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Abstract

3D scene reconstruction from 2D image supervision alone is an under-
constrained problem. Recent neural rendering frameworks have made
great strides in learning 3D scene representations to enable novel view
synthesis, but they struggle to reconstruct geometry of low-texture regions
or from sparse views. The prevalence of active depth sensors in common
devices (e.g ., iPhone, Kinect, RealSense) has stimulated the use of depth-
supervised neural models to accurately disambiguate the scene’s geometry.
However, the depth processed from these sensors can be prone to error,
or even fail outright. Instead, a more principled approach is to explicitly
model the raw structured light images themselves. In this work, we present
an image formation model and optimization procedure that combines the
advantages of neural radiance fields and structured light imaging. Our
proposed approach enables the estimation of high-fidelity depth maps from
sparse views, including for objects with complex material properties (e.g .,
partially-transparent surfaces). Additionally, the raw structured light
images confer useful radiometric cues, which enable predicting surface
normals and decomposing scene appearance in terms of a direct, indirect,
and ambient component. We evaluate our framework quantitatively and
qualitatively on a range of real and synthetic scenes, and decompose
scenes into their constituent components for novel views.
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Chapter 1

Introduction

1.1 Motivation

3D scene reconstruction from 2D images is central to many use cases in photogramme-

try, robotics, cinematic visual effects and digital preservation. Classical approaches

like structure-from-motion [32] struggle in textureless regions, where finding corre-

spondences between images is hard. Recently, neural rendering techniques like Neural

Radiance Fields (NeRF) [24] and other variants [36] have enabled learning of compact

3D representations in a simple and fast manner. However, these can also struggle to

reconstruct geometry in scenes with low-texture regions or from few input views.

Many depth cameras alleviate these issues by introducing their own lighting into

the scene [13, 30]. For example, active stereo systems (e.g ., Intel RealSense [19]) use

a projector to illuminate the scene with an (often unknown) light pattern, which

adds texture to help solve the stereo correspondence problem. Coded structured light

systems use known light patterns to solve correspondences using as few as one camera

viewpoint. Such depth-sensing devices are found in many smartphones and tablets [3,

19, 47], and unlock new VR and AR applications. However, these sensors can also fail

to reliably estimate depth, especially in cases where light misbehaves [14, 28], e.g .,

due to light traveling many different paths before reaching a particular camera pixel.

1



1. Introduction

1.2 Proposed Approach

In this thesis, we propose a volumetric image formation model and corresponding

optimization procedure designed to synthesize structured light images under a known

projection pattern. Given a set of raw structured light and ambient-only images

captured from different viewpoints, our proposed framework retrieves a 3D repre-

sentation of the scene through a neural volume rendering procedure [24], enabling

novel view synthesis. Beyond recovering the geometry of challenging scenes (e.g .,

scenes containing translucent objects or textureless surfaces), our image formation

model takes advantage of additional radiometric cues present in the raw structured

light images to solve for normals and separate the scene’s appearance into direct,

indirect, and ambient components. Figure 1.1 visualizes the different representations

of geometry and appearance recovered using our proposed framework.

The main contributions of this thesis can be summarized as:

• A physically-based neural volume rendering model for multi-view structured

light imaging, incorporating shading cues that inform normals and the separation

of direct and indirect components for novel views.

• An implementation on a widely-available commercial system, an Intel RealSense

camera [19], leading to reliable depth reconstruction performance using sparse

views when compared to baseline approaches and the original RealSense depth.

• A demonstration that our model allows us to tackle new problems with struc-

tured light cameras, such as recovering geometry through partially transparent

surfaces and through fine meshes.

Figure 1.1: Visualizing scene decomposition. The proposed method decomposes a
novel-view structured light image into its geometric (disparity, normal) and appearance
(ambient, direct, indirect) components.

2



Chapter 2

Background

In this chapter, we discuss the relevant background for modeling and optimization

of the 3D world using 2D captures. We first consider the high level flow of a neural

inverse rendering pipeline and then dive into one such method - NeRF [24], which

forms the base model for our proposed approach. Then, we discuss some fitting

directions taken by prior works to enhance on this model. This includes depth

supervision methods, specifically the advantages and challenges associated with the

use of active depth sensing in common devices. Additionally, we highlight some

important ideas and works related to active illumination, followed by a brief on

structured lighting.

2.1 Neural Inverse Rendering with NeRF

Rendering is the process of converting a 3D model of the world containing information

about its geometry, material, appearance, lighting and camera viewpoint into a

2D image. The scene representation could be explicit (e.g ., meshes, voxel grids,

point clouds), implicit (e.g ., signed distance fields [10], radiance fields [24]), or even

hybrid [35]. The domain of inverse rendering or inverse graphics pertains to reverting

this process i.e., retrieving 3D information of the scene from its 2D images. However,

directly reverting this image formation model is not trivial. In most cases, there

exists no analytical solution to this inversion process and mapping from 2D to 3D is

a one-to-many problem.
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2. Background

Recent advances in neural rendering [36] combine generative machine learning

with physical knowledge from computer graphics by incorporating differentiable

rendering into network training. Hence, the gradients from the generated 2D image’s

reconstruction loss can be back-propagated in a differentiable manner to learn the

corresponding 3D representation. This process can be repeated for images from

different view points to resolve ambiguities for a particular scene. Such a neural

inverse rendering paradigm enables photo-realistic rendering of images from novel

view points and more degrees of freedom for scene manipulation.

An overview of this pipeline using Neural Radiance Fields (NeRF [24]) is shown in

fig. 2.1. The core technical components of the NeRF model are described next.

3D Scene 
Representation

Image 
Formation 

Model

2D Image

Ground 
Truth 
Image

Predicted 
Image

Reconstruction Loss

Inverse Rendering via Backpropagation

RenderingRendering

𝐹

Volume Rendering

𝒙, 𝝎𝒐
Volume Density 𝜎 𝒙

Radiance 𝐿 𝒙, 𝝎𝒐

Figure 2.1: Overview of a NeRF-based neural inverse rendering pipeline.

2.1.1 3D Scene Representation

For a static scene, NeRF maps a 3D location x and a 2D viewing direction ωo

(normalized unit direction) to a volume density σ(x) and an outgoing radiance value

Lo(x,ωo) using the learnt weights of an MLP (Multi-Layer Perceptron). Hence,

the network Fθ: (x,ωo) → (σ(x), Lo(x,ωo)) represents a continuous 5D radiance
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2. Background

field. The volume density describes the point’s opacity i.e., amount of light occluded

(ranging from 0 for transparent objects and higher values for opaque objects). Since

it remains constant with respect to camera viewpoint, it is a function of location

only. The outgoing radiance, however, depends on both the location and the viewing

direction in order to model view-dependent effects, e.g ., specular highlights.

𝛾(𝒙)

𝛾(𝒙) 𝛾(𝝎𝒐)

+ +

256 256 256 256 256 256 256 256 256 128

𝜎(𝒙)

𝐿 𝒙 , 𝝎

Volume Density

Radiance

Input
Hidden Layer
Outputs 

Figure 2.2: NeRF’s fully-connected network architecture.

