
Unfolding the Potential of Point-Based

Correspondences for Cloth Manipulation

Mansi Agarwal

CMU-RI-TR-23-46

06 July 2023

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Prof. David Held, Chair

Prof. Oliver Kroemer
Prof. Shubham Tulsiani

Alex LaGrassa

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright © 2023 Mansi Agarwal. All rights reserved.





For my beloved grandparents.



iv



Abstract

Robotic cloth manipulation is an active area of research with numerous
applications in domestic and industrial environments. However, prior
work in this field has limitations that restrict their applicability in real-
world scenarios. For instance, these approaches often require subgoals for
long-horizon tasks and face challenges in handling unaligned configura-
tions. By “unaligned configurations,“ we refer to situations where the
initial orientation of the cloth surface differs from the goal orientation.
To curb these issues, we propose utilizing point-based correspondences,
which capture geometric relationships and deformations in cloth surfaces.
Point-based correspondences refer to establishing correspondences between
points on the cloth surface, allowing us to track and model the cloth’s
behavior accurately. In this work, we present two automated cloth manip-
ulation solutions that incorporate the use of point-based correspondences.
Our focus centers on fundamental cloth manipulation tasks, including
folding, smoothing, and alignment. Through extensive experiments and
evaluations, we demonstrate the effectiveness of our proposed approaches,
which surpass state-of-the-art methods. Comparative experiments against
existing techniques highlight the distinct advantages of using point-based
correspondences for achieving efficient, robust, and long-horizon cloth
manipulation.
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Chapter 1

Introduction

Cloth manipulation is a fascinating and challenging field that revolves around the

manipulation and control of cloth materials. It encompasses a wide range of tasks,

including folding, unfolding, draping, grasping, and shaping cloth to achieve desired

configurations. Cloth materials possess unique characteristics, such as flexibility,

deformability, and non-rigidity, which make their manipulation a complex and intricate

process.

The focus of this thesis is to explore and advance the field of cloth manipulation

by developing innovative techniques and methodologies. The aim is to address the

challenges associated with cloth behavior and enhance the effectiveness and efficiency

of cloth manipulation tasks. By leveraging cutting-edge technologies in robotics and

learning, we strive to automate and optimize cloth manipulation processes.

Cloth manipulation poses several challenges that researchers and practitioners have

been actively working to address. These challenges stem from the unique properties

of cloth materials, including their flexibility, deformability, and non-rigidity.

Firstly, the high configuration space of cloth materials makes it challenging to

precisely control their movements and achieve desired configurations. Cloth can

exhibit a wide range of deformations and can undergo complex transformations,

making it difficult to predict and control its behavior accurately. This necessitates the

development of sophisticated algorithms and strategies to overcome these challenges.

Another significant challenge in cloth manipulation is the issue of self-occlusions.

When cloth folds or drapes over itself, certain parts become hidden from view,
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1. Introduction

resulting in partial or complete occlusions. These occlusions obstruct the visibility

of the cloth’s underlying structure, making it difficult to estimate its shape and

deformations accurately.

Furthermore, cloth materials are subject to non-rigid transformations, meaning

they can undergo deformations and shape changes without breaking or losing their

structural integrity. This characteristic poses additional difficulties in achieving precise

and controlled cloth manipulation. Non-rigid transformations require sophisticated

modeling and estimation techniques to accurately capture and predict cloth behavior,

taking into account its material properties and the external forces acting upon it.

1.1 Motivation

The motivation behind this research is driven by the limitations of existing manual

cloth manipulation techniques. Manual methods for cloth manipulation are time-

consuming, labor-intensive, and prone to errors. They often rely on human expertise

and dexterity, which can vary and be limited in certain scenarios. Automating cloth

manipulation tasks has the potential to overcome these limitations and offer significant

advantages.

Automated cloth manipulation can help address labor shortages and improve

overall efficiency in various industries. By automating the process, tasks that were

previously performed manually can be completed more quickly, allowing for higher

production throughput. Moreover, automated systems can achieve higher levels of

precision and accuracy, ensuring consistent results and reducing the risk of errors.

This is particularly crucial in industries where quality control and precision are

paramount, such as manufacturing and textiles.

In addition to improving efficiency, automated cloth manipulation techniques

can also enhance safety in the workplace. Manual cloth manipulation tasks often

involve handling heavy or bulky cloth materials, which can lead to physical strain or

potential injuries. By automating these tasks, the risk of accidents and injuries can

be minimized, creating a safer working environment for operators.

The applications of cloth manipulation are diverse and span across various in-

dustries. In manufacturing processes, automated cloth manipulation can optimize

production lines by efficiently folding, draping, or arranging cloth materials. In
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1. Introduction

the household laundry domain, automated folding and sorting systems can simplify

the process for consumers, saving time and effort. Healthcare and assistive dress-

ing applications can assist individuals with limited mobility in dressing themselves

independently, promoting their autonomy and well-being. Textile industries can

benefit from automated cloth manipulation in terms of material handling, quality

control, and innovative design possibilities. The e-commerce and retail sectors can

utilize automated folding systems to improve packaging efficiency, presentation, and

customer experience. Moreover, cloth manipulation techniques have vast potential in

research and development, enabling advancements in material science, robotics, and

interactive textiles.

By addressing the challenges and harnessing the potential of automated cloth

manipulation, one can realize significant societal impacts. Increased productivity,

reduced labor requirements, improved safety standards, and enhanced overall quality

in cloth-related processes are just some of the positive outcomes that can be achieved.

Moreover, automation in cloth manipulation can drive innovation and unlock new

possibilities for applications in various industries, leading to economic growth and

improved living standards.

1.2 Contribution

The objective of this thesis is to propose a holistic approach to cloth manipulation

that addresses the challenges associated with cloth behavior. We aim to develop a

methodology that is efficient, robust, and fully autonomous, enabling seamless and

automated cloth manipulation tasks.

Our goal is to develop algorithms and systems that are accurate and quick in

making decisions for cloth manipulation. By focusing on efficiency, we aim to enable

real-time or near-real-time cloth manipulation, enhancing the overall productivity

and effectiveness of the system.

Robustness is another essential attribute we aim to incorporate into our approach.

Cloth manipulation involves dealing with various challenges, such as rotations, where

the observation and goal are not aligned or oriented in the same direction. To overcome

such obstacles, our methodology should exhibit resilience and adaptability. It should

be able to handle variations in cloth behavior and maintain accurate manipulation
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1. Introduction

even in the presence of uncertainties. By designing a robust approach, we ensure that

our system can effectively handle diverse cloth scenarios encountered in real-world

applications.

Furthermore, our objective is to develop a fully autonomous cloth manipulation

approach. This means that the system should operate with little to no human

supervision, minimizing the need for explicit instructions or subgoals. By achieving

autonomy, we aim to create a system that can perform complex cloth manipulation

tasks independently and make intelligent decisions based on the given input and

desired goals. For instance, in long-horizon tasks, our approach should be capable

of planning and executing the necessary cloth manipulation steps without relying

heavily on human intervention. This level of autonomy not only reduces human effort

but also enables the system to handle a broader range of cloth manipulation scenarios

efficiently.

To fulfill our objective, we use point-based correspondences, which enable us

to capture the intricate geometric relationships and deformations present in cloth

surfaces. By harnessing these correspondences, we can address key challenges, such as

unaligned configurations and the need for subgoals in long-horizon tasks. In this thesis,

we introduce two automated cloth manipulation solutions that employ point-based

correspondences. Our primary focus revolves around essential cloth manipulation

tasks, including folding, smoothing, and alignment.

To validate the effectiveness of our proposed approaches, we conduct a compre-

hensive set of experiments and evaluations. The results showcase how our methods

outperform state-of-the-art techniques in terms of efficiency, robustness, and long-

horizon planning. Through comparative experiments against existing approaches,

we highlight the distinct advantages of employing point-based correspondences for

achieving efficient and reliable cloth manipulation.

Overall, our research strives to contribute to the development of a holistic and

autonomous cloth manipulation approach. By incorporating point-based correspon-

dences and addressing critical challenges, we aim to enhance the efficiency, robustness,

and automation capabilities of cloth manipulation systems.
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1.3 Organization

The thesis is organized into several chapters. Chapter 1 serves as the introduction,

providing an overview of cloth manipulation and the research objectives. Chapter 2

focuses on essential concepts related to cloth manipulation, including point clouds,

processing techniques, transformers, correspondence estimation, and reinforcement

learning algorithms. In Chapter 3, a literature review is conducted specifically on

cloth folding and smoothing techniques. Chapter 4 introduces the first approach,

FabricFlowAlignNet, which utilizes correspondences for cloth alignment and manip-

ulation. The methodology, experiments, and findings of FabricFlowAlignNet are

described. Additionally, Chapter 5 addresses the limitations of FabricFlowAlignNet

and presents a novel approach that combines reinforcement learning and correspon-

dences for long-horizon planning without subgoals. The methodology, experiments,

and findings of this approach are discussed. Finally, Chapter 6 concludes the thesis

by summarizing the main contributions, reflecting on limitations, and providing

recommendations for future research.
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Chapter 2

Background

2.1 Cloth Manipulation

Cloth manipulation is a multidisciplinary field that lies at the intersection of robotics,

computer vision, and material science. It encompasses a wide range of tasks related

to controlling and manipulating deformable cloth objects. Cloth manipulation has

significant practical applications in areas such as robotics, virtual garment fitting,

virtual reality, and assistive dressing systems. The complexity of cloth manipulation

arises from the non-rigid and highly deformable nature of cloth, which requires

accurate modeling of its behavior and planning of appropriate actions.

Within cloth manipulation, various subfields have emerged, each focusing on

specific aspects of cloth behavior and manipulation. Some of the prominent subfields

include cloth folding, cloth smoothing, cloth draping, and assistive dressing. These

subfields address different challenges and require distinct approaches and algorithms.

1. Cloth Folding: Cloth folding is one of the fundamental tasks in cloth ma-

nipulation. It involves transforming a given cloth configuration into a desired

folded state. The goal of cloth folding is to find a sequence of actions that

deform the cloth from its initial state to a target folded state. There are two

primary types of cloth folding scenarios: single-step goals and multi-step goals.

In single-step goals, the cloth is transformed directly from the initial state to

the final folded state in a single action sequence. The challenge lies in predicting
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the appropriate actions that achieve the desired folding outcome. On the other

hand, multi-step goals can involve intermediate subgoals between the initial

and final states. The problem statement for multi-step goals can be either

predicting the actions between each observation and subgoal or directly finding

a trajectory that leads from the initial observation to the final folded goal.

2. Cloth Smoothing: Cloth smoothing is another crucial task in cloth manip-

ulation that focuses on removing wrinkles and creases from a cloth surface

to achieve a smoother appearance. The goal of cloth smoothing is to find a

sequence of actions that gradually deform the cloth from its initial state to a

target smooth state.

