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Abstract

In the evolving landscape of computer vision, deep learning has emerged
as a transformative force, enhancing a myriad of societal facets. The
deployment of these models necessitates rigorous evaluation and analysis,
particularly when outcomes bear significant societal implications, such as
their influence across varied ethnicities and genders. This imperative forms
the nucleus of trustworthy deep learning, which aims to equip scientists
and engineers with an understanding of the robustness, interpretability,
fairness, safety, and tractability of these models.

Traditionally, Model Diagnostics [7] refers to the validity assessment of a
regression model, including the exploration of assumptions and the struc-
tural examination. As we transit into the era of deep learning for computer
vision, we reinterpret Vision Model Diagnosis (VMD) as the systematic
analysis and evaluation of deep vision models. As we increasingly delegate
decision-making power to deep learning vision systems, their output can
significantly impact individuals and society. Hence the process of VMD,
which has attracted increasing attention from the research community,
can enable us to comprehend the deep vision model’s behavior, interpret
its performance, and fix potential shortcomings and biases.

The main goal of this thesis is to provide a thorough understanding from
a generative perspective: how generative models can help diagnose the
decision-making process of a model, its fairness, and its robust behavior
under various conditions. The use of various generative models with dif-
ferent paradigms, including conditional VAE and CLIP-guided StyleGAN,
can empower VMD with rich semantic spaces that provide analysis for
attributional fairness and visualize where the model fails. We hope that,
with this thesis, we can provide valuable insights into how a diagnostic
process should be constructed and raise attention in the research com-
munity to address issues of model trustworthiness and alignments. How
to accurately uncovers a model’s potential limitations and weaknesses is
essential for securely publicizing deep learning models, and we envision
the significant importance of this theme that will be growing fast in the
upcoming decades.
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Chapter 1

Introduction

Deep learning models have revolutionized various fields, including computer vision, by

providing sophisticated capabilities for tasks like image recognition, object detection,

and semantic segmentation. However, these deep models can often unwittingly

perpetuate existing biases present in the data they are trained on. Consequently,

these biases may be amplified or suppressed depending on the model’s architecture

and optimization strategy, which can lead to biased decision-making, particularly in

sensitive fields like healthcare, law enforcement, and autonomous driving.

Given the significant implications of these biases and the growing need for more

fair, transparent, and robust models, extensive testing and evaluation of deep learning

models are becoming imperative. In traditional model evaluation, collecting and

labeling large-scale datasets that capture all possible attributes of interest has been

a common practice. However, this approach is fraught with challenges, including

high costs, time intensiveness, and potential errors in labeling. Moreover, acquiring a

balanced dataset that is uniformly distributed across all attributes of interest is often

impractical due to its combinatorial nature, and even if attained, it cannot guarantee

absolute fairness or robustness due to potential discrepancies between test and real

distributions.

With these challenges in mind, this thesis aims to advance the field of vision

model diagnosis by proposing and exploring techniques of utilizing generative models

with manipulable semantic space, thereby seeking to democratize model diagnosis as

tool of interpretability, fairness, and robustness. The two primary methods under
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investigation are Semantic Image Attack for Visual Model Diagnosis [26] and Zero-

shot Model Diagnosis [27]. Our works make use of generative models with different

paradigms, including conditional Variational AutoEncoder (VAE) [14] and CLIP-

guided StyleGAN [20, 31], to provide rich semantic analysis for a vision model’s

sensitivities across attributes and visualize where the model fails.

Semantic Image Attack performs model diagnosis with joint optimization in

controllable attribute space and pixel space constructed by an attribute-conditioned

VAE. Zero-shot Model Diagnosis, on the other hand, generates counterfactual images

with more advanced generative backbones, which can visualize the sensitive factors

of an input image that can influence the model’s outputs, thereby identifying key

factors where the model fails. This approach leverages the zero-shot capabilities of

CLIP [34] and StyleGAN for text-driven applications and semantic attribute editing.

Both methods share a common goal: to offer ways to diagnose and understand

model behavior without the need for costly, time-consuming, and potentially error-

prone test set collection and annotation. Furthermore, these methods provide practical

solutions for diagnosing new models or exploring new user-defined attribute spaces

without the need for system re-training.

In this thesis, we will discuss these methodologies in detail, their advantages, and

potential applications. We will also present comparative analyses and case studies to

demonstrate their effectiveness.

By synthesizing insights from these two methods, we aspire to contribute a

meaningful advancement to the field of model diagnosis, promoting more fairness,

transparency, and robustness in deep learning models.

In the forthcoming chapters, we will delve deeper into the technical background,

related works, the methodologies of Zero-shot Model Diagnosis and Semantic Image

Attack, comparative analysis of these techniques, and the future prospects of model

diagnosis.
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Chapter 2

Semantic Image Attack for Visual

Model Diagnosis

In practice, metric analysis on a specific train and test dataset does not guarantee

reliable or fair ML models. This is partially due to the fact that obtaining a balanced,

diverse, and perfectly labeled dataset is typically expensive, time-consuming, and

error-prone. Rather than relying on a carefully designed test set to assess ML models’

failures, fairness, or robustness, this chapter proposes Semantic Image Attack (SIA),

a method based on the adversarial attack that provides semantic adversarial images

to allow model diagnosis, interpretability, and robustness. Traditional adversarial

training is a popular methodology for robustifying ML models against attacks.

However, existing adversarial methods do not combine the two aspects that enable

the interpretation and analysis of the model’s flaws: semantic traceability and

perceptual quality. SIA combines the two features via iterative gradient ascent on a

predefined semantic attribute space and the image space. We illustrate the validity

of our approach in three scenarios for keypoint detection and classification. (1)

Model diagnosis: SIA generates a histogram of attributes that highlights the semantic

vulnerability of the ML model (i.e., attributes that make the model fail). (2) Stronger

attacks: SIA generates adversarial examples with visually interpretable attributes that

lead to higher attack success rates than baseline methods. The adversarial training

on SIA improves the transferable robustness across different gradient-based attacks.

(3) Robustness to imbalanced datasets: we use SIA to augment the underrepresented
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Figure 2.1: Model diagnosis by SIA. The models to be diagnosed are an eyeglasses
classifier (top two rows) and a keypoint detector (bottom two rows). SIA reveals that
the eyeglasses classifier is more sensitive to lipstick and age, whereas the keypoint
detection tends to fail on people with mustaches and pale skin. See the text for an
explanation of the figure.

classes, which outperforms strong augmentation and re-balancing baselines.

2.1 Introduction

In Machine Learning (ML), error analysis of train and test data is a critical stage in

model assessment and debugging. However, the conclusions extracted from the metric

analysis on the train or test data do not guarantee reliability nor fairness, partially

due to the fact that datasets are imperfect [37, 35]. Even with careful collection and

filtering, data naturally contain biases. Furthermore, in the case of computer vision

learning systems, having a uniform distribution over all conceivable variability of an

object in an image (e.g., position, lighting, background) is typically impractical (i.e.,

exponential) and labels are prone to errors. The issue only grows more severe with

large-scale datasets. ML models trained on these datasets inevitably inherit these

imbalances and biases. These limitations also apply to test sets that are typically

used for model evaluation. Such a vulnerability is a landmine that must be recognized

and processed in order for ML applications to succeed. The question we strive to
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address in this study is whether there are alternative/better methods for discovering

biases and performing model diagnostics in computer vision models instead of only

relying on a test set.

Fig. 2.1 illustrates the problems that this section tries to address. Given an

eyeglasses classifier (top two rows) or a keypoint detector (bottom two rows), which

kind of face images will lead to misclassification or misdetection? How can we

automatically discover these failure cases and robustify the model? How can we

perform visual model diagnosis in a semantic attribute space? To accomplish these, we

propose Semantic Image Attack (SIA), a new adversarial attack in a generative model

of faces parameterized by attributes. In top left in Fig. 2.1, we see two images of faces

without eyeglasses, and the model classifies them correctly. After several iterations

of SIA (right column), our model is able to modify facial attributes (e.g., smile, eye

color, facial hair) to mislead the eyeglass classifier. Also, our model builds a histogram

of the sensitivity across attributes (i.e., visual model diagnosis). While evaluating the

model resilience on a single attribute can be relatively straightforward, evaluating

the model robustness for combinations of attributes can be quite challenging (due

to the exponential nature of attribute combinations). SIA is able to jointly search

over the space of attributes, and hence performs a multi-attribute attack for model

diagnosis. Similarly, in Fig. 2.1, the bottom two rows illustrate the model diagnosis

results for keypoint detection.

In addition to model diagnosis, SIA is able to robustify the target model by

re-training the model on adversarial examples (see Fig. 2.1 middle columns). In our

experiments, we also show the robustness from SIA is more transferable to other

types of attacks than other competing attack methods. Finally, we show that SIA

outperforms popular image augmentation techniques [6, 51] and re-balancing baselines

when learning from imbalanced datasets.

2.2 Related Work

2.2.1 Adversarial Attacks

Gradient-guided image space perturbation attacks have been popular in robustifying

ML models [11, 28]. The image perturbations generated by such attacks are small
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Figure 2.2: The SIA framework uses an encoder-decoder GAN Gϕ = {Eϕ1 , Dϕ2}
to attack a target model fθ. In each iteration i, we update the image xi and the
attribute vector ai using the gradients from the loss L (see Eq. (2.1)). Finally, the
encoder-decoder GAN projects the attacked image xT and attributes aT in the last
iteration back to the image manifold to produce adversary x̂ = Gϕ(xT ,aT ). Solid
lines stand for forward passes, and dashed lines stand for backpropagation.

image changes typically imperceptible to humans. [54, 50] adopted such attacks

on keypoint detectors to robustify detectors against adversarial perturbations. [49]

was pioneering in using Generative Adversarial Networks (GANs) [10] to generate

adversarial attacks. However, [49] only allowed a limited perturbation bound and

required individually trained GANs for every target ML model. A major issue of

previous methods is the lack of interpretability of the attack. To address this issue,

[33] used the interpolation of semantic feature maps to generate attacks, and showed

the effectiveness in terms of the attack’s success rate in classification and detection

problems. [9] also modeled the perturbations in the attribute space, and showed that

the attribute space can improve model robustness. However, this work aims to find

perturbations in samples that do not change labels, and their model is not robust

to small perturbation attacks in the image space. Moreover, [9] did not provide

interpretability into the failures of the computer vision model. Similarly, [23] sampled

images in the latent space of a GAN to generate strong attacks, but their attacks are

not interpretable in the attribute space. [17] conducted model attacks only in the

attribute space using the attribute-assisted GAN (AttGAN) [14]. This approach does

not attack the image space and does not constrain the scale of parametric gradients,

which leads to generating unrealistic images.
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Unlike previous work in the adversarial attack literature, SIA performs gradient-

guided attack simultaneously in the image and a pre-defined attribute space. As

we will show in the experimental section, performing gradient ascent only in the

attribute space leads to unstable results. In addition, our approach only uses one GAN

backbone [14] to attack all target models (i.e., AttGAN can be used to evaluate any

computer vision model). Finally, our method provides a histogram of the sensitivity

of the target models across attributes of interest. This information can be critical to

gather insights into the fairness and robustness of the model.

