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Abstract

Stochastic Optimal Control (SOC) is a framework that allows dis-
turbances and uncertainty in system models to be accounted for in its
optimization framework. Despite accounting for this uncertainty, many
first and second order methods for solving SOC problems are subject
to local minima and are most appropriate for solving convex problems.
Another class of SOC solvers, sample-based optimal controllers, are able
to sample widely over the control space and thus see into various convex
regions of the cost landscape, avoiding local minima. However, these
methods suffer from issues of computational tractability and the curse
of dimensionality. A common method to mitigate this issue is to use
importance sampling to ensure the samples are focused in regions that
most inform the solver. As such, much of the research in this area seeks to
understand performance as a function of this sampling - and how to modify
the sampling distribution to achieve better performance. To deepen our
understanding of these methods we instead explore their computational
aspects.

Specifically, we implement the Model Predictive Path Integral (MPPI),
and Cross-Entropy-Method (CEM) algorithms in an extensible controls
framework and benchmark them on a navigation task. We then evaluate
common navigation performance metrics as a function of the number of
particles. We also evaluate how quickly the algorithms are able to run
using sequential evaluation, a threadpool parallelization backend, and a
GPU parallelization backend.

Additionally, we propose a framework for interoperable parallelization
in C++. Allowing the same C++ code to be parallelized on a CPU or
on an NVIDIA GPU device with clean high-level interfaces and data
structures C++ programmers are accustomed to. We discuss the utility
of this framework in developing parallelized sampling-based algorithms
in C++, and compare this work with another modern multiprocessing
framework - thrust.
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Chapter 1

Introduction

In this thesis we aim to discuss the applications of multi-processing to the field of

stochastic optimal control. Specifically, we find that most modern frameworks that

provide run-time flexibility are designed for python and thus restrict researchers

to using python for their algorithms. To alleviate this, we implement a multi-

processing library enabling novel workflows for C++ developers utilizing an interopable

computation paradigm. We then apply that library to the implementation of an

optimal control framework which we benchmark on an uncrewed ground vehicle

(UGV) navigation task. Finally, we discuss the future of computation within the

robotics and research domain as we observe trends in processor design, software

design, and active frontiers in optimal control and differentiable algorithms research.

Parallel Processing with either large-scale multi-threading or graphics processing

units (GPUs) are a resource that can accelerate algorithms by orders of magnitude.

However, the complexity of the hardware and software frameworks to use these

resources often makes it difficult for researchers in domains not focused on computer

science and software development to utilize them. One key domain in which paral-

lelization is leveraged heavily is machine learning, and many libraries like PyTorch

and JAX provide easy-to-use interfaces for acceleration and differentiation. A key

feature of these libraries is the ability to parallelize with different computing backends

without significant code restructure. The same neural net can be accelerated using

multi-threading or GPU parallelization with a small change in parameters and no

extra burden on the developer. In C++, some libraries exist enabling the same capa-

1



1. Introduction

bilities, however they are often limited by difficult to use interfaces or backend-specific

peccadillo’s. The same generalized easy-to-use capabilities that exist in libraries in

python do not exist in C++.

We consider this gap to be caused by the nuances of the C++ language and

limitations on run-time flexibility. While there are certain limitations that cannot

be remedied, we argue that some of this gap can be bridged with creative usage of

modern language features and compiler tooling, allowing C++ developers to obtain

some of the same flexibility at run-time as python users while retaining the benefits

of static analysis, code efficiency, industry standards compliance, and compatibility

with large legacy code-bases that many organizations require.

To bridge this gap we propose the Just Multi-Processing (JUMP) C++ library

which implements modern interopable data structures and an easy to use shared-

memory model of computation with run-time selection of parallelization backends.

We compare this framework with the modern multi-processing library thrust.

We also consider the applications of parallel processing to optimal control and

robotic navigation, specifically in the fields of stochastic optimization and stochastic

optimal control. As modern computers trend towards becoming increasingly parallel,

many modern control algorithms seek to leverage this capability. Within the field of

stochastic optimal control we consider two sampling based optimal control algorithms

- Model Predictive Path Integral control and the Cross Entropy Method. Both

algorithms rely on parallelization to achieve run-time performance. We explore the

computational requirements of these algorithms as well as their ability to function

with a reduced set of resources.

To achieve this we implement Just Controls (JCTL) a C++ library implementing

a number of optimal control algorithms utilizing the jump library as a backend. We

also implement a simulation framework for an uncrewed ground vehicle (UGV) which

allows us to also benchmark the performance of this library on a navigation task

through a randomly generated landscape. We discuss the applications of this library

for real-time navigation on a UGV and the validity and applicability of the navigation

task as a benchmark.

We believe the key contribution of this work to be in extending the heterogeneous

and interopable computing paradigms with the JUMP library. Considering compu-

tational trends, and works such as [24], [31], [20] and many other optimization and

2



1. Introduction

planning techniques that leverage parallelization; we believe that parallelization will

become increasingly importance. As such being able to implement these algorithms

in a way that is efficient, easy, and extensible is critical. We believe this work could

contribute heavily to this future.

While much of the rest of this work is in essence a re-implementation of existing

methods using this framework, we still believe it to be of use as a reference for existing

computational constraints and as a reference for algorithm comparison of CEM and

MPPI. Additionally, we believe the stochastic controls framework implemented as

part of this work will be helpful in testing new optimal control methods on the

navigation task and creating new parallelized and stochastic optimal control schemes.

3
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Chapter 2

Stochastic Optimization

The field of stochastic optimization concerns the usage of randomization in the

optimization process, or uncertainty in the optimization objective itself. Similarly,

the field of stochastic optimal control concerns the control of systems with some form

of model or observational uncertainty. There are stochastic optimization methods

that can be used for stochastic optimal control, however there are also stochastic

optimization methods that rely on randomization to solve deterministic control

problems.

2.1 Stochastic Optimal Control

Stochastic optimal control concerns many models and types of uncertainty. Let us

consider the optimal control problem phrased in 2.1. The objective is to select some

control sequence U∗ = (u0, . . . , uT ) that minimizes an objective function c over a

control horizon T . Since the control sequence is defined over the time horizon T ,

there is also a terminating cost cf that is a function of the final state. This is subject

to some model F . This definition encapsulates many control tasks, as c is generally

defined as a function of state and control. Notably, this phrasing does not contain

any hard constraints except for the box constraints on each control u in the control

sequence U .
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2. Stochastic Optimization

U∗ = argminU

[
cf (xT+1) +

T∑
t=0

c(xt, ut)

]
(2.1)

s.t.

xt+1 = F (xt, ut) (2.2)

umin ≤ u ≤ umax∀u ∈ U = (u0, . . . , uT ) (2.3)

Supposing the model F is deterministic, this does not constitute a stochastic

optimal control problem. However if F can be structured to contain some form of

uncertainty or stochasticity it then constitutes stochastic optimal control.

2.1.1 Forms of Model Uncertainty

However, F can be structured to incorporate uncertainty such as in equation 2.4

which adds a Gaussian noise term wt sampled from a normal distribution to some

underlying model f .

xt+1 = F (xt, ut) = f(xt, ut) + wt (2.4)

wt ∼ N (0,Σ) (2.5)

Another example is in equation 2.6, which adds a Gaussian noise term ϵt to the

control signal ut.

xt+1 = F (xt, ut) = f(xt, ut + ϵt) (2.6)

ϵt ∼ N (0,Σ) (2.7)

To demonstrate the affect of this noise, let us consider a mobile platform that can

be described using the model in 4.1. We can see in Figure 2.1 that additive noise

to an open-loop control signal can cause significant deviation from the deterministic

model.

Let us also consider the stochastic model in equation 2.8, which has both additive

noise terms, one to the state and another to the control signal.

xt+1 = F (xt, ut) = f(xt, ut + ϵt) + wt (2.8)
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Figure 2.1: Open-loop rollouts for a ground vehicle modelling using a kinematic
bicycle model, starting from an initial state x0 = (0, 0, 0, 8, 0) (moving straight at
8m/s), we plot the system state every 0.5s with a zero control signal (continue moving
straight with no change in speed), this produces the blue path. We then sample an

additive control noise from from ϵ = N
([

0
0

]
,

[
0.05
0.2

])
, this produces deviations from

the trajectory that are plotted in red. The full trajectories over the 5 second horizon
are plotted on the left, the first second of the trajectories is focused on in the right.
As time increases the noise causes red rollouts to deviate further and further from
the blue rollout without noise.

ϵt ∼ N (0,Σ) (2.9)

wt ∼ N (0,Σ) (2.10)

We can see the affect of this noise in figure 2.2, which appears to be very similar

qualitatively to the control noise from figure 2.1, however the addition of the state

additive noise produces larger deviations.

