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Abstract

Robot learning research has seen significant advancements. However,
the field remains predominantly demo-driven, making direct comparisons
between methods difficult without replicating them on individual setups.
This places a substantial burden on making scientific progress. While many
simulation benchmarks exist, they usually feature contrived datasets and
do not accurately reflect real-world performance. The absence of widely
recognized benchmarks and real-world applicability makes it difficult to
ascertain scientific advancements.

In my thesis, I propose two works that tackle these challenges. In Chap-
ter 2, instead of assuming access to datasets of any quality, we suggest
that near-optimal and safe demonstrations collected from out-of-domain
tasks are more practical data-sources for real world robot learning. We
further propose a set of experiments that evaluate the generalization
capabilities of offline reinforcement learning (ORL) and imitation learning
methods within this framework. Our study finds that ORL and imitation
learning prefer different action spaces, and that ORL algorithms can gen-
eralize from leveraging offline heterogeneous data sources and outperform
imitation learning.

The second work, introduced in Chapter 3, presents an initiative towards
establishing a real-robot benchmark: shared tasks and robots for eval-
uation that are remotely submitted to and an open-source dataset in
this setting. Our benchmark suite includes common manipulation tasks
that require challenging generalization to unseen objects, positions, and
lighting. Initial results from the benchmark and the launch of a NeurIPS
competition highlight the feasibility of such systems.
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Chapter 1

Introduction

Robot learning has seen great advances over the years. While it is encouraging to see

more and more demonstrations on physical robots instead of only in simulation, these

demonstrations alone prove inadequate for monitoring scientific advancements since it

is often challenging to tell the benefit of one method over the other solely from those

demonstrations. The current demo-driven nature of robot learning research makes

benchmarking necessary for us to compare methods, identify scientific progress, and

make faster improvements.

Nevertheless, the amount of effort in this domain remains insufficient, and robotics

as a field struggles to establish a common benchmark. The challenges of establishing

a benchmark for robot learning research are manifold. Firstly, consensus has yet to be

reached among robot learning researchers regarding the datasets and tasks suitable

for benchmarking, stymying initial efforts in this direction. Second, a major goal

for robot learning research is the robot’s generalization and transfer ability, which

is nontrivial to evaluate as an extensive array of scenes and evaluation trials are

needed for each model. Furthermore, while simulation-based benchmarks exist and

are comparatively simpler to develop and maintain, simulators by far are not a good

proxy for real-world performance thus hold limited relevance for real-world robotics.

Lastly, a benchmarking effort should encourage accessibility for a broader community,

which is a challenge for any centralized setup.

In this thesis, we propose two works that tackle the challenges in establishing

benchmarks for robot learning research. We focus on evaluating the generalization and

1



1. Introduction

transfer ability of offline learning algorithms under a realistic data assumption, and

propose a benchmark with open source, shared hardware enabling fair comparisons.

In the first work, Real World Offline Reinforcement Learning with Realistic Data

Source, we posit that data collected from safe operations of closely related tasks are

more practical data sources for real-world robot learning. Under these settings, we

perform an extensive (6500+ trajectories collected over 800+ robot hours and 270+

human labor hours) empirical study evaluating generalization and transfer capabilities

of representative ORL methods on four real-world tabletop manipulation tasks. Our

study finds that ORL and imitation learning prefer different action spaces, and that

ORL algorithms can generalize from leveraging offline heterogeneous data sources

and outperform imitation learning.

In the second work, Train Offline, Test Online: A Real Robot Learning Benchmark,

we propose a new benchmark: Train Offline, Test Online (TOTO). TOTO provides

remote users with access to shared robotic hardware for evaluating methods on

common tasks and an open-source dataset of these tasks for offline training. Its

manipulation task suite requires challenging generalization to unseen objects, positions,

and lighting. We present initial results on TOTO comparing five pretrained visual

representations and four offline policy learning baselines, remotely contributed by five

institutions. The real promise of TOTO, however, lies in the future: we release the

benchmark for additional submissions from any user, enabling easy, direct comparison

to several methods without the need to obtain hardware or collect data.
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Chapter 2

Real World Offline Reinforcement

Learning with Realistic Data

Source

2.1 Introduction

        Task  

Offline-RL
Dataset

Offline-RL 
Algo(s)

Imitation 
Learning 

?

Simulation Data Sources
Half-Trained Policies 

(Unrealistic)
Random
(Unsafe)

Expert + Noise 
(Unsafe)

Real-World Data Sources (Multi-Task)

Data for Task Task

Figure 2.1: Realistic data sources for offline RL algorithms in real world tasks.

Despite rapid advances, the applicability of Deep Reinforcement Learning (DRL)

algorithms [28, 49, 54, 68, 70, 71, 76, 81] to real-world robotics tasks is limited

due to sample inefficiency and safety considerations. The emerging field of offline

reinforcement learning (ORL) [46, 48] has the potential to overcome these challenges,

by learning only from logged or pre-generated offline datasets, thereby circumventing
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2. Real World Offline Reinforcement Learning with Realistic Data Source

safety and exploration challenges. This makes ORL well suited for applications with

large datasets (e.g. recommendation systems) or those where online interactions

are scarce and expensive (e.g. robotics). However, comprehensive benchmarking

and empirical evaluation of ORL algorithms is significantly lagging behind the

burst of algorithmic progress [9, 20, 33, 35, 36, 41, 55, 77, 83, 90, 91]. Widely

used ORL benchmarks [18, 25] are entirely in simulation and use contrived data

collection protocols that do not capture fundamental considerations of physical robots.

Therefore, they hold limited relevance for real-world robotics. In this work (Real-

ORL), we aim to bridge this gap by outlining practical offline dataset collection

protocols that are representative of real-world robot settings. Our work also performs

a comprehensive empirical study spanning 6500+ trajectories collected over

800+ robot hours and 270+ human labor hour, to benchmark and analyze

three representative ORL algorithms thoroughly. We will release all the datasets,

code, and hardware hooks from this paper.

In principle, ORL can be used to train policies from datasets of arbitrary quality.

This has prompted the development of simulated ORL benchmarks [18, 25, 85]

that utilize data sources like expert policies trained with online RL, exploratory

policies, or even replay buffers of online RL agents. However, simulated datasets may

fail to capture the challenges in real world: hardware noises coupled with varying

reset conditions lead to covariate shift and violate the i.i.d. assumption about state

distributions between train and test time. Further, such datasets are not feasible

on physical robots and defeat the core motivation of ORL for robotics – to avoid

the use of online RL due to poor sample efficiency and safety! Recent works [64, 85]

suggest that dataset composition and distribution dramatically affect the relative

performance of algorithms. In this backdrop, we consider the pertinent question:

What is a practical instantiation of the ORL setting for physical robots, and can

existing ORL algorithms learn successful policies in such a setting?

In this work, we envision practical scenarios to apply ORL for real-world robotics.

Towards this end, our first insight is that real-world offline datasets are likely to come

from well-behaved policies that abide by safety and monetary constraints, in sharp

contrast to simulator data collected from exploratory or partially trained policies, as

used in simulated benchmarks [18, 25, 85]. Such trajectories can be collected by user

demonstrations or through hand-scripted policies that are partially successful but

4



2. Real World Offline Reinforcement Learning with Realistic Data Source

Figure 2.2: Canonical tasks for tabletop manipulation.

safe. It is more realistic to collect large volumes of data for real robots using multiple

successful policies designed under expert supervision for specific tasks than using

policies that are unsuccessful or without safety guarantees. Secondly, the goal of any

learning (including ORL) is broad generalization and transfer. It is therefore critical

to study whether a learning algorithm can leverage task-agnostic datasets, or datasets

intended for a source task, to make progress on a new target task. In this work, we

collect offline datasets consistent with these principles and evaluate representative

ORL algorithms on a set of canonical table-top tasks as illustrated in Figure 2.2.

Effort on evaluations conducted on physical robots is sparse in the field due to

time and resource constraints, although it is vital to further our understanding. Our

real robot results corroborate and validate intuitions from simulated benchmarks [43]

but also enable novel discoveries. We find that (1) even for scenarios with sufficiently

high-quality data, some ORL algorithms could outperform behavior cloning (BC) [62]

on certain tasks, (2) for scenarios that require generalization or transfer to new tasks

with low data support, ORL agents generally outperform BC. (3) in cases with

overlapping data support, ORL algorithms can leverage additional heterogeneous

task-agnostic data to improve their own performance, and in some cases even surpass

the best in-domain agent which is trained only from data of the target task.

Our empirical evaluation is unique as it focuses on ORL algorithms ability to

leverage more realistic, multi-task data sources, spans over several tasks that are

algorithm-agnostic, trains various ORL algorithms on the same settings and evaluates

them directly in the real world. In summary, we believe Real-ORL establishes the

effectiveness of offline RL algorithms in leveraging out of domain high-quality hetero-

geneous data for generalization and transfer in robot-learning, which is representative

5



2. Real World Offline Reinforcement Learning with Realistic Data Source

of real world applications.

2.2 Preliminaries and Related Work

Offline RL. We consider the ORL framework, which models the environment as

a Markov Decision Process (MDP): M = ⟨S,A,R, T, ρ0, H⟩ where S ⊆ Rn is the

state space, A ⊆ Rm is the action space, R : S × A → R is the reward function,

T : S×A×S → R+ is the (stochastic) transition dynamics, ρ0 : S → R+ is the initial

state distribution, and H is the maximum trajectory horizon. In the ORL setting,

we assume access to the reward function R and a pre-generated dataset of the form:

D = {τ1, τ2, . . . τN}, where each τi = (s0, a0, s1, a1, . . . sH) is a trajectory collected

using a behavioral policy or a mix of policies πb : S × A → R+.

The goal in ORL is to use the offline dataset D to learn a near-optimal policy,

π∗ := argmax
π

EM,π

[
H∑
t=0

r(st, at)

]
.

