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Abstract
Ultrasound is an important modality for medical intervention such as vas-

cular access because it is safe, portable, and low-cost. However, ultrasound
scanning requires trained sonographers who are scarce, and it can be challeng-
ing to perform ultrasound examinations in disaster or battlefield scenarios. This
motivates us to automate ultrasound scanning. One significant challenge in au-
tomating ultrasound scanning is performing the scan on a highly curved surface
while simultaneously maintaining proper contact with the surface to capture
high-quality images. Another major challenge while automating ultrasound
scanning is that if an ultrasound probe is pressed too hard against the skin it
causes significant anatomical deformations. Subsequently, these deformations
present a major challenge in the generalization of tasks like segmentation and
registration in ultrasound images. Therefore, in this work, I aim to improve the
autonomy of a robotic ultrasound system and improve the generalizability of
ultrasound imaging algorithms to work at different force values.

In the first part of the thesis, I present an enhanced strategy for ultrasound
scanning using a robot with minimal expert guidance. Our methods demon-
strate improved quality in the collected ultrasound images compared to existing
approaches. In the subsequent section, I address the challenge of deformable
registration in ultrasound images, particularly when these images are acquired
at different force levels. Instead of relying on supervised learning methods, that
require exhaustive and expensive ground truth calculations, I propose an unsu-
pervised approach to estimate the displacement field between various stages
of deforming anatomy in ultrasound images. Furthermore, by analyzing dis-
placement field patterns for different compression forces, we develop an ac-
curate physics model for ultrasound image compression. This model enables
the generation of photo-realistic ultrasound images at different compression
forces. Leveraging these photo-realistic images, I augment a vessel segmen-
tation model to enhance its generalization capabilities, particularly for higher
force values.

I further showcase the versatility of our method by successfully predict-
ing accurate deformation fields for various medical ultrasound tasks, including
respiratory motion cancellation and curved needle registration. The applica-
tion of our approach to different medical scenarios highlights its effectiveness
and broad applicability.
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Chapter 1

Introduction

Numerous medical imaging techniques, such as MRI [3], CT [4], and ultrasound [5]
can be utilized to offer feedback during medical examinations. Among these techniques,
ultrasound imaging offers several advantages. Unlike other methods, it does not involve
ionizing radiation, ensuring patient safety. Ultrasound also requires a smaller workspace
and has a lower cost compared to MRI and CT, and provides real-time images of the internal
anatomy. Point-of-care ultrasound (POCUS) is particularly popular due to its affordability,
portability, and widespread availability. Despite its numerous benefits, ultrasound imaging
is heavily reliant on the skill of the trained sonographer. The sonographer must identify the
appropriate area to scan, move the ultrasound probe within the region of interest and adjust
the probe’s pose to acquire diagnostic image quality and prevent patient injury. However,
skilled sonographers may not be available in all locations, necessitating the development
of autonomous robotic ultrasound systems.

However, automating ultrasound scanning presents significant challenges. One such
challenge is scanning highly curved surfaces while maintaining physical contact between
the probe and the subject to capture high-quality images. A failure in doing so leads to
sub-optimal image quality and difficulty in accurately visualizing the underlying anatomy.
Another major challenge in automating ultrasound scanning is the potential for excessive
pressure applied by the ultrasound probe against the skin. This excessive pressure can cause
significant anatomical deformations, distorting the internal structures of interest. These de-
formations pose a significant challenge when generalizing tasks like segmentation and reg-
istration in ultrasound images, as the appearance and location of anatomical structures are
altered. To address these challenges, this thesis aims to enhance the autonomy of robotic
ultrasound scanning and generalize the ultrasound imaging algorithms like deformable reg-
istration and vessel segmentation across different force values. By improving the robotic
ultrasound scanning as well as accurately predicting the impact of anatomical deformations,
we strive to enhance the reliability and applicability of automated ultrasound scanning in
various clinical scenarios.

In the first chapter, we propose utilizing our robotic system to perform ultrasound scans
on various regions of the subjects, including highly curved areas like the inguinal fold. We
propose manual as well as semi-automated ways for selecting a reference trajectory based
on the internal and the external anatomy of the scanning subject. To track this trajectory,
we employ a Spherical Linear Interpolation (SLERP) controller, which is continuously up-
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dated using force feedback readings. This approach effectively balances the approximated
reference trajectory and force readings, ensuring optimal acoustic coupling during the scan.
Notably, our work is the first to combine SLERP with a 6-axis hybrid force-position con-
troller, demonstrating promising results for automating ultrasound scanning on complex
surfaces.

In the second chapter, we propose an approach to predict anatomical deformations in
ultrasound images under the application of different forces. Predicting anatomical defor-
mation is a part of deformable registration, which involves the registration of a reference
image to a deformed image by estimating a per-pixel deformation field. By calculating the
deformation field, we can understand the nature of the anatomical changes, enabling appli-
cations such as motion compensation, image analysis, and surgical planning. We present
an unsupervised deep-learning model called U-RAFT (Unsupervised Recurrent All-pairs
Field Transforms) for ultrasound-to-ultrasound deformable image registration and synthetic
ultrasound image generation. U-RAFT uses RAFT [6], a CNN for optical flow estimation,
to register images and create a deformation field (DF). It then uses a Spatial Transformer
Network (STN) [7] to generate new synthetic images as well as enable unsupervised train-
ing of RAFT. We also show the efficacy of our method for other medical imaging tasks like
respiratory motion compensation in lung ultrasound images and curved needle registra-
tion in ultrasound images. The application of our approach to different medical scenarios
highlights its effectiveness and broad applicability

In the third chapter, we propose an approach to use deformable registration for aug-
menting images for training vessel segmentation models with small training datasets. Cap-
turing the precise dynamics is a crucial requirement when generating photo-realistic ultra-
sound images under the application of various forces. Previous methods, such as [8, 9] for
brain MRI images, as well as [10] for lung MRI images, have employed data augmentation
techniques but have not emphasized capturing accurate process dynamics. Consequently,
these methods tend to generate out-of-distribution datasets that do not effectively contribute
to improving vessel segmentation. Alternatively, physics-based simulators like SOFA [11]
offer accurate deformable 3D physics simulations under the influence of forces. These 3D
simulations can be used to deform medical phantoms/subjects and simulate anatomical de-
formations, but SOFA requires an accurate 3D ground truth model and accurate material
properties. Thus, we propose an approach that emulates the compression process of ultra-
sound images without relying on explicit 3D models or material properties. Subsequently,
we employ the generated ultrasound images to augment and enhance segmentation specif-
ically at higher forces. By eliminating the need for 3D models and material properties, our
method offers a more accessible and practical solution for improving vessel segmentation
through image augmentation.
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Chapter 2

Related Works

2.1 Robotic Ultrasound System (RUS)
Robotic Ultrasound Systems (RUS) can be categorized into teleoperated [12–14], col-

laborative assisting [15–17], and autonomous systems. The former, i.e. non-autonomous,
systems have improved the image acquisition processes and are able to perform ultrasound
scanning in remote areas, but these systems still require a human-in-the-loop (HITL).To
minimize the need for human intervention, many autonomous ultrasound methods have
been explored in recent years [18], [19], [20]. Huang et al.[21] demonstrated autonomous
scanning of the coronal plane using an external depth sensor. Their system was shown to
scan and reconstruct the non-flat patient surface. Their method plans the scanning trajectory
based only on external surface features, which may not be sufficient for many interventional
procedures. Hennersperger et al. [22] developed a RUS that autonomously generates tra-
jectories based on the points selected by the physician marked in an MRI or CT scan. This
system enables autonomy but is dependent on the MRI/CT scans which are expensive and
may not be available at all times. Merouche et al.[23] presents an automatic vessel track-
ing strategy as an alternative to the teach mode, replay mode. The pipeline was applied
to provide 3-D results of the lower limb arteries. The system could calculate the distance
between the center of the vessel and the center element of the probe. However, the system
performance would heavily depend upon the detection and tracking of the vessels. [24]
provides a teleoperated RUS system with three modes for the operator: float, haptic and
automatic. The “automatic” mode scans along a desired trajectory recorded in advance by
human-in-loop, unlike our presently proposed method where the desired trajectory is found
using Bayesian optimization. Lastly, Reinforcement Learning has been used to control the
movement of the US probe as shown in [25, 26], but those methods have low success rates
on new patients that were not in their training data.

2.2 Force controllers for robotics
Force controller defines relationship between force and position controller in robotics.

Carriere et al.[27] uses force control to ensure compliance in a US scanning system there-
fore controlling the force applied to the tissue and reducing the exerted force from the
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sonographer. Piwowarczyk et al.[28] proposed a method that utilizes an admittance con-
troller to scale the force applied by the user on the robot based on the force exerted on the
environment. Ferraguti et al.[29] discusses the stability of force-controlled robots and their
ability to deal with different environmental forces. Li et al.[30] uses admittance control
for an exoskeleton robot to create a reference trajectory based on measured force. The
integration of neural networks and admittance control for robot trajectory tracking was in-
troduced by Yang et al.[31] The method ensures trajectory tracking through the use of a
neural network, while admittance control regulates torques to follow the desired trajectory.
More applications of force controllers in robotics is discussed in Keemink et al.[32].

