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Abstract

Deep learning holds promise for learning complex patterns from data, which is
especially useful when the input or output space is large. In robot learning, both the
input (images or other sensor data) and the output (actions such as joint angles) can
be large, suggesting that deep learning could be especially well-suited to making
progress on challenging problems in robotics.

However, unlike most machine learning applications, robotics involves physical
constraints that make off-the-shelf learning challenging. Robots are expensive and
typically require human involvement for resetting environments and fixing hard-
ware. These constraints make large-scale data collection and training difficult, pre-
senting a major roadblock to applying today’s data-intensive algorithms. Robot
learning has an additional roadblock in evaluation: every physical space is differ-
ent, making results across labs inconsistent.

Two common assumptions of the robot learning paradigm limit data efficiency.
First, an agent typically assumes isolated environments and no prior knowledge
or experience – learning is done tabula-rasa. Second, agents typically receive only
image observations as input, relying on vision alone to learn tasks. However, in the
real world, humans learn with many senses across many environments and come
with prior experiences as they learn new tasks. This approach is not only practical
but also crucial for feasibility in real robotics where it is cost-prohibitive to collect
many samples from deployed physical systems.

In this thesis, I presentwork that lifts these two assumptions, improving the data
efficiency of robot learning by leveraging multimodality and pretraining. First, I
showhowmultimodal sensing like sight and sound canprovide rich self-supervision
(Chapter 2). Second, I introduce a framework for pretraining and evaluating self-
supervised exploration via environment transfer (Chapter 3). In Chapter 4, I ap-
ply these ideas to real-world manipulation, combining the benefits of large-scale
pretraining and multimodality through audio-visual pretraining for contact micro-
phones. Finally, drawing upon the benchmarking efforts from Chapter 3, I intro-
duce a real-robot benchmark for evaluating the generalization of both visual and
policy learning methods via shared data and hardware (Chapter 5).
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Chapter 1

Introduction

Imagine a baby playing with an object she has never seen before. She shakes it
and listens to the noise. She watches her parent to see how it is used. While these
behaviors might not seem intelligent to adults, babies learn in ways that exploit
the richness of their early lives. They make use of all their senses; they seek creative
forms of feedback; they thrive on the diversity of theworld around them [133]. I see
these behaviors as inspiration for building better agents. Namely, I aim to improve
robot learning by leveraging self-supervision, multimodality, and prior experience.

Reinforcement learning (RL) allows systems to move beyond passive learning
and interact with the world while learning from these interactions. In the standard
RL paradigm, a researcher manually specifies a reward function (score), and an
agent learns to maximize this reward. This works well in games like Atari or Go,
but in applications like robotics, reward functions are hard to formulate and learn-
ing from real-world data requires sample efficiency. The challenges in RL can be
grouped into two areas: how to collect interesting data in an environment (explo-
ration) and how to learn tasks from such data (policy learning). In my thesis, I
explore how to improve both exploration and policy learning to make RL feasible
in real-world settings.

Current frameworks for RL exploration are poor proxies for the ways children
explore the world. RL agents tend to begin tabula-rasa (initialized from scratch in
a single environment) and use only vision or state vectors, missing out on other
sensory modalities. In this thesis, I aim to put exploration more in line with the
real world: an agent uses large-scale data (from prior environments and passive
sources) to effectively transfer knowledge to a new setting, where self-supervision
and multimodality guide quick adaptation.

1.1 Overview

The first prong of this thesis (Chapter 2) is about using additional sensory modal-
ities. Multimodal approaches are especially amenable to self-supervised methods

1



becausewe can use two complementarymodalities as joint supervision. In SeeHear
Explore [41], we showed how an agent perceiving multiple modalities (like vision
and sound) can learn associations between them as an informative reward signal.

The second prong (Chapter 3) shows how policy transfer can accelerate train-
ing. We started down this route by designing an evaluation protocol: an agent first
learns to explore across many environments without a specified goal and then ex-
plores new environments to solve new tasks [117]. In this setting, our proposed ap-
proach improved sample efficiency through more expressive self-supervision that
rewarded novel environment changes, and the evaluation protocol brought richness
through pretraining in multiple environments.

These first twoprongs demonstrate howpolicy learning canmove beyond tabula-
rasa, state-based exploration to something more suitable for the real world. In the
secondhalf of this thesis, I bring these ideas to real roboticmanipulation. InChapter
4, I combinemultimodalitywith large-scale pretraining to improve the performance
of real-world manipulation, mitigating the amount of costly trial-and-error data re-
quired. We use contact microphones as an alternative tactile sensor that captures
inherently audio-based information, enabling large-scale audio-visual pretraining
for robotics.

The final aspect of my thesis provides a way to evaluate robot learning from di-
verse, passive data. Following the robotics cloud concept [42], Chapter 5 introduces
the Train Offline, Test Online (TOTO) benchmark, a shared setting for conduct-
ing experiments on real, remotely-operable robots. This benchmark allows new re-
searchers to contribute to the field without purchasing hardware, re-implementing
baselines, or collecting their own data, enabling better comparison of more ap-
proaches. While the full scale of this vision is not in scope for this thesis, I show
its feasibility and desirability through the TOTO benchmark, which evaluates the
generalization of visual representations and policies in a shared manipulation en-
vironment.

The multimodality and pretraining aspects of my work move us towards data-
efficient real robot learning, while the Robotics Cloud makes the deployment of
such methods possible on a broader scale.

In Chapter 4, I will combine multimodality with large-scale pretraining to im-
prove real-worldmanipulation, mitigating the amount of costly trial-and-error data
required. We use contact microphones as an alternative tactile sensor that cap-
tures inherently audio-based information, allowing us to leverage large-scale audio-
visual pretraining.

The final aspect of my thesis provides a way to evaluate robot learning from di-
verse, passive data. Chapter 5 motivates the Robotics Cloud [42], a shared setting
for conducting experiments on real, remotely-operable robots. This cloud would
allow new researchers to contribute to the field without purchasing hardware, re-
implementing baselines, or collecting their own data, enabling better comparison
of more approaches. While the full scale of this vision is not in scope for this thesis,
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I show its feasibility and desirability through the Train Offline, Test Online (TOTO)
benchmark. In particular, TOTO evaluates the generalization of visual representa-
tions and policies in a shared manipulation environment.

Themultimodality, self-supervision, anddata diversity aspects ofmyworkmove
us towards tractable real robot learning, while the Robotics Cloud makes the de-
ployment of such methods possible on a broader scale.
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Chapter 2

See, Hear, Explore: Curiosity via
Audio-Visual Association

2.1 Introduction

Figure 2.1: See, Hear, Explore: We pro-
pose a formulation of curiosity that en-
courages the agent to explore novel asso-
ciations between modalities, such as au-
dio and vision. In Habitat, shown above,
our method allows for more efficient ex-
ploration than baselines.

Many successes in reinforcement learn-
ing (RL) have come from agents max-
imizing a provided extrinsic reward
such as a game score. However, in real-
world settings, reward functions are
hard to formulate and require signifi-
cant human engineering. On the other
hand, humans explore theworld driven
by intrinsic motivation, such as curios-
ity, often in the absence of rewards. But
what is curiosity and how would one
formulate it?