2.2.2 Bias and Fairness Analysis

[2, 8] showed that by traversing images in the GAN latent space, one can visualize

the attribute-wise sensitivity of a target classifier. But such a process requires

manual annotation of the generated images, which is expensive and infeasible for large

attribute spaces. Recently, [21] used StyleGAN [20] to learn a target-model-dependent

style/attribute space, which allows a human to interpret the target models’ behavior

in terms of attributes. Furthermore, several previous works proposed fairness metrics

to evaluate a model without a fair test set [13, 35, 52]. While previous fairness metrics

focus on a model’s statistical behavior across attributes, SIA focuses on the model’s

decision for each instance (though individual sensitivities can be further aggregated

to get sub-population sensitivity, see Fig. 2.1). Moreover, SIA is able to search over

attribute combinations.

2.3 Method

This section describes our SIA algorithm starting with the notation.

Target model (fθ): Let fθ, parameterized by θ, be the target model that we

want to improve or perform model diagnosis on. In this section, we cover two types

of neural network models fθ: an attribute classifier and a keypoint detector.

An attribute classifier takes an image x as input and outputs fθ(a|x), the con-

ditional probability of attribute a ∈ A given x, where A is the attribute space.

Without loss of generality, we consider binary classifiers. Given the ground truth class

label c of the image x, the classification loss is defined as the binary cross-entropy
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Lθ = −(c log fθ(c|x) + (1− c)(log (1− fθ(c|x)))).
The keypoint detector takes an image x as input and outputs fθ(p|x), the

probability heatmap of the keypoints p ∈ P, where P is the 2D pixel coordinate

space. Given a training image x with ground truth facial keypoints c, the loss

Lθ is defined as the mean squared error between the predicted heatmap and the

ground-truth heatmap corresponding to c, see [43] for details.

Adversary (x̂): For each input image x, an adversarial example x̂ is a synthesized

image that misleads the target model fθ to produce outputs that are far away from

the ground truth c or changes the label of the classifier. Different from traditional

adversarial attack methods, SIA generates adversarial examples under a combination

of perturbations in the attribute and image spaces.

SIA consists of two main components: (1) an AttGAN Gϕ = {Eϕ1 , Dϕ2}, Gϕ(x, a) =
Dϕ2([Eϕ1(x);a]), where the encoder Eϕ1 maps an input image x to a latent vector,

the decoder Dϕ2 takes as an input the concatenation of Eϕ1(x) and the attribute

vector a to generate an image; (2) a pretrained target model fθ to be diagnosed.

2.3.1 Generating Iterative Adversaries

Our framework uses both the attribute space and the image space to iteratively

generate adversarial images x̂. We iteratively compute gradient ascent in the attribute

space and the image space. An advantage of optimizing over the attribute and image

space is an improved adversarial space, that leads to a better generation of adversarial

examples (see experiment section).

The procedure to jointly update the attribute vectors and images is as follows:

ai = ΠB(ϵa)(ai−1 + η sign[∇a(Lθ(fθ(Gϕ(xi−1,ai−1))))]),

xi = ΠB(ϵx)(xi−1 + η sign[∇x(Lθ(fθ(Gϕ(xi−1,ai−1))))]).
(2.1)

The adversarial example x̂ is an image space projection of a fine-grained perturbation

of the original input image x at both pixel and attribute levels. During the process, our

SIA framework manipulates the attribute vector in a predefined attribute space such

that the target model is compromised. Note that each iteration of the updates will

be clipped with a radius ϵ to make sure that the perturbation is bounded and valid.

The pixel-level perturbed image is fed into Gϕ to encode the adversarial information

into the latent vector, which is concatenated with the perturbed attribute vector.
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Specifically, instead of directly perturbing the output image, which may significantly

harm the perceptual quality, we perturb the input attribute and the image and

let Gϕ project the perturbed image and attribute back to the image manifold. To

prevent synthesis collapse, we adopt the projection Π onto the ℓ∞ ball B of radius ϵ to

constrain the optimization. The projection to generate the final adversarial example

is formulated as x̂ = Gϕ(xT ,aT ). An overview of our SIA framework is shown in

Figure 2.2.

At this point, it is important to notice that perturbing in both the image space

and attribute space produces higher attack success rate and finer visual adversarial

images. Also, we do it for a fair comparison with traditional methods. Recall that

directly perturbing the semantic space limits the attacking capability. Our hybrid

attack gives us the flexibility to analyze both the semantic and pixel-level robustness

of the model. In fact, SIA’s pixel-level perturbation helps to avoid exaggerated

semantic variation that makes the image generation collapse. An ablation study that

illustrates the advantages of perturbing in both the image and attribute space is

included in the experimental section.

2.3.2 Interpreting and Improving the Target Model

Given a set of image-attribute pairs (x(p), a(p)) (p = 1, . . . , N), we run T iterations of

Eq. 2.1 and store all the generated adversaries. By calculating the absolute variation

of attributes during the generation of adversaries x̂(p), we can discover the most

sensitive attribute(s) to the target model fθ(·) in the Gϕ’s attribute space. We define

the sensitivity vector containing sensitivities (in the range of [0, 1]) of the target

model on each attribute as follows:

s =
1

N

N∑
p=1

(|a(p)
T − a

(p)
1 |), (2.2)

Each value in s will represent the average perturbation of the corresponding attribute

across all sampled images. Note that this method can be extended to select top-k

attributes that have a greater influence on the prediction of the target model. The

generated adversaries x̂(p) are associated with more diverse attribute vectors â, which

can be considered as an augmented dataset for adversarial training. See Algorithm 1
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Algorithm 1 SIA to generate adversarial examples and sensitivity analysis.

Input: A set of image-attribute pairs {(x(p)
0 ,a

(p)
0 )}Np=1; target model fθ(·)

Output: Model sensitivity s; a set of adversaries {x̂(p)}Np=1

for p ∈ {1, . . . , N} do
for i ∈ {1, . . . , T} do

a
(p)
i ← a

(p)
i−1 + η sign[∇a(Lθ(fθ(Gϕ(x

(p)
i−1,a

(p)
i−1))))]

a
(p)
i ← ΠB(ϵa)(a

(p)
i )

x
(p)
i ← x

(p)
i−1 + η sign[∇x(Lθ(fθ(Gϕ(x

(p)
i−1,a

(p)
i−1))))]

x
(p)
i ← ΠB(ϵx)(x

(p)
i )

end for
x̂(p) ← Gϕ(x

(p)
T ,a

(p)
T )

end for
s = 1

N

∑N
p=1(|a

(p)
T − a

(p)
1 |)

for more details on how to generate adversaries and sensitivity analysis.

2.4 Experimental Results

This section explains the experimental validation to demonstrate the benefits of

SIA for visual model diagnostics, improved robustness against visual attacks, and

imbalanced robustness.

2.4.1 Experimental Setups

Attribute-assisted GAN: Our backbone of AttGAN Gϕ is trained on the whole

CelebA dataset [25], using 15 attributes1. Images are center cropped, resized to

(224, 224), and normalized using the ImageNet normalization. Gϕ’s encoding and

decoding dimensions are both 64. Shortcuts and inject layers are activated, and the

Wasserstein loss [1] is used. We used the codes provided by [14]2.

Attribute Classifier: Our classifiers are fine-tuned from TorchVision’s pre-

trained ResNet50. Unless otherwise stated, we trained binary classifiers on the

CelebA training set [25]. For training, we used the Adam optimizer with a learning

1we used Bald, Bangs, Black Hair, Blond Hair, Brown Hair, Bushy Eyebrows, Eyeglasses, Male,
Mouth Slightly Open, Mustache, No Beard, Pale Skin, Young, Smiling, Wearing Lipstick

2https://github.com/elvisyjlin/AttGAN-PyTorch
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Figure 2.3: Attribute sensitivity analysis generated by SIA for different classifiers
(top) and keypoint detectors (bottom). Perceived gender and eyeglasses classifiers are
sensitive to different attributes. However, the keypoint detectors trained on synthetic
(left) and real (right) data are sensitive to similar attributes, but the one trained on
synthetic data is slightly more sensitive than the one trained on real data.

rate of 0.001 and batch size of 128. The seed for random number generation is 42 for

Numpy and PyTorch.

Keypoint Detector: We used the HR-Net architecture [43]. We trained two

models, one trained on the Wilder Facial Landmark in the Wild (WFLW) dataset [46]

and the other on the Microsoft (Fake-it) synthetic dataset [45]. To train the two

keypoint detectors, we used all images (10, 000) from the WFLW dataset and the first

10, 000 images from the Fake-it dataset, respectively. We trained with 98 keypoints

on the WFLW dataset and 68 keypoints on the Fake-it dataset.

11



Figure 2.4: Attribute sensitivity analysis generated by SIA for more target classifiers.
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(b) Examples of SIA on Fake-it [45] keypoint detector

Figure 2.5: SIA adversarial examples on different target models.
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(a) SIA on eyeglass classifier.
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(b) SIA on WFLW [46] keypoint detector.

Figure 2.6: (Cont.) SIA adversarial examples on different target models.
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2.4.2 Visual Model Diagnosis

After training a deep learning model and tuning hyper-parameters of the model on

a validation set, an important step is error analysis. The error analysis includes

analyzing where the model fails on test data and making systematic changes based

on the insights. However, in some scenarios, it is difficult to collect test data across

all possible attributes of interest in a uniform manner. Instead of collecting test data,

this section describes how SIA can be used for model diagnosis and provides insights

into the image attributes that make the model fail.