2.3 Deformable registration for medical imaging
Classical deformable registration work consisted of choosing a deformable model and

then finding the optimal parameters of the model based on the optimization of the objective
function. The choice of deformable model is made based on the required computational
efficiency and the richness of the description. Broit [33], proposed a deformable model
as an elastic membrane grid that is deformed under the influence of forces until the equi-
librium is reached. An external force tries to deform the image such that matching is
achieved while an internal one enforces the elastic properties of the material. Linear elastic
models have also been used to register brain images based on sparse correspondences as
demonstrated in Davatzikos [34]. But the use of a linear elastic model prevents in cap-
turing large deformations accurately. Thus, Rabbitt [35], modeled large deformations as a
non-linear elastic model. There are also methods that model the image deformation as a
viscous fluid as shown in Christensen [36]. Wang and Staib [37], used fluid deformation
models in an atlas-enhanced registration setting. Pennec et al. [38] studied image registra-
tion as an energy minimization problem and drew the connection of the Demons algorithm
with gradient descent schemes. Apart from assuming a deformation model, there are some
interpolation-based methods that have been used for medical image registration. Bookstein
[39], proposed the use of thin-plate spline (TPS) for image registration, where TPS min-
imizes the bending energy. the solution to this is unique and in closed form. The global
nature of TPS resulted in localization errors while estimating a dense deformation field.
This led to the use of Free-form deformation models (FFDs). FFDs were first popularized
in the computer graphics community [40], [41] but gained wide acceptance in the medical
image analysis community when coupled with cubic-B splines [42].

Classical deformable registration methods had non-convex cost functions and were
slow due to the large number of optimization parameters. To overcome these difficulties,
deep-learning methods have also been presented. Balakrishnan et al.[43] designed a U-Net
framework named VoxelMorph to perform DIR of brain MR images. Unlike conventional
registration methods that calculate the deformation field for every pair of images, they for-
mulate the deformation field as a global function that could be optimally parameterized
with the trained convolutional neural network. Estienne et al. [44] used a shared encoder
with a separate decoder named U-ResNet to compute the DVF. The network inputs paired
fixed and moving images and aims to output their specific segmentation maps. Rohe et
al. [45] adopted a U-Net-like network to predict the deformation field for 3D cardiac MRI
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volume registration. Sokooti et al. [46] presented a multi-scale network to learn a deforma-
tion field of intra-subject 3D chest CT registration. They used random DVF as supervision.
Uzunova et al. [47] designed a network for the registration between 2D brain MRI and
2D cardiac MRI. Their ground truth is generated utilizing statistical appearance models
(SAMs). They adapted FlowNet [48] architecture and obtained outperforming results. Al-
though we have a lot of deformable registration methods for modalities such as CT-to-MRI
or CT-to-ultrasound, ultrasound-to-ultrasound deformable registration is still an unsolved
challenge due to noise, speckle, shadows, and mirror image artifacts [49].

2.4 Data augmentation for medical imaging
The rapid advancements in deep learning can be attributed to the abundance of new data

available for training models. But still, collecting large datasets for medical imaging is still
a challenge due to privacy concerns and labeling costs. Data augmentation makes it possi-
ble to greatly expand the amount and variety of data available for training without actually
collecting new samples. One of the most common forms of data augmentation is perform-
ing the affine transformation. Frameworks like Medical Open Network for AI (MONAI)
[50], are developed for performing such transformations. However, affine transformation
applies a constant transformation across all the pixels in the image, there are pixel-level
transformations such as pixel erasing [51]. Also, Generative models have also been used to
generate realistic images for medical imaging [52],[53]. However, GANs are always prone
to mode collapse. Finally, there are a variety of augmentation methods that are governed
by physical or biological models to generate new images or modify existing ones. For in-
stance, these techniques have been used to simulate multiple sclerosis lesions in brain MR
images [54] or to add cancer signs to breast mammography images [55]. Though these
physics-inspired models are present for MR and CT images, very little work has been done
in the ultrasound image domain.
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Chapter 3

Enabling Robotic Ultrasound Scanning

Chapter 3 is adapted from the publication:
Raghavv Goel∗, FNU Abhimanyu∗, Kirtan Patel, John Galeotti, Howie Choset, “Au-
tonomous Ultrasound Scanning using Bayesian Optimization and Hybrid Force Control,”
International Conference of Robotics and Automation (ICRA), 2022
FNU Abhimanyu’s contributions as the first author of the publication include: conducting
an initial literature review, developing the algorithm and experiments, conducting the ex-
periments, analyzing the data, writing the manuscripts, and responding to reviewers with
revisions. Raghavv Goel and Kirtan Patel assisted with providing experimental sugges-
tions and running actual experiments. Howie Choset and John Galeotti are the supervising
faculty advisors.

3.1 Introduction

Ultrasound has emerged as a crucial medical imaging method for diagnostics and med-
ical intervention procedures, owing to its real-time feedback, portability, and lack of ra-
diation exposure. Despite its numerous benefits, ultrasound imaging is heavily reliant on
the skill of the trained sonographer. The sonographer must identify the appropriate area
to scan, move the ultrasound probe within the region of interest, adjust the probe’s pose,
and apply safe, accurate forces through the probe to maintain diagnostic image quality and
prevent patient injury. However, skilled sonographers may not be available in all locations,
necessitating the development of autonomous ultrasound systems.

The Robotic Ultrasound System (RUS) is a robotic system with an attached ultrasound
station and scanning probe, as shown in Figure 3.1. By integrating robotic technology into
ultrasound imaging, RUS offers improved accuracy, stability, repeatability, and maneuver-
ability in image acquisition. Recent research has focused on improving the autonomy of
RUS, but most existing systems still require human intervention to navigate the ultrasound
probe to the region of interest. The development of truly autonomous RUS could eliminate
the need for human operators, thereby increasing accessibility to high-quality ultrasound
imaging in various scenarios. We propose an autonomous 6-DoF RUS for ultrasound scan-
ning which employs a SLERP [56] + force feedback controller and leverages input from an
RGB-D sensor. In this work, we propose to use this system to scan different parts of the
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Figure 3.1: Robotic Ultrasound System (RUS), which consists of a 6-DoF UR3e serial
manipulator and an ultrasound probe mounted to the robot end-effector

subjects including highly curved regions like the inguinal fold. For scanning, we start by
generating the reference trajectory using 3 different methods. Once we have the initial and
the final point for ultrasound scanning chosen by the user, we use the surface normals to
calculate the initial and the goal pose in order to create a reference trajectory. To track this
trajectory, we employ a Spherical Linear Interpolation (SLERP) controller, that is updated
at every instance using noisy force feedback readings. This approach strikes a balance be-
tween the approximated reference trajectory and force readings, ensuring proper acoustic
coupling during the scan. Notably, this is the first work to use SLERP to generate a refer-
ence trajectory and combine it with a 6-axis hybrid force-position controller. Our proposed
approach shows promising results in automating ultrasound scanning on complex surfaces.
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3.2 Approach
In this section, we talk about the experimental setup, the reference trajectory generation,

and then the hybrid-force-position controller.

3.2.1 Experimental setup
Our RUS, as shown in Figure 3.1, consists of a PaoLus UF-760AG Portable Diagnostic

Ultrasound Imaging Equipment (FUKUDA DENSHI,UK) using a 5-12 MHz 2D linear
transducer mounted on the 6-DoF Universal Robot UR3e robot. Our robotic system also
has an Intel Realsense D-435i [57] RGB-D sensor to capture the surface normals of the
subject as well as a 6-axis ATI force sensor. We use Python to implement the controller
and the kinematics of the robot. Furthermore, Robot Operating System (ROS) [58] was
used to communicate with different sensors and the robot.

3.2.2 Reference trajectory generation

Figure 3.2: Robotic Ultrasound System (RUS), which consists of a 6-DoF UR3e serial
manipulator and an ultrasound probe mounted to the robot end-effector

As our first step, we need to generate a reference trajectory on the subject’s surface and
for the ultrasound probe to follow. We developed three different methods to generate three
different methods for generating the reference trajectory.

Our first method involves a manual mode, where a user manually positions the end-
effector of the robot at the desired location. To facilitate this, we utilize the freedrive mode
of the UR3e robot, which allows unrestricted movement of the manipulator. By enabling
the robot’s freedrive mode, the user can intuitively control and navigate the robot to the
desired positions as shown in Figure 3.2-a. Subsequently, the user selects and saves the
goal poses for the final scan, ensuring accurate and targeted data acquisition. More details
on this can be found in [59].

Our second method focuses on determining the reference trajectory based on the precise
location of the vessels within the subject. The underlying rationale behind this approach is
to ensure that the robot’s scanning trajectory effectively covers and scans the most densely
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populated regions where vessels are located. To accomplish this, we palpate at multiple
locations on the subject, which allows us to create an informative map as shown in Figure
3.2-b, indicating the positions of the vessels. We then utilize this vessel information map
to generate a reference trajectory for the robot’s scanning motion. In order to minimize the
number of palpations, we use Bayesian optimization [60] to decide the next best location
for palpation. By incorporating Bayesian optimization and utilizing the vessel information
map, this method enables a higher degree of autonomy compared to the previous manual
method. More details about this method can be found in [61].