For a ground vehicle we consider all of the above noise profiles to be relevant. In

the case of a control additive noise this could capture latency or error in actuation

which always exists. The state additive noise is also of interest to capture large

random disturbances like the ones mentioned above, which is especially of interested

with a dynamically capable vehicle which may switch between gripping and slipping

conditions or may experience large disturbances from changes in the terrain. Often

the practical consideration of this noise is to provide more buffer for the vehicle

around lethal areas in the state space to prevent disturbances from pushing the

system into those areas. Another way to deal with these uncertainties is to tie the
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Figure 2.2: Open-loop rollouts for a ground vehicle modelling using a kinematic
bicycle model, starting from an initial state x0 = (0, 0, 0, 8, 0) (moving straight at
8m/s), we plot the system state every 0.5s with a zero control signal (continue moving
straight with no change in speed), this produces the blue path. We then sample an

additive control noise from from ϵ = N
([

0
0

]
,

[
0.05 0
0 0.2

])
as well as an additive

state noise w = N (0, 0.01I) this produces deviations from the trajectory that are
plotted in red. The full trajectories over the 5 second horizon are plotted on the left,
the first second of the trajectories is focused on in the right. As time increases the
noise causes red rollouts to deviate further and further from the blue rollout without
noise.

noise to a particular component of the state - for example velocity. Such that by

moving more slow the controller can be more certain and deliberate in the movement

of the system in high-risk areas.

While all of these forms are of interest, the focus of this document will be on the

system described by equation 2.6, since this is the form that is considered by the

Model Predictive Path Integral (MPPI) control algorithm described in section 2.3. In

addition to providing intuition for what practical considerations may correspond to

this noise profile, figure 2.1 and provides intuition for how MPPI explores the state

space, since it samples from a similar distribution to inform it’s control update rule.

2.1.2 Methods to Solve SOC Problems

Within the field of stochastic optimal control there are two primary approaches for

solving these problems. The first involves analytically solving the problem, often

using a first or second order method that treats it as a convex problem, such as

8
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[8][9][21]. Another common approach is referred to as scenario-based optimization, as

referred to in [6][5][7], where-in some number of relevant scenarios or noise profiles

are sampled and optimized over.

Methods like the Cross Entropy Method (CEM) and Information Theoretic MPC

(IT-MPC, also known as MPPI), are often put into the category of scenario based

optimization since they use a finite number of samples to represent the distribution

formed by the uncertainty in the dynamics. However, the samples or ‘scenarios‘

are utilized in a different way for these sampling-based methods. In scenario-based

optimization schemes the scenarios are usually combined into a convex optimization

problem that must consider the enumerated scenarios [7][6][5][18][17]. Methods like

CEM and MPPI have no such final convex optimization problem, they can operate

using only the zeroth order information provided by the samples.

Some variants of CEM and MPPI incorporate first order information into the

optimization process, however the relationship between the samples and the first-order

optimization is different than the relationship between the scenarios and the convex

optimization in scenario-based optimization. For example, in CEM-GD a gradient

descent optimizer refines the result from a CEM iteration. In Shield-MPPI, gradient

descent is used to enforce a control barrier function on the result of MPPI. In both of

these the first order information is used to refine or improve a result. If the naive result

from CEM or MPPI respectively is of sufficient quality then the first-order optimizer

is redundant, and the samples in and of themselves are sufficient to produce a result.

Where-as in scenario-based optimization the convex optimization is what is used to

optimize over the scenarios, without-which there is no solution. In CC-MPPI the

authors describe scenario-based methods as those relying on ”randomization to solve

optimization problems”, then note how Covariance-Controlled MPPI (CC-MPPI)

does not fit within this or the analytical approach to stochastic optimal control. We

therefore consider sample-based optimal controllers to be a unique family of methods

within stochastic optimal control encompassing CEM, MPPI, CEM-GD, Shield-MPPI,

CC-MPPI and all of it’s many variants.

The CEM and MPPI methods will be the primary focus of these documents, as

we seek to understand the computational aspects of these algorithms, how to leverage

parallelism to achieve run-time performance, and how many samples are required to

achieve good performance on a navigation task. We describe the CEM and MPPI

9
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algorithms, as well as some considerations when tuning and using them below.

2.2 Cross-Entopy-Method (CEM)

The cross-entropy-method (CEM) as introduced in [25] is an optimization method

that allows iterative optimization of some objective function using some number

of samples. We implement the cross-entropy-method using a gaussian distribution.

This algorithm is detailed in 1. In our implementation we heavily parallelize the

perturbations, rollouts, cost computations, and cost summations.

2.3 Model-Predictive Path-Integral (MPPI)

Model Predictive Path Integral (MPPI) is a very similar algorithm to CEM, however

it does account for noise of the form of equation 2.6. Our implementation is mostly

based on [31], however we utilize some of the numerical stability tricks from [32]. For

our implementation see algorithm 2.

2.3.1 Tuning MPPI

We can observe from the control update rule in Algorithm 2 line 39, that each control

perturbation put into a weighted average with the coefficient determined by the cost

of that control sequence weight = exp(− 1
λ
S), where S is the final cost for a given

sampled control sequence (all costs have the smallest subtracted from them such

that the lowest cost sample has S = 0). The λ parameter (often referred to as the

temperature) can influence how leniently the algorithm weights higher-cost rollouts.

To get some intuition for this we can plot an inverse exponential mapping for a few

different λ values. As is shown in figure 2.3, as the lambda parameter approaches zero,

the slope of the weighting appears sharper and the algorithm converges to weighting

the lowest cost sample 1.0, and the rest 0.0.

With an extremely low temperature parameter MPPI can behave similarly to

CEM, and simply return the lowest cost sample as the optimized result. We can also

observe how this effects the result from MPPI on a navigation task in figure 2.4, as the

temperature parameter increases, MPPI seems to give a larger buffer of space between
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Figure 2.3: How the temperature (λ) parameter affects sample weighting. As the λ
parameter decreases, the weighting on non-zero costs converges to zero. As the λ
parameter inceases the weighting for non-zero costs

the optimized trajectory and the lethal obstacle. This can be quantified in figure 2.5,

which shows that tuning the temperature parameter can add up to 0.4m additional

safety buffer. It is interesting that intuitively it would make sense for the noise to

determine how much buffer must be provided to minimize the expectation of a lethal

collision, however the temperature parameter seems to provide this functionality.

Often it is easy to intuit MPPI as an algorithm the performs similarly to CEM,

taking some number of samples and returning the best result. Indeed, MPPI can

be tuned to perform in that way. However, the importance sampling and averaging

mechanisms are fundamentally a different operation. Consequently, we consider

introspection of the costing, weighting, and sampling to be of the utmost importance

when using and tuning this algorithm.
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2.4 Importance Sampling And Disturbances

Many of the MPPI variants mentioned above are at a frontier of research that seeks to

better handle large disturbances that can be better phrased as an additive disturbance

to some model, similar to the form of equation 2.4. In [12] they assume a model that

takes the form of equation 2.11, where ωt is not Gaussian but is some unmodeled,

but bounded disturbance.

xt+1 = f(xt, ut) + ωt (2.11)

This disturbance could be many things, often it is assumed to be some environment

interaction that causes a system to deviate from it’s model. For example, an ATV

running over some rocks that cause it to slide, or side-slip down a steep hill. For

sampling-based algorithms the impact is that importance-sampling assumptions made

for tractability break. Specifically, the assumption is that samples are focused on a

region that is important to the task at hand, that they are near the optimum and

are therefore providing information to the controller that allows it to make the best

available choice in it’s action.

This assumption often holds when the optimizers are being used in a model

predictive control task, which would dictate that at each point in time the first

action in an optimized sequence is being executed. At the next point in time the

controlled system should then be roughly where the model would dictate it should.

By stepping forward the control sequence and appending a random or zero value

at the end, it should then be safe to assume that unless the cost landscape has

drastically changed, that control sequence should be close to the optimum. However,

when the system deviates from the state predicted by the model then the surrounding

cost-landscape can also be drastically different. Consider an uncrewed ground vehicle

(UGV) navigating through a boulder field. The boulders can each be considered

lethal obstacles, and the task of the UGV is to navigate around these boulders to

reach some goal on the other side.

We can directly observe the affect of large state disturbances on a task like this in

figure 2.6. Since the vehicle has drifted to the right between timesteps 0 and 1, most

of the samples that were focused around a path that takes the vehicle straight now

intersect with the obstacle. With little information on what actions avoid the lethal
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obstacle and take the platform towards the goal, the optimized result is a sharp turn

to the left. However, we can see what a better converged importance sampling looks

like in figure 2.7 which shows the importance sampling after MPPI has had several

iterations to converge.

We can also consider the case of a large environmental disturbance and the impact

it might have on importance sampling. In figure 2.8 we can see that a large lethal

obstacle appearing in the environment can produce the same result as a model

disturbance, invalidating importance sampling assumptions and producing a sub-

optimal result from this sample based optimizer. We can also similarly observe that

after several iterations of MPPI that the result has converged to a smooth avoiding

trajectory that then proceeds straight to the goal.

This demonstrates that in some cases, if a solver is robust to large model distur-

bances it might be robust to large environmental disturbances as well, motivating that

branch of research for mapless autonomy, where the stack is building an understanding

of the environment as it moves through it and a large lethal obstacle might only be

discovered and placed in the map once close.
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Algorithm 1 The Cross-Entropy-Method.

