, we use Nvidia’s IsaacGym [52] for parallel simulation. We

Figure A.1: Customized simulation environment based on IsaacGym

use fractal noise to generate the terrain. The parameters for the fractual noise are

number of octaves = 2, fractal lacunarity = 2.0, fractal gain = 0.25, frequency =

10Hz, amplitude = 0.15m. We found that the generated rough terrain will enforce

foot clearance and replace the complex rewards that are needed if flat terrain is used

for simulation [28].

We sample an EE position command by first sampling a spherical coordinate

(l, p, y) from Table 2 of the main paper. Then world coordinate of pend is obtained as

T (S2C[(l, p, y)]) + (pbasex , pbasey , pbasez ), where T is the linear transformation according

to the base orientation, S2C[] is the operator to transform spherical coordinates to

Cartesian coordinates, and pbase is the base position. To encourage smooth arm

motion and whole-body coordination, we set pbasez to be a constant (0.53) and row

and pitch in T to be 0, so EE position commands are z, row, pitch-independent of

the base.

We simulate each episode for a maximum of 1000 steps and terminate the episode

earlier if the height of the robot drops below 0.28m, body roll angle exceeds 0.2

radians if EE position command if on the left of the body base (pcmd
y > 0) , or is

less than −0.2 radians if EE position command is on the right of the body base

(pcmd
y < 0), or the body pitch exceeds 0.2 radians if EE position command is above

39



A. Appendix for Deep-Whole Body Control

body base (pcmd
p > 0), or is less than −0.2 radians if EE position command is below

body base (pcmd
p < 0). We do not early terminate if the arm self-collide and any body

parts with the terrain, but the EE command positions are sampled in a way that

The control frequency of the policy is 50Hz, and the simulation frequency is 200Hz.

We set the stiffness (Kp) for leg joints and arm joints to be 50 and 5 respectively and

the damping (Kd) to be 1 and 0.5 respectively. The default target joint positions for

leg joints are [−0.1, 0.8,−1.5, 0.1, 0.8,−1.5,−0.1, 0.8,−1.5, 0.1, 0.8,−1.5] and for arm

joints are zeros. The delta range of target joint positions for leg joints is 0.45 and for

arm joints are [2.1, 1.0, 1.0, 2.1, 1.7, 2.1].

A.4 Training Details

The policy is a multi-layer perceptron which takes in the current state st ∈ R75, which

is concatenated with the environment extrinsics zt ∈ R20. The first hidden layer

has 128 dimensions and after that the network splits into 2 heads, where each has 2

hidden layers of 128 dimensions. The outputs of two heads are concatenated, where

the leg actions alegt ∈ R12 and arm actions aarmt ∈ R6. We train for 10000 iterations /

training batches, which are 2 billions of samples and 200k gradient updates. We list

the hyperparameters of PPO [73] in Table A.1 of the Supplementary.

Table A.1: Training Hyper-parameters

PPO clip range 0.2
Learning rate 2e-4

Reward discount factor 0.99
GAE λ 0.95

Number of environments 5000
Number of environment steps per training batch 40

Learning epochs per training batch 5
Number of mini-batches per training batch 4

Minimum policy std 0.2
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Figure A.2: Advantage mixing helps the unified policy to learn to walk and grasp at the
same time. Without Advantage Mixing, the unified policy fails to learn to walk where
the Episode Vel Error (episodic sum of L1 error between velocity commands and current
velocities) is constantly high. In this case, the unified policy stays at local minima of only
following EE commands.

A.5 Advantage Mixing Details

For a policy with diagonal Gaussian noise and a sampled transition batch D, the

training objective with respect to policy’s parameters θπ is

J(θπ) =
1

|D|
∑

(st,at)∈D

log π (at | st)A(st, at)

=
1

|D|
∑

(st,at)∈D

log
(
π(aarmt | st)π(alegt | st)

) (
Amanip(st, at) + Aloco(st, at)

)
→ 1

|D|
∑

(st,at)∈D

log π(aarmt | st)
(
Amanip + βAloco

)
+ log π(alegt | st)

(
βAmanip + Aloco

)
In Figure A.2 of the Supplementary, we plot the episodic velocity command following

error (Episode Vel Error) and EE comand following error (Episode EE Error) against

number of steps during training. Advantage mixing helps the unified policy to learn

to walk and grasp at the same time. Without Advantage Mixing, the unified policy

fails to learn to walk where the Episode Vel Error (episodic sum of L1 error between

velocity commands and current velocities) is constantly high. In this case, the unified

policy stays at local minima of only following EE commands by not exploring in leg

action space, since the initial exploration phase in leg action space will destabilize
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the base which harms manipulation tasks.

A.6 Real-World Setup and Experiment Details

Table A.2: Camera Parameters for Vision Tracking

Resolution 640 × 400
Frequency 10 Hz

Tag/Cam offset (-0.02, -0.03, 0.12)

Figure A.3: Vision-guided tracking by using the average pose of the two AprilTags as the
target pose.

The robot platform is comprised of a Unitree Go1 quadraped [82] with 12 actuat-

able DoFs, and a robot arm which is the 6-DoF Interbotix WidowX 250s [1] with a

parallel gripper. We mount the arm on top of the quadruped. The RealSense D435

provides RGB visual information and is mounted close to the gripper of WidowX.

Both power of Go1 and WidowX (60 Watts) are provided by Go1’s battery.

In real-world experiments, we directly deploy the unified policy with the adaptation

module with weights fixed onto the onboard computation of Go1, both modules

operate at 50Hz. The inference of policy and adaption module are done on Raspberry

Pi 4. The software stack of the WidowX 250s arm is setup on Nvidia TX2 by

using the official codebase at https://github.com/Interbotix/interbotix_ros_
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Ground Points (pend)
Success
Rate

↑ TTC ↓ IK Failure
Rate

↓ Self-Collision
Rate

↓

Easy tasks (tested on 3 points)
Ours

(0.62,−1.27,−1.11)(0.57,−1.16, 0.55)
(0.58,−1.14, 1.78)

 0.8 5s - 0
MPC+IK 0.3 17s 0.4 0.3

Hard tasks (tested on 5 point)
Ours


(0.72,−0.51, 0.34)
(0.55,−0.75,−0.43)
(0.56,−0.73, 0.5)
(0.45,−0.74, 1.80)
(0.45,−0.76,−1.8)


0.8 5.6s - 0

MPC+IK 0.1 22.0s 0.2 0.5

Table A.3: Comparison of our method v.s. MPC+IK on pick-up tasks. pend is the goal
position sampled from the points on the ground. TTC is the average time to tompletion.
All data are averaged on 10 real-world trials.

manipulators. UDP is used as the communication protocal between Pi and TX2.

EE gripper closing and opening are not a part of the policy.

In teleoperation experiments, the gripper action is directly controlled by a joystick

controller. In vision-guided tracking experiments, we use a scripted policy to control

the gripper: when the gripper position is close to the desired position specified by

the AprilTag [62] for 1 second, the gripper closes; otherwise, it keeps open.

We listed the camera parameters used in vision-guided tracking in Table A.2 of

the Supplementary. The “Tag/Cam offset” describes what the desired translation

of the tag should be viewed in the camera frame when using the position controller

to specify desired end-effector position in spherical coordinate. Shown in Figure A.3

of the Supplementary, we also performed additional experiments on vision-guided

tracking suggested by Reviewer bkQw by using two AprilTags and averaging their

pose to get the target pose. Video results are at here. We listed the positions of

ground points for visual-guided tracking tasks in Table A.3. More results on hard

tasks are at here.
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