The third method involves finding the reference trajectory based on the anatomical land-
marks on the surface of the subject. In this method, we have an additional RGB-D sensor
mounted on the end-effector of the robot which helps us in retrieving a point cloud of the
subject’s surface. After the scan, the generated stitched point cloud is processed with out-
lier removal using the DBSCAN clustering algorithm [62]. The resultant point cloud is
then used for surface normal computation. Utilizing the point cloud of the subject’s surface
as a reference, we identify and mark important anatomical landmarks such as a knee or an
inguinal fold. These landmarks serve as key points for generating the reference trajectory.
By strategically selecting these landmarks as shown in Figure 3.2-c, we can ensure that the
robot’s scanning trajectory covers the desired regions of interest. More details can be found
in [63].

In all these above-listed methods, we store the trajectory as an array of intermediate
poses P0, P1, ..., PT .

3.2.3 Hybrid-force-position controller
SLERP-based force controller

Based on the reference trajectory presented in the last section, SLERP based controller
is used to track the orientations in the reference trajectory by computing the intermediate
orientations to follow using

rt =
d(pt, pT )

d(p0, pT )
(3.1)

qt =
q0 sin((1− rt)θt) + qT sin(rtθt)

sin(θt)
(3.2)

where θt = 2 cos−1(q0 · qT ), d(., .) is the Euclidean distance, P0 = {p0, q0}, Pt = {pt, qt}
and PT = {pT , qT} are the starting, instantaneous and final pose of the ultrasound probe.
pt = [pxt , p

y
t , p

z
t ] is the position, and qt = [qwt , q

x
t , q

y
t , q

z
t ] is the quaternion with respect to

the base frame of the robot.
After computing the quaternions [q0, . . . qt−1, qt, . . . qT ] the angular velocity is calcu-

lated in the end-effector frame as

δqt =q−1
t qt+1 (3.3)

wslerp,t =quat2euler(δqt)/∆t (3.4)

The 3 position/linear axis in the end-effector frame of the robot is controlled using the
position controller mentioned in [64].

9



Force-based hybrid controller

In this controller, force feedback is used along all axis to control the angle made by the
probe on the unknown surface to be normal to the surface, and to control the force exerted
along the length of probe (y-axis in probe frame) to maintain a desired contact in the y-axis
of the probe while scanning. This is done by updating the input linear (vy) and angular
velocities (wFF,x, wFF,z) to the robot end-effector as

vy,t =−Dy(fy,t − fy,d) (3.5)
ωFF,x,t =−Dx(fx,t − fx,d) (3.6)
ωFF,z,t =−Dz(fz,t − fz,d) (3.7)

where, the subscript ‘FF’ implies force-feedback. Dy, Dx and Dz are positive scalar
controller gains. To match the surface normal, the desired forces are set as fx,d = 0N ,
fz,d = 0N and fy,d = −8N .

Combining the controllers

SLERP-based controller is good at following a given orientation trajectory but fails to
adjust for abrupt changes in the orientation. Force-based orientation controller is good at
adjusting for any on-the-fly change but can be noisy. To counter the cons of each method,
we combine both of them using a Kalman filter-like approach [65], where the SLERP-
based controller is part of a trivial process model while the force feedback is part of the
measurement model based on Eq. (3.6), Eq. (3.7). The innovation/measurement residual
is given as

ω̃t = ωFF,t − ωslerp,t (3.8)

The optimal gain is given as Kt = (I3 + R)−1, where R ∈ R3 is the covariance of the
observation noise of the force sensor and I3 is the identity matrix. Using Eq. (3.8) and Kt,
we get the the updated angular velocity as

ωt =ωslerp,t +Ktω̃t (3.9)

Note that the gain Kt can also be kept fixed. Experiments were tried by keeping both a
fixed and varying gain. Based on the assumptions mentioned earlier angular velocity along
y-axis is 0.

3.2.4 Sending commands to the robot
1. In Section 4.2, we calculate the velocity of the ultrasound (us) tip. Then in order to

command the robot, we need to calculate the velocity in the robot tool frame (tool).
We calculate the velocity in the robot tool frame as,[

ωtool,t

vtool,t

]
=tool Adjus

[
ωus,t

vus,t

]
(3.10)

2. Before commanding the desired velocity to the robot, we run a safety check to avoid
singularity due to the limited workspace of the UR3e robot. We do this by calculating
the determinant of the Jacobian matrix in that particular joint state of the robot.
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3.3 Results
In this section, we assess the quality of robotic ultrasound controllers based on the

collected ultrasound image quality and the applied force during scanning.

3.3.1 Image quality comparison
The quality of ultrasound images is directly proportional to the controllers’ efficacy for

scanning. Thus we quantify the quality of our controllers using the quality of the collected
ultrasound images. We estimate the quality of ultrasound images using the zero-normal
cross-correlation (ZNCC) value.

Zero-normalized cross-correlation (ZNCC) is a similarity measure commonly used in
image processing and computer vision tasks [66]. It quantifies the similarity between the
reference and target image by normalizing their cross-correlation coefficient with respect
to their individual variances. The ZNCC equation is given by:

ZNCC(Iref , Itar) =

∑
x,y(Iref (x, y)− Īref )(Itar(x, y)− Ītar)√∑

x,y(Iref (x, y)− Īref )2
∑

x,y(Itar(x, y)− Ītar)2
(3.11)

where Iref and Itar represent the reference and target image and I(x, y) is the pixel values
of the image at location x and y. Īref and Ītar denote the mean pixel value for reference
and target image respectively.

Figure 3.3: (a) Ultrasound Image from blue-gel-phantom with improper contact between
the probe and the surface. (b) Ultrasound Image from blue-gel-phantom with proper contact
between the probe and the surface.

We carry out experiments on the bluegel and the leg phantom, and compare the quality
of the scans obtained using the following controllers: only SLERP, only FF, and combined
SLERP + FF (ours). For the given trajectory [P0, . . . Pt, . . . PT ], we get a ZNCC score
of 0.935, 0.933, 0.953 and 0.944 for SLERP, force-feedback (FF), combined SLERP+FF
(Kt = 0.5) and combined SLERP+FF (varying Kt) respectively, where Kt is from Eq.
(3.9). The upper bound of this metric is 0.993 when the robotic arm is locked in a fixed
location with constant force (thus making good contact with the unknown surface as no
sweeping is being performed which can shake the probe off the normal surface) and the
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lower bound is 0.795 when the robotic arm force constraint is turned off thus leading to jit-
tery contact with the surface. Qualitatively, Figure 3.3a and b, shows the ultrasound image
collected without our combined controller and with the combined controller. Without the
combined controller, we see unwanted artifacts in the ultrasound images.

3.3.2 Force profile comparison

Figure 3.4: Robotic Ultrasound System (RUS), which consists of a 6-DoF UR3e serial
manipulator and an ultrasound probe mounted to the robot end-effector

Besides the image quality, the force profile in the x, y, and the z axes helps us compare
our controllers. For the purpose of our experiments fx,d = 0N , fy,d = −8N and fz,d = 0N .
We run the ultrasound scanning controller and record the force values measured by the 6-
axis force sensor. We show the measured force in each of the axes as box plots in Figure
3.4. As shown in the figure, SLERP + FF (variable α) performs the best as the obtained
force along the desired axis (Y ) is the closest to the desired force while the forces along the
other two axes (X and Z) are close to zero which is desired. The variance in force values
is also the lowest with the SLERP + FF controller.

The results show that using our proposed controllers can help us capture high-quality
ultrasound images in comparison to the staple position controller used in [67] and [68].
Moreover, the combined controller helps us further improve the scanning process by com-
pensating for the noisy reading by the force sensor as well as the surface normal estimation.
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3.4 Conclusion
This chapter presents a solution for scanning using a Robotic Ultrasound System (RUS).

I present three different trajectory generation method for RUS: 1) Manual reference trajec-
tory selection by the user 2) Using Bayesian Optimization to estimate the reference trajec-
tory based on internal anatomy and 3) Using RGB-D sensor to select a reference trajectory
based on important anatomical landmarks on the subjects skin. Then I discuss the hybrid
force position controller and the formulation of it. In the result section, I show the effi-
cacy of the proposed controller proposed controller by showing the quality of collected
ultrasound images and the force-profile recorded.
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Chapter 4

Unsupervised optical flow estimation in
ultrasound images

Chapter 4 is adapted from the manuscript:
FNU Abhimanyu, Andrew L. Orekhov, Ananya Bal, John Galeotti, Howie Choset, “Un-
supervised Deformable Ultrasound Image Registration and Its Application for Vessel Seg-
mentation”
FNU Abhimanyu’s contributions to the manuscript include: conducting initial literature
review, developing the algorithm and experiments, conducting the experiments, analyzing
the data and writing the manuscripts. Andrew L. Okhelov and Ananya Bal assisted with
providing experiments and writing the manuscript. Howie Choset and John Galeotti are
the supervising faculty advisors.