1: procedure CEM(x0, Uinit)
2: Given some model f s.t. xt+1 = f(xt, ut)
3: Given some cost function c s.t. scalar cost = c(xt, ut), cF s.t. scalar cost =

cF (xt)
4: Given control limits umax, umin

5: Given params max iters, num samples, num elite,Σinit

6: U = Uinit

7: Ubest = Uinit

8: Σu = (Σinit, . . . ,Σinit) ▷ Repeat the Σu sizeof(U) times.
9: δU = Array of size(num particles, sizeof(U)) ▷ Controls for each sample

10: X = Array of size(num particles, sizeof(U) + 1) ▷ States for each sample
11: C = Array of size(num particles, sizeof(U) + 1) ▷ Cost for each sample /

timestep
12: Csums = Array of size(num particles ▷ Cost for each sample
13: for t = 1 to max iters do
14: δU = SamplePerturbations(U,Σu)
15: for k = 1 to num samples do
16: for t = 1 to sizeof(U) do
17: δUk,t = clamp(δUk,t, umin, umax)
18: end for
19: end for
20: for k = 1 to num samples do
21: for t = 1 to sizeof(U) do
22: Xk,t+1 = f(Xk,t, δU t)
23: end for
24: end for
25: for k = 1 to num samples do
26: for t = 1 to sizeof(U) + 1 do
27: if t == sizeof(U) + 1 then
28: Ck,t = cF (X

k,t)
29: else
30: Ck,t = c(Xk,t, δU t)
31: end if
32: end for
33: Ck

sums = 0
34: for t = 1 to sizeof(U) + 1 do
35: Ck

sums+ = Ck,t

36: end for
37: end for
38: a = ((C0

sums, 0), . . . , (C
k
sums, k) ▷ Associate each rollout with its cost

39: Sort(a) ▷ Sort by cost.
40: U = mean(δUa(0,1), . . . , δUa(num elite,1)) ▷ Compute mean of top samples.
41: Σu = variance(δUa(0,1), . . . , δUa(num elite,1)) ▷ Same for variance.
42: Ubest = δUa(0,1)

43: end for
44: return Ubest

45: end procedure
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Algorithm 2 The Model-Predictive-Path-Integral Algorithm.

1: procedure CEM(x0, Uinit)
2: Given some model f s.t. xt+1 = f(xt, ut)
3: Given some cost function c(xt, ut), cF (xt)
4: Given params num samples, num elite,Σ, λ, umax, umin

5: Unew = Uinit

6: δU = Array of size(num particles, sizeof(U)) ▷ Controls for each sample
7: X = Array of size(num particles, sizeof(U) + 1) ▷ States for each sample
8: C = Array of size(num particles, sizeof(U) + 1) ▷ Costs per sample/timestep
9: Csums = Array of size(num particles ▷ Cost for each sample
10: δU = SamplePerturbations(U,Σ)
11: for k = 1 to num samples do
12: for t = 1 to sizeof(U) do
13: δUk,t = clamp(δUk,t, umin, umax)
14: end for
15: end for
16: for k = 1 to num samples do
17: for t = 1 to sizeof(U) do
18: Xk,t+1 = f(Xk,t, δU t)
19: end for
20: end for
21: for k = 1 to num samples do
22: for t = 1 to sizeof(U) + 1 do
23: if t == sizeof(U) + 1 then
24: Ck,t = cF (X

k,t)
25: else
26: Ck,t = c(Xk,t, δU t)
27: end if
28: end for
29: Ck

sums = 0
30: for t = 1 to sizeof(U) + 1 do
31: Ck

sums+ = Ck,t

32: end for
33: end for
34: Cmin = min(Csums)
35: for t = 1 to sizeof(U) do
36: E = 0
37: for k = 1 to num samples do
38: E+ = exp(−(Ck

sums − Cmin)/λ)
39: U t

new+ = (δUk,t
init − Ut) exp(−(Ck

sums − Cmin)/λ)
40: end for
41: U t

new/ = E
42: end for
43: return Unew

44: end procedure
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Figure 2.4: How the temperature (λ) parameter affects the MPPI solution on a
navigation task. In the plots above, MPPI has converged to a smooth trajectory
navigating around a lethal obstacle directly ahead of it. The seed (blue) is directly
above the best rollout. In the upper plots (λ = 0.01, 1.0), the optimized result from
MPPI (green) is very closely overlayed on the blue rollout as well. In the lower plots
(λ = 5.0, 20.0), the optimized result from MPPI (green) begins moving further away
from the obstacle, as a result of the changes in weighting.

16



2. Stochastic Optimization

Figure 2.5: How the temperature (λ) parameter effects how far the MPPI solution
is from lethal obstacles. As the temperature (λ) parameter increases, MPPI gives
a higher buffer to the lethal obstacle (evaluated by taking the center of the lethal
obstacle at (25, 0) and computing the closest point on the optimized trajectory to it,
for a given temperature parameter value).
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Figure 2.6: The affect of a model disturbance on MPPI importance sampling. This
shows a mobile platform at (0, 0 attempting to navigate to a waypoint at (100, 0), it
has 100 samples which are plotted above, colorized by weighting to the final control
update (light rollouts are high weight, low cost; dark rollouts are low weight, high
cost). The blue rollout is the seed given to MPPI, the green is the optimized solution
from MPPI. In the above image at t=0 we can see that the vehicle has primarily light
rollouts indicating most of the rollouts do not intersect with the black lethal obstacle,
and the opimized result is very close to the seed driving straight. In the below image
we see that there has been a disturbance to the vehicle and it has drifted 2m to the
right placing the majority of the rollouts in intersection with the black lethal obstacle.
The optimized result now shoots to the left of the obstacle far away from the seed.
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Figure 2.7: The affect of a model disturbance on MPPI importance sampling, after
several iterations of MPPI. After the initial model disturbance, at the same timestep
nine iterations of MPPI are called successively to refine the solution and adjust the
importance sampling. The Optimized result now smoothly avoids the obstacle and
continues straight.
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Figure 2.8: The affect of an environmental disturbance on MPPI importance sampling.
This shows a mobile platform at (0, 0 attempting to navigate to a waypoint at (100, 0),
it has 100 samples which are plotted above, colorized by weighting to the final control
update (light rollouts are high weight, low cost; dark rollouts are low weight, high
cost). The blue rollout is the seed given to MPPI, the green is the optimized solution
from MPPI. In the above image at t=0 we can see that the vehicle has primarily light
rollouts indicating there are no lethal obstacles observed by MPPI, and the opimized
result is very close to the seed driving straight. In the below image we see that there
has been a major environmental disturbance with a large lethal obstacle appearing
several meters in front of the vehicle. This makes the majority of the rollouts in
intersect with the black lethal obstacle. The optimized result now shoots to the left
of the obstacle far away from the seed.
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Figure 2.9: The affect of an environmental disturbance on MPPI importance sampling,
after several iterations of MPPI. After the initial environmental disturbance, at the
same timestep nine iterations of MPPI are called successively to refine the solution
and adjust the importance sampling. The Optimized result now smoothly avoids the
obstacle and continues straight.
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Chapter 3

Multi-Processing and Parallel

Programming

A common point of discussion in [31] is the reliance on a modern GPU to parallelize

different components of the algorithm to make the algorithm itself tractable in

real-time. This can make implementation of these algorithms itself challenging, as

programming parallel processing often involves using target-specific languages and

interfacing with low-level mechanisms for memory allocation and management. Many

frameworks and libraries have been developed to make this more accessible to the every-

day researcher and developer, with most libraries focusing on ease-of-development in

python. In this section we discuss approaches to parallel programming, and introduce

a library for parallel computation in C++ that improves the accessibility of these

paradigms to developers who do not specialize in these domains.

3.1 Moore’s Law is Dead

Moore’s law is a ”law” taken from an observation by a former CEO of Intel, Gordon

Moore, that the number of transistors on an integrated circuit would double every

two years. Along with this increase in transistor count came a drastic increase in

core speed and capability[26]. For many years this ”law” held, and developers were

able to count on computer capability eventually catching up to the computational

demands of their intensive algorithms. That is, an algorithm written assuming serial
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computation (for example, a long chain of computation and math to compute an

optimal control sequence such as differential dynamic programming), would continue

to increase speed as the number of transistors increased and the speed of processors

double every few years. However, since 2010 there has been a sharp decline in the rate

at which processor speed increases, we can directly observe this change by looking

at processor speeds in the last thirteen years. Figure 3.1 shows a plot of processor

speeds for each desktop, client, server, and tablet core released by Intel over the last

13 years [1]. We can see that given these trends we can only expect processor speed

to double every 11.2 years, looking only at the maximum processor speeds available

each year.

However, we can also observe a trend in core count in Figure 3.2, showing core

count for the same set of processors released by Intel in the last thirteen years, and

we can observe that the maximum available core count is on a trend to double at least

every year, with massive increases in core count over the last few years! This trend

would indicate that while cores may not get much faster, we can expect a higher

number of fast cores to continue to become available so long as the market demands

it.

The natural conclusion to this data is that Moore’s law is dead, however there

are new horizons in software design utilizing parallel processing. From a software

perspective this implies that there will be less emphasis on serial algorithms running

fast, but rather on parallel algorithms running many operations at the same time. For

some algorithms this can be as simple as turning a for loop into a parallel operation.

For other applications to see any gains would require dealing with other hardware

accelerators such as the massively parallel GPU’s.

