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Abstract

Smart cities integrate thousands of outdoor cameras to enhance urban
infrastructure, but their automated analysis potential remains untapped
due to various challenges. Firstly, the lack of accurate camera calibration
information, such as its intrinsics parameters and external orientation,
restricts the measurement of real-world distances from the captured video.
To address this issue, we propose a scalable framework leveraging publicly
available street-level imagery and map data to automatically reconstruct a
metric 3D model of the surrounding scene, allowing for accurate calibration
of in-the-wild traffic cameras around the world.

Secondly, the presence of occlusions poses significant challenges in object
understanding. For example, objects in the scene may be partially oc-
cluded by other static or dynamic objects, truncated by the camera’s field
of view, or be self-occluded, i.e., only one side of an object is visible from
a specific view. We present a holistic approach to handle such occlusions
for amodal 3D shape reconstruction. The approach starts by learning
occlusion categories with human supervision. Then, these learned cate-
gories are exploited in a novel framework that uses a mixed representation
(keypoints, segmentations and shape basis) for objects to automatically
generate a large physically realistic dataset of occlusions using freely
available time-lapse imagery from traffic cameras. This dataset provides
strong 2D and 3D self-supervision to a network that jointly learns amodal
2D keypoints and segmentations, which are then optimized to reconstruct
3D shapes under constraints provided by occlusion categories. Our system
demonstrates significant improvements in amodal 3D reconstruction of
heavily occluded objects captured at any time of the day from traffic,
hand-held, and in-vehicle cameras, thus enhancing the potential of smart
cities to utilize outdoor cameras for effective urban planning.
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Chapter 1

Introduction

(a) Sample traffic video streams from YouTube (b) Publicly available traffic cameras in
Pittsburgh, PA (source: 511pa.com)

Figure 1.1: The ubiquity of publicly available CCTV cameras from all around the
world, obtained either through a quick YouTube search (left) or provided by the
government (right).

The decreasing costs of sensing devices have led to the widespread adoption of large-

scale public camera networks in smart cities (see examples in Figure 1.1). As of 2016,

there are over 350 million CCTV cameras installed worldwide [65]. These cameras

are deployed by authorities to monitor traffic, aid in urban planning, and ensure city

safety. Additionally, citizens install cameras for various purposes, such as monitoring

1
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1. Introduction

private properties and preventing theft. The ubiquity of CCTV cameras presents

numerous opportunities for cities to gain real-time insights into road complexities.

Cameras within these networks can track the interactions, trajectories, speeds, and

densities of road users, providing valuable data that can inform decision-making for

strategic urban planning. By leveraging this data, cities can optimize transportation

systems, improve traffic flow, and reduce congestion, ultimately leading to safer,

more efficient, and sustainable cities. However, effectively harnessing the potential

of publicly available CCTV cameras remains a challenging task. In this thesis, we

propose a comprehensive framework to tackle two important technical challenges.

Our framework addresses two closely interconnected problems: 1) Automatic scene

reconstruction and camera calibration, and 2) Amodal object understanding under

occlusion. By developing novel and scalable solutions to these problems, we aim to

unlock the full potential of public traffic camera networks and enable the development

of useful applications for smart cities.

1.1 Automatic scene reconstruction and camera

calibration

With the recent advancements in computer vision techniques, traffic cameras have

gained numerous applications, including vehicle speed measurement, automated

traffic analytics, and detecting near-misses or near-accidents for urban planning

improvement [6], just to name a few. Additionally, an important use case is under-

standing human-vehicle interaction behavior for accident prediction and prevention,

as well as achieving multi-camera fusion by aligning different cameras’ views to a

common frame of reference [50]. To enable the development of such applications using

publicly available video feeds, camera calibration is a crucial requirement. Along

with determining intrinsic parameters like focal length and distortion coefficients,

camera calibration also involves estimating extrinsic parameters, which refer to the

orientation and position of the camera in real-world coordinates. Moreover, for accu-

rate downstream applications, knowledge about scene’s geometry like ground plane

parameters and traversible lanes is often necessary, necessitating some form of metric

reconstruction of the scene. However, calibrating each individual camera becomes a

2



1. Introduction

Video stream from a static camera

un
kn
ow
n

Uncalibrated cameras Our approach: Camera Calibration Results

Figure 1.2: Left: In an in-the-wild scenario, a static camera observes a traffic
scene where crucial information such as its height to the ground plane, mounting
orientation, and field of view are unknown. Right: Our approach demonstrates the
accurate localization of 7 cameras at an intersection in Pittsburgh, PA, showcasing
the effectiveness of our methodology.

challenging task when information regarding its intrinsic properties and mounting

specifications is not readily available in most cases (see Fig. 1.2). Despite the existence

of extensive literature on traffic camera calibration, existing approaches suffer from

various limitations. Some methods are impractical for traffic cameras, such as those

relying on checkerboard-based calibration [80]. Other techniques require manual

inputs, such as identifying landmarks with known dimensions like road markings

which can be time-consuming and subject to human error [7, 72]. Moreover, certain

approaches rely on estimating and/or assuming specific priors, such as vanishing

points [16, 35, 68], average vehicle size [12], or camera height [72], which can introduce

potential inaccuracies and limit generalizability.

In this thesis, we introduce a procedure for acquiring accurate metric 3D scene

reconstruction and calibration of stationary cameras in real-world street intersections

in an automated manner (see Fig. 1.2). To achieve this, we leverage the vast amount

of high-quality, geo-referenced, and calibrated images available in Google Street View

(GSV). By utilizing GSV, we construct a metric-scale 3D scene reconstruction at the

desired camera location. Next, we employ state-of-the-art (SOTA) camera localization

techniques, leveraging recent advances in learned feature matching, such as SuperPoint

[13] and SuperGlue [61], to establish robust 2D-3D correspondences. This enables us

3



1. Introduction

to infer the traffic camera’s intrinsic and extrinsic parameters accurately. Through

extensive quantitative and qualitative experiments, we demonstrate the significant

improvements of our method over existing SOTA methods in both intrinsic and

extrinsic calibration. Notably, our approach is efficient and capable of reconstructing

and calibrating more than 100 stationary cameras in various real-world traffic scenes

across the globe, showcasing the scalability and versatility of our method.

1.2 Amodal object understanding

Common occlusion scenario
Prediction Results

Segmentation Keypoints 3D

SOTA 

methods

Ours

Figure 1.3: Left: In a common scenario with occlusion, the front car occludes a
significant portion of the car behind it. Right: Existing SOTA methods struggle to
handle occlusion, as seen in the case of the occluded (yellow) car. In contrast, our
approach predicts accurate 2D/3D amodal representations of objects, even in the
presence of occlusion.

In virtually every scene, occlusions are present, as depicted in Fig. 1.3. Explicitly

modeling occlusions is challenging because of the range of occlusion types in the

scene [41, 78]: an object may be partially occluded by other objects, truncated

by the camera’s field-of-view, and even when there is only a single object in the

scene, self-occlusions occur because a camera can only capture one side of the object

(either left or right, front or back). Despite significant advancements in data-driven

methods for downstream scene understanding tasks such as object detection, tracking,

segmentation, reconstruction, the performance of these approaches often falls short

in scenarios with severe occlusions [58] (see Fig. 1.3).

The limited performance in occluded scenarios can indeed be attributed to the

absence of specialized treatments for occlusions. Treating occlusions as outliers or

4



1. Introduction

noise in the data has been attempted in various studies [21, 22, 29, 41, 64, 73], but

this approach often falls short in providing reliable results, particularly when the

number of occlusions in a scene is substantial (e.g., in an urban area). Learning

occlusions requires a large annotated, realistic dataset. Unfortunately, labeling hidden

parts of objects consistently proves to be difficult for human annotators, leading to a

scarcity of realistic datasets with comprehensive occlusion annotations [14, 54, 56, 83].

As a result, there exists a significant bias against learning robustness to occlusions.