4.1 Introduction
Ultrasound imaging is an important modality for vascular access because it is safe,

portable, and low-cost. However, the ultrasound probe needs to press against the skin to
maintain acoustic coupling contact while capturing images, causing anatomical deforma-
tions during the scan. These deformations present a challenge for training deep neural
networks that segment vessels from ultrasound images.

In this chapter, we propose an approach to use deformable registration for augmenting
images for training vessel segmentation models with small training datasets. Deformable
registration is the problem of how to register pairs of images, one referred to as the reference
image and the other as the deformed image, where the two images are of the same anatomy,
but exhibit different deformations. By registering images captured at different forces, we
will show that we can generate synthetic images at intermediate forces, ensuring that the
augmented images are physically realistic. A similar idea was used in [8, 9] for brain MRI
images, and in [10] with lung MRI images.

Previous approaches to deformable registration include hand-crafted, iterative nonlinear
optimization methods with a variety of cost function definitions and parameterizations of
deformations [49, 69, 70]. These methods, however, typically have non-convex cost func-
tions and are slow due to the large number of optimization parameters. To overcome these
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difficulties, deep-learning methods have also been presented [71–73], but work on deep-
learning methods for ultrasound-to-ultrasound registration is limited. Compared to other
higher-quality imaging modalities studied in most deformable registration work (e.g. CT-
to-MRI or CT-to-ultrasound), ultrasound-to-ultrasound deformable registration is uniquely
challenging due to noise, speckle, shadows, and mirror image artifacts [49]. Despite this,
we will show that this problem is amenable to a deep-learning approach using our proposed
model.

In this chapter, we present a deep-learning model called U-RAFT (Unsupervised Re-
current All-pairs Field Transforms) for ultrasound-to-ultrasound deformable image regis-
tration and synthetic ultrasound image generation. As shown in Fig. 4.2b, U-RAFT uses
RAFT [6], a CNN for optical flow estimation, to register images and create a deformation
field (DF). It then uses a Spatial Transformer Network (STN) [7] to generate new synthetic
images. This approach allows for unsupervised training of U-RAFT, which we use to ap-
ply RAFT to ultrasound images for the first time, as well as its application for cancelling
respiratory motion in the lung dataset as well as registering needle during insertion in the
ultrasound images.

Compared to prior work, our work is unique in that it tackles ultrasound-to-ultrasound
deformable registration, we are able to register images at a rate suitable for online use
(∼ 33 Hz), and our training is unsupervised. We note that there are multiple utilities of our
deformable registration approach like data augmentation vessel segmentation, longitudinal
studies/diagnosis, population studies, and intra-operative registration to anatomy [49, 73].

In the first section, we present the network architecture of U-RAFT and describe three
loss functions we considered for training this network in an unsupervised manner. We
present experimental results using U-RAFT on a benchtop silicone phantom model as well
as in-vivo porcine images of femoral arteries and veins. We compare the registration quality
among the three loss functions we defined. We also show the application of U-RAFT model
for compensating respiratory motion in the lung dataset and also the registration of curved
needles in ultrasound images.

15



4.2 Approach
This section discusses the network architecture used for predicting the deformation

field (DF) and the loss function used to train this network in an unsupervised manner.
Furthermore, we discuss the use of the DF to generate new synthetic ultrasound images
and their use to improve vessel segmentation.

4.2.1 U-RAFT network architecture

Let Ir and Id be the reference and deformed ultrasound images, respectively, collected
at forces Fr ∈ R and Fd ∈ R. We denote a DF as udr = gθ(Id, Ir), where gθ is the function
we seek to model with our network and the subscript θ denotes the network parameters
used. Here, we use the state-of-art RAFT network[6] to model gθ(Id, Ir). We chose RAFT
over other CNN-based networks like FlowNet [48], FlowNet2[74], and PWC-Net [75] be-
cause of its superior performance on the Sintel[76] and KITTI[77] datasets.

RAFT has been shown to outperform other optical flow methods in the RGB domain
[48, 74, 75], but no prior work has shown the application of RAFT on medical ultrasound
images, which are inherently noisier than RGB images[49]. RAFT is also a supervised
method that needs a ground truth displacement field for training. Acquiring ground truth for
ultrasound images is time-consuming and labor-intensive, so we seek to make the training
unsupervised. We do this by passing the output of RAFT through a Spatial Transformer
Network (STN) [7] to generate a reconstructed deformed image I ′d = STN(udr, Ir). This
enables us to incorporate the similarity of I ′d and Id in our training loss function, which, as
we will show below, provides improved registration performance. We refer to the RAFT
architecture together with STN as U-RAFT.

4.2.2 Loss functions for unsupervised training

We now define three different choices of loss functions to train the U-RAFT network in
an unsupervised manner. We discuss the formulation and the advantages/disadvantages of
each and perform a quantitative comparison between them in the results section. The first

Figure 4.1: Pipeline used to generate image reconstructions for training U-RAFT in an
unsupervised manner. Our proposed cyclic loss function in (4.3) improves registration
quality by comparing the reconstructed reference image to the original reference image.
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loss function we consider, denoted as Lus, consists of two parts Lssim, a multi-scale struc-
tural similarity (SSIM) loss that penalizes the differences in appearance between Id and I ′d,
and Lsmooth, which penalizes abrupt changes in the neighboring pixels of I ′d (generated from
udr):

Lus(Id, I
′
d, udr) = βLssim(Id, I

′
d) + (1− β)Lsmooth (udr) (4.1)

where β ∈ R is a parameter to adjust the relative weight of Lssim and Lsmooth. Lssim and
Lsmooth are given by:

Lssim(Id, I
′
d) = 1− SSIM(Id, I

′
d)

Lsmooth(udr) = meanxy

(
∇2udr(x, y)

∇x2
+

∇2udr(x, y)

∇y2

)
(4.2)

where x, y are the pixel location of a 2D-deformation field, and meanxy denotes the mean
over all pixels.

The second loss function we consider is a cyclic version of (5.4), denoted as as Lus-cyclic.
In this loss function, we register the reference image Ir to the reconstructed deformed image
I ′d to generate a new reconstructed reference image I ′r = STN(gθ(Ir, I

′
d), I

′
d), as shown in

Fig. 4.1. We then add to the loss function in (5.4) an additional term that calculates Lus for
Ir, I ′r, and urd′ .

Lus-cyclic = Lus(Id, I
′
d, udr) + Lus(Ir, I

′
r, urd′) (4.3)

Finally, the third loss function we consider is designed to improve flow prediction in the
vicinity of important anatomical features like veins, arteries, etc. We denote this feature-
aware, cyclic, multi-scale SSIM loss function as Lfa-cyclic-us. We use the scale-invariant
feature transform (SIFT) algorithm [78], as implemented in OpenCV [79], to extract key-
points in an ultrasound image and construct a binary feature map around those keypoints.
We then multiply each image by its binary feature map to create Ĩd, Ĩ ′d, Ĩr, Ĩ ′r for the
deformed, reconstructed deformed, reference, and reconstructed reference images, respec-
tively. We then calculate the loss using the cyclic loss in (4.3) but with the images with
features extracted:

Lfa-cyclic-us = Lus(Ĩd, Ĩ
′
d, udr) + Lus(Ĩr, Ĩ

′
r, urd′) (4.4)

4.3 Experimental setup and training details

4.3.1 Experimental setup

We validate our method for three different applications: 1. Predicting deformation in
vessels under the application of force, 2. Respiratory motion compensation in lung ultra-
sound images and 3. Curved needle registration during insertion in ultrasound images. This
section discusses the ultrasound dataset collection for each of these applications.
Predicting deformation in vessels under the influence of force We collected ultrasound
images from two different subjects: a human tissue/vasculature gel phantom model (CAE
Blue Phantom), which we refer to as the blue-gel-vascular, and two different live pigs,
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Figure 4.2: (a) The robot arm we used for capturing the ultrasound images with force-
controlled scanning, together with a human tissue and vasculature phantom model we used
to test U-RAFT. (b) Our U-RAFT model registers a deformed image to a reference image
with RAFT, creating deformation field that is then used with a spatial transformer network
(STN) to generate new deformed images, shown here with example in-vivo porcine images.