In the general case, the optimal policy π∗ may not be learnable using D due to a

lack of sufficient exploration in the dataset. In this case, we would seek the best

policy learnable from the dataset, or, at the very least, a policy that improves upon

behavioral policy.

Offline RL Algorithms. Recent years have seen tremendous interests in offline RL

and the development of new ORL algorithms. Most of these algorithms incorporate

some form of regularization or conservatism. This can take many forms, such

as regularized policy gradients or actor critic algorithms [9, 19, 29, 55, 83, 84],

approximate dynamic programming [20, 36, 41, 77], and model-based RL [1, 33, 87, 88].

We select a representative ORL algorithms from each category: AWAC [55], IQL [36]

and MOReL [33]. In this work, we do not propose new algorithms for offline RL;

rather we study a spectrum of representative ORL algorithms and evaluate their

assumptions and effectiveness on a physical robot under realistic usage scenarios.

6



2. Real World Offline Reinforcement Learning with Realistic Data Source

Offline RL Benchmarks and Evaluation. In conjunction with algorithmic

advances, offline RL benchmarks have also been proposed. However, they are predom-

inantly captured with simulation [18, 25, 44] using datasets with idealistic coverage,

i.i.d. samples, and synchronous execution. Most of these assumptions are invalid in

real world which is stochastic and has operational delays. Prior works investigating

offline RL for these settings on physical robots are limited. For instance, Kostrikov

et al. [36] did not provide real robot evaluation for IQL, which we conduct in this

work; Chebotar et al. [8], Kalashnikov et al. [31] evaluate performance on a specialized

Arm-Farm; Rafailov et al. [66] evaluate on a single drawer closing task; Kumar et al.

[42], Singh et al. [77] evaluate only one algorithm (COG, CQL, respectively). Man-

dlekar et al. [52] evaluate BCQ and CQL alongside BC on three real robotics tasks,

but their evaluations consider only in-domain setting: that the agents were trained

only on the specific task data, without giving them access to a pre-generated, offline

dataset. Thus, it is unclear whether insights from simulated benchmarks or limited

hardware evaluation can generalize broadly. Our work aims to bridge this gap by

empirically studying representative offline RL algorithms on a suite of real-world robot

learning tasks with an emphasize on transfer learning and out-domain generalization.

See Section 2.3 for detailed discussion.

Imitation Learning (IL). IL [57] is an alternate approach to training control

policies for robotics. Unlike RL, which learns policies by optimizing rewards (or

costs), IL (and inverse RL [30, 34, 93]) learns by mimicking expert demonstrations

and typically requires no reward function. IL has been studied in both the offline

setting [32, 89], where the agent learns from a fixed set of expert demonstrations,

and the online setting [7, 67], where the agent can perform additional environment

interactions. A combination of RL and IL has also been explored in prior work

[69, 78]. Our offline dataset consists of trajectories from a heuristic hand-scripted

policy collected under expert supervision, which represents a dataset of reasonably

high quality. As a result, we consider offline IL and, behavior cloning in particular, as

a baseline algorithm in our empirical evaluation.

7



2. Real World Offline Reinforcement Learning with Realistic Data Source

2.3 Experiment Scope and Setup

To investigate the effectiveness of ORL algorithms on real-world robot learning tasks,

we adhere to a few guiding principles: (1) we make design choices representing the

wider community to the extent possible, (2) we strive to be fair to all baselines by

providing them their best chance and work in consultation with their authors; and

(3) we prioritize reproducibility and data sharing. We have open-sourced our data,

camera images along with our training and evaluation codebase.

Hardware Setup. Hardware plays a seminal role in robotic capability. For repro-

ducibility and extensibility, we selected a hardware platform that is well-established,

non-custom, and commonly used in the field. After an exhaustive literature survey

[3, 17, 24, 38, 56, 75], we converged on a table-top manipulation setup shown in

Figure 2.3. It consists of a table-mounted Franka panda arm that uses a RobotiQ

parallel gripper as its end effector, which is accompanied by two Intel 435 RGBD

cameras. Our robot has 8 DOF, uses factory-supplied default controller gains, accepts

position commands at 15 Hz, and runs a low-level joint position controller at 1000

Hz. To perceive the object to interact with, we extract the position of the AprilTags

attached to the object from RGB images. Our robot states consist of joint positions,

joint velocities, and positions of the object to interact with (if applicable). Our

policies compute actions (desired joint positions) using robot proprioception, tracked

object locations, and desired goal location.

Figure 2.3: Our setup consists of a
commonly used Franka arm, a Robo-
tiQ parallel gripper, and two Intel Re-
alsense 435 cameras.

Canonical Tasks We consider four clas-

sic manipulation tasks common in literature:

reach, slide, lift, and pick-n-place

(PnP) (see Figure 2.2). reach requires the

robot to move from a randomly sampled con-

figuration in the workspace to another con-

figuration. The other three tasks involve a

heavy glass lid with a handle, which is initial-

ized randomly on the table. slide requires

the robot to hold and move the lid along the

8



2. Real World Offline Reinforcement Learning with Realistic Data Source

table to a specified goal location. lift requires the robot to grasp and lift the lid

10 cm off the table. PnP requires the robot to grasp, lift, move and place the lid

at a designated goal position i.e. the chopping board. The four tasks constitute a

representative range of common tabletop manipulation challenges: reach focuses on

free movements while the other three tasks involve intermittent interaction dynamics

between the table, lid, and the parallel grippers. We model each canonical task as a

MDP with an unique reward function. Details on our tasks are in Appendix A.1.

Data Collection. We use a hand-designed, scripted policy developed under expert

supervision to collect (dominantly) successful trajectories for all our canonical tasks.

To highlight ORL algorithms ability to overcome suboptimal dataset, previous

works [18, 44, 52] have crippled expert policies with noise, use half-trained RL

policies or collect human demonstrations with varying qualities to highlight the

performance gain over compromised datasets. We posit that such data sources are not

representative of robotics domains, where noisy or random behaviors are unsafe and

detrimental to hardware’s stability. Instead of infusing noise or failure data points to

serve as negative examples, we believe that mixing data collected from various tasks

offers a more realistic setting in which to apply ORL on real robots for three reasons:

(1) collecting such “random/roaming/explorative” data on a real robot autonomously

would require comprehensive safety constraints, expert supervision and oversight, (2)

engaging experts to gather extensive quantities of random data is less logical than

employing their expertise to collect meaningful trajectories from an actual task, and

(3) designing task-specific strategies and stress testing ORL’s ability against such a

strong dataset is more viable than using a compromised dataset. In Real-ORL, we

collected offline dataset using heuristic strategies designed with reasonable efforts and

froze the dataset ahead of time to avoid biases favoring certain tasks and algorithms.

To implement scripted policies for all tasks, we first decompose each task into

simpler stages marked by end-effector sub-goals. We leverage Mujoco’s IK solver to

map these sub-goals into joint space. The scripted policy takes tiny steps toward

sub-goals until some task-specific criteria are met. Our heuristic policies didn’t

reach the theoretical maximum possible scores due to controller noises and tracking

noises (Table 2.1). However, they complete the task at a high success rate and

have comparable performance to human demonstration. More information of the

9
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performance of the dataset can been seen in Table 2.1.

Dataset. Our Real-ORL dataset consists of around 3000 trajectories and the

characteristics of our dataset is shown in Table 2.1. Our offline dataset is represented

as a series of transition tuples {(s, a, s′)task}. States consist of joint positions, joint
velocities, and positions of the object to interact with (if applicable). Actions contain

target joint positions. To perceive the object to interact with, we obtain the position

of tracked AprilTags attached to the object from the RGB images of the two cameras.

More details are available in Appendix A.2.

Table 2.1: Characteristics of collected data. # Traj denotes the total number of
trajectories, # Samples denotes the total number of state-action-reward pairs. Each
trajectory’s score is the maximum reward in the trajectory. Avg Score shows the
average scores per trajectories, Max Score shows the maximum reward achieved by
trajectories in our dataset, Human Score shows the max reward achieved by a human
teleoperator and Theoretical Best Score denotes the theoretical maximum possible
reward determined by our reward function.

Task # Traj # Samples Avg Score Max Score Human Score Theoretical Best Score

reach 1000 99752 0.960 0.99 0.963 1
slide 731 244422 0.819 0.93 0.834 1
lift 609 178515 0.948 1 1 1
PnP 616 327478 0.875 1.09 0.924 1.15

2.4 Experiment Design

Our Real-ORL experiments aim to answer the following questions:

1. Are ORL algorithms sensitive to, or show a preference for, any specific state

and action space parameterization?

2. How do they perform against the standard methods for in-domain tasks?

3. How do common methods perform in out-of-domain tasks requiring (a) general-

ization, and (b) re-targeting?

To ensure fair evaluation, we now outline our choice of candidate algorithms and

performance metrics.
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Algorithms For all evaluations, we compare four algorithms: Behavior Cloning

(BC) [62], Model-based Offline REinforcement Learning (MOReL) [33], Advantage-

Weighted Actor Critic (AWAC) [55] and Implicit Q-Learning (IQL) [36]. BC is a

model-free IL algorithm that remains a strong baseline for real robot experiments

due to its simplicity and practicality. AWAC and IQL both train an off-policy value

function and then derive a policy to maximize the expected reward. AWAC uses

KL divergence minimization to constrain the resulting policy to be close to the given

policy distribution. In contrast, IQL leverages expectile regression to avoid querying

the value function for any out-of-distribution query. MOReL is distinct since it is a

model-based approach: it recovers a dynamics model from offline data that allows it

directly apply policy gradient RL algorithms. We use implementations of BC and

MOReL from the MOReL author implementation. For the later, we add a weighted

behavior cloning loss to its policy training step to serve as a regularizer, inspired

by [19]. We use AWAC and IQL implemented in the open sourced d3rlpy library [73].