Our work addresses the challenge of amodal object understanding by proposing an

automated way of generating occlusion supervision. Specifically, we exploit the time-

lapse imagery captured by stationary traffic cameras observing street intersections

over extended periods, ranging from weeks to months and even years, to synthesize

diverse occlusion scenarios. Specifically, from time-lapse video streams, we mine for

unoccluded objects using an accurate classifier. Then, using the mined unoccluded

objects and leveraging object motion and 3D static scene constraints such as camera

intrinsics and ground-plane equation, we reconstruct them in a physically accurate 3D

manner. These objects are then composited in both 2D and 3D to generate realistic

occlusion configurations. The combination of real data and synthetic occlusions

results in a hybrid dataset that captures the richness of real-world objects and the

variety of occlusion patterns. To train our model, we utilize this hybrid 3D composited

data as amodal supervision. We train layered amodal keypoints and segmentations,

and the amodal 2D representations are lifted to 3D using shape basis optimization.

Throughout the pipeline, the occlusion category is used for supervision, ensuring

accurate amodal 3D reconstructions.

5
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Chapter 2

Background

2.1 3D Scene Reconstruction and Camera

Calibration

Reconstructing the complete 4D vehicular activity, which encompasses 3D space and

time, from a single stationary camera operating in real-world conditions presents a

formidable challenge. This problem is inherently complex and necessitates precise

camera calibration. The calibration process involves two key aspects: 1) intrinsics

calibration, which takes into account perspective projection and potentially corrects

for radial and tangential distortion, and 2) extrinsics calibration, which handles

varying camera rotations and addresses the unknown distance between the camera

and the ground plane of the road. Therefore, to achieve accurate reconstruction, it

is crucial to determine both intrinsic and extrinsic camera parameters, as well as

establish the scene geometry and/or the camera’s distance from the road plane.

Existing approaches: When it comes to camera calibration in general, various

approaches exist. The widely used method by Zhang et al. [80] employs a calibration

checkerboard to obtain intrinsic and extrinsic camera parameters. However, this

traditional checkerboard-based method becomes impractical for traffic cameras in

inaccessible locations, particularly in-the-wild scenarios. In the context of traffic scene

analysis, alternative methods have been proposed. Some approaches [7, 24, 27] rely on

detecting vanishing points at road marking intersections, utilizing vehicle motion to

7



2. Background

calibrate the camera [12, 16, 17, 62], or involving manual measurements of dimensions

on the road plane [15, 39, 46, 47, 48, 51, 67]. Various techniques have also been

proposed for estimating the scene scale. For example, [16] employed a 3D bounding

box around vehicles and their average dimensions to compute the scale, and [68]

suggested using the alignment of a 3D model and a bounding box for scale inference.

However, it is important to note that these methods have limitations in terms of

scalability and accuracy. Manual methods require laborious landmark and dimension

setting, while automatic methods still exhibit high errors and high sensitivity to

the quality of estimated geometric cues such as vanishing points, rendering them

unsuitable for achieving precise 3D reconstruction. A comprehensive survey on

Monocular Visual Traffic Surveillance has been conducted by Zhang et al. [79].

Our approach: To achieve accurate metric 3D scene reconstruction and automatic

camera calibration, we propose leveraging the extensive collection of geo-registered

panoramic imagery from Google Street View [23] (GSV). This approach offers a

cost-effective and automatable solution for reconstructing urban areas in 3D. We

employ structure-from-motion (SfM) [63] to reconstruct the scene’s metric geometry

using multiple geo-referenced panoramic images from GSV, sampled around a specific

physical location. To localize a query image from a traffic camera stream within the 3D

reconstruction obtained from GSV images, we leverage robust 2D-3D correspondences

generated by a learned feature matching method called SuperGlue [61]. SuperGlue,

in combination with SuperPoint [13] features, produces a large number of accurate

matches between the query image and the GSV images. Despite the challenging

differences in appearance, these matches enable us to robustly recover both the

camera’s intrinsic parameters and its 6 degrees of freedom (6DoF) extrinsic parameters.

2.2 Amodal Object Understanding

Occlusion Reasoning: Understanding and reasoning occlusions has been extensively

studied for decades [21, 22, 64]. Bad predictions due to occlusions are dealt with

as noise/outliers in robust estimators. On the other hand, occlusions are explicitly

treated as missing parts in model fitting methods [70, 81]. But severe occlusions,

such as when a large part of an object is blocked, can result in poor model fitting

[25, 84]. Furthermore, often these approaches do not explicitly know which parts of

8



2. Background

an object are missing and attempt to simultaneously estimate the model fit as well as

the missing parts. While these approaches have advanced the state-of-the-art, they

focused on only one type of occlusion (either self-occlusion or occlusion-by-others)

and there is still a strong need for a holistic approach for 3D amodal reconstruction

under all types of occlusions.

2D Amodal Representation: Although the effects of occlusion on visual reasoning

has been widely studied, estimating the amodal representation (i.e. both the occluded

and visible regions) has only been recently explored. Initial attempts [20, 26, 54, 83]

use a supervised learning paradigm using small datasets [54, 83] where humans have

annotated occlusions to the best of their abilities. Some methods [55, 56, 66] have

explored using multiple views to provide accurate supervision for occluded parts but

are not scalable due to capture limitations. To expand supervision, several methods

synthesize occlusions to varying degrees of realism. But pure CG renderings [2, 18,

19, 30, 33, 41, 77] suffer from a wide domain-gap [36, 64]. To address this domain

gap, methods like WALT [58] introduce a hybrid approach to composite real image

segments of unoccluded objects captured from time-lapse data to create a 2D clip-art

dataset of a large number of occlusion configurations. Most of these methods only

classify occlusion types into visible and occluded (2-classes), while our proposed

method is able to extend this object categorization to different occlusion categories

which we show to be more effective for amodal 2D and 3D reconstruction.

3D Amodal Reconstruction: Amodal 3D reconstruction is still in the nascent

stages of research. Most of the algorithms developed have been for self-occluded

objects with shape completion from partial observations [11, 52, 82]. On the other

hand, shape models fitting for objects only with the visible regions either from

images [25, 31, 38, 59] or depth sensors [1, 53, 74] have been explored. Compared to

these methods, our pipeline and network focus on learning both 2D and 3D amodal

representations under a variety of occlusion configurations from just streams of images.
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Chapter 3

Scene Reconstruction and Camera

Calibration

Our objective is to construct a metric 3D reconstruction of the scene around a desired

traffic camera’s GPS location, such as an intersection. Subsequently, we aim to

localize the traffic camera within the obtained reconstruction. The overall framework

of our approach is illustrated in Figure 3.1.

3.1 3D Scene Reconstruction

To perform the reconstruction, we leverage Google Street View (GSV) [23] to build

the scene’s geometry around a specific GPS location. GSV is a street-level imagery

database and a rich source of millions of panorama images with wide coverage all

over the world. Every panorama image is geo-tagged with accurate GPS coordinates,

capturing 360◦ horizontal and 180◦ vertical field-of-view (FoV) with high resolution

(see Fig. 3.2). This panorama is also known as an equirectangular image, which can

be thought of as a sphere mesh unwraped on a flat rectangular plane surface.

In particular, we first sample N panoramas (equirectangular) frames E = {Ei|i =

1 . . . N} around the desired camera’s location inside a radius of 40 meters from the

GPS location. As most components of a structure-from-motion (SfM) pipline [63]

are only well-designed for rectilinear perspective images, we extract ideal, pinhole

camera-style perspective projections from an equirectangular image before performing

11



3. Scene Reconstruction and Camera Calibration

3D Scene

Reconstruction

Metric-scale 3D Reconstruction

GPS Coordinates

Camera

Localization

Street-level Panoramas

Query Image

6DoF Pose

Intrinsics

Figure 3.1: Overview of the scene reconstruction and camera calibration pipeline.
Top: Using street-level panoramas (equirectangular images) and corresponding GPS
coordinates from Google Street View (GSV), we perform 3D scene reconstruction
to obtain a metric-scale 3D representation of the scene. Bottom: Given a query
image from a traffic camera stream, we perform camera localization to accurately
determine both the intrinsic parameters and the 6 degrees of freedom (6DoF) pose of
the camera with respect to the scene.

3D reconstruction (more details in [4]). Specifically, from each equirectangular image

Ei, we extract T perspective images I = {Iij|i = 1 . . . N, j = 1 . . . T} which are

uniformly sampled along the yaw direction with specified size and FoV, covering

360◦ horizontal FoV. Denoting Π as the projection function from equirectangular to

perspective image, we can define each perspective image Iij as:

Iij = Π(Ei, pitch=0, yaw=
2π ∗ j

T
, (height,width)=(H,W), fov=FOV)

In practice, we found the set of hyperparameters {T=12, H=1080, W=1920, FOV=90◦} to

be producing high-quality perspective images with sufficient overlap and minimal

perspective distortions.

