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Abstract

Learning to predict or forecast spatiotemporal (ST) environmental pro-
cesses from a sparse set of samples collected autonomously is a difficult
task from both a sampling perspective (collecting the best sparse samples)
and from a learning perspective (predicting unseen locations or forecast-
ing the next timestep). We investigate two avenues of work concerning
this problem. Firstly, we investigate coordinating a team of robots to
adaptively sample a spatiotemporal environment to procure a dataset
for learning a parametric neural model for forecasting. Recent work in
spatiotemporal process learning focuses on using deep learning to forecast
from dense samples. Moreover, collecting the best set of sparse samples is
understudied within robotics. An example of this is robotic sampling for
information gathering, such as using UAVs/UGVs for weather monitoring.
Thus, we propose a methodology that leverages a neural methodology
called Recurrent Neural Processes to learn spatiotemporal environmental
dynamics for forecasting from selective samples gathered by a team of
robots using a mixture of Gaussian Processes model in an online learning
fashion. Thus, we combine two learning paradigms in that we use an
active learning approach to adaptively gather informative samples and a
supervised learning approach to capture and predict complex spatiotem-
poral environmental phenomena. Secondly, we investigate the multi-robot
informative path planning problem by leveraging a multi-robot spatiotem-
poral adaptive sampling scheme and integrating informative path planning
in a coordinated manner. Thus, we focus on investigating the sample
collection process via multi-robot informative path planning. We present
an approach for incorporating multi-robot informative path planning into
a spatiotemporal adaptive sampling framework. We demonstrate this by
modifying our previous methodology to consider path length constraints
for sampling location selection. We also incorporate informative path
planning to determine the best path to collect samples along while en
route to collecting the desired sample. We achieve this in a decentralized
manner by decoupling the process into two stages: the first stage uses our
spatiotemporal mixture of Gaussian Processes (STMGP) model to deter-
mine the most informative sampling location via a mutual information
lower bound heuristic and the second stage plans an informative path
to collect the desired sample and other additional informative samples
via submodular function optimization. Moreover, we effectively leverage
peer-to-peer communication to enable coordination. Simulation results
are provided to validate the effectiveness of our proposed approaches.
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Chapter 1

Introduction

1.1 Motivation

Spatiotemporal environmental phenomena are present in many domains. The

ability to predict and forecast spatiotemporal processes would enable us to have

a deeper understanding of numerous naturally-occurring environmental processes,

including biological, chemical, and physical phenomena. It is often considered to

be difficult to capture spatiotemporal phenomena from static or fixed sensors since

informative sampling locations often change over time due to the spatiotemporal

dynamics. As a result, a large number of static or fixed sensors are often needed to

adequately sample a spatiotemporal environmental phenomena. Thus, mobile robots

are typically considered to be much more capable for collecting samples in these

types of environments. This is because mobile robots can be used in an autonomous

manner to navigate spatially across an environment for multiple timesteps. Thus,

they can adaptively adjust the sampling location at each timestep based on the

spatiotemporal dynamics. Moreover, these mobile robots can be equipped with

sensor payloads appropriate for different environments. This makes mobile robots an

excellent candidate for applications such as climate monitoring or wildlife tracking.

However, a persistent challenge in enabling mobile robots to be used for these domains

is the lack of algorithmic approaches for coordinating mobile robot teams to leverage

their capabilities to adaptively sample and plan trajectories in such environments.

There are a couple of difficulties associated with producing an coordinated multi-
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1. Introduction

Figure 1.1: (Left) Visualization of multi-robot adaptive sampling in an agricultural
scenario. (Right) Visualization of adaptive sampling where three robots are deployed
into unknown environment and need to choose where to sample in the current
timestep. Note that the environment density function changes at each timestep (i.e.
the environment is spatiotemporally dynamic)

robot or multi-agent system to adaptively sample a spatiotemporal environment. The

first difficulty that arises is learning a model that captures the complex, nonlinear

dynamics associated with spatiotemporal phenomena. One category of approaches

involves learning a model in an online fashion (i.e. learning the model while collecting

the samples). These approaches tend to fall under the category of active learning or

online learning. Another set of approaches involve learning a model from a dataset

(i.e. learning the model after collecting the samples). These approaches tend to

fall under the category of (strongly) supervised learning. The second difficulty that

arises is how to collect informative samples. This entails waypoint selection or path

planning for collecting samples or both. A plethora of prior studies have focused on

achieving approximately optimal or suboptimal approaches for spatially-correlated

time-invariant environments. In these studies, the robot or team of robots explores

a static environment and collects more and more samples in this environment, and

performance is measured by the efficacy of the sampling for learning an accurate

model compared to exhaustive sampling.

In this thesis, we will investigate these issues for spatiotemporal environments.

In chapter 3, we look into integrating multi-robot active learning and supervised

2



1. Introduction

Figure 1.2: General approach for multi-robot information gathering in this thesis.
Although the work in both chapter 3 and chapter 4 include most or all of these
components, the work in chapter 3 is roughly more focused on the components in
blue, while the work in chapter 4 is roughly more focused on the components in red.

learning for forecasting a spatiotemporal environmental phenomena. In chapter 4,

we look into a two-stage strategy for integrating spatiotemporal adaptive sampling

with informative path planning for predicting unseen locations in a spatiotemporal

environment.

1.2 Thesis Outline

We begin with a discussion of background and related works in chapter 2 to

introduce some preliminary material and provide context regarding the field of robotic

information gathering. The core of this thesis disucusses two different formulations

and approaches for multi-robot information gathering in spatiotemporal environments.

The first work presents an end-to-end methodology that uses effective and coordinated

multi-robot information gathering to adaptively sample and procure a collection of

samples as a dataset used to train a parametric spatiotemporal model. This is

discussed in chapter 3. The second work deals with how to integrate spatiotemporal

adaptive sampling and informative path planning to deal with path length constraints

to predict unseen locations in a spatiotemporal environment. This is discussed in

chapter 4. Finally, we offer some directions of work that are either actively being

pursued currently or will be addressed in the future in chapter 5.
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Chapter 2

Background and Related Works

2.1 Background

2.1.1 Active Learning, Online Learning, and Supervised

Learning

Many learning problems in robotics have been addressed via (strongly) supervised

learning. Supervised learning has provided incredible results both in the field of

robotics as well as many other domains, especially through the use of neural networks.

However, many robotic information gathering tasks are formulated within the scope

of active learning. Active learning refers to a learner choosing which data to collect

labels for such that it efficiently learns an accurate predictive model for unlabelled

data. In this regard, active learning is a form of weakly supervised learning. Since

robots have to sample the environment to collect environmental phenomena values

(labels) for each location and timestep, the robotic information gathering problem

often is addressed via active learning algorithms. Moreover, since the sampling

process is temporal in nature as well, samples are often collected in a stream. Thus,

the methodologies proposed for active robotic information gathering often follow an

online learning paradigm as well, since online learning refers to learning techniques

that update the model as data is collected sequentially.

5



2. Background and Related Works

2.1.2 Gaussian Processes and Neural Processes

Gaussian Processes are a popular methodology used to perform nonparametric

regression. A Gaussian Process (GP) is a stochastic process that can be viewed as a

distribution over functions. Gaussian Processes are often useful for active learning

scenarios such as robotic information gathering since they are non-parametric and can

be inferred directly from the data. Moreover, Gaussian Processes can provide both

a point estimate (mean) and an uncertainty estimate (variance). This is especially

useful for sampling strategies that incorporate model uncertainty to collect samples

that improve the predictive performance of the model. Gaussian Processes are fully

specified by a mean function m and covariance function k as shown in Equation (2.1).

f(·) ∼ GP (m(·), k(·, ·)) (2.1)

For sets A = {a1, . . . , am} and B = {b1, . . . , bn}, the covariance matrix KA,B can

be defined as shown in Equation 2.2.

KA,B =


k(a1, b1) . . . k(a1, bn)

...
. . .

...

k(am, b1) . . . k(am, bn)

 (2.2)

Given unlabelled test data x and a labelled training data X, Y , we can represent

the probability P(f(xi)|X, Y, xi) as shown in Equation (2.3)-(2.5).

P(f(x)|X, x) ∼ N (µ(x), K(x)) (2.3)

µ(x) = Kx,XK
−1
X,XY (2.4)

K(x) = Kx,x −Kx,XK
−1
X,XK

⊤
x,X (2.5)

Thus, we can leverage Gaussian processes to provide point estimates (means) and

an uncertainty estimates (variances) on unseen data. Moreover, the regression can

be directly inferred from the data without the need of iterative or descent-based

methods. However, it should be noted that regression and inference incur a O(n3)

complexity with respect to the dataset size n. Thus, GPs tend to scale poorly with
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2. Background and Related Works

increased addition of data from a computational complexity perspective. Moreover,

although GPs are non-parameteric (i.e does not assume a fixed set of parameters a

priori), GPs still have a limit in their representational capacity. In contrast, neural

networks tend to be a rich class of models in terms of representational capacity despite

being parametric, but often only provide point estimates without any uncertainty

quantification.

Neural processes address the gap between Gaussian processes and neural networks.

While the neural process is a parametric neural network model, it can estimate a

distribution over a test set of points conditioned on a training set of points. Neural

models often use an encoder module to compute a latent distribution q(z|X, Y ) from

the training data. This latent distribution is often a factorized Gaussian distribution.

Let z1, . . . , zK ∼ q(z|X, Y ) be a set of samples drawn from the latent distribution.

Then, the neural process model employs a decoder module to produce a set of

predictions y1, . . . , yK from z1, . . . , zK and the test set. Then a point estimate (mean)

and uncertainty estimate (variance) can be computed as shown in Equation (2.6)-(2.7).