which we refer to as the live-pig-vascular. The IACUC-approved in-vivo porcine ex-
periments were done in a controlled lab setting under the supervision of clinicians. The
data was collected using a robotic ultrasound system which includes a UR3e manipula-
tor (Universal Robots) with a PaoLus UF-760AG Portable Diagnostic Ultrasound Imaging
Equipment (FUKUDA DENSHI,UK) using a 5-12 MHz 2D linear transducer and a six-axis
force/torque sensor (ATI) mounted on the end effector, as shown in Fig. 4.2. The datasets
were collected either in a “scanning mode”, where the robot scanned between two pre-
defined points on the surface of the subject with a hybrid force motion controller similar to
the controller described in [61], or in “palpation mode”, where the robot was commanded
with a sinusoidal force profile at a single point on the skin surface. The minimum and
maximum force used for both the modes were 2N and 10N, respectively. We collected
715 images per force for the blue-gel-vascular and 1200 ultrasound images for the pig-lab-
vascular.
Respiratory motion compensation in lung ultrasound images We collected ultrasound
video sequences over 3 different live pigs where each video sequences had 1000 images
each. For data collection, we use the same setup as shown in 4.2, with the probe kept static
near the lung of the live pig.
Curved needle registration in ultrasound images The data was collected using a Fukuda
Denshi ultrasound and a linear transducer with a 51mm scanning width. The ultrasound
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probe was held by hand, and all images were acquired from a human tissue/vasculature gel
phantom model which we refer to as the blue-gel-needle. Four 2.5-inch echogenic needles
were used, three of which were pre-bent by differing amounts. Each needle was inserted
for 6 trials with an insertion angle between 30 deg to 60 deg. Each insertion sequence had
50-80 frames. There were 2 test images for small curvature, 2 test images for medium cur-
vature, and 3 test images for large curvature. We asked two graders to contour the boundary
of the needle shaft in the images. We did in-vivo robotic needle insertion experiments into
the legs of live-pig, and the illustration of the robotic mechanism is in Figure 3.1. The
needles were inserted into the muscle or toward the femoral artery. The data was collected
using the same ultrasound machine and transducer, with an imaging depth of 5cm. 527 test
images, with 177 labeled images for evaluation which we refer to as the live-pig-needle.

4.3.2 Training details
We believe that finding the optimal displacement field is primarily influenced by the

interaction between the tissue and ultrasound, rather than being dependent on artifacts
present in the ultrasound image. This perspective allows our model to generalize effec-
tively on larger datasets. In order to achieve this, we train our model exclusively on the
vascular dataset from each subject. Additionally, we employ the model trained on the vas-
cular dataset to address other applications such as respiratory motion compensation and
needle registration. For training purposes, we utilize different datasets with varying sizes.
Specifically, we train the model on 600 images and test it on 115 images from the blue-gel-
vascular dataset. For the live-pig-vascular dataset, we employ 900 training images and 300
testing images. For all these datasets, the RAFT weights were initialized with pre-trained
KITTI weights[77] and were trained for 150 additional epochs. The implementation is
highly parallelized and performs full-batch gradient descent using the Stochastic Gradient
Descent [80] optimizer in the Pytorch Autograd library[81], with a batch size of 12 with a
learning rate of 0.0001.

4.4 Results and Discussion

4.4.1 Deformable registration results with U-RAFT
In this section, we evaluate U-RAFT’s performance on registering ultrasound images

from the blue-gel and live-pig datasets using the three loss functions described in Section
4.2-B. We use the image similarity between the original deformed image Id and the recon-
structed deformed image I ′d to measure the efficacy of our method. Figure 4.3 shows an
example of reference and deformed images from the blue-gel and the live-pig datasets along
with the reconstructed reference images from the U-RAFT model. We use two metrics to
compare the different loss functions: 1) SSIM[82] and 2) a feature-aware-SSIM (F-SSIM),
which is SSIM applied to the images after using SIFT to extract features as described in
Section 4.2-B.

The results are summarized in Table 4.1. In both SSIM and F-SSIM, the cyclic loss
function Lcyclic-us outperforms Lus, and the feature-aware cyclic loss function Lfa-cyclic-us
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Figure 4.3: Example deformable registration result from the blue-gel dataset, showing (a)
the reference image Ir, the deformed image Id, and the reconstructed deformed image I ′d,
and (b) the deformation field calculated between Id and Ir using U-RAFT, with a dis-
placement vector plotted on a 4x4 pixel grid. The vessel walls for the blue-gel images are
manually annotated for visibility.

Table 4.1: Comparison of registration error for different loss functions. Lfa-cyclic-us outper-
forms the other two loss functions in terms of both SSIM and F-SSIM.

Loss Function SSIM
(blue-gel)

F-SSIM
(blue-gel)

SSIM
(live-pig)

F-SSIM
(live-pig)

Lus 0.905 0.966 0.870 0.918
Lcyclic-us 0.907 0.967 0.883 0.927
Lfa-cyclic-us 0.909 0.969 0.886 0.931

outperforms the cyclic loss function Lcyclic-us. The cyclic function outperforms the multi-
scale structural similarity as it adds a better regularization of the flow prediction. We have
also observed qualitatively, as shown in the example in Fig. 4.5, that the combination
of feature extraction and cyclic loss leads to improved registration, particularly for larger
deformations.

4.4.2 Analyzing and canceling respiratory motion with U-RAFT
Let If and Im be the fixed and moving ultrasound images, respectively from the same

respiratory cycle. We denote a displacement field (DF) as ufm = gθ(If , Im), where gθ
is the function we seek to model with our network and the subscript θ denotes RAFT’s
[6] network parameters. We use U-RAFT to generate a reconstructed fixed image I ′f =
STN(ufm, Im).

We use U-RAFT to track the displacement of every pixel in the video sequence and
therefore capture the periodic movement of the tissue during respiratory motion. The first
frame in the video sequence is If and the rest of the frames are the moving images Im. For
the frame i in the video sequence, we calculate the net displacement of the pixel at location
x∗, y∗ as, dx∗,y∗,i = ||uf,mi

(x∗, y∗)||, where ||.|| is the L2 norm. We then pass the sequence
of moving images Imi

to STN along with uf,mi
to retrieve the static sequence of images

I ′fi = STN(uf,mi
, Imi

). Furthermore, we compute the Fast Fourier Transform (FFT) [83]
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Figure 4.4: Example deformable registration result from robotic experiment on the blue-
gel dataset, showing the fixed image If , the moving image Im, and the reconstructed fixed
image I ′f , and the deformation field calculated between If and Im using U-RAFT, with a
displacement vector plotted on a 4x4 pixel grid. Sub-figure (a) shows compression and (b)
shows uncompression.

Figure 4.5: (a) Zoomed-in view of an example live-pig reconstructed deformed image I ′d
using Lus. (b) Zoomed-in view of the reconstructed deformed image I ′d using Lfa-cyclic-us.
The use of the feature-aware cyclic loss function helps remove the optical distortions ob-
served in (a) for large deformations.

of dx∗,y∗ over time to calculate the per-pixel displacement frequency.

Table 4.2 provides the mean displacement of pixels for all the frames before and after
applying for respiratory compensation. Furthermore, we also calculate the respiration rate,
via the FFT, by tracking pixels near the rib cage in the ultrasound images. We calculated
the respiration rate to be approximately 18 beats per minute (bpm), which is consistent with
the recorded breathing rate of approximately 19 bpm during the experiment.
Table 4.2: Average pixel displacement before and after applying respiratory compensation

Dataset Avg. displacement
before compensation (pixel)

Avg. displacement
after compensation (pixel)

Pig 1 2.09 0.32
Pig 2 2.32 0.65
Pig 3 1.75 0.49

21



Figure 4.6: Live-pig results showing reference, deformed, and reconstructed deformed im-
ages for (a) small deformation, (b) medium deformation, (c) large deformation, (d) vessel
collapse, and (e) an atypical case of a vessel decollapsing. The similarity between the de-
formed and the reconstructed deformed images shows the efficacy of U-RAFT. Registration
performance drops for the case of a vessel decollapsing, but even in this atypical scenario
our approach fails gracefully.
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Figure 4.7: Fixed (If ) and moving (Im) image and their respective displacement fields
.

Figure 4.8: Average pixel displacement before and after applying respiratory compensation
.
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Figure 4.9: (a) Reference Image (Ir), (b) Target Image (It), (c) Unregistered Ir and It, (d)
Predicted displacement field between Ir and It using U-RAFT (first row) and Farneback
Optical Flow [1] (second row) and (e) Registered Ir and It. It’s observed that the displace-
ment field predicted by U-RAFT is more accurate and has fewer false positives, especially
for static regions of the image.

4.4.3 Registration of curved needles in ultrasound images
Needle registration is a crucial task, and we employ the unsupervised RAFT algorithm

to address this challenge specifically for registering curved needles in ultrasound images.
Our test dataset comprises seven trials of needle data of blue-gel-needle, each consisting
of video sequences with 50-80 frames each. Similarly, we have three trials of needle data
of live-pig-needle with each trial having 200-400 frames. Additionally, for each needle
dataset, we have annotations available for each needle during the insertion process.