Recent work in RL [20, 119, 121] has
focused on curiosity using future pre-
diction. In this formulation, an explo-
ration policy receives rewards for ac-
tions that lead to differences between
the real future and the future predicted
by a forward dynamics model. In
turn, the dynamics model improves as
it learns from novel states. While the core idea behind this curiosity formulation
is simple, putting it into practice is quite challenging. Learning and modeling for-
ward dynamics is still an open research problem; it is unclear how to handle mul-
tiple possible futures, whether to explicitly incorporate physics, or even what the
right prediction space is (pixel space or some latent space).
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The use of multiple modalities in human learning has a long history. Research
in psychology has suggested that humans look for incongruity [76]. A baby might
hit an object to hear what it sounds like. Have you ever found yourself curious to
touch a material different from anything you have seen before? Humans are drawn
towards discovering and exploring novel associations between different modali-
ties. Dember and Earl [44] argued that intrinsic motivation arises with discrep-
ancy between expected sensory perception and the actual stimulus. More recent
work has shown the presence of multimodal stimulation and exploration in infants
[57, 168]. In cognitive development, both sight and sound guide exploration: ba-
bies are drawn towards colorful toys that squeak and rattle [105].

Inspired by human exploration, we introduce SeeHear Explore (SHE): a curios-
ity for novel associations between sensorymodalities (Figure 2.1). SHE rewards ac-
tions that generate novel associations (shared information) between different sen-
sory modalities (in our case, pixels and sounds). We first demonstrate that our
formulation is useful in several Atari games: SHE allows for more exploration, is
more sample-efficient, and is more robust to noise compared to existing curiosity
baselines on these environments. Finally, we show experiments on area exploration
in the realistic Habitat simulator [138]. Our results demonstrate that in this setting
our approach significantly outperforms baselines.

To summarize, our contributions in this work include: 1) SHE, a curiosity for-
mulation that searches for novel associations in the world. To the best of our knowl-
edge, multimodal associations have not been investigated in self-supervised explo-
ration; 2) we show our approach outperforms the commonly-used curiosity ap-
proaches on standard Atari benchmark tasks; 3) most importantly, multimodality
is one of themost basic facets of our rich physical world (audio and vision are gener-
ated by the same physical processes [164]). We show experiments on realistic area
exploration in which SHE significantly outperforms baselines. This work builds
on efficient exploration, which will be crucial as we push agents to explore more
complex unknown environments.

2.2 Related Work

Our work uses audio as an additional modality for self-supervised exploration. We
divide the prior work into two categories: exploration (Section 2.2.1) and multi-
modal learning (Section 2.2.2).

2.2.1 Exploration

Prior exploration work has used error [1, 119, 140, 150], uncertainty [75, 121, 152],
and potential improvement [139] of a prediction model as intrinsic motivation.
Somemethods use count- or pseudo-count-based exploration [12, 158]. Others use
auxiliary losses to supplement rewards and improve sample efficiency [77, 148].
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One popular approach is curiosity by self-supervised prediction [20, 119]. In
this form of curiosity, an intrinsic reward encourages an agent to explore situations
with high error under a jointly-trained future prediction model. The model’s error
is a proxy for novelty: unpredictable situations are more likely novel and therefore
ones the agent should explore. These future-predicting models can be difficult to
train, especially in visual space. Our method also looks at self-supervised explo-
ration, but our intrinsic reward does not rely on future prediction. We circumvent
the need for future prediction by leveraging multimodality. SHE rewards associa-
tion classification error (i.e. association novelty) as opposed to higher-dimensional
prediction error. Our key insight is that associative models across modalities are
simpler to learn, and their accuracy is also indicative of novelty.

2.2.2 Multimodal Learning

Multimodal settings are especially amenable to self-supervision, as information
from one modality can be used to supervise learning for another modality. One
prior work learned a joint visual and language representation using Flickr images
and associated descriptors [149]. In computer vision, audio can provide additional
information that complements images [8, 61, 115]. Recent work [27, 59] has looked
at audio-visual embodied navigation, in which audio is emitted from a goal point to
aid in supervised learning of navigation. In the same environment, Gao et al. [62]
used audio and visual information for learning visual feature representations. We
test on this audio-visual navigation environment, but for unsupervised exploration
in RL; we have no goal states.

Audio and visual information are closely linked, and since we commonly have
access to both in the form of video, this is a rich area for self-supervision. Aytar
et al. [9] used audio fromAtari in the form of YouTube videos of people playing the
games. This work uses audio-visual demonstrations from YouTube to learn a visual
embedding. The setup here is learning from demonstrations from humans. In our
case, on the other hand, the audio-visual associations drive intrinsically motivated
exploration. We learnmultimodal alignment from active data, which the agent both
collects and uses.

In robotics settings, the use of additional modalities such as tactile sensing [24,
107] or audio [34] is increasingly popular for grasping andmanipulation tasks. Lee
et al. [94] showed the effectiveness of self-supervised training of tactile and visual
representations by demonstrating its use on a peg insertion task. While these pre-
vious approaches have demonstrated the benefits of usingmultiple sensory modal-
ities for learning better representations or accurately solving tasks, in this work we
demonstrate its utility for allowing agents to explore. To the best of our knowledge,
using audio to learn actions for exploration is unique to our work.
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2.3 See, Hear, Explore

We now describe SHE, our exploration method based on associating audio and vi-
sual information. Our goal is to develop a form of curiosity that exploits the multi-
modal nature of the input data. Our core idea is that the SHE agent learns a model
that captures associations between two modalities. We use this model to reward
actions that lead to unseen associations between the modalities. By rewarding such
actions, we guide the exploration policy towards discovering new combinations of
sight and sound.

More formally, we consider an agent interacting with an environment that con-
tains visual and sound features, which we call xt = (vt, st) for time t where vt is
the visual feature vector and st is the sound feature vector. The agent explores us-
ing a policy at ∼ π(vt; θ) where at corresponds to an action taken by the agent at
time t. To make for easier comparison to visual-only baselines, our agent is only
given access to the visual features vt and not the audio features st. To enable this
agent to explore, we train a discriminator D that tries to determine whether an ob-
served multimodal pair (vt, st) is novel, and we reward the agent in states where
the discriminator is surprised by the observed multimodal association.

2.3.1 Why Novel Associations?

The goal of an exploration policy is to perform actions that uncover states that lead
to a better understanding of theworld. One commonly used exploration strategy in-
volves rewarding actions that lead to unseen or novel states [12]. While this strategy
seems intuitive, it does not handle the fact that while some states might not have
been seen, we still understand them and hence they do not need to be explored.
In light of this, recent approaches have used a prediction-based formulation. If
a model cannot predict the future, it needs more data points to learn. However,
sometimes we may have seen enough examples, and prediction is still challenging,
leading a prediction-based exploration policy to get stuck. For example, consider
the couch-potato issue: the random TV in the Unity environment (as described in
Burda et al. [20]) yields high error for prediction models, so prediction-based curi-
ous agents receive high rewards for staring at the TV, though this is not a desirable
type of exploration.

Trying to avoid these problems has shaped much of the work on intrinsic moti-
vation; Schmidhuber [139], Oudeyer et al. [114], White et al. [167], and Burda et al.
[21] all formulate intrinsic rewards with the goal of mitigating problems like the
couch-potato agent. Our approach, different from this body of prior work, looks at
how multimodal data can mitigate these issues.