Training. Since neural network agents are empirically sensitive to parameters and

seeds, we (1) used the same fixed random seed (123) for all our experiments with

additional seed sweeping to strengthen the reproducibility of our results and (2)

conducted equal amount of efforts for hyperparameter tuning efforts for all algorithms.

Unlike traditional supervised learning, we cannot simply select the agents with the

best validation loss for tuning the hyperparameters, because we donnot know the

performance of an agent unless testing it on a real robot [52]. We thus keep our

tuning simple and fair: starting with the default parameters and training 5 agents

in 3 rounds, trying to make the agent converge. We observe that certain agents

cannot converge after exhausting the allocated trials and report these results with a

(*) marker, signaling the challenge in tuning parameters for such algorithms. More

details are available in Appendix A.4.

Evaluation. Real robot evaluations can have high variance due to reset conditions

and hardware noise. For each agent, we collect 12 trajectories and report their mean

and standard deviation of scores. To confirm the reproducibility of our results and ro-

bustness to seed sweeping, for agents that contributed to our conclusions (usually the

best and the second-best agents) we report performance swept over three consecutive
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random seeds (122, 124 in addition to the fixed seed of 123) in Appendix A.6. To

verify the statistical significance of our results when comparing performance between

agents, we report the p-value of paired difference tests in Appendix A.7.

To answer the questions mentioned at the beginning of this section, we design two

sets of real-world experiments: in-domain and out-domain experiments. We note

the distinction between “in-domain” training and “out-domain” training, where the

former leverages only data that were collected for the test task and the later allow

incorporating heterogeneous data from different tasks.

A. In-domain Ablations. We train all agents using in-domain data (i.e., we train

a slide agent by feeding only slide data) to test ORL algorithms’ sensitivity to

varying data representation and inspect: (1) whether it is worth including velocity

information in the state space (Vel versus NoVel); for simulator experiments, it

is almost always a gain to include velocity, but velocity sensors on real robots are

notoriously noisy; (2) whether to use the policy output joint position (Abs) vs the

change in joint position (Delta) as action. Most BC literature uses the former,

whereas RL prefers the latter. 1 We use the outcome of the ablations and the

best-performing setting for each algorithm to study generalization and transfer in the

following three scenarios:

B. Generalization: Lacking data support. Regardless of the data collection

method employed, the coverage of the task space may not be uniform. For example,

imagine that a robot trained to wipe clean a table but now cleans a bigger table.

Empirically, a policy trained with behavior cloning would have trouble predicting

actions for states when there is less data support due to the supervised nature of

behavior cloning. Can ORL algorithms, by learning a value function and perhaps a

dynamics model, generalize to a task space that lacks data support? To this end, we

create a new dataset from our slide task by dividing the task space to three regions:

left, center, right. We remove any trajectory where the object was initially placed in

1Additionally, to verify that our dataset has reasonable optimality sufficient for training BC, we
train BC separately with Top-K% of the trajectories to exclude the relatively “worse” trajectories.
The results showns in Appendix. A.5 verifies that BC has the best performance using the full dataset
we collect.
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the center region from the collected dataset. We train all agents and gather evaluation

trajectories asking them to slide an object initially placed in the left, center and right

regions.

C. Generalization: Re-targeting data for dynamic tasks. For the slide task,

our collected demonstration has static goal positions. We test agents trained using

such static data in a dynamic setting by updating the goal at a fixed frequency, and

asking the agents to grasp and slide the lid following some predetermined curves. We

collected the ideal trajectories via human demonstration. This task can be viewed as

a simplified version of daily tasks, including drawing, wiping, and cleaning, which

require possibly repeated actions and a much longer horizon than usual IL and

ORL tasks. We select a variety of trajectories: circle, square, and the numbers 3, 5,

6, 8, which have different combinations of smooth curves and corners.

D. Transfer: Reusing data from different tasks. We investigate whether

we can reuse hetergenuous data collected from previous tasks to train a policy for

a new task. For example, would combining data from two canonical tasks (e.g.,

slide+lift) helps the agent perform better on either of these tasks? The ability for

robot learning to utilize datasets from various tasks holds significant importance as it

allows robots to acquire adaptable and versatile skills from existing resources. When

aggregating data collected for multiple tasks, ORL algorithms can use the reward

function for the test task to relabel the offline dataset. Evaluating ORL algorithms

on such out-domain, transfer-learning settings is practical and relevant: instead of

collecting random explorative data which demands careful setup of safety constraints

on a real robot, we want to leverage offline datasets collected from different tasks

to improve ORL performance. We train our algorithm with different combinations

of canonical task demonstrations (“train-data”) and evaluate each agent on each

individual task.
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2.5 Results and Discussion

2.5.1 In-domain Tasks

Which agent performs best for in-domain tasks? Table 2.2 summarizes

all agents’ performance for in-domain tasks. The bottom row of the table plots

the average reward across all four tasks for each agent. Interestingly, two of the

ORL agents, IQL and AWAC, achieved higher scores than BC trained on 2 out of 4

tasks. After verifying statistical significance, we confirm that even with abundant,

in-domain demonstrations, IQL outperformed BC on two tasks. For the other

tasks: on the simplest task reach, the best version of all agents reached comparable

performance. On the hardest task PnP, BC outperformed the best ORL agents. We

thus recommend considering both BC and IQL as baselines for in-domain robot

learning tasks which favor imitation learning.

Sensitivity to representation Empirically, BC demonstrated robustness to dif-

ferent state and action spaces, whereas ORL agents had high-variance. In 3 of 4

tasks considered, BC performed the best when using absolution joint position as

the action space and including velocity in the state space (AbsVel). On all tasks,

ORL agents performed better using delta action space (Delta) rather than joint

position. Intuitively, using the delta action space would be equivalent to restricting

the policy to move in a unit ball centered around the current state. Such constraints

could benefit RL policies which need exploration and sampling in action space more

than it helped BC, which simply learns the mapping from states to actions. We also

observed that our best agents all included velocity in their state space, despite that

velocities on real robot fluctuate with hardware noise.

2.5.2 Generalization and Transfer

Generalization to regions that lack data support. Table 2.3 trains agent

using a carved-out dataset and compares the agents’ performance on regions with

more data support versus the region with less data support ( Center ). We also

train all agents using the full dataset (without carved-out) and evaluate them on

14



2. Real World Offline Reinforcement Learning with Realistic Data Source

Table 2.2: Performance of all algorithms on varying representations. Each agent for
each task is trained and evaluated on four settings: to include velocity in state or not
(Vel versus NoVel); to use absolute or delta action space (Abs versus Delta). For
each task, the best BC agent and the best ORL agent are highlighted and bolded.
Agents that could not converge during training time are marked with (*). Some
agents triggered violent crashes at test time and we report such performance as <0.
Underline scores are swept over 3 seeds.

Task Agent
Representations

AbsNoVel AbsVel DeltaNoVel DeltaVel

Reach

BC 0.863 ± 0.069 0.768 ± 0.118 0.912 ± 0.026 0.924 ± 0.048
Morel 0.795 ± 0.086 0.584 ± 0.105 0.86 ± 0.069 0.917 ± 0.036
AWAC 0.770 ± 0.105 0.713 ± 0.158 0.916 ± 0.030 0.925 ± 0.047
IQL 0.843 ± 0.148 0.872 ± 0.104 0.904 ± 0.032 0.894 ± 0.066

Slide

BC 0.623 ± 0.172 0.681 ± 0.147 0.548 ± 0.200 0.551 ± 0.101
Morel 0.356 ± 0.189 0.117 ± 0.235 0.532 ± 0.147 0.629 ± 0.160
AWAC 0.548 ± 0.171 * 0.591 ± 0.146 * 0.569 ± 0.138 0.732 ± 0.113
IQL 0.627 ± 0.144 0.589 ± 0.166 0.712 ± 0.137 0.767 ± 0.065

Lift

BC 0.759 ± 0.179 0.823 ± 0.177 0.721 ± 0.225 0.613 ± 0.142
Morel 0.460 ± 0.189 0.149 ± 0.092 0.678 ± 0.186 0.652 ± 0.160
AWAC 0.518 ± 0.083 * <0 * 0.863 ± 0.149 * 0.821 ± 0.121
IQL 0.682 ± 0.163 <0 0.841 ± 0.144 0.880 ± 0.149

PnP

BC 0.632 ± 0.123 0.818 ± 0.185 0.564 ± 0.045 0.678 ± 0.195
Morel <0 <0 0.750 ± 0.197 0.748 ± 0.220
AWAC 0.451 ± 0.159 * <0 0.626 ± 0.234 * 0.735 ± 0.175 *
IQL 0.469 ± 0.142 <0 0.548 ± 0.160 0.601 ± 0.228
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Table 2.3: Training agents using a carved-out dataset to see how they perform when
generalizing to a task region that lacks data support (the Center region, highlighted
in Gray). For comparison, we also train all agents using full dataset and evaluate
them on the Center region.

Start Position BC MOReL AWAC IQL

Left 0.790 ± 0.056 0.571 ± 0.062 0.704 ± 0.119 0.704 ± 0.066
Right 0.774 ± 0.015 0.799 ± 0.033 0.707 ± 0.136 0.808 ± 0.015
Center 0.764 ± 0.013 0.793 ± 0.015 0.830 ± 0.026 0.811 ± 0.007

Center, trained
with full data 0.791 ± 0.018 0.776 ± 0.022 0.813 ± 0.021 0.811 ± 0.050

the Center region. We discovered that: (1) on the region with abundant support

(Left and Right), BC/IQL performed better than AWAC/MOReL , aligning with

our previous observation that BC/IQL performed better on in-domain tasks, (2)

on regions that have less data support, AWAC and MOReL could match BC’s

performance despite their initial disadvantage; and (3) ORL agents trained with

carved-out dataset and evaluated on carved-out region performed no worse than them

trained with full dataset, in contrast to BC agent, which performed significantly

worse after carving-out.