The MLP architecture is depicted in fig. 2.2. The encoded input location γ(x) is

passed through 8 fully-connected, 256-channel layers, including a skip connection of

this input at the fifth layer. Then, an additional layer combines: (i) an output channel

for volume density; (ii) a 256-dimensional hidden layer concatenated with the encoded

input viewing direction γ(ωo). After another 128-channel fully-connected layer, a

final output layer produces the outgoing radiance. All layers are activated by ReLU,

except for the output radiance which uses sigmoid activation. The positional encoding

γ : R→ R2L helps capture high frequency details within a small neighbourhood of

input coordinates by projecting them onto a high dimensional input space. It is

defined as:

γ(p) = (sin(20πp), cos(20πp), sin(21πp), cos(21πp), ... sin(2(L−1)πp), cos(2(L−1)πp))

(2.1)
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2. Background

2.1.2 Image Formation Model

The above representation can be used to render images of a scene within a bounding

volume from different view points using a simple ray marching and volume rendering

procedure.

𝜎(𝒙)

Ray Distance 𝑡

(a) (b)

Figure 2.3: Ray marching. (a) Tracing a ray from the camera center xc through
the scene in direction ωo and with sampled points x = xc + ωot. (b) Visualization
of volume density σ along a ray, where the sampled points are determined by the
parameter t.

Ray marching. Given a calibrated camera, rays are cast from its center through

each pixel location onto the scene. Transformation from the image to world coordinates

is given by:

xc = T ; ωo = RTK−1

u

v

1

 , (2.2)

where xc is the ray origin or camera center in world coordinates and ωo is the

unit ray direction in world coordinates, T and R are the translation and rotational

pose respectively, K is the intrinsic matrix, and [u, v, 1]T is the homogeneous pixel

coordinate. For each 3D point x = xc+ωot sampled along a ray, the NeRF MLP

is queried for its volume density and directional outgoing radiance. This procedure

is visualized in fig. 2.3. NeRF uses a hierarchical sampling approach, inspired from

prior volume rendering work [20].
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2. Background

Volume rendering. The total radiance observed at a pixel can be rendered as

the accumulated radiance of its ray using direct volume rendering [16, 23]. Let us

attribute a pixel (u, v) by it’s corresponding ray (xc,ωo) for a camera view. Consider

a camera ray passing through a non-homogeneous continuous medium, marked by

the bounded box in fig. 2.3a. The total intensity L(xc,ωo) at a pixel is the integrated

contribution of infinitesimally small segments at each point sampled along the ray :

L(xc,ωo) =

∫ tf

tn

T (xc,x)σ(x)Lo(x,ωo) dt. (2.3)

Here, dt is the size of the segment at a sampled 3D location x=xc+ωot. The near

(tn) and far (tf) bounds restrict the ray sampling within a bounded volume. The

intensity or radiance values can be scalar for a grayscale image or vectors of multiple

wavelength bands (e.g ., red, green, and blue) for a color image.

The transmittance function T (xc,x) represents the proportion of light that travels

from x to xc. It is computed as:

T (xc,x) = exp

(
−
∫ t

tn

σ(xc − ωos) ds

)
. (2.4)

Assuming homogeneous medium within an infinitesimally small segment around a

sample point xk, the integral in eq. (2.3) is evaluated using quadrature [23, 24] :

L(xc,ωo) =
∑
k

wkLo(xk,ωo), (2.5)

where

wk = T̂ (xc,xk)(1− exp (−σ(xk)(xk+1 − xk))), (2.6)

T̂ (xc,xk) =
∏
j<k

exp (−σ(xj)(xj+1 − xj)) . (2.7)

2.1.3 Photometric Loss

The training objective is formed by Mean Squared Error (MSE) between the pixel

intensities of the ground truth image and the accumulated ray radiance via predicted

7



2. Background

volume density and radiance. This objective is trained for randomly sampled pixel

batches across multi-view images.

L =
∑
ωo

∥∥∥L(xc,ωo)− L̂(xc,ωo)
∥∥∥2

, (2.8)

where L is the predicted intensity from eq. (2.3) and L̂ is the ground truth intensity.

2.1.4 Limitations

Decomposing 2D images into 3D scene attributes is an under-constrained problem

and hence, NeRF usually requires large number of training views. Like passive stereo,

it can fail to establish correspondence in textureless regions, leading to inaccurate

disambiguation of geometry and appearance in these cases (e.g ., learning a plausible

cloudy geometry for a flat wall).

2.2 Depth Supervision

The dependency on large number of training views for better disentanglement of

geometry can be overcome via depth consistency priors [27], semantic priors [15], or

depth supervision from traditional multi-view stereo algorithms [11, 29, 39]—although

the processed depth can inherit the limitations of traditional passive stereo approaches.

For instance, fig. 2.4 shows a point cloud reconstruction for a scene using a Structure

from Motion (SfM) algorithm [32]. It lacks features in textureless areas, and hence

depth supervision using this point cloud will be sparse in terms of spanning the entire

scene.

Past works also combine depth supervision from active illumination sensors for

sparse-view reconstruction [5, 9, 11, 34, 49]. Such sensors have been prevalent in

common devices (fig. 2.5), e.g ., Intel Realsense [19], Apple iPhone [3], Microsoft

Kinect [47]. As shown in fig. 2.6a, an Intel Realsense D435 camera projects a high

frequency dot pattern onto a scene to retrieve denser depth even in textureless areas.

However, such sensors use limited or simplified image formation models to process

depth, which can fail to track the multi-path illumination behaviour. To demonstrate

this behaviour, let’s introduce a partially-transparent mesh in between the camera

8



2. Background

(a) (b)

Figure 2.4: Sparse depth from SfM. (a) Features detected in a single view.
(b) Point cloud reconstruction using multiple views.

and the boxes in the scene, leading to complete breakdown of the RealSense depth

(fig. 2.6b). It fails to establish multi-view correspondences when light is both reflected

back directly from the mesh and transmitted through the mesh. In contrast, modelling

the physical image formation process of the raw images from a structured light sensor

can take better advantage of the benefits of both structured light and volumetric

reconstruction.

(a) (b)

Figure 2.5: Common devices with active depth sensors.
(a) Intel RealSense D435 camera. (b) Apple iPhoneX with TrueDepth camera.

2.3 Active Illumination

Active illumination methods refer to explicit modelling and control of illumination

sources in the scene. These methods can recover scene properties such as reflectance

and shape with much greater reliability compared to the ambient lighting-only case.

One such classical technique is photometric stereo [40], where the scene is illuminated

9
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Scene capture RealSense depth

(a)

(b)

Figure 2.6: Depth processed from a RealSense camera. (a) Original scene (no
mesh). (b) Scene with a translucent mesh added in front of the box.

with different directional light sources to recover the surface orientation for each view.

Similarly, modeling illumination within a volume rendering image formation model

can offer several benefits in addition to improving reconstruction quality. For example,

Bi et al. [6] and Zhang et al. [43] combine neural volume rendering with a flash light

source collocated with the camera to recover depth, normals, and scene reflectance.