Our underlying hypothesis is that discovering new sight and sound associations
will help mitigate the shortcomings of the previously described count-based and
prediction-based exploration strategies. By using an association model, we ask a
simpler question: can this image co-occur with this sound? Consider another ex-
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ample in which pressing a button randomly produces one of 3 distinct sounds. Our
approach could learn to classify all as associated, while an agent using future pre-
diction errorwould always be curious. This focus on association effectively helps ig-
nore stochasticity, mitigating the couch-potato problem by focusing on non-random
structure. Such a model can allow generalization to unseen states and also does not
need to predict the future to provide an informative signal for exploration.

2.3.2 Association Novelty via Alignment

The core of our method is the ability to determine whether a given pair (vt, st) rep-
resents a novel association. To tackle this problem, we learn a model in an online
manner. Given past trajectories, a model learns whether a certain audio-visual in-
put comes from a seen or new phenomenon. Oneway tomodel this would be to use
a generative model such as a VAE [82] or GAN [65], which could determine if the
image-audio combination is within the distribution or out of distribution. However,
generative models are also difficult to train, so we propose using a discriminator to
predict if the image-audio pair is novel, which has a smaller, binary output space.

We train this discriminator to distinguish real audio-visual pairs from ‘fake’
pairs from another distribution, with the insight that the learned model is more
likely to classify novel pairs as fake. Here, the observed image-audio pairs during
exploration act as positive training examples, but a critical question is how to obtain
negative image-audio pairs. To this end, we reformulate the problem as whether
image-audio pairs are aligned or not: we obtain ‘fake’ samples by randomly mis-
aligning the audio and visual modalities, similar to Owens and Efros [115]. The
positive data is then the aligned image-audio pairs, and the negative data is com-
prised ofmisaligned ones. The discriminatormodel, as shown in Figure 2.2, outputs
values between 0 and 1, with 1 representing high probability of audio-visual align-
ment and 0 representing misalignment. We can then leverage the misalignment
likelihood as an indicator of novelty since the discriminator would be uncertain in
such instances.

2.3.3 Training

Having introduced association novelty via alignment, we now describe howwe im-
plement this idea using function approximators. During training, the agent policy is
rolled out in parallel environments. These yield trajectorieswhich are each chunked
into 128 time steps. A trajectory consists of pairs of preprocessed visual and sound
features: (v1, s1), (v2, s2)...(v128, s128). These trajectories are used for two purposes:
1) updating the discriminator D as described below and 2) updating the explo-
ration policy based on the intrinsic reward rit (computed using the discriminator),
also described below.
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Figure 2.2: Our audio-visual association model: The frames (top left) and po-
tentially misaligned audio waveform (bottom left) are preprocessed into 512-
dimensional feature vectors using a random feature network and FFT, respectively.
The discriminator network (right) takes these features as inputs and is trained to
output whether or not they are aligned. 2D conv represents a standard convolu-
tional layer and FC 512 represents a fully-connected layer with 512 units.

Training the Alignment Discriminator The discriminator D is a neural network
that takes a visual and sound feature pair as input and outputs an alignment proba-
bility. To train D, we start with positive examples from the visual and sound feature
pairs (vt, st). With 0.5 probability we use the true aligned pair, and with 0.5 prob-
ability we create a false pair consisting of the true visual feature vector vt and a
sound feature vector uniformly sampled from the current trajectory. We call this
false sound s′t. We define a binary variable zt to indicate whether the true audio
was used, i.e. when we give the discriminator the true audio st, we set zt = 1, and
when we give the discriminator the false audio s′t, zt = 0. We use a cross-entropy
loss to train the discriminator, similar to prior work [9, 115]:

Lt(vt, st, s
′
t, zt) =


− log(D(vt, st)), if zt = 1

− ||st − s′t||2
Ebatch||st − s′t||2

log(1−D(vt, s
′
t)), if zt = 0

In the zt = 0 case above, we weight the cross-entropy loss to prevent the discrimi-
nator from being penalized in cases where the true and false audio are similar. We
weight by the L2 difference between the true and false audio feature vectors and
normalize by dividing by the mean difference across samples in the batch of 128
trajectories. This loss is used for updating the discriminator and is not used in com-
puting the agent’s intrinsic reward.
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Training the Agent via Intrinsic Reward We want to reward actions that lead
to unseen image-audio pairs. For a given image-audio pair, if the discriminator
predicts 0 (unseen or unaligned), we want to reward the agent. On the other hand,
if the discriminator correctly outputs 1 on a true pair, the agent receives no reward.
Mathematically, the agent’s intrinsic reward is the negative log-likelihood of the
discriminator evaluated on the true pairs: rit := − log(D(vt, st)), where the output of
D is between 0 and 1. Audio-visual pairs that the discriminator knows to be aligned
get a reward of 0, but if the discriminator is uncertain (the association surprised the
discriminator) the agent receives a positive reward. The agent takes an action and
receives a new observation vt and intrinsic reward rit (note that the agent does not
have access to the sound st). The agent is trained using PPO [142] to maximize the
expected reward: maxθ Eπ(vt;θ)

[∑
t γ

trit
]
. The agent does not have access to the extrinsic

reward. Extrinsic reward is used only for evaluation. This will enable the use of our
method on future tasks for which we cannot easily obtain a reward function. See
Burda et al. [20] for further discussion on training with no extrinsic reward while
using it for evaluation.

2.4 Experiments

In this section, we will test our method in two exploration settings (Atari and Habi-
tat) and compare it with commonly-used curiosity formulations.

2.4.1 Environments

Atari Similar to prior work, we demonstrate the effectiveness of our approach on
12 Atari games. We chose a subset of the Atari games to represent environments
used in prior work and a range of difficulty levels. We excluded some games due
to lack of audio (e.g. Amidar, Pong) or the presence of background music (e.g.
RoadRunner, Super Mario Bros). The action space is different from the one used
in the future prediction curiosity work [20], as we use Gym Retro [110] in order to
access game audio, and Retro environments use a larger action space. The original
work reported results using the minimal action space, Discrete(4), whereas we use
Discrete(6). We note that the larger action space does slow exploration, but it is
used for both our method and the baselines for fair comparison. To compute audio
features, we take an audio clip spanning 4 time steps (1/15th of a second for these 60
frame per second environments), apply a Fast Fourier Transform, and downsample
using max pooling to a 512-dimensional feature vector. This vector is used as input
to the discriminator along with a 512-dimensional visual feature vector.

Habitat Navigation We also test our method in a navigation setting using Habi-
tat [138] (Figure 2.3). In this environment, the agent moves around a photorealis-
tic Replica scene [153]. We use the largest Replica scene, Apartment 0, which has
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Figure 2.3: Habitat visualization: Left: an example agent view. Right: the top-
downmap for apartment 0 (not seen by agent). The agent is the blue arrow and the
audio source is the green square. Gray areas are open space, while white areas are
obstacles, which make exploration challenging.

211 discrete locations. In each location, the agent can face in 4 directions. At each
timestep, the agent takes one of 3 discrete actions: turn left, turn right, or move for-
ward. As in our Atari experiments, the agent is not given any extrinsic reward; we
simplywant to see howwell it can explore the areawithout supervision. We use the
audio-visual navigation extension from Chen et al. [27], which emits a fixed audio
clip from a fixed location and allows our agent to hear the sound after simulating
room acoustics. The perceived sound at each time step is less than 1 second long,
and we zero pad this audio to 1 second to make each sound equal length for feature
computation. We apply FFT and downsample to a 512-dimensional feature vector,
the same as done in Atari, described above.