Generalization to dynamic tasks. Table 2.4 lists the ideal curves (collected via

human teleoperation) and the curves traced by each model. Each dot represents the

location of the lid at a certain time step. BC had the worst performance among all

models since it failed to complete tracing of the circle, square, and number 8 which

requires a larger range of motion, and the BC agent seemed to get stuck during

execution. Meanwhile, ORL methods largely succeeded tracing the entire curve

following the time-varying goals, demonstrating stronger generalizing ability for this

dynamic task.

Transfer learning by leveraging heterogeneous dataset Table 2.5 evaluates

the performance of ORL algorithms when trained with different combinations of

datasets from multiple tasks. The last column plots the average reward across all

three tasks for each dataset combination. We observe that:
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Table 2.4: Trajectory tracking. Green: the ideal demo trajectories, followed by each
agent’s tracking trajectories.

Ideal Traj

BC

MOREL

AWAC

IQL

1. The change in performance of ORL agents after leveraging offline data from

different tasks can vary, due to the characteristics of the algorithm, the nature of the

task, design of the reward function and the data distribution.

2. We observed that all ORL agents could improve their own performance using

some task/data combinations. Noticeably, MOReL achieved higher or comparable

performance on all tasks after leveraging more offline data. For instance, its perfor-

mance on the lift task progressively improved (0.606 → 0.726 → 0.896) with the

inclusion of data from slide and PnP tasks. Intuitively, MOReL’s dynamic model

training process could benefit from any realistic data, regardless of whether the data

was in-domain or out-of-domain.

3. Certain task-agnostic data could provide overlapping data support and enable

effective transfer learning, allowing some ORL agents to surpass imitation learning

and even the best in-domain agents. On slide and lift, all ORL algorithms

managed to surpass BC. On PnP, AWAC achieved comparable performance as

BC but with a slightly higher mean using a combo of slide and lift data. With

our extensive ablations, we observe that the final best agent for each task is either an

ORL algorithm or a tie between ORL and BC.
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4. ORL algorithms are not guaranteed to increase performance by including more

data. The performance changes of ORL are likely to vary by agents, the task and

dataset distribution. For instance, both AWAC and IQL agents have not gained

performance on lift when using slide+lift+PnP than using only slide+lift data

(0.899 → 0.728, 0.863 → 0.684). Surprisingly, training IQL for PnP using slide or

slide+lift data yielded even better results than using PnP data (0.84 > 0.6).

Qualitatively we observe that IQL agents trained with slide data were better at

grasping the object than the ones trained with PnP data, completing this first part of

the task (grasp) with more success while claiming distance-to-goal reward bonus.

Random Seed Sweeping To further demonstrate the reproducibility of our results,

we conducted random seed sweeping for our best and (optionally) the second-best

agents over 3 consecutive random seeds (122, 124 in addition to the original fixed

seed 123) and reported their scores using an underline in Appendix. A.6. These

additional 360 trajectories showed that the seed2seed variation for our experiments

is low, providing statistical significance to our observations: comparing with scores

computed from a single-seed, ∼60% of newly trained agents change score by less than

1%, ∼90% of agents change by less than 2%, and the maximum change was 6% from

one agent (whose score change does not affect the conclusion drawn).

Comparison to previous works. Some of our in-domain conclusions are aligned

with [52, 57]: that BC demonstrates strong robustness to varying representations

and tasks, serving as a competitive baseline in all four tasks tested. Even when

BC is not the best, it has reasonable performance that is no worse than 85% of the

best in-domain agents. Our findings also provide empirical verification to one of

[44]’s observations: that ORL could outperform BC for tasks where the initial state

distributions change during deployment, a common condition for real robotic task, or

when the environment has a few “critical” states, as seen in our manipulation tasks.

In contrast to previous works, however, we highlight that (1) IQL can be a

competitive baseline for settings that were traditionally favoring behavior cloning, as

it turns out to be the best in-domain agent on 2 out of 4 tasks we tested, despite the

lack of real robotic evaluation for IQL [36], (2) our extensive ablations on out-domain

transfer learning are unique and allow us to verify several ORL algorithms’ capability
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Table 2.5: Performance of agents trained with different combinations of offline data.
The best in-domain agent, transfer learning agents that improves over their in-domain
counterparts are colored. The best agent for each task is bold. Agents that could
not converge during training time are marked with (*). Some agents triggered violent
crashes at test time and we report such performance as <0. Underline scores are
swept over 3 seeds.

Agent Train Data
Test Task

slide lift PnP

BC

in-domain 0.681 ± 0.147 0.823 ± 0.177 0.818 ± 0.185
slide 0.681 ± 0.147 0.582 ± 0.058 0.612 ± 0.083
slide+lift 0.595 ± 0.127 0.580 ± 0.053 0.605 ± 0.120
slide+lift+PnP 0.610 ± 0.137 0.609 ± 0.079 0.640 ± 0.144

MOReL

in-domain 0.629 ± 0.160 0.678 ± 0.186 0.750 ± 0.197
slide 0.629 ± 0.160 0.606 ± 0.063 0.744 ± 0.174
slide+lift 0.616 ± 0.146 0.726 ± 0.184 0.636 ± 0.173
slide+lift+PnP 0.715 ± 0.134 0.896 ± 0.133 0.753 ± 0.181

AWAC

in-domain 0.732 ± 0.113 0.863 ± 0.149 * 0.735 ± 0.175 *
slide 0.732 ± 0.113 0.638 ± 0.055 0.770 ± 0.111*
slide+lift 0.734 ± 0.110 * 0.899 ± 0.149 0.813 ± 0.121
slide+lift+PnP 0.644 ± 0.144 * 0.728 ± 0.200 * 0.758 ± 0.188 *

IQL

in-domain 0.767 ± 0.065 0.880 ± 0.149 0.601 ± 0.228
slide 0.767 ± 0.065 0.258 ± 0.033 0.810 ± 0.107
slide+lift 0.704 ± 0.141 0.863 ± 0.166 0.842 ± 0.114
slide+lift+PnP 0.643 ± 0.143 0.684 ± 0.158 0.833 ± 0.183
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in generalizing to task region with less data-support (Table. 2.3) and to dynamic

tasks (Figure. 2.4), (3) we observe that leveraging heterogeneous data has enabled

all ORL algorithms to improve their own performance on at least one of the tasks,

allowing some to even surpass the best in-domain agents, which suggest that ORL can

be an interesting paradigm for real-world robotic learning.

2.6 Conclusion

In Real-ORL, we conducted an empirical study of representative ORL algorithms

on real-world robotic learning tasks, with the design of four experiments that test

for the generalization and transfer ability of ORL and IL algorithms in realistic

scenarios. The study encompassed three representative ORL algorithms (along with

behavior cloning), four table-top manipulation tasks with a Franka-Panda robot arm,

3000+ train trajectories, 3500+ evaluation trajectories, and 270+ human labor hours.

Through our extensive ablation studies, we find that (1) even for in-domain tasks with

abundant amount of high-quality data, IQL can be a competitive baseline against

the best behavior cloning policy, (2) for out-domain tasks, ORL algorithms were

able to generalize to task regions with low data-support and to dynamic tasks, (3)

the performance changes of ORL after leveraging heterogeneous data are likely to

vary by agents, the design of the task, and the characteristics of the data, (4) certain

heterogeneous task-agnostic data could provide overlapping data support and enable

transfer learning, allowing ORL agents to improve their own performance and, in

some cases, even surpass the best in-domain agents. Overall, (5) the best agent for

each task is either an ORL algorithm or a tie between ORL and BC. Our rigorous

evaluations indicate that even in out-of-domain multi-task data regime, (more realistic

in real world setting) offline RL is an effective paradigm to leverage out of domain

data.

2.7 Limitations

Our evaluation primarily focuses on three representative ORL algorithms which have

shown strong performance in simulated benchmarks. However, ORL is a rapidly
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evolving research field, with many different classes of algorithms [9, 19, 63]. Therefore,

expanding the scope of tasks, evaluation, and algorithms would offer interesting and

valuable future work. Moreover, all ORL algorithms have several hyperparameters

that influence their learning. We followed instructions and conventional wisdom

in the community to tune parameters, but acknowledge that our experiments do

not preclude the possibility that one could obtain better performing agents using a

different set of parameters and seeds. Hyperparameter and model selection for offline

RL is an emerging research sub-field [42] and progress here would also help advance

the applicability of ORL to robot learning. We hope this study and our open-source

codebase will facilitate this undertaking.

In the perspective of benchmarking, although this work has provided compre-

hensive evaluations of four algorithms, its sustainability in the long term may be

hindered by relying solely on the resources of a single research group with the continual

emergence of new algorithms and methods. In the work introduced in the subsequent

chapter (Chapter 3), we present an alternative approach. We propose to use shared

hardware and data for evaluating the generalization of both visual and policy learning

methods. This approach extends beyond the confines of a single laboratory, inviting

contributions and benchmarking from researchers across the community, thus ensuring

a more scalable and sustainable evaluation process.
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Chapter 3

Train Offline, Test Online: A Real

Robot Learning Benchmark

3.1 Introduction

One of the biggest drivers of success in machine learning research is arguably the avail-

ability of benchmarks. From GLUE [82] in natural language processing to ImageNet

[16] in computer vision, benchmarks have helped identify fundamental advances in

many areas. Meanwhile, robotics struggles to establish common benchmarks due to

the physical nature of evaluation. The experimental conditions, objects of interest,

and hardware vary across labs, often making methods sensitive to implementation

details. Finally, the difficulties of purchasing, building, and installing infrastructure

make it challenging for newcomers to contribute to the field.