µ(x) =
1

K

∑
k

yk (2.6)

K(x) =
1

K − 1

∑
k

(yk − µ(x))(yk − µ(x))⊤ (2.7)

However, while the above model does address some of the gaps regarding the rich

representational capacity of neural networks and the uncertainty estimation capability

of GPs, this model still requires iterative gradient descent-based approaches to learn

the parameters from the data. Thus, the neural model and variants of the neural

model cannot directly be used in robotic information gathering as is since there is a

need to still procure the data due to the active learning and online learning nature of

the problem.

2.1.3 Mutual Information

For robotic information gathering, an acquisition function or sampling heuristic is

often necessary to optimize which samples to choose. Information-theoretic criterion

7



2. Background and Related Works

are often useful in these scenarios since choosing informative samples can help improve

the model performance. While many such information-theoretic criterion exist, such

as entropy-based or Fischer information-based metrics, we rely on mutual information.

Mutual information measures the mutual dependence between two variables, say X

and Y . Formally, mutual information can be defined as shown in Equation (2.8).

I(X, Y ) = DKL(PX,Y ∥PX ⊗ PY ) = EPX,Y

[
log

(
PX,Y
PXPY

)]
= EPX,Y

[
log

(
PX|Y

PX

)]
= EPX,Y

[
log

(
PY |X

PY

)] (2.8)

While Equation (2.8) shows the standard formulation of mutual information, we

utilize a different formulation of mutual information that involves entropy H(·) as
shown in Equation (2.9).

I(X, Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (2.9)

In general, computing mutual information can be difficult and certain optimization

problems encountered in this thesis involving mutual information calculation can

yield combinatorial, intractable problems. However, using the formulation of mutual

information shown in Equation (2.9) will yield a submodular optimization function

in one of the optimization problems encountered in this thesis, which is particularly

useful for computing the mutual information.

2.2 Related Works

Existing methods for the adaptive sampling and informative path planning prob-

lems for a single robot include recursive-greedy approaches [35], differential entropy-

based approaches [15], and generation of an informative path [6]. Other work leverages

a Gaussian process motivated by an information-theoretic hierarchical structure [20],

or exploration of branch and bound techniques in conjunction with a Gaussian process

for environment modelling and informative path planning [1]. The use of more com-

putationally efficient approximates to Gaussian processes, such as sparse Gaussian

processes, have been explored within the context of single agent informative planning

8



2. Background and Related Works

[21]. Most of these works have been limited to single robot and/or single Gaussian

Process. For example, [27] proposed a decentralized active sensing approach using a

mixture of Gaussian processes that affect the same process component. This allows for

robots to coordinate their actions when they are affecting the same Gaussian process

component [27]. Other work investigated a decentralized multi-robot informative

adaptive sampling approach for uni-model GP by using dynamic Voronoi partitions

to coordinate robot actions [11].

Many approaches leverage myopic horizons to allow for replanning, in that they

maximize the information-criterion over a short lookahead or horizon. One approach

is to use receding horizons. The work in [8] proposed a receding horizon approach

that satisfies temporal logic specification for domains where safety and reliability

are critical. The work in [39] proposed a receding horizon approach that modifies

the lookahead step size to avoid local optimas in favor of better optimas. Receding

horizon methods plan optimal paths within the myopic horizon reactively and do not

maximally utilize prior environment information. Nonmyopic approaches typically

attempt to achieve long-term horizon optimization, which often means they do not

replan as often. The work in [38] proposed a nonmyopic approach by reformulating

the informative path planning problem as a Global Kriging Variance Minimization

problem. The work in [26] used a Gaussian mixture model to identify information

clusters, which are each allocated search time, and then use a modified version of

Monte Carlo Tree Search to generate long plans without incurring exhaustive search.

An informed sampling-based approach was shown to be effective in the work by [24],

especially for large and higher dimensional spaces.

A recent line of work has emerged that utilizes reinforcement learning to address

the adaptive sampling and informative path planning problem into a reinforcement

learning context. The work in [31] cast the static informative path planning problem

into a reinforcement learning context and leverage reinforcement learning and Monte

Carlo Tree Search. Both [28] and [29] addressed the multi-robot adaptive sampling

problem with multi-agent reinforcement learning.

Among the aforementioned work, only a few address the multi-agent or multi-robot

adaptive sampling and informative path planning problem. In addition to this, none

of the aforementioned work addresses spatiotemporal environments. Some preliminary

studies have been investigated for adaptive sampling in spatiotemporal environments.

9



2. Background and Related Works

For example, [7] use a combination of historical and predicted data from a model to

address the spatiotemporal environment, while [25] leverage an already trained neural

network in conjunction with an extended Kalman filter-based adaptive sampling

regime. The work in [32] collect samples over an entire region or partition at each

timestep. Essentially, these works makes some assumptions that are divergent from

the standard adaptive sampling and informative path planning problem formulations

to reduce the difficulty of dealing with spatiotemporal environments. In this thesis, we

assume samples can only be collected at the current location of each robot and that

we do not have access to entire forecasted knowledge of future timesteps or already

trained neural network models. This is more akin to the standard adaptive sampling

and informative path planning problem formulations that have been investigated

in prior work. The combination of leveraging a multi-robot system for learning

and modelling a spatiotemporal environment is relatively understudied. Thus, we

investigate this broad, difficult, and understudied robotics problem in the remainder

of this thesis.

10



Chapter 3

Multi-Robot Adaptive Sampling for

Supervised Spatiotemporal

Environment Forecasting

3.1 Introduction

Multi-robot systems can be used in a variety of complex tasks, which enable

them to be used in applications such as coverage, sampling, and exploration in

unknown environments [4, 16, 17, 19, 22] A notable challenge in multi-robot systems

is the multi-robot information gathering problem, which encompasses a variety of

formulations including multi-robot adaptive sampling [28, 40], multi-robot sensor

coverage [16, 19], and multi-robot informative path planning [5]. However, learning

to forecast spatiotemporal environmental processes is relatively understudied within

the context of robotics, let alone multi-robot systems. While there is prior work in

deep learning for spatiotemporal process learning in domains such as high-frequency

trading and video surveillance, these works often investigate learning from a set of

timesteps where each timestep contains the entire spatial context [23, 33, 34, 36].

Such approaches may not be useful in cases where we can only gather sparse amounts

of data at each timestep.

Thus, in this work, we are particularly interested in such a variant of the multi-

11
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robot adaptive sampling problem, in which a group of robots are deployed in an

environment given random starting configurations and then seek to gather the best

samples in the environment for learning a parametric (i.e. deep learning-based)

spatiotemporal forecasting model. This problem formulation is different from prior

work in a couple of ways. Firstly, we address the problem of multi-robot adaptive

sampling, which involves coordinating a team of robots effectively to sample an

environmental phenomena. Most of the prior work in adaptive sampling has been

limited to single robot and/or single Gaussian Process (GP) [1, 6, 20, 21, 35]. Secondly,

we consider a environment with an arbitrary spatiotemporal process. Spatiotemporal

processes depend on both the spatial features of the underlying phenomena and time,

but a large amount of prior work in multi-robot adaptive sampling only addresses

spatially correlated time-invariant processes [11, 16, 19, 27]. Thirdly, we consider

determining samples for learning a parametric spatiotemporal model for forecasting.

Recent work in adaptive sampling often rely solely on non-parametric learning

methods for modelling the environment phenomena, which is often restrictive and

can only handle limited spatiotemporal evolution rates [1, 11, 16, 19, 20, 21, 27].

Moreover, parametric learning methods can often scale better with data and have

powerful representational capacity, making them an interesting modelling approach

for arbitrary spatiotemporal environment phenomena.

There are many real-world motivations for considering this multi-robot adaptive

sampling problem formulation. Multiple UAVs/UGVs can be used to monitor climate

phenomena for better weather forecasts or to track animals for wildlife monitoring.

This multi-robot adaptive sampling problem formulation is also applicable to wildfire

monitoring or agricultural yield forecasting. The use of parametric or deep learning

models could be introduced in all the aforementioned domains if an approach was

able to successfully integrate coordinated spatiotemporal multi-robot sampling to

gather information to train or generate these learned spatiotemporal models. Towards

realizing this goal, we propose an integrated methodology for learning a forecasting

model that leverages 2 components: (1) a neural methodology called Recurrent

Neural Processes (RNP); and (2) a coordinated multi-agent spatiotemporal adaptive

sampling methodology via a mixture of Gaussian Processes (MGPs) to collect the

best samples for training the RNP for accurate forecasting. In essence, we propose

to leverage an active learning-based methodology (such as MGPs) to procure an

12
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informative set of samples that provides the data distribution for enabling supervised

learning-based methods (such as RNPs) to be used for spatiotemporal environment

learning, modelling, and forecasting.

Our main contribution in this work is an end-to-end methodology that starts

with effective and coordinated multi-robot information gathering to adaptively sample

and procure a collection of samples as a dataset used to train a parametric spatiotem-

poral model. Moreover, our approach is able to select highly informative samples

that improve the predictive performance of the spatiotemporal model. To the best of

our knowledge, this is the first work to address integrating multi-robot information

gathering with deep learning for spatiotemporal model learning, as prior work often

chooses to focus on one or the other.

3.2 Problem Formulation

Consider a set of n robots moving in a bounded environment Q ⊂ R2 and assume

the environment can be discretized into a set of points q ∈ Q. Moreover, let T ⊂ R
be the time range of interest and assume that this has been discretized into a set of

timesteps t ∈ T . With this, the position of each robot i ∈ {1, . . . , n} at timestep t

can be denoted by xti ∈ Q. We assume the environment is free of obstacles and can

be partitioned into n Voronoi cells at any timestep t where each Voronoi cell V t
i is

defined in (3.1).

V t
i = {q ∈ Q : ||q − xti||2 ≤ ||q − xtj||2∀j ̸= i} (3.1)

This is a common assumption made in robotic information gathering that is

reasonable for most situations in robot exploration [11, 16, 19]. Each Voronoi cell V t
i

corresponds to robot i, meaning robot i is allocated that space at timestep t. This

will be leveraged in the proposed active learning methodology to avoid collisions

and improve initial environmental modelling. The current location of the robot xi is

sampled and added to its dataset to be used to adaptively choose the next location.