Diagnosis visualization

We trained 8 binary classifiers on the following attributes from CelebA: Attractive,

Arched Eyebrows, Blurry, Chubby, Eyeglasses, Male, No Beard, Sideburns with the

setup mentioned in Section 4.1. In addition, we trained two keypoint detection

algorithms, one on real images and another one on synthetic images, using the

same architecture HR-Net [43]. SIA reports the sensitivity of the target model w.r.t.

different attributes, which is formalized in Eq. 2.2. We selected the first 10, 000 images

in CelebA to evaluate the sensitivities. Fig. 2.3 illustrates the histogram for the

classifier (first row) and keypoint detector (second row) towards different attributes,

according to Eq. 2.2. For clearer visualization, we have normalized the sensitivity for

each attribute by the sum of sensitivities. We can see that for the perceived-gender

classifier, lipstick and beard are the most sensitive attributes. Similarly, we discovered

that changing specific attributes can largely affect the outcome of a well-trained

keypoint detection model. Interestingly, both keypoint detectors are very sensitive to

mustache and eyeglasses, and not very sensitive to hair color or perceived gender.

This is expected, since keypoints have a higher density around the eyes and mouth

region, and modification of these regions can be critical to the accuracy. Fig. 2.4

shows the histograms of the sensitivity across attributes generated for additional

attribute classifiers in Section 4.2.

Fig. 2.5 shows example images of SIA attacking the two target models. For the

perceived-gender classifier in Fig. 2.5 (a), we can see from the first four columns

that mutating the lipstick and beard attributes will influence the model’s prediction.

The last three columns show that mutating other attributes including hair color,
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PSNR (↑) SSIM (↑)

SPT-50
SIA-50
(Attr)

SIA-50
(Full)

SPT-200
SIA-200
(Attr)

SIA-200
(Full)

SPT-50
SIA-50
(Attr)

SIA-50
(Full)

SPT-200
SIA-200
(Attr)

SIA-200
(Full)

η =
0.25

255
26.63 41.98 42.24 19.43 31.21 33.94 0.9083 0.9929 0.9930 0.7732 0.9602 0.9718

η =
4

255
14.18 22.36 28.25 13.59 20.16 25.75 0.6385 0.8573 0.9285 0.6230 0.8037 0.8926

Table 2.1: Image quality evaluation for SIA and SPT.

skin color, and bangs can also affect the model decision. Fig. 2.5 (b) shows that

SIA changes attribute such as eyeglasses, pale skin, or mustache to cause keypoints

misdetection in facial images. This sensitivity analysis and adversarial examples can

provide insights into the kind of images where the keypoint detector or classifier fails,

and generate adversaries to improve performance. More adversarial examples and

histograms for the remaining attributes are shown in Appendix A and B.

Image quality evaluation

We evaluated the image perceptual quality for adversarial examples generated by

SPT [17] and SIA. To interpret Table 2.1, SPT-50 (η = 0.25
255

) stands for the adversarial

examples generated by SPT with 200 iterations and step size of 0.25
255

. The tables

show that SIA’s image quality is better than SPT under both PSNR (Peak Signal to

Noise Ratio) and SSIM (Structured Similarity Indexing Method) [44] metrics. We can

see that perturbing in both image space and attribute space produces visually finer

adversarial images. In fact, SIA’s pixel-level perturbation helps to avoid exaggerated

semantic variation that makes the image generation collapse.

Sensitivity by single-attribute optimization

We can also perform SIA independently for every single attribute and organize

the sensitivities as the histogram on the right in Fig. 2.7. We can see that SIA’s

histograms, no matter multi-attribute or single-attribute, support consistent analysis

of most sensitive attributes. However, it is worth noting that a greedy single attribute

perturbation can be computationally expensive for a large attribute space (e.g., 15

attributes). It is very time-consuming to adversarially traverse a single attribute

over the dataset and repeat 15 times (i.e., repeat for each attribute) in a grid-search

manner. Jointly optimizing all attributes is more time-effective and comprehensive
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Figure 2.7: Histogram for attribute sensitivities (under multi- and single-attribute
optimization) for the perceived-gender classifier.

(i.e., exploring a continuous space across all attributes) as the histogram on the left.

2.4.3 Attack Effectiveness

This section compares SIA to popular gradient-based adversarial attacks in a white-

box setting for the attribute classifiers. Then an ablation study is conducted to

demonstrate the effectiveness of various components in SIA, including the use of

attribute and image perturbations.

Attack success rate

SIA constrains the perturbation bounds of attribute space (a) and image space (x)

separately. The attributes that do not overlap with the target model range between

[0, 1] with a step size η = 0.25
255

. The attribute that is equivalent to the target classifier

is constrained to be a small constant depending on the attribute being classified. We

iteratively perturbed the input image bounded by ϵ = 1.5
255

with η = 0.25
255

. The number

of steps for both the attribute space and image space will be 200. The evaluated

subset in CelebA corresponds to the first 10, 000 images.

We used the FGSM [11] and PGD [28] under l∞ norm of different perturbation

bounds as baseline methods. For PGD, the iteration step size η = 0.25
255

with 200 steps

in total. For FGSM, the attack will iterate once within a bounded perturbation.

In the adversarial training experiment, we additionally compared with SPT [17]

using the same attribute space as SIA. However, we did not compare with [23] since
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ϵ Classifier FGSM PGD SIA

1.5/255
Eyeglasses 28.01 49.85 68.20

Perceived Gender 56.31 65.32 88.19

2/255
Eyeglasses 42.83 87.79 94.82

Perceived Gender 75.27 87.19 92.44

4/255
Eyeglasses 78.90 99.94 99.99

Perceived Gender 97.33 97.41 98.53

Table 2.2: Success rate (%) for different adversarial attack methods with different
perturbation bounds.

their method samples adversarial examples from StyleGAN, which does not support

attacking existing images. We also did not compare with [21] because their method

requires training a separate model on StyleGAN’s original training data for each

target model.

Table 2.2 shows the attack success rates for different perturbation-based attacks

on multiple target classifiers. Notably, we can see that SIA achieves performance

comparable to traditional attacks with smaller perturbations.

2.4.4 Baseline Comparison

We implement SPT [17], CW [3], and Face-Manifold (FM) [23] attacks and evaluate

the attack success rates (ASR) on our facial eyeglass classifier. The classifier is

trained with the setup mentioned in section 4.1. For all listed setups (unless otherwise

stated), the images for evaluation is the first 2, 000 images from CelebA test set.

In SPT attack, we use the attribute space consisting the same 15 attributes as

SIA. The optimizer is RMSProp with two learning rates η = 0.25/255 and η = 4/255.

Table 2.3 shows the ASR with different attack iterations. Under the same setup of

200 iterations with η = 0.25/255, our SIA attribute-only ASR (in section 4.3 ablation

study table) is 32.67% which outperforms SPT. This shows that the use of signed

gradient to update the attribute space, which stabilizes the optimization, can improve

the attack effectiveness.

In CW attack, we fix the attack iteration same as SIA’s 200 and evaluate the

ASR under different box-constrain parameters. Table 2.4 shows that by relaxing the

box-constrain, the ASR can hit to 52.6% which is higher than our PGD baseline of
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Iterations 2 5 10 15 20 50 100 150 200

η = 0.25
255

0.3% 0.3% 0.4% 0.7% 0.9% 3.1% 12.3% 19.4% 22.9%
η = 4

255
1.2% 5.0% 14.6% 21.7% 25.4% 28.3% 29.6% 30.3% 29.7%

Table 2.3: ASR for SPT attack with different step size η on eyeglasses classifier

Box Contrain 0.10 0.25 0.50 0.75 1.0 1.5 2.0 5.0 10.0

ASR 9.1% 16.8% 25.0% 29.4% 31.9% 35.1% 37.2% 45.4% 52.6%

Table 2.4: ASR for CW attack with different box-constrains setup on eyeglasses
classifier

49.85%. The default setting of SIA where image and attribute spaces are co-updated

has an ASR of 68.20% which are much more effective than CW and PGD. Note

that during SIA’s adversarial optimization, we can obtain attribute sensitivity which

provides intuitive model interpretation to users. Pure image space attacks cannot

support such features.

In FM attack, we follow the setup as specified in the original section to make sure

that we can re-implement the high ASR reported in their section. We sample 2, 000

images from the style space to experiment on different settings of ϵ1 (style step size)

and ϵ2 (noise step size). Table 2.5 shows the ASR of different ϵ1 and ϵ2 settings. We

find out that noise vectors have a superior effect on flipping the prediction of our

eyeglasses ResNet classifier. With increasing the strength of injected noises during

the generation, the image quality will significantly decrease. Note that SIA and PGD

can also achieve similar ASR (99.99% and 99.94% correspondingly) by relaxing the

image space constraint.

ϵ2 = 0 (no noise) ϵ2 = 0.01 ϵ2 = 0.02 ϵ2 = 0.03 ϵ2 = 0.04 ϵ2 = 0.05

ϵ1 = 0.004 2.5% 70.8% 96.6% 99.7% 100.0% 99.9%
ϵ1 = 0.01 2.2% 19.3% 55.9% 78.8% 91.9% 97.3%
ϵ1 = 0.05 0.3% 1.9% 3.95% 8.2% 19.3% 20.5%
ϵ1 = 0.1 0.2% 0.8% 1.3% 2.9% 7.0% 12.1%

Table 2.5: ASR for FM attack on eyeglasses classifier
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Figure 2.8: Histogram visualization of attribute sensitivities (under different SIA
data amount) for the gender classifier.

Eyeglasses Goatee Age Sideburns

OR 0.02 3.49 0.15 3.32
I 1.83 13.58 6.10 12.51

I + PA 18.25 26.54 30.16 22.46
A 32.67 83.59 90.90 67.97

A + PI 44.26 79.82 85.98 70.65
Full 68.20 90.51 90.38 87.08

Table 2.6: Ablation study on the success rate (%) of attacks.

Ablation for image v.s. attribute space

This experiment analyzes the attack success rate when attacking the image and/or

the attribute space (see Table 2.6). Original reconstruction refers to the images

reconstructed by Gϕ without any perturbations. I/A refers to only updating the

image/attribute space during the attack. PI/PA refers to partially updating the

image/attribute space in the first 20 iterations of the total 200 iterations. Note that

the Attr-space setting is different from SPT [17] since SIA uses sign linearization

to constrain the gradient updates to stabilize the attack. As expected, the attack

effectiveness is much higher regardless of using attribute space alone or in combination.