For robotics research to advance, we clearly need a common way to evaluate

and benchmark different algorithms. A good benchmark will not only be fair to

all algorithms but also have a low participation barrier: setup to evaluation time

should be as low as possible. Efforts like YCB [6] and the Ranking-Based Robotics

Benchmark (RB2) [14] have aimed to standardize objects and tasks, but the onus of

setting up infrastructure still lies with each lab. A simple way to overcome this is the

use of a common physical evaluation site, as the Amazon Picking Challenge [12] and

DARPA Robotics Challenges [5, 39, 72] have done. However, the barrier is still high
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since participants must set up their own training infrastructure. Both of the above

frameworks leave the method development phase unspecified and struggle to provide

apples to apples comparisons.

Figure 3.1: Train Offline, Test Online: Our benchmark lets remote users test
offline learning methods on shared hardware.

Many robot learning algorithms do online training, where a policy is learned

concurrently with data collection. One way to standardize online training is with

simulation [4, 80, 86, 92]. While simulation mitigates issues with variation across labs,

the findings from simulated benchmarks may not transfer to the real world. On the

other hand, if we conduct online training in the real world, comparison across labs

becomes difficult due to physical differences. In recent years, larger offline datasets

have surfaced in robotics [11, 13, 51], and with them the rise of offline training

algorithms. From imitation learning to offline reinforcement learning (RL), these

algorithms can be trained using the same data and tested in a common physical

setup.

Inspired by this observation, we propose a new robotics benchmark called TOTO

(Train Offline, Test Online). TOTO has two key components: (a) an offline

manipulation dataset to train imitation learning and offline RL algorithms, and (b) a

shared hardware setup where users can evaluate their methods now and going forward.
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Because all TOTO participants train using the same publicly-released dataset and

evaluate on shared hardware, the benchmark provides a fair apples-apples comparison.

TOTO paves a path forward for robot learning by lowering the entry barrier:

when designing a new method, a researcher can train their policy on our dataset,

evaluate it on our hardware, and directly compare it to the existing baselines for our

benchmark. TOTO means no more time devoted to setting up hardware, collecting

data, or tuning baselines for one individual’s environment. In this paper, we lay out

our benchmark design and present the initial methods contributed by benchmark beta

testers across the country. These results show that our benchmark suite is challenging

yet possible, providing room for growth as users iterate on TOTO.

3.2 Related Work

For a thorough description of work related to remote robotics benchmarking, we refer

to the Robotics Cloud concept paper [15]. Here we describe related work specific to

our instantiation of a robotics cloud (TOTO).

3.2.1 Shared Tasks and Environments

A necessary step in comparing method performance is evaluation on a common task.

Common tasks might mean a standard object set such as YCB [6], which can be

distributed to remote labs, allowing for shared metrics like grasp success on these

objects. RB2 [14] provides four common manipulation tasks (similar to those we use,

described in Section 3.3.2) as well as a framework for comparing and ranking methods

across results from multiple labs. Another route is sharing the environment itself,

as the Amazon Picking Challenge [12] and DARPA Robotics Challenges [5, 39, 72]

have done. Sharing tasks or environments gives metrics by which we can compare

approaches. However, users must still develop the approach on their own hardware in

their own lab, and recreating identical environment setups is quite challenging.

3.2.2 Shared, Remote Robots

Going one step further, remotely-accessible robots can be shared across the community,

enabling method development and evaluation without users acquiring their own

25



3. Train Offline, Test Online: A Real Robot Learning Benchmark

hardware. Georgia Tech’s Robotarium [60] allows for remote experimentation of

multi-agent methods on a physical robotic swarm, which has been extensively used

not just in research but also in education. OffWorld Gym [40] provides remote

access to navigation tasks using a mobile robot with closely mirrored simulated and

physical instances of the same environment. A recent survey paper [79] provides an

overview of robotic grasping and manipulation competitions, including some involving

remotely-accessible, shared robots such as [50]. Finally, most closely related to our

work, the Real Robot Challenge [21] runs a tri-finger manipulation competition on

cube reorientation tasks. The success of the Real Robot Challenge inspires our work,

which also allows for evaluation of manipulation tasks on shared robots. Our work,

however, is designed to evaluate generalization in robot learning through challenging

variations (lighting, unseen test objects, etc.) and an image-based dataset (as opposed

to assuming ground-truth state access).

3.2.3 Open-Source Robotics Datasets

Collecting real-world robotics data is challenging and expensive due to physical

constraints like environment resets and hardware failures. Thus open-source robotics

datasets serve an important role in the field by enabling larger-scale offline robot

learning. Some work has improved the way we collect robotics data, such as self-

supervised grasping [61] and further parallelization of robots [47]. RoboTurk [51]

provides a system for simple teleoperated data collection which can be executed

remotely. Much work in robot learning has introduced datasets more generally,

such as MIME [74] (8260 demonstrations over 20 tasks), RoboNet [13] (162,000

trajectories collected across 7 robots), and Bridge Data (7,200 demonstrations across

10 environments). However, it is hard to understand the value of these datasets

without a common evaluation platform, something that [11] addresses by using

simulation to replicate a real-world dataset. In contrast, we address this issue with

real-world evaluation that matches the domain of the data collection. Our initial

dataset is 2,898 trajectories, but this will grow over time as we add evaluation

trajectories collected from users’ policies.
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3.2.4 Offline Robot Learning

Our benchmark focuses on offline robot learning, including imitation learning and

offline RL. Our initial set of baselines is described and contextualized in Section 3.5.2.

3.3 The TOTO Benchmark

Our benchmark focuses on manipulation due to the lack of benchmarking in this

area. Our hardware (Section 3.3.1) is set in environments that enable a set of

benchmark manipulation tasks described in Section 3.3.2. We collect an initial

dataset on these tasks, detailed in Section 3.3.3. Finally, in Section 3.3.4, we

present the evaluation protocol for all policies contributed to our benchmark. For

more information about our dataset and contributing to the benchmark, please see:

https://toto-benchmark.org/.

3.3.1 Hardware

Our hardware includes a Franka Emika Panda robot arm and workstation for real-time

inference. A simple joint position control stack runs at 30 Hz. The actions are joint

targets, which are converted to motor control signals using a high-frequency PD

controller. We also provide an end effector controller in which actions are specified

via the position and orientation of the gripper. End effector control using X, Y, Z

positions alone is not feasible to solve our tasks: for example, the orientation of the

gripper must change as the robot pours. All the results presented in this paper were

attained using the joint position controller. We use an Intel D435 RealSense camera

for recording RGB-D image observations.

We allow users to opt for a lower control frequency if desired. The training data

can be subsampled by taking one of N frames since the actions are in absolute joint

angles. We decrease the test time control frequency accordingly.

3.3.2 Tasks

The task suite consists of two manipulation tasks that humans encounter every day,

similar to those introduced in prior work [2, 14]. The tasks are pouring and scooping,
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Figure 3.2: TOTO Task Suite. Our benchmark tasks are pouring and scooping,
similar to those in RB2 [14]. Each involves challenging variations in objects, position,
and more.
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excluding the easiest and hardest RB2 tasks (zipping and insertion). Example image

observations for these tasks are shown in Fig. 3.2. To see the original task designs,

please refer to RB2: https://agi-labs.github.io/rb2/. Our tasks differ from

those in RB2 in a few ways. We randomize the robot start state at the beginning

of each episode. We apply a bit more noise to the target object locations. We use

different combinations of objects based on availability. Lastly, we do not normalize

the reward: the reward is the weight in grams of the material successfully scooped or

poured. For detailed information on the task configurations, such as locations and

objects, see our website.

Scooping The robot starts with a spoon in its gripper and a bowl of material on

the table. The objective is to scoop material from the bowl into the spoon. The

training set includes all combinations of three target bowls, three materials, and six

bowl locations (front left, front center, front right, back left, back center, and back

right).

Pouring The robot starts with a cup containing granular material in its gripper.

The goal is to pour the material into a target cup on the table. The training set

includes all combinations of four target cups, two materials, and six target cup

locations (same locations as scooping). The cup in the robot gripper is always clear

plastic, enabling better perception of the material remaining in the cup.

3.3.3 Dataset

A key pillar of our benchmark is the release of a manipulation dataset. Dataset

statistics (number of trials, average trajectory length, success rate, and data collection

breakdown) are shown in Table 3.1. We consider a trajectory successful if it obtains

a positive reward, and unsuccessful if the reward is zero. The initial release includes

between 1000 and 2000 trajectories per task. Pouring data collection using replay

and behavior cloning proved challenging to reset (unsuccessful trials require more

cleanup), so it was nearly all collected with teloperation. Each trajectory includes

images, robot actions (joint angle targets), joint states (joint angles), and rewards.

To improve diversity, the data were collected with three techniques, each described

below.
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Table 3.1: Dataset overview

Task statistics Collection technique

Trials Length Success Teleop BC Replay

Scooping 1895 495 0.690 41% 33% 26%
Pouring 1003 324 0.977 99% 0% 1%

Teleoperation We collected the majority of trajectories with teleoperation using

Puppet [45]. The human controls the robot in an intuitive end effector space using

an HTC Vive virtual reality headset and controller. While this teleoperation is

theoretically possible to use remotely, we collect the data with the human and robot

in the same room, giving the human direct perception of the scene. Our multiple

teleoperators have different dominant hands, leading to more diverse data. Most

teleoperation trials are successful.

Behavior cloning rollouts After teleoperation trajectories are collected, we train

simple, state-based behavior cloning (BC) policies on each target location, so no

visual perception is required. We roll out BC trajectories with some noise added to

actions at each timestep. The amount of noise varies across trajectories for additional

diversity.

Trajectory replay Finally, we also replay individual teleoperated trajectories with

added noise. While these might seem overly similar to the original teleoperated

trajectories, keep in mind that conditions like lighting also vary with time of day, so

this replay still expands the dataset in other ways.