In the following paragraphs, we described the specific details from each step

12



3. Scene Reconstruction and Camera Calibration

Example: Pittsburgh’s Street View coverage

Panorama

GPS coordinates

Query GPS location

Street View 

data collection

Figure 3.2: The coverage of Google Street View is highly extensive, with data
being captured over the course of the last decade. At any given location, we can
query the closest panorama (equirectangular image) that covers a 360◦horizontal and
180◦vertical field-of-view, together with its GPS coordinates.

of using structure-from-motion COLMAP [63] to estimate for each frame Iij the

intrinsic Kij and extrinsics camera parameters (Ri,j, ti,j). An overview of the pipeline

is illustrated in Figure 3.3.

Pre-processing. Because dynamic objects often cause errors in the reconstruction,

we apply a segmantic segmentation method [10] to segment out potential dynamic

objects such as vehicles and people in every frame and suppress feature extraction

in these areas. For each perspective image, as we know its exact focal length with

no distortions (assuming it is extracted from a correct equirectangular), the intrinsic

camera parameters Kij is known. Therefore, we use SIMPLE PINHOLE camera model

and fixed the shared camera intrinsics for all the frames.

Feature matching. Although SIFT [45] features works well for the reconstruction

process given the dense samples of GSV images, we instead use a learned feature

extractor SuperPoint [13] as it will allows us to take advantage of learned feature

matching in the later localization step. To find correspondences between the feature

points in different images, instead of using exhausive matching where every image

is matched against every other image, we use a modified version of vocabulary tree

matching where every image is matched against its visual nearest neighbors using

a vocabulary tree. To build the vocabulary tree, we first compute the descriptor

centroids using KMeans++ [5], then KDTree is used to build the vocabulary tree using

VLAD [3] descriptors. This vocabulary tree can be thought of as a visual database

13



3. Scene Reconstruction and Camera Calibration

perspective 

images

feature 

extraction

feature 

matching

COLMAP

SfM

features matches
preprocessing

Extractor:

SuperPoint

Matcher:

SuperGlue

image retrieval

visual similarity

image 

pairs

Mask out 

potential 

dynamic objects

Figure 3.3: Overview of the 3D scene reconstruction pipeline. Using multiple retrieved
panorama images from GSV, our objective is to create a metric-scale 3D reconstruction
of the scene.

which we will use to retrieve the database images that are the most similar (in terms

of visual appearance) to the query image.

Enforcing panoramic constraints for bundle adjustment. In a standard structure-from-

motion (SfM) workflow, the input image collection is assumed to be unordered, and

each image is treated independently. However, in our case where we extract perspective

images by sampling from panoramas, we can leverage the known transformations or

relative poses between frames that are sampled from the same panorama. To achieve

this, in addition to the typical bundle adjustment (BA) optimization that minimizes

the reprojection error to refine the reconstructed 3D points, intrinsics, and camera

poses, we incorporate the enforcement of known relative poses between frames from

the same panorama. In our case, two perspective images from the same panorama

are related by a pure rotation around its z-axis since we initially sample and extract

perspective images along the yaw direction. For each image Iij, represented by its

extrinsic camera parameters (Ri,j, ti,j), we introduce a loss term L = Ltrans + Lrot:

Ltrans =
N∑

i=1

T∑

j=2

||ti,j − ti,j−1||
2, Lrot =

N∑

i=1

T∑

j=2

||R⊤
i,jRi,j−1 −Rz(

2π

T
)||2

subject to R⊤R = I, det(R) = 1

14



3. Scene Reconstruction and Camera Calibration

where Rz(θ) denotes the rotation matrix around the z-axis by an angle of θ. In

practice, unit quaternion is used to parameterize rotation during the optimization.

Metric scale calibration. Using the provided GPS coordinates (lat/lon/alt) of the

GSV panoramas, we further geo-registered the up-to-scale SfM reconstruction by

optimizing a 3D similarity transformation between the reconstructed model and

the target coordinate frame. In this case, the target coordinate frame is the Earth-

Centered-Earth-Fixed (ECEF) Cartesian-based coordinate system obtained from

GPS. As a result, our final 3D reconstruction of the scene is in metric scale. The road

plane equation is estimated by fitting a plane to the set of 3D points whose 2D pixel

locations are lying on the road obtained from off-the-shelf semantic segmentation

method [10].

3.2 Camera Localization

query 
feature 

extraction
feature 

matching
PnP+RANSAC+

Bundle Adjustment

features matches

visual similarity
image 

pairs

- 3D model

- images

- features

6DoF Pose

Intrinsics

from 3D 

reconstruction 

Figure 3.4: Overview of the Camera Localization pipeline. Given a query image from
a traffic camera stream, our objective is to obtain the camera’s intrinsic parameters
and its 6DoF pose (rotation and translation) with respect to the 3D scene.

The camera localization step aims to determine the intrinsic and extrinsic param-

eters of the traffic camera with respect to the 3D scene. As depicted in Figure 3.4,

we adopt a visual localization pipeline that involves localizing the query image (a

frame from the traffic camera stream) within the 3D reconstruction constructed using

Google Street View (GSV) images.
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3. Scene Reconstruction and Camera Calibration

For every input query image, we retrieve the top-k similar database images from the

vocabulary tree built in the reconstruction step. After this, we then match the query

image with the retrieved database images (k = 40 images in our case) to establish

2D-3D correspondences and obtain the initial intrinsics as well as 6DoF camera

pose using RANSAC+PnP. In this approach, we follow hloc [60] by using learned

feature matching method SuperGlue [61] with SuperPoint [13] features descriptors to

match the query image with the database images. Given the correspondences and

initial estimates of intrinsics and extrinsics parameters, we perform an extra bundle

adjustment step to refine the parameters. It is worth noting that the use of learned

feature matching is crucial in this matching step, as it has been shown to outperform

hand-crafted feature descriptors and matching methods, particularly in cases where

the viewpoint of the traffic camera (often from the top) differs significantly from

that of the Google Street View (GSV) images (captured from driving viewpoints).

The learned feature matching approach, specifically utilizing SuperPoint [13] and

SuperGlue [61], enables the generation of a large number of accurate matches between

the query image and the comprehensive GSV database images. This rich set of matches

allows for robust recovery of both the intrinsic and extrinsic camera parameters (as

shown in Figure 3.5). Lastly, more recent advances in local feature matching such as

LightGlue [44] can also be used to improve efficiency.

Figure 3.5: Examples of feature matching between the traffic camera image and GSV
images. Despite the significant differences in viewpoint and illumination, learned
methods like SuperPoint [13] and SuperGlue [61] are capable of retrieving a large
number of correspondences.
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3. Scene Reconstruction and Camera Calibration

3.3 Ablation Analysis and Results

Table 3.1: Comparison between our approach vs.
checkerboard-based calibration.

Parameters Checkerboard (pix.) Our approach (error)
Fx 2707± 3.99 2721 (0.52%)
Fy 2708± 4.66 2721 (0.48%)
Cx 2032± 4.40 2021 (0.54%)
Cy 1443± 2.68 1464 (1.45%)

(radial) k1 −0.304± 0.002 -0.281 (7.56%)
(radial) k2 0.156± 0.007 0.152 (2.56%)

Table 3.2: Mean calibration
error between measured vs. es-
timated distances.

Method Mean Error (%)
DeepVPCalib [35] 12.2

Ours 3.7

Camera Calibration Accuracy: As we have access to 7 cameras that we mounted

in Pittsburgh, we evaluate the accuracy of camera calibration obtained using our

method:

• Intrinsics Parameters: In Table 3.1, we compared our results with checkerboard-

based calibration (using OpenCV calibration for ChArUco board). The error of

our method for the focal length was about 10 pixels, which is less than 0.5

percent. Additionally, the error margin of radial distortion parameters k1, k2

was also in an acceptable range.