Extending attribute space

We experimented with an alternative attribute space of 20 attributes for Gϕ. We

removed Black Hair, Brown Hair, Bushy Eyebrows, Eyeglasses, Male(perceived),

No Beard, Young(perceived), Wearing Lipstick which are either attribute of target

classifier or attributes with overlapped concepts. Then we added Narrow Eyes,

Oval Face, Pale Skin, Pointy Nose, Receding Hairline, Rosy Cheeks, Sideburns,
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Figure 2.9: The effect of different attribute spaces used in SIA. We compare 15
and 20 attributes and show that a larger space of attributes leads to faster attack
convergence (left) and a higher success rate with various bounds (right).

Straight Hair, Big Lips, Big Nose, Chubby, Goatee, Heavy Makeup, High Cheekbones.

Compared with the attribute space used in our main experiment, this alternative

attribute space covers more semantic variations in facial data. Fig. 2.9(a) shows

the success rate for the attractive classifier. PGD refers to the implemented PGD

attack [28]. The larger the attribute space, the higher the success rate, and the attack

converges in fewer iterations. This is not surprising because the larger semantic

space helps Gϕ to search the combination of adversarial attributes more effectively.

Fig. 2.9(b) shows that with the same perturbation bound setting, the extended Gϕ
will give a stronger attack on the target classifier.

2.4.5 Adversarial Training

In this experiment, we evaluated the effectiveness of SIA to improve adversarial

robustness. We adopted the setting such that the target model is fine-tuned with

adversarial examples for one epoch. Table 2.7 shows how SIA can be used effectively

for re-fitting adversarial examples generated by Algorithm 1. SIA-Adv, PGD-Adv,

SPT-Adv are eyeglasses classifiers adversarially trained with 30, 000 adversarial

examples generated by the corresponding attack method from the first 30, 000 images

of CelebA. The perturbation bound is ϵ = 1.5/255. Non-adversarial training means

the regular classifier trained in Section 2.4.2. All models are evaluated on the first

10, 000 images from the CelebA test set that the models have never seen before.
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Non-Adv PGD-Adv [28] SPT-Adv [17] SIA-Adv

Clean Test Set 99.63 99.54 99.51 99.52

FGSM (1.5/255) 73.97 86.55 77.76 94.01
PGD (1.5/255) 50.63 81.98 16.52 86.90
SIA (1.5/255) 12.59 27.90 74.01 67.07
FGSM (4/255) 22.47 22.09 41.78 45.51
SIA (4/255) 4.56 10.85 10.55 12.57

Table 2.7: Adversarial training. The reported numbers represent the accuracy (%)
for adversaries.

Results show that the robustness of SIA adversarial training is transferable to other

attack methods, but not vice versa (i.e., see how the column SIA-Adv works well across

all the attacks). This is because our adversarial example constructs both conceptual

shifts in the semantic space and noise shift in the image space, which introduces richer

information during the adversarial training compared to traditional perturbation

attacks. Fig. 2.10 shows the visual comparison of SIA and SPT adversaries on the

eyeglasses classifier. SPT generates less fine-controlled semantic changes because

updating only the attribute space results in large changes across many attributes.

More visual comparisons of different baselines for adversarial training are reported in

Appendix C.

Standard deviation of attribute robustness

We established a measure named Standard Deviation of Attribute Robustness (SDAR)

to understand the final variance of our model across attributes. For a given classifier

fθ, SIA generates the sensitivity histogram based on the attribute perturbation vector

s of length L. The SDAR metric σs is defined as the standard deviation of the

sensitivity values σs =
√

1
L

∑L
i=1 (si − s̄)2.

Ideally, an unbiased model should have equal sensitivity across all attributes,

hence a decrease in the standard deviation will indicate that the model is less biased.

To validate the method, we calculated SDARs after evaluating different models from

adversarial training. The test data was the first 10, 000 images of CelebA test set. We

evaluated the SDAR metric under two bounds (ϵ) of SIA. Table 2.8 shows the results.
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Non-Adv PGD-Adv [28] SPT-Adv [17] SIA-Adv (Ours)

ϵ =
1.5

255
0.1145 0.0917 0.0852 0.0781

ϵ =
4

255
0.1419 0.1270 0.1253 0.1056

Table 2.8: SDAR metric on different adversarially-trained models from Section 4.4.
A lower value indicates a less biased model.

Ori. Recon. SPT Ori. Recon. SIASPTSIA

Figure 2.10: Demonstration of SIA and SPT [17] adversarial examples on the eyeglasses
classifier. Results show that SPT generates unrealistic images, while SIA generates
realistic images with small but semantic modifications of the original image.

We can see that the non-adv classifiers will have larger σ and the adversarially-trained

models have smaller σ since the model generalization is improved by the adversarial

training process. By optimizing both the attribute and the image space, SIA-Adv

better generalizes over attributes than regular classifiers.

2.4.6 Robustness to Imbalanced Datasets

This section reports experiments to evaluate the robustness of SIA in learning from

imbalanced datasets. In these situations, it is vital to develop algorithms that are

not biased toward the majority class. While data augmentation and re-weighting are
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commonly used techniques, we show how SIA provides an alternative that generates

semantically meaningful augmentation with high visual quality.

We trained two attribute classifiers, for eyeglasses and bangs, using the ResNet50

architecture. We generated a synthetically unbalanced dataset to produce a controlled

imbalanced environment. For training, we randomly sampled 30, 000 images from

CelebA training set such that 1% are positive and 99% are negative. We trained the

classifiers from random initialization. For testing, we use balanced test data including

random 2, 500 positive-label images and 2, 500 negative-label images from CelebA

test set.

Table 2.9 shows the precision, recall, and accuracy for several imbalanced learning

strategies. We compared SIA to five data augmentation and re-balancing approaches.

The Non-Adv attribute classifiers are trained on the synthetic data with 1:99 CelebA

training set. The CutMix [51] baselines are augmented with action probability p = 0.5

and learning rate α = 0.001. We followed PyTorch’s implementation on AutoAugment

[6]. We also included two commonly used baselines to deal with imbalanced data:

Reweighting and Resampling. Reweighting means upweighting the under-represented

samples based on the proportion of class samples. Resampling means duplicating the

under-represented samples until different classes have the same number of samples.

SIA refers to classifiers augmented by randomly sampling 30, 000 our adversarial

images. SIA + Reweight is the scheme where the reweighting is performed on our

SIA-augmented dataset. Results show that SIA can effectively be used to augment

imbalanced datasets, outperforming other widely used augmentation methods. One

possible reason is that SIA generates semantically meaningful augmentations, different

from CutMix and AutoAugment. Finally, we conduct a similar experiment with

pre-trained classifiers in Appendix D. We show that the difference in accuracy between

the methods narrows down considerably if we pre-train the classifiers. This is not

surprising, since pre-training with sufficient data provides robust features that are

less prone to imbalance.

23



Strategy Prec. ↑ Recall ↑ Acc. (%) ↑

E
ye
gl
as
se
s

Non-adv classifier 0.9985 0.8052 90.20
Reweighting 0.9995 0.8368 91.82
Resample 0.9984 0.7700 88.44
CutMix 0.9963 0.3236 66.12
AutoAugment 0.9975 0.8004 89.92
SIA-Adv (ours) 0.9991 0.8864 94.28
SIA-Adv + Reweight (ours) 0.9991 0.8856 94.24

B
a
n
gs

Non-adv classifier 0.9847 0.2576 62.68
Reweighting 0.9912 0.2708 63.42
Resample 0.9935 0.1840 59.14
CutMix 1.0000 0.0000 50.00
AutoAugment 0.9701 0.0260 51.26
SIA-Adv (ours) 0.9791 0.4116 70.14
SIA-Adv + Reweight (ours) 0.9854 0.5960 79.36

Table 2.9: Comparison of different strategies for learning from imbalanced datasets.
See text.

2.4.7 Image Synthesis Analysis

Visual Comparison of Adversarial Examples

Fig. 2.11 shows more visual comparisons of the adversarial examples generated by

different methods. As we can see, SIA adds perturbation in the image space and

the attribute space, generating photo-realistic fine-grained adversarial examples.

Perturbing in both image space and attribute space produces finer visual adversarial

images. In fact, SIA ’s pixel-level perturbation helps to avoid exaggerated semantic

variation that makes the image generation collapse.

AttGAN’s Reconstruction and Semantic Editing

AttGAN (Gϕ) is capable of editing both fine-level semantics (e.g., beard) and complex

concepts (e.g., age). The reconstruction loss during the training of Gϕ guarantees the

preservation of facial details. As stated in [14], the use of shortcut layers [36] improves

the quality of image translation. During the SPT and SIA attack, we constrained all

mutated attributes in the range of [0,1] to make sure that the transformed attribute

vector for Gϕ is valid. The style intensity hyper-parameter is set to 1, and the number

of encoder layers and decoder layers are both 5.
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Recon. FGSM [11] SPT [17] SIA (Ours) Recon. FGSM [11] SPT [17] SIA (Ours)

Figure 2.11: Adversarial examples by FGSM [11], SPT [17], and SIA (Ours) on the
eyeglasses classifier.
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2.5 Discussion and Future Work

This section introduced SIA, an attribute-assisted adversarial method with appli-

cations in model diagnosis, improving target model robustness, and increasing the

success of visual attacks. A major appeal of our technique is the capacity of ana-

lyzing a deep learning model without a carefully designed test set. SIA reveals the

dependencies between attributes and model outputs, which helps interpret the biases

learned by models during prediction. We hope our results pave the way for new tools

to analyze models and inspire future work on mitigating such biases.

While we showed the benefits of our technique in two computer vision problems,

our approach is applicable to any end-to-end differentiable target deep learning model.

It is unclear how to extend this approach to non-differentiable ML models, and more

research needs to be done. Our method works with white-box attacks since our

primary motivation is to diagnose a known model. More research needs to be done to

address black-box attacks. Furthermore, we have illustrated the power of SIA only in

the context of faces, but our method can extend to generative models that have been

trained with other attributes of interest and can be applied to other visual domains.
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Chapter 3

Zero-Shot Model Diagnosis

When it comes to deploying deep vision models, the behavior of these systems must be

explicable to ensure confidence in their reliability and fairness. A common approach

to evaluate deep learning models is to build a labeled test set with attributes of

interest and assess how well it performs. However, creating a balanced test set (i.e.,

one that is uniformly sampled over all the important traits) is often time-consuming,

expensive, and prone to mistakes. The question we try to address is: can we evaluate

the sensitivity of deep learning models to arbitrary visual attributes without an

annotated test set?