3.2 GPU Computation

Graphical Processing Units (GPU’s) are familiar to many people even outside technical

domains. As suggested by it’s name, GPU’s were first used to accelerate graphics

processing with applications to general computing and video games, to improve

render fidelity and increase frames per second. However, rather than performing

computations faster, they work by performing more computations in parallel at the

same time. This work will primarily focus on the NVIDIA GPU’s architecture, with
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Figure 3.1: All desktop, client, server, and tablet processor released by Intel over
the last 13 years, plotted by speed and time. Each point shows a core’s speed (GHz)
over it’s release date. We fit a line to all of these points to show the overall trend.
We also fit a line to the maximum speed available each year. This shows that the
common trend is for the maximum available processor speed to double roughly every
11.2 years.

benchmarking performed on the computers listed later in table 4.5.

We provide an overview of the NVIDIA memory model and C++ syntax, however

this should not be considered an extensive tutorial or intruduction for a complete

beginner. For more information we recommend referencing [14] and [13], or any of

the excellent presentations, documentation, or resources provided by nvidia online.
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Figure 3.2: All desktop, client, server, and tablet processor released by Intel over
the last 13 years, plotted by core count and time. Each point shows the processors
number of cores over it’s release date. We fit a line to all of these points to show the
overall trend. We also fit a line to the maximum number of cores available each year.
This shows that the common trend is for the maximum available number of cores to
double roughly every 0.8 years.

3.2.1 Memory Model

NVIDIA GPU’s are architected with various types of memory. GPU cores are put

into groups called warps, and blocks, which have memory pools that are shared

between them and can only be accessed between those particlar threads. To conform

to the shared-memory model we discuss below, we rely on global and unified memory.

Normal global memory is allocated separately on the host (CPU) and the device
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(GPU). Once allocated, code on the CPU can make memory copy calls between

them. Often, this involves a memory copy to the device before performing GPU

computation, then transferring the memory (modified by GPU computation) back to

the host. This relation is illustrated in figure 3.3.

Figure 3.3: NVIDIA Memory Model for a GPU in a common desktop computer.
GPU memory can only be accessed by the GPU. Conversely CPU memory can only
be accessed by the GPU. Memory copys (also referred to as transfers) can be made
between host and device memory.

There are a few other memory models and architectures that can be used while

assuming a shared memory model of computation on a GPU. Since allocating and

managing memory copies between device and host memory buffers can be cumbersome

for a developer, and can take up valuable processing time waiting for copies to complete.

NVIDIA designed an unified memory architecture, where a different allocation call is

used which gives a memory address that can be used on both the host and device,

with memory copies happening implicitly in the background handled by the NVIDIA

driver. This relation is illustrated in figure 3.4.

Besides desktop computers, we also perform benchmarking on the NVIDIA Jetson

Orin computer, this shares the same physical memory between the CPU and GPU.

This allows us to leverage unified memory to our advantage, which gives us a pointer

that can be used from both the host and device. Since it is the same physical

memory there are no memory copies that need to be performed, as shown in figure

3.6. However, the normal global memory calls can be used which allocated separate

memory buffers for both the host and device. Consequently, even though it is the

same physical memory, memory copies of the data there-in still needs to be performed,
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as shown in figure 3.5.

Figure 3.4: NVIDIA Unified Memory Model for a GPU in a common desktop computer.
GPU memory can only be accessed by the GPU. Conversely CPU memory can only be
accessed by the GPU. When allocated in unified memory, the same memory addresses
are valid for both CPU and GPU memory, and the nvidia driver will automatically
sync data as necessary.

Figure 3.5: NVIDIA Memory Model for a Jetson device (we use the Orin). The CPU
and GPU share the same physical memory, however, separate allocations can still be
made requiring memory copies to be performed by the application.

Often, parallelization frameworks consider these memory models as different

memory entities entirely. For example the thrust library [4] uses different classes

to represent host, device, and unified memory. It’s interface restricts kernels to

be functions of the contained data type, and not the data containers as a whole.

Additionally, the execution policy is tied to the container type - a device vector cannot

be used in a threadpool and vice-versa.
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Figure 3.6: NVIDIA Unified Memory Model for a Jetson device (we use the Orin).
The CPU and GPU share the same physical memory. Since a unified memory call is
made and it is the same physical memory, there are no memory copies that need to
be performed.

3.2.2 NVCC and Code Compilation

Many C++ developers are familiar with the gcc, clang, mingw, or other common

C++ compilers. These compilers take in C++ code and emit binaries that are able

to execute on a variety of target platforms, eg: arm, x86, etc. GPU’s are a unique

target platform that has it’s own language. NVIDIA also has it’s own syntax for

calling GPU functions through C++. To support developers they have provided a

compiler toolkit called nvcc, which is able to compile for the GPU target platform as

well as handle the special calling syntax. Interestingly, the LLVM project has done

the legwork to support compiling the same code using clang.

In addition to memory separation, there is also code separation where code has

” host ” and ” device ” tags that prefix functions. Once a ” global ” function

has been called (these serve as the entry-point for GPU computation, and are often

called kernels), functions that have the host tag (the default when not specified),

cannot be called from these functions, or any device functions. Functions that have

the device tag are compiled solely for use on the GPU and can be called from a

global function, or any other device function. However, it is possible to provide both

tags to a function so that it can be called from any function anywhere in code. We

refer to this as being interopable, since the host and device code are able to work

together seamlessly. Figure 2.9 shows a map of what function calls are valid or invalid

with different tags. Another library from NVIDIA, libcu++ [2], utilizes this mode of
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Figure 3.7: A map of what function calls are valid from which code given host and
device tags on various functions. Since global functions can be called from device
code we consider it interopable, however it means something different than a normal
function call.

computation, referring to it as heterogeneous code. However, they do not provide

vector and dynamic memory storage containers that are heterogenous.

3.2.3 The Future of Interopable (Heterogeneous)

Computing

Often, the classes and objects that are shared between host and device are small:

primitive data types, an atomic container, time primitives, complex numbers. These

objects are units, and the kernels and code that utilize them are rarely deep (where

deep here is in reference to the call stack, and levels of redirection through pointers).

In some sense, this is driven by a desire to optimize code. GPU cores are many,

but they are slower than CPU cores. Additionally, the memory available is often

more limited in scope because it must be shared across so many cores. It is also

likely this is derived from the cuda API itself which does not leverage object oriented

programming or many modern C++ features (which is likely why there are so many

higher-level abstractions wrapping the CUDA API).

However, since the nvcc compiler allows full use of C++ features (so long as

only device functions are called from GPU code), developers are able to design more

complex heterogeneous data types and make deeper and more expressive object

oriented code.
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Naturally, while it is advantageous from a developers perspective to use higher-level

abstractions and modern language features and containers, this does not necessarily

produce the most optimal code. Similarly, our reliance on global memory rather than

using warp level memory operations for highly optimized code with produce easier

to understand code with performance loss. We consider this loss worth the gains in

readability, extensibility, and portability.

Generally, we believe it is the job of the compiler to consider platform specific

nuances and optimize the code to perform the task at hand with the highest level of

performance given the target platform. Of course, there are many hardware specific

nuances to GPU programming, gremlins in memory handling, alignment, simple

entrypoint calling, and much more. It is difficult for a programmer to design a

language that abstracts all of these details in a way that doesn’t require any syntax

or calls from programmers, and then implement a compiler that is able to parse and

compile that language for a variety of platforms. We do not consider this task to be

trivial, however, we do consider it to be worthwhile.

Especially as we consider languages like python (frameworks like jax, pytorch,

etc.) and julia that have advanced beyond C++ in run-time flexibility, JIT compiling,

and in some cases even performance and optimality! Of course, we do not feel these

languages or frameworks provide a panacea. We would assert that picking out the

best features of all these languages, frameworks, and capabilities is achievable, it will

just take some leg-work and effort.

3.3 Shared-Memory Model

The shared memory model assumes that each thread or parallel line of computation

has full access to the same shared memory space. For sequential and threadpool based

parallel evaluation this is implicit in a modern CPU’s architecture, this architecture

is show in figure 3.8. Using global or unified memory allows all threads performing

parallel computation to read and write from the same memory, however additional

steps must be added to copy data to and from device memory before and after

computation. This target aware shared memory model is show in figure 3.9.
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Figure 3.8: The normal shared memory model. The main program dispatches
some number of threads to perform operations in parallel. Each of these threads is
performing operations from and on the same memory pool

3.4 JUMP

To advance a vision of interopable or heterogeneous computation, we implement

a multiprocessing library in C++ called ”Just Multi-Processing” or JUMP. This

library implements interopable random number generators, and interopable memory

buffer, an interopable array (has some STL vector functionality), an interopable

multi-dimensional array, an interopable shared pointer, and threadpool and GPU

based parallelization.

We can demonstrate convenience of the JUMP library by comparing the same

code to perform a foreach call on an array. We see in figure 3.10, JUMP is able

to switch between backends with nothing more than a parameter switch. However,

thrust requires specific data structures to be used for GPU based parallelization,

additionally thrust requires compile-time flags to be set and a re-compile to use

threadpool based parallelization. Consequently a binary built using thrust with a

sequential or GPU parallelization backend CANNOT also use a threadpool based
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Figure 3.9: A target aware shared memory model. Before dispatching the main
program must perform memory copies if dispatching to a GPU, and must also copy
data back from the GPU after computation. Otherwise, it is the same as the normal
shared memory model because all threads still read and write to the same memory.

parallelization backend, it must be re-compiled to enable that feature. This severly

impacts the portability of the code.

