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Abstract

In order to find points of interest in a given domain, many planners use a
priori information to guide the search to expedite the detection of targets.
Information-based search techniques use an a priori information map,
typically represented as a probability distribution, to guide their search.
An information map can describe, for example, the likelihood of finding
survivors at a location in search and rescue applications. We present an
approach to direct multiple agents (MA) to search a given domain subject
to multiple objectives (MO), each characterized by its own information
map. Our approach embraces an information-based method, called ergodic
search (ES). ES utilizes an ergodic metric, defined later in this work, that
is minimized when the time spent by an agent in a region is proportional
to the amount of information contained in that region. In this thesis, we
introduce the Multi-Agent Multi-Objective Ergodic Search (MA-MO-ES)
problem and prescribe computationally efficient methods to solve it.

The primary goal of this work is to determine the trajectories for all
agents such that the worst-case objective or highest ergodic metric on any
information map is minimized (minmax objective). Naively computing
a joint trajectory of all the agents by optimizing the ergodic metric on
the average of all the information maps results in a high ergodic metric
with respect to each map. This is because spending time in the high-
information region on one map can correspond to spending time in the
low-information regions of another map. If each agent’s trajectory is
instead computed by considering a subset of maps, our results show that
the maximum ergodic metric on the information maps can be considerably
reduced. This requires determining which information maps should be
considered when optimizing the trajectory of a particular agent. In other
words, this work computes the optimal allocation, of information maps
to agents, that minimizes the maximum ergodic metric on the given
information maps.

The main challenge in determining the optimal allocation is the exponential
growth of the number of possible allocations with the number of maps and
agents. Further, computing the cost of an allocation is itself an expensive
planning problem. This is because evaluating an allocation requires
identifying the maximum ergodic metric with respect to the information
maps by computing the trajectory for each agent that optimizes the
ergodic metric on its assigned maps. The expensive evaluation of one
allocation coupled with the exponentially growing number of possible
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allocations makes solving for an optimal allocation using brute force
computationally intractable.

To mitigate the computational challenge of exponential growth, we present
a branch and bound-based algorithm with pruning techniques that reduce
the number of allocations to be searched to find the optimal allocation.
To reduce the branching factor in branch and bound, we propose two
approaches for clustering information maps before allocation: k-means
and minimum bounding sphere clustering. This sacrifices guaranteed
optimality in exchange for improved computational performance. These
clustering approaches leverage the similarity between information maps to
approximate the cluster of maps that should be assigned to a single agent
to achieve minmax ergodic metric on the information maps. Clustering
information maps before allocation decreases the number of possible
allocations and thus the branching factor in the branch and bound, further
reducing the problem’s computational complexity. Testing on 70 randomly
generated test cases shows an order of magnitude improvement in runtime
for our branch and bound approach compared to an exhaustive brute
force approach. Using similarity clustering, the runtime further reduces
by two orders of magnitude even for tests with ten information maps and
four agents while maintaining good quality allocations with an average
20% deviation from the optimal minmax ergodic metric.
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Chapter 1

Introduction

1.1 Motivation

Applications like search and rescue require effective planning for the robot to find

survivors or potential hazards over a large area after a huge disaster [6][34][44][45].

With some a priori information over the domain, the robot can adapt its path such

that more investigative effort is given to the high-information parts of the domain

to increase the likelihood of detecting targets. We chose to represent this a priori

information as an information map. For a domain,W = [0, L1]× [0, L2]×· · ·× [0, Lν ],

an information map is a probability distribution represented as f :W → R such that∫
x∈W f(x)dx = 1 and f(x) > 0 where, f(x) can represent for instance the probability

of finding a survivor, hazardous objects, or important artifacts in different parts of

the search domain.

The previous literature has produced different approaches for uniformly covering

a domain; some approaches include geometric (lawnmower patterns [4][1]), trajectory

optimization [12] and decomposition-based [14] approaches. However, with some a

priori knowledge of the domain, like the information map, we can leverage more

intelligent approaches that improve upon coverage in terms of metrics like informa-

tion gained. Ergodic search [29] has demonstrated its effectiveness in exploring a

domain while striking a balance between exploitation (i.e., myopically searching high-

information areas) and exploration (i.e., attempting to visit all possible locations for

new information). The ergodic search uses the ergodic metric [29] that is minimized
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1. Introduction

when the time spent observing a region is proportional to the information contained in

that region. A lower ergodic metric implies a better ergodic coverage of the domain.

Ergodic search outperforms the non-information theoretic method random walks

[33], as well as information-theoretic approaches such as information gradient ascent

[33], information maximization [32][43], and greedy expected entropy reduction [33].

Moreover, ergodic search methods have shown robustness to measurement distractors

[33], information modeling errors [26], and sensor noise [16]. Therefore, in this work,

we utilize ergodic search to determine the trajectories of all the agents in the domain.

In many cases, there may be multiple types of information to collect which can

have different distributions across the domain as illustrated in Figure 1.1 where three

information maps are shown over the same domain. Then, it is natural to cast the

search problem as a multi-objective optimization problem where each objective is

characterized by its own information map. In this work, we consider this multi-

objective problem. Figure 1.1a further highlights a region of high information on Map

1 that corresponds to low information on Maps 2 and 3. The objectives represented

by these information maps are thus conflicting.

(a) (b) (c)

Figure 1.1: Information maps illustration: (a) Three information maps, Map
1, 2, and 3, represented as probability distributions over the same domain. The
region highlighted by the yellow circle illustrates a region of high information in
Map 1 that corresponds to a region of low information in Maps 2 and 3. This shows
that the objectives characterized by these information maps are conflicting. (b) 3D
visualization of Map 2, and (c) 2D visualization of Map 2 with ‘coolwarm’ and ‘gray’
color schemes that are used in the rest of this work.

For a multi-objective problem, no single solution exists that simultaneously

optimizes each objective. In that case, the objectives are said to be conflicting as

in Figure 1.1a. A solution to a multi-objective problem is called non-dominated or
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1. Introduction

Pareto-Optimal, usually not unique, if none of the objectives can be improved in

value without degrading some of the other objective values. Our prior work [38] found

a set of Pareto-Optimal solutions for a single agent tasked to search a domain subject

to multiple objectives, each represented by an information map. In this thesis, we are

interested in reconciling the multiple information maps by minimizing the maximum

of the objectives, i.e., the maximum ergodic metric on the information maps.

When a single agent is tasked to search the domain subject to multiple information

maps if we compute the trajectory of the agent by optimizing the ergodic metric

on a linear combination of all the information maps, this results in a high ergodic

metric with respect to each map. On any particular map, only a small fraction of the

agent’s time is spent on the map’s high-information region and the majority of the

time would be spent on the low-information regions because it corresponds to the

high-information regions on other maps as highlighted in Figure 1.1. When multiple

agents are available and a similar strategy is used for each agent, it will again result

in a high ergodic metric on each map as supported by our results in Section 4.2.

However, with multiple agents, a better strategy can be used to reduce the ergodic

metric on the maps.