In this experiment, we utilize U-RAFT to register the reference image (Ir) and the target
image (It). The needle-tip-error(NTE) serves as our metric for comparing the performance
of different methods. For this experiment, we fix the range between the Ir and the target
image It to 5 frames. The needle-tip-error for the blue-gel-needle dataset is provided in
Table 4.3 and the NTE for the live-pig-needle is provided in Table 4.4. In Tables 4.3 and
4.4, we compare different variants of RAFT, which differ in their training dataset and their
initialization. The U-RAFT model which is fine-tuned on 10% (of the vascular dataset)
needle dataset performs better than the RAFT model trained on the vascular dataset. In
the U-RAFT model, initializing the flow map with the previous flow map yields superior
performance compared to initializing it with a zero map, as it enables the model to incor-
porate temporal dependencies and improve flow predictions iteratively. We also compare
the results of U-RAFT with Unsupervised Flownet [48] and Farneback optical flow [1]
estimation using the OpenCV [79] implementation.
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Table 4.3: Mean Needle Tip Error (NTE) on the blue-gel-needle. NTE is calculated after
registering needle tips in the phantom’s curved needle insertion. The method with the
lowest mean NTE is highlighted. The mean NTE prior to registration was 9.44 pixels

Method
Mean

Needle Tip Error (NTE)
in pixels

U-RAFT (pre-trained on vascular data) +
Initialized with last flow map 4.35

U-RAFT (pre-trained on vascular data) +
Initialized with zero-flow map 4.56

U-RAFT (fine-tuned on needle data) +
Initialized with last flow map 4.21

U-RAFT (fine-tuned on needle data) +
Initialized with zero-flow map 4.42

Unsupervised Flownet [48] 6.23
Farneback Optical Flow estimation [1] 7.08

Table 4.4: Mean Needle Tip Error (NTE) on the pig-lab-needle. NTE is calculated after
registering needle tips in the pig’s curved needle insertion. The method with the lowest
mean NTE is highlighted. The mean NTE prior to registration was 4.24 pixels

Method
Mean

Needle Tip Error (NTE)
in pixels

U-RAFT (pre-trained on vascular data) +
Initialized with last flow map 3.12

U-RAFT (pre-trained on vascular data) +
Initialized with zero-flow map 3.21

U-RAFT (fine-tuned on needle data) +
Initialized with last flow map 3.02

U-RAFT (fine-tuned on needle data) +
Initialized with zero-flow map 3.23

Unsupervised Flownet [48] 3.38
Farneback Optical Flow estimation [1] 3.43
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4.5 Conclusion
In conclusion, this chapter proposes an unsupervised approach for training an ultrasound-

to-ultrasound deformable registration model. We propose and compare three different loss
functions and show that the function based on feature-aware cyclic loss performs best. The
effectiveness of the proposed approach is demonstrated through experiments on medical
phantom as well as multiple in-vivo porcine datasets. We also use the U-RAFT model for
accurate pixel-tracking at online rates, which makes it suitable for compensating for tissue
motion, such as motion due to respiration. We also show the effectiveness of the U-RAFT
model for curved needle registration, where we are able to improve the registration results
over other methods like [48] and [1].
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Chapter 5

Improving segmentation in ultrasound
images using optical flow

5.1 Introduction

Vascular access and subsequent placement of central venous and arterial catheters is an
essential first step for delivering life-saving medical care to trauma patients, e.g. admin-
istering anesthesia, monitoring vitals, and delivering resuscitative treatments like Resusci-
tative Endovascular Balloon Occlusion of the Aorta (REBOA). Accessing a blood vessel,
commonly done via the Seldinger technique [84], requires insertion of a needle into the
center of the vessel, which is typically done by a highly skilled clinician using ultrasound
to determine where to insert the needle.

The work in this chapter is motivated by the potential benefits of supporting human-
guided vascular access with a robot so as to enable personnel away from centers of medi-
cal excellence to gain vascular access while avoiding vessel wall damage and hematomas
caused by failed needle insertion attempts. This would be especially impactful on battle-
fields and in mass casualty disasters where there is limited access to trained medical per-
sonnel and hospital facilities. Examples of recent work towards the goal of robot-assisted
femoral vessel access under ultrasound guidance include a hand-held device [85] and our
group’s system using a robot manipulator [59].

Convolutional neural networks (CNNs), U-Net [86], and variants of U-Net [87] are
commonly used in medical image segmentation, including vessel segmentation in ultra-
sound [85, 88–90]. Training these models requires time-consuming labeling of the vessel
contours in each image by personnel trained to interpret ultrasound images. Furthermore,
the training set includes only a small subset of deformed vessel shapes that could occur,
limiting the ability of the model to generalize to probe forces and deformed vessel shapes
outside the training dataset. Although nonlinear warping augmentations could be applied
to images [86], this technique is not guaranteed to generate physically realistic image aug-
mentations.

In this chapter, we propose an approach to use deformable registration for augment-
ing images for training vessel segmentation models with small training datasets. However
capturing the precise dynamics is a crucial requirement when generating photo-realistic
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ultrasound images under the application of forces. Previous methods, such as [8, 9] for
brain MRI images, as well as [10] for lung MRI images, have employed data augmentation
techniques but have not emphasized capturing accurate process dynamics. Consequently,
these methods tend to generate out-of-distribution datasets that do not effectively contribute
to improving vessel segmentation. Alternatively, physics-based simulators like SOFA [11]
offer accurate physics simulations for simulating anatomical deformations under the in-
fluence of forces. However, utilizing these simulators requires an accurate 3D model and
knowledge of the material properties of the subject. Obtaining the 3D model and material
properties of the subject can be an arduous and sometimes unfeasible task, rendering the
use of such simulators more challenging.

In this chapter, we propose an approach that emulates the compression process of ul-
trasound images without relying on 3D models or material properties. Subsequently, we
employ the generated ultrasound images to augment and enhance segmentation specifi-
cally at higher forces. By eliminating the need for 3D models and material properties, our
method offers a more accessible and practical solution for improving vessel segmentation
through image augmentation.
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5.2 Methods

5.2.1 Synthetic data generation

Strategy 1: Constant stiffness (Kconst) model

In this method, we assume a constant stiffness model K during the extent of compres-
sion of the subject. Suppose we have ultrasound images at Fr as Ir and at Fd as Id. The
simplified stiffness model enables us to use the displacement fields (DF) between deformed
and reference ultrasound images and then utilize them to analytically calculate the defor-
mation field at additional probe force values Fnew calculated using,

∆Fd,r = Kud,r

∆Fnew,r = Kunew,r

unew,r =
∆Fnew,r

∆Fd,r

ud,r
(5.1)

where, ∆Fd,r = Fd − Fr and ∆Fnew,r = Fnew − Fr We use the U-RAFT model from
Chapter 3 to predict the displacement field between deformed and reference ultrasound
image ud,r. We then calculate unew,r using Equation 5.1 and pass unew,r through Spatially
Transformer Network (STN) to generate Inew = STN(unew,r, Ir). We then use synthetic
images to augment the vessel segmentation dataset. We will show in Section 5.3.2 that
this data augmentation technique helps a U-Net vessel segmentation model generalize to
different forces.

Strategy 2: Variable stiffness (Kvar) model

This method acknowledges the fact that the stiffness model of the subject is not neces-
sarily constant, as demonstrated in the previous section. This observation motivates us to
implicitly model the stiffness of the subject using a neural network. Since the compression
data is sequential in nature, we can employ a recurrent neural network (RNN) to effectively
capture and model the stiffness variations throughout the compression process.

Let there be a sequence of N ultrasound images collected at a particular location of the
phantom I1 . . . IN along with the respective force values F1 . . . FN at which these images
are collected. We use the recurrent module PhyDNet [91] which leverages physics knowl-
edge on dynamics and disentangles it from other unknown factors of variations necessary
for future forecasting.

PhyDNet
The core of PhyDNet is a recurrent block projecting input images It into a latent space
H. The video evolution in the latent space H is thus governed by the following partial dif-
ferential equation (PDE): δh(t, x)/δt = Mp(h

p, I) +Mr(h
r, I). To reach this objective,

we introduce a recurrent bloc which is shown in Figure 5.1. A video frame It at time t
is mapped by a deep convolutional encoder E into a latent space representing the targeted
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Figure 5.1: PhyDNet architecture as shown in [2]

space H. E(It) is then used as input for two parallel recurrent neural networks, incorporat-
ing this spatial representation into a dynamical model. The left branch in Figure 5.1 models
the latent representation hp fulfilling the physical part Mp(h

p, I). The PDE is modeled by
our recurrent physical cell PhyCell, which leads to the computation of hp

t+1 from E(It) and
hp
t . The right branch in Figure 5.1 models the latent representation hr fulfilling the residual

part Mr(h
r, I). We use a generic recurrent neural network for this task, e.g. ConvLSTM

[92] for learning the residual component, which computes hr
t+1 from E(ut) and residual

hidden state hr
r. ht+1 = hp

t+1 + hr
t+1 is the combined representation processed by a deep

decoder D to forecast the image It+1. More details on PhyDNet can be found in [2].