2.4.2 Baselines

We compare to future prediction curiosity [20], which as previously described per-
forms visual future prediction. We build upon the open-source code from the au-
thors (see the appendix for more details). We also compare to exploration via dis-
agreement [121] and Random Network Distillation (RND) [21]. We use the same
hyperparameters (which were optimized for the future prediction and disagree-
ment baselines) for policy learning across all approaches. We use random CNN
features [20, 21] for the visual feature representation for our method and the base-
lines in all experiments.
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2.4.3 Atari Experimental Results

We trained our approach and baselines for 200 million frames using the intrinsic
reward andmeasure performance by the extrinsic reward throughout learning. Fig-
ure 2.4 shows these results. Eachmethodwas runwith three random seeds, and the
plots show the mean and standard error for each method. Please see the appendix
for more experimental details. Across many environments, our method enables
better exploration (as judged by the extrinsic reward) and is more sample efficient
than the baselines. Of the 12 environments, SHE outperforms the disagreement
baseline in 9 and the future prediction baseline in 8. We hypothesize that states
leading to novel audio-visual associations, such as a new sound when killing an
enemy, are more indicative of a significant event than ones inducing high predic-
tion error (which can happen due to inaccurate modeling or stochasticity) and this
is why our approach is more efficient across these environments.

Figure 2.4: Atari training curves: Average extrinsic reward (never seen by the
agent) throughout training for our method, future prediction [20], and exploration
via disagreement [121]. Our method outperforms the baselines in 8 of 12 environ-
ments, supporting our hypothesis that audio-visual association is a useful signal
for accelerating exploration.
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Understanding Failure Cases While our approach generally exceeds the perfor-
mance of or is comparable to the baselines, there are some environments where
SHE underperforms. We have analyzed these games and found common failure
cases: 1) Audio-visual association is trivial. For example in Qbert, the discrimi-
nator easily learns the associations: every time the Qbert agent jumps to any cube
the same sound is made, thus making the discriminator’s job easy, leading to a low
agent reward. Visiting states with already learned audio-visual pairs is necessary
for achieving a high score, even though they may not be crucial for exploration.
The game Atlantis had similarly high discriminator performance and low agent re-
wards. 2) The game has repetitive background sounds. Games like SpaceInvaders
and BeamRider have background sounds at a fixed time interval, but these sounds
are hard to visually associate. Here the discriminator has trouble learning basic
cases, so the agent is unmotivated to further explore. In Alien, the agent quickly
learns that by quickly passing from one side of the screen to the other, a sound oc-
curs with a slight delay that makes it hard to align with the frame. The agent learns
to repeat this trick continuously, putting the discriminator in a situation like 2).

Figure 2.5: Case study on Gravitar: Our
method is able to explore this hard environ-
ment, while baselines have negligible in-
crease in extrinsic rewards.

HardExploration Environment Ac-
cording to Taïga et al. [157], Grav-
itar is a hard exploration environ-
ment. Such environments are partic-
ularly difficult to solve without learn-
ing from demonstrations [9], using
extrinsic reward [157], or exploiting
structure in the game [52]. Even for
humans, it can be unclear how to play
Gravitar upon first introduction, in
contrast with other Atari games that
are intuitively simple. Despite Gravi-
tar’s difficulty, SHE allows the agent
to explore well, while the baselines
perform poorly (Figure 2.5). After
examining the game, we hypothesize
that the game’s visual dynamics are
not that interesting on their own, but
the audio-visual associations are. We
also applied ourmethod and the base-
lines to other hard exploration games,
but in these cases, nomethodwas suc-
cessful in the training time allotted.
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2.4.4 Habitat Experimental Results

(a) State coverage: unique states visited
throughout training. Ourmethod achieves
full state coverage about 3 times faster than
future prediction curiosity.

(b) State counts: the number of times each
state is visited in the first 2000 episodes,
sorted by frequency and shown on a log
scale. Ourmethod has awider tail, visiting
rare states one to two orders of magnitude
more frequently than the baselines.

Figure 2.6: Habitat exploration results for SHE and baselines. Eachmethod is run
with three different seeds and each seed uses a different start location.

Here we present results from unsupervised area exploration in the biggest scene in
Replica [153] with realistic acoustic responses [27]. Figure 2.6 shows the quantita-
tive results. SHE (blue) has similar coverage to RND and reaches full state cover-
age 3 times faster than future prediction curiosity (Figure 2.6a). We can also look
at how much each state is visited (Figure 2.6b). A good exploration method will
have higher counts in the rare states. Our method visits these rare states (Figure
2.6b right) about 8 times more frequently than the next-best baseline. It does so by
visiting common states (Figure 2.6b left) less frequently. SHE’s strong performance
on this more realistic task holds promise for future work exploring the real world.

2.4.5 Ablations

Audio in baseline One hypothesis for why our method outperforms baselines is
that SHE has access to additional information in the form of audio. To test the bene-
fit of including audiowithout the use of our associationmethod, we created two ad-
ditional baselines: an audio-visual prediction baseline and an audio-visual random
network distillation baseline. In the audio-visual prediction baseline, the prediction
space is concatenated audio and visual features: the future prediction model takes
an audio-visual feature vector as input and predicts an audio-visual feature vector.
Similarly, in the audio-visual random network distillation baseline, the audio and
visual features are concatenated and used as inputs to both the random target net-
work and the predictor network. As the results in the appendix indicate, this does
not lead to significant improvement over the visual-only baselines.
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Robustness to noise Predicting the future can be especially difficult in the face
of inherent uncertainty. To analyze our approach in such a setting, we created a
noisy version of the environments, where Gaussian noise is added to the audio and
visual feature vector inputs. Our approach can be affected by noise in both audio
and visual observations, whereas the baseline is only affected by the visual noise.
For these experiments, we chose three environments: one where our method was
better (MsPacman), one where the baseline was better (SpaceInvaders), and one
where both methods performed well (Asterix). Figure 2.7 depicts results across
these three environments both with and without noise. We observe that future pre-
diction curiosity is not robust to such noise: the performance degrades significantly
in both Asterix and SpaceInvaders. In contrast, as our approach only relies on as-
sociations, it is more robust to such noise.

Figure 2.7: Effect of input noise on performance: Our method (blue) maintains
similar performance with the introduction of noisy observations, while the baseline
performance (orange) degrades.

Multiple Curiosity Modules Curiosity can have multiple forms, e.g. prediction-
based andmultimodal, and these are complementary to each other. To demonstrate
this, we ran a joint method combining intrinsic rewards: we sum the losses from
future prediction and the audio-visual discriminator. The resultingmethod is better
than the visual-only baseline in 10 of 12 games, sometimes surpassing both (see the
appendix for the detailed results).

2.5 Conclusion

Multimodality is one of the most basic facets of our rich physical world. Our for-
mulation of curiosity enables an autonomous agent to efficiently explore a new en-
vironment by exploiting relationships between sensory modalities. With results on
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Atari games, we demonstrated the benefit of using audio-visual association to com-
pute the intrinsic reward. Ourmethod showed improved exploration over baselines
in several environments. The most promise lies in our approach’s significant gains
when used on a more realistic task, exploration in the Habitat environment, where
audio and visual are governed by the same physical processes. We anticipate mul-
timodal agents exploring in the real world and discovering even more interesting
associations. Instead of building robots that perform like adults, we should build
robots that can learn the way babies do. These robots will be able to explore au-
tonomously in real-world, unstructured environments.