Similar to cloth folding, the objective is to find a trajectory of actions that

leads from the initial cloth observation to the final smooth goal. The actions

applied during the trajectory progressively adjust the cloth configuration to

eliminate wrinkles and achieve the desired smooth appearance.

3. Cloth Alignment: Cloth alignment is often an essential aspect of cloth

manipulation tasks. It involves adjusting the cloth configuration to match a

specific target alignment, such as aligning the edges or corners of the cloth.

The problem of cloth alignment is mathematically similar to cloth folding and

smoothing, as it involves finding a trajectory of actions that transforms the

initial cloth observation to the final aligned goal configuration.

2.2 Point Clouds and Point Cloud Processing

Point cloud networks have gained significant attention and popularity in recent years

due to their ability to effectively process and analyze point cloud data. Point clouds

are a powerful representation of 3D data, consisting of a set of points in space

that capture the geometry and spatial information of objects or scenes. They have

become an essential source of sensory information in various fields, including robotics,

computer vision, autonomous driving, and 3D modeling.

The unique challenge in processing point clouds lies in their unordered nature, as

the points do not have an inherent ordering or structure. Point cloud networks address

this challenge by incorporating permutation invariance into their design. Permutation
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invariance ensures that the network’s output remains the same regardless of the

ordering of the points in the input, making the network robust and invariant to

different point cloud representations.

Additionally, point cloud networks need to handle variable-sized point clouds, as

the number of points in a point cloud can vary depending on the complexity of the

scene or object being captured. These networks are designed to dynamically adapt

to the varying number of points and effectively extract features and information from

the point cloud data.

Moreover, point cloud networks go beyond per-point processing by incorporating

contextual information at different scales. They leverage local and global context

to capture both fine-grained details and global relationships within the point cloud.

This enables the networks to understand the spatial dependencies and interactions

between points, leading to more robust and informative representations.

Numerous architectures have been developed for point cloud networks. Here, we

provide a list of some popular networks:

1. PointNet: PointNet [12] is a pioneering architecture that revolutionized the

field of point cloud processing by introducing the concept of using max pooling

to aggregate information from local neighborhoods in point clouds. The network

architecture consists of a series of point-wise multi-layer perceptrons (MLPs),

followed by a max pooling layer. The point-wise MLPs extract features from

individual points in the point cloud, while the max pooling layer aggregates

information from local neighborhoods. By using max pooling, PointNet can

capture global features and representations from the entire point cloud, enabling

it to understand the overall structure and context of the object or scene. Point-

Net has demonstrated remarkable performance across various point cloud tasks,

including object classification, part segmentation, and scene understanding. Its

ability to effectively process and learn from unordered point cloud data has

made it a foundational architecture in the field.

2. PointNet++: PointNet++ [13] is an extension of PointNet that further en-

hances its capabilities by incorporating hierarchical pooling to capture more

global information from point clouds. The network architecture of PointNet++

consists of a series of PointNet modules, where each module uses max pooling
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to aggregate information from local neighborhoods in the point cloud. However,

unlike PointNet, PointNet++ operates hierarchically, with each module focusing

on a different scale of the point cloud. By incorporating hierarchical pooling,

PointNet++ can learn features at multiple scales, enabling it to capture the

complex and multi-level structure of point clouds. This hierarchical approach en-

hances its ability to understand fine-grained details as well as global relationships

within the point cloud. PointNet++ has demonstrated superior performance

compared to PointNet in tasks such as object classification, part segmentation,

and scene understanding, highlighting its effectiveness in capturing hierarchical

structures in point clouds.

3. DGCNN: DGCNN (Dynamic Graph Convolutional Neural Network) [19] is a

graph-based network specifically designed for processing point clouds. Unlike

PointNet and PointNet++, DGCNN represents point clouds as graphs, where

each point is considered as a node in the graph. The network architecture of

DGCNN consists of multiple graph convolution layers, each utilizing a message

passing mechanism to propagate information between points in the graph.

By employing message passing, DGCNN can capture the relationships and

dependencies between points in the point cloud, allowing it to effectively learn

the geometric structure and spatial arrangements. This graph-based approach

has demonstrated its efficacy in various tasks, including object classification, part

segmentation, and object detection. DGCNN’s ability to model the relationships

between points makes it particularly suitable for tasks that require capturing

the local and global connectivity in point clouds.

4. GATConv: GATConv (Graph Attention Convolution) [16] is another graph-

based network that leverages attention mechanisms to weigh the interactions

between points in point clouds. The network architecture of GATConv consists

of multiple graph attention layers, each employing an attention mechanism to

determine the importance or relevance of the neighboring points for each point

in the graph. By utilizing attention mechanisms, GATConv can focus on the

most significant neighbors for each point, allowing it to effectively capture the

intricate relationships and dependencies within the point cloud. This attention-

based approach enhances its ability to understand the complex interactions
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and context of points in point clouds. GATConv has demonstrated strong

performance in tasks such as object classification, part segmentation, and object

detection, showcasing the effectiveness of attention mechanisms in capturing

relevant information in point clouds.

These architectures have significantly advanced the field of point cloud processing

by providing effective tools for feature extraction, object recognition, segmentation,

and other tasks. Their success demonstrates the importance of considering the unique

characteristics of point clouds and developing specialized networks to exploit their

rich information.

2.3 Attention in Deep Learning: Understanding

Transformers

Attention is a powerful mechanism in deep learning that enables neural networks

to selectively focus on specific parts of an input sequence. This capability is crucial

in various tasks, such as machine translation, where understanding the entire input

sentence is essential for generating accurate output sentences. Transformers, a

groundbreaking neural network architecture, harness the power of attention to learn

long-range dependencies in sequence data.

The implementation of attention in deep learning involves assigning weights to the

input features using a softmax function. These weights determine the relevance and

importance of different parts of the input sequence, allowing the network to prioritize

and attend to the most significant features.

In Transformer [15] architecture, there are two main components: the encoder and

the decoder. Both the encoder and decoder consist of multiple layers of self-attention

mechanisms and feed-forward neural networks.

The encoder takes an input sequence and processes it to generate a sequence of

hidden states. The input sequence is usually tokenized and embedded into continuous

vector representations. These embeddings are then passed through multiple encoder

layers, where each layer employs a self-attention mechanism to capture the relation-

ships between different words or tokens in the input sequence. The outputs of the

encoder are the final hidden states, which represent contextualized representations of
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the input tokens.

The decoder takes the hidden states generated by the encoder and uses them to

produce the output sequence step by step. At each time step, the decoder attends to

the encoder’s hidden states and uses self-attention mechanisms to focus on relevant

parts of the input sequence. It predicts the next token in the output sequence based

on the context it has learned from the encoder’s hidden states. During training, the

decoder is provided with the target output sequence and is trained to minimize the

difference between its predictions and the ground truth.

One key innovation in Transformers is the self-attention mechanism, which allows

the model to weigh the importance of different words or tokens in the input sequence

when generating the output. This attention mechanism enables Transformers to

handle long-range dependencies effectively and process entire sequences in parallel,

making them highly efficient compared to traditional sequential models like LSTMs

or RNNs.

The transformer architecture has demonstrated remarkable performance in various

NLP tasks, such as machine translation, language modeling, text generation, and

sentiment analysis, among others. It has also been extended to handle other types of

data beyond natural language, demonstrating its broad applicability and effectiveness.

By harnessing the power of attention, transformers have revolutionized the field of

deep learning, providing a robust framework for modeling and understanding complex

sequential data. The combination of attention mechanisms and transformers has

unlocked new possibilities in tasks that require capturing long-range dependencies

and leveraging contextual information for accurate predictions and generation.

2.4 Correspondences

Correspondences refer to pairs of points or features that are associated with each

other based on their spatial or semantic relationship. In cloth manipulation tasks,

correspondence estimation is of particular importance. Cloth is a deformable object

that can undergo complex transformations and shape changes. Estimating correspon-

dences between different regions or points on the cloth is essential for understanding

its behavior, tracking its motion, and performing various manipulation tasks.

2D Correspondences: One common type of correspondence estimation is 2D
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correspondences or optical flow. Optical flow involves estimating the motion vector or

displacement for each pixel between two consecutive frames in a video sequence. By

establishing correspondences between pixels, optical flow provides valuable information

about the movement and flow patterns within consecutive frames.

Optical flow estimation is typically performed using computer vision techniques,

with state-of-the-art approaches leveraging convolutional neural networks (CNNs) to

estimate flow. These networks are trained to learn the complex patterns and motion

characteristics present in the video data.

While optical flow is a powerful tool for estimating 2D correspondences, it does

have its limitations. In cases where the scene undergoes rapid motion or there are

occlusions, optical flow may struggle to accurately estimate correspondences. These

challenges can lead to errors in tracking the cloth’s motion or fail to capture subtle

deformations.

FFN (FabricFlowNet) [20] is an approach that leverages optical flow to estimate

correspondences between an observed cloth image and a goal cloth image, enabling

it to generate a sequence of actions for folding the cloth into the desired shape.

By employing a convolutional neural network (CNN) to estimate optical flow, FFN

captures the motion and displacement of pixels between the two cloth images.

Figure 2.1: FabricFlowNet utilizes 2D correspondences to represent the goal and to
predict robot actions.

The estimated correspondences serve as a valuable source of information for

predicting the actions needed to transform the observed cloth image into the goal

cloth image. By understanding how different regions of the cloth should move and

deform, FFN can plan a sequence of actions that facilitate the folding process and

achieve the desired shape. The correspondences provide crucial guidance for the
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transformation of the cloth’s configuration.

Incorporating 2D correspondences into the cloth folding process brings several

advantages to FFN. Firstly, it enhances the accuracy and precision of the folding task

by leveraging the information obtained from the correspondences. This enables FFN

to make more informed decisions regarding the actions needed to align the observed

cloth image with the goal cloth image.

Additionally, FFN’s utilization of correspondences demonstrates the significance

of incorporating contextual information into cloth manipulation techniques. By

considering the relationships and correspondences between different regions of the

cloth, FFN can better understand the global structure and shape transformations

required for successful folding. This utilization of correspondences contributes to the

overall success of the cloth manipulation process.

The utilization of correspondences in FFN highlights the importance of corre-

spondence estimation in cloth manipulation tasks. By accurately estimating and

leveraging correspondences, cloth folding techniques can achieve higher levels of accu-

racy, robustness, and efficiency. This provides valuable insights for further research

and development in the field of cloth manipulation and inspires the exploration of

more advanced approaches that utilize correspondences effectively.

3D Correspondences: 3D correspondences refer to pairs of points that are

associated with each other in 3D space. These correspondences are valuable in

various applications, such as object tracking and 3D reconstruction as they enable

the understanding of the spatial relationships between points and facilitate accurate

modeling and analysis of the 3D world. Point-based correspondences are a specific

type of 3D correspondences that involve finding pairs of points in two different 3D

point clouds that are close to each other. This approach is commonly used in computer

vision and robotics tasks, where the goal is to establish correspondences between

points in different point cloud data sets. By identifying points that correspond to

each other, it becomes possible to perform tasks such as aligning two point clouds,

estimating the motion between frames, or reconstructing the 3D shape of an object.