• Extrinsics Parameters: Following the common evaluation protocol described

in DeepVPCalib [35], we manually measured some distances between pairs of

points on the road plane along with their pixel positions in the images (e.g.,

lane marking, crosswalks, etc.). We then computed the differences of two

different measurements, defined as ri =
|d̂i−di|

d̂i
, where d̂i is the i-th ground-

truth distance measurement and di is the i-th measurement based on the

ray-plane intersection using the estimated intrinsics matrix and ground-plane

equation. Since DeepVPCalib [35] does not compute the metric scale, we

scale the estimated distances from DeepVPCalib with the ground-truth scale

computed for an arbitrary measurement. As shown in Table 3.2, our method

outperforms existing SOTA method DeepVPCalib [35] by a large margin,

demonstrating the accuracy of our camera calibration as well as estimated scene

geometry.

Enforcing the known relative pose between frames from the same panorama

improves the accuracy of reconstruction: As shown in Figure 3.6, this constraint
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3. Scene Reconstruction and Camera Calibration

BEFORE enforcing relative pose AFTER enforcing relative pose

Figure 3.6: Before and After enforcing the known relative pose between images
sampled from the same panorama. The correction of erroneous poses is highlighted
in the green circles.

helps correct erroneous camera poses. Our observation is that a few erroneous camera

poses do not significantly affect the quality of the reconstruction when we have a

large number of cameras. However, this constraint is especially helpful when we try

to reduce the number of images being used for reconstruction. Empirically, on 10

different intersections, if we reduce the number of images by 70%, the reprojection

error (measured in pixels) reduces by more than 30%.

Qualitative Results: It is important to highlight that our camera localization

approach can be applied to any camera in-the-wild, given sufficient coverage of the

location by Google Street View (GSV). In Figure 3.7, we present detailed reconstruc-

tions and localizations of two different intersections, showcasing the effectiveness of

our method. Additionally, in Figure 3.8, we provide examples of several locations

where we successfully ran our pipeline and obtained both the scene reconstruction

and camera localization. These qualitative results demonstrate the capability of our

framework to accurately reconstruct the scene and determine the camera’s position

within it, showcasing its potential for various applications in smart city environments.

Reproducibility: Code will be made publicly available to the community, whereas

the data is subject to Google Street View’s license.
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3. Scene Reconstruction and Camera Calibration

Pittsburgh, PA
(near CMU)

(a) Fifth-Craig Intersection, Pittsburgh, PA

Jackson Town Square, WY

(b) Jackson Town Square, WY

Figure 3.7: Results of 3D scene reconstruction and camera localization for in-the-wild
cameras.
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3. Scene Reconstruction and Camera Calibration

31

Figure 3.8: Additional examples demonstrating the robustness of our method in
reconstructing scenes and localizing cameras.
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Chapter 4

Amodal Object Understanding

Our goal is to automatically generate 3D amodal supervision data and learn amodal

2D/3D representations using a novel framework. The pipeline involves several steps,

as depicted in Figure 4.1:

• Occlusion Category Classification (OCC): The pipeline starts by utilizing

an OCC network on a stream of data. This network performs two tasks:

localizing 2D keypoints and categorizing the occlusion status of objects within

the scene. The objective is to identify unoccluded objects, which are those not

occluded by other objects or the scene itself.

• Generating 3D Amodal Supervision Data: Once the unoccluded objects

are identified, we leverage the camera’s calibration parameters and the scene

constraints obtained from Chapter 3 to perform 3D spatio-temporal reconstruc-

tion of these objects. By placing the unoccluded objects back into their original

positions, we generate various occlusion configurations as 3D ground-truth

supervision data. This data is used to train the model for predicting amodal

2D/3D representations.

• Learning 2D/3D Amodal Representations: Using the generated amodal

2D/3D data as ground-truth supervision, we propose a novel architecture to

learn 2D/3D amodal representations and recover the 3D pose of the object by

disentangling each layer of occlusion in a network (see Fig. 4.4).
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Unoccluded

Occluded
(by Others/Trunc)

OCC Network

Time-lapse Video 3D Unoccluded Object Reconstruction 2D/3D Clip-art Data

Occlusion Category Classification Generating 3D Amodal Supervision Data

Occlusion Category

Input
Image

Amodal Supervision 
Data

Learning Amodal Representations

Occlusion-guided 
WALT3D Network

2D amodal keypoint 

2D amodal segmentation

3D mesh

Outputs

Figure 4.1: Overall Framework: We illustrate our framework for mining unoccluded
objects to generate 3D amodal supervision data which is then used to learn 2D/3D
amodal representations. The key idea is to use the Occlusion Category Classification
(OCC) network on a stream of data to mine for unoccluded objects. We then perform
3D spatio-temporal reconstruction of these mined unoccluded objects following [42]
to get 3D shape and poses (composited into 3D background scene reconstruction).
These unoccluded objects are placed back in the same location they were detected
to generate various occlusion configurations as 3D ground-truth supervision data to
train for Amodal 2D/3D Representations using occlusion-guided WALT3D network.

4.1 Occlusion Category Classification

Unoccluded Occluded (by Others/Trunc)

Figure 4.2: Occlusion Category Hierarchy. We classify each instance into Unoccluded
(left) or Occluded (by Others/Truncation) (right) based on per-keypoint occlusion
type: visible, self-occluded, occ-by-others, and occ-by-truncation.

Occlusion categories are more nuanced than simply represented using 2 classes

-“occluded” or “unoccluded”. Consider the example images in Fig. 4.2. At an

object-instance level, we can consider the left examples to be of unoccluded cars,

and the right examples to be of cars that are either occluded by other objects or

truncated. But, interestingly, at the object-part level, each keypoint can be either

visible, self-occluded, occ-by-others, and occ-by-truncation. From this definition,
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4. Amodal Object Understanding

object-instance level Unoccluded category can be obtained from part-level categories

if all the keypoints are either visible or self-occluded.

In this work, we show that this nuanced categorization is crucial in two important

ways: (1) Object-instance level categorization is used to mine individual objects that

are Unoccluded. Evidently, many downstream vision tasks such as segmentation,

tracking, and reconstruction work well for such Unoccluded objects. (2) Part-level

or keypoint-level categorization is crucial to provide visibility constraints for 3D

reconstruction. Note that the shape and the pose of the object determine the

visibilities of different keypoints (via raycasting) from a camera. Having visibility

constraints can thus prevent large errors in the object’s shape and pose.

Learning Occlusion Categories: Human labeling of the above occlusion categories

are much more accurate than the localization of invisible keypoints [57]. Thus, we

collected a large dataset with keypoints’ location and occlusion category labeled

manually (details in Section 4.4). The 4-way supervised classifier of keypoints, called

the Occlusion Category Classification (OCC) module is shown in Fig. 4.1.

Mining Unoccluded Objects: Given a stream of time-lapse data from a camera,

we use the OCC network on each detected object instance to estimate keypoints with

occlusion category classes. In each instance, if all keypoints are either visible or self-

occluded, the object instance is classified as Unoccluded (see Fig. 4.2). Otherwise, it is

classified as Occluded (by others/truncation). Using this strategy, even conservatively

choosing only high confidence and low recall samples, we are able to mine for thousands

of unoccluded objects from time-lapse data per camera. Each of the mined objects

comprises of bounding box, segmentation mask, and 2D keypoint locations. These

mined unoccluded objects and the 2D predictions are then used for generating 2D/3D

amodal supervision data.

4.2 Generating 3D Amodal Supervision Data

In this section, we will describe how to exploit the mined unoccluded objects to

generate amodal 2D and 3D supervision signals. We use image based compositing to

generate input image and their corresponding 2D and 3D representations. Following

the nomenclature of [58], we call the generated data as clip-art 2D and 3D data.

Generating Unoccluded Object Reconstructions: Each of the mined unoccluded
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Clip-Art Image Segmentation Keypoints 3D Reconstruction

Figure 4.3: Automatically generated 2D and 3D Clip-Art to supervise our
3D amodal network: Unoccluded objects are first mined using time-lapse imagery
of the WALT dataset [58]. Randomly sampled and non-intersecting unoccluded
objects are composited back into the background image in their respective original
positions to maintain correct appearances. The resulting 3D Clip-Art images and
their respective amodal segmentation masks, keypoint locations, and their occlusion
categories, depth maps and 3D meshes are shown. The clip-art method generates
realistic appearances and 3D from any camera with diverse viewing geometry, weather,
lighting and occlusion configurations. See more examples in the Supplementary.

objects is reconstructed following the approach described in [42]. Starting with the

predicted 2D keypoint locations of each object from the OCC network, we initialize

the 3D poses using the EPnP algorithm [40, 57] by considering only the visible

keypoints. Since unoccluded objects have accurate 2D localization of keypoints, the

resulting reconstruction is precise. Subsequently, we perform joint optimization of the

predicted 2D keypoints and the initialized 3D mean shape of all the mined unoccluded

objects to obtain object poses and mean shape coefficients. To ensure physically

plausible reconstructions, we enforce the constraint that all the objects detected in

the camera should lie on the same plane. This additional optimization constraint

ensures physically plausible object poses. It is important to note that we utilize

the accurate camera calibration obtained using our method described in Chapter 3.