Let us consider a more complex case, suppose the functor needs to read from

multiple elements in the array in order to update the single entry it is responsible

for. This can be difficult using thrust. We see an example in figure 3.11 which

demonstrates the limitations of thrust in handling this scenario.

We also find that JUMP is able to handle more complex calling structures and

program depth. This is a function of better abstractions like the ”jump::iterate” call

which can trivially parallelize 1, 2 and 3 layers deep for loops. It is also a function of

better data structures, namely the ”jump::multi array” which provides the abilities to

trivially reason and parallelize over multi-dimensional arrays, the ”jump::shared ptr”

which allows object ownership to be tracked, and the owned object to be shared and

used on GPU trivially. Generally we believe this work provides a basis for algorithms

to be implemented interoperably, such that they can be written using heterogenous

data structures and then be used in parallelized function calls on CPU or GPU.
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Figure 3.10: Comparison of the ease-of-use of jump and thrust to parallelize a functor
over an array using different parallelization backends. We consider the yellow code
examples to be less convenient or portable. Specifically, to use a parallelization
backend different than sequential evaluation on the GPU or parallel evaluation on the
GPU, the code must be recompiled in the case of using thrust with threadpool based
parallelization. Additionally, to use thrust with GPU based parallelization instead of
sequential CPU evaluation, a specific data structure must be used. This means that
thrust code is inherently specific to host or device evaluation. Whereas in all of these
cases JUMP requires only a small parameter switch that can be done at run-time.

While JUMP provides a high-level abstraction from GPU memory details, it is

understood that those details must still be handled. The mechanism for this is the

to device() function. We provide an example of how the call structure looks in figure

3.12. A jump::array data structure uses compile-time introspection to determine if

the contained data structure has the to device() function, if it does it assumes that

this function will in turn copy any data to the GPU in it’s child members. For flat

data types (no pointers, arrays, dynamic memory) copying the data to the GPU is

trivial and no to device() method is necessary. However, if one of those complex data

types is contained then to device() should be implemented to handle memory copying.

If the complex type is one of the jump data structures, all the details are already

handled within it’s own to device() function and it becomes a matter of recursively

calling to device() in child members until all complex jump data structures have their

to device() function that actually handles memory management is called.
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Figure 3.11: Comparison of the ease-of-use of jump and thrust to parallelize a functor
over an array using different parallelization backends. We consider the yellow code
examples to be less convenient or portable. JUMP is easily able to handle this case,
again reducing to a single call and parameter change to switch backends. Where-as
thrust has additional calls to facilitate the index processing, requires re-compilation
for threadpool based parallelization, and is unable to parallelize this example using
the GPU.

3.4.1 Omissions

While JUMP advances an interopable and heterogeneous computation paradigm,

there is still some functionality it omits. The most important feature that it’s missing

is parallelized reductions, which thrust has implemented very well. This is a rather

glaring omission as it is something that could improve the runtime performance of

MPPI by using a reduction for the control update (which takes the most time out of

all the MPPI parallized operations).
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Figure 3.12: The calling structure of nested data types being parallelized over. The
foreach call triggers a recursive to device() call that transfers each child member to
device memory as necessary.
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Chapter 4

Controls Methodology

In this section we describe the modeling and cost-functions used to phrase navigation

as an optimal control problem. This is implemented in an optimal control framework

called ”Just Control” or jctl which leverages the jump multi-processing framework

to parallelize the optimization process. While the jctl framework has many utilities,

cost functions, and infrastructure that can be useful for problems beside navigation,

we describe in detail only the parts specific to the navigation task.

Generally, The jctl framework considers the optimization problem phrased in

equation 4.1. We believe this structure describes a large family of problems, including

many constrained optimization problems that can be represented in this format by

using exponential barrier functions augmenting the cost functions c(xt, ut) and c(xT ).

u∗ = argminucF (xT ) +
T∑
t=0

c(xt, ut) (4.1)

s.t. xt+1 = f(xt, ut) (4.2)

(4.3)

It is important to note that the problem described in equation 4.1 does not include

any assumptions of stochasticity. This is because model stochasticity and the forms

that can be accounted for are intimately related to the solver that is used. The

Cross-Entropy Method (CEM) implementation uses a form of stochastic optimization,
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however it does not account for any stochasticity in the model. Whereas the Model

Predictive Path Integral (MPPI) method does consider some model stochasticity,

as such the specific form of that stochasticity and uncertainty is specific to that

optimizer and parameterized in that solver and not the general control framework

and the models implemented there-in.

In section 4.1 we describe the primary model that is used by this framework, the

kinematic bicycle model. We then discuss the cost functions that are used in the

navigation task in section 4.2. Lastly in section 4.5 we describe how the model and

cost functions culminate into a fully-fleshed optimal control problem that addresses

the navigation challenge and discuss the utility of navigation as a benchmark we use.

4.1 Kinematic Bicycle Model

Vehicle modelling is in itself a challenging task with a large body of research and active

frontiers. For tractability, we limit the scope of this work and assume a kinematic

bicycle model is sufficient to represent the motion of our vehicle when used in a

feedback-control setting in an MPC controller. The kinematic bicycle model describes

a bicycle moving in two-dimensional space. This model is unable to describe the

complex terrain interaction, slip, or any forces or dynamics acting on a four-wheeled

all-terrain vehicle. However, it is able to provide some concept of how the Ackerman

steering of a four-wheeled vehicle constrains the movement of the vehicle. Figure 4.1

shows a visual representation of this, with a bicycle overlayed on the four-wheeled

vehicle body. The key assumption here is that the movement of the bicycle with some

steering angle is roughly the same as a four-wheeled vehicle with the same steering

angle and wheel-base length.

Accepting this assumption, we first derive a continuous-time motion model for the

vehicle. Figure 4.2 shows how the bicycle model can be represented moving through

a two dimensional plane. Our primary reference point is the center of the rear-axle

(the rear-wheel), which gives us the state variables x and y, the location of the center

of the rear-axle in the global frame shown in figure 4.2. Assuming we input the

steering angle δ and the velocity V , we must derive a model for the following: (ẋ, ẏ, θ̇).

The ẋ and ẏ equations can be obtained by projecting the velocity V onto the x and

y axis using simple trigonometry. The yaw rate can be derived by calculating the
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Figure 4.1: How a kinematic bicycle model can be used to represent the movement of
a four-wheeled vehicle.

angular velocity θ̇ = ω = V
R
, and using trivial trigonometry to calculate R = L

tan(δ)
,

θ̇ = V tan(δ)
L

.

Figure 4.2: The kinematic bicycle model’s motion through space. The bicycle has
a primary reference point at the center of the rear wheel. It is assumed that wheel
is driving the vehicle forward along at some velocity V . It is rotated θ relative to
the x-axis. The bicycle has a wheel-base with length L. Given some steering angle
δ of the front wheel, it is rotating around some point which is R distance from the
rear wheel, with an instantaneous center of rotation at the intersection of the lines
orthogonal to the wheels of the bicycle.

This allows us to phrase the motion model as a continuous-time motion model

of the form ẋt = f(xt, ut). Where xt ∈ R3 =
[
x y θ

]
and ut ∈ R2 =

[
V δ

]
. To
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clarify notation, when we use the variable x, we are referring to the x position of the

center of the rear axle and not some state vector notated as xt.ẋẏ
θ̇

 = f


xy
θ

 ,

[
V

δ

] =

V cos(θ)

V sin(θ)

V tan(δ)
L

 (4.4)

We then restructure the model in two ways, firstly we convert the state to xt ∈ R5 =[
x y θ V δ

]
, ut ∈ R2 =

[
a δ̇

]
. Where a = V̇ = acceleration. Then using Euler

integration we discretize the model to some time resolution ∆t. For clarity, the state

and control spaces of the model in equation 4.5 are described in Tables 4.1 and 4.2.
x

y

θ

V

δ


t+1

= f




x

y

θ

V

δ


t

,

[
a

δ̇

]
t

 =


x

y

θ

V

δ


t

+∆t


Vt cos(θt)

Vt sin(θt)

Vt
tan(δt)

L

at

δ̇T = t

 (4.5)

Variable Notated Description

x x0
t The x position of the center of the rear-axle in the global frame.

y x1
t The y position of the center of the rear-axle in the global frame.

θ x2
t The yaw of the vehicle in the global frame relative to the x-axis.

V x3
t The velocity of the vehicle, aligned with the body of the vehicle.

δ x4
t Steering angle of the vehicle, relative to the body of the vehicle.

Table 4.1: State Variables, their state vector notation, and a short description of
these variables.

Variable Notated Description

a u0
t The acceleration (V̇ ) to command.

δ̇ u1
t The change in the steering angle with respect to time to command.

Table 4.2: Control Variables, their control vector notation, and a short description of
the variables.
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4.2 Cost Functions

The main objective of the optimization phrased in equation 4.1 is to minimize some

cost function c(xt, ut) over the control horizon T , in addition to a terminal cost cF (xT ).

This form is able to express many common cost functions such as traversal cost, target

state tracking, quadratic tracking costs and many more. The task of autonomous

navigation can be phrased many different ways as an optimization problem, often

utilizing hierarchical approaches that reduce the controls optimization problem to a

path or waypoint tracking problem. We structure it as a waypoint tracking problem

with some environmental awareness provided through a traversal cost over a costmap.