Flash light offers near-field illumination and usually requires disabling or masking out

ambient lighting in the scene. Various works make use of slightly more complicated

illumination conditions in the form of point light sources at several different positions

[18, 33, 45, 48]. Since these use illumination with limited spatial variation, they rely

on large number of captures or light configurations. Other works leverage environment

map lighting that is optimized alongside the neural volume [8, 17, 21, 22, 41, 46]. While

some works account for global illumination [33, 48], they either limit themselves to

two-bounce global illumination or else do not demonstrate direct-indirect separation in

real-world settings. Modeling global light transport with respect to the introduced light

source is an important aspect of active illumination methods. This includes direct light

i.e., light reaching camera after single bounce from the scene and indirect light which

accounts for multiple bounces, e.g ., inter-reflections, sub-surface scattering. Using the

10
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proposed approach, we show that we can achieve accurate scene reconstruction and

intrinsic decomposition (including direct-indirect separation) on real-world scenes.

Our approach is similar in spirit to prior works that use flood illumination [6] or

time-of-flight sensors [4], though ours focuses on using a structured light system.

Figure 2.7: Structured lighting. Pixel correspondences between the projected
pattern and the captured camera image are triangulated to compute scene depth.

2.3.1 Structured Lighting

Structured lighting is an active illumination technique to acquire 3D geometry by

projecting an illumination pattern or a set of patterns onto a scene while simulta-

neously using a camera to capture images. For a known pattern, it is possible to

find pixel correspondences between the camera and projector and recover depth via

triangulation [13]. These correspondences are more robust than the spatial template

matching approach used in passive stereo. Salvi et al. [30] discuss the trade-offs

11
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involved in designing illumination patterns and decoding strategies for structured

light depth sensing. Our proposed method does not require decoding of multiple

illumination patterns. Instead, we work with a single high frequency pattern and use

the calibrated camera-projector system to determine which projector pixel illuminates

the 3D points on a camera ray. This known illumination is modeled within the

volume rendering integral and helps with better disambiguation of geometry along

with further scene decomposition. The high frequency illumination in the projected

patterns helps reconstruct accurate geometry with sparser views compared to other

active illumination methods, e.g ., using point lights. The proposed system is detailed

in the next chapter.
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Chapter 3

Neural Fields for

Structured Lighting

3.1 The Structured Light System

Consider using a projector-camera system (e.g ., the Intel RealSense [19]) to capture

measurements of a scene from multiple viewpoints, where the projection pattern is

known. In this scenario, the projector produces stroboscopic illumination, i.e., it is

turned “on” for even frames and “off” for odd frames. When the projector is on, it

actively illuminates a scene with the known fixed pattern, and the camera measures

the scene’s radiometric response to both the projector’s illumination and all other

ambient light sources in the environment. When the projector is off, the camera

only measures the ambient light. Given these measurements, our proposed volume

rendering framework reconstructs the depths and normals corresponding to scene

geometry, as well as the direct, indirect, and ambient light transport components

that contribute to scene appearance (see overview in fig. 3.1).
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(b) input images

(a) acquisition setup

(c) reconstructed volume

(d) output images
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Figure 3.1: Overview of the proposed structured light reconstruction proce-
dure. (a) The acquisition setup consists of a single camera and projector illuminating
the scene with a fixed projection pattern. (b) The projector strobes the illumination
as the setup moves around the scene, producing an image sequence where the pattern
alternates between on and off. (c) The proposed volume reconstruction problem
recovers the appearance and shape of the scene. (d) The constituent components
that make up appearance and shape can then be synthesized for novel views.
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To understand how, first consider modeling the light incident at a point x in the

scene with a function Lα
i (x, ωi):

Lα
i (x, ωi) = Lambient

i︸ ︷︷ ︸
passive

+α (Ldirect
i + Lindirect

i )︸ ︷︷ ︸
active

, (3.1)

where α∈{0, 1} accounts for whether the projector is “off” or “on”. The incident

light from the projector can either take a direct path to an object’s surface (Ldirect
i )

or reach the surface indirectly, by reflecting off of other scene points first (Lindirect
i ).

The ambient term, Lambient
i , represents the incident light (both direct and indirect)

from all sources other than the projector.

Given these incident light sources, the outgoing radiance at the point can be

calculated using the rendering equation:

Lα
o (x,ωo) =

∫
Ω(x)

f(x,ωi,ωo)L
α
i (x,ωi)(n(x) · ωi) dωi, (3.2)

where the domain Ω(x) represents the hemisphere of incident light directions at point

x. Here, the bidirectional reflectance distribution function (BRDF), f(x,ωi,ωo),

defines the proportion of incoming light scattered in the outgoing direction. When

combined with eq. (3.1), we can further decompose the rendering equation as follows:

Lα
o (x,ωo) = Lambient

o + α(Ldirect
o + Lindirect

o ), (3.3)

where each component of outgoing radiance represents the result of evaluating the

integral with respect to the corresponding incident radiance. Note that both active

components, Ldirect
o and Lindirect

o depend on the pose of the projector, and contribute

to the total outgoing radiance only when the projector is “on” i.e., α = 1.

3.2 Neural Scene Representation

To model the environment, a neural network Fθ takes as input a 3D position x and a

unit viewing direction ωo, and outputs (σ(x),n(x), fr(x,ωo), L
ambient
o (x,ωo), L

indirect
o (x,ωo))

that capture the scene’s geometric and radiometric properties. The MLP architecture

is same as described in section 2.1.1. Only the output layers are modified to account
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for the additional predicted outputs, as shown in fig. 3.2. This neural representation

can be used to render scenes from different viewpoints by tracing rays through the

volume and computing the radiometric response at each point sampled along the ray

as described next.

𝛾(𝒙)

𝛾(𝒙)
𝛾(𝝎𝒐)

+ +

256 256 256 256 256 256 256 256 256 128

𝜎(𝒙) Volume Density

Ambient Radiance

Input
Hidden Layer
Outputs (same as NeRF)
Outputs (new additions)

n(𝒙) Normal

𝑓 𝒙 , 𝝎

𝐿 𝒙 , 𝝎 Indirect Radiance

Reflectance
𝐿 𝒙 , 𝝎

Figure 3.2: Neural network architecture for the proposed scene representa-
tion. Output layer additions on top of NeRF’s base model.

3.3 Neural Volume Rendering

Given a camera’s pose and intrinsic parameters, rays are cast from the camera’s optical

center xc through each pixel in direction ωo. Volume density, normals, reflectance,

and outgoing radiance functions (ambient and indirect) are queried at a set of 3D

points along the ray, and the total radiance is accumulated at the camera pixel by

computing the following integral:

Lα(xc,ωo) =

∫ tf

tn

T (xc,x)σ(x)L
α
o (x,ωo) dt, (3.4)

This is same as the volume rendering integral in eq. (2.3), by replacing the radiance

terms of a general camera system with the components of the stroboscopic structured
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light system as described above. Here, the transmittance term T (xc,x) is same as

given by eq. (2.4).

As discussed in eq. (3.3), in this work, we independently model three different

sources of illumination:

(i) the neural network directly outputs the ambient term, as done by previous

works [24];

(ii) we provide a physics-based model for the direct term using the predicted normals

and reflectance terms, and

(iii) we propose to optimize a term that approximates the indirect component.