Ultimately, the mined unoccluded object image with its corresponding segmentation
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mask, keypoint locations, and 3D poses are used in a clip-art based framework to

generate 3D supervision data in severe occlusions as illustrated in Fig. 4.1.

Amodal data generation using clip-art: As mentioned earlier, getting amodal

supervision for occluded objects is a challenging problem. By using the clip-art based

image augmentation approach described below, we automatically generate a large

number of realistic supervision signals in severe occlusions. Using the 3D poses of

the mined unoccluded objects from the previous section, we composite the object’s

image and its corresponding amodal 2D and 3D representations (see Fig. 4.3). Non-

intersecting 3D objects are randomly sampled and pasted back into the background

image from the farthest away from camera to the closest. Note that our 3D-based

approach differs from simply compositing 2D images [58] which often leads to objects

that could be intersecting in the real-world. Thus, our method generates physically

accurate and realistic occlusion configurations. Each such generated clip-art image is

accompanied by amodal segmentation masks, amodal 2D/3D bounding box, 3D poses,

and per-keypoint occlusion type (via raycasting). This kind of supervision signal

provides complete scene understanding and will play a major role for deciphering

different layers of occlusions for learning downstream tasks such as tracking and

reconstruction. The accurate geometry of the scene (i.e., camera localization and

ground plane constraints) obtained automatically as described in Chapter 3 also

allows us to generate inter-category occlusion configurations (e.g., vehicle occluded

by people).

4.3 Learning 2D/3D Amodal Representations

We have generated a large clip-art image dataset with corresponding amodal 2D/3D

ground-truth representations. Using these as supervision, we will recover the 3D pose

of the object by disentangling each layer of occlusion in a network (see Fig. 4.4). We

first run a feature extractor network on the input image and ROI features are passed

through a Bbox Network to compute the amodal bounding box. The loss between

the predicted bounding box and the Ground-Truth Amodal Bounding box is given as

LAB. The ROI features are also passed through the 3D prediction network.

Learning 2D Amodal Representations: For computing the amodal features of

an object, it is essential to learn different occlusion layers in the amodal bounding
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Figure 4.4: WALT3D Network: Given the Amodal Clip-Art Image and the corre-
sponding 2D/3D representations of the objects from the occlusion-aware supervision,
we illustrate the network used to train to predict 3D pose and shape of the object.
The input image is passed through a backbone to extract ROI features. These features
are passed through an occluder and occluded networks which help disentangle objects’
occlusion types. The features from these networks are concatenated and passed
through an amodal network. The network learns to predict the amodal segmentation,
keypoint locations, shape bases, and occlusion types. Finally, these representations
are combined with the camera parameters and passed through a Occlusion-Guided
Differentiable PnP to produce the amodal 3D pose. All the network losses are jointly
optimized to produce 3D reconstruction.

box. Inspired from [33, 58], we learn the occluder-occluded-object interaction which

helps us distinguish each object interaction in the bounding box, where the occluder

is the layer occluding the amodal object, while the occluded is the layer occluded

by the amodal object of interest. Our generated clip-art based data readily provides

supervision for each layer. We train each of these components using the binary

cross-entropy loss function L:

LT
M = −WT [G

T
M log(F T

M) + (1−GT
M) log(1− F T

M)] (4.1)

Here, M ∈ [AN,OR,OD] denotes amodal network, occluder and the occluded

network, while T ∈ {S,K} denotes the type of representation, i.e. Segmentation

and Keypoint respectively. We compute the binary cross-entropy loss between the

Ground-Truth G and the predicted feature map F with the weights given by W .

The features from both the occluded and occluder layer are concatenated with the

input ROI feature to produce an occlusion-robust amodal feature vector for each

object. This combined amodal feature is used to compute the segmentation mask,

keypoint locations, shape coefficients, and per-keypoint occlusion category of each
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object. For the amodal segmentation computation, the output of amodal network is

passed through multiple convolutions to produce a heatmap for segmentation and

the loss is computed as:

LAS = LS
OD + LS

OR + LS
AN (4.2)

Here LS
OD, L

S
OR, L

S
AN are binary cross-entropy losses for occluded, occluder, and

amodal segmentation maps.

Similarly, the amodal features are passed through keypoint regression network, and

the loss is given as:

LAK =
∑

k∈K

Lk
OD + Lk

OR + Lk
AN (4.3)

Here Lk
OD, L

k
OR, L

k
AN represent binary cross-entropy loss for occluded, occluder, and

amodal keypoints where the loss is summed over each k ∈ K keypoints of the object.

We also compute the per-keypoint occlusion category to understand the type of

occlusion from the amodal network. The loss is given as:

LOC = −
∑

k∈K

∑

c∈M

ykc log(p
k
c ) (4.4)

where ykc is the ground-truth binary indicator if keypoint k belongs to occlusion

category class c ∈ {visible, self-occluded, occ-by-others, occ-by-truncation} while pkc

is the predicted probability observation of class c for keypoint k from the network.

This helps us predict multiple objects and their visibility accurately. Note that the

supervision for training the amodal representations is given from clip-art based data

generation method as shown in Fig. 4.1.

Learning 3D Amodal Reconstruction: Since we have generated the 2D amodal

representations of the objects, now we can regress for 3D representation from

these features. We pass the amodal representations through an Occlusion-Guided-

Differentiable-PnP (OGD-PNP) to produce the 3D pose and shape parameters used

for amodal 3D recovery. OGD-PNP is similar to [8, 9] with occlusion category super-

vision. The input to this module is the keypoints and segmentation mask transformed

to the original image coordinate frame, the mean shape of the object, mean shape

coefficients, camera parameters, and occlusion category class. We compute the loss
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for OGD-PNP as L3D = LReproj + LOC , with LReproj being defined as:

LReproj =
1

2

N∑

i=1

||wi ◦ (π(RXi + t)− xi)||
2 (4.5)

LReproj represents the reprojection loss between the reconstructed shape and the

predicted shape. Here wi represents the weights of the reprojection loss, ◦ represents

element-wise mutiplication, R and t represent the 3D poses of the object, N represents

all the points in the mean shape, and Xi and xi represent the 3D and 2D predicted

points. LOC , as described above, is the occlusion category consistency term which

enforces that the occlusion configuration of the predicted 3D object should be as

similar as possible to the predicted occlusion type, preventing large errors in the

reconstructed object pose.

End-to-End Optimization: The final step is to optimize for the 3D poses from the

input clip-art image with 2D/3D supervision signals. The final loss term is given as

the sum of the losses for the amodal bounding box, segmentation heatmap, keypoints,

and OGD-PNP:

L = LAB + LAS + LAK + L3D (4.6)

For a object, we learn amodal bounding box, segmentation, keypoint locations, occlu-

sion category, 3D shape and pose in an end-to-end differentiable joint optimization.

4.4 Dataset and Implementation Details

There are multiple vehicle keypoints datasets [41, 55, 69, 76] but none provide detailed

occlusion categories. They also lack the appearance diversity to perform well on in-

the-wild evaluation data. Thus, we propose a new dataset called Occlusion Category

Classification (OCC) Dataset.

Occlusion Category Classification (OCC) Dataset: Our new dataset consists of

images collected from many freely available in-the-wild sources, including in-vehicle,

handheld, and traffic cameras. The dataset captures a large number of appearance

variations including day/night, weather, and seasons. It contains of 7,018 images with

42,547 vehicle instances (90/10% train/test split) with annotations of 12 semantic

keypoints for each vehicle and the corresponding occlusion category. Of these, 5,384
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Figure 4.5: Sample images from our proposed Occlusion Category Classification (OCC)
Dataset. The dataset contains a wide range of appearance variations including day
and night and various traffic scenarios, accompanied by human-annotated keypoint
locations and occlusion type (color-coded).

instances are marked as Occluded-by-Others and 1,467 instances as Occluded-by-

Truncation (see Fig. 4.11). The dataset is used for finetuning and evaluation and will

be publicly released.