This chapter argues the case that Zero-shot Model Diagnosis (ZOOM) is possible

without the need for a test set nor labeling. To avoid the need for test sets, our system

relies on a generative model and CLIP. The key idea is enabling the user to select a

set of prompts (relevant to the problem) and our system will automatically search

for semantic counterfactual images (i.e., synthesized images that flip the prediction

in the case of a binary classifier) using the generative model. We evaluate several

visual tasks (classification, key-point detection, and segmentation) in multiple visual

domains to demonstrate the viability of our methodology. Extensive experiments

demonstrate that our method is capable of producing counterfactual images and

offering sensitivity analysis for model diagnosis without the need for a test set.
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How would a change
in [attribute] affect

[my model]'s prediction?

User Diagnosis Request Neural Tools Diagnosis Outcomes

[attribute] = "green eye"
                      "vertical pupil"
                      "pointed ear"
                     ...

[my model] = cat/dog classifier
                       ...

 Zero-shot counterfactual images

 Zero-shot sensitivity histogram
"green eye"

"vertical pupil"

"pointed ear"
...

...

Figure 3.1: Given a differentiable deep learning model (e.g., a cat/dog classifier) and
user-defined text attributes, how can we determine the model’s sensitivity to specific
attributes without using labeled test data? Our system generates counterfactual
images (bottom right) based on the textual directions provided by the user, while
also computing the sensitivity histogram (top right).

3.1 Introduction

Deep learning models inherit data biases, which can be accentuated or downplayed

depending on the model’s architecture and optimization strategy. Deploying a

computer vision deep learning model requires extensive testing and evaluation, with

a particular focus on features with potentially dire social consequences (e.g., non-

uniform behavior across gender or ethnicity). Given the importance of the problem,

it is common to collect and label large-scale datasets to evaluate the behavior of these

models across attributes of interest. Unfortunately, collecting these test datasets

is extremely time-consuming, error-prone, and expensive. Moreover, a balanced

dataset, that is uniformly distributed across all attributes of interest, is also typically

impractical to acquire due to its combinatorial nature. Even with careful metric

analysis in this test set, no robustness nor fairness can be guaranteed since there
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can be a mismatch between the real and test distributions [35]. This research will

explore model diagnosis without relying on a test set in an effort to democratize

model diagnosis and lower the associated cost.

Counterfactual explainability as a means of model diagnosis is drawing the com-

munity’s attention [30, 12]. Counterfactual images visualize the sensitive factors of an

input image that can influence the model’s outputs. In other words, counterfactuals

answer the question: “How can we modify the input image x (while fixing the ground

truth) so that the model prediction would diverge from y to ŷ?”. The parameterization

of such counterfactuals will provide insights into identifying key factors of where the

model fails. Unlike existing image-space adversary techniques [11, 28], counterfactuals

provide semantic perturbations that are interpretable by humans. However, existing

counterfactual studies require the user to either collect uniform test sets [18], annotate

discovered bias [24], or train a model-specific explanation every time the user wants

to diagnose a new model [21].

On the other hand, recent advances in Contrastive Language-Image Pretraining

(CLIP) [34] can help to overcome the above challenges. CLIP enables text-driven

applications that map user text representations to visual manifolds for downstream

tasks such as avatar generation [15], motion generation [53] or neural rendering [32,

42]. In the domain of image synthesis, StyleCLIP [31] reveals that text-conditioned

optimization in the StyleGAN [20] latent space can decompose latent directions for

image editing, allowing for the mutation of a specific attribute without disturbing

others. With such capability, users can freely edit semantic attributes conditioned on

text inputs. This section further explores its use in the scope of model diagnosis.

The central concept of the this section is depicted in Fig. 3.1. Consider a user

interested in evaluating which factors contribute to the lack of robustness in a cat/dog

classifier (target model). By selecting a list of keyword attributes, the user is able

to (1) see counterfactual images where semantic variations flip the target model

predictions (see the classifier score in the top-right corner of the counterfactual

images) and (2) quantify the sensitivity of each attribute for the target model (see

sensitivity histogram on the top). Instead of using a test set, we propose using a

StyleGAN generator as the picture engine for sampling counterfactual images. CLIP

transforms user’s text input, and enables model diagnosis in an open-vocabulary

setting. This is a major advantage since there is no need for collecting and annotating
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Figure 3.2: The ZOOM framework. Black solid lines stand for forward passes, red
dashed lines stand for backpropagation, and purple dashed lines stand for inference
after the optimization converges. The user inputs single or multiple attributes,
and we map them into edit directions with the method in Sec. 3.3.2. Then we
assign to each edit direction (attribute) a weight, which represents how much we are
adding/removing this attribute. We iteratively perform adversarial learning on the
attribute space to maximize the counterfactual effectiveness.

images and minimal user expert knowledge. In addition, we are not tied to a particular

annotation from datasets (e.g., specific attributes in CelebA [25]).

To summarize, our proposed work offers three major improvements over earlier

efforts:

• The user requires neither a labeled, balanced test dataset, and minimal expert

knowledge in order to evaluate where a model fails (i.e., model diagnosis). In

addition, the method provides a sensitivity histogram across the attributes of

interest.

• When a different target model or a new user-defined attribute space is in-

troduced, it is not necessary to re-train our system, allowing for practical

use.

• The target model fine-tuned with counterfactual images not only slightly im-

proves the classification performance, but also greatly increases the distributional

robustness against counterfactual images.

3.2 Related Work

This section reviews prior work on attribute editing with generative models and

recent efforts on model diagnosis.
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3.2.1 Attribute Editing with Generative Models

With recent progress in generative models, GANs supports high-quality image synthe-

sis, as well as semantic attributes editing [48]. [14, 4] edit the images by perturbing the

intermediate latent space encoded from the original images. These methods rely on

images to be encoded to latent vectors to perform attribute editing. On the contrary,

StyleGAN [20] can produce images by sampling the latent space. Many works have

explored ways to edit attributes in the latent space of StyleGAN, either by relying

on image annotations [39] or in an unsupervised manner [40, 16]. StyleSpace [47]

further disentangles the latent space of StyleGAN and can perform specific attribute

edits by disentangled style vectors. Based upon StyleSpace, StyleCLIP [31] builds the

connection between the CLIP language space and StyleGAN latent space to enable

arbitrary edits specified by the text. Our work adopts this concept for fine-grained

attribute editing.

3.2.2 Model Diagnosis

To the best of our knowledge, model diagnosis without a test set is a relatively

unexplored problem. In the adversarial learning literature, it is common to find

methods that show how image-space perturbations [11, 28] flip the model prediction;

however, such perturbations lack visual interpretability. [49] pioneers in synthesizing

adversaries by GANs. More recently, [17, 38, 33] propose generative methods to

synthesize semantically perturbed images to visualize where the target model fails.

However, their attribute editing is limited within the dataset’s annotated labels.

Instead, our framework allows users to easily customize their own attribute space, in

which we visualize and quantify the biased factors that affect the model prediction.

On the bias detection track, [21] co-trains a model-specific StyleGAN with each

target model, and requires human annotators to name attribute coordinates in

the Stylespace. [24, 8, 22] synthesize counterfactual images by either optimally

traversing the latent space or learning an attribute hyperplane, after which the user

will inspect the represented bias. Unlike previous work, we propose to diagnose a

deep learning model without any model-specific re-training, new test sets, or manual

annotations/inspections.
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3.3 Method

This section firstly describes our method to generate counterfactual images guided

by CLIP in a zero-shot manner. We then introduce how we perform the sensitivity

analysis across attributes of interest. Fig. 3.2 shows the overview of our framework.

3.3.1 Notation and Problem Definition

Let fθ, parameterized by θ, be the target model that we want to diagnose. In

this section, fθ denotes two types of deep nets: binary attribute classifiers and

face keypoint detectors. Note that our approach is extendable to any end-to-end

differentiable target deep models. Let Gϕ, parameterized by ϕ, be the style generator

that synthesizes images by x = Gϕ(s) where s is the style vector in Style Space S
[47]. We denote a counterfactual image as x̂, which is a synthesized image that

misleads the target model fθ, and denote the original reference image as x. a is

defined as a single user input text-based attribute, with its domain A = {ai}Ni=1

for N input attributes. x̂ and x differs only along attribute directions A. Given a

set of {fθ,Gϕ,A}, our goal is to perform counterfactual-based diagnosis to interpret

where the model fails without manually collecting nor labeling any test set. Unlike

traditional approaches of image-space noises which lack explainability to users, our

method adversarially searches the counterfactual in the user-designed semantic space.

To this end, our diagnosis will have three outputs, namely counterfactual images

(Sec. 3.3.3), sensitivity histograms (Sec. 3.3.4), and distributionally robust models

(Sec. 3.3.5).

3.3.2 Extracting Edit Directions

This section examines the terminologies, method, and modification we adopt in

ZOOM to extract suitable global directions for attribute editing. Since CLIP has

shown strong capability in disentangling visual representation [29], we incorporate

style channel relevance from StyleCLIP [31] to find edit directions for each attribute.

Given the user’s input strings of attributes, we want to find an image manipulation

direction ∆s for any s ∼ S, such that the generated image Gϕ(s+∆s) only varies in

the input attributes. Recall that CLIP maps strings into a text embedding t ∈ T ,
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the text embedding space. For a string attribute description a and a neutral prefix p,

we obtain the CLIP text embedding difference ∆t by:

∆t = CLIPtext(p⊕ a)− CLIPtext(p) (3.1)

where ⊕ is the string concatenation operator. To take ‘Eyeglasses’ as an example, we

can get ∆t = CLIPtext(‘a face with Eyeglasses’)− CLIPtext(‘a face’).

To get the edit direction, ∆s, we need to utilize a style relevance mapper M ∈
R

cS×cT to map between the CLIP text embedding vectors of length cT and the Style

space vector of length cS . StyleCLIP optimizes M by iteratively searching meaningful

style channels: mutating each channel in S and encoding the mutated images by

CLIP to assess whether there is a significant change in T space. To prevent undesired

edits that are irrelevant to the user prompt, the edit direction ∆s will filter out

channels that the style value change is insignificant:

∆s = (M ·∆t)⊙ 1((M ·∆t) > λ), (3.2)

where λ is the hyper-parameter for the threshold value. 1(·) is the indicator function,
and ⊙ is the element-wise product operator. Since the success of attribute editing by

the extracted edit directions will be the key to our approach, Appendix A will show

the capability of CLIP by visualizing the global edit direction on multiple sampled

images, conducting the user study, and analyzing the effect of λ.