While the high-level optimization problem phrased in equation 4.1 reasons about

a single cost function for each time step and terminal cost, we understand that often

cost functions are the composition of several objectives. We assume for simplicity

that unless otherwise noted, the cost functions described in section 4.2.2 and 4.2.1

are linearly combined as in equation 4.6. Since the cost functions described below

need only the state xt, c(xt, ut) = c(xt), further simplifying the cost functions.

cfinal = ctraversal cost + cwaypoint tracking (4.6)

In the below cost functions we use the notation xt to mean some state along

the trajectory being optimized over in equation 4.1, we then index into a vector

xt =
[
x y θ V δ

]
so that x0

t is the x position of the vehicle in the global reference

frame as shown in figure 4.2, x1
t is the y position of the vehicle in the global reference

frame as show in figure 4.2, and so forth as delineated in Table 4.1.

4.2.1 Traversal Cost

Often in robot navigation there is a concept of traversal cost that is used to constrain

the optimization problem and produce more expressive behaviors. This concept of

traversal cost can be derived from hand-tuned heuristics such as obstacle height as in

figure 4.3, a boulder might break the vehicle if traversed at speed so it can be assigned

lethal cost. Semantic information can also be considered, for example the bushes in

the same figure pose little risk to the vehicle and so do not have any associated cost in

that example, despite being a certain height. The costmap could also include a cost
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for hitting those bushes that is much less than the boulder to incentive avoiding them,

but not at the cost of hitting a truly lethal obstacle such as the boulders. Tuning

these costmaps is an extensive area of research, for example it can be derived from a

learned cost-space such as in [30], or from a complex concept of risk as in [11]. In this

Figure 4.3: An example of how obstacles in an environment can be converted to a
costmap parameterized over x-y space. In the camera image, there are two clusters
of boulders, in the costmap on the right the black areas correspond to lethal areas
in the costmap that the vehicle must avoid. The golden start to the upper left of
the costmap is the waypoint the vehicle might be attempting to reach as part of the
navigation task.

work we primarily reason about lethal and non-lethal costs, however the traversal

cost function we construct is able to reason about costs of continous or discrete values

and is extensible to many of these abstract or theoretically rigorous concepts of cost

and risk.

To construct the traversal cost we reason about the footprint of the vehicle

as it traverses over a discretized costmap. This discretization assumes that the

four corners of the vehicle will be sampled, with an additional number of lon-

gitudinal (nlongitudinal samples) and lateral ((nlateral samples)) samples, with nsamples =

(nlongitudinal samples+2)∗ (nlateral samples)+2), as shown in figure 4.4. Since the reference

point for our model as described in section 4.1 is the rear axle we assume two functions

exist. The first converts from a state xt to a sample position sk provided a sample

number k ∈ [1, nsamples], this function can trivially be constructed using two dimen-

sional coordinate transforms and takes the form: sk = fsample(xt, k). The second

function that is assumed to exist is the function that takes a sample position sk and

generates a cost from a discretized costmap, this takes the form: cost = ccostmap(sk).

Using these functions we construct the traversal cost function in equation 4.7 which

takes the average over all sampled points.
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Figure 4.4: The vehicle footprint that encompasses the entire base of the vehicle is
discretized to sample some number of points over the costmap. It is assumed that
at minimum the four corners of the vehicle will be sampled, and some number of
longitundinal and lateral samples are added to produce a total of (nlateral samples +2) ∗
(nlongitudinal samples + 2) samples over the footprint of the vehicle. These samples are
distributed evenly over the footprint of the vehicle.

ctraversal cost(xt) =
1

nsamples

nsamples∑
k=0

ccostmap(fsample(xt, k)) (4.7)

The function ccostmap can be trivial to implement, in it’s simplest form it takes

a point in space and goes to the discretized cell in the costmap that contains that

point and returns the value in that cell. The jctl implementation can perform that

function, but also has options to perform bilinear interpolation over the costmap

values. Another key feature of the jctl implementation is the guarantee that if any

of the samples are in a lethal cost cell, the final value is scaled such that the final

averaged cost is greater than or equal to a lethal cost.

This is important since for the navigation problem interacting with a lethal obstacle
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Figure 4.5: The vehicle footprint is shown over a costmap, which is then converted to
discrete points that can be sampled over the costmap.

(accruing a lethal traversal cost) is thought of as a constraint rather than simply a cost.

As discussed in section 4, we assume that constraints can be incorporated into the

cost function as an exponential barrier function, but the costmap is implemented with

a finite (however arbitrarily high) lethal cost for lethal traversals. By guaranteeing

that any lethal traversal result in a lethal traversal cost after any interpolation or

averaging, we can instead limit any other costs to a finite value lower than the lethal

traversal cost, guaranteeing that unless there is no safe solution found the optimum

will never intersect with a lethal obstacle. Additionally, unless costmap interpolation

is enabled, it is also guaranteed that the final traversal cost will be less than the

lethal cost if there is no sample within a lethal cost cell. This motivates the cost

bounding described in section 4.2.2. Another potential solution to guarantee lethal

obstacles are not considered is to explicitly remove rollouts with lethal interactions

from the weighted average (explicitly zero the cost). While this approach has merit,

this additional processing breaks some of the parallelization and would add additional

overhead to the run-time, so we consider our approach to be reasonable.

4.2.2 Waypoint Tracking

For the off-road navigation task, we want the vehicle to reach a waypoint or some goal

within some radius. To facilitate this behavior, we reason about two cost components.
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The first is simply x-y offset from the waypoint, termed waypoint distance, calculated

simply using an l2-norm as in equation 4.8. The second component reasons about

our velocity and direction, with the key idea being that if the vehicle has a non-zero

velocity and is vectored towards the waypoint, it will eventually reach it. We therefore

construct the function in equation 4.9, which has a target waypoint in addition to a

target velocity.

cwaypoint distance(xt) =

∥∥∥∥∥
[
x0
t

x1
t

]
−

[
xwaypoint

ywaypoint

]∥∥∥∥∥
2

(4.8)

cwaypoint direction(xt) = αdirection

√(
x2
t − arctan

(
x1
t − ywaypoint

x0
t − xwaypoint

))2

+αvelocity

√
(x3

t − vtarget

(4.9)

To ensure that the waypoint tracking objective never dominates the lethal traversal

cost, we bound the output range of the waypoint tracking cost. To do this we use the

following function: cbound(craw, vmax, λ) = vmax
λcraw

λcraw+1
, the general shape of this cost

function is shown in figure 4.6.

Figure 4.6: A plot of the bound cost function, y = vmax
λx

λx+1
, with vmax = 5, λ = 0.1.

We bound cwaypoint distance and cwaypoint direction separately then linearly combine

them, producing the waypoint tracking cost function in equation 4.10.
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cwaypoint tracking(xt) =cbound(cwaypoint distance(xt), vwpt. distance max, λwpt. distance max)

+cbound(cwaypoint direction(xt), vwpt. direction max, λwpt. direction max)

(4.10)

4.3 Costmap Generation

We show a conceptual example in figure 4.3 of how costmaps can be generated

from terrain. The benchmarking we describe in section 4.5 is performed solely in

simulation and relies on procedural generation of costmaps from a configuration

file. This procedural costmap generation considers two shapes that can be used to

generate obstacles of some cost into the costmap: circles, and rectangles. To generate

a costmap a configuration file specifies a positional and size range for some number

of each object type.

Table 4.3 demonstrates three different course configurations and the corresponding

costmaps that are generated from them. For each shape that needs generated the

range provided for each attribute is sampled from uniformly to determine size and

placement of the shape in the costmap. For this work, each shape is assumed to

correspond to a lethal obstacle, and hence is a lethal cost in the costmap; however,

this too is configurable for future work.

4.4 Simulation

A common challenge in robotics is the sim-to-real gap, in order for this work to be

meaningful the problems that this work solves must correlate to real-world problems.

For example, in section 4.3 we discuss how the costmaps can be conceptually generated

from obstacles near the vehicle to suggest that the randomly generated costmaps

might correspond costmaps generated by a real perception system in a real-world

environment. The simulation that runs a navigation test has other mechanism

intended to minimize the sim-to-real gap and ensure this work can be directly applied

to a real-life full-scale autonomous vehicle, discussed below.

There are two components to the navigation test simulation, a costmap simulation
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Table 4.3: Course configurations and costmaps generated randomly from them.

Configuration Generated Course (Seed: 0)

(a)

Type: Circle
Count: 20

X Range [m]: [10, 80]
Y Range [m]: [−30, 30]

Radius Range [m]: [1, 2]

(b)

Type: Rectangle
Count: 20

X Range [m]: [10, 80]
Y Range [m]: [−30, 30]

Length Range [m]: [1, 3]
Width Range [m]: [1, 3]
Yaw Range [rad]: [−1.7, 1.7]

(c)

Type: Rectangle
Count: 20

X Range [m]: [10, 80]
Y Range [m]: [−30, 30]

Length Range [m]: [1, 3]
Width Range [m]: [1, 3]
Yaw Range [rad]: [−1.7, 1.7]

Type: Circle
Count: 20

X Range [m]: [10, 80]
Y Range [m]: [−30, 30]

Radius Range [m]: [1, 2]

that consumes a ground truth costmap and simulates sensor limitations such as sensor

range and line of sight, as well as a model simulator that simulates a kinematic bicycle
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with added noise.