The Ambient Component As described in section 2.1.2, we model the accumu-

lated ambient radiance for a pixel using the predicted outgoing ambient radiance

Lambient
o (x,ωo) and volume density σ(x):

Lambient(xc,ωo) =

∫ tf

tn

T (xc,x)σ(x)L
ambient
o (x,ωo) dt. (3.5)

The Direct Component. Ldirect
o models the single-bounce light transport compo-

nent, where light travels from the projector to a single scene point and back to the

camera.

For a projector’s origin positioned at xp, the direct lighting incident at a particular

point x is given by the following function:

Ldirect
i (x,ωi) =

P (x)

∥xp − x∥2
T (xp,x)δ(ωp − ωi), (3.6)

where

ωp =
xp − x

∥xp − x∥
. (3.7)

The function P (x) queries the intensity of the projector pixel illuminating point

x, identified through perspective projection, as the projector has similar geometric

properties to a camera; note that the output depends on the pose of the projector.

The 1/∥xp−x∥2 term models the inverse square light fall-off. The transmission function

T (xp,x) determines the proportion of light transmitted between points xp and x.

Finally, the Dirac distribution δ(·) ensures that the lighting comes from a single

17



3. Neural Fields for
Structured Lighting

direction based on the projector’s position.

When combined with the rendering equation as in eq. (3.2), we obtain:

Ldirect
o (x,ωo) =

f(x,ωp,ωo)

∥xp − x∥2
P (x)T (xp,x)(n(x) · ωp). (3.8)

This expression is non-trivial to evaluate for two reasons. First, this requires knowledge

of the full BRDF at every point in space. Second, this requires evaluating the projector

ray’s transmission function, which would be a computational bottleneck in neural

volume rendering due to additional sampling and network queries for incident projector

rays.

To help, we make two assumptions: (i) the projector light casts no shadows, i.e.,

T (xp,x) = 1; and (ii) the BRDF can be approximated with the reflectance function

fr(x,ωo) = f(x,ωo,ωo), representing the ratio of light reflected in the direction of

the illumination source. This holds approximately for small-baseline projector-camera

systems, provided that the distance to the scene is sufficiently large. Note that

another intuitive way to bypass the projector ray transmittance computation is to

assume it is same as the camera ray transmittance given the small baseline, although

we did not observe any significant difference in results with T (xp,x) = T (xc,x) versus

T (xp,x) = 1 on our data.

Hence, the simplified expression for the contribution of direct light to accumulated

pixel radiance is given as follows:

Ldirect(xc,ωo) =

∫ tf

tn

T (xc,x)

∥xp − x∥2
σ(x)fr(x,ωo)P (x)(n(x) · ωp) dt. (3.9)

The Indirect Component. As a byproduct of our framework, it is possible to

recover an approximation of the indirect component for scenes. Lindirect
o models the

component of light that misbehaves (e.g ., bounces around a scene multiple times).

However, the global nature of the indirect channel makes it non-trivial to model

accurately. This is because, in a volume rendering framework, the indirect component

at any given 3D point x would also depends on 6D pose of the projector-camera

system—making it far too challenging to model and reconstruct explicitly.

Our ability to separately recover the direct and indirect components of a scene is

based on the work by Nayar et al. [26]. The key idea is to illuminate a scene with a
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high-frequency pattern and observe the response at a point x to different illumination

conditions, e.g ., the result of moving the structured light pattern across the scene.

Provided that the indirect component is smooth relative to this illumination pattern,

the indirect component at a point in the scene stays more or less constant with respect

to small perturbations to the global position of the structured light pattern. Therefore,

to approximate the indirect component, we propose using a function Lindirect
o (x,ωo)

which only takes as input the scene point x and viewing direction ωo. This predicted

indirect component can be integrated using the same volume rendering procedure to

compute the indirect component contribution towards the accumulated pixel radiance:

Lindirect(xc,ωo) =

∫ tf

tn

T (xc,x)σ(x)L
indirect
o (x,ωo) dt (3.10)

3.4 Neural Volume Optimization

Photometric Loss We optimize the neural volume framework using both ambient-

only measurements L̂0(xc, ωo) and structured light measurements L̂1(xc, ωo) using

calibrated camera-projector poses. The calibration procedure is described in sec-

tion 4.3.3.

We build our framework on top of NeRF-PyTorch [42], which we extend to output

normal n(x), reflectance fr(x,ωo), and indirect radiance Lindirect
o (x,ωo). We train

coarse and fine networks using an ambient photometric loss:

Lambient =
∑
ωo

∥∥∥L0(xc,ωo)− L̂0(xc,ωo)
∥∥∥2

, (3.11)

and a structured light photometric loss:

LSL =
∑
ωo

∥∥∥L1(xc,ωo)− L̂1(xc,ωo)
∥∥∥2

, (3.12)

where L0 and L1 are the predicted ambient and structured light terms from eq. (3.4).

Because the contribution of indirect radiance is often weaker than the other

components, we scale the network output corresponding to indirect radiance by 0.1

to implicitly bias the resultant indirect radiance towards a small value. For scenes
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with minimal indirect component, we simply omit this channel.

Normals Loss We follow the approach proposed by Verbin et al. [37] to penalize

the gap between the predicted normals and the density gradient normals:

Lnormal
p =

∑
k

wk ∥nk − n̂k∥2, (3.13)

where nk are the predicted normals, n̂k = ∇σ(x)/||σ(x)|| are the analytical or density

gradient normals. We also use their proposed regularization term to penalize back-

facing normals:

Lnormal
o =

∑
k

wk ·max(0,nk · ωo)
2. (3.14)

wk are the weights associated with each sampled point as mentioned in eq. (2.6).

Note that in our implementation of the normals loss terms, we compute weighted

mean over samples instead weighted sum over samples for each ray. This effectively

reduces the weight on the normals loss terms in the total loss.

Total Loss The total loss is as follows:

Ltotal = Lambient + λ1LSL + λ2Lnormal
p + λ3Lnormal

o . (3.15)

During training, we gradually decay the weight λ1 to a small value. This ensures that

the optimization procedure can initially make use of the structured light images to

recover geometry (especially of low-texture regions), while the ambient loss dominates

in later iterations to allow for better detail reconstruction. In practice, we alternate

between optimizing the Lambient and LSL objectives, as the poses (and thus rays)

for the structured light and ambient images are different. For all our experiments,

we train our model for 100K iterations and use the same learning rate decay and

optimizer as in NeRF [24]. Training with our method takes 4-6 hours on an NVIDIA

3090 RTX GPU (24GB RAM).
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Chapter 4

Data and Calibration

4.1 Synthetic Data

In Blender [7], we form a structured light system using a projector plugin [31].

The scenes include objects from NeRF’s Blender dataset [24] and open source 3D

models [1] (license information in table A.1) placed on a textureless plane. Our

synthetic dataset consists of 5 scenes (fig. 4.1) - lego, skateboard, domino, sofa and

frog. Keeping the relative camera-projector pose fixed, the structured light rig is

perturbed to generate random views. For each view, we render 400× 400 images with

the projector illumination turned on and off. When the projector is on, it illuminates

the scene with a high frequency dot pattern. We disable any post processing (e.g .,

tonemapping) to avoid unknown non-linearities in the image formation model. Global

illumination and shadows are kept enabled. Ground truth extrinsics and intrinsics

are directly retrieved from Blender without any additional calibration.