Physics Inspired Ultrasound Image Generator (Phy-UGen)
Phy-UGen is a dual-PhyDNet module that uses the video prediction capabilities of the

PhyDNet module to understand the dynamics of vessel compression in ultrasound images
and use it to generate synthetic ultrasound images simulating newer force compression.
Also instead of having a time sequence data we have a force-sequence data where the
data along the force axis are correlated. We have a dual-PhyDNet module, in which one
module takes ultrasound image It at force Ft N as an input while the other module takes the
displacement field ut,1 as an input. ut,1 is calculated from the U-RAFT model between the
ultrasound image It and I1. The intuition between using dual-PhyDNet is such that apart
from learning the pixel-level dynamics from images, we can also learn relevant pixel-level
dynamics from the displacement field, especially effective in highlighting the displacement
of the pixel. Once the modes learn individual modules, we devise a physics aggregator
block that combines the latent representation from the hp

t+1,img with the latent representation
of hp

t+1,DF. The aggregator learns a convolutional filter C, which aggregates using, hp
t+1 =

hp
t+1,img +C · (hp

t+1,flow −hp
t+1,img). Furthermore, the aggregated pyhsics latent space hp

t+1 is
concatenated with the hr

t+1,img and processed by the decoder Dimg to output the ultrasound
image at a newer force value It+1. Further, we modify the video-prediction nature of the
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Figure 5.2: Physics Inspired Ultrasound Image Generator (Phy-UGen) network architecture

PhyDNet into an action-conditioned video prediction module, where the action is at+1 =
Ft+1 − Ft is passed as an additional input. To pass as input along with the image It, we
map at to a 2D tensor of the same resolution as the input image. The 2D tensor action is
concatenated with the input ultrasound image and the input displacement field respectively
and passed onto the PhyDNet to predict the next ultrasound image I ′t+1.

Loss function for learning a variable stiffness model

In this section, we define the loss function to train the Phy-UGen module discussed in
the last section. For simplicity of explanation, we divide our loss functions into 2 parts: 1.
Reconstruction loss between the predicted image and the actual image. 2. Reconstruction
and smoothness loss between the predicted displacement field and the actual displacement
field by U-RAFT.

The similarity loss between two images denoted as Limage, consists of two parts Lssim,
a multi-scale structural similarity (SSIM) loss that penalizes the differences in appearance
(luminance, contrast and structure) between the predicted and the actual ultrasound image
in the sequence and Lmse, which penalizes difference in pixel value between the predicted
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and actual image:

Limage(It+1, I
′
t+1,img, I

′
t+1,flow) = α(βLssim(It+1, I

′
t+1,img)

+ (1− β)Lmse(It+1, I
′
t+1,img))

+ (1− α)(βLssim(It+1, I
′
t+1,flow)

+ (1− β)Lmse(It+1, I
′
t+1,flow))

(5.2)

where α, β ∈ R are parameters to adjust the relative weight between the two branches of
Phy-UGen modules and between the Lssim and Lmse. Lmse and Lssim are given by:

Lmse(I, I
′) =

∑
x,y

(I(x, y)− I ′(x, y))2

Lssim(I, I
′) = 1− SSIM(I, I ′)

(5.3)

The second part of the loss function we consider, denoted as Lflow, consists of two
parts: Lmse, that penalizes the differences in flow appearance between ut+1 and u′

t+1, and
Lsmooth, which penalizes abrupt changes in the neighboring pixels of u′

t+1 :

Lus(ut+1, u
′
t+1) = γLmse(ut+1, u

′
t+1) + (1− γ)Lsmooth

(
u′
t+1

)
(5.4)

where γ ∈ R is a parameter to adjust the relative weight of Lmse and Lsmooth. Lmse is same
as explained in Eq.5.3 and Lsmooth are given by:

Lsmooth(u) = meanxy

(
∇2u(x, y)

∇x2
+

∇2u(x, y)

∇y2

)
(5.5)

where x, y are the pixel location of a 2D-deformation field, and meanxy denotes the mean
over all pixels.

Experimental setup and training details

We use the use robotic setup mentioned in Sec in Chapter 4 for collecting ultrasound
images at different force values. For this experiment, we use palpation mode where we
execute force-controlled sinusoidal motion ranging the force value from 2N to 22N at a
frequency of 10 Hz. The minimum force value of 2N was chosen to ensure the minimum
possible acoustic coupling between the phantom and the ultrasound probe. The choice of a
maximum force value of 22N was determined by considering the highest force that could be
safely applied before the occurrence of vessel collapse was observed. This decision aimed
to establish a limit that would prevent any potential damage to the phantom under study.
We collected 25 palpation sequences from uniformly sampled locations on the phantom to
demonstrate our model’s capabilities. For the constant stiffness (Kconst) model, we use the
ultrasound image collected at 2N and 10N to generate synthetic ultrasound images at all
other forces. The variable stiffness (Kvar) model, which needs a more sequential form of
input, is trained using all images between 2N-10N. The remaining portion of the sequence
(10N to 22N) was used for validation, ensuring the generalization of our methods to higher
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force values. Additionally, we utilized 20 out of the 25 palpation sequences for training to
evaluate the model’s generalization on new phantom locations.

To accurately estimate the displacement field on the vascular dataset for the constant
stiffness model, we rely on a trained U-RAFT model. This model, trained in Chapter 4
using the cyclic-loss approach, provides the necessary capability to estimate precise dis-
placement fields. By utilizing the trained U-RAFT model, we ensure accurate and reliable
results for the constant stiffness model analysis on the vascular dataset.

For training the Phy-UGen module, all the module weights were initialized with Lecun
initialization [77] and were trained for 600 additional epochs. The implementation is highly
parallelized and performs full-batch gradient descent using the Adam [93] optimizer in the
Pytorch Autograd library[81], with a batch size of 4 with a learning rate of 0.001.

5.3 Results

5.3.1 Photorealism of generated synthetic images

In this section we evaluate the photo-realism of the generated ultrasound images using
both the constant stiffness and the variable stiffness model described in the last section. We
use three different metric for comparing the photo-realism of these two images: 1. SSIM
metric 2. PSNR metric and 3. IoU score between the synthetic image and the ground truth
image at the same force value. We evaluate our methods on 5 different palpation video
sequence and at force values [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22]N.

Figure 5.3: Ground truth, synthetic image generated using Kconst model and synthetic
image generated using Kvar model. Ultrasound images are at 4N and 20N respectively
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Structural Similarity Index

The Structural Similarity Index (SSIM) is a widely used image quality metric that quan-
tifies the similarity between two images. It takes into account the luminance, contrast, and
structural information of the images. The SSIM index is calculated using the following
equation: SSIM(x, y) = 2µxµy+c1

µ2
x+µ2

y+c1
· 2σxy+c2
σ2
x+σ2

y+c2
· σxy+c3
σxσy+c3

In the equation, x and y represent the
compared images, µx and µy are the mean values, σx and σy are the standard deviations,
σxy is the cross-covariance, and c1, c2, and c3 are small constants to ensure stability. The
SSIM metric captures both global and local image similarities, making it robust to varia-
tions in illumination and contrast. Higher SSIM values indicate greater similarity between
the images, while lower values indicate greater dissimilarity.

Figure 5.4: Comparison of SSIM values between synthetic images generated from the
constant stiffness model and the variable stiffness model and the ground truth image at
different force values

In our experiment, we validate constant and variable stiffness by generating images
from a 2N and 10 N ultrasound image collected on the blue-gel-phantom. Figure 5.4 shows
the SSIM value between the generated ultrasound images and ground truth images between
2N and 20N force values. The SSIM values for the Kconst value shows better SSIM score
for lower force values but shows a gradual decrease in the score as the force is increased.
On the other hand, the Kvar model outperforms the Kconst model for higher force values
showing higher photo-realism in generated images. Especially at higher forces the Kconst

model compresses the vessel in an unrealistic manner as seen in Figure 5.3.
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Peak Signal-to-Noise Ratio

Peak Signal-to-Noise Ratio (PSNR) is a widely used image quality metric that mea-
sures the fidelity of a reconstructed or compressed image compared to the original. It
quantifies the pixel-wise difference using the Mean Squared Error (MSE) and provides a
logarithmic representation of the signal-to-noise ratio. The PSNR is calculated as PSNR =

10 · log10
(

MAX2

MSE

)
. Higher PSNR values indicate higher similarity and lower distortion be-

tween the images. The maximum possible PSNR value for 8-bit images (our resolution) is
48 dB.

Figure 5.5: Comparison of PSNR values between synthetic images generated from the
constant stiffness model and the variable stiffness model and the ground truth image at
different force values

Both the Kconst and the Kvar model demonstrate high PSNR values. Especially for
higher force values, the variable stiffness model performs superior performance demon-
strating less noise-induced at higher force values.

Intersection-over-Union

Intersection over Union (IoU) is a popular metric for evaluating object detection and
segmentation methods. It measures the overlap between predicted and ground truth regions.
The IoU is calculated as the ratio of the intersection area to the union area: IoU = Intersection

Union .
Higher IoU values between the labels of the generated and synthetic images indicate better
alignment of the vessels.
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Figure 5.6: Comparison of IoU values between synthetic images generated from the con-
stant stiffness model and the variable stiffness model and the ground truth image at different
force values

As seen in Figure 5.6, the constant stiffness model demonstrates a high IoU value for
lower-force images. But as the force increases, the unrealistic compression of the vessels
with the method leads to poor IoU scores. On the other hand, the Kvar model, shows
moderately higher performance for all ranges of forces, demonstrating higher similarity
between the ground truth and the generated images.