TAX-Pose [11] is a method specifically designed for the task of learning how to

place objects in task-specific locations using cross-pose correspondences. The method

consists of two main components: a cross-pose correspondence module and a policy

learning module. The cross-pose correspondence module in TAX-Pose is responsible
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Figure 2.2: TAX-Pose estimates correspondences for predicting rigid transformations
between two input point clouds.

for learning to estimate the relative pose between two objects that are in different

poses. This module is trained using a dataset that contains pairs of objects in different

poses. The input to the module is the point clouds representing the two objects, and

the output is the estimation of the relative pose between them. To accomplish this,

the module comprises several components.

First, there is a feature extractor that takes the point clouds of the two objects as

input and extracts meaningful features from them. These features capture the relevant

information needed to establish correspondences between the objects. The feature

extractor plays a crucial role in representing the objects’ characteristics effectively.

Next, a transformer component is employed to estimate the correspondences between

the two objects. The transformer leverages the extracted features to establish

cross-pose correspondences, identifying the points or regions of the objects that

correspond to each other across different poses. These correspondences are essential

for understanding the spatial relationships and transformations between the objects.

Finally, a regressor is utilized to predict the relative pose between the objects

based on the extracted features and correspondences. The regressor takes the features

and correspondences as input and produces an estimation of the relative pose. This

information is crucial for determining how the objects should be placed in task-specific

locations. Overall, TAX-Pose combines the estimation of cross-pose correspondences

with policy learning to enable accurate object placement in task-specific locations.

The utilization of 3D correspondences, particularly point-based correspondences, in

TAX-Pose demonstrates their significance in manipulation.

Another work which relies on correspondences is point cloud registration where

pairs of points from two point clouds are identified as corresponding to the same
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physical location. However, traditional Iterative Closest Point (ICP) algorithms

[1, 14] encounter challenges in obtaining accurate correspondences, particularly in

the presence of noise and partial occlusion. In response to this issue, Deep Closest

Point (DCP) [18] introduces a novel approach to address these limitations. DCP

leverages deep learning to acquire a discriminative representation of point clouds,

capturing the relative pose information effectively. By doing so, it facilitates the

more robust identification of correspondences compared to conventional methods.

Furthermore, the obtained representation also serves as a valuable initialization step

for the subsequent application of ICP, refining the alignment between the point clouds.

The effectiveness of DCP is demonstrated through extensive evaluations on various

datasets. The results highlight its superiority over traditional ICP techniques in

terms of both accuracy and processing speed. This innovative approach presents

a promising avenue for improving the robustness and efficiency of correspondence

finding in point cloud registration tasks.

2.5 Reinforcement Learning for Manipulation

Reinforcement Learning (RL) is a branch of machine learning that focuses on how

an agent can learn to make sequential decisions in an environment to maximize its

cumulative rewards. RL is particularly applicable in robotic systems, where the agent

interacts with its environment, learns from experience, and adapts its actions to

achieve specific goals.

The RL framework involves several key components. First, there is the agent,

which is the decision-making entity that learns and takes actions in the environment.

The environment represents the external system in which the agent operates. The

agent and environment interact in a cyclic manner: the agent takes an action, the

environment transitions to a new state, and provides feedback in the form of rewards

or penalties. This feedback guides the agent’s learning process.

Rewards serve as the primary feedback mechanism in RL. They indicate the

desirability of the agent’s actions and provide a quantitative measure of the agent’s

performance. The goal of RL is to find a policy, which is a mapping from states to

actions, that maximizes the cumulative rewards over time. The agent’s objective is

to learn this optimal policy through trial and error, exploration, and exploitation of
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its environment.

In the context of cloth manipulation, RL has emerged as a promising approach

for controlling robotic systems. Traditional control methods often require complex

manual programming or explicit modeling of the cloth’s dynamics, which can be

challenging due to the inherent complexity and variability of cloth deformations. RL

offers a data-driven alternative, where the agent can learn to manipulate cloth by

directly interacting with it and receiving feedback from the environment.

One advantage of RL in cloth manipulation is its ability to handle complex and

non-linear cloth dynamics without explicitly modeling them. The agent can learn

to adapt its actions based on the cloth’s responses, allowing for more flexible and

robust control. RL algorithms, such as deep reinforcement learning, can leverage

neural networks to approximate complex policies and handle high-dimensional inputs,

making them well-suited for cloth manipulation tasks.

Furthermore, RL enables the agent to learn from experience and improve its

performance over time. By exploring different actions and receiving feedback in

the form of rewards, the agent can refine its policy and optimize its actions to

achieve desired cloth manipulation objectives. RL algorithms can iteratively update

their policies based on observed rewards, leading to adaptive and efficient cloth

manipulation strategies.

Actor-critic reinforcement learning: It is a powerful approach that combines

policy-based and value-based RL methods. In this framework, an actor network learns

a policy that maps states to actions, while a critic network learns a value function that

estimates the expected return of a state. By training these two models simultaneously,

actor-critic RL can effectively optimize policies in complex environments.

The actor component of the actor-critic architecture is responsible for selecting

actions based on the current state. It takes the state as input and outputs the

corresponding action to be executed by the agent. The actor is typically implemented

as a deep neural network that can handle high-dimensional state spaces and produce

continuous or discrete action outputs.

On the other hand, the critic component aims to estimate the value or quality of

the chosen actions. It evaluates the value of a state-action pair by estimating the

expected return, which is the sum of future rewards that the agent expects to receive.

The critic is also implemented as a deep neural network and is trained to minimize
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the temporal-difference (TD) error, which measures the discrepancy between the

estimated value and the actual observed reward.

The actor and critic networks are trained simultaneously using a process called

policy gradient. The policy gradient method computes gradients based on the critic’s

value estimates to update the actor’s policy. By iteratively adjusting the policy based

on the feedback from the critic, the actor-critic algorithm can gradually improve its

performance in maximizing the expected return.

Actor-critic reinforcement learning has been successfully applied to various ma-

nipulation tasks, such as robot arm control, grasping, and object manipulation.

Its advantage lies in its ability to combine the strengths of both policy-based and

value-based methods. The actor network enables direct policy optimization, allowing

for more efficient exploration and exploitation of the state-action space. The critic

network provides valuable feedback on the quality of the chosen actions, guiding the

actor’s learning process.

TD3: Twin Delayed Deep Deterministic Policy Gradient [4] is an algorithm

that addresses the instability of the Deep Deterministic Policy Gradient (DDPG)

algorithm [7] in environments with high-dimensional action spaces. TD3 introduces

three key modifications to enhance stability and learning efficiency: Clipped Double-Q

Learning, Delayed Policy Updates, and Target Policy Smoothing.

In Clipped Double-Q Learning, TD3 utilizes two Q-functions instead of one. These

Q-functions are updated independently, and the minimum of the two Q-values is used

to update the policy. By considering the minimum value, overestimation bias in the

Q-function is reduced, mitigating the potential instability arising from inaccurate

value estimation.

To further stabilize the learning process, TD3 incorporates Delayed Policy Updates.

Unlike DDPG, TD3 updates the policy less frequently compared to the Q-functions.

This delayed updating mechanism ensures that the policy changes are more consistent

and avoids oscillations that may arise from rapid and frequent policy updates.

Target Policy Smoothing is another enhancement introduced in TD3. It involves

adding noise to the target policy during updates. By introducing noise, the policy

updates become more robust to variations and inaccuracies in the Q-function, allowing

for smoother and more reliable learning.

Algorithm 1 depicts the TD3 algorithm. By iteratively updating the actor and
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Algorithm 1 TD3 Algorithm

1: Initialize the actor and critic networks
2: Initialize the target actor and critic networks
3: Initialize a replay buffer
4: for each episode do
5: Collect a trajectory of states, actions, rewards, and next states
6: Store the trajectory in the replay buffer
7: Sample a batch of data from the replay buffer
8: Update the critic networks using the sampled data
9: Update the actor networks using the sampled data and the target critic
10: Update the target actor and critic networks
11: end for

critic networks while incorporating the modifications specific to TD3, the algorithm

learns effective policies that maximize cumulative rewards in complex reinforcement

learning tasks. The modifications introduced in TD3 enhance stability, reduce

overestimation bias, and improve the efficiency of learning compared to the original

DDPG algorithm.

HAC-Man: HAC-Man [21] is an approach that extends existing off-policy

algorithms, originally designed for continuous action spaces, to handle hybrid action

spaces that combine both discrete and continuous components.

For the continuous component, HAC-Man leverages established off-policy algo-

rithms such as TD3. The first step is to train an actor network using the point cloud

observations. This actor network generates a vector of continuous action components

that represent the desired motion parameters. Additionally, a critic network is utilized

to estimate the Q-value based on the observation and the continuous action compo-

nents. The Q-value provides a measure of the expected return and is used to update

the actor network, ensuring that it learns to generate more favorable continuous

actions.

In order to predict the discrete component, HAC-Man introduces a discrete set

of points within the object point cloud. This discrete component represents the

contact location or the specific point to be selected for manipulation. To incorporate

this discrete component into the algorithm, the critic network is trained to output a

per-point Q-value for each point in the entire point cloud. Each Q-value represents

the estimated return when choosing a particular point as the discrete component.
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The Q-values serve a dual purpose: they are used to update the actor network to

improve the selection of continuous components, and they are also employed to

determine the discrete component by selecting the point with the highest Q-value.

Furthermore, the actor network is trained to generate per-point continuous vectors for

each point in the point cloud. If a specific point is chosen as the discrete component,

the corresponding continuous component is used for manipulation, providing the

necessary motion parameters for the gripper or manipulator to perform the desired

action on the selected point.

By combining these approaches, HAC-Man effectively handles hybrid action spaces,

enabling the prediction and coordination of both discrete and continuous components

for successful manipulation tasks.
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Chapter 3

Literature Review

3.1 Cloth Folding

The field of cloth folding has seen several notable automated policy-based approaches

in recent literature. One such approach is FabricFlowNet (FFN) [20] proposed by

Weng et al. FFN tackles bimanual cloth folding by estimating flow correspondences

between the observed cloth image and the goal cloth image. This method relies on

the concept of optical flow to establish correspondences between pixels in different

frames of the cloth. However, FFN has a limitation in that it requires strict alignment

between the observed cloth and the goal cloth poses in the image. To address

this limitation, our first approach extends FFN by proposing a method to align

learned 3D correspondences. By establishing spatial relationships between points

in the observation and goal configurations, our approach enables precise alignment,

resulting in improved folding performance even for unaligned goals compared to

FFN. Additionally, FFN relies on the use of subgoals for long horizon cloth folding,

introducing complexity and manual intervention, making it less autonomous. In

contrast, our second approach, based on reinforcement learning and point-based

correspondences, explores and learns the trajectory autonomously without the need

for subgoals, enabling long horizon planning.