Each agent can focus on one map or a subset of maps and only access information

from the maps assigned to them. In this case, agents can spend a larger fraction of

their time on high-information regions compared to low-information regions resulting

in a lower ergodic metric on any map. Thus, in a multi-agent setting, it is beneficial

to allocate information maps to agents in order to minimize the maximum ergodic

metric on the maps. We thereby implement a task allocation scheme aimed to allocate

one or more information maps to each agent such that the maximum ergodic metric

on any map is minimized, i.e., minmax optimization. We approach this problem as

a Multi-Agent Multi-Objective Ergodic Search (MA-MO-ES) problem as shown in

Figure 1.2.
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1. Introduction

Figure 1.2: Example problem and solution overview: This figure illustrates
the Multi-agent Multi-objective Ergodic Search (MA-MO-ES) problem using five
information maps that span the same physical region (1− 5), and three agents (as
for Red, Green, and Blue). The optimal allocation is shown with each agent in a
different box. An agent’s trajectory is computed by optimizing the ergodic metric on
a scalarization of its assigned maps and is evaluated against its assigned maps.
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1. Introduction

1.2 Challenges

According to the taxonomy defined in [21], our problem is a multi-task single-robot

time-extended variation of the Multi-Robot Task Allocation (MRTA) problem that is

NP-Hard [25]. Prior works have addressed multi-agent multi-objective task allocation

problems using auctioning systems [9], greedy allocation [7] etc. While the approaches

in [7],[9] are fast, they do not guarantee finding the optimal allocation scheme.

The brute force approach of exhaustively searching through the allocation space

to find the optimal allocation has exponential time complexity. This is because the

number of possible allocations of information maps to agents increases exponentially

with the number of maps and agents. For M information maps and N agents

with M ≥ N , the number of possible allocations can be computed using the formula

S(M,N) =
∑N

i=0
(−1)N−iiM

(N−i)!i!
where S is the Stirling number of the second kind. Further,

to evaluate each allocation, we need to identify the maximum ergodic metric with

respect to the information maps. This requires computing the trajectory for each agent

that optimizes the ergodic metric on its assigned maps. The expensive evaluation of

one allocation coupled with the exponentially growing number of possible allocations

makes solving for the optimal allocation using brute force computationally intractable.

1.3 Contributions

In this thesis, we first address computing the information map to optimize the

trajectory of an agent that is assigned multiple information maps. For a single

information map, we can directly compute the locally optimal ergodic trajectory.

However, when a single agent is assigned more than one information map as in Single

Agent Multi-Objective Ergodic Search (SA-MO-ES), the optimal trajectory could

be defined as the one that minimizes the sum of the ergodic metric (min-sum), the

maximum ergodic metric (minmax) or the minimum ergodic metric (min-min) on the

maps. In this work, for SA-MO-ES, we define the optimal trajectory as minimizing

the maximum ergodicity on individual maps (worst-case objective). We present an

approach to compute the information map for optimizing the agent’s trajectory to

achieve the minmax ergodic metric on individual maps, without computing the entire

Pareto-Optimal set of weight vectors as done in [38].
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1. Introduction

Next, we cater to the multi-agent multi-objective ergodic search (MA-MO-ES)

problem, aimed at finding the optimal allocation of information maps to agents to

achieve minmax ergodic metric on the information maps. We leverage the minmax

formulation to identify specific non-optimal allocations without evaluating their

performance on all the maps. Consider that the highest ergodicity on maps assigned

to a subset of agents exceeds that of the current best allocation. This implies that

the highest ergodicity across all maps would also exceed that of the current best

allocation. Using this idea, we present a branch and bound formulation for allocating

maps to agents. This approach’s runtime and minmax metric were compared against

baseline approaches (joint trajectory optimization, exhaustive search, and greedy

allocation). The joint trajectory optimization and greedy allocation approach though

fast do not guarantee optimal allocation. Compared to exhaustive search, the branch

and bound approach reduces runtime by an order of magnitude while guaranteeing

minmax optimal allocation.

Further, we also propose two approaches to leverage similarity between information

maps to reduce the branching factor in branch and bound. This sacrifices guaranteed

optimality in exchange for improved computational performance. In both approaches,

the information maps are represented as vectors of weighted Fourier coefficients. The

first approach employs k-means clustering, while the second approach uses the idea

of minimum bounding spheres to cluster the information maps. Once the clusters

are identified, they are assigned to the agents using a similar branch and bound

formulation. Since the number of clusters is less than the number of information maps,

the number of possible allocations of clusters to agents is less than that of maps to

agents. This reduces the branching factor in the branch and bound, further reducing

the problem’s computational complexity. The performance of these approaches was

compared against the branch and bound without clustering and k-means clustering

with a distance-based allocation approach on 70 randomly generated test cases.

Our experiments demonstrate that combining clustering with branch and bound

further reduces the runtime by two orders of magnitude while producing good quality

allocations with minmax ergodicity within 20% of the optimal.
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Chapter 2

Background and Related Works

2.1 Coverage Path Planning Methods

Coverage Path Planning (CPP) describes the process of generating robot trajectories

that pass over all points of an area or volume of interest[18]. CPP algorithms can

be classified as heuristic or complete depending on whether they can guarantee the

coverage of the entire free space. It can also be classified as online or offline where the

latter relies on stationary information and the environment is assumed to be known

in advance [13].

Coverage planning can have various requirements such as finding the shortest path,

avoiding collisions, trading maximal coverage with time budgets, or just generating

attractive and intuitive movement patterns [8]. Geometric approaches like lawnmower

patterns are primarily used for uniform coverage of a domain.

When the area of interest contains a non-uniform information distribution, for

example, a probability distribution representing the likelihood of finding a target

at different parts of the domain, other more intelligent coverage methods can be

used. Grid-based approaches like wavefront propagation [49][42], and potential field

[22] divide the environment into a grid, and each cell is assigned a coverage value.

Optimization-based approaches formulate information-based CPP as an optimization

problem and consider objectives such as minimizing path length, maximizing coverage,

or balancing energy or time consumption. Ergodic coverage, a type of information-

based coverage is explained further in the next section.
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2. Background and Related Works

We note that since in many realistic scenarios, the information distribution is

unknown or uncertain, other intelligent methods like adaptive sampling with an

information-theoretic metric can be used to first estimate this unknown distribution

[27]. This can also be done in a distributed manner and with heterogeneous agents in

the context of multi-robot sensor coverage [28] [41].

Finally, coverage planning with multiple agents has been addressed using central-

ized and distributed approaches and different ideas like identifying critical points,

region-division, and reinforcement learning in [19][35][47].

2.2 Ergodic Coverage

2.2.1 Introduction

From the prior section, ergodic coverage is an offline approach to the information-

based coverage problem. Given an information map or information distribution over

the search domain, a trajectory is ergodic when it visits every subset of the domain

with a probability equal to the measure of that subset[29], i.e., when the time spent

in an area is proportional to the information present in that area. Figure 2.1 shows

an example of an ergodic and non-ergodic trajectory on an information map.

(a) (b)

Figure 2.1: Ergodic Trajectory: The figure represents a single information map
with (a) a non-ergodic trajectory and (b) an ergodic trajectory. Here, the yellow
regions represent areas of high information.

Ergodic trajectory planning has been studied in various contexts such as receding
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2. Background and Related Works

horizon control [31], stochastic optimization [5], active learning and search [3][33],

decentralized exploration [2], and real-time area coverage and target localization

[30]. Here, we will introduce the mathematical preliminaries required to compute the

locally optimal ergodic trajectory given an information map and agent dynamics.

2.2.2 Mathematical Preliminaries

Let W = [0, L1] × [0, L2] × · · · × [0, Lν ] ⊂ Rν , ν ∈ {2, 3} denote a ν-dimensional

workspace that is to be explored by the robot. The robot has an n-dimensional

state space S = W × V (n ≥ ν). V is comprised of the robot state components,

such as velocities or orientations, that do not affect what the sensor can see. Let

q : [0, T ]→ S denote a trajectory in the state space with T ∈ R+ representing the

time horizon. The robot has deterministic dynamics given by q̇(t) = f(q(t), u(t)),

where u(t) is the control input of the robot. Let P : S →W project the state space

into the workspace.