Regarding the distribution of environmental phenomenon at each point of interest

q at time t, there exists an unknown density function ϕ(q, t) : Q× T → R that maps

the location q and time t to the scalar value of the phenomena ϕ(q, t). That is, the
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unknown environmental phenomena is both spatial and time varying since it maps

each spatial location q and timestep t to a real-valued density value, such as air

temperature, animal presence, etc.

Now, let Xt =
[
(q1, t), . . . (qm, t)

]
be the vector of candidate sampling locations

recommended at timestep t and X{tp:tp+k}, which represents the concatenation of the

vectors of m candidate sampling locations chosen at each of the k timesteps from

timestep tp and tp+k, be defined as shown in Equation (3.2) where
⊕

represent vector

concatenation.

X{tp:tp+k} =
⊕

t∈{tp:tp+k}

Xt (3.2)

Furthermore, let FX(tp : tp+k, q) : X{tp:tp+k} → R be a parameterized model inferred

or trained from data X that estimates or approximates ϕ(q, p + k + 1). Then, we

propose to address the optimization problem shown in Equation (3.3).

argmin
X

∑
q∈Q

∑
p∈T

(FX(tp : tp+k, q)− ϕ(q, p+ k + 1))2 (3.3)

Note that the robots or agents must procure the data X in a single-shot manner,

which is akin to actual robotic information gathering. That is, given a window

of timesteps in the spatiotemporal environment, each robot or agent only gets to

collect m samples at each timestep in the environment, and the agents or robots

must proceed sequentially in time (i.e. they cannot move revisit a previous timestep).

Thus, it is imperative that the robots or agents coordinate with one another in order

to choose the best samples given a minuscule amount of initial data.

We choose to parameterize F as a recurrent neural process, an extension of neural

processes for handling spatial and temporal dependencies in data [13]. However, any

parametric model designed for spatiotemporal modelling can be chosen if desired.

However, the question to address is how to coordinate a team of agents or robots

to choose a good set of samples at each timestep to collect into dataset X that will

likely improve forecasting performance for a parametric spatiotemporal model.

To address this, we propose to use a spatiotemporal mixture of Gaussian Processes

(STMGP) where each Gaussian Process component uses a squared exponential kernel

with automatic relevance determination to gather data in an adaptive sampling

manner to approximately solve the optimization problem shown in Equation (3.3).
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At each timestep, the robots use the STMGP model to inform the next timestep

sampling locations and move towards those locations. The STMGP model then

updates itself with the collected samples in a distributed manner and produces a set

of samples to the recurrent neural process to learn a forecasting model.

Thus, we start with an active learning methodology (robotic information gathering)

and then leverage a supervised learning approach (use of gathered data for model

learning) to capture the spatiotemporal dynamics of the environment for forecasting.

This ultimately provides a step towards bridging the gap between robotic information

gathering and powerful parametric models for spatiotemporal environment modelling.

3.3 Proposed Approach

We now present a high-level representation of our approach described in Algorithm

1. Given 1% of the data as initial data randomly (Line 1) and random starting

configurations (Line 2 - 3), the robots first sample their current location (Line

8), collect that sample into their local datasets (Line 9), update their local GP

components (Line 10), and compute a mixture of their local GP parameters (Line 12).

The robots use the spatiotemporal mixture of GPs to infer the mean and variance

of each location in the environment at the current timestep (Line 13), and use this

inference to determine where to sample in the next timestep (Line 14). The new

sampling locations are used to adjust the Voronoi partitions and the local datasets of

each robot (Lines 16 - 17) via communication. The robots also use a uni-model GP to

compute an approximate covariance matrix across all locations at the current timestep

(Line 18), which is used to inform which samples to procure as part of the dataset for

training the RNP (Line 19). This is repeated for the allotted number of timesteps in

the environment, where the environment changes after each timestep in accordance

to ϕ. Finally, the procured dataset is used to train the RNP to accurately forecast

(Line 21). The RNP is then evaluated on unseen timesteps in the environment to

determine how well the RNP captured the spatiotemporal phenomena for forecasting

(Line 22).
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Algorithm 1 STMGP + RNP

Require: k {k is time window size}
Require: m {m is number of samples per timestep to provide to RNP}
1: Xi,Yi ← GetRandomInitialData(1%)

2: qt = GetRandomStartingLocations()

3: Vt = UpdateVoronoiPartitions(qt)

4: XC , YC ← ∅, ∅
5: γ̂t ← 0 {γ̂t(i) is the mutual information lower bound for robot i}
6: for t = tp : tp+k do

7: for each robot i do

8: xi, yi ← SampleLocation(qt(i)) {returns ϕ(qt(i), t) + ϵ}
9: Xi, Yi ← Xi ∪ xi,Yi ∪ yi
10: GPi ← FitGP(Xi,Yi)

11: end for

12: MGPt ← MixGPs(GPi) {section 3.4.2}
13: µ∗

q∗i |Xi,Yi
, σ∗

q∗i |Xi,Yi
←MGPt.µ,MGPt.σ {section 3.4.2}

14: qt ← argmaxq∗i

√
σ∗
q∗i |Xi,Yi

+ γ̂t−1 −
√
γ̂t−1 {section 3.4.3}

15: γ̂t ← γ̂t−1 + σ∗
qt|Xi,Yi

{section 3.4.3}
16: Vt = UpdateVoronoiPartitions(qt)

17: Xi,Yi ← ExchangeSamplesBasedOnVoronoiPartitions(Xi,Yi, Vt)

18: K̃ ← FitGP(
⋃
iXi,

⋃
iYi).K

19: XC(t), YC(t)← StreamSubmodularSecretary(K̃,m) {section 3.4.3}
20: end for

21: FXC ,YC ← AddSamplesToDatasetAndTrainRNP({XC , YC})
22: EvaluateOnUnseenData(FXC ,YC )

This approach modifies and integrates various components, and we describe each

component, its modifications, and its role in the integrated system in the subsections

below. Algorithm 1 also details where each subsection corresponds to in the integrated

system.
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3.4 Spatiotemporal Mixture of Gaussian

Processes

We now outline the active learning methodology used to procure a set of samples

used for learning a parametric spatiotemporal environment model for forecasting.

We first present a simple spatiotempoal Gaussian Process formulation in subsec-

tion 3.4.1 and then present how we produce a mixture of these spatiotemporal GPs

in subsection 3.4.2

3.4.1 Gaussian Processes

Gaussian Processes are a widely used probabilistic model that defines distributions

over functions. They have been a common approach for modeling spatial phenomena

since they allow for modeling the hidden mapping from training data to the target

phenomenon with consideration of uncertainty.

To use GP regression, we first make the assumption that the target phenomena

follows a multivariate joint Gaussian distribution. Given this assumption and a

collection of observations from the target phenomena ϕ(q, t), a learned GP model

produces an estimated Gaussian probability distribution of ϕ(q, t), denoted by the

function µ(q, t) = E[ϕ(q, t)]. The learned GP model also produces a covariance

function k((q, t), (q′, t′)) = E[(ϕ(q, t)− µ(q, t))⊤(ϕ(q′, t′)− µ(q′, t′))].
Recall from section 3.2 that Xt =

[
(q1, t), . . . (qm, t)

]
is the vector of candidate

sampling locations recommended at timestep t and X{tp:tp+k} =
⊕

t∈{tp:tp+k}Xt is the

concatenation of the vectors of m candidate sampling locations chosen at each of

the k timesteps from timestep tp and tp+k where
⊕

represent vector concatenation.

Furthermore, let Yt =
[
y1, . . . , ym

]
∈ R be the vector such that yi = ϕ(qi, t)+ ϵ where

ϵ ∼ N (0, σ2
n) and σ2

n is the variance of the noise. This denotes that the observed

values sampled by each agent or robot from the environment is noisy. We can then

define Y{tp:tp+k} as shown in Equation (3.4)

Y{tp:tp+k} =
⊕

t∈{tp:tp+k}

Yt (3.4)

For conciseness, we shall denote X = X{tp:tp+k} and Y = Y{tp:tp+k}. Using this,
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we can represent the mean vector µX and covariance matrix KX,X as shown in

Equation (3.5) and Equation (3.6) respectively.

µX =
[
µ(q1, tp), . . . , µ(q

′
m, tp+k)

]
(3.5)

KX,X =


k((q1, tp), (q1, tp)) . . . k((q1, tp), (q

′
m, tp+k))

...
. . .

...

k((q′m, tp+k), (q1, tp)) . . . k((q′m, tp+k), (q
′
m, tp+k))

 (3.6)

Thus, the joint probability distribution over the output value of a vector of sampling

points can be written as shown in Equation (3.7).

Y ∼ N (µX, KX,X) (3.7)

Now, let Xtp+k+1
=

[
(q′′1 , tp+k+1), . . . (q

′′
M , tp+k+1)

]
denote the set of all locations Q

at timestep tp+k+1 where {q′′1 , . . . , q′′M} = {q : ∀q ∈ Q}. Furthermore, let Ytp+k+1
be

the unknown values of the environment at timestep tp+k+1 that we wish to estimate.

For conciseness, we shall denote X∗ = Xtp+k+1
and Y∗ = Ytp+k+1

. The posterior

mean vector µX∗|X,Y and covariance matrix KX∗|X,Y can be generated as shown in

Equation (3.8) and Equation (3.9) respectively.

µX∗|X,Y = KX∗,XK
−1
X,XY (3.8)

KX∗|X,Y = KX∗,X∗ −KX∗,XK
−1
X,XK

⊤
X∗,X (3.9)

Thus, the posterior target distribution of target set X∗ conditioned on X is given

in Equation (3.10).