(a) lego (b) skateboard (c) domino (d) sofa (e) frog

Figure 4.1: Synthetic dataset scenes. Sample views of structured light images.
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(a) doll (b) woodshop (c) sculpture

(a) candle (b) translucent box (c) mesh box

Figure 4.2: Real dataset scenes. Sample views of structured light images.

4.2 Real Data

We use an Intel RealSense D435 system [19] with a built-in infrared dot projector

and stereoscopic depth cameras to capture real data. Although the device has three

cameras, we choose to use only one monochromatic camera for our experiments,

but our framework can easily be extended to account for all three cameras. While

streaming data, the device strobes the illumination to capture a set of frames when the

projector is on and off alternately. We assume that the projector is rigidly fixed to the

camera and that the camera and projector move together around a scene to illuminate

and capture scenes. We capture 6 scenes (fig. 4.2) - doll, woodshop, sculpture, candle,

translucent box and mesh box. All images are captured at a resolution 848 × 480.

4.3 Calibration

In this section, we detail our calibration routine to recover the intrinsic and extrinsic

parameters of the infrared stereo cameras and the projector, and also recover the

projector’s structured light dot pattern. Our image formation model uses these

calibration parameters to synthesize the structured light images of the scene.
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4. Data and Calibration

4.3.1 Camera Calibration

The first step of the calibration procedure is to compute the intrinsic matrices (K1,K2),

distortion (d1,d2) and rectification (r1, r2) parameters, relative extrinsics (R,T) and

projection matrices (P1,P2) for the monochromatic stereo cameras. Streaming both

the cameras (with projector off ) at a resolution of 848×480 pixels, we capture images

of a 7×8 planar checkerboard in a variety of poses (fig. 4.3). Using standard OpenCV

functions and calibration flow [2], we compute these parameters as outlined fig. 4.4

and in pseudocode algorithm 1.

Figure 4.3: Sample checkerboard captures with detected corners. 100+
checkerboard poses are used to span both cameras’ field of view at different depths
and orientations to accurately calibrate for the camera parameters.

Left Cam (cam )
Images

Right Cam (cam )
Images

Detect 
Corner 
Points

Camera 
Calibration

3D corner points 
(Known measurements) 

Stereo 
Calibration

Stereo 
Rectification

𝒙𝟏 𝒙𝟐

𝑲𝟏, 𝒅𝟏 𝑲𝟐, 𝒅𝟐

𝑲𝟏, 𝒅𝟏 𝑲𝟐, 𝒅𝟐, 𝑹 , 𝑻

𝑷𝟏, 𝒓𝟏 𝑷𝟐, 𝒓𝟐

𝑿

Detect 
Corner 
Points

Camera 
Calibration

𝑿 𝑿

𝒙𝟏 𝒙𝟐

𝑿

Figure 4.4: Camera calibration flow using OpenCV. Corner point correspon-
dences between the world frame and camera images are used to recover camera
parameters via optimization function calls of Camera Calibration, Stereo Calibration
and Stereo Rectification.
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Algorithm 1 Camera Calibration using standard OpenCV functions

x1 ← findChessboardCorners (cam1 images)
x2 ← findChessboardCorners (cam2 images)
X← 3D world coordinates for checkerboard corners
K1,d1 ← calibrateCamera(X,x1)
K2,d2 ← calibrateCamera(X,x2)
K1,d1,K2,d2,R,T← stereoCalibrate(X,x1,x2,K1,d1,K2,d2)
P1,P2, r1, r2 ← stereoRectify(K1,d1,K2,d2,R,T)

4.3.2 Projector Calibration

The next step is to calibrate the projector itself. The stream for both cameras is

enabled (with projector on) at a resolution of 848 × 480 pixels. We capture the

pattern projected onto a white plane as it is moved at different depths, and kept

roughly parallel to the camera plane. We assume the scene contains no ambient

illumination (i.e., the images are captured in a dark room).

Since the camera is imaging a planar surface, the structured light pattern formed

on the sensor is related to all other frames through a homography transform. The

key idea is to compute homography between any two images of the pattern using

an image alignment technique such as Enhanced Correlation Coefficient (ECC)

Maximization [12]. This homography can then be used to warp one image onto

another or transform the pixel coordinates of an image to corresponding coordinates

in the other image.

The calibration flow is depicted in fig. 4.5 and the pseudocode in algorithm 2.

Assigning the first frame to be the base image, we estimate its homography with

respect to all other captured frames from both cameras. Using this transform,

each image is warped onto the base image to formulate the complete pattern image

(fig. 4.6) with some additional normalization. Similarly, the homographies are used to

transform the 2D image coordinates sampled in the pattern image to corresponding

coordinates in the left and right camera images. These 2D coordinates from both

camera images are then triangulated to 3D world coordinates using the calibrated

camera projection matrices (obtained in section 4.3.1). Repeating this for all images,

we get a set of correspondences between the 2D projector pattern coordinates and

3D world coordinates, which allows us to solve for the projector’s projection matrix
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4. Data and Calibration

using Singular Value Decomposition (SVD) for Total Least Squares. Note that

this procedure does not account for effects like projector defocus. Additionally,

we postprocess the pattern to remove any contribution from the fall-off in pattern

intensities as we account for this factor explicitly in our image formation model.

New Images as the plane 
moved away from camera

Base Image
Compute 

Homography 
using ECC

Perspective Warp Add & Normalize

Pattern Image

(a) Calibrating Projector Pattern

Left Cam Stream Base Image Right Cam Stream

Compute 
Homography 

using ECC

Compute 
Homography 

using ECC

Sample 2D pixel 
Coordinates

Perspective 
Transform

Perspective 
Transform

Triangulate 
2D Points

Solve for P in 𝒙𝑷=PX
(Total Least Squares) 𝑯𝟏 𝑯𝟐

𝒙𝟏 𝒙𝟐

𝒙𝑷 𝒙𝑷

𝒙𝑷

𝑿

(b) Calibrating Projection Matrix

Figure 4.5: Projector calibration flow. (a) Warping each frame onto a base image
using an estimated Homography formulates the pattern image. (b) Correspondences
between the projector’s base image pixels and the triangulated world coordinates are
used to solve for the projector’s projection matrix.
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Figure 4.6: Calibrated projector pattern for Intel RealSense D435.

4.3.3 Pose Optimization

For each scene, we also use the stereo camera system to compute poses through

COLMAP [32] for frames where the projector is off. As the baseline between cameras

is known, there is no scale ambiguity associated with the poses. Note that the stereo

camera pair is used only for calibration, however all experiments demonstrated in

chapter 5 use the captures from a single camera only.