Let c(x, q), x ∈ W denote the time-averaged statistics of a trajectory q, which is

defined as:

c(x, q) =
1

T

∫ T

0

δ(x− P (q(τ)))dτ, (2.1)

where δ is a Dirac function.

Let ϕ : W → R denote a static information map that describes the amount of

information at each location in the workspace. Each information map is a probability

distribution with
∫
W ϕ = 1 and ϕ(x) ≥ 0,∀x ∈ W .

An ergodic metric [29] between c(x, q) and an information map ϕ is defined

Equation 2.2:

E(ϕ, q) =
∑
k∈K

λk(ck − ϕk)
2

=
∑
k∈K

λk

(
1

T

∫ T

0

Fk(q(τ))dτ − ϕk

)2 (2.2)

where,

(i) k ∈ K is a set of ν coefficient indices {k1, k2, · · · , kν} with ki ∈ N so that
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2. Background and Related Works

K = {k ∈ N ν : 0 ≤ ki ≤ K} and K being the number of Fourier bases considered,

(ii) ϕk =
∫
W ϕ(x)Fk(x)dx represents the Fourier coefficients of the information map,

with Fk(q) =
1
hk
Πν

j=1 cos(
kjπqj
Lj

) being the cosine basis function for some index k ∈ Nν ,

(iii) ck denotes the kth Fourier coefficient of c(x, q),

(iv) hk denotes the normalization factor and for 2D domain, it is defined as:

hk =
√∫ L1

0

∫ L2

0
cos2(p1x1) cos2(p2x2)dx1dx2 and p1 =

Kπ
L1

, p2 =
Kπ
L2

[29], and

(v) λk = (1 + ||k||2)− ν+1
2 denotes the weight for each corresponding Fourier coefficient.

This weighs large-scale (or low frequency) modes more than small-scale modes so

that as K →∞, the series converge.

Thus, a locally optimal ergodic trajectory on the information map ϕ is one that

minimizes the ergodic metric and can be defined as in Equation 2.3.

q∗ = argmin
∀q

E(ϕ, q) (2.3)

2.3 Multi-agent Multi-objective Task Allocation

and Path Planning

Various approaches have been studied for multi-agent task allocation and path

planning problems [36][37][39][46]. The work in [6] addresses the multi-target multi-

agent discrete search and rescue path planning problem. It proposes a mixed integer

linear problem (MILP) to maximize the weighted (based on priority) cumulative

probability of detecting heterogeneous targets whose locations are unknown apriori. A

prior target location probability density distribution is considered domain knowledge

similar to the information maps in our problem. However, this approach does not

have an explicit task allocation, and the paths are computed for a single team of ‘n’

agents.

The core contribution of this thesis is the computationally efficient method for

computing optimal task allocation for multiple agents with multiple objectives. Multi-

agent task allocation is widely studied in literature [20]. In multi-robot exploration

that uses a frontier-based approach, robots need to be assigned to the identified

frontiers (free spaces on the boundary between explored and unexplored regions of

the environment) in the environment. While exploring the environment different
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2. Background and Related Works

objectives can be considered like maximizing information gain and minimizing distance

traveled by the robot. The allocation can then be performed using market-based

strategies [50], high-level task allocation [11], or simply a greedy allocation [10]. The

authors of [10] also used a frontier-based exploration but with the addition of hard and

soft constraints like inter-robot distances, heading bias, and logical areas of influence

for exploration (like the regions of high information in our problem). However, [10]

uses a greedy allocation scheme. Authors of [50] and [11] employ a more informed

allocation. However, in all these works, there is only one type of information to

be gained, the different objectives are not different types of information across the

domain and each task is a frontier rather than a coverage problem.

One of the main challenges in the multi-agent multi-objective problem as stated

in the introduction is the high cost of evaluating each possible allocation’s perfor-

mance, which is unknown in advance. Work in [24] addresses target retrieval from a

cluttered environment using multiple manipulators. The number of object/clutter

re-arrangements needed for target retrieval is unknown beforehand, similar to the

unknown allocation cost in our problem. This work estimates the number of object

re-arrangements required using a heuristic based on the maximum and minimum

grasping angles of all the feasible paths to the target in the environment. It then uses

a utility function proportional to the inverse of this value for task allocation. Further,

this utility is also used to determine the best task decomposition (as different object

re-arrangements can be used to retrieve the same object). However, it only used a

single heuristic objective function for task allocation and path planning.

Two prior works related to our approach are [9] and [7]. The authors of [7] propose

two frameworks for task allocation, the Compromise View model and the Nearest

Neighbour Search model. The former uses the agent’s distance from the target as the

heuristic for greedy task assignments whereas the latter clusters target locations using

k-means clustering for faster but higher path-length solutions. The work in [9] presents

a framework for multiple agents to perform exploration, rendezvous, and tasks in

a cell-decomposed environment. The cells to be visited are clustered, one for each

agent, and assigned via centralized auction based on agents’ distance to the cluster

centroids and a multi-objective optimization method based on weighted prioritization

of exploration and task completion. Both works demonstrate the effectiveness of

clustering for task allocation in multi-agent scenarios. Our work differs from [9]

11



2. Background and Related Works

and [7] in two ways. First, computing the cost of allocation is itself a trajectory

optimization problem and hence expensive to obtain accurately. Second, the tasks

are not waypoints that need to be visited but probability distributions that need to

be covered. Thus, there aren’t explicit targets whose distance from the agents can

be measured and used to compute the cost/value of an allocation. In our problem,

there is a lack of a good estimate of the cost of allocating a task (coverage task on an

information map) to an agent. Our problem can be slightly modified in order to fit

this framework and is explained further in Section 5.3.

12



Chapter 3

Single Agent Multi-Objective

Ergodic Search (SA-MO-ES)

3.1 A Pareto-Optimal Local Optimization

Framework for Multi-Objective Ergodic

Search

1 When a single agent is tasked to cover a domain subject to one information map,

then the locally optimal ergodic trajectory on the map can be directly computed

using equation (2.3). However, when an agent is tasked to cover a domain subject to

more than one information map (SA-MO-ES), the problem is truly multi-objective

in the sense that in general, there is no single trajectory that optimizes the ergodic

metrics with regard to all information maps at the same time.

Our prior collaborative work [38] instead aims to find the so-called Pareto-Optimal

solutions for this problem, which offers human decision-makers a range of solutions

offering a different trade-off in the level of coverage on the individual maps. It

generates a Pareto-Optimal front where each element is a weight vector used to

generate a linear combination of the information maps (scalarized information map).

The trajectory optimized on each of these scalarized information maps is a Pareto-

1This work is a prior collaborative work with Dr. Zhongqiang Ren in [38]
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Optimal trajectory. A solution is Pareto-Optimal if one can not improve the ergodic

metric with respect to one information map without deteriorating the ergodic metric

with regard to at least one of the other information maps.

An existing brute-force scalarization method [15], can be applied to solve SA-MO-

ES by sampling a set of weight vectors, computing the weighted sum of the information

maps for each weight vector, and running an ergodic trajectory optimization on the

scalarized information map. This is time-consuming to search through all the weight

vectors.