Another notable policy in the field of cloth folding is FoldsFormer [10], which

utilizes a space-time attention mechanism to capture instruction information and

perform cloth folding. This method can manipulate cloth even when the observed and
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goal cloth configurations are not aligned, due to the space-time attention mechanism.

However, similar to FFN, FoldsFormer also requires the use of subgoals, limiting

its autonomy. Moreover, FoldsFormer heavily relies on fine-tuning on specific test

examples, which leads to poor performance on other examples that it has not been

fine-tuned on. In contrast, our RL-based policy, which incorporates point-based

correspondences, does not require fine-tuning on specific data and is applicable to

both folding and smoothing tasks, making it a general cloth manipulation policy.

Fabric Descriptors [5], introduced by Ganapathi et al., is a method for learning

correspondences in fabric manipulation tasks using a dense contrastive loss. This

approach focuses on learning correspondences between different fabric configurations.

However, once the correspondences are learned, the proposed policy relies on human

demonstrations for cloth manipulation. In contrast, our method can learn and

estimate correspondences without the need for human demonstrations, demonstrating

its capability for autonomous cloth manipulation.

Overall, the literature on cloth folding presents a range of approaches with their

respective strengths and limitations. Our proposed methodologies offer advantages

such as improved alignment, autonomy, generalization across tasks, and applicability

to both folding and smoothing. By incorporating point-based correspondences, our

approaches contribute to the advancement of cloth manipulation techniques, providing

more effective, autonomous, and robust solutions for cloth folding tasks.

3.2 Cloth Smoothing

In the domain of cloth smoothing, there are several notable approaches that have been

proposed. One such approach is the Visual Connectivity Dynamics (VCD) method

[9], which estimates a mesh from an input point cloud and predicts cloth dynamics.

However, the execution of VCD is relatively slow due to the need for constructing

a graph and estimating collisions between edges. In contrast, our proposed method

offers a faster alternative for cloth smoothing. Additionally, VCD is limited to

performing smoothing and lacks the capability of aligning the cloth to a specific goal

configuration. In comparison, our approach is more generic and versatile, as it can

handle both smoothing and alignment tasks.

Another approach in the realm of cloth smoothing is Cloth Funnels [2]. This
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method utilizes self-supervised rewards to learn both cloth smoothing and alignment.

However, their alignment procedure is based on an iterative version of the Procrustes’

algorithm, which is primarily designed for aligning rigid objects. Since fabrics are

deformable materials, the alignment achieved using Procrustes can be prone to local

optima. In contrast, our proposed approach employs the Random Sample Consensus

(RANSAC) algorithm for aligning deformed fabrics, which provides an asymptotic

and globally optimal alignment. By utilizing RANSAC, our method overcomes the

limitations of local optima and achieves more robust alignment results. Furthermore,

while Cloth Funnels solely relies on self-supervised learning from random actions,

our approach incorporates the use of reinforcement learning (RL) for exploration,

enabling more effective and adaptive cloth manipulation.

Overall, the existing literature on cloth smoothing presents various approaches with

their respective strengths and limitations. Our proposed method offers advantages

such as faster execution, the capability to perform both smoothing and alignment

tasks, and the use of RANSAC for globally optimal alignment. By addressing these

challenges, our approach contributes to the field of cloth manipulation, providing a

more efficient and versatile solution for cloth smoothing and alignment tasks.
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Chapter 4

Point-based Correspondence

Estimation for Cloth Alignment

and Manipulation

4.1 Introduction

A fundamental aspect of successful cloth manipulation is establishing correspondences

between the current observation and the goal configuration. These correspondences

provide critical spatial associations necessary for planning and executing folding

actions. However, while prior methods have proposed to learn correspondences

for cloth [5, 20], they do not explicitly use such methods for reasoning about the

alignment between the observed cloth and the desired configuration. Alignment

refers to adjusting the cloth configuration to match a specific target alignment andis

a crucial step in cloth manipulation. Prior correspondence-based policies do not

handle cases where the cloth and goal are not already aligned [20], or rely on human

demonstrations [5].

In this work, we propose FabricFlowAlignNet (FFAN), an approach that

combines the use of correspondences and symmetry-handling techniques to learn a

goal-conditioned cloth manipulation policy. Our method leverages correspondences

to “virtually” align the observation and goal point clouds, enabling the policy to
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determine the appropriate actions to execute on the observation. By incorporating

these correspondences and symmetry handling, our approach aims to acquire an

understanding of cloth folding strategies and develop a manipulation policy capable of

accurately and efficiently folding clothes. This is particularly beneficial in challenging

scenarios where the observed cloth is rotated or unaligned with the desired goal

configuration.

We evaluate the performance of our method against a state-of-the-art folding

approach [20] on a folding task, where the goal and observation poses are not aligned.

Our method reasons about symmetries and employs correspondences to deal with

unaligned goals, unlike the baseline. The results demonstrate the effectiveness and

robustness of our approach in achieving successful cloth folding when the observation

and goal configurations are unaligned.

4.2 Methodology

In this section, we describe FabricFlowAlignNet (FFAN), our approach for estimating

observation-goal correspondences to align and manipulate cloth.

Figure 4.1: Overview of the FFAN pipeline: 1) Estimating correspondences and
aligning the observation and goal pair. 2) Estimating correspondences to predict pick
points for the action. 3) Querying the correspondences at pick points to identify the
place points.

Rather than relying on a single network to estimate the entire cloth manipulation

process, we adopt a two-network approach, namely 3DFlowNet and 3DPickNet. The

division of tasks between these networks allows for a more specialized and effective

approach.

The first network, 3DFlowNet, focuses on estimating correspondences between

the current cloth observation and the desired goal configuration. By analyzing the
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point cloud data, 3DFlowNet establishes meaningful associations between the two

configurations, facilitating subsequent steps in the cloth manipulation process.

On the other hand, the second network, 3DPickNet, utilizes the estimated flow

obtained from 3DFlowNet to predict appropriate pick points. These pick points play

a crucial role in achieving the desired goal configuration. By leveraging the estimated

flow, 3DPickNet determines the optimal locations to initiate cloth folding, enabling

precise and effective manipulation.

4.2.1 Learning Correspondences for Point Clouds

We propose a 3D, flow-based correspondence estimator called 3DFlowNet, a component

of our overall pipeline. 3DFlowNet takes the observation and goal point clouds co

and cg as input, and outputs 3D flow f̂ . 3DFlowNet is a non-trivial extension of the

FlowNet from FabricFlowNet [20], which was limited to image input and 2D flow

output. A schematic overview of 3DFlowNet can be found in Fig. 4.2.

Figure 4.2: 3DFlowNet architecture: Estimates point-based correspondences between
observation and goal point clouds.

We first transform the point clouds into a graph, where nodes represent cloth

particles and are connected to their neighboring particles on the cloth mesh. This

step requires privileged state information from the simulator of the cloth mesh edges,

which would not be available in the real world; estimating these edges is an area of

future work and could leverage prior methods like VCD [9]. We embed the input

graphs by employing a graph neural network H, which outputs embeddings for each

node in the graph: c′o, c
′
g ∈ RN×F .
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We then use a Transformer network [15] denoted as T to perform cross-attention

between observation and goal features. Our approach is inspired by prior Transformer-

based per-point networks like DCP [17] and TAX-Pose [11]. T takes c′o and c′g as

input and outputs transformed embeddings c′ ∈ RN×F . c′ The resulting transformer

embeddings, c′, are then summed with the original observation embeddings c′o to

produce c′′o .

To estimate correspondences between the two configurations, we pass c′′o through

MLP layers M to produce estimated correspondences f̂ ∈ RNx3. These corre-

spondences represent how each cloth particle in N transports to achieve the goal

configuration.

To train 3DFlowNet, we use a weighted L2 loss between the estimated and ground

truth correspondences. The ground truth correspondences are computed as the

difference between the point clouds cg and co. The weighted L2 loss function is

defined as:

L2(f̂ , f) =
N∑
i=1

wi(fi − f̂i)
2 (4.1)

where f̂ represents the estimated correspondences, f represents the ground truth

correspondences, and N is the total number of points in the point cloud. The weights

wi are higher for ground truth pick points.

4.2.2 Iterative Correspondence Estimation

To improve correspondence estimation when the displacement between observed and

desired goal configurations is large, we introduce an iterative approach to improve

the accuracy of our correspondence estimation.

Our iterative process involves transporting the input point cloud to the positions

indicated by the estimated correspondences, and then re-computing the estimation

with this intermediate point cloud. Each iteration of this procedure should further

refine the estimated correspondence.

In each iteration, we utilize the trained 3DFlowNet model to estimate the cor-

respondence between the intermediate point cloud ĉo and the target configuration

cg. By integrating the estimated correspondence into the observation, we simulate
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Algorithm 2 Iterative Correspondence Estimation

1: Input: Trained 3DFlowNet, Point Clouds co, cg
2: Initialize all zeros f̄ ∈ RN×3

3: ĉo := co
4: for k = 1. . . K do
5: f̂ = 3DFlowNet(ĉo, cg)

6: f̄ += f̂
7: ĉo += f̂
8: end for
9: return f̄

the application of the flow to progressively approach the target configuration. The

algorithm for iterative correspondence estimation is summarized in Alg. 2.

4.2.3 RANSAC Alignment for Unaligned Goals

The correspondences estimated by 3DFlowNet indicate how each point in the observed

cloth configuration should move to reach the desired configuration. In the case where

the observation and goal are aligned with respect to each other, this per-point flow

correspondence represents a desired cloth manipulation, which we can use to estimate

the action (Sec. 4.2.4). However, in cases where the observation and goal are not

aligned, the flow correspondences contain both information about alignment as well

as the desired manipulation.

To address the cases where the goal is not aligned, we first propose estimating

the alignment using the flow-based correspondence and RANSAC [3]. The forward

pass through 3DFlowNet provides the estimated correspondences. The RANSAC

procedure attempts to find an alignment transform with the maximum number of

inlier cloth points as follows:

1. Sample three indices (i, j, k) on the cloth.

2. Compute the transformation matrix T between the 3 sampled cloth points (pi,

pj, pk) and their estimated correspondences (pi + f̂i, pj + f̂j, pk + f̂k).

3. Compute inliers by transforming all current cloth points p according to T ,

computing the distance between transformed points and points transported

using estimated flow ||Tp− (p+ f̂)||, and thresholding the per-point distance
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by an epsilon ϵ.

4. Sample m times and choose the transformation matrix T with the maximum

number of inliers.

Once the alignment T has been estimated, we virtually align the observation and

goal, re-estimate correspondences given the alignment, and determine the manipula-

tion action.

We propose to decouple these two problems: first, we use the flow-based corre-

spondences to virtually align the observation and goal, then we compute the desired

manipulation by re-estimating correspondences the aligned configurations.

4.2.4 Estimating the Pick Location for an Action

To predict the pick points necessary for cloth manipulation, we introduce a neural

network called 3DPickNet. Similar to FFN [20], our method supports bimanual

manipulation and is capable of estimating both pick points p1 and p2. The inputs

to 3DPickNet are the current observation co and the estimated correspondences f̂

between co and the goal configuration cg. The architecture of 3DPickNet is depicted

in Figure 4.3.