Y∗ ∼ N (µX∗|X, KX∗|X) (3.10)

The aforementioned structure defines a uni-model Gaussian Process and provides

good generalization for learning density functions. However, there are representational

limits to a uni-model Gaussian Process. We can improve the representational capacity

by leveraging a set of local Gaussian Processes. Moreover, if we can compute this

mixture of Gaussian Processes in a decentralized fashion, we can incorporate this
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into a multi-robot or multi-agent system. This motivates subsection 3.4.2.

3.4.2 Mixture of Gaussian Processes

Our approach leverages a Mixture of Gaussian Processes (MGPs) for adaptive

sampling in an environment Q. Here, each agent i has a learned local Gaussian

Process component GPi, which yields a set of m GP components {GP1, . . . GPm} and
an associated probability function P (q, ig) = P (q ∈ Q is best described by GPig).

Suppose the agent i has sampled locations Xi and suppose Yi are the associated

ground-truth values sampled from locations Xi. Moreover, suppose agent i has a mean

µX∗
i|Xi,Yi

and covariance matrix KX∗
i|Xi,Yi

as well. Now, let x∗ ∈ X∗
i. Furthermore,

let µx∗i |Xi,Yi
∈ µX∗

i|Xi,Yi
and σx∗i |Xi,Yi

∈ diag(KX∗
i|Xi,Yi

). We can represent the local

conditional posterior mixture mean µ∗
x∗i |Xi,Yi

as shown in Equation (3.11).

µ∗
x∗i |Xi,Yi

=
m∑
i=1

P (q, ig) ∗ µx∗i |Xig ,Yig
(3.11)

We can compute an intermediate term for determining the local conditional

posterior variance as shown in Equation (3.12).

diff = (µx∗i |Xig ,Yig
− µ∗

x∗i |Xi,Yi
)2 (3.12)

Using the intermediate term in Equation (3.12), we can represent the local

conditional posterior mixture variance σ∗
x∗i |Xi,Yi

as shown in Equation (3.13).

σ∗
x∗i |Xi,Yi

=
m∑
i=1

P (q, ig) ∗ (σx∗i |Xig ,Yig
+ diff) (3.13)

Here, Xig ⊂ Xi and Yig ⊂ Yi, and each represents the set of samples and

ground-truth values that can be best described by GPig (i.e. Xig = {q ∈ Xi :

argmaxi′g P (q, i
′
g) = ig}. The above mixture procedure can be approximately carried

out in a decentralized manner, which we do based on [19].

Depending on the goal of the adaptive sampling, we may either wish to max-

imize the mean (x∗ = argmaxx∗i µ
∗
x∗i |Xi,Yi

), variance (x∗ = argmaxx∗i σ
∗
x∗i |Xi,Yi

), or

a combination of the two similar to an upper confidence bound heuristic (x∗ =

argmaxx∗i µ
∗
x∗i |Xi,Yi

+βσ∗
x∗i |Xi,Yi

). Since we wish to address reducing the mean squared

19



3. Multi-Robot Adaptive Sampling for Supervised Spatiotemporal Environment
Forecasting

error as shown in Equation (3.3), we choose to leverage mutual information as our

sampling heuristic. We describe this in subsection 3.4.3.

3.4.3 Mutual Information for Sampling

There are two sampling aspects that are occuring. The first aspect is each agent

choosing which sample to collect for updating the mixture of GPs model. The second

aspect is choosing which samples to recommend for collection to provide to the

parametric spatiotemporal model for training. We inform both sampling aspects via

a mutual information-based criterion.

Mutual Information for Updating Mixture of GPs

Calculating mutual information is known to be difficult, but in order to have the

most accurate representation of the environment, each agent should choose the most

informative sample. Thus, for optimizing each local Gaussian Process component,

we choose a sample that optimizes for a lower bound on the mutual information

between the current local Gaussian Process GPi and the noisy observations to be

collected Yi from the sampling locations Xi at timestep t. Let γt = maxXi
It(GPi,Xi)

where I(·) is the mutual information. For Gaussian Processes, the lower bound in

Equation (3.14) holds.

γ̂t =
t∑

t′=1

σ2
t′(xt′) ≤

2

log(1 + σ−2
n )

γt (3.14)

The lower bounded quantity γ̂t can be computed as shown in Equation (3.15),

and optimizing for the lower bounded quantity γ̂t yields the optimization strategy

shown in Equation (3.16) for each agent.

γ̂t = γ̂t−1 + σ∗
x∗i |Xi,Yi

(3.15)

x∗ = argmax
x∗i

√
σ∗
x∗i |Xi,Yi

+ γ̂t−1 −
√
γ̂t−1 (3.16)
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Mutual Information for Recommending Samples

At each timestep t, the agents must determine which sampling locations to sample

and collect as data for training the parametric spatiotemporal model. We once again

rely on utilizing mutual information to maximize the number of informative samples

chosen. Once again, computation of mutual information is difficult. Moreover, instead

of determining the mutual information with respect to a function (which was the

case in subsubsection 3.4.3), we have to find the subset of locations that provides the

maximal informativeness with respect to one another. Let Φt = {ϕ(q, t) : ∀q ∈ Q} be
the set of environment values at all the locations in the environment Q at timestep

t. Moreover, let Rt be a set of c sampling points to procure as part of the dataset

for learning the parametric spatiotemporal model and their associated environment

density values. We wish to solve the optimization problem posed in Equation (3.17).

R∗
t = argmax

Rt

I(Rt,Φt \Rt) = argmax
Rt

H(Φt \Rt)−H(Φt \Rt|Rt) (3.17)

The problem in Equation (3.17) is a combinatorial, intractable problem [41].

However, mutual information gain is a monotone and submodular function [18, 41].

As a result, we leverage submodular function optimization to find a selection of

sampling locations that is a provably good approximation to the optimal choice.

Similar to [18, 41], we employ a greedy-based approach to avoid the combinatorial

complexity of this optimization problem. In particular, we employ a stream-based

secretary algorithm to approximately solve for the optimal R∗
t at each timestep t

based on the algorithm in [18] shown in Algorithm 2. This ensures that a set of

candidate samples can be chosen quickly and in a tractable manner prior to the next

timestep.

We compute a near-optimal approximation of the mutual information Ĩ(·) us-
ing submodular function optimization. To compute the approximation of mutual

information via submodular function optimization in Algorithm 2, the covariance

matrix K =
[
k(qi, qj)

]
∀qi,qj∈Q

is needed. We approximate this covariance matrix via a

uni-model Gaussian Process fitted using the data collected by the agents and inferred

on {qi ∈ Q}.
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Algorithm 2 Stream-based Submodular Secretary Algorithm [18]

Require: Ĩ(· ; {qi ∈ Q}, K({qi ∈ Q}, {qj ∈ Q}))
1: Rt ← ∅
2: r ← 0
3: for each segment Sl = {qi ∈ Q : n(l−1)

k
< i ≤ nl

k
} do

4: for each qi ∈ Sl do
5: if n(l−1)

k
< i < n(l−1)

k
+ n

k exp (1)
then

6: if Ĩ(Rt ∪ qi) > r then
7: r ← Ĩ(Rt ∪ qi)
8: end if
9: else if Ĩ(Rt ∪ qi) > r or i == nl

k
then

10: Rt ← Rt ∪ qi
11: r ← 0
12: break
13: end if
14: end for
15: end for
16: return Rt

3.4.4 Training Local ST Gaussian Process Components

Note that we need to specify a kernel function for each GP model. For this,

we choose to use a squared exponential kernel, which we augment with automatic

relevance determination. Let xa =
[
qa ta

]
and xb =

[
qb tb

]
. Furthermore, let

d = dim(xa) = dim(xb) and let x(i) denote the i-th element in vector x. Then, we

can represent the squared exponential kernel with automatic relevance determination

as shown in Equation (3.18).

k(xa, xb|θ =
[
σ σf σn

]
) = σ2

f exp

[
−1

2

d∑
m=1

(xa(m)− xb(m))2

σ(m)2

]
(3.18)

We can optimize for the parameters in θ in a Bayesian framework by maximizing

the natural logarithm of the marginal likelihood. The optimization problem can be

posed as θ∗ = argmaxθ logP(Y|X, θ) where logP(Y|X, θ) is given in Equation (3.19).
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logP(Y|X, θ) = −N
2
log(2π)− 1

2
log |KX,X| −

1

2
Y⊤K−1

X,XY (3.19)

3.5 Recurrent Neural Process

We choose to model the spatiotemporal parametric model as a Recurrent Neural

Process (RNP) [13]. This model extends the Neural Process model, which is designed

for static spatial processes. The Neural Process model summarizes all the contextual

information in a fixed size embedding and learns an approximate latent distribution

P̃(z|xC , yC) where (xC , yC) is the context set, which is composed of the sample

locations xC and their corresponding environment density values yC . The Recurrent

Neural Process extends this idea by considering a spatiotemporal process as a related

sequence of static spatial processeses. Thus, instead of first computing a single

encoding s of (xC , yC) directly as a Neural Process would have, the Recurrent

Neural Process computes an encoding st of (xC , yC) for each timestep and then uses

S = [st]∀t to forecast st′ . The Recurrent Neural Process then uses the forecasted state

representation st′ to parameterize the approximate latent distribution P̃(zt′|xC , yC).
Finally, the RNP draws from the distribution z′t′ ∼ P̃(zt+1|xC , yC) to produce estimates

for yt′ given xt′ using a decoder module. We summarize this in Algorithm 3.

3.6 Empirical Evaluation

We evaluated our approach on a spatiotemporal dataset to demonstrate the efficacy

of our methodology. We describe the empirical evaluation below.