To efficiently solve SA-MO-ES, [38] develops a framework called Sequential Local

Ergodic Search (SL-ES). SL-ES combines the recent advances in ergodic search

techniques with the idea of local optimization based on the inherent convexity of

the ergodic metric in the Fourier coefficient space to efficiently compute the Pareto-

Optimal solutions. SL-ES samples weight vectors from the weight space (i.e., the

space that contains all possible weight vectors) in a breadth-first manner by (i)

episodically sampling new weight vectors in the neighborhood of the current weight

vector, and (ii) optimizing the trajectory corresponding to the new weight vector by

using the current solution as the initial guess (to warm-start the optimization). This

reduces the time taken to compute the Pareto-Optimal solutions.

To expedite the computation, [38] also develops a variant called Adaptive SL-ES

(A-SL-ES), which can adjust the density of the sampled weight vectors based on the

similarity of the information maps in the Fourier coefficient space. It transforms the

weight vectors’ space based on the similarity between the maps. If the information

maps are similar then close to equal weights for the maps can be used to obtain

a Pareto-Optimal trajectory. Experimental results showed that both SL-ES and

A-SL-ES required less than half of the run time of a naive scalarization method that

does not leverage local optimization.

An example of the generated Pareto-Optimal front for one agent tasked to cover

a domain subject to two information maps is shown in 3.1. Each point in this front

corresponds to a weight vector used to compute the scalarized map. The choice of a

solution from the front is left up to the user depending on their preference/priority

among the different objectives. We note that in our problem, we are concerned with

the minmax objective. Thus among the weight vectors used to create the Pareto-

Optimal front, the one highlighted with a square box would be chosen. However, the
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Figure 3.1: Example Pareto-Optimal front: Pareto-Optimal front for two infor-
mation maps. Each point corresponds to a 2D weight vector that is used to compute
a scalarized information map. The trajectory optimized on the scalarized information
map is used to compute the ergodic metric on information maps 1 and 2. The squared
point corresponds to the choice of weight vector as per minmax optimality in the
Pareto-Optimal front among the weight vectors sampled. However, the green ×
represents another weight vector, that was not sampled, with a lower minmax metric
on the individual ergodicities.

weight vector highlighted by the green × would provide a better minmax metric on

the individual ergodicities.

3.2 Choosing from Pareto-Optimal solutions:

TOPSIS

To pick a solution from the generated Pareto-Optimal front, we can pick the weight

vector that results in the minimum maximum ergodic metric among the ones tested as

shown in Figure 3.1. We can also employ other methods like TOPSIS [23] [48], one of

the fundamental methods in multi-attribute decision-making (MADM) problems, to

pick a solution from the Pareto-Optimal front. TOPSIS makes a decision by looking
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at the similarity to an ideal solution. It chooses a solution that is closest to the ideal

and farthest away from the worst-case solution. In our problem, the ideal solution

is the minimum ergodic metric achieved on each map across all the solutions. The

worst-case solution would be the maximum ergodic metric achieved on each map

across all the solutions. TOPSIS thus requires the entire Pareto front to be computed

for each possible allocation, it only picks a solution from the weight vectors used to

compute the Pareto-Optimal front, and it does not explicitly minimize the highest

ergodic metric on the information maps.

3.3 Minimum Bounding Sphere (MBS)

Scalarization

In this work, we propose an approach for SA-MO-ES that focuses on computing the

optimal scalarized information map directly. This is done without the need to calculate

the entire Pareto-Optimal front, and the goal is to minimize the worst-case coverage or

highest ergodic metric on any information map. The highest ergodic metric achieved

on the individual maps depends on the scalarized information map used to optimize

the trajectory of the agent. When considering the minmax optimality criterion, the

best-scalarized information map is determined by minimizing the maximum distance

between the scalarized map and the individual maps. This concept is similar to

solving the minimum enclosing circle problem. Thus, we can compute the required

scalarized map as the center of the minimum bounding sphere of the information

maps in Fourier space.

The minimum bounding sphere for a set of points {p1, p2, ·, pn} is unique and is

the sphere with minimum volume such that all the points lie within or on the surface

of the sphere.

In an ideal scenario, a trajectory optimized towards the center of the minimum

bounding sphere will precisely converge to that distribution and the ergodic metric

in the trajectory optimization converges to zero. By definition of minimum bounding

spheres, the maximum distance of the center of the sphere to any of the information

maps is equal to the radius of the sphere (derived later in this section). As a result,

the maximum ergodicity of this trajectory on any of the individual information maps
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Table 3.1: MBS scalarization variables definition: Variables and functions used
in the proof

Variable Explanation
no Number of assigned information maps

M = {ϕ(1), ϕ(2), · · · } with ϕ(i) :W → R Set of information maps or information distributions
K ∈ R Number of Fourier basis functions used

F: 2D distribution → RK2
Fourier transform: Outputs vector of Fourier coefficients

λ ∈ RK2
Weight for each corresponding Fourier coefficient

feature: 2D distribution → RK2 Outputs a vector of weighted Fourier coefficients:
feature(A) = λ0.5 ⊙ F (A)

C ∈ RK2 Center of the MBS of features of assigned maps,
Can be reconstructed into an information map

r ∈ R Radius of the MBS of features of assigned maps

getMap: RK2 →M Reconstructs the information map from a feature vector

W ∈ RK2 Feature of the average of the assigned information maps,
i.e., W = feature( 1

no

∑
i∈[1,no]

ϕ(i))

Q = {q, q : [0, T ]→W} Set of feasible trajectories for agent considered (T ∈ R+: time horizon)
E : M×Q→ R Computes the ergodic metric of q ∈ Q on ϕ ∈M

q∗ϕ: [0, T ]→W
The locally optimal ergodic trajectory on map

q∗ϕ = argmin∀q∈Q E(ϕ, q)

Eϕ ∈ R The minimum ergodic metric achieved by the agent on the map
Eϕ = min∀q∈Q E(ϕ, q)

Ew: Mno ×Q→ R Computes the highest ergodic metric of q ∈ Q on the maps:
Ew = maxi∈[1,no] E(ϕ(i), q)

will be proportional to the square of the radius of the sphere. Importantly, this

result holds true regardless of the starting position of the agent being considered

and is the minmax ergodic metric that can be achieved when the agent is assigned

multiple information maps. Consequently, for SA-MO-ES, we compute the optimal

scalarized map by determining the center of the minimum bounding sphere (MBS) of

the information maps in Fourier space.

Now, let us suppose the trajectory optimized does not achieve an ergodic metric

of zero against the center of the minimum bounding sphere. Even in this scenario,

we can bound the maximum ergodic metric of the trajectory on the maps as stated

in Theorem 1. Consider the following variables defined in Table 3.1.

Theorem 1. Consider an agent tasked to cover a domain subject to information

maps Φ = {ϕ(1), ϕ(2), · · ·ϕ(no)}. Let the weighted Fourier coefficients (features) of each

element of Φ be represented as Ms = {M1,M2, · · ·Mno} where Mi = feature(ϕ(i))

and hence Mi ∈ RK2
. Let C and r represent the center and radius of the minimum

bounding sphere of Ms. Consider q∗C to be the trajectory obtained by ergodic trajectory

optimization against getMap(C). Let the ergodic metric of q∗C on getMap(C) be EC .
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Then the ergodic metric of q∗C on any ϕ(i) ∈ maps is at most EC + r2 + 2r
√
EC.