4.4.1 Costmap Simulator

The costmap simulator consumes the current location of the vehicle xvehicle and yvehicle

and first processes sensor range, then from cells that are within range it processes if

the cells are obscured by any other lethal cells blocking line-of-sight to the cell being

processed. This logic and the resulting simulated costmap are shown in figure 4.7.

Figure 4.7: Costmap simulation of sensor range and line-of-sight, to the left is how
the costmap simulator is processing lethal cells as either out-of-range, in-range but
obscured, or visible. To the right is the final costmap that gets passed to the optimizer
to perform the navigation task.

This reduces the sim-to-real gap by mimicking the effect of real sensor limitations

on the perception system that would generate the costmap used by an optimal control

scheme to perform navigation. Specifically, when a vehicle is navigating in an enclosed

space the LiDARs and cameras are unable to see around the corner or behind the

immediate foliage, and the area beyond is unknown until the vehicle gets through.

This simulates a similar effect allowing it to be observed what happens when the

optimizer is ”surprised” and how it handles situations like those discussed in section

2.4.
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4.4.2 Model Simulator

We discuss in section 2.1.1 how disturbances and model uncertainty is often used

to capture error in the model. Naturally, in a real world environment there are

model deviations as well as uncertainty in system state. To capture this, we inject

noise into the control input to the system as in equation 2.6. Additionally, the

state that is observed by the controller has noise injected. While there are certainly

more expressive disturbances that can be injected into the model update to test

controller robustness, together these capture some modeling error as well as error and

uncertainty in the state estimate that would be seen from a deployed SLAM system.

4.5 Navigation as Optimal Control

Using the cost functions and models described above we can form a fully-fleshed opti-

mization problem that fits the form of equation 4.1. Where cF (xt) = cwaypoint tracking(xt)+

ctraversal cost(xt) and c(xt, ut) = cF (xt). For each test we place a waypoint at (100, 0) so

that for cwaypoint tracking, xwaypoint = 100 and ywaypoint = 0. We generate three costmaps

from the configuration defined in Table 4.3(c) using the random number generator

seeds (0, 2, 3), the courses and example navigation’s are in Table 4.4. Note that we

originally intended to benchmark with the course seed 1, however that data was

corrupted and we did not have time to regenerate it.

4.6 Navigation as Benchmark

This simulation environment allows us to perform a benchmarking of the optimization

algorithms we implement within the jctl framework, specifically MPPI and CEM.

Additionally, since this is implemented using the jump parallelization backend we

can profile how quickly they run with computational constraints, giving insight to

real-time performance as well as what performance can be expected with fewer

samples. We believe this is useful since many years have passed since a computational

evaluation has been published in [31].

We first benchmark the computational efficiency by measuring how quickly the

algorithm runs on different platforms, with varying numbers of samples, with different
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Table 4.4: Benchmark courses and example solutions.

Seed Ground Truth Costmap Simulated Costmap and Solution

0

2

3

parallelization backends. Specifically we have the computers listed in table 4.5, which

range from a small SOC computer to a powerful ML workstation. This provides insight

into what computational performance can be expected with constrained resources.

Additionally, we analyse how the controllers perform in the navigation task,

analyzing time-to-waypoint as a function of sample count. This provides insight into

how the algorithms perform with a reduced amount of information and whether high

particle counts are needed to ensure high-quality performance.
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Computer CPU Threads GPU

A Desktop Intel i9-13900K 32 NVIDIA RTX 4090
B Desktop Intel i7-8700K 12 NVIDIA RTX 2070
C Desktop AMD Ryzen 7 3700X 16 NVIDIA RTX 2070 Super
D NVIDIA Orin Arm Cortex-A78AE 12 2048-core NVIDIA GPU

Table 4.5: Compute Platforms we benchmark on.

4.6.1 Literature Review

Much of this work is oriented around Navigation as a task, we treat this primarily as a

surrogate task for benchmarking and not necessarily the end-goal in itself considering

the primary contributions of this paper are the parallelization framework. However,

we still believe it worthwhile to discuss the applications of stochastic optimization for

navigation.

The task we define as navigation is autonomously navigating a vehicle at high-

speeds from its current position to a goal, while avoiding any damage to the vehicle.

There are many approaches for this task, and often this navigation task is embedded

in a larger system that considers a higher object that can be achieved through

navigation. For example, we consider the approach in [28], which uses a motion

primitive library to plan then passes the path down to a lower-level controller that uses

a PI controller to track it. However research has shown that model-aware approaches

are able to track more accurately as in [29]. Consequently, research has trended

towards more integrated approaches, two years after the grand challenge we saw a

more integrated approach with [3] that searched over a trajectory space to directly

command a curvature, curvature rate, velocity and acceleration. MPPI and CEM as

approaches work very similarly, however they sample in continuous space rather than

discrete intervals, this allows MPPI and CEM to refine the solution more accurately

than discrete motion primitive libraries.

Other common approaches for navigation using randomization include [10] and

[16] which both use RRT’s to plan. These approaches are are only used in hierarchical

schemes, where the result of the RRT search provides a path for a lower-level controller

to use. This is a fine approach, however these methods only consider a vehicle moving

at slower speeds around 2m/s, at higher speeds often the disconnect between the
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higher-level planner and what the vehicle can achieve become more evident. Another

approach using randomization is [15] which uses an algorithm that samples directly

in the control space, allowing it to reason about the model in higher-detail. However,

these approaches have fewer real-time guarantees and have fewer guarantees of

informative samples than the MPPI work in [32].

There are more complex approaches as in [11] uses a hierarchical approach in

addition to a high-fidelity model predictive controller. However, there are many

approaches that rely solely on a sample based optimizer for navigation, such as [19],

and many of the MPPI works we cite in section 2.1.2. However, considering the

focus of this work is on the algorithms themselves we accept that our approach to

navigation may not be the most advanced, but is still relevant to the community.
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Chapter 5

Benchmarking Analysis

Using the parallelization framework we discuss in section 3.4, we implement the

optimal control navigation problem discussed in chapter 4. We then use the stochastic

optimization methods discussed in chapter 2 to solve the navigation problem. We use

these to benchmark execution rate as well as performance metrics of the algorithms.

In section 5.1 we discuss the execution rate benchmarking and what components of

the algorithm consume the most time.

5.1 Benchmark Execution Rate Results

We benchmark execution rate using GPU, and threadpool (with 3, 8, 12, 24, 32

threads) backends on four computers. These computers are listed in table 4.5. For

each backend on each computer we profile the algorithm with the following number

of particles: (25, 50, 100, 200, 500, 1000, 1500, 2000, 2500, 3000).

Computer A in table 4.5 is a very capable computer with Intel i9-13900K with

32 threads and an NVIDIA RTX 4090. We can see the results in figures 5.1 and 5.2.

As expected, we see that these algorithms are extremely parallelizable and maintain

a real-time rate less than 50Hz for high particle counts up to 3000 using the GPU.

Using threadpool parallelization we can see that using 8 threads or more allows the

algorithms to maintain a real-time rate of 10Hz with 500 samples which might be

sufficient for some online tasks.

Computer B in table 4.5 is a less capable but still higher-end computer with an
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Figure 5.1: MPPI Timing Profile using GPU parallelization on Computer A in table
4.5. This computer has an Intel i9-13900K with 32 threads and an NVIDIA RTX
4090. While a 50Hz real-time rate is only maintained using GPU parallelization, with
8 threads or more the solver maintains 10Hz easily with 500 samples.

Figure 5.2: CEM Timing Profile using GPU parallelization on Computer A in table
4.5. This computer has an Intel i9-13900K with 32 threads and an NVIDIA RTX
4090. While a 50Hz real-time rate is only maintained using GPU parallelization,
with 8 threads or more the solver maintains 10Hz easily with 500 samples. There are
interesting spikes in the solve times below 500 samples.

Intel i7-8700K with 12 threads and an NVIDIA RTX 2070. We can see the results

for this computer in figures 5.3 and 5.4. On this computer MPPI dips above a 50Hz

execution rate at 3000 particles. This CPU is also evidently slower as the algorithms

do not run at 10Hz with 500 samples.

Computer C in table 4.5 is another higher-end computer with an AMD Ryzen
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Figure 5.3: MPPI Timing Profile using GPU parallelization on Computer B in table
4.5. This computer has an Intel i7-8700K with 12 threads and an NVIDIA RTX 2070.
We see that with GPU parallelization, MPPI runs just below 50Hz at 3000 particles,
however at 2500 samples and less it is able to maintain 50Hz real-time performance.
With approximately 400 samples, it is able to achieve 10Hz with 8 or 12 threads.

Figure 5.4: CEM Timing Profile using GPU parallelization on Computer B in table
4.5. This computer has an Intel i7-8700K with 12 threads and an NVIDIA RTX 2070.
This algorithm is able to run at 50Hz up to 3000 particles, however with threadpool
parallelization it struggles to achieve 10Hz at sample counts greater than 200. We
see another interesting non-linear relationship between sample count and execution
rate at less than 500 particles.

7 3700X with 16 threads and an NVIDIA RTX 2070 Super. We can see the results

for this computer in figures 5.5 and 5.6. On this computer MPPI dips above a 50Hz

execution rate at 3000 particles. However, it is otherwise able to maintain 50Hz. It
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seems for both CEM and MPPI it is able to achieve 10Hz with 500 samples and less.