3.3.4 Evaluation Protocol

To evaluate each task, we use two unseen objects (bowls and cups) and one unseen

material (mixed nuts for scooping and Starburst candies for pouring). We evaluate

three object locations seen during training (front left, front center, front right) and

three unseen locations. We evaluate three training seeds of each method. We initialize

the robot with a randomly sampled pose at the beginning of each trajectory. However,

the robot’s initial poses are kept the same across seeds to ensure minimal variance.

Combining 2 objects, 1 material, 3 locations, and 3 seeds means that each method
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is evaluated across 18 trials each for train and test locations. We report mean and

variance of these trials.

3.4 Benchmark Use

Here we introduce the framework for our benchmark. TOTO is designed to make

the user workflow (Section 3.4.1) easy for newcomers with well-documented software

infrastructure (Section 3.4.2) including examples and tests.

3.4.1 User Workflow

We provide a real-world dataset (Section 3.3.3) collected using our hardware setup

(Section 3.3.1). Participants optionally use our software starter kit (Section 3.4.2)

and locally train policies of their choosing using this data. Users submit policies

through Google Forms for evaluation on our real-world setup. They do not receive

the low-level data from these evaluation trials; they simply receive a video showing

the policy behavior as well as the reward and success rate.

An engineer supervises the real-world evaluations; thus the evaluation turnaround

time is currently around 12 hours (depending on time of day submitted). Our goal is

to emphasize offline learning and prevent overfitting, removing the need for real-time

results or large quantities of evaluation.

As new users evaluate methods after the paper release, we will post (anonymous)

evaluation scores for each attempt on a website leaderboard. We will also periodically

add data collected by the users’ policies to the original dataset.

3.4.2 Software Infrastructure

Our software starter kit includes documented code and instructions for policy for-

matting and dataset usage. We have open-sourced baseline code, trajectory data,

and pretrained models (see our website). These components ensure that TOTO is

easily accessible to a broad portion of the robotics, ML, and even computer vision

communities.

We adapt the agent format from [32], which requires a predict function taking
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in the observation and returning the action. We use a standard config format and

require an init agent from config function to create the agent.

We provide users with code for training an example image-based BC agent and

a docker environment which wraps the minimum required dependencies to run this

code. Users can optionally extend the docker containers with additional dependencies.

We also provide a stub environment for users to locally verify whether their agent’s

predictions are compatible with our robot environment. This setup allows users to

resolve all agent format and library dependency issues before submitting agents for

evaluation.

3.5 Baselines

We highlight the importance of establishing a benchmark by running two sets of

experiments: (a) what is a good visual representation for manipulation? and (b) what

is a good offline algorithm for policy learning? To test the benchmark infrastructure,

we have solicited baseline implementations for both experiments from several labs.

3.5.1 Visual Representation Baselines

A core unanswered question, due to the lack of benchmarking, is what is a good

visual representation for manipulation? Is ResNet trained on ImageNet great or do

self-supervised approaches outperform supervised models? We evaluate five visual

representations provided by TOTO users from multiple labs. Two are trained on our

data (in-domain) and three are generically pretrained.

BYOL (Bootstrap Your Own Latent) [23] is a self-supervised representation learning

method trained on our dataset. The BYOL representation embedding size is 512.

MoCo (Generic) refers to the Momentum Contrast (MoCo) model trained on

ImageNet [27], while MoCo (In-Domain) is trained on our data with crop-only aug-

mentations [59].

Resnet50 refers to the model trained with supervised learning on ImageNet [26].

R3M (Reusable Representations for Robot Manipulation) [56] is trained on Ego4D

[22] with time-contrastive learning and video-language alignment. For R3M, MoCo,

and Resnet50, we use the 2048-dimensional embedding vector following the fifth
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convolutional layer.

These representations performed the best among a larger set of vision models on

which we ran an initial brief analysis (including offline visualizations and BC rollouts).

Additional representations that performed less well (and therefore are not included

as baselines) included CLIP [65] and a lower-level MoCo model (from the third layer

instead of the fifth).

3.5.2 Policy Learning Baselines

Remote users have contributed the below policy learning baselines, which span the

spectrum from nearest neighbor querying to BC to offline RL. They were selected

according to each TOTO contributor’s expertise with approach coverage in mind. All

methods use RGB image observations, and some run these images through a frozen,

pretrained vision model before passing the resulting embedding to a policy.

BC is trained on top of each vision representation baseline. Closed-loop BC

predicts a new action every timestep, while open-loop BC predicts a sequence of

actions to execute without re-planning. Our BC baseline is quasi open-loop: training

trajectories are split into 50-step action sequences, and the policy is trained to predict

such a sequence given the current observation. During evaluation, these 50 actions

are executed between each prediction step. We find that this performs better than

closed-loop or open-loop alone: closed-loop struggles without history, and open-loop

is challenging with our variable-length tasks. We filter the training data to only

include trajectories with nonzero reward [10].

VINN (Visual Imitation through Nearest Neighbors) [58] is a nearest neighbor

policy using an image encoder trained with BYOL [23]. While using nearest neighbors

as a policy has been previously explored [53], this approach alone does not scale

well to high-dimensional observations like images. BYOL maps the high-dimensional

observation space to a low dimension to obtain a robust policy. VINN was originally

closed-loop (query and execute a new action at each timestep), but in this work

we mirror the 50-step quasi open-loop approach used in the BC baseline (described

above).

IQL (Implicit Q-learning) [37] uses the open-source implementation from the

d3rlpy package [73]. We use MoCo (In-Domain) as a frozen visual representation
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since it performed the best in our comparison of representations with BC. We

concatenate the frozen image embeddings with the robot’s joint angles as the input

state to the model.

DT (Decision Transformers) [10] recasts offline RL as a conditional sequence

modeling task using transformers. Similar to BC, it is trained to predict the action

in the dataset, but conditions on the trajectory history as well as target return

(desired level of performance). We use the Hugging Face DT implementation. The

model receives an RGB image and the robot’s joint angles: the former is embedded

using MoCo (In-Domain) and concatenated with the latter at each step. DT uses

a sub-sampling period of 8 and a history window of 10 frames. For inference and

evaluation, the target return prompt is approximately chosen as the mean return

from the top 10% of trajectories in the dataset for each task.

Figure 3.3: Vision representation comparison with BC. Models trained on our
data (left of dashed line) perform better than generic ones (right of dashed line), and
results tend to be better for training object locations than unseen test locations.

3.6 Experimental Results

3.6.1 Visual Representation Comparison Using BC

Our first set of experiments compares BC agents using the vision representations

detailed in Section 3.5.1 and evaluated with the protocol described in Section 3.3.4.

The success rates across all representations and tasks are visualized in Fig. 3.3, and

the numerical rewards are presented in Table 3.2.

These results show that finetuning the MoCo model on our data outperforms the

generic version, as expected. MoCo (In-Domain) achieves the highest success rate

and average reward on both tasks, followed by BYOL, the other in-domain model. In
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general, the relative performance between models is mostly consistent across tasks.

Resnet50 and MoCo (Generic) perform slightly better on pouring than on scooping.

Fig. 3.3 also visualizes performance differences due to object locations. Locations

seen during training perform better, but performance does not degrade significantly,

suggesting that the representations have a generalizable notion of where the target ob-

ject is. Surprisingly, the two representations trained on our data (MoCo (In-Domain)

and BYOL) perform equally good or even slightly better on unseen locations for

scooping.

Table 3.2: Performance of vision representations with BC across train and test
locations.

Method
Scooping Pouring

Reward Success % Reward Success %

In
Domain

BYOL 4.39 72.2% 20.22 66.6%
MoCo 7.42 83.3% 22.86 72.2%

Out of
Domain

MoCo 2.11 33.3% 14.89 55.5%
ResNet50 2.83 47.2% 18.86 50.0%
R3M 2.97 44.4% 6.94 33.3%

3.6.2 Policy Learning Results

Table 3.3 shows the comparison of policy learning methods (described in 3.5.2)

evaluated on TOTO. Due to compute constraints, we have 1 and 2 seeds for DT and

IQL respectively. We compensate by duplicating the evaluation of these seeds to

keep the number of trials consistent. The results are visualized in Fig. 3.4. We

find that VINN performs the best in train locations. We also note that offline-RL

approaches (especially IQL) achieve some success unlike in RB2[14]. This is likely due

to a larger and more diverse dataset than RB2, which contributes to better offline

RL performance.

In experiments, we found that scooping proves challenging due to a non-markovian

aspect of the task: the spoon is above the bowl both before and after scooping. Thus

we would expect open-loop methods (BC, VINN) and those with history (DT) to perform

better than others in this setting. While BC and VINN achieve competitive performance
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on scooping, DT only achieves moderate success on scooping and does not see any

positive rewards on pouring. Meanwhile, IQL provides decent performance without

history on a non-markovian task.

Comparing the train and test location results for policy learning proves interesting.

VINN performs the best on train locations, but it struggles on unseen locations, since

it selects actions using the nearest neighbor trajectory from the training data. All

other methods also experience some level of degradation when moving to unseen

locations, leaving one clear direction for method improvement using TOTO.

Table 3.3: TOTO policy learning results across train and test locations.

Method
Scooping Pouring

Reward Success % Reward Success %

BC + MoCo 7.42 83.3% 22.86 72.2%
VINN 7.89 63.9% 21.75 47.2%
IQL 6.08 47.2% 9.86 38.9%
DT 2.83 27.8% 0.00 0.0%

Figure 3.4: Evaluating offline policy learning results. VINN sees the best
performance on train locations, but its performance degrades on unseen locations, as
does the performance of other methods.

3.6.3 Dataset Size Ablation

To understand the impact of dataset size on policy learning performance, we perform

an ablation in which we train BC on the scooping task with varying amounts of data.