Proof of Theorem 1. The minimum bounding sphere of the feature vectors in Ms

is represented by the center and radius C and r respectively. The center C is a

feature vector in RK2
and can be reconstructed to an information map, using getMap,

that can be used to optimize for a trajectory. Let the feature vector of the average

of Φ be W . The locally optimal ergodic trajectory of an agent when optimized

against getMap(C) and getMap(W ) is q∗C and q∗W with ergodic metric EC and EW

respectively:

E(getMap(C), q∗C) = EC

E(getMap(W ), q∗W ) = EW

Next, we can derive the relation between Euclidean distance in the feature space

and the ergodic metric. In the feature space, the Euclidean distance between two

distributions is computed as:

(a)

Figure 3.2: Minimum bounding sphere scalarization: The figure represents
three information maps, as feature vectors in Fourier space {M1,M2,M3}, that are
assigned to one agent. The trajectories q∗C and q∗W are the locally optimal ergodic
trajectory of the agent when optimized against the information maps represented by
getMap(C) and getMap(W ) respectively.
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dist(A,B) =
√∑

(feature(A)− feature(B))2 (3.1)

=
√∑

(λ0.5 ⊙ f(A)− λ0.5 ⊙ f(B))2 (3.2)

=

√∑
k∈K

λk(f(A)k − f(B)k)2 (3.3)

If we consider A ∈M and B ∈ q, then the corresponding ergodic metric can be

computed as:

E(A,B) =
∑
k∈K

λk(f(A)k − f(B)k)
2

Thus equation (3.3) becomes:

dist(A,B) =
√
E(A, b) (3.4)

dist2(A,B) = E(A,B) (3.5)

If E(getMap(C), q∗C) ̸= 0, then the trajectory did not converge to C. In that

case, the center of the minimum bounding sphere C, the feature vector of one of the

information maps Mi, and the agent’s trajectory q∗C form a triangle as illustrated in

Figure 3.2 for the 2D case. Then using triangle inequality we can write:

dist(Mi, q
∗
C) ≤ dist(Mi, C) + dist(C, q∗C)

Since, the distances are positive, by squaring both sides we get:

dist2(Mi, q
∗
C) ≤ dist2(Mi, C) + dist2(C, q∗C) + 2dist(Mi, C)dist(C, q∗C) (3.6)

Substituting equation (3.5) in equation (3.6), we get:
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E(Mi, q
∗
C) ≤ dist2(Mi, C) + EC + 2 ∗ dist(Mi, C) ∗

√
EC (3.7)

By definition of the minimum bounding sphere, the maximum distance of any

feature vector from the center of the sphere is equal to the radius of the sphere.

Further, since equation (3.7) is true for all Mi ∈ Ms, we can bound the highest

ergodic metric achieved on individual maps to be:

Ew(Ms, q
∗
C) ≤ r2 + EC + 2r

√
EC (3.8)

And a consequence of theorem 1 is the statement in the next corollary.

Corollary 1.1. The highest ergodic metric of q∗C on any map does not exceed EC +

2r
√
EC more than that achieved by q∗W on the information maps.

Since r2 is the minimum maximum ergodic metric that can be achieved when Ms

are assigned to a single agent (by definition of minimum bounding spheres), we also

have:

Ew(Ms, q
∗
W ) ≥ r2 (3.9)

Thus, substituting equation (3.9) in equation (3.8), we can get an expression

showing that the highest ergodic metric on the maps for the trajectory optimized

against the center of the minimum bounding sphere does not exceed EC + 2r
√
EC

more than that achieved by the trajectory optimized against the average of the

information maps.

Ew(Ms, q
∗
C) ≤ Ew(Ms, q

∗
W ) + EC + 2r

√
EC

This shows that even when the time average statistics of the trajectory does not

converge exactly to the center of the minimum bounding sphere, the minmax metric
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achieved will be bounded by EC + r2 +2r
√
EC , where EC is the ergodic metric of the

trajectory optimized against the center of the minimum bounding sphere, r2 is the

best minmax ergodic metric achievable and r is the radius of the minimum bounding

sphere.
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Chapter 4

Multi-Agent Multi-Objective

Ergodic Search (MA-MO-ES)

Now that we have addressed the single-agent sub-problem, we elaborate on our

proposed approach for the main focus of the thesis: multi-agent multi-objective

ergodic search (MA-MO-ES). We first introduce the mathematical preliminaries and

problem formulation for the multi-agent multi-objective ergodic search.

4.1 Mathematical Preliminaries

LetW = [0, L1]× [0, L2]×· · ·× [0, Lν ] ⊂ Rν denote a ν-dimensional workspace that is

to be explored by the robots. Each robot has an (identical) n-dimensional state space

S =W×V (n ≥ ν). V is comprised of the robot state components, such as velocities

or orientations, that do not affect what the sensor can see. Let qi : [0, T ]→ S denote

a trajectory of the ith robot in its state space with T ∈ R+ representing the time

horizon. Let the set of all state space trajectories be H. Let P : S →W project the

state space into the workspace. The robots have deterministic dynamics given by

q̇i(t) = f(qi(t), ui(t)), where ui(t) ∈ Rm is the control input of the ith robot.

Let c(x, qi) :W ×H → [0, 1] denote the time-averaged statistics of a trajectory qi,
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which is defined as:

c(x, qi) =
1

T

∫ T

0

δ(x− P (qi(τ)))dτ, (4.1)

where δ is a Dirac function. Let ϕ : W → R denote a static information map

that describes the amount of information at each location in the workspace. In

this work, each information map is a probability distribution with
∫
W dϕ = 1 and

ϕ(x) ≥ 0,∀x ∈ W . An ergodic metric [29] for a trajectory qi and an information map

ϕ is defined as:

E(ϕ, qi) =
K∑
k=0

λk(ck − ϕk)
2 =

K∑
k=0

λk

(
1

T

∫ T

0

Fk(q(τ))dτ − ϕk

)2

(4.2)

where ϕk, Fk(x), K, ck, hk, and λk are as defined in the background section 2.2.

Consider a set Φ of M information maps and a set R of N agents with M ≥ N .

Let A denote the set of all possible allocations of agents to maps. Each allocation is

a surjective function A : Φ→ R, i.e., every robot is assigned at least one information

map. Let p(r, A) be the set of maps assigned to robot r by allocation A ∈ A.
A scalarized information map combines a set of no information maps, using weights

wi for each map, into a single map against which the trajectory of an agent can be

optimized with respect to the ergodic metric:

ϕS =

∑no

i=1 wiϕ
(i)∑no

i=1wi

(4.3)

4.2 Naive Approach: Joint Trajectory

Optimization (JTO)

This section discusses a naive approach to the MA-MO-ES problem. We adapt our

prior work in single-agent multi-objective ergodic search [38] to multiple agents, in a

similar way as in [29], by optimizing a concatenated trajectory of all agents for the

ergodic metric on a scalarization of all maps with wi = 1 in equation (4.3).

For each agent, i, consider a trajectory qi(t) of length T . The concatenated tra-
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(a) (b)

Figure 4.1: Joint Trajectory Optimization (JTO): (a) Example problem with
two maps and two agents R (red) and G (green) with specified start position and
zero orientation, (b) Trajectories of agents on the scalarized information map (ϕS)

Table 4.1: Comparison of Joint Trajectory Optimization and Greedy Alloca-
tion: Individual ergodicities on maps in Fig 4.1a using joint trajectory optimization
(JTO) and greedy allocation of ϕ(1) and ϕ(2) assigned to agent green (G) and red (R)
respectively

Method
Ergodic metric evaluated on

Scalarized Map Map 1 Map 2
JTO 0.0079101 0.2536889 0.1626450

Greedy Allocation (G→ ϕ(1), R→ ϕ(2)) - 0.0009996 0.0009993

jectory of length NT can be represented as q(t) = [q1, q2, · · · , qN ]
′
. The concatenated

trajectory is then optimized to minimize the ergodic metric (E(ϕS, q)), calculated

using equation (4.2). This strategy is implemented on an example problem with two

information maps and two agents with random start positions, as shown in Figure

4.1a. The resulting trajectories of the two agents and the individual ergodicities are

shown in Figure 4.1b and Table 4.1, respectively.