Figure 5.5: MPPI Timing Profile using GPU parallelization on Computer C in table
4.5. This computer has an AMD Ryzen 7 3700X with 16 threads and an NVIDIA
RTX 2070 Super. We see that with GPU parallelization, MPPI runs just below
50Hz at 3000 particles, however at 2500 samples and less it is able to maintain 50Hz
real-time performance. With approximately 500 samples, it is able to achieve 10Hz
with 8 or 12 threads.

Figure 5.6: CEM Timing Profile using GPU parallelization on Computer C in table
4.5. This computer has an AMD Ryzen 7 3700X with 16 threads and an NVIDIA
RTX 2070 Super. This algorithm is able to run at 50Hz up to 3000 particles. While
we observe a non-linear relationship between sample count and execution rate below
500 particles, it seems to meet 10Hz for 500 particles and less.

Computer D in table 4.5 is a System on Chip (also SOC) computer that has a 12

core arm CPU, and a 2048 core nvidia GPU. This computer is significantly limited
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in comparison to the other desktops, and it shows. We can see the results for this

computer in figures 5.7 and 5.8. We see that this computer is unable to maintain

10Hz even at 500 particles on a GPU parallelization backend.

Figure 5.7: MPPI Timing Profile using GPU parallelization on Computer D in table
4.5. This computer has a 12 core arm CPU, and a 2048 core NVIDIA GPU. It is
unable to maintain 10Hz at even 500 particles on a GPU parallelization backend.

Figure 5.8: CEM Timing Profile using GPU parallelization on Computer D in table
4.5. This computer has a 12 core arm CPU, and a 2048 core nvidia GPU. It is unable
to maintain 10Hz at even 500 particles on a GPU parallelization backend.
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5.2 Navigation Performance Results

We simulate a navigation task using the costmap and model simulation described in

section 4. We simulate with a time discretization of δt = 0.1. While this reduces the

fidelity of the sim we believe this still yields information about how the algorithms

perform the navigation task. We leave higher-fidelity simulations with smaller time

discretization for future work.

To perform these benchmarks we run the simulation tests with both algorithms

with the particle counts (75, 100, 300, 500, 1000, 1500, 2000, 2500, 3000), we found that

below that the algorithms are unable to reliably navigate the courses without obstacle

collision (lethal cost). The results are detailed in figures 5.9, 5.10, 5.11. All courses

are combined into a final average in figure 5.12.

Figure 5.9: Metrics for course 0 in table 4.4. While CEM performs better for low
particle counts on distance taken to reach goal metrics, generally MPPI takes a
shorter amount of time to reach the goal.

Overall, it appears that while CEM can sometimes find shorter routes to reach the

waypoint, MPPI often takes the course at higher speeds thus reaching the waypoint

in less time. There is no clear reason for this, the optimal control problem, model,

cost functions, and even the ground truth costmap itself that are used by the solvers

are identical. For some reason inherent to the solver itself, MPPI takes the course at

a higher speed.
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Figure 5.10: Metrics for course 2 in table 4.4. We see that CEM takes a shorter path
to the goal, however MPPI maintains higher speed and reaches the goal in less time.

Figure 5.11: Metrics for course 3 in table 4.4. We see that while CEM occasionally
takes a shorter path to the goal, MPPI reliably reaches the goal in less time.

5.3 Future Work

This section presents only a preliminary analysis of the results of this benchmark.

These results seem to suggest that MPPI is generally a better algorithm for the

navigation task. However, understanding why MPPI often moves at faster speeds

than CEM to reach the goal in less time requires deeper analysis.

Additionally, we believe an analysis of how execution rates effect performance to

be of value. It may be that MPPI running at 100 Hz with 300 samples may be able

to outperform MPPI running at 10 Hz with 1000 samples.

Generally, we believe further benchmarking of the same tests with different
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Figure 5.12: Metrics averaged over all courses in table 4.4. There is some minor
variation in distance taken to goal at high and low sample counts. On average MPPI
reliably finds a faster way to reach the goal.

courses and denser obstacle to be of value. Since stochastic optimization relies on

randomization, the sampling can have dramatic effects on the choices the navigating

algorithm makes and therefore on performance itself. To demonstrate this we construct

a small course with four obstacles, start the vehicle to the left side of the obstacles

and set the target waypoint to the right.

We can see the results letting CEM navigate the course with 100 samples in figure

5.13. In each test, the vehicle takes a different path to the waypoint, solely as a result

of the psuedo-random number generator having a different seed and everything else

in the test remaining the same.

Naturally, one might think this is because the number of samples is so low. We

can repeat this test with 3000 samples. The results for this are in figure 5.14 While

the paths with the seed set to 1 and 500 take the same path through, still the path

itself is noticeably different and every other test the vehicle takes a different path

through the course.

One might suspect that something is implemented incorrectly with the pseudo-

random number generator implemented in JUMP, however this test is repeatable

with all three pseudo-random number generator algorithms implemented in JUMP

(split-mix [27], xorshift [23], PCG [22]). It is also repeatable with MPPI up to 3000

particles.

This result is interesting because it was the last one we explore, yet it calls into

question the comparative navigation statistics. If the navigation choices made by
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Figure 5.13: Navigation of a four obstacle course with 100 samples and MPPI random
number generator seed set to 1 (top left), 200 (top right), 500 (bottom left), 800
(bottom right). The paths take different homotopy classes through the obstacles in
each case.

these algorithms is so subject to chance, can they be counted on to reliably produce

repeatable and safe behavior. We believe this question must be further explored,

especially considering that many implementations are not as computationally efficient

as this and are limited to a low number of particles and thus might be subject to

greater stochasticity.
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Figure 5.14: Navigation of a four obstacle course with 3000 samples and MPPI
random number generator seed set to 1 (top left), 200 (top right), 500 (bottom left),
800 (bottom right). The same path through the obstacle is taken with seeds set to
1 and 500, however the paths are still noticably different. Every other test takes a
different path.
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Chapter 6

Conclusions

In this document we discuss stochastic optimization in chapter 2, we discuss two

algorithms that are trivially parallelized. We then present a new C++ parallelization

framework that expands the heterogeneous and interopable computing paradigms,

providing new interfaces and capabilities for parallelization and ease of implementation

in C++. We discuss optimal control methodology and cost functions and models

that can be used for autonomous navigation in unknown environments as well as

how to simulate them, we then implement these algorithms and methods using the

parallelization framework we present.

Using this framework we benchmark various aspects of stochastic optimal control,

benchmarking execution rate with different backends and comparing the very similar

CEM and MPPI algorithms. We hope this is insightful to those choosing which

optimal control algorithm to use in practice, or those implementing optimal control

schemes like this for the first time.
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Appendix A

Disturbance Experiments

In section 2.4 we demonstrate the effects of difference disturbance types, then show

the sampling after several iterations of MPPI so that the sampling converges to a

better distribution. We also plot the distribution for the intermediate iterations

of MPPI, shown below. This is informative to show how the MPPI distribution

shifts over time, and is a positive aspect of running the algorithm at high rates -

it allows the algorithm to adjust to changes in the cost landscape more rapidly. It

is also interesting to observe the differences between the environmental and model

disturbances converged solutions. The experiments are specifically constructed to

have the obstacle be positioned in the same place relative to the vehicle at t = 0,

however the waypoint in both tests is positioned at (200, 0). If the costmap and

waypoint were both positioned exactly the same relative to the vehicle, with the same

initial seed we would expect the solutions to be the same between the experiments.

Since the waypoint is a few meters off, we see them converge to different solutions.

Environmental Disturbance
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Model Disturbance
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Appendix B

Temperature Sweep Experiments

In section 2.3.1 we show an experiment doing a sweep over the temperature (λ)

parameter of MPPI to see how it effects the result. The experiment was setup

with the vehicle at an initial state x0 = (0, 0, 0, 8, 0) which means it was essentially

driving straight at 8m/s. To make the comparison easier to reason through, the

solver was converged with several cycles of MPPI with the same x0, just refining the

seed with λ = 0.01. Then the temperature parameter was modified to the value in

the title of each plot and an iteration of MPPI was run to generate the new result.

Constructing the experiment in this way allowed the sampling to be controlled such

that for each individual test the sole difference was the λ parameter, everything else

(initial conditions, costmap, samples) were the same.

It is interesting to observe that the optimized path only begins to diverge from

the lowest-cost sample when λ > 1.0.
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Appendix C

How Stochastic is Stochastic?

In section 5.3 we discuss how changing the seed can drastically effect the results of

a navigation. We include more results from those experiments here. In each group

of four photos below, the seeds 1 (top-left), 200 (top-right), 500 (bottom-left), 800

(bottom right) are used.

This is easily the most interesting result of this work. While this example was

designed to have a few solutions with similar costs, we did not expect there to be

this much variance in the results with so many particles. Suppose this example had

traps or surprise obstacles hiding around corners, whether or not the solver fell into

the trap could be a function of random chance rather than reliable behavior from a

robust system.
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MPPI With 3000 Particles, Using XORSHIFT PRNG
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CEM With 2000 Particles, Using SPLITMIX PRNG
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CEM With 1000 Particles, Using SPLITMIX PRNG
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CEM With 500 Particles, Using SPLITMIX PRNG
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