Figure 4.3: 3DPickNet architecture: Predicts pick point quality using estimated
correspondences between observation and goal point clouds.

30



4. Point-based Correspondence Estimation for Cloth Alignment and Manipulation

To enable the prediction of the second pick point conditioned on the first pick

point, we utilize two separate networks: 3DPickNet1 and 3DPickNet2. In 3DPickNet1,

we concatenate co and f̂ and create a graph representation of the point cloud. Each

node in the graph is represented as [x, y, z, f̂ ]. 3DPickNet1 generates a probability

value for each node to be selected as the first pick point. The node with the highest

probability is identified as p1.

3DPickNet2 is responsible for predicting the second pick point p2, taking p1 into

account. In this network, we introduce an additional input channel called p̂1, which

represents a 3D Gaussian distribution centered on p1. This channel assigns higher

values to nodes near p1 and lower values to nodes farther away, to give PickNet2

information about the first pick location when predicting the second pick point p2.

The expression for p̂1 is given by:

p̂1 =
1

2πσ2
exp

(
−(x− x0)

2 + (y − y0)
2 + (z − z0)

2

2σ2

)
(4.2)

Here, x0, y0, z0 are the coordinates of the pick point p1, and σ controls the spread

of the Gaussian distribution. Here, σ is a hyper-parameter and is empirically chosen.

Note that although the output of 3DPickNet1 provides a probability value for each

node to be selected as the first pick point, it does not represent a distribution since

the sum of the values is not guaranteed to be 1. Hence, we introduce the Gaussian

channel centred around the node with the highest probability, p1.

For training 3DPickNet, we use a weighted binary cross-entropy loss. The loss

function compares the predicted probabilities of nodes being pick points with the

ground truth labels. The binary cross-entropy loss function is defined as:

L(p, y) =
N∑
i=1

−wi(yi log pi + (1 − yi) log(1 − pi)) (4.3)

where p represents the predicted probabilities, y is the ground truth labels, and N is

the total number of nodes. The weights wi are higher for ground truth pick points.

Once the pick points p1 and p2 are predicted using the estimated correspondences

f̂ , the corresponding actions can be executed to achieve the desired goal configuration.
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4.2.5 Implementation Details

Dataset

We collect a dataset in SoftGym [8], a deformable object simulator, to train and evalu-

ate our approach. This dataset is the same as the one used in the FabricFlowNet [20],

but we extract point clouds from SoftGym to represent the cloth instead of using

depth images, and use 3D pick and place points instead of 2D.

The dataset is generated by sampling random actions biased towards grasping

the corners of a square towel. Each instance in the training, validation, and test

sets consists of a tuple (co, cg, a), where co and cg are point clouds representing the

current observation and the desired goal configuration, respectively. The ground

truth action a corresponds to the action that achieves the goal configuration. In our

approach, the action space is defined as a = (p1, p2, q1, q2), where p and q represent

3D pick and place points. These pick and place points are selected from a set of

indices representing the points in the point cloud.

Figure 4.4 showcases RGB images of two pairs of observation and goal examples

from the training set. These images provide a visual representation of the cloth

folding task within the dataset.

3DFlowNet

The graph neural network H consists of two Graph Attention layers (GATConv) [16].

The MLP network architecture M consists of two fully-connected layers.

To train all three modules of FlowNet (H, T, M), we perform end-to-end training

using gradient descent on the weighted loss function. Due to limited compute, we use

a batch size of 1. The Adam optimizer [6] is employed with an initial learning rate

(η) of 0.001, ϵ set to 10−8, and β1 and β2 values of 0.9 and 0.999, respectively.

3DPickNet

The 3DPickNet architecture consists of three Graph Attention Network layers and

two MLP layers for both 3DPickNet1 and 3DPickNet2. At the end of each network, a

Sigmoid layer computes the probability of each node being a pick point. 3DPickNet1
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Figure 4.4: Examples of the Cloth Folding Dataset. Images on the left depict
the observation, while images on the right showcase the desired goal. The action
is indicated by a pick point, representing the location where the cloth should be
manipulated. The arrow(s) indicate the action vector(s) to be applied at the pick
point.

represents each node with a six-dimensional feature, while 3DPickNet2 utilizes a

seven-dimensional feature to accommodate the additional information provided by p̂1.

To train both 3DPickNet1 and 3DPickNet2, we use a batch size of 64. Similar to

3DFlowNet, we utilize the Adam optimizer with an initial learning rate of 0.001, and

β1 and β2 values of 0.9 and 0.999, respectively.

4.3 Experiments

Our experiments investigate the following questions: (1) How does FFAN compare

with FabricFlowNet (FFN) [20] on aligned goals? (2) How does FFAN compare with

FFN on unaligned goals? We evaluate the methods in simulation, using the average

L2 distance between cloth points in the achieved vs. desired point clouds as our error

metric.
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4.3.1 Performance on Aligned Goals

We use the same test set as FFN [20] to evaluate performance on aligned goals.

This test set consists of 40 single-step goals, where both the observation and the

goal positioned at the center of the workspace with the same orientation. For this

experiment, since the observation and goal pairs are aligned, we do not use alignment

estimation with FFAN.

Table 4.1 presents the performance comparison between our method and FFN.

The results demonstrate that our method performs comparably to FFN on aligned

goals, with only a marginal difference in average particle distance.

Table 4.1: Folding performance on 40 aligned single-step test goals.

Method Average Particle Distance (mm) ↓
FFN [20] 4.26 ± 2.62
FFAN (Ours) 5.54 ± 1.71

The comparison reveals that our method performs comparably to FFN on aligned

goals, with only a marginal difference in average particle distance. Notably, FFAN

requires privileged state information to construct meshes from the input point clouds.

Furthermore, FFAN employs complete point clouds whereas FFN operates on visible

depth images. To address the first assumption, methods like VCD [9] can be used to

construct meshes. Our second approach (Chapter 5) eliminates the need for mesh

construction and relies solely on visible point clouds, effectively overcoming both

these assumptions.

Qualitative Analysis

To gain a more comprehensive understanding of the performance of individual compo-

nents within the pipeline, we visualize the folding operation alongside the quantitative

error metric. Figure 4.5a showcases the achieved goal configurations obtained using

our method. Each example is accompanied by its corresponding error metric in

meters, displayed above the visualization. The green dot(s) represent the predicted

pick points, while the arrow illustrates the estimated flow for the predicted pick points.

In contrast, Figure 4.5b illustrates the desired goal configurations that serve as the
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target for the folding operation. This visual analysis allows for a closer examination

of the performance of each component.

Our method demonstrates excellent performance on the majority of goals, achieving

perfect results. However, there are instances where our method encounters challenges,

particularly in scenarios involving bimanual manipulation, which entails folding using

two robotic arms, as shown in Fig. 4.6.

4.3.2 Performance on Unaligned Goals

We also evaluate the performance on unaligned goals, where the goal cloth con-

figuration is randomly rotated and therefore not aligned with the initial observed

configuration. We conducted experiments on three test sets: Easy, Medium, and Hard,

where each test set corresponds to a different range of rotations. Easy encompasses

angles between -5 and 5 degrees, Medium ranges from -45 to 45 degrees, and Hard

covers a complete rotation from 0 to 360 degrees.

We evaluated the performance of FFAN in two scenarios: using ground truth vs.

estimated correspondences for RANSAC alignment. Figure 4.7 presents a comparison

of the two methods against FFN across all four test sets: aligned, easy, medium, and

hard. From the results, we observe that our method with estimated correspondences

outperforms FFN on the Medium and Hard tasks. However, using ground truth

correspondences for RANSAC alignment yields even better results across all tasks,

surpassing the performance of FFN. This demonstrates the potential for further

improvement by improving the correspondence estimation.

By showcasing the comparative performance of our method against FFN and

highlighting the benefits of using ground truth correspondences, we emphasize the

effectiveness of our approach in handling unaligned goals and the significance of

accurate correspondences for achieving superior results.

Qualitative Analysis

In addition to quantitative evaluation, we conducted a qualitative analysis to further

assess the performance and robustness of our proposed approach, FFAN, in comparison

to FFN.

To illustrate the robustness of FFAN against misalignments, we depict the observed
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(a) Achieved Configurations by FabricFlowAlignNet

(b) Desired Goal Configurations

Figure 4.5: Qualitative evaluation of FFAN on the aligned testset. The green dot(s)
represent the predicted pick points, while the arrow illustrates the estimated flow for
the predicted pick points. Each example is accompanied by its corresponding error
metric in meters, displayed above the visualization.
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Figure 4.6: Examples showcasing FFAN’s prediction of both pick points as same
cloth node, resulting in suboptimal cloth manipulation.

cloth configuration, the unaligned goal configuration, and the performance of both

FFAN and FFN. Fig 4.8 clearly demonstrates how FFAN outperforms FFN in

aligning the cloth configuration with the unaligned goal. This showcases the ability

of FFAN to handle misalignments and effectively align the cloth with the desired goal

configuration.

Furthermore, we Fig 4.9a showcases the achieved cloth configurations by FFAN

on unaligned goals, compared to the unaligned desired goals (Fig 4.9b) from the

medium test set. The results from this qualitative analysis look promising, with FFAN

successfully generating cloth configurations that closely resemble the desired goals.

This demonstrates the efficacy of our approach in achieving accurate and desired

cloth configurations, even in challenging scenarios where the initial and desired goals

are not aligned.

4.3.3 Ablations

No Iterative Correspondence

In this section, we ablate our approach by removing iterative correspondence estima-

tion (Sec. 4.2.2). Through this experiment, we aim to highlight the importance of
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Figure 4.7: Comparison of folding performance on different test sets.

iterative correspondence estimation and its impact on the quality of correspondences,

ultimately influencing the success of the folding task.

Table 4.2 shows that average particle distance error is higher when iterative

correspondence estimation is removed.

Table 4.2: Effect on folding performance of iterative correspondence estimation.

Method Average Particle Distance (mm) ↓
FFAN w/o Iter. Corresp. 10.591
FFAN w/ Iter. Corresp. 5.54

The contrasting results obtained from the two sets of experiments underscore

the importance of iterative correspondence estimation and its impact on achieving

successful folding performance.
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Figure 4.8: Performance of FabricFlowNet (FFAN) vs. FabricFlowNet (FNN) on
unaligned goals.

Number of Iterations for Iterative Correspondence

To determine the number of iterations to run for iterative correspondence estimation,

we measured performance while increasing the number of iterations on a validation set.

We used flow prediction error, an unweighted version of Eq. 4.1, as our performance

metric. We evaluated number of iterations ranging from k = 1 (run 3DFlowNet once)

to 4. Note that we did not retrain 3DFlowNet in an iterative manner.