WALT Dataset [58]: This dataset contains images from 20 cameras in urban scenes

captured over multiple years. The images are either 4K or HD and are captured

at 60fps in short bursts. We used 30 days of data from 10 cameras resulting in

approximately 3.3 million car instances for our experiments. We use the WALT raw

dataset to generate the Clip-Art and Stationary WALT dataset for evaluation.

Clip-Art WALT Dataset: From the WALT dataset, we mine for Unoccluded

objects resulting in 2.1 million objects. We generate supervision data as described in

Sec. 4.2 by pasting them back into the scene with different backgrounds resulting in

10000 training and 500 testing images per camera. The resulting Clip-Art dataset

covers occlusion categories in different lighting and weather conditions.

Stationary WALT Dataset: From the WALT test set, we mine unoccluded

stationary objects by clustering objects detected at the same location. The unoccluded
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amodal 2D/3D predictions of the stationary object is used as ground truth to compare

predictions when the object is occluded by another object at different times. This

strategy extracted 536 stationary objects observed over 60k frames for evaluation.

Camera and Scene Parameter Estimation: Using our method as described in

Chapter 3, we obtain the 3D scene geometry as well as the camera’s intrinsics and

extrinsics parameters.

Metrics: We follow the Mean Average Precision (IoU=0.5) [43] for bounding box

detection, object segmentation, and 3D pose estimation. In the case of 3D pose

estimation, we compare the predicted 3D bounding box with respect to the ground-

truth bounding box from the 3D Clip-Art generated 3D poses. For the case of

keypoints, we use the Percentage of Correct Keypoints (PCK) metric where a keypoint

is considered correct if it lies within the radius α of the ground-truth keypoint

(normalized by the maximum of length and width of the bounding box and 0 < α < 1).

Baselines: All baselines MaskRCNN [28], Occ-Net [56], 3DRCNN [37], WALT [58],

and our proposed method are pre-trained on available vehicle keypoints datasets

(Carfusion, PASCAL3D+, KITTI3D, ApolloCar3D)[41, 55, 69, 76] and finetuned on

the same Clip-Art WALT dataset. Note that all the baselines either use only visible

regions or 2-class categorization (visible or not).

4.5 Ablation Analysis and Results

Occlusion Category Analysis: We train Occ-Net [56] and OCC module on a

combination of [41, 55, 69, 76] and further finetune on OCC dataset, then evaluate

the accuracy of 2D keypoint localization and per-keypoint occlusion classification on

OCC testing data. First, we observe an improvement of 20% in keypoint localization

accuracy (66.41% to 80.12% on PCK@0.1) compared to Occ-Net[56], demonstrating

the importance of our OCC dataset for providing more diverse data for vehicle

understanding. In terms of per-keypoint occlusion category classification, we achieve

86.18% precision for binary visibility classification (visible vs. occluded). The

OCC dataset allows us to further classify occlusion type, where we achieve 80.80%,

61.74%, and 63.01% for self-occluded, occ-by-others, and occ-by-truncation category

respectively.

Occlusion Categories help Mining Unoccluded Objects: To detect occluded
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Metric δ = 0.01 δ = 0.1 δ = 0.2 δ = 0.5 OCC (ours)
Recall 0.60 0.42 0.17 0.01 0.81
Precision 0.32 0.41 0.52 0.57 0.70

Table 4.1: Accuracy of our OCC module compared with baseline using bbox IOU
threshold δ [58] in detecting Occluded objects.
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Figure 4.6: We show the accuracy of our method with respect to increasing percentage
of occlusion on multiple tasks like amodal detection, segmentation, keypoint and
3D pose estimation. Observe that our method consistently performs better than
other baselines showing robustness to increasing occlusion percentage. The baselines,
WALTNet and Occ-Net, use only visible vs. occluded classes and 3DRCNN uses
visible only.
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AN + Reproj +OR+OD +OR+OD+OC
AK AS Both AK AS Both AK AS Both

Seg 72.3 72.5 76.3 76.9 76.4 76.5
Kps 73.5 73.8 74.3 81.2 85.1 85.3
3D 55.4 42.3 56.5 58.5 46.9 58.3 62.3 50.3 63.4

Table 4.2: Accuracy analysis of each network component with different represen-
tations, i.e. keypoints and segmentation. We show the accuracy of segmentation,
keypoint localization and 3D pose for a combination of network (AN, OD, OR) and
representation type (AK and AS).Observe that with the addition of each constraint,
the accuracy of 3D pose estimation improves. Specifically, adding OR and OD network
helps improve the accuracy of segmentation and keypoints, while adding the occlusion
category loss show improvement in the 3D pose estimation.

Clip-Art WALT dataset Stationary WALT dataset
Seg Kps 3D Seg Kps 3D
(AP) (PCK) (AP) (AP) (PCK) (AP)

3DRCNN [37] 56.5 76.8

WALTNet[58] 76.1 91.7

Occ-Net [56] 73.8 55.4 88.8 87.3

Ours 76.5 85.3 63.4 93.5 93.2 91.7

Table 4.3: Accuracy comparison of our method to baselines on both the composited
data and the real world stationary WALT dataset. We consistently perform better
than the baselines for amodal tasks compared to just learning visible vs occluded
classification.

objects, WALT [58] used a simple heuristic where an object is classified as Occluded

if its bounding box IOU with other objects (in the same category) is greater than

δ. In Table 4.1, we compare this heuristics baseline (using different thresholds of

δ) with our OCC network in detecting Occluded objects. We show that our OCC

module is significantly more effective compared to the naive heuristic especially in

inter-category occlusion scenarios (e.g., vehicle occluded by people or background

objects), allowing us to effectively filter out unwanted occluded objects in the training

dataset, thus simultaneously reduce training time and improve training data’s purity.

Robust 3D Recovery with Occlusions: Our method is robust in detection,

segmentation, keypoint estimation, and 3D pose estimation with increasing occlusion

compared to to previous proposed methods as can be seen from Figure 4.9. We
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Input Image Amodal Segmentation Amodal Kpts 3D View-1 3D View-2

Figure 4.7: We show qualitative results of our method on multiple sequences of the
WALT dataset. The input image to the pipeline produces amodal segmentation
mask and keypoint locations. Our method predicts 3D poses of the objects using an
end-to-end differentiable optimization to produce the 3D poses of the objects. We
show the reconstructed 3D poses of the objects from two views. We observe accurate
reconstruction of vehicles in wide-ranging poses and different occlusion configurations.
Further, we show results on different level and types of occlusions like truncation
(row 1), occlusion by vehicles (row 1 and 2). Also observe that our method is able
to disentangle multiple layers of occlusion where people and vehicles occluded the
purple vehicle in (row 4).

observe specifically that the 3D recovery consistently outperforms other baselines

both in the case of self-occlusion and occlusion-by-others.

Dissecting the Network: We analyze the advantages and disadvantages of different

network choices in Table 4.2. Observing that with the addition of Occluder and

Occluded networks, the accuracy of segmentation improves drastically but the 3D

network does not show substantial improvement in segmentation. Keypoint detection

improves marginally with the addition of Occluder and Occluded network but improves

substantially using the 3D loss. Each of these elements helps improve the accuracy
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of the 3D pose showcasing that both the representations of mask and keypoint are

helpful as well as the network choices help improve accuracy by nearly 8%.

Segmentation vs. Keypoints for Amodal 3D: We show analysis of using different

representations, i.e., segmentation and keypoints for 3D recovery in Table 4.2. We

observe that segmentation helps improve the accuracy in occlusion-by-other cases

while keypoints and mean shape help in self-occlusion. Therefore, we exploit both of

them to produce accurate 3D Amodal Reconstruction.

Binary visibility vs. multiple occlusion categories: We analyze our method

by comparing to baselines which only use binary visibility in Table 4.3 and show

qualitative results in Fig. 4.8. We observe marginal improvement over WALTNet for

segmentation and bounding box due to marginal change in the Clip-Art generation

methodology. However, we do observe a substantial improvement in accuracy for

3D Detection (12%) and keypoint estimation (8%) in severe occlusions compared to

Occ-Net and 3DRCNN. This can be attributed to the novel 3D learning framework

for handling both the self-occlusion and occlusion-by-others cases. Results of our

method can be seen in Fig 4.7).