3.6.1 Experimental Setup

We test our methodology on a spatiotemporal air temperature dataset [10]. This

dataset contains monthly air temperature readings from 1948 to near present in

2.5 degree latitude × 2.5 degree longitude discretization. We test on a 45 × 21

size grid with the same discretization, yielding an area of 112.5 degree latitude

by 50 degree longitude area. Figure 3.1 shows a visualization of the dataset for a
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Algorithm 3 Recurrent Neural Process [13]

Require: {{(xC , yC)}t=p, . . . {(xC , yC)}t=p+k}
Require: xt′
1: S ← ∅
2: for each {(xC , yC)}t ∈ {{(xC , yC)}t=p, . . . {(xC , yC)}t=p+k} do
3: st ← Encoder({(xC , yC)}t)
4: S ← S ∪ st
5: end for
6: st′ ← Forecaster(S)
7: µt′ , σt′ ← LatentDistributionEncoder(st′)
8: yt′ ← ∅
9: for i = 1, . . . , N do
10: z′t′ ∼ P̃(zt+1|xC , yC , µt′ , σt′)
11: yt′ ← yt′ ∪ Decoder(xt′ , z′t′)
12: end for
13: ȳt′ ← 1

N

∑
i yt′(i)

14: return ȳt′

couple of consecutive timesteps to demonstrate qualitatively the spatial and temporal

correlation present within the data.

Figure 3.1: (Top) Visualization of the ground truth air temperature data across 4
consecutive timesteps. (Bottom) Visualization of an example RNP inference for a
time window of two timesteps. The first two frames with 10 samples selected are
provided as input to the RNP, third frame is the ground truth, and the fourth frame
is the RNP prediction
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We test three different sampling strategies for recommending samples to the RNP

for training: (1) Pure random sampling, which is the common sampling strategy

used in most prior work that use deep learning for spatiotemporal modelling; (2)

Choosing the samples with the highest uncertainty or variance based on the mixture

of Gaussian Processes model, which is the common sampling strategy used in active

learning for static spatiotemporal modelling; and (3) Choosing samples based on the

largest mutual information gain, which is our proposed approach. Our primary metric

for analysis is the root mean square error (RMSE), since this is the most common

metric used in adaptive sampling and reconstruction literature. We set k = 6 and

m = 10 (section 3.2, Algorithm 1).

3.6.2 Results

We first evaluate the performance of the spatiotemporal mixture of GPs model

on forecasting the next timestep after collecting samples and updating the STMGP

model in the current timestep. Figure 3.2 shows that with less than 1% of the

spatiotemporal dataset provided as initial data per robot, the STMGP model with

mutual information as the sampling heuristic (our approach) is able to converge

within 5 timesteps to a model that can accurately forecast the next timestep with

an RMSE between 4 and 6. Note that the RMSE fluctuates due to the environment

changing at each timestep and the STMGP forecasting the next timestep given only

the data it has seen until that timestep. The maximum and minimum air temperature

in this dataset are -45.76 and 42.15, so this RMSE is quite low (normalized RMSE

= 0.0683). This demonstrates that the STMGP is accurately predicting the air

temperature distribution for the next timestep, so the STMGP model is clearly

choosing appropriate samples to ensure that it maintains a representative model.

This validates the use of mutual information as the sampling heuristic for updating

the STMGP model.

However, there is clearly a limit to the achievable RMSE using a nonparametric

model such as the STMGP in a pure active learning scheme. From Figure 3.3 (right),

we can see that the recurrent neural process (RNP) is able to achieve a better RMSE

regardless of the sampling strategy used. This demonstrates the gap between the

use of nonparametric models and parametric models, especially powerful function
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Figure 3.2: RMSE of forecasting the next timestep at each timestep in the environment
using only the STMGPs using Maximum Variance Sampling (Left) versus using
Maximum Mutual Information Sampling (Right). The use of mutual information as
the sampling strategy obtains a better (lower) RMSE.

Figure 3.3: Average RMSE of forecasting on an evaluation dataset of unseen timesteps
in the environment using the RNP with various sampling strategies

approximators that are common in deep learning. This further motivates finding

an end-to-end methodology for integrating multi-robot information gathering and

adaptive sampling with powerful parametric or deep learning methodologies for

spatiotemporal forecasting and model learning.
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We compare the performance of the recurrent neural process on three different

sampling strategies: (1) Random Sampling, (2) Maximum Variance, and (3) Maximum

Mutual Information (our approach). We first train an RNP using the samples

procured by each of the sampling strategies until convergence (50 epochs), and

then evaluate the RNP on unseen time windows in the environment for forecasting.

Table 3.1 shows the results of the achieved RMSE of the RNP on 11 different seeds.

The random seeds randomize the initial configurations of the robots, the initial data

given to the mixture of GPs (only applicable for (2) and (3)), the random noise

added to the observation, and the train-evaluation dataset generation. The results

demonstrate that using maximum mutual information produces the lowest RMSE

error along with the lowest variance in the RMSE error in comparison to the other

two sampling strategies. Using maximum variance produces consistent, low variance

RMSE results in comparison to random sampling, which has high variance in the

average RMSE. This is likely due to the larger volatility present in sampling randomly.

However, using maximum uncertainty or variance as the sampling strategy produces a

higher average RMSE than simple random sampling. However, using the combination

of using mutual information for updating the MGP model as well as using mutual

information for selecting candidate samples for the RNP yields both low average

and variance in the RMSE, outperforming the other two strategies. We validate this

difference is statistically significant with a 2-sample t-test to determine if the results

are statistically significant. We find that using the maximum mutual information

gain sampling strategy reports a p-value of 0.00394 when compared to using the

random sampling strategy and reports a p-value of 3.9363e-08 when compared to

using maximum variance sampling strategy, which indicates that our approach is

statistically significantly better than alternative approaches based on prior work under

a significance value of 0.01.

Finally, we analyze the convergence properties of the RNP under the various

sampling strategies. In particular, we investigate how many epochs it takes on average

for the RNP to outperform the RMSE achieved by Mixture of GPs for forecasting.

Table 3.1 demonstrates that the RNP is able to achieve an RMSE less than 4 in the

least number of epochs when using maximum mutual information, followed by random

sampling and maximum variance. Thus, not only does our methodology provide an

end-to-end approach that achieves more accurate spatiotemporal forecasting, but
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RMSE and Convergence Comparison for RNP under Each Sampling Method
Sampling Method Mean RMSE ± SD Mean Epoch ± SD
Random Sampling 3.635091 ± 0.130838 31.363636 ± 5.31550

Max Variance (STMGP) 3.788727 ± 0.082061 36.454545 ± 6.743346
Max Mutual Info (STMGP) 3.492363 ± 0.087282 27.636363 ± 3.170890

Table 3.1: (Left Col.) Sampling method used to procure data for RNP. (Center Col.)
Average RMSE across 11 different seeds for training the RNP. The use of the MGPs
with mutual information provided statistically significantly better RMSE error for
forecasting. (Right Col.) Average number of epochs needed to achieve RMSE < 4.

does so in an efficient manner such that model training is effective and converges

faster compared to other strategies and approaches. We once again validate that this

difference is statistically significant with a 2-sample t-test. We find that using the

maximum mutual information gain sampling strategy reports a p-value of 0.03154

when compared to using the random sampling strategy and reports a p-value of 0.00076

when compared to using maximum variance sampling strategy, which indicates that

our approach is statistically significantly better than alternative sampling approaches

based on prior work under a significance value of 0.05.

3.7 Conclusion

In this work, we present an end-to-end methodology that starts with effective and

coordinated multi-robot information gathering to adaptively sample and procure a

collection of samples as a dataset used to train a parametric spatiotemporal model.

To the best of our knowledge, this is the first work to address integrating multi-robot

information gathering with deep learning for spatiotemporal model learning, as prior

work often chooses to focus on one or the other. By using a parametric model as

the basis of modelling the spatiotemporal phenomena, we achieve more accurate

results in forecasting as compared to nonparametric methodologies. Moreover, we

show that we can enable these powerful parametric or deep learning methods for

spatiotemporal modelling and forecasting to be used in robotic environment monitoring

contexts by integrating multi-robot adaptive sampling with supervised spatiotemporal

environment learning. We will now investigate incorporating constrained informative

path planning to the STMGP methodology in chapter 4.
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Chapter 4

Integrating Multi-Robot Adaptive

Sampling and Informative Path

Planning for Spatiotemporal

Environment Prediction

4.1 Introduction

A notable challenge in multi-robot systems is the multi-robot information gathering

problem, which encompasses a variety of formulations including multi-robot adaptive

sampling [40], multi-robot sensor coverage [16, 19], and multi-robot informative path

planning [5]. In this work, we are particularly interested in addressing the multi-robot

adaptive sampling and informative path planning problem, in which a group of

robots are deployed in an environment from random initial configurations and then

seek to gather the best samples in the environment for predicting a spatiotemporal

environment phenomena, such as temperature distributions (e.g. air or ocean),

salinity, wind speeds, etc. There are many real-world motivations for considering this

multi-robot adaptive sampling problem formulation. One such application is the use

of multiple UAVs or UGVs to monitor climate phenomena for better weather forecasts

or for monitoring agricultural and ecosystem well-being. However, this multi-robot
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adaptive sampling and informative path planning framework is also applicable to

wildfire monitoring, agricultural yield forecasting, or wildlife tracking.

This problem formulation possesses a few differences compared to the prior litera-

ture. Firstly, we address the problem of multi-robot adaptive sampling, which involves

coordinating a team of robots effectively to sample an environmental phenomena.

Prior studies in adaptive sampling has produced many works for single robot scenarios

[1, 6, 20, 21, 35]. Secondly, we consider an environment with an arbitrary spatiotem-

poral process. Spatiotemporal processes depend on both the spatial features and

temporal evolution of the underlying phenomena, but a large amount of prior work

in multi-robot adaptive sampling only addresses spatially correlated time-invariant

processes [11, 16, 19, 27]. Since the environment changes at every timestep, choosing

sub-informative samples will result in a lagging model, which is unlikely to recover and

will produce erroneous predictions and estimates. Thirdly, we consider constraints

regarding actuating mobile robots within a timestep by incorporating the constraints

into both sample selection (via the spatiotemporal mixture of GPs) and informative

path planning for choosing a path to collect samples along while en route to the

desired sampling location. Thus, we also address the multi-robot informative path

planning problem. While prior work leverages approaches such as recursive-greedy

[35] or differential entropy [14, 15], we do so by taking a two-stage approach of first

selecting a destination or goal sampling location of high mutual informativeness,

followed by planning a path between the current location and the desired sampling

location that maximizes cumulative mutual informativeness when collecting samples

en route.