5.3.2 Improvement in segmentation using synthetic data generation

In this set of experiments, we evaluate the effect of using synthetic images to improve
the results of vessel segmentation under tissue deformations. In the first experiment, we
evaluated the realism of the synthetic ultrasound images created using the method described
in Section 4.2-C on the blue-gel-vascular. Using the scanning mode of the robot, we col-
lected ∼1600 images on the blue-gel. We then created synthetic images at 9 intermediate
force values F = 4, 6, 8, 12, 14, 16, 18, 20, 22N, denoted as D4,6,8,12,14,16,18,20,22,syn, respec-
tively. Example synthetic images are shown in Figure 5.7.

We now show how the synthetic images generated by U-RAFT can be used as a data
augmentation technique to improve a vessel segmentation model with respect to the intersection-
over-union (IoU) metric. We use the ∼ 1600 blue-gel images from each force value as our
training dataset. We collected an additional ∼ 400 images each for testing and validation
datasets.

For this experiment, we train individual U-Net models on Dtrain
2,real, D

train
10,real and a combi-
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Figure 5.7: Ground truth images, synthetic images generated using constant stiffness model
and synthetic images generated using variable stiffness model at 2N, 6N, 10N, 14N, 18N,
and 22N

nation of Dtrain
2,real + Dtrain

10,real dataset. Further, we augment the Dtrain
2,real + Dtrain

10,real dataset with
multiple-force synthetic data (D4,6,8,12,14,16,18,20,22,syn(KconstandKvar)) and use it to train a
U-Net model. We also compare our augmentation technique to the random elastic augmen-
tation mentioned in [86] to underscore the significance of augmenting using multiple-force
synthetic data. We show the improvement in segmentation on the blue-gel

Table 5.1: Comparing performance on the test datasets of a U-Net model with and without
data augmention using the synthetic dataset. The results from the best performing dataset
is highlighted.

Dataset (Blue-gel) IoU
Dtrain

2,real 0.55
Dtrain

10,real 0.57
Dtrain

2,10,real 0.58
Dtrain

2,10,real+ Dtrain
4,6,8,12,14,16,18,20,22,syn(Kconst) 0.61

Dtrain
2,10,real+ Dtrain

4,6,8,12,14,16,18,20,22,syn(Kvar) 0.66
Dtrain

2,10,real+ Dtrain
rand-syn 0.61

As shown in Table 5.1, augmenting the real dataset with multi-force Kvar model syn-
thetic data outperforms the training done using only real images. We also see it outperform
the model trained with random elastic deformations, highlighting the need for realistic
force-based augmentation using deformable registration. An example of this is shown in
Fig. 5.8, where a model trained using only on 2 N images fails to segment a nearly col-
lapsed vein, but the model trained with our synthetic images is able to segment the vessel.
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Figure 5.8: (a) Ultrasound image at 10 N. (b) Ultrasound image with predicted segmen-
tation mask using a U-Net model trained using real data collected at 2 N. (c) Ultrasound
image with predicted segmentation mask using U-Net model train using real and synthetic
data. The inclusion of synthetic data improves segmentation accuracy.

5.4 Conclusion
We demonstrate how our augmentation approach (constant stiffness and variable stiff-

ness) can be used to generate synthetic deformed images to expand the size of a vessel
segmentation training dataset and improve vessel segmentation performance. We validate
our approach on a benchtop human tissue/vessel phantom highlighting the practical appli-
cation of our deformable registration model in real-world medical imaging tasks. Overall,
this chapter presents an innovative solution to address the challenges associated with ul-
trasound imaging, particularly in the areas of ultrasound image segmentation which are
critical for accurate vascular access.
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Chapter 6

Conclusion and future works

In conclusion, this thesis addresses crucial challenges in the field of robotic ultrasound
scanning and image analysis. Among many medical imaging techniques, ultrasound stands
out for its safety, cost-effectiveness, real-time imaging capabilities, and portability, espe-
cially in point-of-care ultrasound (POCUS) applications. Despite its advantages, ultrasound
scanning relies heavily on skilled sonographers, leading to challenges in certain scenarios.
The thesis aims to overcome these challenges by enhancing the autonomy of robotic ultra-
sound systems and improving the generalizability of ultrasound imaging algorithms.

The first chapter presents an improved semi-automated force-controlled approach for
robotic ultrasound scanning. The utilization of SLERP combined with a hybrid force-
position controller demonstrates promising results for scanning highly curved surfaces ac-
curately and efficiently. We quantify our scanning method using the quality of ultrasound
images as well as the force profiles.

In the second chapter, the thesis introduces the U-RAFT model, a novel unsupervised
deep-learning method for predicting deformations in ultrasound images. By employing de-
formable registration, the model accurately estimates per-pixel deformation fields, leading
to diverse applications like synthetic image generation and registration tasks for respiratory
motion compensation and curved needle registration. The versatility of the U-RAFT model
across various medical imaging tasks highlights its effectiveness and broad applicability.

In the third chapter, the thesis proposes a novel approach to using deformable regis-
tration for augmenting training images and enhancing vessel segmentation models. Our
method generates photo-realistic ultrasound images without relying on 3D models or ma-
terial properties and improves segmentation capabilities at different compression levels.

Overall, this thesis contributes significantly to the advancement of robotic ultrasound
scanning, deformable registration, and image augmentation in the ultrasound imaging do-
main. The proposed methods offer promising solutions to improve the quality and effi-
ciency of ultrasound imaging and analysis, paving the way for more accessible and effective
medical interventions.

As for future work, I plan to improve the proposed deformable registration algorithm
U-RAFT to predict higher deformations especially for cases of vessel collapses. One of the
proposed methods can be incorporating an iterative approach to predict larger deformations.
Furthermore, I also want to improve the data generation method mentioned in Chapter 5.
Currently, the method is able to generate accurate vessel shapes at higher force values.
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But in doing so, it doesn’t replicate the accurate ultrasound speckle pattern. This causes a
decrease in SSIM, PSNR, and IoU scores for higher force values. I plan to improve this
by adding an extra discriminator loss in Equation 5.2, to decrease the visual differences
between the generated and ground truth images. Also, in the future, I want to validate the
Kvar method on more challenging datasets like the live-pig-vascular. In order to do so, I
plan to collect more ultrasound images in the palpation mode on the live pigs.
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[67] Felix von Haxthausen, Sven Böttger, Daniel Wulff, Jannis Hagenah, Verónica Garcı́a-
Vázquez, and Svenja Ipsen. Medical robotics for ultrasound imaging: current systems
and future trends. Current robotics reports, 2:55–71, 2021. 3.3.2

[68] Mojtaba Akbari, Jay Carriere, Tyler Meyer, Ron Sloboda, Siraj Husain, Nawaid Us-
mani, and Mahdi Tavakoli. Robotic ultrasound scanning with real-time image-based
force adjustment: quick response for enabling physical distancing during the covid-19
pandemic. Frontiers in Robotics and AI, 8:645424, 2021. 3.3.2

[69] Monan Wang and Li Pengcheng. A review of deformation models in medical image
registration. Journal of Medical and Biological Engineering, 39, April 2018. doi:
10.1007/s40846-018-0390-1. 4.1

[70] Aristeidis Sotiras, Christos Davatzikos, and Nikos Paragios. Deformable medical
image registration: a survey. IEEE Transactions on Medical Imaging, 32(7):1153–
1190, July 2013. ISSN 1558-254X. doi: 10.1109/TMI.2013.2265603. Conference
Name: IEEE Transactions on Medical Imaging. 4.1

[71] Hamid Reza Boveiri, Raouf Khayami, Reza Javidan, and Alireza Mehdizadeh. Med-
ical image registration using deep neural networks: a comprehensive review. Com-
puters & Electrical Engineering, 87:106767, October 2020. ISSN 00457906. doi:
10.1016/j.compeleceng.2020.106767. 4.1

[72] Yabo Fu, Yang Lei, Tonghe Wang, Walter J Curran, Tian Liu, and Xiaofeng Yang.
Deep learning in medical image registration: a review. Physics in Medicine & Bi-
ology, 65(20):20TR01, October 2020. ISSN 1361-6560. doi: 10.1088/1361-6560/
ab843e.

[73] Jing Zou, Bingchen Gao, Youyi Song, and Jing Qin. A review of deep learning-
based deformable medical image registration. Frontiers in Oncology, 12:1047215,
December 2022. ISSN 2234-943X. doi: 10.3389/fonc.2022.1047215. 4.1

[74] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and
Thomas Brox. FlowNet 2.0: Evolution of optical flow estimation with deep networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017. 4.2.1

[75] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. PWC-Net: CNNs for

47

https://doi.org/10.1115/1.3662552
https://www.frontiersin.org/articles/10.3389/frobt.2021.645424
https://www.frontiersin.org/articles/10.3389/frobt.2021.645424


optical flow using pyramid, warping, and cost volume. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2018. 4.2.1

[76] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey
Dosovitskiy, and Thomas Brox. A large dataset to train convolutional networks for
disparity, optical flow, and scene flow estimation. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), June 2016. 4.2.1

[77] Moritz Menze and Andreas Geiger. Object scene flow for autonomous vehicles. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2015. 4.2.1, 4.3.2,
5.2.1

[78] David G Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional journal of computer vision, 60:91–110, 2004. 4.2.2

[79] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000. 4.2.2,
4.4.3
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