Figure 4.10 shows the flow prediction error as a function of the number of iterations

(k) in the iterative flow process. As we increase k from 1 to 3, there is a notable

decrease in the flow prediction error; however, beyond k = 3, we observed a slight

increase in the error. Based on these observations, we empirically determined that

the number of iterations for iterative flow correspondence estimation is k = 3.

4.4 Conclusion

In this work, we propose FabricFlowAlignNet (FFAN), a goal-conditioned policy

for cloth alignment and folding. Our approach uses flow-based correspondence
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(a) Achieved Configurations by FFAN

(b) Unaligned Goal Configurations

Figure 4.9: Qualitative Evaluation of FFAN on Medium testset.
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Figure 4.10: Effect of number of iterative correspondence steps on the correspondence
prediction error.

estimation to reason about the alignment between the observed cloth and desired

goal, before predicting manipulation actions given an estimated alignment.

4.4.1 Key Insights

Through extensive experimentation and analysis, we have observed that FFAN

performs on par with FFN when it comes to handling aligned goals, where there is

no rotation between the observation and goal. This indicates that our approach is

capable of achieving comparable results to the state-of-the-art method in scenarios

where the initial configuration and desired goal are already aligned.

However, where FFAN truly shines is in its robustness to rotations between the

observation and goal. Unlike FFN, which experiences a significant degradation in

performance as the level of rotation increases, our method demonstrates superior

performance across different rotation levels.
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This stark contrast in performance highlights the importance of correspondences

between the observation and goal. By leveraging estimated correspondences and

employing the RANSAC alignment technique, we are able to effectively align the

observation and goal, thereby enabling more accurate folding operations.

Our results demonstrate that accurate correspondences play a crucial role in

achieving successful alignment and folding. By improving the estimation of correspon-

dences, our method excels in scenarios where rotations are present, outperforming

FFN on medium and hard tasks. This emphasizes the significance of robust cor-

respondences in achieving superior performance and showcasing the importance of

accurate estimation in addressing alignment challenges.

In summary, FFAN not only performs at par with FFN on aligned goals but also ex-

hibits superior robustness to rotations, providing a more reliable and effective solution.

By underscoring the importance of correspondences in achieving accurate alignment

and successful folding, our approach offers valuable insights and advancements in the

field of goal-driven manipulation tasks.

4.4.2 Limitations and Challenges

While our method exhibits strong performance in cloth folding tasks, it is crucial

to acknowledge the limitations and challenges associated with its approach. One

notable limitation is the current requirement for input meshes, which may not be

readily available in real-world cloth manipulation scenarios. In practical applications,

estimating the mesh representation of the cloth becomes an additional step that

introduces complexity and potential inaccuracies.

Furthermore, our method, like other state-of-the-art approaches such as FFN,

relies on predefined sub-goals to guide the folding process. This reliance on explicit

sub-goals can be restrictive, as it assumes prior knowledge of the desired cloth

configurations or folding patterns. In real-world scenarios, it may not always be

feasible to have access to such predefined sub-goals or easily define them. This

limitation can impede the adaptability of the method to handle novel cloth types,

unseen initial configurations, or variations in folding requirements.

To address these limitations, it is essential to explore alternative approaches

that do not depend on explicit sub-goals. By developing methods that can operate
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without predefined sub-goals, we can enhance the generalization capability of cloth

manipulation systems. Such approaches have the potential to adapt to a wider range

of cloth types, folding scenarios, and configurations, enabling more versatile and

flexible cloth manipulation.

Additionally, reducing reliance on human experts for providing subgoals can

significantly improve the efficiency and cost-effectiveness of cloth manipulation systems.

The process of manually defining subgoals can be time-consuming and expensive,

especially when dealing with complex or large-scale cloth manipulation tasks. By

developing fully autonomous systems that operate without human supervision, we

can alleviate the burden of human intervention and enable more efficient cloth

manipulation processes.

In particular, when considering tasks like smoothing, where achieving a desired

flattened configuration may not have explicit sub-goals, an alternative approach

becomes even more crucial. The ability to handle such tasks without predefined

sub-goals allows for greater flexibility and applicability in real-world scenarios.

Addressing the limitations associated with predefined sub-goals and striving to-

wards fully autonomous cloth manipulation systems will contribute to the development

of more robust and adaptable approaches.
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Chapter 5

Point-based Correspondences for

Long-Horizon Cloth Manipulation

5.1 Introduction

In the previous work, we discussed the limitations of existing methods for cloth

manipulation, particularly their reliance on predefined sub-goals to guide the folding

process. This dependency on explicit sub-goals restricts the adaptability of these

methods, as it assumes prior knowledge of desired cloth configurations or folding

patterns. However, in real-world scenarios, access to such predefined sub-goals may not

always be feasible or easily definable, hindering the versatility of cloth manipulation

systems.

Addressing these limitations and exploring alternative approaches that do not rely

on explicit sub-goals is crucial for enhancing the generalization capability of cloth

manipulation systems. By developing methods that can operate without predefined

sub-goals, we can expand the range of cloth types, folding scenarios, and configurations

that can be effectively handled. This, in turn, enables more versatile and flexible

cloth manipulation, empowering these systems to adapt to novel situations and

requirements.

One significant advantage of eliminating the reliance on explicit subgoals is the

elimination of the reliance on expensive human experts. In the current paradigm,
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human experts are often required to provide the sub-goals necessary for guiding

the folding process. This manual definition of sub-goals can be time-consuming,

labor-intensive, and expensive, particularly when dealing with complex or large-

scale cloth manipulation tasks. Developing fully autonomous systems that operate

without human supervision reduces the burden of human intervention, making cloth

manipulation processes more efficient and cost-effective.

Moreover, addressing the limitations associated with predefined sub-goals is

particularly important for tackling longer horizons and complex cloth manipulation

tasks. Tasks such as smoothing, where achieving a desired flattened configuration may

not have explicit sub-goals, become more challenging under the traditional paradigm.

By developing alternative approaches that do not depend on explicit sub-goals, we

can empower cloth manipulation systems to handle such tasks effectively, offering

greater flexibility and applicability in real-world scenarios.

In this work, we propose a policy HAC-Cloth that leverages correspondences to

learn a general cloth manipulation policy capable of performing folding or smooth-

ing tasks without relying on sub-goals. We employ reinforcement learning to au-

tonomously learn the optimal trajectory for achieving the desired goal configuration.

In our method, correspondences not only serve as goal specifications but also provide

insightful information to guide the policy effectively.

To evaluate the effectiveness of HAC-Cloth, we conduct comprehensive experiments

comparing its performance against state-of-the-art folding [20] and smoothing method

[9]. The evaluations are conducted on long-horizon cloth manipulation tasks, where

the cloth had to be folded or smoothed without the use of explicit sub-goals. By

removing the reliance on sub-goals, HAC-Cloth demonstrated its capability to handle

complex cloth manipulation scenarios, showcasing its flexibility and adaptability.

The results demonstrate the effectiveness of HAC-Cloth in achieving autonomous

cloth manipulation. HAC-Cloth outperforms the state-of-the-art folding method in

terms of accuracy, demonstrating its superiority in achieving precise and efficient cloth

folding without the need for predefined sub-goals. Additionally, HAC-Cloth showcased

remarkable performance when compared to the state-of-the-art smoothing method,

providing further evidence of its effectiveness in autonomous cloth manipulation tasks.
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5.2 Methodology

In this section, we present the methodology employed for achieving autonomous cloth

manipulation. We begin by describing the action space utilized in our approach, HAC-

Cloth, which defines the available actions for the agent during the cloth manipulation

process. Next, we introduce the concept of hybrid actor critic maps, which serve as a

guiding mechanism for the agent’s decision-making process. An essential aspect of

our methodology is the utilization of point-based correspondence estimation. The

subsequent sections will delve into the details of each component of our proposed

approach, HAC-Cloth.

5.2.1 Action Representation

In HAC-Cloth, the action space is composed of two elements: a pick point and a 3D

action vector. The pick point is selected from a discrete set, while the action vector

represents a continuous movement applied to the chosen pick point.

Figure 5.1: Illustration of the action space. The black dot indicates the pick point,
while the green arrow represents the 3D action vector applied to the pick point. The
pick point is selected from a discrete set of points, while the action vector exists in a
continuous space.

To define the pick point, we utilize a set of coordinates represented as xpick =

{xi|i = 1, ..., N}, where N corresponds to the number of points and each xi ∈ R3

corresponds to a location in the observed point cloud. By selecting a pick point
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from this set, the agent can determine an appropriate location on the cloth for

manipulation.

In contrast, the action vector (am) operates in a continuous action space. It

describes the relative movement of the gripper from the contact position and is

represented in 3D coordinates (am ∈ R3). This continuous action vector enables

precise control over the manipulation process, allowing the gripper to perform fine-

grained movements.

In summary, our action space encompasses the selection of a pick point from a

discrete set of points and the specification of a continuous 3D action vector for guiding

the gripper’s movement. By combining these components, our approach empowers

the agent to determine where to pick on the cloth and how to maneuver, ensuring

effective and controlled interaction during the cloth manipulation process.

5.2.2 Hybrid Actor-Critic Maps for Cloth Manipulation

(HAC-Cloth)

Our approach, HAC-Cloth, adopts the TD3-style policy [21] and utilizes a hybrid

action space and an actor-critic architecture. The hybrid action space consists of

discrete and continuous components, where the discrete component involves selecting

a pick point location (xpick) within the object point cloud, and the continuous

component represents the 3D action vector (am) for manipulation. A schematic

overview can be found in Fig. 5.2.

We first estimate correspondences between the observed point cloud and the

desired goal point cloud using the CorrNet model (details in section 5.2.3). Both

the actor and critic networks take the observed point cloud and correspondences

to the goal point cloud as input. The critic network estimates per-point Q-values

across the entire point cloud, while the actor network predicts per-point 3D action

vectors. To process the input, for both actor and critic networks, we employ a

segmentation-style feature extractor that considers the visible points of the point

cloud and the correspondences to the goal points.

The reward is based on the negative average flow between the achieved and goal

configurations. It incentivizes the agent to achieve the desired deformable object

goal. During training, we employ the Bellman update to train the policy, ensuring
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Figure 5.2: Overview of the HAC-Cloth policy. The goal is represented by estimated
correspondences between observation and goal point clouds. Both actor and critic
networks take the observation point cloud and estimated correspondences as inputs.
The critic network predicts a per-point Q-map, which is visualized as a heatmap
over the observed point cloud, indicating the Q-values associated with each point.
The actor network generates an action map that represents potential actions on the
observed point cloud. Based on the highest estimated Q-value, the appropriate pick
point and corresponding action vector are selected for execution.

that the agent learns to maximize the expected cumulative reward over time. By

iteratively updating the actor and critic networks using the TD3 algorithm with

modified update rules for the hybrid policy, HAC-Cloth gradually learns effective

manipulation strategies for deformable objects.

During inference, we select the contact location (xpick) by choosing the point

with the highest Q-value, indicating its potential for successful manipulation. The

corresponding 3D action vector (am) is then executed to manipulate the deformable

object accordingly.