Broader Impact

The lasting impact of RL will be from these algorithms working in the real world.
As such, our work is centered around increasing sample efficiency and adaptability.
By leveraging self-supervision, we can avoid cumbersome reward shaping, which
becomes exponentially more difficult as tasks grow more complex. Although our
work here uses simulated agents, our longer-term goal is to deploy multimodal cu-
riosity on physical robots, enabling them to explore in amore sample-efficient man-
ner. Multimodal learning could have a near-immediate impact in autonomous driv-
ing, where different sensory modalities are used for perception of near, far, small,
and large entities.

Autonomous RL agents have many potential positive outcomes, such as home
robots aiding elderly people or those with disabilities. They will save time and
money in many sectors of industry. However, they also have the potential to dis-
place parts of the workforce [18].

There could be privacy concerns ifmergedmultimodal data is hard to anonymize
or de-identify. There could also be privacy concerns with respect to recording au-
dio data in the wild [92]. With unsupervised RL, it can be hard to predict what
behaviors will be learned. For example, a robot using our algorithm might learn to
damage sensors to create novel associations. The inability to predict agent behavior
canmake ensuring safety difficult, whichwould have consequences in safety-critical
settings like autonomous driving or healthcare. Somework has been done on safety
in RL [63], and there is more to be done, especially on analyzing the safety of RL
exploration policies during training.
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Chapter 3

Interesting Object, Curious Agent:
Learning Task-Agnostic
Exploration

3.1 Introduction

Exploration is one of the key unsolved problems in building intelligent agents capa-
ble of behaving like humans. In reinforcement learning (RL), exploration is usually
studied under two different settings. The first is task-driven exploration, where the
reward is well-defined and the agent’s goal is to explore in order to maximize long-
term rewards. However, in real life, external rewards are either sparse or unknown
altogether. In this setting, exploration is task-agnostic: given a new environment,
the agent has to explore it in absence of any external reward. Common approaches
to encourage task-agnostic exploration use intrinsically motivated rewards such as
prediction curiosity [120, 140], empowerment [130], or visitation counts [12, 113].
But does this setup represent how humans explore?

We argue that the commonly-used task-agnostic exploration setup is unrealistic,
both from practical and academic viewpoints. This setup assumes environments in
isolation and agents exploring tabula-rasa, i.e., with no prior knowledge or experi-
ence. By contrast, we as humans do not learn from one environment in isolation and
we do not throw away our past knowledge every time we encounter a new environ-
ment [50]. Exploration is rather a lifelong process: every time we encounter new
environments, we use our prior knowledge and experience to develop new efficient
exploration strategies. We view the exploration problem from a continual learning
lens. More specifically, in this setup, the learning agent interacts with one or many
environments without any extrinsic goal, learning to explore the environments. Later
on, the agent effectively transfers the learned exploration policy to explore new envi-
ronments, rather than exploring the new environment tabula-rasa.
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Figure 3.1: Change-Based Exploration
Transfer (C-BET) trains task-agnostic
exploration agents that transfer to new
environments. Here the agent learns that
keys are interesting, as they allow further
interaction with the environment (open-
ing doors). Later, when tasked with
reaching a box behind a door, the agent
starts by picking up the key.

A key question in learning how to ex-
plore is what to learn and how to trans-
fer prior knowledge from one environ-
ment to another. Most existing task-
agnostic exploration approaches, such
as visitation counts, curiosity, or em-
powerment, define intrinsic rewards in
an agent-centric manner: they encourage
exploration of unseen parts of the envi-
ronment based on the agent’s own be-
lief. In these approaches, exploration is
driven by what the agent knows about
the world. However, most do not make
a distinction between what the agent be-
lieves it is interested in and states that
would make any agent interested. For
example, if the agent uses a visitation
count model and has seen many ob-
jects of one kind in one environment, it
would not explore the same type of ob-
jects again in a new environment. This
seems to be in stark contrast to how hu-
mans explore. Consider a switch with a
bell sign. Even though we might have
pressed hundreds of doorbell switches

(and even this instance), we are still attracted to press it. Some objects in the world
just demand curiosity. We argue that apart froman ‘agent-centric’ component, there
is an ‘environment-centric’ component to exploration, which can be learned from
prior knowledge and experiences.

We propose a paradigm change to move away from stand-alone isolated task-
agnostic environment exploration to a more realistic multi-environment transfer-
exploration setup1. We show how to learn exploration policies both from single-
and multi-environment interaction, and how to transfer them to unseen environ-
ments. This transfer-exploration setup allows agents to use prior experiences for
learning task-agnostic exploration. Notably, classic stand-alone task-agnostic ap-
proaches were designed for tabula-rasa exploration and hence only explore in an
agent-centric manner. They fail to capture the inherent interestingness of some
environment components. With this insight, we propose Change-Based Exploration
Transfer (C-BET), a simple yet effective approach learning joint agent-centric and
environment-centric exploration. The key idea is for an agent to seek out both sur-

1While it can be argued that the real world has no explicit distinction between training and testing,
we use this dichotomy only for the purpose of evaluation.
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prises (unseen areas) and high-impact (interesting) components of the environ-
ment. The experiments show that C-BET (a) learns more effectively when placed
in a multi-environment setup, and (b) either outperforms or performs competi-
tively with prior methods across several unseen testing environments. We hope
this work will inspire exploration research to focus more on learning frommultiple
environments and transferring experiences rather than tabula-rasa exploration.

3.2 Preliminaries and Related Work

We consider environments governed by Markov Decision Processes (MDPs), in
which an agent observes the state of the environment s and selects actions a ac-
cording to a policy π(a|s). In turn, the environment changes, providing a new ob-
servation s′ and a reward r. Through environment interaction, the agent collects
episodes, i.e., sequences of states, actions and rewards (st, at, rt)t=1...T . The goal is
to learn a policy maximizing the sum of rewards during episodes, i.e., the return.

In this setting, exploration poses many questions. If the environment provides
no rewards, what should the agent look for? When should it act greedily with re-
spect to the rewards it has found and stop looking for more? In the history of RL,
many approaches have been proposed to tackle these questions. On one hand, clas-
sic single-environment approaches range from intrinsic motivation with visitation
counts [6, 12, 47, 79, 154], optimism [5, 15, 78, 81, 90], or curiosity [21, 74, 120, 137,
143, 151], to bootstrapping [46, 112] or empowerment [84, 130]. On the other hand,
we find approaches to incrementally learn tasks, such as transfer learning [166],
continual learning [83], curriculum learning [109], and meta learning [129].
Intrinsicmotivation. Exploration strategies relying on intrinsic rewards date back
to Schmidhuber [140], who proposed encouraging exploration by visiting hard-to-
predict states. More recently, the idea of auxiliary rewards to make up for the lack
of external rewards has been extensively studied in RL, supported by evidence from
psychology and neuroscience [67]. Several intrinsic rewards have been proposed,
ranging from visitation count bonuses [12, 154] to bonuses based on prediction er-
ror of some quantity. For example, the agentmay learn a dynamicsmodel and try to
predict the next state [74, 120, 141, 151]. By giving a bonus proportional to the pre-
diction error, the agent is incentivized to explore unpredictable states. Schultheis
et al. [143], instead, proposed to learn intrinsic rewards function by maximizing
extrinsic rewards by meta-gradient.