WALTNet[58] Occ-Net[56] 3DRCNN[37]

Figure 4.8: Comparisons showing that our occlusion categorization (last two rows
of Fig. 4.7) improves 2D/3D predictions compared to SOTA. While WALTNet and
Occ-Net use visible vs. occluded classes, 3DRCNN uses visible only. Observe that
the 3D fit to visible points shows large rotation error (row 1) or even misses objects
(row 2) in severe occlusions. We are able to detect and reconstruct heavily occluded
objects (80% occlusion) compared to previous baselines.
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4.6 Additional Materials

Dataset Image source
Appearance diversity in terms of

# images # car instances Occ. kpt. anns. Per-kpt. occ. type
Cities Times of Day Weathers Viewpoints

PASCAL3D+ Natural Yes Yes Yes No 6,704 7,791 No No
KITTI-3D Self-driving No No No No 2,040 2,040 No No
Carfusion Handheld No No No No 53,000 100,000 Yes No

ApolloCar3D Self-driving No No No No 5,277 60,000 No No

OCC
Handheld
Self-driving

Traffic cameras
Yes Yes Yes Yes 7,018 42,547 Yes Yes

Table 4.4: Summary and comparison of our OCC dataset to other publicly available
datasets with vehicle keypoint annotations.

4.6.1 Network Architecture

Occlusion Category Classification (OCC) Network Given an input ROI from

any off-the-shelf object detector, our goal is to infer the locations as well as the

visibility status (visible/self-occluded/occluded-by-others/occluded-by-truncation) of

12 predefined vehicle semantic keypoints. Specifically, we discard detected objects

(bounding boxes) with confidence score less than 0.3. In terms of network architec-

ture, we utilized the top-down keypoint regression network from Occ-Net [56] with

HRNet [71] as the backbone and added a simple classification head where we associate

each keypoint with one of the four labels mentioned above. To handle the imbalance

in the number of training samples between four categories, we used the weighted

cross-entropy loss with a ratio of 1:1:5:8 (vis:self-occ:occ-oth:occ-trunc). The network

is trained with a batch size of 16 using Adam [34] optimizer with a learning rate of

10−4 that halved every 10 epochs. We train the network end-to-end for 30 epochs

using ground-truth keypoint location and category supervision data and report the

best epoch on the corresponding dataset’s validation set. Additional results from our

OCC network are shown in Fig. 4.11.

Amodal 3D Reconstruction Network We use the Detectron2-based [75] codebase

to train the network. We replicate the MaskRCNN Head for each of the proposed

heads, i.e. Occluder Head, Occluded Head and Amodal Object Head. From the ROI,

we compute feature maps of 3 layers i.e. first layer is 14 × 14 × 256, second layer is 14

× 14 × 256, third layer is 28×28×256. Finally we do a softmax to produce the mask

heatmap of 28 × 28 × c, where c is the number of classes. Similarly, we follow the
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Figure 4.9: We show the accuracy of our method with respect to increasing number
of occluded keypoints on multiple tasks like amodal detection, segmentation, keypoint
and 3D pose estimation. Observe that our method consistently performs better than
other baselines showing robustness to increasing occlusion percentage.
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Figure 4.10: We show amodal depth computation on the 3D clip-art dataset. Observe
that the depth information is accurate and can be used to train amodal depth networks
as well.

same paradigm for the keypoint heatmap. Once we have the 2D amodal keypoints

and segmentations, we use an occlusion-aware variant of BPnP[8] to learn for the

3D poses. The shape basis and mean shape are computed using [56] for keypoints

and [32] for segmentation masks. We train the network using 4 2080Ti GPUs with a

batch size of 11 for 12 epochs for all the trained models in the paper. We used 0.001

learning rate to train the network. We generate the 3D Clip-art automatically while

training which are extensively dependent on the CPU computation for superimposing

the objects and generating ground-truth.

4.6.2 Comparison to Keypoint Occlusions

We show the accuracy of the amodal segmentation, keypoint estimation and 3D

recovery with respect to number of invisible/ occluded keypoints in Fig. 4.9. We

improve over baseline methods like Occ-Net [56] and MaskRCNN [28] on occluded

keypoint localization and amodal segmentation tasks respectively. We further show

accuracy boost in 3D pose estimation and reconstruction compared to previous

state-of-the-art like 3DRCNN [37].

4.6.3 Dataset Annotations

To increase the dataset diversity, we prioritized the number of different cameras and

viewpoints rather than the number of images per camera. A summary and comparison
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of our OCC dataset with other publicly available datasets are detailed in Table 4.4.

On average, we extracted 120 images per camera source for more than 60 different

cameras spanning a wide variety of viewpoints, appearances, sensor types, etc. For

each image, we run an off-the-shelf object detector to extract the car instances with

high confidence score. This set of car instances are manually annotated by the

trained annotators from a commercial annotation service. We utilized a web-based

interface annotation tool from DeepLabCut [49] where the annotators were asked to

select 12 keypoint locations and its corresponding occlusion category for every car.

Note that we also asked the annotators to filter out erroneous instances such as bad

quality images and/or wrong detections. As of the time of paper submission, we have

annotated a total of 42,547 car instances in 7,018 images.

4.6.4 2D/3D Clip-Art Data

We show the accurate amodal depth supervision from our automatically generated 3D

clip-art data in Fig. 4.10. More examples from our 2D/3D Clip-Art amodal supervision

data, including the clip-art image with corresponding amodal segmentation, keypoints,

and 3D object reconstruction, are shown in Fig. 4.12.

4.6.5 Additional Qualitative Results:

We show additional results in Fig. 4.13 with different occlusion categories like self-

occlusion, Truncation and occluded by others.

Importance of occlusion categories: We have shown in Figure 7 of the main

paper comparisons to a baseline method [57] which classifies the keypoints into visible

vs. occluded only. We show sample qualitative results in Figure 9 of the main paper

that demonstrate clear improvements over baseline methods on 2D/3D reconstruction

tasks. With additional occlusion categories, our method is capable of explicitly

modeling object-to-object occlusion configurations, allowing a significant performance

boost, especially in heavy occlusion scenarios.
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Figure 4.11: Additional results from our OCC network. Observe that our network is
able to reliably localize keypoint locations as well as per-keypoint occlusion category
in many complex configurations. (Per-keypoint occlusion type: visible, self-occluded,
occ-by-truncation, and occ-by-others)
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Clip-Art Image Segmentation Keypoints 3D Reconstruction

Figure 4.12: Automatically generated 2D and 3D Clip-Art to supervise our
3D amodal network: Unoccluded objects are first mined using time-lapse imagery of
the WALT dataset [58]. Randomly sampled and non-intersecting unoccluded objects
are composited back into the background image in their respective original positions to
maintain correct appearances. The resulting 3D Clip-Art images and their respective
amodal segmentation masks, keypoint locations, and their occlusion categories and
3D meshes are shown. The clip-art method generates realistic appearances and 3D
from any camera with diverse viewing geometry, weather, lighting, and occlusion
configurations.
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Figure 4.13: We show additional qualitative results on multiple sequences of the WALT
dataset. The input image (col 1) to the pipeline produces amodal segmentation
mask (col 2) and keypoint locations (col 3). in (col 4 and 5), We visualize the 3D
reconstruction from multiple views

41



4. Amodal Object Understanding

42



Chapter 5

Applications

The authorities of Shaler Township1, located in Pennsylvania near Pittsburgh, has

undertaken a project to leverage automated traffic analytics for studying traffic and

pedestrian behavior. The aim is to enhance mobility and safety in the area. As part

of this project, cameras have been installed at strategic locations along Mount Royal

Boulevard, chosen for their significance in understanding the corridor’s activity.

The captured visual data is subjected to analysis using custom algorithms specifi-

cally designed for vehicle detection, tracking, and computation of various analytic

information. These analytics encompass vehicle counts, vehicle direction of travel,

vehicle speed estimates, and vehicle classification. By extracting these insights from

the data, the authorities gain valuable information that can inform decision-making

processes related to traffic management and safety measures within Shaler Township.

Visual Data Information: The six camera locations in Shaler Township are depicted

in Figure 5.1.

Camera Localization and Calibration: Leveraging our automated reconstruction

and calibration pipeline, we successfully estimated various parameters for the cameras,

including height from the ground, pitch, roll, horizontal field of view, and vertical

field of view. The estimated values are presented in Table 5.1.