We sort the scooping trajectories by reward and train policies with the top 5%, 25%,

50%, 100% of the data, as well as all successful trajectories with positive rewards

(∼70%). This sorting by reward ensures that policies trained in the small-data regime
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are not overcome by unsuccessful trajectories. We present the dataset size ablation

results in Table 3.4.

Table 3.4: Dataset size ablation with BC on scooping.

Dataset size Reward Success Rate

5% 2.89 38.9%
25% 5.94 72.2%
50% 6.22 77.8%
Successes (∼70%) 8.06 83.3%
100% 5.00 72.2%

The Successes number uses the same policy as the BC policy in Table 3.3, but

we evaluate it again with the ablations to ensure minimal variance in conditions. As

expected, training on more data generally leads to a higher success rate. Training

on all of the data (including unsuccessful trajectories) leads to a lower reward than

training on only the successful trajectories, also unsurprising given the use of BC to

learn the policies in this ablation (we might expect offline RL to improve with the

inclusion of unsuccessful trials).

Overall, these ablation results suggest that the TOTO dataset size is the right order

of magnitude in terms of policy learning. We have reached the point of diminishing

returns: training on 50% versus 70% of the data does not substantially improve

performance. However, additional data might still improve visual representation

learning.

3.6.4 Metrics for Offline Policy Evaluation

A TOTO user might wish to sanity check their policy before submitting it for

real-world evaluation or otherwise have performance metrics to guide offline tuning.

Here we present simple example metrics for offline evaluation: action similarity to a

validation set of expert demonstrations using both joint angle error and end effector

pose error. From a chosen validation set of 100 trajectories, we estimate the joint

angle error and end effector error by computing the mean squared error between

agent’s predicted actions and actual actions for all samples.

Fig. 3.5 shows these validation metrics on BC checkpoints throughout training

and the real-world reward evaluated on four representative checkpoints. The reward
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increases as the validation error metrics decrease, matching expectations. These met-

rics capture overfitting: the overtrained policy from 2,000 epochs shows a significant

decrease in real-world reward and likewise has higher validation error. While offline

metrics alone should not fully guide the development of an algorithm, it provides a

signal as to whether the policy might achieve any success in the real world.

Figure 3.5: Comparing offline evaluation to online performance. While offline
evaluation is imperfect, it provides a sanity check to the user, guiding development
at a higher frequency than real-world evaluation.

3.7 Discussion

The main goal of this work is to introduce TOTO, our robotics benchmark. We

presented a broad initial set of baselines containing both vision representations and

policy learning approaches, which can be built off of by future TOTO users. Notably,

these baselines were contributed in the same way that TOTO will be used in the future:

by collaborators who locally train policies and submit them for remote evaluation

on shared hardware. This shows the feasibility of our user workflow. The initial

baseline results show the challenging nature of our tasks, especially with respect to

generalization. By using TOTO as a community, we can more quickly iterate on

ideas and make progress on the real-world bottlenecks to robot learning.
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3.7.1 Limitations and Future Work

The evaluation protocol currently has manual steps: we measure the material trans-

ferred during pouring and scooping to compute rewards and reset by returning the

material to the original object. We do see future potential to automate reward

measurements and resets, such as by adding a scale beneath the target object and

using an additional robot to reset the transferred materials. Spills of the transferred

material, however, might still require manual intervention.

We plan to expand the evaluation setup to include additional robots. This would

help us meet the increasing demand in evaluations as more users adopt the benchmark.

One challenge will be visual differences across robots, but we plan to collect additional

demonstrations on new robots, and this would be an opportunity to expand the set

of tasks as well (we could designate one robot per task).

As user demand further grows, we will implement an evaluation job queue which

prioritizes evaluation requests from different users and schedules the jobs based on

the number of robots currently available.
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Chapter 4

Conclusions

In conclusion, I have presented two methods tackling the challenges for establishing

benchmarks on physical robots. Both methods have shown effectiveness in evaluating

robot learning algorithms’ generalization capabilities. While Real-ORL focuses more

on the generalization and transfer abilities of offline reinforcement learning algo-

rithms, TOTO opens a portal for the entire community to evaluate the generalization

capabilities of visual and policy learning methods in a fair and direct way.

In the first work, Real-ORL, we conducted an empirical study of representative

ORL algorithms on real-world robotic learning tasks. The study encompassed

three representative ORL algorithms (along with behavior cloning), four table-top

manipulation tasks with a Franka-Panda robot arm, 3000+ train trajectories, 3500+

evaluation trajectories, and 270+ human labor hours. Through our extensive ablation

studies, we find that (1) even for in-domain tasks with abundant amount of high-

quality data, IQL can be a competitive baseline against the best behavior cloning

policy, (2) for out-domain tasks, ORL algorithms were able to generalize to task

regions with low data-support and to dynamic tasks, (3) the performance changes of

ORL after leveraging heterogeneous data are likely to vary by agents, the design of

the task, and the characteristics of the data, (4) certain heterogeneous task-agnostic

data could provide overlapping data support and enable transfer learning, allowing

ORL agents to improve their own performance and, in some cases, even surpass

the best in-domain agents. Overall, (5) the best agent for each task is either an

ORL algorithm or a tie between ORL and BC. Our rigorous evaluations indicate that
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even in out-of-domain multi-task data regime, (more realistic in real world setting)

offline RL is an effective paradigm to leverage out of domain data.

In the second work, TOTO, we presented a broad initial set of baselines containing

both vision representations and policy learning approaches, which can be built off of

by future TOTO users. Notably, these baselines were contributed in the same way

that TOTO will be used in the future: by collaborators who locally train policies and

submit them for remote evaluation on shared hardware. This shows the feasibility

of our user workflow. The initial baseline results show the challenging nature of our

tasks, especially with respect to generalization. By using TOTO as a community, we

can more quickly iterate on ideas and make progress on the real-world bottlenecks to

robot learning.

42



Appendix A

Appendix for Real-ORL

A.1 Canonical Task Setup

We considered four canonical tasks: reach, slide, lift and PnP (pick-and-place).

To apply ORL, each task can be formulated as an MDP. The state contains the

joint position of the robot, the gripper open position (R ∼ [0, 0.08]), (optionally) the

velocity of the joints, (optionally) the tracked tag position and a goal position. To

facilitate RL training, we came up with a continuous reward function for each task

r : state → R, as shown in Table A.1, considering the position of the gripper x, the

position of tracked AprilTag t (if exists), the position of goal g, the Euclidean distance

function dis between two 3D coordinates, a convenient function height to denote the

height of a given coordinates. While the reward for reach and slide are naturally

smaller than 1, we explicitly cap the maximum reward for lift to be 1 since we don’t

encourage agents to lift up the lid arbitrarily high. We don’t cap the PnP reward

since we encourage the PnP policy to be distinguished from the slide policy with a

height bonus height(t).

We used heuristic policies to collect the demonstration data, as described in

Sec. 2.3. Our policies have a reasonable success rate accomplishing the task but is not

designed to be optimal in solving the MDP. To evaluate and compare between agents,

we instead report the maximum reward over the trajectory as a proxy of the task

completion (”score”). We report our heuristic policies’ accumulated reward average

over trajectories and the score.
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Table A.1: Characteristics of task and collected data.

Task r(s)
∑

r(s) Score

Reach 1− dis(g − x) 173 0.99
Slide 1− (2 ∗ dis(g − t) + dis(t− x)) 223 0.93
Lift min(1, 0.57− dis(t− x) + height(t)) 167 1
Pick-n-place 1− (dis(g − t) + 2 ∗ dis(t− x)) ∗ 0.9 + height(t) 281 1.09

A.2 Dataset

We also attach our collected data’s score distribution on each task to demonstrate our

dataset’s overall quality. From Figure A.1, we can see that the score distribution for

each task skew heavily to the left, which means that most trajectories in our dataset

are near-optimal and are suitable for imitation learning. In Appendix. A.5 we further

verify this.

(a) Reaching (b) Sliding

(c) Lifting (d) Pick-n-place

Figure A.1: Score distribution for each task of our dataset.
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A.3 Open Source Code and Dataset

We open source our code and publish the dataset at our website.

A.4 Training Details

Our code base was built upon the author’s implementation of MOReL [33] and the

D3RLPY [73] library. We used the same fixed random seed for all our experiments

(123), unless otherwise specified. For hyperparameter tuning, we always started

training using the default hyperparameters. If the training loss reported by the agent

did not converge, we adjusted the learning rate and retrain, up to 5 agents, till we

find a model that converge or have been trained for 5, 000, 000 steps using batch size

2048. For model whose training loss exploded (e.g., AWAC), we choose an checkpoint

from earlier of the training when the loss were relatively stable for 100, 000 steps

(frequently, this was an agent that finished about half a million to a million training

steps). Surprisingly, when evaluated on real robot, models that reported convergence

did not necessarily perform better than model that did not converge.

Practicality of Training and Tuning BC was the cheapest to train (∼ 3min)

and easiest to converge (no additional tuning required). MOReL was the second

shortest to train (∼ 4 hours); most MOReL agents were able to converge, judged by

the reward of trajectories generated by the learned dynamics model. AWAC agents

took longer to train (∼ 12 hours) and had the most trouble converging (8 of the 16

agents in the ablation table could not converge in allocated trials). IQL agents took

the longest to train (10 ∼ 24 hours) but had more success converging. Though loss

convergence during training or a good reward estimated by the learned dynamics

model or learned value function cannot indicate the agent’s true performance, it

is helpful for selecting an agent to test. Since some AWAC agents had trouble

converging, we selected an earlier checkpoint before loss explosion and documented

their performance, which, surprisingly, yielded higher reward than some agents that

reported convergence. We leave it to future work to investigate this phenomenon.
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A.5 Training Behavior Cloning with Top-K%

Trajectories

To ensure that our dataset contains high quality trajectories that is sufficient to train

behavior cloning, we launched new experiments training behavior cloning using only

the Top-k % of the best trajectories. In Figure. A.1, we plot the distribution of

performance of our data for each task. For reach, slide, lift, 90% of trajectories

complete the task with good scores (¿ 0.75). For PnP (our most difficult task), 50%

of our collected trajectories completed the task (scores ¿ 0.8).