Our main contributions in this work are: (1) a two-stage strategy for integrating

informative path planning into a spatiotemporal adaptive sampling framework; (2)

an augmentation to our spatiotemporal adaptive sampling methodology that incorpo-

rates robotic actuation constraints to address multi-robot informative path planning

while still producing effective and coordinated multi-robot information gathering to

adaptively sample a spatiotemporal environment; and (3) empirical evaluation of

multiple variants of our proposed framework. We find that our approach is able to

select highly informative samples and paths that improve the predictive performance

of the learned spatiotemporal model.
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4.2 Problem Formulation

Consider a set of n robots moving in a bounded environment Q ⊂ R2 and assume

the environment can be discretized into a set of points q ∈ Q. Moreover, let T ⊂ R
be the time range of interest and assume that this has been discretized into a set of

timesteps t ∈ T . With this, the position of each robot i ∈ {1, . . . , n} at timestep t

can be denoted by xti ∈ Q. We assume the environment is free of obstacles and can

be partitioned into n Voronoi cells at any timestep t where each Voronoi cell V t
i is

defined in (4.1).

V t
i = {q ∈ Q : ||q − xti||2 ≤ ||q − xtj||2∀j ̸= i} (4.1)

This is a common assumption made in robotic information gathering that is

reasonable for most situations in robot exploration [11, 16, 19]. Each Voronoi cell

V t
i corresponds to robot i, meaning robot i is allocated that space at timestep t.

This will be leveraged in the proposed active learning methodology (section 4.3.1) to

avoid collisions and improve initial environmental modelling. Each location along the

path of the robot xi is sampled and added to its local dataset, which is then used to

adaptively choose the next informative sampling location and corresponding paths to

traverse.

Regarding the distribution of environmental phenomenon at each point of interest

q at time t, there exists an unknown density function ϕ(q, t) : Q× T → R that maps

the location q and time t to the scalar value of the phenomena ϕ(q, t). That is, the

unknown environmental phenomena is both spatial and time varying since it maps

each spatial location q and timestep t to a real-valued density value, such as air

temperature, animal presence, etc.

Let Xt be the set of locations that have been sampled (but not necessarily shared

with one another) and their associated sample values. Moreover, let FXt(q) : Q×T →
R be a model generated from data Xt that estimates ϕ(q, t). We propose to address

the optimization problem shown in (4.2).

argmin
Xt

∑
q∈Q

∑
t∈T

(FXt(q)− ϕ(q, t))2 (4.2)
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Note that the robots can only collect a sparse or limited number of samples in a

single-shot manner, which is akin to actual robotic information gathering. In other

words, the robots must proceed sequentially forward in time, and cannot revisit a

previous timestep once the timestep has elapsed. Thus, it is imperative that the

robots coordinate with one another in order to choose the best sampling locations

and paths given a miniscule amount of initial data.

The main question to address is how to coordinate a team of robots to choose

informative paths to collect a set of samples at each timestep into X that will likely

improve forecasting performance of a working model of the environment. In prior

work , we proposed a spatiotemporal mixture of Gaussian Processes (STMGP)

model, which we showed was able to determine informative samples to be used in

updating a parametric (i.e. deep learning-based) model, which led to good forecasting

performance [9]. However, this work did not consider constraints regarding robot

actuation within a dynamic environment (i.e. path length constraints due to temporal

dynamics). In other words, our prior work focused solely on the adaptive sampling

problem formulation.

Thus, in this work, we now augment our adaptive sampling framework for spa-

tiotemporal environments to address informative path planning as well and attempt

to achieve this in a purely active learning fashion. We approach this in two stages.

At each timestep, the robots use the STMGP model to inform the sampling locations

for the next timestep such that they can be reached given robot actuation constraints

within each timestep. Then, we determine the most informative path to take from

the current location of the robot to the desired sampling location informed by the

STMGP model. The robots use Voronoi tesselation to partition the environment

amongst themselves and exchange relevant information via peer-to-peer communica-

tion for adjusting their local datasets, partitions, and for providing robust estimations.

This leads to a decentralized approach that enables coordinated sampling and path

planning.

4.3 Proposed Approach

Given 5% of the data as initial data to each robot (Line 1) and random starting

configurations (Line 2 - 3), the robots first fit their local GP components (Line 7).
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The robots use the spatiotemporal mixture of GPs to infer the mean and variance of

each location in the environment at the current timestep (Line 10). The mean is used

to evaluate the predictive accuracy of the model. The mean and variance are both

used in conjunction with the maximum allowable path length in a given timestep

to determine where to sample in the next timestep (Line 11). The robots then use

communication to fit a uni-model GP to compute an approximate covariance matrix

across all locations at the current timestep (Line 13). An approximate informative

path planning subroutine, which uses the aforementioned covariance matrix, is then

used to determine which path for each robot to take given the desired sampling

location (Line 14). The robots then traverse along the planned paths and collect the

samples while en route, and then eventually collect the sample at the desired location

as well (Line 16 - 17). The new sampling locations (which is now the current locations

of the robot after following the planned trajectories) are used to adjust the Voronoi

partitions and the local datasets of each robot (Lines 19 - 20) via communication.

This is repeated for the allotted number of timesteps in the environment, where the

environment changes after each timestep in accordance to ϕ. Algorithm 4 also details

where each subsection corresponds to in the system.

4.3.1 Spatiotemporal Adaptive Sampling Methodology

Spatiotemporal Mixture of GPs

We first briefly describe the spatiotemporal mixture of GPs (STMGP) model

from our prior work [9]. Let X be the locally collected data consisting of the

sampling location and timestep for a given robot and Y be the corresponding

environment values for the (location, time) in X. We can represent the mean vector

µX = [µ(q, t)](q,t)∈X and positive definite symmetric covariance matrix KX,X =

[k((q, t), (q′, t′))](q,t),(q′,t′)∈X where k(·) is the kernel function. The posterior mean

vector is given as µX∗|X,Y = KX∗,XK
−1
X,XY and the posterior covariance matrix is

given as KX∗|X,Y = KX∗,X∗ − KX∗,XK
−1
X,XK

⊤
X∗,X where X∗ is all possible locations

q ∈ Q for the next timestep. This serves as the local GPs in the methodology

described below.

The mixture of Gaussian Processes was first introduced by [37], and has been

used in sensor coverage of static environments by [16, 19] due to its improved
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Algorithm 4 STMGP + IPP

Require: approxMI {boolean flag determining how to find most informative path}
Require: useRatio {boolean flag determining sampling goal location selection}
Require: B {maximum allowed path length per timestep}
1: Xi,Yi ← GetRandomInitialData(5%)
2: qt ← GetRandomStartingLocations()
3: Vt ← UpdateVoronoiPartitions(qt)
4: γ̂t ← 0 {γ̂t(i) is the MI lower bound for robot i}
5: for t ∈ T do
6: for each robot i do
7: GPi ← FitGP(Xi,Yi)
8: end for
9: MGPt ← MixGPs(GPi) {section 4.3.1}
10: µ∗

q∗i |Xi,Yi
, σ∗

q∗i |Xi,Yi
←MGPt.µ,MGPt.σ {section 4.3.1}

11: qt+1 ← SampLocSelect(σ∗
q∗i |Xi,Yi

, γ̂t, Vt, qt, B, useRatio) {section 4.3.2}
12: γ̂t ← γ̂t + σ∗

qt|Xi,Yi
{section 4.3.2}

13: K̃ ← FitGP(
⋃
iXi,

⋃
iYi).K {via P2P comm}

14: Ψt ← IPPSubroutine(K̃, qt, qt+1, approxMI) {section 4.3.2}
15: for each robot i do
16: xi, yi ← MoveAndCollectSamples(Ψt(i))
17: Xi, Yi ← Xi ∪ xi,Yi ∪ yi
18: end for
19: Vt ← UpdateVoronoiPartitions(qt+1)
20: Xi,Yi ← CommDataUsingVoronoi(Xi,Yi, Vt)
21: EvaluateAndCalculateRMSE(µ∗

q∗i |Xi,Yi
)

22: end for
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representational capacity. In our prior work, we modified the mixture of Gaussian

Processes approach for spatiotemporal environments by utilizing the aforementioned

spatiotemporal GP components, which were used for procuring samples for training

a neural process model for spatiotemporal forecasting [9]. We briefly summarize the

mixing process and the sampling strategy.

Our distributed approach leverages a Spatiotemporal Mixture of Gaussian Pro-

cesses (STMGP) for adaptive sampling and prediction in a spatiotemporal environ-

ment Q. Here, each robot i has a learned local Gaussian Process component GPi,

which yields a set of n GP components {GP1, . . . GPn} and an associated proba-

bility function P (q, ig) = P (q ∈ Q is best described by GPig). Suppose the robot

i has sampled locations Xi and suppose Yi are the associated ground-truth val-

ues sampled from locations Xi. Moreover, suppose robot i has a mean µX∗
i|Xi,Yi

and covariance matrix KX∗
i|Xi,Yi

as well. Now, let x∗ ∈ X∗
i. Furthermore, let

µx∗i |Xi,Yi
∈ µX∗

i|Xi,Yi
and σx∗i |Xi,Yi

∈ diag(KX∗
i|Xi,Yi

). We can represent the local

conditional posterior mixture mean µ∗
x∗i |Xi,Yi

and local conditional posterior mixture

variance σ∗
x∗i |Xi,Yi

as shown in Equation (4.3) and Equation (4.4) respectively where

diff(i) = (µx∗i |Xig ,Yig
− µ∗

x∗i |Xi,Yi
)2.