Vehicle Speed Estimates and Vehicle Activity Analytics: Figure 5.2 and

Figure 5.3 provide vehicle speed estimates and activity heatmaps for the different

cameras.

1https://goo.gl/maps/kY2Vrak4VN5XZ2gu7
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5. Applications

Camera Latitude Longitude Height Pitch Roll HFOV VFOV
1 40.524806 -79.962040 4.16 m 21.6◦down negligible 74◦ 45.7◦

2 40.524637 -79.962152 4.71 m 19.6◦down negligible 74◦ 45.3◦

4 40.514347 -79.959257 4.78 m 14.2◦down negligible 71◦ 44◦

5 40.514347 -79.959257 4.26 m 19.6◦down negligible 72◦ 44◦

6 40.516671 -79.959172 5.75 m 18.3◦down negligible 71◦ 44◦

Table 5.1: Estimated Camera Parameters.

Activity Heatmap: Heatmaps are utilized to visualize the level of vehicle

activity at each camera location. These heatmaps are generated by aggregating the

tracks of all vehicles over the entire data acquisition period. Each pixel in the image

accumulates a count based on the number of times a vehicle passes through that

specific area. The accumulated values are then normalized by the maximum count,

resulting in a value ranging from 0 to 1. Dark blue represents areas with no vehicular

activity (0), while dark red indicates the highest level of vehicular activity (1). The

color scale is unique to each heatmap, meaning that a value of 1 in one heatmap does

not correspond to a value of 1 in another heatmap. To enhance visualization, a color

scale is applied to the value range and smoothed using a Gaussian function. Finally,

the heatmap is overlaid onto an image of the scene.

Vehicle Speed: Vehicle speed was estimated by using the camera calibration

and localization methods previously discussed to estimate the ground plane yielding

approximate speed calculations in 3D space. Rather than average the speed of the

vehicle within the camera’s field of view, a specific region of interest was defined for

individual cameras. These virtual speed traps permitted estimates of speed a vehicle

crossed over the region of interest, which was defined as a line on the road. Therefore,

any reported speed estimates are instantaneous speed estimates. Estimated speed

estimates are not linked to any personally identifying information and are reported

only as aggregate findings.
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Figure 5.1: Location of 6 cameras that were installed along Mount Royal Boulevard.
Each camera is illustrated with approximate viewing angle and field of view as shown
in example image captures.
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3-month dataset

Posted speed limit

(a) Shaler 5a

3-month dataset

Posted speed limit

(b) Shaler 5b

Figure 5.2: Speed estimates and activity heatmap for two different virtual speed traps
for the same camera. The virtual speed trap is visually represented by a green line.
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3-month dataset

Posted speed limit

(a) Shaler 6

3-month dataset

Posted speed limit

(b) Shaler 7

Figure 5.3: Speed estimates and activity heatmap for two different cameras. The
virtual speed trap is visually represented by a green line.
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Chapter 6

Conclusions and Future Work

In this thesis, we presented a comprehensive approach to tackle two significant tech-

nical challenges. Firstly, we proposed a scalable framework for in-the-wild scene

reconstruction and accurate camera localization, providing a foundation for various

downstream applications that rely on precise real-world distance measurements. Sec-

ondly, we developed a novel method to automatically generate realistic 3D amodal

supervision data from time-lapse imagery. By leveraging occlusion category infor-

mation and utilizing mixed 2D/3D amodal representations, we obtain accurate 3D

amodal reconstruction under occlusion. We demonstrated successful 3D reconstruction

at busy urban scenes captured from a variety of view points and distances including

traffic-cams, hand-held cameras and under different lighting conditions including at

night. Our framework can be used in a variety of smart city applications, providing

valuable information for improving transportation systems and urban infrastructure.

Future Work: Firstly, we aim to scale up the number of cameras to expand the scope

of analysis and explore additional applications for automated traffic analysis. Secondly,

our amodal object reconstruction method currently applies to individual cameras, and

there is a need for research to generalize it across multiple views. Furthermore, the

method assumes the availability of a mean shape model for the object class, making it

more challenging to apply to rare or unique objects. Addressing these limitations will

enhance the applicability and effectiveness of our framework in real-world scenarios.
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[4] António Bandeira Araújo. Drawing equirectangular vr panoramas with ruler,
compass, and protractor. Journal of Science and Technology of the Arts, 10(1):
15–27, 2018. 3.1

[5] David Arthur and Sergei Vassilvitskii. K-means++: The advantages of careful
seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’07, page 1027–1035, USA, 2007. Society for Industrial
and Applied Mathematics. ISBN 9780898716245. 3.1

[6] Romil Bhardwaj, Gopi Krishna Tummala, Ganesan Ramalingam, Ramachandran
Ramjee, and Prasun Sinha. Autocalib: Automatic traffic camera calibration at
scale. ACM Transactions on Sensor Networks (TOSN), 14(3-4):1–27, 2018. 1.1

[7] Joseph R Cathey and Matthew A Dailey. Camera calibration using lane markings:
An evaluation of vanishing point detection methods. IEEE Transactions on
Intelligent Transportation Systems, 6(2):124–133, 2005. 1.1, 2.1

[8] Bo Chen, Alvaro Parra, Jiewei Cao, Nan Li, and Tat-Jun Chin. End-to-end
learnable geometric vision by backpropagating pnp optimization. In CVPR, 2020.
4.3, 4.6.1

[9] Hansheng Chen, Pichao Wang, Fan Wang, Wei Tian, Lu Xiong, and Hao Li. Epro-
pnp: Generalized end-to-end probabilistic perspective-n-points for monocular
object pose estimation. In IEEE Conference on Computer Vision and Pattern

51



Bibliography

Recognition (CVPR), 2022. 4.3

[10] Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, and Rohit
Girdhar. Masked-attention mask transformer for universal image segmentation.
2022. 3.1

[11] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio
Savarese. 3d-r2n2: A unified approach for single and multi-view 3d object
reconstruction. In Computer Vision–ECCV 2016: 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VIII 14,
pages 628–644. Springer, 2016. 2.2

[12] Matthew A Dailey, Benjamin C Schoepflin, Juraj Sochor, and Michal Seman.
Camera calibration for traffic scene analysis using vehicle motion. IEEE Trans-
actions on Intelligent Transportation Systems, 1(1):43–50, 2000. 1.1, 2.1

[13] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superpoint: Self-
supervised interest point detection and description. In Proceedings of the IEEE
conference on computer vision and pattern recognition workshops, pages 224–236,
2018. (document), 1.1, 2.1, 3.1, 3.2, 3.5

[14] Carlos A Diaz-Ruiz, Youya Xia, Yurong You, Jose Nino, Junan Chen, Josephine
Monica, Xiangyu Chen, Katie Luo, Yan Wang, Marc Emond, et al. Ithaca365:
Dataset and driving perception under repeated and challenging weather condi-
tions. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 21383–21392, 2022. 1.2

[15] Hoang Dung Do and Reinhard Klette. Camera calibration for road scene analysis
using vehicle motion and lane markings. IEEE Transactions on Intelligent
Transportation Systems, 16(7):2700–2712, 2015. 2.1

[16] Katerina Dubska, Jiri Matas, Ondrej Holik, and Michal Seman. Camera cali-
bration using vehicle motion. IEEE Transactions on Intelligent Transportation
Systems, 15(1):283–294, 2014. 1.1, 2.1

[17] Katerina Dubska, Jiri Matas, Ondrej Holik, and Michal Seman. Camera cali-
bration for road scene analysis using vehicle motion with robust estimation of
camera parameters. IEEE Transactions on Intelligent Transportation Systems,
16(2):540–551, 2015. 2.1

[18] Kiana Ehsani, Roozbeh Mottaghi, and Ali Farhadi. Segan: Segmenting and
generating the invisible. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 6144–6153, 2018. 2.2

[19] Matteo Fabbri, Fabio Lanzi, Simone Calderara, Andrea Palazzi, Roberto Vezzani,
and Rita Cucchiara. Learning to detect and track visible and occluded body
joints in a virtual world. In Proceedings of the European conference on computer
vision (ECCV), pages 430–446, 2018. 2.2

52



Bibliography

[20] Patrick Follmann, Rebecca König, Philipp Härtinger, Michael Klostermann, and
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