However, in these approaches exploration is agent-centric, i.e., based on agent
belief such as the forwardmodel error. In contrast, with this workwe propose addi-
tionally learning environment-centric exploration policies. C-BET neither requires a
model nor knowledge of extrinsic rewards. Instead, it encourages the agent to per-
form actions causing interesting changes to the environment. We should note that
while Raileanu and Rocktäschel [127] proposed a similar approach, their explo-
ration policy lacks the transfer component and also requires to learn models.
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Figure 3.2: C-BET pre-training. Our
agent interacts with environments and
learns using intrinsic rewards computed
from state and change counts.
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Figure 3.3: C-BET transfer. The pre-
trained exploration policy is fixed and
guides task-specific policy learning in
new environments.

Transfer learning. The idea of agents capable of incrementally learning tasks is
well-known in the field of machine learning, with the first approaches dating back
to the 90s’ [131, 132, 161]. In RL, recent methods have focused on policy and feature
transfer. In the former, a pre-trained agent (teacher) is used to transfer behaviors to
a new agent (student). Examples include policy distillation, where the student is
trained tominimize the Kullback-Leibler divergence to the teacher [136] or tomulti-
ple teachers at the same time [159]. Alternative approaches, instead, directly reuse
policies from source tasks to build the student policy [11, 55, 70]. In feature trans-
fer, a pre-learned state representation is used to encourage exploration when tasks
are presented to the agent [71, 169]. Similar to transfer RL, continual RL studies
how learning on one or more tasks can help accelerate learning on different tasks,
and how to prevent catastrophic forgetting [83, 134, 144]. Meta RL, instead, tries
to exploit underlying common structures between tasks to learn new tasks more
quickly [56, 129].

However, the setup in these approaches is not task-agnostic, i.e., task-specific
policies are transferred rather than exploration policies. For example, after learn-
ing a policy maximizing the rewards of one task, the agent starts exploring guided
by the same policy as a second task is given. Transfer is task-centric rather than
task-agnostic and environment-centric. Consequently, if tasks are too dissimilar in-
formation cannot be reused, even if the environments are similar. By contrast, in
this workwe propose learning task-agnostic exploration from one ormany environ-
ments and show transfer to unseen environments. We should note thatwhile Pathak
et al. [120] did demonstrate fine-tuning on different maze maps, their focus and
large-scale evaluations remain on tabula-rasa exploration.

3.3 Learning to Explore

Our goal is to decouple the environment-centric nature of exploration from its agent-
centric component. Contrary to priorwork, wepropose to first learn an environment-
centric exploration policy and then to transfer it to unseen environments. The pol-
icy is driven by the inherent interestingness of states and is learned over time via
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interaction. First, during a pre-training phase, the agent interacts with many en-
vironments without any tasks and learns an exploration policy. Then, when new
environments and tasks are presented, the agent uses the previously learned policy
to exploremore efficiently and learn task-specific policies. C-BET’s key components
are (1) a novel intrinsic reward and the learning of a policy to disentangle explo-
ration from exploitation, and (2) the use of such policy to help exploration for new
tasks. Figures 3.2 and 3.3 summarize our framework.

We should note that Rajendran et al. [128] also proposed a transfer framework
based on intrinsic rewards. In their work, the agent switches between practice
episodes –where the agent receives only intrinsic rewards– and match episodes –
giving only extrinsic rewards. However, practice episodes are simpler variations of
match episodes (e.g., in Atari Pong the agent practices against itself) rather than dif-
ferent tasks as in C-BET. Furthermore, the intrinsic reward used in practice episodes
is given by a function trained with meta-gradients to improve the extrinsic-reward
return. That is, exploration is not task-agnostic as in C-BET, and extrinsic rewards
are the main drive of the agent.

3.3.1 Interestingness of State-Action Pairs

The natural world is filled with states or scenarios that are inherently interesting
and our goal is to capture this inherent interestingness via intrinsic rewards. We
propose adding an environment-centric component of interestingness to the exist-
ing agent-centric component of surprise. Specifically, we hypothesize that the en-
vironment can change on interaction, and the changes that are rare are inherently
interesting. That is, we penalize actions not affecting the environment, and favor
actions producing rare changes. For instance, moving around, bumping into walls,
or trying to open locked doors without keys all result in no change and thus will be
of low interest.

We also want to keep the agent-centric component in exploration –that is, the
exploration policy should look for surprises or unseen states. Thus, we further re-
ward actions leading to less-visited states. By combining these two components,
the resulting C-BET interest-based reward is

ri(s, a, s
′) = 1/(N(s′) +N(c)), (3.1)

where c(s, s′) defines the environment change of a transition (s, a, s′), and N denotes
(pseudo)counts of changes and states. Figure 3.4 empirically shows its effective-
ness. In Section 3.4 we discuss change encodings used in our experiments.

3.3.2 Exploration Learning

In this phase, we want to learn task-agnostic exploration policies from interaction
withmany environments. The agent has no goal, but stateswhere it can ‘die’ are still
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Eq 3.1

Gridworld with a key and a door. Observations encode cells
depending on their content (e.g., 5 for the key, 10 for the
agent). In each cell, the agent is facing downward and can
pick up the key only from the cell above it. Samples have
been collected randomly.

Figure 3.4: Visualization of intrinsic
rewards (row) for agent actions (col-
umn). Brighter color denotes higher
reward. Rewarding only state counts
(top) does not provide useful feedback,
and going to the corners is valuedmore
than picking up the key. With the L2
norm of state changes (middle), the
agent is biased in favor of moving, be-
cause its position is encoded with the
highest value in the observation space.
The resulting policy will prefer to nav-
igate without picking up the key. In
contrast, C-BET (bottom) gives picking
up the key the highest reward.

terminal. In this setting, we would like to treat the problem of learning exploration
as anMDPwith intrinsic-rewards only, and train the agent to maximize discounted
intrinsic-returns averaged over episodes.

Formally, the agent explores many environments Eexp = {E1, E2, . . . , EN}, each
governed byMDP ⟨Sn, A, P, ri, γi⟩. That is, each environment has its own states but
all environments have the same action space A, dynamics P , and intrinsic reward
function ri. The agent’s goal is to learn an exploration policy maximizing the sum
of discounted intrinsic rewards, i.e., πexp(s, a) = argmaxπ EE,π[

∑
t γ

t
iri(st, at)]. To

approximate the average, after amaximumnumber of steps the environment is reset
and a new episode starts, as typically done in RL.

However, both common [21, 120, 127] and Eq. (3.1) intrinsic rewards decrease
over time as the agent explores, to the point that they vanish to zero given enough
samples. For instance, counts will grow to infinity, or prediction models error will
go to zero. While this is not an issue in the tabula-rasa setup where the agent also
gets extrinsic rewards, it can be problematic in the proposed task-agnostic explo-
ration framework. Any policy, indeed, would be optimal if all rewards are zero.

To prevent Eq. (3.1) from vanishing, we randomly reset counts any given time
step. To explain why resets need to be random, we start by considering ‘episodic
counts’ proposed by Raileanu and Rocktäschel [127]. These counts are reset at the
beginning of every episode to ensure that the agent does not go back and forth
between a sequence of stateswith high rewards. While thiswork finewhen extrinsic
rewards are also given, it can be a problem if we learn only on intrinsic rewards.
When counts are reset, the agent ‘forgets’ past trajectories and thinks that every
state and change is new. If resets always happen at the end of an episode, then
initial states will always get higher reward. Moreover, starting always with zero-
counts may favor some trajectories and penalize others.
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A
DBC

Figure 3.5: This chainworld
illustrates that if counts are
resets at the beginning of ev-
ery episode, the learned pol-
icy will never visit D.