µ∗
x∗i |Xi,Yi

=
m∑
i=1

P (q, ig) ∗ µx∗i |Xig ,Yig
(4.3)

σ∗
x∗i |Xi,Yi

=
m∑
i=1

P (q, ig) ∗ (σx∗i |Xig ,Yig
+ diff(i)) (4.4)

Here, Xig ⊂ Xi and Yig ⊂ Yi, and each represents the set of samples and

ground-truth values that can be best described by GPig (i.e. Xig = {q ∈ Xi :

argmaxi′g P (q, i
′
g) = ig}. The mixing probabilities are determined via a distributed

EM procedure, and we modify Xi and Yi based on the Voronoi tesselation induced

by the current location of each robot. The above procedure is carried out in a

decentralized manner using the method in [9, 19].

Training Local ST Gaussian Processes

We now specify the kernel function for each local GP model. We use a squared ex-

ponential kernel, which we augment with automatic relevence determination structure
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to compute a length hyperparameter for each input dimension. Let xa =
[
qa ta

]
and xb =

[
qb tb

]
. Let d = dim(xa) = dim(xb) and let x(i) denote the i-th element

in vector x. Then, we can represent the squared exponential kernel with automatic

relevence determination as shown in Equation (4.5).

k(xa, xb|θ =
[
σ σf σn

]
) = σ2

f exp

[
−1

2

d∑
m=1

(xa(m)− xb(m))2

σ(m)2

]
(4.5)

We can optimize for the parameters in θ in a Bayesian framework by maximizing

the natural logarithm of the marginal likelihood [30]. The optimization problem

to compute the optimal θ∗ can be posed as θ∗ = argmaxθ logP(Y|X, θ), where

logP(Y|X, θ) = −N
2
log(2π)− 1

2
log |KX,X| − 1

2
Y⊤K−1

X,XY.

Since we seek to address reducing the mean squared error as shown in Equa-

tion (4.2), we choose to leverage mutual information as our heuristic for goal sampling

location selection (adaptive sampling) and path selection (informative path planning).

We describe this in section 4.3.2.

4.3.2 Informative Path Planning

We now address the problem of informative path planning, as it is necessary

to determine what path the robots take for collecting samples when transitioning

between one timestep to the next. Since the time elapsed contained in a given timestep

is limited, the robots can only move a certain distance in the environment at each

timestep (i.e. the robots cannot move to any arbitrary location at each timestep).

Thus, it is crucial that each robot plans the most informative path for collecting

samples. We choose to leverage mutual information gain as our information criterion,

which we demonstrate in prior work is a better criterion in comparison to alternative

ones such as entropy [14].

We approach this problem in a two-stage fashion. First, given the maximum path

length that can be traversed within the timestep, we determine the best sampling

location that is reachable using the STMGP model and a mutual information-based

criterion. We present two approaches to utilize the STMGP model for determining

the optimal destination sampling location (i.e. goal location).

Once this sampling location (i.e. goal location) has been determined, we explore
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the set of possible paths to reach that location and determine which location provides

the most informativeness via mutual information approximated using submodular

function approximation. We present two approaches for this as well.

Formulation for Informative Path Planning

Let ψi be the trajectory or path of robot i and let B be the budget or maximum

allowable path length in a timestep. Furthermore, let I(ψi) and C(ψi) be the informa-

tion gain (i.e. mutual information gain) and path cost (i.e. path length) associated

with ψi. We address the following optimization problem shown in Equation (4.6) for

each robot, which is known as the multi-robot informative path planning problem.

ψ∗
i = argmax

ψi

I(ψi) s.t. C(ψi) ≤ B (4.6)

Some prior work have also proposed a variant of the informative path planning

problem as shown in Equation (4.7).

ψ∗
i = argmax

ψi

I(ψi)

C(ψi)
s.t. C(ψi) ≤ B (4.7)

In section 4.3.2, we outline a mutual information-based heuristic to select which

sampling location will provide the most informative sample with respect to the

current model, and we set that as a sampling goal location to reach. We propose

two approaches for doing this based on the two styles of multi-robot informative

path planning optimization schemes shown in Equation (4.6) and Equation (4.7). In

section 4.3.2, we then outline choosing which path to take to reach that sampling

goal location such that the cumulative information gained from collecting samples

along the path is maximized. In this section, we also investigate two approaches, one

being (on average) a faster but more approximate version.

Mutual Information for Selecting Goal Sampling Location

Calculating mutual information is known to be difficult but in order to have the

most accurate representation of the environment, each robot should choose the most

informative sample. Thus, for optimizing each local Gaussian Process component, we

37



4. Integrating Multi-Robot Adaptive Sampling and Informative Path Planning for
Spatiotemporal Environment Prediction

choose a sample that optimizes for a lower bound on the mutual information between

the current local Gaussian Process GPi and the noisy observations to be collected

Yi from the sampling locations Xi at timestep t. Let γt = maxXi
It(Xi, ϕ|GPi)

where I(·) is the mutual information. For Gaussian Processes, the lower bound

γ̂t =
∑t

t′=1 σ
2
t′(xt′) ≤ 2

log(1+σ−2
n )
γt holds [3]. The lower bounded quantity γ̂t can be

computed as shown in Equation (4.8), and optimizing for the lower bounded quantity

γ̂t yields the optimization strategy shown in Equation (4.9) for each robot [3].

γ̂t = γ̂t−1 + σ∗
x∗|Xi,Yi

(4.8)

x∗ = argmax
x∗i∈Vt(i)

√
σ∗
x∗i |Xi,Yi

+ γ̂t−1 −
√
γ̂t−1 s.t. dist(x∗i , qt) ≤ B (4.9)

From this we can simply find the sampling location that satisfies Equation (4.9)

for each robot, which would address Equation (4.6). Alternatively, we could consider

a strategy based on solving Equation (4.7) as shown in Equation (4.10).

x∗ = argmax
x∗i∈Vt(i)

√
σ∗
x∗i |Xi,Yi

+ γ̂t−1 −
√
γ̂t−1

C(x∗i , qt)
s.t. dist(x∗i , qt) ≤ B (4.10)

Generally, C(x∗i , qt) = dist(x∗i , qt), which often leads to myopic waypoints. Thus,

most methods that address Equation (4.7) often generate waypoints that are close to

the current location of the robot. This tends to work well in greedy structures [35] or

RL-based schemes [28, 29, 31]. However, since we are leveraging a decoupled strategy,

we often do not want a myopic waypoint to be chosen as our sampling goal location

at each timestep. Thus, we propose C(x∗i , qt) =
(B−dist(x∗i ,qt))

2

B
+ 1. This is a shifted

and scaled quadratic term centered around the budget the produces a value of 1 if

the path chosen exhausts the budget B and produces a larger value the shorter the

path length. We find that this empirically works well in our empirical evaluation in

section 4.4. We show both approaches in Algorithm 5.

Mutual Information for Path Planning

When each robot selects the most informative sampling location (that is reachable)

to navigate to, it induces a closed set of possible paths to consider. Thus, once each
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Algorithm 5 SamplingGoalLocationSelection

Require: σ∗
q∗i |Xi,Yi

{STMGP uncertainty or variance}
Require: γ̂t−1 {Mutual information lower bound}
Require: Vt {Voronoi partitions}
Require: qt {Current locations of robots}
Require: B {Maximum allowable path length or budget}
Require: useRatio {Flag for goal samp select method}
1: qt+1 ← ∅
2: if useRatio == True then {use Ratio method}
3: for each robot i do
4: Θ(i)←

√
σ∗
q∗i ∈Vt(i)|Xi,Yi

+ γ̂t−1(i)−
√
γ̂t−1(i)

5: δ(i)← GetAllShortestDists(qt(i), Vt(i))

6: C(i)← (B−δ(i))2
B

+ 1

7: Ω(i)← Θ(i)
C(i)

8: Ω(i)[δ(i) > B] = −1
9: qt+1 ← qt+1 ∪ argmaxq Ω(i)
10: end for
11: else {simple search for maxima}
12: for each robot i do
13: Θ(i)←

√
σ∗
q∗i ∈Vt(i)|Xi,Yi

+ γ̂t−1(i)−
√
γ̂t−1(i)

14: δ(i)← GetAllShortestDists(qt(i), Vt(i))
15: Θ(i)[δ(i) > B] = −1
16: qt+1 ← qt+1 ∪ argmaxq Θ(i)
17: end for
18: end if
19: return qt+1

39



4. Integrating Multi-Robot Adaptive Sampling and Informative Path Planning for
Spatiotemporal Environment Prediction

robot chooses which sampling goal location to navigate to, the robot must then

choose which path to choose such that the samples collected at each location along

the path maximizes the cumulative information gained. We rely on utilizing mutual

information to maximize the informativeness of the path chosen.

Once again, computation of mutual information is difficult. Moreover, instead

of determining the mutual information with respect to a function (which was the

case in section 4.3.2), we have to evaluate the cumulative return of collecting a set of

locations which provides the maximal informativeness with respect to one another.

Let Ψi
(qt,x∗)

be the set of samples along the ith candidate path from the current

location qt to the goal location x∗ determined by the optimization strategy shown in

Equation (4.9). Furthermore, let Φt = {ϕ(q, t) : ∀q ∈ Q} be the set of environment

values at all the locations in the environment Q at timestep t. We wish to solve the

optimization problem posed in Equation (4.11) for each robot.