It can be seen that since it is a joint trajectory optimization, the agents naturally

divide the high information regions among them. This seems favorable, however,

since the agents are trying to cover the domain while considering all the M maps

simultaneously, the lowest ergodic metric it can achieve on each map without compro-

mising others is higher than what it can achieve even with a simple greedy allocation

as shown in Table 4.1. A visual representation of this limitation can be seen in Figure
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Figure 4.2: Result of Joint Trajectory Optimization: Agent trajectories on the
individual maps in Figure 4.1a

4.2 where agents spend a lot of time in low-information regions of one map, indicated

by the portion of the trajectory in the white box, as that region spatially corresponds

to a region with high information on another map. This problem can be overcome

by allocating these maps and having the agents access information only from the

assigned maps instead of having each agent consider all the maps. The trajectories of

the agent with the simple greedy allocation of ϕ(1) and ϕ(2) assigned to agent green

(G) and red (R) respectively is shown in Figure 4.3. Thus, the rest of the thesis

focuses on computing the optimal allocation of information maps to agents

for the MA-MO-ES problem.

4.3 Problem Formulation

Each problem has N agents tasked to cover a domain subject to M information

maps that span the same physical region, M ≥ N . We present results for identical

forward-moving-only differential-drive robots, varying only in initial position, with

W = [0, 100] × [0, 100] and S = W × SO{2}. The dynamics for the ith robot are

shown in equation (4.4), in which ν = 2, n = 3,m = 2.

q̇i = f(qi(t), ui(t)) =

vicos(θi(t))visin(θi(t))

α ∗ ωi

 (4.4)
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where, [vi,ωi] is the control input for robot i, α is a constant and qi(t) = [xi(t), yi(t), θi(t)]

is the state of robot i at time t.

Let q∗r (A) be the trajectory (satisfying the dynamics above) that minimizes ergodic

metric on the scalarization of the maps assigned to robot r by allocation A:

q∗r(A) = argmin
q∈H

E(ϕp(r,A), q)s.t.q(0) = qr(0) (4.5)

q∗r (A) is obtained in practice via trajectory optimization on the scalarized information

map obtained using minimum bounding sphere scalarization detailed in Section 3.3.

Then the allocation optimization problem can be stated as follows:

argmin
A∈A

max
ϕ∈Φ
E(ϕ, q∗A(ϕ)(A)) (4.6)

which finds the allocation for which the map with the largest ergodic metric has the

smallest achievable value.

4.4 Branch and bound approach (BB)

We consider four baseline approaches to this problem explained further in Section

4.5. One approach involves optimizing a single joint trajectory for all agents on a

scalarized information map obtained using minimum bounding sphere scalarization,

which may not be optimal for individual maps. Another approach is a suboptimal

greedy allocation method that assigns each agent to a map based on the information

around the agent. Yet another approach assigns agents to information maps based on

the distance of the agent to the peaks of information on the maps. However, this too

is not optimal. The optimal solution can be found by the fourth baseline approach,

exhaustive search, but this is not practical for larger numbers of agents and maps.

To tackle this we present a branch and bound approach to this problem.

The branch and bound (BB) algorithm is commonly used in literature to speed up

the exhaustive search of combinatorial problems such as equation (4.6). It constructs

a tree structure and uses bounds to eliminate sub-problems that cannot contain the

optimal solution. In a minimization problem, if the cost of a sub-problem is greater

than the current best cost (upper bound), this sub-problem can be eliminated. In this
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approach, we leverage the minmax metric to construct a branch and bound algorithm

that reduces the number of possible allocations to be checked to find the optimal

allocation. The formulation is described in Algorithm 1.

The algorithm begins by computing an incumbent solution using the greedy

allocation described in Section 4.5.1 (Step 1). For this incumbent allocation, the

ergodic trajectory for each agent is computed using (4.5), and the resulting individual

ergodicities (using getIndvErg()) on the information maps are computed using (4.2)

(Steps 2, 3). The maximum of the individual ergodicities is set as the initial upper

bound for the branch and bound algorithm (Step 4).

The algorithm works on a tree structure where each node corresponds to an

allocation of maps to one agent. It first creates a root node with a null allocation

(Step 5). Each subsequent level of the tree contains nodes corresponding to possible

allocations of maps to one agent. Hence, the depth of the tree generated is equal to

the number of agents in the problem, and a path from the root node to a leaf node

corresponds to one complete allocation.

For every node in the tree, the individual ergodicities on the maps are computed

using equations (4.5) and (4.2) (Step 12). If the maximum of the individual ergodicities

is greater than the current upper bound, any solution containing this partial allocation

will have a minmax metric greater than the current upper bound, and hence the

node is pruned (Steps 13− 15). Whenever a complete solution is obtained, the upper

bound is updated to facilitate more node pruning (Steps 17− 24).

On the tested problems this branch and bound algorithm achieves an order of

magnitude compared to the exhaustive search algorithm while maintaining optimality.
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Algorithm 1: Branch and Bound Algorithm

Data: Information maps: Φ = {ϕ(1), · · · , ϕM}, Agent start positions:
S0 = {s1, · · · , sN}

Result: Optimal allocation scheme

1 incumbent ← GreedyAllocation(Φ, S0);

2 best alloc ← incumbent;

3 indv erg ← getIndvErg(incumbent,S0);

4 UB ← max(indv erg);

5 root node ← ∅;
6 candidate nodes ← [root];

7 for i ∈ [1, N ] do

8 new nodes ← ∅
9 for n ∈ candidate nodes do

10 allocs ← Possible assignments of maps left for agent i;

11 for alloc ∈ allocs do

12 indv erg ← getIndvErg(alloc,si);

13 if max(indv erg) > UB then

14 continue; // Prune

15 end

16 new nodes.append(alloc);

17 if i == N then

18 new alloc ← path from root to node;

19 new UB ← max(getIndvErg(new alloc,S0));

20 if new UB < UB then

21 UB ← new UB;

22 best alloc ← new alloc;

23 end

24 end

25 end

26 end

27 candidate nodes ← new nodes;

28 end

29 return best alloc
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Figure 4.3: Trajectories obtained using greedy allocation: Here the agent G
(green) and R (red) are assigned to the first and second information maps, respectively

4.5 Comparison against baseline methods and

prior work

We discuss the baseline methods used to compare against the branch and bound

approach.

4.5.1 Greedy Allocation

The greedy baseline is presented in Algorithm 2. For each agent and information

map combination, the amount of information inside a window of size 30X30 centered

on the agent in that information map is computed as the score of that agent-map

combination (Steps 3− 7). The agent with the maximum score on a map is assigned

to that map unless this would leave more unassigned agents than maps, in which

case the next highest score is assigned. This ensures all agents are assigned at least

one map (implemented as getBestAgent(scores) in Step 10). This is tested on the

example in Figure 4.1a, and the trajectories obtained from that allocation are plotted

in Figure 4.3. The agents now spend less time in areas of low information. It can be

seen from Table 4.1 that the individual maps have a lower ergodic metric when the

agents are explicitly allocated. Though the greedy allocation performs better than

JTO, it does not guarantee an optimal allocation as defined in Section 4.1.
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Algorithm 2: Greedy Allocation

Data: Information maps: Φ = {ϕ(1), · · · , ϕ(M)}, Agent start positions:
S0 = {s1, · · · , sN}

Result: Allocation Scheme
1 scores ← zero matrix(M,N);
2 W ← window centered on each start position;
3 for ϕi ∈ Φ do
4 for sj ∈ S0 do
5 scores[i][j] ←

∑
x,y∈Wj

ϕ(i)(x, y);

6 end

7 end
8 allocation ← {};
9 for i ∈ [1,M ] do

10 allocation[i] ← getBestAgent(scores[i]);
11 end

4.5.2 Exhaustive Search

An optimal baseline is an exhaustive search over A. The algorithm iterates through

all possible allocations for the given set of agents and information maps. For each

allocation, the individual ergodicities on the information maps are computed. It is

worth noting that when an agent is assigned more than one information map, we

scalarize the maps using the minimum bounding sphere scalarization. Finally, the

optimal allocation is chosen as described in equation (4.6). For the example shown in

Figure 4.4, the search through possible allocations is shown in Table 4.2.