During the stroboscopic streaming of the camera, there can be significant motion

between the projector on and off images. Hence, the poses for off images obtained

via COLMAP cannot be used directly for the on images. To calibrate for the different

poses, we enable a one-shot pose-optimization flow as a pre-processing step. This

allows us to leverage large number of views for accurate pose recovery irrespective of

sparse-view training during our experiments. Representing the poses as twists, we

initialize the on image poses same as the off image poses from COLMAP. Then, the

on image poses across all captures of a scene are optimized using the total photometric

loss of eq. (3.15) for a total of 160K iterations. For optimizing these poses, we use

Adam optimizer with an initial learning rate of 0.001, which is decayed by a rate

of 0.1 over the first 100K iterations. For the volumetric scene model, we use the
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4. Data and Calibration

same optimizer and learning rate as in NeRF [24], while the weight λ2 is decayed

from 1 to 0.001 over the first 100K iterations. Prediction and loss on normals is

disabled during this optimization process i.e., λ2 = λ3 = 0 in eq. (3.15) to speed-up

the calibration. Going forward, we use these per-scene calibrated poses for all our

experiments without any further need of pose optimization during training or testing.

Algorithm 2 Projector Calibration using standard OpenCV functions

stream1, stream2 ← load stream from both cameras as grayscale images
stream1,mask1, stream2,mask2 ← undistort, rectify images using d1,d2, r1, r2
base← first frame from stream1

pattern, mask← 0
xp ← 0 (2D pattern coordinates)
X← 0 (3D world coordinates)
H1 ← I2×3

H2 ←
[
1 −0.005 0
0 1 −48.9

]
for all {img1, img2} ∈ {stream1, stream2} do
H1 ← findTransformECC(base, img1,H1,mask1)
rimg1 ← warpPerspective(img1,H

−1
1 )

rmask1 ← warpPerspective(mask1,H
−1
1 )

pattern← pattern+ rimg1 ∗ rmask1
mask← mask+ rmask1

H2 ← findTransformECC(base, img2,H2,mask2)
rimg2 ← warpPerspective(img2,H

−1
2 )

rmask2 ← warpPerspective(mask2,H
−1
2 )

pattern← pattern+ rimg2 ∗ rmask2
mask← mask+ rmask2

{u, v} ← sample image coordinates on the pattern image
{u1, v1} ← perspectiveTransform({u, v},H1)
{u2, v2} ← perspectiveTransform({u, v},H2)
{X, Y, Z} ← triangulatePoints({u1, v1},P1, {u2, v2},P2)
xp ← append {u, v} points
X← append {X, Y, Z} points

end for
pattern = 0.5× (pattern/mask)
Projector’s P← Total Least Squares using the point correspondences xp and X
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Chapter 5

Experiments and Results

5.1 Novel View Synthesis from Sparse Views

For real scenes, we test the novel-view reconstruction and disparity map of our method

trained with 2, 4 and 8 views. Since the goal is to perform accurate novel-view synthesis

for the ambient images, we decay the initial structured lighting objective’s weight

λ1 = 1 by a rate of 10−1 over the first 40K iterations for the 2-view case, and by 10−3

for the 4- and 8-view cases. We compare our model’s performance with the following

baseline approaches:

NeRF (no depth supervision): We train NeRF [24] with the photometric loss

of eq. (3.11) on ambient images only.

NeRF + sparse depth: We train DS-NeRF [11] using COLMAP’s sparse point

cloud. This adds a depth supervision loss with a weight of 0.1 on top of the photometric

loss for its fine network.

NeRF + dense depth: Similar to DS-NeRF [11], we add depth supervision

to the fine network of NeRF using the dense RealSense depth maps. We mask out

the unresolved regions in the RealSense depth maps to avoid supervising with an

unreliable signal. Since the RealSense’s active depth sensing comes into play when

the projector is on, the depth supervision objective is trained for the poses capturing

structured light images only. For ambient images, only photometric loss is used as

depth from passive stereo is noisier and incomplete. The depth loss weight is decayed

at the same rate as λ1 in our method i.e., by 10−1 for 2 views, and 10−3 for 4 and 8
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5. Experiments and Results

views. However, the initial depth loss weight is set to 0.1 (as opposed to 1 for our

method) to approximately account for the depth range normalization.

We perform this comparative study on 50 to 100 held-out views each for four real

scenes: woodshop, doll, sculpture, and translucent box. For all the cases, we train

using a ray batch size of 2048, 32 uniform samples, and 64 importance samples for

100k iterations. For the translucent box scene, we use 64 uniform samples across

all methods. For these comparisons, we drop the explicit prediction of normals and

the indirect component in our model, and focus on the analysis of novel-view and

geometry reconstruction quality.

We report the quantitative analysis for novel-view synthesis in table 5.1 using PSNR,

SSIM [38], and LPIPS [44] metrics. Quantitatively, the explicit depth supervision

methods (sparse depth, dense depth) and raw structured light supervision (ours); all

produce comparable high-quality representations of the scene, as expected. Per-scene

metrics breakdown can be found in appendix A.2.4.

Figures 5.1 and 5.2 present qualitative results for the 2-view case on the doll and

woodshop scenes. The 4-view results can be found in appendix A.2.3. Qualitatively, it

is clear that both NeRF and sparse depth supervision struggle to accurately capture

the scene geometry, especially for regions with less features, e.g ., walls of the doll

scene. They recover cloudy geometry in such textureless regions and are unable to

interpolate well with sparse views. Provided the scenes contain relatively simple

geometry such that the RealSense depth is reliable, both dense depth supervision and

our proposed method produce comparable results. Additionally, our method depicts

cleaner, sharper depth and fewer artifacts near object edges and scene boundaries.

Table 5.1: Quantitative analysis on real data: Novel-view synthesis from sparse-
views. ‘2-v’ denotes two views.

PSNR ▲ SSIM ▲ LPIPS ▼
Method 2-v 4-v 8-v 2-v 4-v 8-v 2-v 4-v 8-v

NeRF 27.53 33.40 38.31 0.886 0.936 0.965 0.399 0.307 0.231
+ sparse depth 36.74 41.22 42.38 0.969 0.988 0.990 0.214 0.158 0.148
+ dense depth 36.61 40.74 42.06 0.971 0.986 0.988 0.207 0.173 0.165

Ours 34.89 40.97 42.02 0.959 0.986 0.989 0.218 0.167 0.163
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Figure 5.1: Novel-view reconstruction for the doll scene: Trained with 2 views.
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Figure 5.2: Novel-view reconstruction for the woodshop scene: Trained with
2 views.
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5.2 Reconstructing Translucent Objects

Previous section showed that depth sensors can be reliable for supervising scene

reconstruction with simple objects. However, there are scenarios where structured

light sensors completely fail to capture depth. For example, when imaging translucent

objects, multiple depth planes contribute light to a sensor (fig. 5.3b). As a result,

recovering a single depth map for such scenes is fundamentally ill-defined.

We perform a qualitative comparison of our approach to the depth from Intel

RealSense on scenes containing partially transparent objects. In particular, we

capture an additional mesh box scene containing a plastic translucent mesh placed

in front of a table containing a stack of boxes. In fig. 5.3, we show that the Intel

RealSense fails to accurately capture the scene’s geometry due to the ambiguous

correspondences caused by multiple direct reflections. In contrast, our approach has

the ability to model the contribution of direct illumination from multiple points along

the path of a ray, allowing us to capture both the geometry of the mesh and the

objects behind it.

We further provide a qualitative comparison of our approach to ‘NeRF + dense

depth’ in fig. 5.4 on the translucent box scene containing a partially transparent plastic

box. Here, we visualize the rendering weights wk (eq. (2.6)) along a ray passing

through the plastic box, demonstrating that our method more accurately recovers

the geometry of all surfaces (translucent and opaque) along the path of a ray.