Ψ∗ = argmax
Ψi

(qt,x
∗)

I(Ψi
(qt,x∗),Φt \Ψi

(qt,x∗))

= argmax
Ψi

(qt,x
∗)

H(Φt \Ψi
(qt,x∗))−H(Φt \Ψi

(qt,x∗)|Ψ
i
(qt,x∗))

(4.11)

Since mutual information gain is a monotone and submodular function [12, 18, 41],

we leverage submodular function optimization to find a provably good approximate

path (i.e. set of sampling locations) to the optimally informative path. We present

two approaches to utilizing submodular function optimization to select the provably

near-optimal informative path. One approach is a simply to find the path with the

maximum information gain after computing the approximate mutual information

gain for each path using submodular function optimization, which requires analyzing

each candidate path. Alternatively, we can employ a greedy-based approach similar

to [18, 41] to find the approximately optimal informative path by treating the set

of paths as a stream of batched samples and employing a stream-based secretary

algorithm to approximately solve for the optimal Ψ∗ at each timestep t based on the

methodology in [18]. We show both approaches in Algorithm 6.
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Algorithm 6 IPPSubroutine

Require: Ĩ(·|K̃) {K̃ is the covariance matrix used to approximate MI via
submodular function optimization}

Require: qt {Current locations of robots}
Require: qt+1 {Goal locations of robots}
Require: approxMI {Flag to determine IPP method}
1: Ψt ← ∅
2: if approxMI == True then {stream secretary [18]}
3: for each robot i do
4: Ψi

(qt,qt+1)
← ComputeAllPaths(qt, qt+1)

5: r ← 0
6: n← |Ψi

(qt,qt+1)
|

7: for each path ψi ∈ Ψi
(qt,qt+1)

do

8: if 0 < i < n
exp (1)

and Ĩ(ψi) > r then

9: r ← Ĩ(ψi)
10: else if Ĩ(ψi) > r or i == n then
11: Ψt(i)← ψi

12: break
13: end if
14: end for
15: end for
16: else {simple search for maxima}
17: for each robot i do
18: Ψi

(qt,qt+1)
← ComputeAllPaths(qt, qt+1)

19: r ← 0
20: for each path ψi ∈ Ψi

(qt,qt+1)
do

21: if Ĩ(ψi) > r then
22: r ← Ĩ(ψi)
23: Ψt(i)← ψi

24: end if
25: end for
26: end for
27: end if
28: return Ψt
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4.4 Empirical Evaluation

We evaluated our approach on a spatiotemporal dataset to demonstrate the efficacy

of our methodology. We describe the empirical evaluation below.

Figure 4.1: Visualization of the ground truth spatiotemporal air temperature data
across 6 consecutive timesteps

4.4.1 Experimental Setup

We test our methodology on a spatiotemporal air temperature dataset [10]. This

dataset contains monthly air temperature readings from 1948 to near present in

2.5 degree latitude × 2.5 degree longitude discretization. We test on a 45 × 21

size grid with the same discretization, yielding an area of 112.5 degree latitude

by 50 degree longitude area. Figure 4.1 shows a visualization of the dataset for a

couple of consecutive timesteps to demonstrate qualitatively the spatial and temporal

correlation present within the data. We analyse root mean square error (RMSE),

since this metric is used in adaptive sampling and reconstruction literature.
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4.4.2 Results

We evaluate the performance of the spatiotemporal mixture of GPs (STMGP)

model augmented with informative path planning (IPP) on predicting all locations in

the timestep after collecting samples and updating the STMGP model. Figure 4.2

and Table 4.1 shows that with less than 5% of the spatiotemporal dataset provided as

initial data per robot, the STMGP model is able to stably converge within to a model

that can accurately predict the spatiotemporal environment with an average RMSE

of around 5. Moreover, with the exception of the first couple of timesteps (due to the

need to explore and collect data), the STMGP model achieves an RMSE between 4 to

6. Note that the RMSE fluctuates due to the environment changing at each timestep

and the STMGP predicting the spatiotemporal environmental phenomena given only

the data it has seen until that timestep. The maximum and minimum air temperature

in this dataset are -45.76 and 42.15, so this RMSE is quite low (normalized RMSE =

0.0569).

Sampling
Goal
Selection

IPP
Method

Stream Secratary Maxima Search

Ratio 5.10287, 5.0663 5.03722, 5.12957
Direct 4.98927, 5.13966 4.99739, 5.1613

RMSE using shortest path: 5.33637

Table 4.1: Comparison of RMSE for each proposed approach where each cell corre-
sponds to (B = 5, B = 10)

This demonstrates that the STMGP is accurately predicting the air temperature

distribution of the environment despite having very little knowledge of the underlying

spatiotemporal dynamics, so the STMGP model is clearly choosing appropriate

sampling goal locations and informative paths to reach those sampling goal locations

to ensure that it maintains a representative model.

In addition to this, we test the performance of the STMGP with informative path

planning integrated against the STMGP with a simple shortest path planning algo-

rithm and no budget constraint or constraints on sampling goal location. This serves
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Figure 4.2: (Left) Average RMSE of predicting all locations in the next timestep for
each timestep using the STMGPs with B = 5 and visualization of robot trajectories
with estimation of final timestep. Each quadrant corresponds spatially to the cell in
Table 4.1. (Right) Ground truth of final timestep.

as a representative baseline of our prior work to compare our proposed approaches

for augmenting our STMGP adaptive sampling framework with informative path

planning. From Table 4.1, we see that all the proposed approaches outperform our

unconstrained STMGP model with shortest path planning. Thus, we can see that

even with constraints, our STMGP adaptive sampling framework augmented with

the informative path planning handles the constraints such that it performs better

than our baseline prior work.

Figure 4.3: Visualization of the ground truth spatiotemporal density function versus
the estimate from the STMGP+IPP model across 6 timesteps under B = 5. We
showcase the method that achieved the best average RMSE based on Table 4.1 (Direct,
Stream Secretary).

This demonstrates both the utility in using mutual information as the information
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criterion for informative path planning as well as the two-staged approach that we

employ to achieve effective integration of adaptive sampling and informative path

planning for spatiotemporal prediction.

4.5 Conclusion

In this work, we present an end-to-end methodology for effective and coordinated

multi-robot information gathering to adaptive determine informative sampling goal

locations and then plan informative paths to those locations to collect samples along

the way. By leveraging a decoupled process that starts with adaptive sampling for

sampling goal location selection followed by informative path planning, we are able

to learn an effective active learning model of the spatiotemporal environment for

accurate prediction.
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Chapter 5

Conclusion

5.1 Summary of Contributions

In this thesis, we investigate the multi-robot adaptive sampling and informative

path planning problem for spatiotemporal environments. Within this broad topic, we

analyze two particular problem instances:

1. How to deploy a team of robots to adaptively sample a spatiotemporal environ-

ment to procure a sparse dataset for learning a parametric forecasting neural

model?

2. How to integrate a spatiotemporal adaptive sampling framework with informa-

tive path planning under path length constraints in each timestep with minimal

effect on predictive error?

We present two methodologies for addressing both of these formulations. Both are

centered around the use of the spatiotemporal mixture of GPs (STMGP), which we

compose of spatiotemporal unimodel GPs and use a squared exponential kernel with

automatic relevence determination for the kernel structure. Moreover, we optimize

for the hyperparameters in the automatic relevence determination kernel using a

Bayesian optimization scheme. The use of the common squared exponential (RBF)

kernel with automatic relevence determination indicates the lack of assumptions made

regarding the spatiotemporal environment. Within the two methodologies, we also

do not integrate specific information regarding the environment, ensuring that our
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approaches can be used for any arbitrary spatiotemporal environment.

The first methodology uses the STMGP to determine samples both for updating

itself as well as for recommending a set of samples for training a neural model

for spatiotemporal forecasting. We demonstrate that the use of the STMGP for

recommending samples to the recurrent neural process (RNP) performs better than

random sampling, which is what a majority of prior work in deep learning for

spatiotemporal forecasting uses. Moreover, we show that the common heuristic used

in prior work in adaptive sampling for environment reconstruction, the maximum

uncertainty sampling stategy, is not appropriate for spatiotemporal environments, and

that mutual information is a more appropriate heuristic for handling spatiotemporal

reconstruction. The second methodology uses the STMGP to search for informative

waypoints that are reachable under a maximum path length at each timestep. Using

this waypoint, we search of the set of paths to find an maximally or approximately

maximally informative path.

For both works, we demonstrate accurate predictions and forecasting, with low

normalized RMSE. This performance demonstates that our approaches can coordinate

a team of robots effectively to address these problem formulations in a distributed

and decentralized manner. Moreover, we address significant knowledge gaps present

in multi-robot spatiotemporal adaptive sampling and informative path planning.

We show how to design a robust non-parametric approach using n GP components

(represented by each of the n robots) with specific but necessary structures to achieve

a low RMSE model across each timestep in the spatiotemporal environment. We also

demonstrate how to integrate this into either learning a model for spatiotemporal

forecasting (via strongly supervised learning) or integrating an informative path plan-

ning scheme that respects path length constraints between each timestep (accounting

for robot actuation constraints).

5.2 Future Work

There are many avenues for future work that are currently being investigated or

that we plan to investigate. One such avenue involves improving the STMGP model

itself with better kernel structures. While we avoided using domain-specific kernels

in this thesis to allow for generalizability to diverse spatiotemporal environments,
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the squared exponential (RBF) kernel is a commonly used kernel. Newer kernel

structures, such as the Attentive Kernel [2], can be potentially used in the STMGP

model for better modelling and prediction. Another avenue involves use of Log

Gaussian Cox Processes as opposed to Gaussian Processes for modelling, which could

be more useful in sparser spatiotemporal environments such as target tracking and

prediction (as opposed to spatiotemporal fields such as air temperature or ocean

salinity). Another avenue of research is addressing alternative and potentially better

optimization strategies for adaptive sampling and informative path planning for the

multi-robot scenario. For example, the use of multi-agent reinforcement learning

could be investigated for learning a communication-action policy. The use of ergodic

trajectories could also be useful potentially if integrated with the STMGP framework.

These are all research directions we actively are investigating or plan to look into in

the near future.
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