4.5.3 Numerical Results

The effectiveness of the proposed branch and bound (BB) algorithm was tested on

70 randomly generated test cases. Each test case contained 4 to 10 information

maps (objectives) and a random start pose for each of the 4 agents. The branch

and bound algorithm was compared against (a) Joint Trajectory Optimization, (b)

Exhaustive Search, and (c) Greedy Allocation. The exhaustive search was run with a

net time limit of 100 hr. The approaches are evaluated against the branch and bound

algorithm in terms of runtime and the difference in the minmax metric. The results
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Figure 4.4: Example test case: An example test case with three information maps
ϕ(1), ϕ(2), ϕ(3) and two agents whose start positions are represented by G (green) and
R (red) dots respectively

Table 4.2: Exhaustive search through allocation space: Search through all
possible allocations for the problem shown in Fig 4.4 by the exhaustive search
algorithm. Here [1, 2]→ R refers to agent R being assigned to information maps 1
and 2. The best allocation according to the minmax metric is highlighted.

Individual Ergodicities
Allocation Map 1 Map 2 Map 3 Max
[1]→ R, [2, 3]→ G 0.003175 0.194149 0.191870 0.194149
[2, 3]→ R, [1]→ G 0.001005 0.190901 0.194245 0.194245
[1, 2]→ R, [3]→ G 0.201785 0.200855 0.005364 0.201785
[3]→ R, [1, 2]→ G 0.201844 0.201537 1.076468 1.076468
[2]→ R, [1, 3]→ G 0.047297 0.000712 0.046686 0.047297
[1, 3]→ R, [2]→ G 0.047829 0.000657 0.048254 0.048254

for test cases with 4 agents are shown in Table 4.3.

Comparison between BB and Joint trajectory optimization The joint

trajectory optimization, on average, showed a 98% reduction in runtime compared to

the branch and bound algorithm. This is because there is no allocation involved in

this approach. However, the minmax metric is much higher compared to the branch

and bound approach, as shown in Table 4.3. The comparison of runtime for the joint

trajectory optimization and the branch and bound algorithm for test cases with 4

agents is shown in Figure 4.5.

Comparison between BB and Exhaustive Search The branch and bound

algorithm finished solving all the test cases within 100 hr while the exhaustive search

algorithm solved only 6 test cases within 100 hr. Thus, the branch and bound
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Table 4.3: Comparing branch and bound against baselines: Comparing runtime
and minmax metric of the branch and bound algorithm (optimal) against prior works:
joint trajectory optimization and greedy allocation
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Joint Trajectory
Optimization

98.88% 915.57% 4.38 0.1484 0.4613

Greedy Allocation 96.02% 399.86% 15.06 0.0935 0.4465

algorithm described in Section 4.4 achieves an order of magnitude improvement in

runtime while maintaining optimal allocation.

Comparison between BB and Greedy Allocation The greedy allocation,

on average, showed a 96% reduction in runtime compared to the branch and bound

algorithm. However, the minmax metric is higher compared to the branch and bound

approach, as shown in Table 4.3, as the approach only takes information in the local

neighborhood of agents for task assignment. The comparison of runtime for the

greedy algorithm and the branch and bound algorithm for test cases with 4 agents is

shown in Figure 4.5.
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Figure 4.5: Runtime comparison: Runtime comparison of BB with baseline
approaches on test cases with 4 agents and M ∈ [4, · · · , 10] information maps
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Chapter 5

Clustering

On the tested problems the proposed branch and bound algorithm achieves an order

of magnitude improvement in runtime compared to the exhaustive search algorithm

while maintaining optimality. However, the branching factor is equal to the size of the

power set of the number of unassigned information maps. Further, if two information

maps are similar in regions of high information, we can estimate that they should be

assigned to the same agent but branch and bound overlooks the similarity between

information maps while allocating agents. To this end, we present two approaches

based on clustering to reduce the branching factor in the branch and bound and

thereby significantly reduce the runtime of the algorithm. Clustering before allocation

sacrifices guaranteed optimality for improved computational performance.

5.1 K-means clustering

This approach is motivated by the fact that if two information maps are similar, then

a single agent can cover the domain by considering both information maps together.

We define the similarity (simpq) between two information maps ϕ(p) and ϕ(q) to be

the norm of the difference in the weighted Fourier coefficients of the information maps

as shown in (5.1) [29][38].

simpq =
∑
k∈K

λ0.5 ⊙ ∥ϕ(p)
k − ϕ

(q)
k ∥ (5.1)
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where ϕ
(p)
k and ϕ

(q)
k are the Fourier coefficients of ϕ(p) and ϕ(q) respectively, λ is the

weight vector, and k is the set of coefficient indices as defined in Section 2.2. The

information maps are then clustered based on this similarity metric using K-means

clustering. The number of clusters is picked using the kneedle algorithm [40], which

identifies the points of maximum curvature on a dataset while ensuring it is greater

than or equal to the number of robots. We then follow the branch and bound

algorithm as described in Algorithm 1, except now, each level corresponds to the

possible allocations of clusters to one agent. The tree thus formed has the same depth

but has a lower branching factor than the branch and bound approach.

Branch and bound with k-means clustering helps reduce the runtime of the

algorithm by effectively reducing the number of allocations to be searched. However,

the approach results in a slightly increased minmax metric as compared to the branch

and bound algorithm as seen in Table 5.1 and 5.2. This can occur when the approach

groups two maps into one cluster but the maps are assigned to different agents in the

optimal allocation. K-means clustering attempts to reduce the sum of the squared

distances of the elements in a cluster from the centroid. However, since our optimality

criterion is the minmax metric, we should minimize the maximum distance of the

elements in a cluster from the centroid of the cluster. This leads us to the next

clustering approach.