5.3 Predicting Normals

A unique advantage of working with active illumination methods such as modelling

the raw structured light images is retrieval of surface normals via shading cues. In

this section, we provide quantitative and qualitative assessments of our proposed

method in simulation.

We test the reconstruction of novel views, disparity, and analytical normal maps

for the following methods that are representative of different levels of illumination

modelling: (i) our structured lighting-based method which models high frequency

illumination projected onto the scene, (ii) replacing the structured light (dot) pattern

with flood illumination (to mimic the setup by Bi et al. [6]) i.e., a less spatially-
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(a) Structured light w/o mesh (b) Structured light w/ mesh

(c) RealSense Depth w/o mesh (d) RealSense Depth w/ mesh

(e) Our reconstructed view (behind the mesh) (f) Our depth (behind the mesh)

Figure 5.3: Reconstructing multiple surfaces for the mesh box scene. (a–b)
Structured light images captured by the Intel RealSense without and with a large
plastic mesh placed in between the camera and the scene. Note that the partially-
transparent mesh obscures the scene and effectively creates a second “copy” of the
structured light pattern, leading to ambiguous correspondences (see insets). (c–d)
We show the RealSense depth for the scene without and with the mesh. Note that the
RealSense completely fails to predict reasonable depth in the latter case. (e–f) We
show a rendered view from our approach, as well as a depth map produced by filtering
out the geometry of the mesh. Our method accurately reconstructs the geometry of
the background, while the RealSense fails to do so.
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Figure 5.4: Reconstructing multiple surfaces for the translucent box
scene. In this example, we show that our method recovers the geometry of a
partially-transparent plastic container, while NeRF with dense depth supervision
fails to do so. The red marker indicates in the top two rows the pixel chosen for
rendering weight visualization. In particular, as shown in the bottom row, (Right)
our method recovers the depth of both front surface of the container (first peak), as
well as a ball placed within the container (second peak), (Left) while NeRF only
recovers the depth of the ball.
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varying illumination, (ii) the base NeRF model with ambient-only lighting without

any explicit introduction or modelling of illumination.

For both the dot pattern and flood illumination, we decay the structured light loss

weight λ1 from 1 to 0.05 over the first 40K iterations, and set the normal prediction

and normal orientation loss weights to λ2=3× 10−4 and λ3=0.1, respectively. All

methods are trained for 100K iterations with a 1024 ray batch size, 64 uniform

samples and 128 importance samples. We train using 25 views and test on 50 held-out

views for 4 scenes. We omit the indirect component of our image formation model

here to focus on normal recovery.

For quantitative analysis in table 5.2, we compute PSNR, SSIM [38] and LPIPS [44]

on the reconstructed images, MSE (mean squared error) on the depth map, and MAE

(mean angular error in degrees) for the normal maps. Per-scene metrics breakdown can

be found in appendix A.2.2. Figure 5.5 shows the qualitative analysis for two scenes -

lego and skateboard. More qualitative results can be found in appendix A.2.1. Both

quantitatively and qualitatively, the use of a structured light dot pattern significantly

outperforms the case of single intensity flood illumination or no active illumination

(base NeRF) in terms of normal and depth fidelity.

Explicit prediction of normals is useful as the MLP is capable of smoother interpo-

lation of normals compared to the noisy gradients of volume density. As shown in

fig. 5.6, explicitly predicting normals, modelling them into the shading term along

with the normals loss eq. (3.13) between the analytical and predicted normals helps

improve the quality of normals, making them less noisy while capturing detail.

Table 5.2: Quantitative analysis on synthetic data: Structured light reduces
depth and normal error significantly while maintaining novel-view synthesis quality.

Method PSNR ▲ SSIM ▲ LPIPS ▼
Depth
MSE ▼

Normals
MAE °▼

NeRF 44.98 0.985 0.368 0.615 24.34
Flood Light 43.51 0.982 0.375 0.786 8.76
Structured Light 44.13 0.984 0.370 0.013 2.84
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Ground Structured Flood Ambient-only
truth light light (NeRF)
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Figure 5.5: Qualitative analysis on synthetic data: Novel view synthesis,
disparity and analytical normal maps for lego and skateboard scenes.
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Ground truth Predicted Analytical Analytical
(w/ prediction) (w/o prediction)

Figure 5.6: Impact of explicitly predicting, modelling and penalizing normals.
Normals map visualization for a test view from the lego scene.

Structured light image Ambient image Direct component

Indirect component Disparity map Predicted normal map

Figure 5.7: Novel-view scene decomposition on a synthetic scene. Our method
enables the synthesis of the ambient, direct, and indirect appearance along with accu-
rate estimation of the normals and disparity map for novel views by physically-based
modeling of scenes exhibiting complex light interactions like sub-surface scattering
and inter-reflections.
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(a) Structured light image (b) Ambient image

(c) Direct component (d) Indirect component

(e) Disparity map (f) Predicted normal map

Figure 5.8: Scene decomposition of a real scene from a novel viewpoint. Our
proposed framework uses the raw measurements from a single infrared camera on an
Intel RealSense to generate a volumetric representation of the scene, and synthesizes
images (a–f) from a novel camera viewpoint, showing the different representations of
shape and appearance recovered using our proposed framework.

5.4 Decomposing Scene Appearance

Finally, we showcase the effectiveness of modeling the direct and indirect radiance,

and produce a complete decomposition of all components using our framework. This

includes the ambient, direct, and indirect components of the scene appearance, and
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the disparity and normals associated with scene geometry.

We first construct a synthetic scene with a frog object, whose skin exhibits subsur-

face scattering. The frog is positioned close to the intersection of two planes, which

also introduces diffuse inter-reflections. Using the same hyperparameters as described

in section 5.3, we show the ability to synthesize scenes from a novel viewpoint, and

decompose the scene into its constituent components in fig. 5.7.

To demonstrate this in practice, we capture a real scene in fig. 5.8, consisting of a

translucent candle placed within a large concave object. This scene exhibits strong

subsurface scattering and inter-reflections. We train our model using 8 views, a 2048

batch size, 32 uniform samples, and 64 importance samples for 100K iteration. The

structured light weight λ1 is decayed to 0.1 over 40K iterations, and the normal

prediction and orientation loss weights are set to λ2=0.001 and λ3=0.1, respectively.

The result is a decomposition of all components of the scene, accurately capturing

the presence of indirect light within this scene.
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Chapter 6

Conclusions

In this paper, we proposed a neural volume rendering framework for multi-view

structured lighting. This framework recovers accurate geometry and synthesizes novel

views by modelling the image formation process for a commodity Intel RealSense

structured light system. We demonstrated that our physically-based framework

provides a more principled approach to recovering scene geometry, enabling it to

account for challenging scenes that contain partially transparent objects. Moreover,

our ability to model the raw structured light images further enables our method to

recover accurate surface normals, and to separate direct and indirect components.

6.1 Limitations

As with existing structured light systems, our method can be confused by objects

that produce complex light transport effects. For example, recovering scene geometry

in the presence of mirrors and refractive objects is a notoriously difficult problem

[14, 28].