Consider the chainworld example in Figure 3.5. The
agent always starts in A, fromwhere it can go to B or
D. From B, it loops between B and C. From D, it can-
not go anywhere else. The optimal exploration pol-
icy should visit all states uniformly, by randomly go-
ing to B and D. However, if we reset counts at every
episode, the agent forgets that it has already visited
B and C. Thus the intrinsic rewards for B and C are
high again, and trajectory ABCBCBC... gives higher
intrinsic return than ADDD... Consequently, the op-
timal policy with respect to episodic counts will al-
ways prefer to visit B rather than D.

The optimal exploration policy, instead, should have some randomness to visit
the environment uniformly, while prioritizing interesting states. For this reason, we
propose to reset counts at any given step with probability p. When a new episode
starts, counts may not be reset yet so the agent remembers what it has visited be-
fore. As the agent explores, on average common states and changeswill have higher
count more often, and the agent will correctly prefer rarer ones. In this work, we
propose p ≤ 1− γi where γi is the intrinsic reward discount factor. This is a fitting
choice because in an MDP the sum of discounted rewards can be interpreted as the
expected sum of undiscounted rewards if every time step had a 1−γi probability of
ending. Intuitively, this means that γi implies a ‘life expectancy’ of 1/(1− γi) steps,
and thus resets should not happen more frequently than that.

The resulting MDP with Eq. (3.1) rewards and random count resets can be
solved by any RL algorithm. However, we note that this MDP is non-stationary, be-
cause the agent may receive different rewards for the same state, depending on how
many times the state has been visited in the past. Nonetheless, classic intrinsic re-
wards –even in tabula-rasa exploration– either based on prediction errors [120, 127]
or counts [12] also introduce non-stationarity because they change over time as
well. In practice, this non-stationarity is not an issue because intrinsic rewards
change slowly over time.

3.3.3 Exploration Transfer

Now, the agent is presented with new environments and asked to solve tasks. For-
mally, each environment is governed by the standard MDP ⟨S,A, P, r, γ⟩ and the
agent’s goal is to learn a policy that maximizes the sum of extrinsic rewards, i.e.,
πtask(s, a) = argmaxπ Eπ[

∑
t γ

tr(st, at)]. Note that while during pre-training the
policy was learned across all environments (one exploration policy for all environ-
ments), at transfer we learn one task-specific policy for each environment.

In this phase, the interest-policy learned earlier drives exploration as tasks and
environments are presented to the agent. In order not to forget interestingness over
time, the exploration policy is added as a fixed bias to the task-specific policy, sim-
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Figure 3.6: Examples of the envi-
ronments used in our experiments.
In MiniGrid (left), the agent navi-
gates through a grid and interacts
with objects (keys, doors, boxes, and
balls) to fulfill a task. In Habitat
(right), the agent navigates through
visually realistic rooms.

ilarly to what Hailu and Sommer [70] proposed. Thanks to the decoupling of the
interest-policy (based on the intrinsic reward) from the task-policy (based on the
extrinsic reward), the latter can be also learned independently via any RL algo-
rithm.

In experiments, we use IMPALA [54] to learn both πexp and πtask. IMPALA learns
policies of the form π(s, a) = σ(f(s, a)), where σ is the softmax function. The policy
is trained to maximize a function representing the value of states V (s), trained on
given rewards. In our framework, we combine the two policies as follows.

• During pre-training, by using intrinsic rewards we learn Vi(s) and πexp(s, a) =
σ(fi(s, a)).

• At transfer time, we learn Ve(s) on extrinsic rewards. The policy is πtask(s, a) =
σ(fe(s, a) + fi(s, a)). The interestingness fi is transferred but not trained, i.e., it
acts as fixed bias to encourage interaction. Initially the policy follows fi since fe
is initialized randomly. As it finds extrinsic rewards, the sum fe+fi becomes
greedier with respect to extrinsic rewards, and fe slowly overtakes fi2.

Note that we transfer only fi (the policy) and not Vi (the state value). We could
think of transferring Vi as fixed bias as well, i.e., by having Ve(s) = V (s) + Vi(s).
The policy would be trained on Ve –the states value with respect to the given task–
where Vi is fixed and only V is updated. However, we believe it is more beneficial
to isolate the exploratory component within the policy, in order to keep the task-
specific value function targeted on extrinsic rewards. By not transferring Vi, Ve can
be accurately trained on extrinsic rewards –that the agent will see often thanks to
fi from the pre-trained policy. Ve, in turn, can make πtask greedy with respect to
extrinsic rewards as Ve is learned.

3.4 Experiments

Our experiment design highlights the benefits of disentangling the environment-
centric nature of exploration from agent-centric behavior by learning a separate ex-
ploration policy and then transferring it to new environments. We stress that for

2If exploration and the task goals are misaligned, we can decay exploration, e.g., πtask(s, a) =
σ(αfi(s, a) + fe(s, a)), where α decays over time, similarly to common ϵ-greedy policies.
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learning task-agnostic exploration there are no standard benchmark environments,
experimental setups, well-defined evaluation metrics, or even baselines to compare
against. One of our contributions is to provide an exhaustive evaluation framework
for the transfer exploration paradigm.
Environments. The experiments are divided into two main sections. The first is
about MiniGrid [31] (Section 3.4.1), a set of procedurally-generated environments
where the agent can interact with many objects. The second is about Habitat [138]
(Section 3.4.2), a navigation simulator showcasing the generality of our MiniGrid
experiments to a visually realistic domain.
Change encoding. In both MiniGrid and Habitat the agent partially observes the
environment, since it cannot see through corners, closed door, or inside boxes, and
has a limited field of view. Rather than egocentric views (i.e., what the agent sees
in front of itself), we use 360◦ panoramic views to count environment changes, as
this is a rotation-invariant representation of the observed state. Similar to Chaplot
et al. [26], we concatenate four egocentric views taken from 0◦, 90◦, 180◦, and 270◦

with respect to the North. Then, the change of a transition is the difference between
panoramic views pano(s), i.e., c(s, s′) := pano(s′)− pano(s).
Baselines. We evaluate against the following algorithms.

• Count [12]. The intrinsic reward is inversely proportional to the next state visita-
tion count.

• Random Network Distillation (RND) [21]. The intrinsic reward is prediction error
of states’ random features between a trained network and a fixed one. This can
be interpreted as similar to using state counts because the prediction improves
states are seen more often.

• Rewarding Impact-Driven Exploration (RIDE) [127]. The intrinsic reward is pre-
diction error between consecutive embedded states, normalized by episodic state
counts.

• Curiosity [120]. The intrinsic reward is prediction error between consecutive
states.

The source code is available at https://github.com/sparisi/cbet/.

3.4.1 MiniGrid Experiments

MiniGrid environments [31] are procedurally-generated gridworldswhere an agent
can interact with objects like keys, doors, and boxes (Figure 3.6). Exploration is
challenging because rewards are sparse, observations are partial, and specific ac-
tions are needed to visit all states (e.g., pickup key to open door). With MiniGrid,
we can generate several pairs of train and test environments that are related but still
different in many ways. These pairs enable evaluation of both learning and transfer
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abilities of an exploration method and its ability to deal with unseen components.
Implementation details. All environments give a 7×7×3 partial observation en-
coding the content of the 7×7 tiles in front of the agent (including the agent’s tile).
The agent cannot see through walls, closed doors, or inside boxes. The action space
is discrete: left, right, forward, pick up, drop, toggle, and done.
Setups. We present three setups, to study different exploration transfers against
tabula-rasa.