5.2 Minimum Bounding Sphere clustering

In this approach, we aim to find N clusters, where N is the number of agents, by

using the minimum bounding sphere formulation. Section 3.3 proved that minimum

bounding sphere scalarization is the best scalarization to use to minimize the highest

ergodic metric on any information map when a single agent is tasked to cover the

domain subject to multiple information maps. It further derived that the highest

ergodic metric is proportional to the square of the radius of the minimum bounding

sphere of the information maps. With multiple agents, to achieve the minmax

ergodicity, it is thus necessary to minimize the maximum radius across the minimum

bounding spheres of each agent’s assigned information maps. We thus aim to find N

minimum bounding spheres in the Fourier space such that each information map is

included in exactly one sphere and the maximum radius of the spheres is minimized.
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Algorithm 3: Minimum bounding sphere clustering

Data: Information maps: Φ = {ϕ(1), · · · , ϕ(M)}, Number of agents: N

Result: Clusters

1 UB ← FLOAT MAX;

2 best clustering ← ∅;
3 root node ← ∅;
4 candidate nodes ← [root];

5 for i ∈ [1, N ] do

6 new nodes ← ∅
7 for n ∈ candidate nodes do

8 groups ← Possible groupings of maps left for cluster i;

9 for group ∈ groups do

10 r ← getMinimalBoundingSphere(group);

11 if r > UB then

12 continue; // Prune

13 end

14 new nodes.append(group);

15 if i == N then

16 new clustering ← path from root to node;

17 radii ← ∅
18 for c ∈ new clustering do

19 radii.append(getRadius(c));

20 end

21 new UB ← max(radii);

22 if new UB < UB then

23 UB ← new UB;

24 best clustering ← new clustering;

25 end

26 end

27 end

28 end

29 candidate nodes ← new nodes;

30 end

31 return best clustering
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This is illustrated in Algorithm 3. The algorithm begins with FLOAT MAX as

the upper bound (Step 1). The algorithm works on a tree structure where each node

corresponds to a group of maps in one cluster. It first creates a root node with a null

grouping (Step 3). Each subsequent level of the tree contains nodes corresponding to

possible groupings of maps in one cluster. Hence, the depth of the tree generated

is equal to the number of clusters which is set equal to the number of agents in the

problem, and a path from the root node to a leaf node corresponds to one complete

clustering.

For every node in the tree, the minimal bounding sphere for the chosen maps is

computed using the function getMinimalBoundingSphere1. If the radius of the

minimum bounding sphere is greater than the current upper bound, any solution

containing this partial clustering will have a minmax metric greater than the current

upper bound, and hence the node is pruned (Steps 11− 13). Whenever a complete

clustering is obtained, the upper bound is updated to facilitate more node pruning

(Steps 15− 25).

Once we get the clusters, we can use branch and bound to determine which

agent assignment to clusters as described in the branch and bound with the k-means

clustering approach. Note that in this approach, there are two branch and bound

trees involved: for computing the clusters of information maps and for assigning

these clusters to agents. In the clustering process, there is no pruning and hence the

tree constructed has a full-size branching factor. However, each node’s computation

(fitting a minimum bounding sphere) is very fast compared to ergodic trajectory

optimization.

5.3 Results: Comparison of BB with clustering

against plain BB

We use a prior distance-based allocation [7] along with clustering as another compari-

son to our approach. For this comparison, the information maps in a test case are

clustered as described in Section 5.1 but assigned based on distance as described in [7].

1This function utilizes the miniball library that implements the minimum bounding sphere
algorithm as in [17]. The library implementation can be found at https://github.com/hbf/

miniball/tree/master
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5. Clustering

Figure 5.1: Runtime comparison: Runtime comparison of BB against BB with
clustering approaches and clustering with distance-based allocation on test cases with
4 agents and M ∈ [4, · · · , 10] information maps

For each cluster, the peaks on the corresponding scalarized information map (average

of the maps in a cluster) are identified. The agents are assigned to the clusters based

on the distance of the agent to the centroid of these peaks.

The effectiveness of the proposed branch and bound (BB) with similarity clustering

algorithms and the distance-based allocation with clustering were tested on 70

randomly generated test cases with 4 agents. Each test case contained 4 to 10

information maps (objectives) and a random start pose for each of the agents. The

plain branch and bound algorithm (optimal) with weighted average and minimum

bounding sphere scalarization was compared against (a) Distance-based allocation

with clustering, (b)Branch and bound with k-means clustering, and (c) Branch and

bound with minimum bounding sphere clustering. The results are shown in Table 5.1

and Table 5.2 respectively. The runtime comparison of the plain BB against the BB

with clustering approaches is shown in Figure 5.1.

Figure 5.1 shows that the distance-based allocation has a much lower runtime

than the branch and bound approaches. However, the minmax metric achieved by

this method is much worse as seen in Table 5.1 and 5.2. It can be seen from Table

5.1 and 5.2 that with the minimum bounding sphere scalarization, both the branch
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Table 5.1: Comparison of BB against BB with similarity clustering: Compares
the allocation and minmax metric of the branch and bound with weighted average
scalarization against the branch and bound with k-means and minimum bounding
sphere clustering

When compared to BB (optimal)
with weighted average scalarization
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Clustering with
distance-based allocation

4 0 4 (5.71%) 0.6284 0.0678 (197.7%) 0.1289

K-means clustering 33 0 33 (47.14%) 0.2234 0.0277 (32.7%) 0.0473
Minimal bounding
sphere clustering

38 0 38 (54.29%) 0.1033 0.0210 (21.4%) 0.0344
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Table 5.2: Comparison of BB against BB with similarity clustering: Compares
the allocation and minmax metric of the branch and bound with minimum bounding
sphere scalarization against the branch and bound with k-means and minimum
bounding sphere clustering

When compared to BB (optimal)
with minimum bounding sphere scalarization
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Clustering with
distance-based allocation

4 12 16 (22.86%) 0.6293 0.0846 (205.2%) 0.1379

K-means clustering 42 0 42 (60%) 0.2242 0.0398 (37.8%) 0.0496
Minimal bounding
sphere clustering

49 7 56 (80%) 0.1027 0.0544 (25.9%) 0.0285
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5. Clustering

and bound with clustering approaches improve in terms of the number of optimal

allocations in the test cases, and the minmax metric as expected.

The branch and bound with minimum bounding sphere clustering performs better

than the one with k-means clustering in terms of the minmax metric achieved

irrespective of the scalarization used. Further, Figure 5.1 shows that both branch

and bound with clustering approaches have similar runtimes that are two orders of

magnitude better than the branch and bound without clustering. Finally, the branch

and bound with minimum bounding sphere clustering outputs the optimal allocation

with an average deviation of 20% in the minmax ergodic metric.
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Chapter 6

Conclusions

The multi-agent multi-objective ergodic search problem is an allocation problem

that is NP-hard to solve optimally. An exhaustive search algorithm while optimal in

allocation quickly becomes intractable in terms of runtime as the number of agents

and maps increases. To tackle this, we present a branch and bound algorithm that

helps reduce the average runtime by an of magnitude while still providing the optimal

allocation scheme. Further, we present two approaches to cluster similar information

maps to reduce the branching factor in the branch and bound algorithm. This method

further reduces the runtime by two orders of magnitude and achieves good quality

allocations with an average 20% deviation from the optimal minmax ergodic metric.

As the runtime benefit is the result of a reduced branching factor in the branch and

bound, we expect that for increasing numbers of agents, both our approaches will

yield even greater benefits.

6.1 Contributions

This thesis presents three main contributions in the field of multi-agent multi-objective

ergodic search:

1. Computing the best-scalarized information map when an agent is tasked to

cover the domain subject to more than one information map to minimize the

maximum ergodic metric on the maps
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2. A branch and bound formulation to compute the minmax optimal allocation

scheme for the multi-agent multi-objective ergodic search (MA-MO-ES) problem

3. Two improvements based on clustering approaches to leverage similarity between

information maps to further reduce the runtime of the proposed branch and

bound formulation while providing good quality solutions

6.2 Future Work

Future directions for this work include adapting the task allocation scheme to agents

with heterogeneous capabilities. In this work, we have considered that one agent

is enough to handle one objective characterized by an information map. Studying

cases where searching a domain subject to an information map requires multiple

agents working together is also part of future work. Further, additional metrics such

as workload division and agent-specific task allocation can also be investigated to

expand the applications of this problem. Finally, similarity metrics that consider

agent position, orientation, and dynamics when clustering information maps can

further improve the allocation scheme by making the estimate of the cluster of maps

that should be assigned to one agent more accurate.
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