When imaging outdoors under bright ambient lighting or imaging objects placed

far away, the illumination from the projector may be too weak to detect. In such

cases, however, our proposed method is expected to fail gracefully and have similar

performance to NeRF [24], because the ambient photometric loss dominates the

structured light photometric loss.

While the overall quality of novel-view synthesis of our method is similar to other
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methods, our framework is unable to accurately disambiguate geometry for edges

near projector shadows.

Additionally, our current illumination pattern calibration does not account for

effects like projector defocus which can cause some inconsistencies between the ground

truth and modeled illumination.

6.2 Future Work

Looking forward, we believe that this framework can be extended to make use of all

three cameras on RealSense devices, and potentially even support scanning scenes with

multiple such devices in tandem. Using a sparse set of such easily accessible devices

could significantly reduce the complexity of 3D acquisition setups that currently rely

on large-scale lights and cameras.

Another future enhancement is to explicitly model illumination visibility to im-

prove reconstruction in shadow areas and enable photorealistic relighting. Optical

techniques can also be employed to further mitigate the effect of shadows from images

[25]. Additionally, the proposed model can be extended to incorporate material

estimation and editable geometric representations, e.g ., meshes, that are compatible

with standard 3D rendering setups. With the prevalence of active depth sensors in

millions of consumer devices, such a framework could enable several downstream

applications for AR/VR using just a mobile phone.

To conclude, with further enhancements, the proposed method could take us one

step closer to facilitating simplified content creation and machine vision pipelines.
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Appendix A

Appendix

A.1 Blender Scenes: License Information

Out of the 5 Blender scenes in our dataset, 4 were created using open source 3D

models available at [1]. Table A.1 consolidates the license information for the same.

Table A.1: License information for open-source Blender scenes.

Scene License Author Link

Sofa CC-0 Darilon https://blendswap.com/blend/30053

Frog CC-0 craggle https://blendswap.com/blend/30092

Skateboard CC-0 MattMump https://blendswap.com/blend/4859

Domino CC-0 alepx https://blendswap.com/blend/6584

A.2 Additional Results

A.2.1 Qualitative Results on Synthetic Data

Figure A.1 demonstrates visualizations on additional scenes - sofa and domino, for

the experiments conducted in section 5.3.
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Ground Structured Flood Ambient-only
truth light light (NeRF)

A
m
b
ie
n
t
im

ag
e

D
is
p
a
ri
ty

m
a
p

N
or
m
a
ls

m
ap

A
m
b
ie
n
t
im

ag
e

D
is
p
ar
it
y
m
ap

N
or
m
al
s
m
ap

Figure A.1: Qualitative analysis on synthetic data: Novel view synthesis,
disparity and analytical normal maps for sofa and domino scenes.
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A.2.2 Quantitative Results on Synthetic Data

Table A.2 shows the per-scene breakdown of metrics for synthetic scenes. Here,

some scene names are abbreviated as - skateboard (sb) and domino (dom). These

experiments use the same hyperparameters and settings as defined in section 5.3.

Table A.2: Scene-wise quantitative analysis on synthetic data.

Method PSNR ▲ SSIM ▲ LPIPS ▼
Depth
MSE ▼

Normals
MAE °▼

NeRF 43.62 0.984 0.407 0.915 23.90

le
g
o

Flood Light 41.47 0.979 0.418 0.574 7.95

Structured Light 42.62 0.982 0.411 0.008 2.61

NeRF 45.49 0.985 0.323 0.409 24.62

sb Flood Light 44.32 0.983 0.327 0.632 7.30

Structured Light 44.68 0.984 0.325 0.004 2.71

NeRF 46.22 0.986 0.389 0.846 23.33

so
fa Flood Light 45.17 0.985 0.395 1.096 7.28

Structured Light 45.59 0.986 0.389 0.033 2.40

NeRF 44.58 0.984 0.353 0.291 25.51

d
o
m Flood Light 43.09 0.981 0.358 0.841 12.50

Structured Light 43.65 0.983 0.355 0.008 3.61

A.2.3 Qualitative Results for Sparse-view Reconstruction

Appendix A.2.3 visualize the 4-view reconstruction results for the doll and woodshop

scenes, as discussed in section 5.1.

A.2.4 Quantitative Results for Sparse-view Reconstruction

Tables A.3 to A.6 show the sparse-view reconstruction metrics for real scenes. These

experiments use the same hyperparameters and settings as defined in section 5.1.
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Figure A.2: Novel-view reconstruction for the doll scene: Trained with 4 views.
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Ambient image Disparity map
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Figure A.3: Novel-view reconstruction for the woodshop scene: Trained with
4 views.
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Table A.3: Quantitative analysis on doll scene.

PSNR ▲ SSIM ▲ LPIPS ▼
Method 2-v 4-v 8-v 2-v 4-v 8-v 2-v 4-v 8-v

NeRF 29.51 32.14 39.37 0.925 0.938 0.980 0.381 0.369 0.261
+ sparse depth 39.01 39.88 41.21 0.977 0.983 0.986 0.254 0.225 0.211
+ dense depth 39.77 41.54 41.87 0.983 0.987 0.988 0.212 0.202 0.199

Ours 39.90 41.85 41.74 0.984 0.988 0.988 0.204 0.197 0.200

Table A.4: Quantitative analysis on woodshop scene.

PSNR ▲ SSIM ▲ LPIPS ▼
Method 2-v 4-v 8-v 2-v 4-v 8-v 2-v 4-v 8-v

NeRF 24.14 27.50 31.67 0.778 0.860 0.917 0.480 0.400 0.269
+ sparse depth 36.92 38.45 38.39 0.969 0.984 0.986 0.144 0.115 0.101
+ dense depth 37.19 37.64 38.17 0.970 0.979 0.983 0.163 0.149 0.140

Ours 37.60 37.65 38.37 0.973 0.977 0.982 0.147 0.146 0.138

Table A.5: Quantitative analysis on sculpture scene.

PSNR ▲ SSIM ▲ LPIPS ▼
Method 2-v 4-v 8-v 2-v 4-v 8-v 2-v 4-v 8-v

NeRF 25.68 38.39 43.83 0.899 0.984 0.991 0.344 0.161 0.141
+ sparse depth 32.54 43.15 44.42 0.950 0.992 0.993 0.226 0.125 0.117
+ dense depth 33.17 41.30 43.30 0.958 0.987 0.991 0.202 0.146 0.142

Ours 27.17 40.96 43.15 0.911 0.988 0.991 0.277 0.145 0.141

Table A.6: Quantitative analysis on translucent box scene.

PSNR ▲ SSIM ▲ LPIPS ▼
Method 2-v 4-v 8-v 2-v 4-v 8-v 2-v 4-v 8-v

NeRF 30.78 35.57 38.39 0.943 0.964 0.971 0.392 0.298 0.252
+ sparse depth 38.50 43.41 45.51 0.979 0.991 0.993 0.233 0.166 0.162
+ dense depth 36.31 42.47 44.89 0.972 0.989 0.992 0.252 0.194 0.177

Ours 34.90 43.40 44.82 0.967 0.991 0.993 0.244 0.179 0.171
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