5.2.3 Point-Based Correspondence Estimation

We train a correspondence estimator CorrNet to estimated the point-based corre-

spondences between the object point cloud (co) and the goal point cloud (cg). While in

simulated environments we have access to ground truth correspondences (f = cg− co),
real-world scenarios require us to estimate these correspondences. CorrNet addresses

this challenge by predicting the 3D flow between corresponding points based on visible
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observed points and goal points.

Figure 5.3: Overview of the CorrNet architecture. CorrNet utilizes two embedding
networks to learn features from the input observation and goal point clouds, which are
then processed by a transformer module to generate per-point-based correspondences.

The architecture of CorrNet is illustrated in Fig. 5.3. To train the correspondence

estimator, we leverage the TAX-Pose architecture [11], which incorporates an encoder

to process the observed point cloud and goal points and generate dense point-wise

embeddings (ψ). Separate encoders are used to handle the zero-centered point clouds.

To integrate information from both point clouds, we employ a cross-object attention

module [15]. This module capture the relationships and dependencies between the

dense feature sets from the observed point cloud and the goal points, resulting in

point-based correspondences.

During the training of CorrNet, we employ the L2 loss between the estimated

correspondences and the ground truth correspondences to facilitate learning.

5.2.4 Implementation Details

Dataset

To train both the CorrNet and the RL policy, we collect a dataset using the SoftGym

framework [8]. The dataset includes point clouds and visibility masks extracted from

SoftGym. The dataset is generated by sampling random actions biased towards

grasping the edges and corners of a square towel.
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RL Policy

For the policy network, we utilize a segmentation style network based on the PointNet2

architecture [13]. The visible observation and goal point clouds are downsampled

to 400 points to reduce computational complexity. We set the success threshold to

1e-10, which means that if the average particle distance falls below this threshold,

the policy considers the rollout successful and stops.

CorrNet

The embedding network module in CorrNet is based on the DGCNN architecture

[19]. This module performs the task of generating point-wise embeddings for the

observed point cloud and the goal points. The point-wise MLP, which predicts

residual correspondences, consists of 4 layers.

5.3 Experiments

Our research endeavors to answer several key questions related to autonomous cloth

manipulation. By addressing these questions, we aim to evaluate the effectiveness

and applicability of HAC-Cloth compared to existing state-of-the-art methods. The

main research questions we seek to answer are as follows:

1. How does HAC-Cloth compare with FabricFlowNet (FFN) [20] in achieving

single-step and multi-step folding goals, without the need for predefined subgoals?

2. How does HAC-Cloth perform in comparison to the VCD [9] method on different

smoothing test sets? 3. How does the input provided to HAC-Cloth impact its

performance?

5.3.1 Cloth Folding

We evaluated and compared the performance of HAC-Cloth in cloth folding using

an error metric based on the average L2 distance between the cloth points in the

achieved point cloud and the desired point cloud. For training HAC-Cloth, we used

a task horizon of 2, where the ground truth flow was provided as input. During
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evaluation, we extended the horizon to 5, allowing the policy to correct its actions

and iteratively approach the desired goal configuration.

Performance on Single-step Goals

We compared HAC-Cloth in simulation using a test set consisting of 40 single-step

goals. The test set is the same as the one used in the evaluation of FabricFlowNet

(FFN) [20].

Table 5.1 presents the performance comparison between HAC-Cloth, FFAN, and

FFN in terms of average particle distance.

Table 5.1: Folding performance comparison on single-step test goals.

Method Average Particle Distance (mm) ↓
FFN [20] 4.26
FFAN 5.54
HAC-Cloth [Ours] 5.87

The experimental results demonstrate that our method, HAC-Cloth, achieves

comparable performance to both FFAN and FFN on single-step folding goals, with

only a marginal difference in average particle distance. However, it is crucial to

emphasize the differing assumptions made by each method. While FFAN utilizes

complete point clouds (including occluded regions of the cloth) and requires privileged

state information for graph construction, HAC-Cloth overcomes these assumptions

by working solely with visible point clouds, as well as eliminating the need for mesh

construction.

For the reported results in this section, we utilized ground truth correspondences as

input for HAC-Cloth. In a subsequent section 5.3.3, we will delve into the performance

of HAC-Cloth when using estimated correspondences, highlighting the significance of

accurate correspondences in achieving precise cloth manipulation.

Performance on Multi-step Goals without Subgoals

Our main focus is to develop an autonomous system that can operate with limited

human supervision. In line with this objective, we tested HAC-Cloth on folding cloth

without the use of explicit subgoals. We compared HAC-Cloth to the performance of
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FabricFlowNet (FFN), which relies on predefined subgoals for cloth folding. The test

set used for evaluation consisted of 6 multi-step goals, where each goal was 2-4 steps

away from the initial cloth configuration.

We conducted two scenarios to compare against FFN. In the first scenario, FFN

was provided with subgoals, while in the second scenario, FFN was not provided with

any subgoals. HAC-Cloth was run with a horizon of 5 for all the goals and was not

provided with intermediate subgoals.

Table 5.2 presents the performance comparison between HAC-Cloth and FFN

in terms of average particle distance. The results demonstrate that HAC-Cloth

outperforms FFN when no subgoals are provided. Additionally, HAC-Cloth achieves

comparable performance to FFN when subgoals are provided to FFN, showcasing

the autonomous ability of HAC-Cloth to fold clothes without the need for explicit

subgoals.

Table 5.2: Folding performance comparison on multi-Step test goals without subgoals.

Method Average Particle Distance (mm) ↓
FFN (with subgoals) 25.04
FFN (without subgoals) 37.97
HAC-Cloth (without subgoals) 25.74

Figure 5.4 visually presents the desired multi-step goal configurations that serve as

the target for the cloth folding operation. In our evaluation, we only provide the final

goal configuration to HAC-Cloth without explicitly specifying intermediate subgoals.

The achieved goal configurations obtained using HAC-Cloth are illustrated in Figure

5.5.

Upon analyzing the results, we observe that HAC-Cloth exhibits the ability to

find a trajectory to reach the final goal configuration for most of the examples, even

if it fails to reach the optimal subgoals. However, there are two notable cases where

HAC-Cloth fails to achieve the desired goal: when the cloth is folded in a double

square and a double triangle configuration (last two examples in the figures).

One plausible reason for these failures is the absence of occluded points. During

training and evaluation, HAC-Cloth operates solely on the visible parts of the cloth

point cloud. Consequently, the policy has no information about how the cloth is

folded underneath the visible surface. As a result, it struggles to accurately fold
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Figure 5.4: FFN [20] multi-step goals test-set. Each row presents an example with
corresponding subgoals. The test set has been constructed using two robotic arms in
simulation.

the cloth in complex configurations that require knowledge of the underlying folded

structure.

The results highlight the autonomous capability of HAC-Cloth to fold clothes

without relying on explicit subgoals. This demonstrates the effectiveness of our

method in performing cloth folding tasks with limited human intervention.

5.3.2 Cloth Smoothing

HAC-Cloth demonstrates a general capability to achieve cloth smoothing in addition

to cloth folding. To train the smoothing policy, we utilized the same dataset as for

cloth folding, but with flipped observation-goal pairs. Specifically, we trained the

policy for a horizon of 5 steps to allow for more extensive smoothing actions and

iterations towards the desired goal configuration.

To evaluate its performance, we employ three distinct test sets: the VCD test set,

the Flipped test set, and the Alignment+Smoothing test set.
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Figure 5.5: HAC-Cloth performance on multi-step goals. Each row displays the
intermediate states in the trajectory for a multi-step goal.

The VCD test set comprises highly crumpled states, where the initial cloth
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configurations are generated by simulating the process of picking up and dropping the

cloth onto the table. This test set is the same as the one provided by VCD [9]. On the

other hand, the Flipped test set consists of folds located underneath the cloth. These

folds are created by folding and flipping the cloth. Lastly, the Alignment+Smoothing

test set contains states with small folds randomly distributed in the workspace. This

test set is designed by taking random actions biased towards the edges and corners

of the cloth in various directions. The initial states in this test set are typically not

aligned, allowing us to evaluate the performance of HAC-Cloth on both alignment

and smoothing tasks.

Figure 5.6 presents a selection of examples from each test set.

Figure 5.6: Examples from the three smoothing testsets.

To evaluate and compare the performance of HAC-Cloth, we employ Normalized

Improvement (NI), which aligns with the evaluation metric used in VCD.

Normalized Improvement (NI) quantifies the increase in the covered area, taking

into account the maximum potential improvement. It is calculated by subtracting

the initial covered area (so) from the achieved covered area (s) and dividing it by

the difference between the maximum achievable covered area (smax) and the initial

covered area. Mathematically, NI is computed as NI = (s−so)
(smax−so)

.

Comparative Analysis with VCD

We conducted a comparative analysis between HAC-Cloth and VCD to evaluate their

respective performances in cloth smoothing. HAC-Cloth was trained using a horizon

of 5, but we present results for two different horizons: 5 and 10. It is important to
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note that VCD is a planning technique that is not specifically trained for a particular

horizon. Therefore, to ensure a fair comparison, we evaluate both HAC-Cloth and

VCD on the same set of horizons.

Figure 5.7 illustrates the comparison of HAC-Cloth against VCD using the nor-

malized improvement metric across all three test sets for the two different horizons.

Figure 5.7: Normalized improvement of VCD [9] and HAC-Cloth on three test sets
for two different horizons.

When considering the VCD test set, HAC-Cloth and VCD exhibit similar perfor-

mance, with VCD slightly outperforming HAC-Cloth. On the flipped test set and our

test set, HAC-Cloth demonstrates significantly better and comparable performance to

VCD, respectively. Additionally, we observe that performance improves as we increase

the horizon, indicating that longer horizons allow HAC-Cloth to better address the

complexities of cloth smoothing tasks and achieve more substantial improvements in

the covered area. Furthermore, HAC-Cloth demonstrates a significant advantage by

addressing both cloth smoothing and alignment tasks simultaneously.

We also evaluated the time required for predicting and executing actions for

each method. Table 5.3 indicates that HAC-Cloth is significantly faster than VCD,
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Table 5.3: Total time taken per test episode by VCD [9] and HAC-Cloth for smoothing.

Method Execution Time (seconds) ↓
VCD 216.93
HAC-Cloth [Ours] 4.01

showcasing its efficiency in terms of computational time as well.

5.3.3 Impact of Input to the Policy

To investigate the impact of input variations on the performance of HAC-Cloth,

we considered four different scenarios: ground truth correspondences, estimated

correspondences, goal points, and no correspondences. Each scenario represents a

different way of providing input to the policy for both folding and smoothing tasks.

1. Ground Truth Correspondences: In this scenario, we used ground truth

point correspondences obtained from the simulator. These correspondences were

computed as the difference between the goal point cloud and the observed point cloud.

By utilizing ground truth correspondences, we aimed to assess the performance of

HAC-Cloth when provided with accurate correspondence information.