Thus we train BC for reach, slide, lift on Top-90% of data and train BC for

PnP on Top-50%,70%,90% of data and observe that, BC in our experiments benefit

from using the full dataset.

Table A.2: Performance of BC agents trained with Top-k% data.

Task Top-k% #Trajs Threshold for Demo Score Original Score
(BC with full data)

reach 90 900 0.909 0.899 ± 0.037 0.924 ± 0.048
slide 90 657 0.774 0.659 ± 0.152 0.681 ± 0.147
lift 90 554 0.787 0.784 ± 0.157 0.823 ± 0.177

PnP 50 304 0.935 0.723 ± 0.217 0.818 ± 0.185
70 426 0.792 0.789 ± 0.290 0.818 ± 0.185
90 548 0.656 0.789 ± 0.204 0.818 ± 0.185

A.6 Sweeping of Random Seeds

We evaluated an addition of 28 agents for 340 trajectories for a total of 70 hours

including training and testing to inspect how the scores for critical agents (i.e., the

best agents for a category) would vary by random seeds. We now have 3 seeds for

each of the following agents:

1. The Best Agents for each task in Table 2.2

2. The Second Best Agents for each task in Table 2.2
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3. ORL agents with out-domain datasets in in Table 2.5

The original agents are trained with seed 123, we trained the additional agents

with seed 122 and seed 124. Each seed is evaluated on 12 trajectories. The results

are listed and we observe that ∼60% of newly trained agents change score by less

than 1%, ∼90% of agents change by less than 2%, and the maximum change was 6%

from one agent (whose score change does not affect our conclusion).

Table A.3: Seed sweeping results of the best agents for each task in Table 2.2.

Best Agents Seed 122 Seed 124 Seed 123 Means w/ Mean diff
in Table 2.2 (original seed) 3 seeds

AWAC,
DeltaVel,reach 0.920 ± 0.031 0.919 ± 0.066 0.935 ± 0.032 0.925 ± 0.047 0.01 (1.07%)
IQL,
DeltaVel, slide 0.781 ± 0.038 0.763 ± 0.044 0.757 ± 0.095 0.767 ± 0.065 -0.01 (-1.32%)
IQL,
DeltaVel, lift 0.877 ± 0.166 0.878 ± 0.158 0.884 ± 0.120 0.880 ± 0.149 0.004 (0.45%)
BC,
AbsVel, PnP 0.819 ± 0.199 0.800 ± 0.195 0.836 ± 0.157 0.818 ± 0.185 0.018 (2.15%)

Table A.4: Seed sweeping results of the second-best agents for each task in Table 2.2.

Second Best Seed 122 Seed 124 Seed 123 Means w/ Mean diff
in Table 2.2 (original seed) 3 seeds

MOREL,
DeltaVel, reach 0.919 ± 0.034 0.908 ± 0.042 0.925 ± 0.028 0.917 ± 0.036 0.008 (0.86%)
BC,
DeltaVel, reach 0.921 ± 0.051 0.917 ± 0.055 0.934 ± 0.032 0.924 ± 0.048 0.01 (1.07%)
BC,
AbsVel, slide 0.699 ± 0.125 0.698 ± 0.120 0.645 ± 0.18 0.681 ± 0.147 -0.036 (-5.58%)
MOREL,
DeltaVel, slide 0.655 ± 0.157 0.602 ± 0.180 0.629 ± 0.136 0.629 ± 0.160 0 (0%)
AWAC,
DeltaVel,slide 0.757 ± 0.068 0.703 ± 0.108 0.739 ± 0.144 0.732 ± 0.113 0.007 (0.95%)
BC,
AbsVel, lift 0.821 ± 0.192 0.832 ± 0.177 0.818 ± 0.161 0.823 ± 0.177 -0.005 (0.61%)
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Table A.5: Seed sweeping results of ORL agents with out-domain datasets in Table 2.5.

ORL Seed 122 Seed 124 Seed 123 Means w/ Mean diff
in Table 2.5 (original seed) 3 seeds

AWAC on PnP

w/ slide+lift (diverged) 0.811 ± 0.103 0.815 ± 0.134 0.813 ± 0.121 0.002 (0.25%)
AWAC on PnP

w/ slide+lift+pnp 0.759 ± 0.180 0.773 ± 0.204 0.742 ± 0.175 0.758 ± 0.188 -0.016 (-2.16%)
IQL on PnP

w/ slide+lift 0.838 ± 0.103 0.847 ± 0.117 0.843 ± 0.120 0.842 ± 0.114 0.001 (0.12%)
IQL on PnP

w/ slide+lift+pnp 0.842 ± 0.170 0.826 ± 0.211 0.829 ± 0.163 0.833 ± 0.183 -0.004 (-0.48%)
MOREL on lift

w/ slide+lift+pnp 0.879 ± 0.124 0.904 ± 0.119 0.906 ± 0.151 0.896 ± 0.133 -0.01 (-1.1%)

A.7 Statistical Significance of Conclusions

In this section we report the statistical significance of the conclusions we drew from

our empirical study. To evaluate every trained agent for every task, we collected at

least 12 trajectories and calculated their scores. For best agents or agents used in

comparison, we trained them with additional seed to collect a total of 36 trajectories.

We note that the distribution of scores is unknown. We cannot exclude the

possibility of the distribution being skewed, as the agent could perform better in a

certain task region because of the nature of the task. Therefore, we conducted the

Wilcoxon signed T-test for paired samples to calculate the p-value.

With p < 0.1, we reject the null hypothesis that the two models’ have identical

scores. Tasks and application-domains determine the confidence level requirements for

any application. This often requires domain knowledge and might not transfer between

different applications even for the same task. For openness and interpretability, we

clearly outline our statistical tests and list our p-values, leaving it up to the readers

to justify their statistical significance required for their applications. We found that:

1. On in-domain tasks, we observe that: On the simplest task reach, all agents

achieved comparable performance (p > 0.1). On slide, IQL outperformed BC

(0.77 > 0.68, p = 0.001). On lift, IQL outperformed BC (0.88 > 0.82, p =

0.041). On PnP, BC outperformed the best ORL agent (p = 0.016).
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2. Testing agent’s ability to generalize to task space lacking data support, we verify

that MOReL and AWAC achieved comparable or better performance than

BC for regions lacking data support (MOREL: 0.79 ∼ 0.76, p = 0.50, AWAC:

0.83 > 0.76, p = 0.006, p = 0.25), despite that these ORL agents were having

poorer performance on regions that have more data support (0.67 < 0.78, p =

0.062).

3. In terms of leveraging multi-task data, MOReL has clearly benefited from

inclusion of more data. On slide, the model achieved significantly higher

performance when using combined data from three tasks (0.63 ∼ 0.72, p = 0.027).

On lift, the model achieved significantly higher performance when using

combined data from three tasks (0.68 → 0.90, p = 0.003). For AWAC, it

gained performance on lift(0.86 → 0.90, p = 0.059). IQL had most success

for PnP task after leveraging slide+lift data (p = 0.001).
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Appendix B

Appendix for TOTO

B.1 Task Specifications

Our benchmark contains two manipulation tasks: scooping and pouring. Fig. B.1

shows the train and test objects for each task. The containers have varied sizes,

shapes, materials, and colors. The materials being scooped or poured have diverse

appearances, granularities, and densities. This variation enables us to evaluate the

generalization capabilities of both visual representations and learned policies.

Fig. B.2 shows the train and test locations for the center of the container in both

tasks. These locations are distributed across a workspace measuring 60cm x 110cm.

To ensure evaluation consistency, we have marked each location for future reference.

B.2 Dataset

We compute the reward distribution of our dataset for both tasks (Fig. B.3). In the

pouring task, the presence of multiple peaks in the distribution is attributed to the

weight differences of the materials poured during training.

We note that the reward values depicted in Fig. B.3 are not normalized. Instead,

they represent the weight in grams of the material successfully scooped or poured.

This unnormalized representation provides a direct measure of the task performance

in terms of the weight of the manipulated material.
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(a) Scooping Task (b) Pouring Task

(c) Scooping Objects (d) Pouring Objects

Figure B.1: Benchmark Suite. Our benchmark includes two tasks: scooping (left)
and pouring (right). The bottom images display the train and test objects for each
task, respectively.

B.3 Get Started with TOTO

We are committed to maintaining the TOTO setup in the long term and continuously

seeking additional baselines. We warmly invite the academic and research community

to participate in the TOTO benchmark challenges, which include:

• Visual Representation Model Challenge: In this challenge, participants

are encouraged to train and submit Behavior Cloning (BC) agents that utilize

a pre-trained visual representation model.

• Agent Policy Challenge: Participants can choose to either develop a custom

visual representation model or utilize the visual representations provided by

TOTO. The challenge focuses on designing and submitting agent policies that
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Figure B.2: Train and Test Locations. The green locations are used in the training
data. The red locations are only used at test time.

Figure B.3: Reward Distribution. Each histogram depicts the task rewards in the
training dataset.

demonstrate effective manipulation skills.

For comprehensive instructions on how to get started, as well as to access our code and

dataset, we encourage you to visit our website at https://toto-benchmark.org/.
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[79] Yu Sun, Joe Falco, Máximo A Roa, and Berk Calli. Research challenges and
progress in robotic grasping and manipulation competitions. IEEE Robotics and
Automation Letters, 7(2):874–881, 2021. 3.2.2

[80] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for
model-based control. In International Conference on Intelligent Robots and
Systems, pages 5026–5033. IEEE, 2012. 3.1

[81] Oriol Vinyals, Igor Babuschkin, Wojciech Marian Czarnecki, Michaël Mathieu,
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