3.3.3 Style Counterfactual Synthesis

Identifying semantic counterfactuals necessitates a manageable parametrization of

the semantic space for effective exploration. For ease of notation, we denote (∆s)i as

the global edit direction for ith attribute ai ∈ A from the user input. After these N

attributes are provided and the edit directions are calculated, we initialize the control

vectors w of length N where the ith element wi controls the strength of the ith edit

direction. Our counterfactual edit will be a linear combination of normalized edit

directions: sedit =
∑N

i=1 wi
(∆s)i

||(∆s)i|| .

The black arrows in Fig. 3.2 show the forward inference to synthesize counterfactual

images. Given the parametrization of attribute editing strengths and the final loss

33



value, our framework searches for counterfactual examples in the optimizable edit

weight space. The original sampled image is x = Gϕ(s), and the counterfactual image

is

x̂ = Gϕ(s+ sedit) = Gϕ

(
s+

N∑
i=1

wi
(∆s)i
||(∆s)i||

)
, (3.3)

which is obtained by minimizing the following loss, L, that is the weighted sum of

three terms:

L(s,w) = αLtarget(x̂) + βLstruct(x̂) + γLattr(x̂). (3.4)

We back-propagate to optimize L w.r.t the weights of the edit directions w, shown

as the red pipeline in Fig. 3.2.

The targeted adversarial loss Ltarget for binary attribute classifiers minimizes

the distance between the current model prediction fθ(x̂) with the flip of original

prediction p̂cls = 1− fθ(x). In the case of an eyeglass classifier on a person wearing

eyeglasses, Ltarget will guide the optimization to search w such that the model predicts

no eyeglasses. For a keypoint detector, the adversarial loss will minimize the distance

between the model keypoint prediction with a set of random points p̂kp ∼ N :

(binary classifier) Ltarget(x̂) = LCE(fθ(x̂), p̂cls), (3.5)

(keypoint detector) Ltarget(x̂) = LMSE(fθ(x̂), p̂kp). (3.6)

If we only optimize Ltarget w.r.t the global edit directions, it is possible that the

method will not preserve image statistics of the original image and can include the

particular attribute that we are diagnosing. To constrain the optimization, we added

a structural loss Lstruct and an attribute consistency loss Lattr to avoid generation

collapse. Lstruct [44] aims to preserve global image statistics of the original image

x including image contrasts, background, or shape identity during the adversarial

editing. While Lattr enforces that the target attribute (perceived ground truth) be

consistent on the style edits. For example, when diagnosing the eyeglasses classifier,

ZOOM preserves the original status of eyeglasses and precludes direct eyeglasses
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addition/removal.

Lstruct(x̂) = LSSIM(x̂,x) (3.7)

Lattr(x̂) = LCE(CLIP(x̂),CLIP(x)) (3.8)

Given a pretrained target model fθ, a domain-specific style generator Gϕ, and a

text-driven attribute space A, our goal is to sample an original style vector s for each

image and search its counterfactual edit strength ŵ:

ŵ = argmin
w
L(s,w). (3.9)

Unless otherwise stated, we iteratively update w as:

w = clamp[−ϵ,ϵ](w − η∇wL), (3.10)

where η is the step size and ϵ is the clamp bound to avoid synthesis collapse caused

by exaggerated edit. Note that the maximum counterfactual effectiveness does not

indicate the maximum edit strength (i.e., wi = ϵ), since the attribute edit direction

does not necessarily overlap with the target classifier direction. The attribute change

is bi-directional, as the wi can be negative in Eq. 3.3.

3.3.4 Attribute Sensitivity Analysis

Single-attribute counterfactual reflects the sensitivity of target model on the individual

attribute. By optimizing independently along the edit direction for a single attribute

and averaging the model probability changes over images, our model generates

independent sensitivity score hi for each attribute ai:

hi = Ex∼P(x),x̂=ZOOM(x,ai)|fθ(x)− fθ(x̂)|. (3.11)

The sensitivity score hi is the probability difference between the original image x and

generated image x̂, at the most counterfactual point when changing attribute ai.

We synthesize a number of images from Gϕ, then iteratively compute the sensitivity
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Open Mouth Closed Mouth

Felidae Pupil Canidae Pupil

More Hair Less Hair

Happy Calm

Figure 3.3: Effect of progressively generating counterfactual images on (left) cat/dog
classifier (0-Cat / 1-Dog), and (right) perceived age classifier (0-Senior / 1-Young).
Model probability prediction during the process is attached at the top right corner.

for each given attribute, and finally normalize all sensitivities to draw the histogram

as shown in Fig. 3.4. The histogram indicates the sensitivity of the evaluated model

fθ on each of the user-defined attributes. Higher sensitivity of one attribute means

that the model is more easily affected by that attribute.

3.3.5 Counterfactual Training

The multi-attribute counterfactual approach visualizes semantic combinations that

cause the model to falter, providing valuable insights for enhancing the model’s robust-

ness. We naturally adopt the concept of iterative adversarial training [28] to robustify

the target model. For each iteration, ZOOM receives the target model parameter and

returns a batch of mutated counterfactual images with the model’s original predictions

as labels. Then the target model will be trained on the counterfactually-augmented

images to achieve the robust goal:

θ∗ = argmin
θ

Ex∼P(x),x̂=ZOOM(x,A)LCE(fθ(x̂), fθ(x)) (3.12)

where batches of x are randomly sampled from the StyleGAN generator Gϕ. In the

following, we abbreviate the process as Counterfactual Training (CT). Note that,

although not explicitly expressed in Eq. 3.12, the CT process is a min-max game.

ZOOM synthesizes counterfactuals to maximize the variation of model prediction

(while persevering the perceived ground truth), and the target model is learned with

the counterfactual images to minimize the variation.
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Big Lips Classifier

(a) Model diagnosis histograms generated by ZOOM on four facial attribute classifiers.
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Mustache Classifier (Imbalanced Smiling) 

(b) Model diagnosis histograms generated by ZOOM on four classifiers trained on manually-
crafted imbalance data.

Figure 3.4: Model diagnosis histograms generated by ZOOM. The vertical axis values
reflect the attribute sensitivities calculated by averaging the model probability change
over all sampled images. The horizontal axis is the attribute space input by user.

3.4 Experimental Results

This section describes the experimental validations on the effectiveness and reliability

of ZOOM. First, we describe the model setup in Sec. 3.4.1. Sec. 3.4.2 and Sec. 3.4.3

visualize and validate the model diagnosis results for the single-attribute setting. In

Sec. 3.4.5, we show results on synthesized multiple-attribute counterfactual images

and apply them to counterfactual training.

3.4.1 Model Setup

Pre-trained models: We used Stylegan2-ADA [19] pretrained on FFHQ [20] and

AFHQ [4] as our base generative networks, and the pre-trained CLIP model [34]

which is parameterized by ViT-B/32. We followed StyleCLIP [31] setups to compute

the channel relevance matricesM.

Target models: Our classifier models are ResNet50 with single fully-connected

head initialized by TorchVision1. In training the binary classifiers, we use the Adam

1https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-
primitives/
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optimizer with learning rate 0.001 and batch size 128. We train binary classifiers for

Eyeglasses, Perceived Gender, Mustache, Perceived Age attributes on CelebA and for

cat/dog classification on AFHQ. For the 98-keypoint detectors, we used the HR-Net

architecture [43] on WFLW [46].

3.4.2 Visual Model Diagnosis: Single-Attribute

Understanding where deep learning model fails is an essential step towards building

trustworthy models. Our proposed work allows us to generate counterfactual images

(Sec. 3.3.3) and provide insights on sensitivities of the target model (Sec. 3.3.4). This

section visualizes the counterfactual images in which only one attribute is modified

at a time.

Fig. 3.3 shows the single-attribute counterfactual images. Interestingly (but not

unexpectedly), we can see that reducing the hair length or joyfulness causes the age

classifier more likely to label the face to an older person. Note that our approach

is extendable to multiple domains, as we change the cat-like pupil to dog-like, the

dog-cat classification tends towards the dog. Using the counterfactual images, we can

conduct model diagnosis with the method mentioned in Sec. 3.3.4, on which attributes

the model is sensitive to. In the histogram generated in model diagnosis, a higher

bar means the model is more sensitive toward the corresponding attribute. Fig. 3.8

shows more examples of single-attribute counterfactual images on the Cat/Dog and

Perceived Gender classifiers. The output prediction is shown in the top-right corner.

It shows that the model prediction is flipped without changing the actual target

attribute.

Fig. 3.4a shows the model diagnosis histograms on regularly-trained classifiers.

For instance, the cat/dog classifier histogram shows outstanding sensitivity to green

eyes and vertical pupil. The analysis is intuitive since these are cat-biased traits

rarely observed in dog photos. Moreover, the histogram of eyeglasses classifier shows

that the mutation on bushy eyebrows is more influential for flipping the model

prediction. It potentially reveals the positional correlation between eyeglasses and

bushy eyebrows. The advantage of single-attribute model diagnosis is that the score

of each attribute in the histogram are independent from other attributes, enabling

unambiguous understanding of exact semantics that make the model fail.
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Fig. 3.14 shows more histograms on the classifiers trained on CelebA (top) and

the classifiers that are intentionally biased (bottom). The models and datasets are

created using the same method described above.

3.4.3 Validation of Visual Model Diagnosis

Evaluating whether our zero-shot sensitivity histograms (Fig. 3.4) explain the true

vulnerability is a difficult task, since we do not have access to a sufficiently large

and balanced test set fully annotated in an open-vocabulary setting. To verify the

performance, we create synthetically imbalanced cases where the model bias is known.

We then compare our results with a supervised diagnosis setting [26]. In addition, we

will validate the decoupling of the attributes by CLIP.

Creating imbalanced classifiers

In order to evaluate whether our sensitivity histogram is correct, we train classifiers

that are highly imbalanced towards a known attribute and see whether ZOOM can

detect the sensitivity w.r.t the attribute. For instance, when training the perceived-age

classifier (binarized as Young in CelebA), we created a dataset on which the trained

classifier is strongly sensitive to Bangs (hair over forehead). The custom dataset is a

CelebA training subset that consists of 20, 200 images. More specifically, there are

10, 000 images that have both young people that have bangs, represented as (1, 1),

and 10, 000 images of people that are not young and have no bangs, represented

as (0, 0). The remaining combinations of (1, 0) and (0, 1) have only 100 images.