2. Estimated Correspondences: In this scenario, we employed the correspondences

predicted by our model from the observed point cloud and the goal points. These

correspondences were obtained through our correspondence estimation module. By

utilizing estimated correspondences, we aimed to analyze the performance of HAC-

Cloth in relation to the accuracy of the correspondence predictions.

3. Goal Points: Instead of using correspondences as a goal specification, we

directly employed goal points that represent the desired configuration of the cloth.

By utilizing goal points as input, we aimed to assess the effectiveness of HAC-Cloth

in achieving the desired cloth configuration without explicit correspondences.

4. No Correspondences: In this scenario, we omitted providing correspondences

or goal points as input to the policy. Instead, we assumed a fixed goal of a flat

towel placed at the center of the workspace. This setup allowed us to evaluate the

policy’s ability to implicitly learn the desired task without explicit correspondence

information.

For the folding task, we considered three scenarios: ground truth correspondences,
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goal points, and estimated correspondences. These policies were trained with a

horizon of 1 but evaluated on a horizon of 5.

Table 5.4: Ablation: We show the impact of input variations on HAC-Cloth’s folding
performance.

Input Single-Step Goals Multi-Step Goals (No Subgoals)
Ground Truth Flow 0.007 0.028
Goal Points 0.033 0.050
Estimated Flow 0.045 0.058

The results, as presented in Table 5.4, demonstrate the influence of the input

variations on the average particle distance error metric. Notably, the policy utilizing

ground truth flow outperformed the other policies by a significant margin. For single

step goals, the performance of the policy with ground truth flow was approximately

five times better compared to the policy trained on goal points alone. This suggests

that correspondences not only serve as a goal specification but also provide valuable

information for effective cloth manipulation.Furthermore, we observed a drop in

performance when utilizing estimated correspondences, indicating that there is room

for improvement in the correspondence estimation module of our approach. Enhanc-

ing the accuracy of correspondence predictions could potentially lead to improved

performance in folding tasks.

For the smoothing task, we investigated the ground truth correspondences, goal

points, estimated correspondences, and no correspondences. All these policies were

trained and evaluated with a horizon of 5, and the goal for smoothing remained

constant, i.e., a flat square cloth in the center of the workspace.

Table 5.5: Ablation: We show the impact of input variations on HAC-Cloth’s
smoothing performance.

Input Normalised Improvement
Ground Truth Flow 0.952
Goal Points 0.902
Estimated Flow 0.776
No Correspondences 0.899

The results, as presented in Table 5.5, demonstrate the performance of each policy

on the Smoothing+Alignment test set. Consistent with the findings in the folding
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task, the policy trained on ground truth correspondences outperformed all other

input variations for smoothing as well. This contradicts the null hypothesis that the

goal specification should not significantly impact the performance of a smoothing

policy where the goal is constant, highlighting the fact that correspondences provide

valuable information beyond just goal specification. When comparing the scenario of

no correspondences and goal points, there was no significant difference in performance.

This further suggests that correspondences provide additional information that aids

in achieving the desired cloth configurations effectively. Similar to the folding task,

the worst performance was observed when employing estimated correspondences.

These findings highlight the importance of providing accurate correspondences as

input to the policy for achieving optimal folding results. Ground truth correspondences

significantly contribute to the policy’s ability to manipulate the cloth effectively, while

estimated correspondences still require further refinement to match the performance

achieved with ground truth correspondences.

5.3.4 Correspondence Estimation Performance

In Section 5.3.3, we observed a drop in performance when using estimated corre-

spondences compared to ground truth correspondences. In this section, we focus

on evaluating the performance of the CorrNet model specifically for the task of

correspondence estimation. By isolating this module, we gain a better understanding

of its strengths, limitations, and areas that require attention.

To assess the performance of CorrNet, we trained several variants of the model,

focusing on two key aspects: the use of full point clouds versus visible point clouds,

and the estimation of correspondences for single-step goals versus multi-step goals.

In the first experiment, we compared the performance of correspondence estimation

using full point clouds versus visible point clouds. For the latter experiment, we

used the visible observations while keeping the complete goal points. For the first

experiment, we computed the ground truth flow as the difference between the complete

goal and complete observation, while for the latter experiment using visible point

clouds, we computed correspondences for each visible point in the observation with

respect to the complete goal.

To facilitate batch training and accommodate variable-sized point cloud pairs

60



5. Point-based Correspondences for Long-Horizon Cloth Manipulation

in the visible point cloud experiment, we performed upsampling or downsampling

to a fixed value, N. In our experiments, we explored N values of 2000 and 400. We

report the average L2 loss between estimated correspondences and ground truth

correspondences on the respective validation sets.

Table 5.6: Correspondence estimation performance on complete and visible point
clouds.

Input Mean Squared Error ↓
Complete Point Clouds 9e-6
Visible Point Clouds (N = 2000) 1e-5
Visible Point Clouds (N = 400) 1e-5

Table 5.6 showcases the results of the experiments on complete versus visible

point clouds. We observed that there was no drop in performance when using visible

point clouds compared to complete point clouds, regardless of whether upsampling or

downsampling was applied. This finding suggests that the visibility information in

the observations provides sufficient cues for accurate correspondence estimation, even

when only a subset of the complete point cloud is considered.

In the second experiment, we evaluated the performance of correspondence estima-

tion for different goal configurations: single-step goals, a mix of 50% single-step goals

and 50% crumpled goals, and crumpled-to-crumpled goals. These tasks progressively

increased in difficulty. We utilized visible observations and complete goal points from

the previous experiment, with N set to 400.

Table 5.7: Correspondence estimation performance on single-step and multi-step
goals.

Goals Mean Squared Error ↓
Single Step 1e-5
50% Single-Step and 50% Crumpled 1e-4
Crumpled 3e-4

The results, presented in Table 5.7, indicated that HAC-Cloth achieved near-perfect

performance on single-step goals. However, as the difficulty level increased, as reflected

in the transition to a mix of single-step and crumpled goals, and then to crumpled-to-

crumpled goals, the correspondence error metric increased. The worst performance
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Figure 5.8: Performance of CorrNet on single-step vs multi-step goals.

was observed for the crumpled-to-crumpled goals, highlighting the inherent challenge

in estimating correspondences for highly complex and disordered cloth configurations.

Fig. 5.8 showcases CorrNet’s accurate correspondence estimation for single-step goals,

while revealing its difficulty in achieving the same level of performance for multi-step

goals.

These experiments provide valuable insights into the performance of our corre-

spondence estimation module. The findings suggest that utilizing visible point clouds,

along with appropriate upsampling or downsampling techniques, can yield accurate

correspondence estimation without significant degradation in performance. Addition-

ally, the difficulty of the goal configuration plays a crucial role in correspondence

estimation, with more complex configurations posing greater challenges.

5.4 Conclusion

In this work, we present a reinforcement learning-based policy for autonomous long-

horizon cloth manipulation tasks, leveraging flow-based correspondence estimation.

Our approach, HAC-Cloth, enables the policy to operate without the need for explicit

subgoals, providing a more autonomous and flexible framework.
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5.4.1 Key Insights

Through our investigations, we have gained key insights into the capabilities and

performance of HAC-Cloth. Firstly, HAC-Cloth demonstrates the ability to perform

long-horizon planning, successfully accomplishing both folding and smoothing tasks

with extended horizons. This showcases the effectiveness of HAC-Cloth in addressing

complex cloth manipulation scenarios and highlights its potential for real-world appli-

cations. Secondly, we find that training the policy using ground truth correspondences

leads to near-perfect performance without the need for explicit subgoals. Furthermore,

HAC-Cloth surpasses the state-of-the-art performance on the folding task. Addition-

ally, HAC-Cloth excels in alignment with smoothing, showcasing its versatility and

effectiveness across different cloth manipulation tasks. Moreover, our analysis reveals

that providing correspondences as input to the policy yields better results compared to

other input variations. Ground truth correspondences, in particular, exhibit superior

performance, highlighting the significance of accurate correspondence predictions.

This insight emphasizes the potential for further refinement in the correspondence

estimation module of our approach.

5.4.2 Limitations and Challenges

One major limitation stems from the reliance on ground truth correspondences during

training. In practical applications, we do not have access to ground truth correspon-

dences, making it necessary to bridge the gap between estimated correspondences

and ground truth correspondences.

To deploy HAC-Cloth in real-world settings, we need to enhance the accuracy and

robustness of the correspondence estimation module. Currently, the performance drops

when estimated correspondences are utilized, indicating the need for improvements

in the correspondence prediction process. This presents a significant challenge in

developing reliable and accurate correspondence estimation algorithms that can handle

complex and varied cloth configurations encountered in real-world environments.

Addressing this limitation requires the exploration of advanced techniques and

methodologies for correspondence estimation. This may involve exploring alternative

data-driven approaches to improve the accuracy and generalizability of correspondence

predictions. Developing a correspondence estimation module that can handle diverse
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cloth configurations and adapt to dynamic environments will be crucial for the

successful deployment of HAC-Cloth in real-world robotic systems.
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Conclusion

In this thesis, we have presented a holistic approach to cloth manipulation that

addresses the challenges associated with cloth behavior. Our methodology focuses on

efficiency, robustness, and autonomy, aiming to enable automated cloth manipulation

tasks.

Through our contributions, we have advanced the field of cloth manipulation

and achieved significant improvements over existing techniques. We have shown the

benefit of employing point-based in two key areas: aligning cloth and performing

long-horizon cloth manipulation tasks without human supervision.

FabricFlowAlignNet, our first method, utilized point-based correspondences to

facilitate the alignment of cloth and enhance the policy’s robustness. By leveraging

the geometric relationships and deformations captured by these correspondences, our

approach achieved superior performance in aligning cloth configurations. The use

of point-based correspondences offered a valuable means of accurately manipulating

cloth surfaces, overcoming challenges such as rotations and unalignments. Our results

demonstrated the effectiveness of this approach and achieved better accuracy over

existing methods.

Building upon the advantages of point-based correspondences, our second method,

HAC-Cloth, focused on developing an RL policy for long-horizon cloth manipulation

tasks. By incorporating point-based correspondences into the RL framework, we

successfully performed both smoothing and folding operations on multi-step goals

without the need for explicit subgoals. The autonomy of HAC-Cloth allowed for
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intelligent decision-making and efficient planning, reducing human intervention and

enabling the system to handle diverse cloth manipulation scenarios. HAC-Cloth

outperformed state-of-the-art methods in terms of performance and speed, showcasing

its effectiveness and efficiency in achieving accurate and reliable cloth manipulation.

The utilization of point-based correspondences can be further explored in various

cloth manipulation tasks, such as folding complex shapes or executing intricate

draping maneuvers. By leveraging the geometric information captured by these

correspondences, we can enhance the accuracy and efficiency of cloth manipulation

in these challenging scenarios.

In conclusion, our work has provided compelling evidence regarding the potential

and significance of point-based correspondences in the field of cloth manipulation.

Our contributions not only advance the current understanding but also pave the way

for future research and development in automated cloth manipulation systems.
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