With this imbalanced dataset, bangs is the attribute that dominantly correlates with

whether the person is young, and hence the perceived-age classifier would be highly

sensitive towards bangs. See Fig. 3.5 (the right histograms) for an illustration of the

sensitivity histogram computed by our method for the case of an age classifier with

bangs (top) and lipstick (bottom) being imbalanced.

We trained multiple imbalanced classifiers with this methodology, and visualize

the model diagnosis histograms of these imbalanced classifiers in Fig. 3.4b. We

can observe that the ZOOM histograms successfully detect the synthetically-made

bias, which are shown as the highest bars in histograms. See the caption for more

information.
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Figure 3.5: The sensitivity of the age classifier is evaluated with ZOOM (right) and
AttGAN (left), achieving comparable results.

Comparison with supervised diagnosis

We also validated our histogram by comparing it with the case in which we have access

to a generative model that has been explicitly trained to disentangle attributes. We

follow the work on [26] and used AttGAN [14] trained on the CelebA training set over

15 attributes2. After the training converged, we performed adversarial learning in the

attribute space of AttGAN and create a sensitivity histogram using the same approach

as Sec. 3.3.4. Fig. 3.5 shows the result of this method on the perceived-age classifier

2Bald, Bangs, Black Hair, Blond Hair, Brown Hair, Bushy Eyebrows, Eyeglasses, Male,
Mouth Slightly Open, Mustache, No Beard, Pale Skin, Young, Smiling, Wearing Lipstick.

40



Bangs
Bushy

Eyebrows
Pale
 Skin Beard Lipstick

Bangs

Bushy
Eyebrows

Pale
 Skin

Beard

Lipstick

0.392

0.147

0.154

0.176

0.129

0.130

0.471

0.128

0.156

0.113

0.137

0.128

0.422

0.152

0.159

0.114

0.117

0.117

0.533

0.116

0.139

0.124

0.231

0.146

0.357

(a) Mustache classifier

Bangs
Bushy

Eyebrows
Pale
 Skin Beard Lipstick

Bangs

Bushy
Eyebrows

Pale
 Skin

Beard

Lipstick

0.467

0.122

0.135

0.168

0.106

0.132

0.471

0.126

0.153

0.115

0.114

0.100

0.494

0.081

0.208

0.145

0.125

0.161

0.348

0.218

0.088

0.074

0.164

0.088

0.583
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Figure 3.6: Confusion matrix of CLIP score variation (vertical axis) when perturbing
attributes (horizontal axis). This shows that attributes in ZOOM are highly decoupled.
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Figure 3.7: Multi-attribute counterfactual in faces. The model probability is docu-
mented in the upper right corner of each image.

which is made biased towards bangs. As anticipated, the AttGAN histogram (left)

corroborates the histogram derived from our method (right). Interestingly, unlike

ZOOM, AttGAN show less sensitivity to remaining attributes. This is likely because

AttGAN has a latent space learned in a supervised manner and hence attributes are

better disentangled than with StyleGAN. Note that AttGAN is trained with a fixed

set of attributes; if a new attribute of interest is introduced, the dataset needs to be

re-labeled and AttGAN retrained. ZOOM, however, merely calls for the addition of a

new text prompt. More results in Appendix B.
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Measuring disentanglement of attributes

Previous works demonstrated that the StyleGAN’s latent space can be entangled [39,

5], adding undesired dependencies when searching single-attribute counterfactuals.

This section verifies that our framework can disentangle the attributes and mostly

edit the desirable attributes.

We use CLIP as a super annotator to measure attribute changes during single-

attribute modifications. For 1, 000 images, we record the attribute change after

performing adversarial learning in each attribute, and average the attribute score

change. Fig. 3.6 shows the confusion matrix during single-attribute counterfactual

synthesis. The horizontal axis is the attribute being edited during the optimization,

and the vertical axis represents the CLIP prediction changed by the process. For

instance, the first column of Fig. 3.6a is generated when we optimize over bangs for

the mustache classifier. We record the CLIP prediction variation. It clearly shows

that bangs is the dominant attribute changing during the optimization. From the

main diagonal of matrices, it is evident that the ZOOM mostly perturbs the attribute

of interest. The results indicate reasonable disentanglement among attributes.

Visualization for edited images

Our methodology relies on CLIP-guided fine-grained image editing to provide ade-

quate model diagnostics. It is critical to verify CLIP’s ability to link language and

visual representations. This section introduces two techniques for validating CLIP’s

capabilities. In this section, we analyze the decoupling of attribute editing used in

StyleCLIP [31] in our domain.

Effect of λ. Fig. 3.16 shows the effect of λ in Equation 2 of the main text [31] .

Originally in StyleCLIP, this filter parameter (denoted as β in [31]) helps the style

disentanglement for editing. As we have normalized the edit vectors, which contributes

to disentanglement in our framework, the impact of λ on style disentanglement is

reduced. Consequently, λ primarily influences intensity control and denoising.

Single-attribute editing. Fig. 3.18 and Fig. 3.19 show a set of images of

different object categories by editing different attributes extracted with the global

edit directions method (as described in Section 3.2 of the main text). By analyzing

the user’s input attribute string, we can see that the modified image only alters in
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the attribute direction while maintaining the other attributes.

Multiple-attribute editing. We demonstrate the validity of our method for

editing multiple attributes through linear combination (as outlined in Equation 3 of

the main text) by presenting illustrations of combined edits in Figure 3.20.

3.4.4 User study for edited images

To validate that our counterfactual image synthesis preserve fine-grained details and

authenticity, we conducted a user study validating two aspects: synthesis fidelity and

attribute consistency.

User study for synthesis fidelity. The classification of the counterfactual

synthesis image vs real images by the user is employed to confirm that no unrealistic

artifacts are introduced throughout the process of our model Fig. 3.15a shows sample

questions of this study. In theory, the worst-case scenario is that users can accurately

identify the semantic modification and achieve a user recognition rate of 100%.

Conversely, the best-case scenario would be that users are unable to identify any

counterfactual synthesis and make random guesses, resulting in a user recognition

rate of 50%.

User study for attribute consistency. We ask users whether they agree that

the counterfactual and original images are consistent on the ground truth w.r.t. the

target classifier. For example, during the counterfactual synthesis for the cat/dog

classifier, a counterfactual cat image should stay consistent as a cat. Fig. 3.15b shows

another sample questions. The worst case is that the counterfactual changes the

ground truth label to affect the target model, which makes the user agreement rate

very low (even to zero).

The user study statistics are presented in Table 3.1. The study involved 34

participants with at least an undergraduate level of education, who were divided

into two groups using separate collector links. The participants themselves randomly

selected their group (i.e., the link clicked), and their responses were collected.

The production of high-quality counterfactual images is supported by the difficulty

users had in differentiating them. Additionally, the majority of users concurred that

the counterfactual images do not change the ground truth concerning the target

classifier, confirming that our methodology generates meaningful counterfactuals.
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Cute Fierce

Regular Face Round Face

Non-Lipsticks Lipsticks

Smiling Non-Smiling

Figure 3.8: Effect of progressively generating counterfactual images on the Cat/Dog
classifier (0-Cat / 1-Dog), and the Perceived Gender classifier (0-Female / 1-Male).
Model probability prediction during the process is attached at the top right corner.

However, it should be noted that due to the nature of our recognition system, human

volunteers are somewhat more responsive to human faces. As a result, we observed a

slightly higher recognition rate in the human face (FFHQ) domain than in the animal

face (AFHQ) domain.

Stability across CLIP phrasing/wording:

It is worth noting that the resulting counterfactual image is affected by the wording

of the prompt used. In our framework, we subtract the neutral phrase (such as ”a

face”) after encoding in CLIP space to ensure that the attribute edit direction is

unambiguous enough. Our experimentation has shown that as long as the prompt

accurately describes the object, comparable outcomes can be achieved. For instance,

we obtained similar sensitivity results on the perceived-age classifier using prompts

like ”a picture of a person with X,” ”a portrait of a person with X,” or other synonyms.

Examples of this are presented in Figure 3.13.

Name of Study Domain Group 1 Group 2

Synthesis Fidelity (
Recognition Rate ↓, %)

FFHQ 62.12 71.79
AFHQ 51.30 50.55

Attribute Consistency (
Agreement Rate ↑, %)

FFHQ 94.12 90.76
AFHQ 89.92 88.26

Table 3.1: User study results. We can see from the table that our counterfactual
synthesis preserves the visual quality and maintains the ground truth labels from the
user’s perspective.
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Figure 3.9: ZOOM counterfactuals on more tasks (segmentation, multi-class classifier)
and additional visual domains (cars, churches). Zoom in for better visibility.
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Figure 3.10: Multi-attribute counterfactual on Cat/Dog classifier. The number in
each image is the predicted probability of being a dog.

3.4.5 Visual Model Diagnosis: Multi-Attributes

In the previous sections, we have visualized and validated single-attribute model

diagnosis histograms and counterfactual images. In this section, we will assess

ZOOM’s ability to produce counterfactual images by concurrently exploring multiple

attributes within A, the domain of user-defined attributes. The approach conducts

multi-attribute counterfactual searches across various edit directions, identifying

distinct semantic combinations that result in the target model’s failure. By doing so,

we can effectively create more powerful counterfactuals images (see Fig. 3.11).

Fig. 3.7 and Fig. 3.10 show examples of multi-attribute counterfactual images

generated by ZOOM, against human and animal face classifiers. It can be observed
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Original Reference Multiple-Attribute
Counterfactual

SAC by Beard SAC by Pale Skin SAC by Black Hair

Original Reference Multiple-Attribute
Counterfactual

SAC by Lips Color SAC by Smiling SAC by Bangs

Figure 3.11: Multiple-Attribute Counterfactual (MAC, Sec. 3.4.5) compared with
Single-Attribute Counterfactual (SAC, Sec. 3.4.2). We can see that optimization
along multiple directions enable the generation of more powerful counterfactuals.

that multiple face attributes such as lipsticks or hair color are edited in Fig. 3.7,

and various cat/dog attributes like nose pinkness, eye shape, and fur patterns are

edited in Fig. 3.10. These attribute edits are blended to affect the target model

prediction. Appendix B further illustrates ZOOM counterfactual images for semantic

segmentation, multi-class classification, and a church classifier. By mutating semantic

representations, ZOOM reveals semantic combinations as outliers where the target

model underfits.

Fig. 3.17 shows more examples of multiple-attribute counterfactual images. In

addition to binary classification and key-point detection in our manuscript, we

further illustrate the extension of ZOOM counterfactuals on semantic segmentation,

multi-class classification, and binary church classifier (BCC) in Fig. 3.9.

In the following sections, we will use the Flip Rate (the percentage of counter-

factuals that flipped the model prediction) and Flip Resistance (the percentage of

counterfactuals for which the model successfully withheld its prediction) to evaluate

the multi-attribute setting.
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(a) Sensitivity histograms generated by ZOOM on attribute combinations.
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(b) Model diagnosis by ZOOM over 19 attributes. Our framework is generalizable to analyze
facial attributes of various domains.

Figure 3.12: Customizing attribute space for ZOOM.

Customizing attribute space

In some circumstances, users may finish one round of model diagnosis and proceed to

another round by adding new attributes, or trying a new attribute space. The linear

nature of attribute editing (Eq. 3.3) in ZOOM makes it possible to easily add or

remove attributes. Table 3.2 shows the flip rates results when adding new attributes

into A for perceived age classifier and big lips classifier. We can observe that a

different attribute space will results in different effectiveness of counterfactual images.

Also, increasing the search iteration will make counterfactual more effective (see

last row). Note that neither re-training the StyleGAN nor user-collection/labeling

of data is required at any point in this procedure. Moreover, Fig. 3.12a shows the

model diagnosis histograms generated with combinations of two attributes. Fig. 3.12b

demonstrates the capability of ZOOM in a rich vocabulary setting where we can
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Method AC Flip Rate (%) BC Flip Rate (%)

Initialize ZOOM by A 61.95 83.47
+ Attribute: Beard 72.08 90.07
+ Attribute: Smiling 87.47 96.27
+ Attribute: Lipstick 90.96 94.07
+ Iterations increased to 200 92.91 94.87

Table 3.2: Model flip rate study. The initial attribute space A = {Bangs, Blond
Hair, Bushy Eyebrows, Pale Skin, Pointy Nose}. AC is the perceived age classifier
and BC is the big lips classifier.

analyze attributes that are not labeled in existing datasets [25, 41].

Counterfactual training results

This section evaluates regular classifiers trained on CelebA [25] and counterfactually-

trained (CT) classifiers on a mix of CelebA data and counterfactual images as described

in Sec. 3.3.5. Table 3.3 presents accuracy and flip resistance (FR) results. CT

outperforms the regular classifier. FR is assessed over 10,000 counterfactual images,

with FR-25 and FR-100 denoting Flip Resistance after 25 and 100 optimization

iterations, respectively. Both use η = 0.2 and ϵ = 30. We can observe that the

classifiers after CT are way less likely to be flipped by counterfactual images while

maintaining a decent accuracy on the CalebA testset. Our approach robustifies the

model by increasing the tolerance toward counterfactuals. Note that CT slightly

improves the CelebA classifier when trained on a mixture of CelebA images (original

images) and the counterfactual images generated with a generative model trained in

the FFHQ [20] images (different domain).

3.5 Discussion and Future Work

In this chapter, we present ZOOM, a zero-shot model diagnosis framework that

generates sensitivity histograms based on user’s input of natural language attributes.

ZOOM assesses failures and generates corresponding sensitivity histograms for each

attribute. A significant advantage of our technique is its ability to analyze the failures

of a target deep model without the need for laborious collection and annotation of
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Attribute Metric Regular (%) CT (Ours) (%)

Perceived Age
CelebA Accuracy 86.10 86.29
ZOOM FR-25 19.54 97.36
ZOOM FR-100 9.04 95.65

Big Lips
CelebA Accuracy 74.36 75.39
ZOOM FR-25 14.12 99.19
ZOOM FR-100 5.93 88.91

Table 3.3: Results of network inference on CelebA original images and ZOOM-
generated counterfactual. The CT classifier is significantly less prone to be flipped by
counterfactual images, while test accuracy on CelebA remains performant.

0

0.1

0.2

0.3

Smiling Bangs Beard Blond Hair Bushy Eyebrows Lipstick Pale Skin

A face with A picture of a person with
An individual with A portrait of a person with

Figure 3.13: Sensitivity histograms when using four instances of phrases with a similar
concept. Zoom in for better visibility.

test sets. ZOOM effectively visualizes the correlation between attributes and model

outputs, elucidating model behaviors and intrinsic biases.

Our work has three primary limitations. First, users should possess domain

knowledge as their input (text of attributes of interest) should be relevant to the

target domain. Recall that it is a small price to pay for model evaluation without an

annotated test set. Second, StyleGAN2-ADA struggles with generating out-of-domain

samples. Nevertheless, our adversarial learning framework can be adapted to other

generative models (e.g., stable diffusion), and the generator can be improved by

training on more images. We have rigorously tested our generator with various

user inputs, confirming its effectiveness for regular diagnosis requests. Currently, we

are exploring stable diffusion models to generate a broader range of classes while

maintaining the core concept. Finally, we rely on a pre-trained model like CLIP which

we presume to be free of bias and capable of encompassing all relevant attributes.
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Blond Hair Classifier (Imbalanced Pale Skin) 
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Perceived Gender Classifier (Imbalanced Smiling)

Figure 3.14: The above histograms show ZOOM on three regularly trained classifiers
on CelebA, and the bottom histograms show ZOOM successfully detects the bias in
the manually-crafted imbalanced classifiers.

(a) Evaluating visual fidelity.
We show two images and let
users choose the one that they
think is edited. The counter-
factuals are generated on Eye-
glasses classifier and Cat/Dog
classifier.

(b) Evaluating attribute
consistency. The user clas-
sifies whether the ground
truth is flipped. Example
of counterfactual images on
Cat/Dog classifier and Eye-
glasses classifier is shown
above.

Figure 3.15: Sample questions in the user study. Each user answers 10 questions for
each of the two user studies.
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(a) Effect of λ values for editing beard.

w = -15
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w = 7.5

w = 15

(b) Effect of λ values for editing pale skin.

Figure 3.16: Visualization of the effect of different λ values.
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(a) Multiple-attribute counterfactual for cat/dog classifier.
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(b) Multiple-attribute counterfactual for eyeglasses classifier.
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(c) Multiple-attribute counterfactual for perceived gender classifier.
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(d) Multiple-attribute counterfactual for mustache classifier.
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(e) Multiple-attribute counterfactual for perceived age classifier.

Figure 3.17: Multi-attribute counterfactual in the human face and animal face domain.
The right-up corner of each image records the model output prediction.
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(a) Attribute editing: a cat with green eyes. (b) Attribute editing: a cute cat.

(c) Attribute editing: a dog with round face. (d) Attribute editing: a cute dog.

(e) Attribute editing: a cat with round face. (f) Attribute editing: a cat with pointed ears.

(g) Attribute editing: a dog with open mouth. (h) Attribute editing: a black dog.

Figure 3.18: Visualization of global edit directions by utilizing the StyleCLIP channel
relevance matrix. Images are sampled from the AFHQ domain using StyleGAN2-
ADA. Every column demonstrates an edited image from edit weight w = −30 to
w = 30. Weights of five images are linearly interpolated as {−30,−15, 0, 15, 30}. We
can see that global edit directions are generalizable on multiple images.
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(a) Attribute editing: an angry face. (b) Attribute editing: a face with eyeglasses.

(c) Attribute editing: a cute face. (d) Attribute editing: a face with blond hair.

(e) Attribute editing: a face with bangs. (f) Attribute editing: a smiling face.

(g) Attribute editing: a happy face. (h) Attribute editing: a face with curly hair.
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(i) Attribute editing: a face with beard. (j) Attribute editing: a face with lipstick.

(k) Attribute editing: a tired face. (l) Attribute editing: a skinny face.

(m) Attribute editing: a male face. (n) Attribute editing: a surprised face.

(o) Attribute editing: a face with long hair. (p) Attribute editing: a face with pale skin.

Figure 3.19: Visualization of global edit directions by utilizing the StyleCLIP channel
relevance matrix. Images are sampled from the FFHQ domain using StyleGAN2-
ADA. Every column demonstrates an edited image from edit weight w = −30 to
w = 30. Weights of five images are linearly interpolated as {−30,−15, 0, 15, 30}. We
can see that global edit directions are generalizable on multiple images.
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(a) Combination of smiling (w1) and lipstick (w2).
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(b) Combination of pale skin (w1) and blond hair (w2).

Figure 3.20: Visualization of traversing on directional (attribute) style vectors to
validate the effectiveness of multiple attribute editing.
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Chapter 4

Conclusions

This thesis embarks on a journey to explore and elucidate the potential of generative

models in the context of vision model diagnosis. Two main methodologies, Semantic

Image Attack for Visual Model Diagnosis and Zero-shot Model Diagnosis, undergo

extensive investigations and discussions. Their unique yet complementary approaches

allow for flexible ways of model diagnosis without the need for time-consuming, costly,

and error-prone test set collection and annotation.

Semantic Image Attack for Visual Model Diagnosis conducts the diagnosis through

joint adversarial optimization in both controllable attribute space and pixel space.

This method demonstrates immense promise in identifying and understanding model

weaknesses, shedding light on the regions of the pixel space and attribute space where

the model is less adversarially robust.

Zero-shot Model Diagnosis, through the innovative use of StyleGAN and CLIP,

facilitates the generation of counterfactual images that visualize the sensitive factors

for the target model. It highlights its remarkable ability to identify critical aspects

where models fail, providing a substantial foundation for the subsequent improvement

of these models.

In both methodologies, the practicality of these techniques in diagnosing new

models and exploring user-defined attribute spaces without the necessity of collecting

balanced datasets is noteworthy. This potential flexibility implies a high degree of

scalability and usability across a wide array of potential application domains.

Looking forward, there is ample scope to refine these methods with better genera-
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tive foundations, accommodate the diagnosis philosophy in broader visual domains,

and adapt the frameworks to newer optimization strategies. The democratization of

model diagnosis through generative models is expected to continue to gain momentum,

further fueling interpretability, fairness, and robustness in deep learning.

In conclusion, this thesis serves as an important stepping stone in the field of

vision model diagnosis. As the AI landscape continues to evolve, we envision more

exploration, development, and deployment of model diagnosis frameworks will be

conducted to fulfill the rising quests for more transparent, fair, and robust AI systems.
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