• MultiEnv (many-to-many transfer). The agent loops over three environments one
episode at a time and learns the exploration policy using intrinsic rewards only.
There is one state count and one change count for all three environments rather
than separate counts for each. The environments are: KeyCorridorS3R3, Blocke-
dUnlockPickup, andMultiRoom-N4-S5, and have been chosen for size and inter-
action variety: the first has both a locked and an unlocked door, a key, and a ball;
the second adds a box; the third has more rooms. Note that even if these environ-
ments have all object types, the agent cannot experience all kinds of interactions.
For example, it will not know that keys can be hidden in boxes, as in the Obstruct-
edMazes. The policy is then transferred to ten environments, seven of which are
new. A good intrinsic reward should help learn better exploration faster from
multiple environments, thanks to sharing experience from diverse interaction.

• SingleEnv (one-to-many transfer). The policy is pre-trained on a single environ-
ment. DoorKey and KeyCorridor are used for pre-training because they have
some –but not all– objects.

• Tabula-rasa (no pre-training / transfer). A task-specific policy is learned as in classic
intrinsic motivation by summing intrinsic and extrinsic rewards. While it is a
non-realistic setup, it is the most common RL exploration approach, and thus
serves as baseline against our transfer framework.

Evaluation metrics. Our goal is to learn exploration policies that encourage inter-
action with the environments and transfer well to new environments, i.e., that can
further be trained to solve extrinsic tasks faster. Therefore, we evaluate policies ac-
cording to the following criteria.

• Unique interactions across 100 episodes at transfer to new environments, after
intrinsic-reward pre-training (no extrinsic-reward training yet). Unique inter-
actions are picks/drops/toggles resulting in new environment changes. For in-
stance, repeatedly picking and dropping the same key in the same cell results in
only two interactions.

• Task success rate over 100 episodes at transfer to newenvironments, after intrinsic-
reward pre-training (no extrinsic-reward training yet). The task success rate de-
notes in howmany episodes the exploration policy visits goal states –thus, would
have already solved the environment task.
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• Extrinsic return during extrinsic-reward training, after intrinsic-reward training.

3.4.1.1 MiniGrid Pre-Training Results

Figure 3.7 shows results after pre-training in MultiEnv. C-BET policy both interacts
with the environment and find goal states more often than all baselines. As we will
see in the next section, this will result in faster extrinsic-reward learning.

Figure 3.7: Unique interactions and success rate at the beginning of transfer of poli-
cies pre-trained in MultiEnv. Not only C-BET interacts the most and achieves the
highest success rate, but also interacts and succeeds in all environments. Naturally,
it interacts more in environment with many keys/balls/boxes to pick (KeyCorri-
dor, BlockedUnblockPickup, ObstructedMazes), and less if there is nothing to pick
(MultiRooms). On the contrary, Count overfits to the training environments and
performs well only on the first five. Other baselines perform poorly, almost as a
random policy.

Furthermore, C-BET’s policy transfers well to all environments, even the ones
with unknown dynamics (e.g., boxes in ObstructedMazes needs to be toggled to
reveal keys). Of the baselines, only Count scores high average interactions and suc-
cess rate, but it does not generalize aswell as C-BET. Indeed,most of Count’s success
comes from environments visited at pre-training (the first five), but most of its in-
teractions are in environments with unseen dynamics (ObstructedMazes). That is,
Count’s policy can explore familiar environments prioritizing state coverage (high
success rate and few interactions), but not unfamiliar ones (low success rate yet
high interactions).

Finally, RIDE, Curiosity, and RND baselines perform poorly. This is unsurpris-
ing if we consider that they rely on predictive models and that MiniGrid dynam-
ics are deterministic and simple. Dynamics and embeddings models are learned
quickly, without giving the policy time to explore.
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3.4.1.2 MiniGrid Transfer Results

We transfer the explorationpolicies learned in Figure 3.7 as discussed in Section 3.3.3.
Figure 3.8 shows how transfer setups (many-to-many and one-to-many) perform
against tabula-rasa exploration.

Figure 3.8: MiniGrid task learning, for both transfer and tabula-rasa exploration.
The hardest tasks are outlined in red. C-BET (blue) fromMultiEnv (top row under
each environment) performs the best, starting with nearly optimal policies in most
environments. This demonstrates the effectiveness of pre-training on multiple en-
vironments using the C-BET intrinsic reward.

The first takeaway is that policies pre-trained with the C-BET intrinsic reward
outperform baselines in both transfer and tabula-rasa. In MultiEnv transfer, C-
BET performs the best, especially on the hardest environments (outlined in red).
In particular, only C-BET can transfer to MultiRoom-N6. On the contrary, Count
–that can solve it in tabula-rasa– fails at transfer. C-BET is also the only solving
ObstructedMaze-2Dlhb –the hardest environment of the ten– even in tabula-rasa.
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The second takeaway is that baselines relying on models are not suited to the
transfer framework. RIDE, Curiosity and RND perform better in the tabula-rasa
setup (last row), except for the easiest environments (Unlock andDoorKey), mean-
ing that transfer is actually harmful. These results are in line with Figure 3.7, where
only C-BET and Count show success at offline transfer. Furthermore, RIDE, Curios-
ity and RND performworst when transfer is fromMultiEnv, highlighting that their
intrinsic rewards are not suited for a multi-environment setup.

Finally, no algorithm learns MultiRoom-N12-10, not even C-BET despite show-
ing some success in Figure 3.7. This is due to the randomly-initialized fe of the
task-specific policy, hindering the pre-trained exploration policy success.

3.4.2 Habitat Experiments

To demonstrate that C-BET’s efficacy extends to realistic settings with visual inputs,
we perform experiments on Habitat [138] with Replica scenes [153].
Implementation details. Egocentric views have resolution 64×64×3. The action
space is discrete: forward 0.25 meter, turn 10◦ left, and turn 10◦ right. To ease com-
putational demands, we use #Exploration [158] with static hashing to map egocen-
tric and panoramic views to hash codes and count occurrences with a hash table.
Setups. We evaluate Habitat on the one-to-many transfer. First, we pre-train explo-
ration policies with only intrinsic rewards in one scene. Then, we evaluate them on
new scenes without further learning. Given a fixed amount of steps, better policies
will visit more of the new scenes.
Evaluationmetrics. UnlikeMiniGrid, we use no extrinsic rewards in Habitat. Since
the agent has to navigate through rooms and spaces, we evaluate exploration poli-
cies using scene coverage measured by the agent’s true state in Cartesian coordi-
nates (not accessible by the agent)Faster, larger and more uniform coverage corre-
sponds to better exploration. Plots show mean and confidence interval over seven
random seeds per method with no smoothing.

3.4.2.1 Habitat Pre-Training Results

We pre-train exploration policies on Apartment 0 (Figure 3.6), one of the largest
Replica scene in the dataset. Figures 3.9 and 3.11 show state coverage throughout
and at the end of pre-training, respectively. C-BET explores more efficiently, cov-
ering twice as much of the scene than all baselines. In particular, at the end of
pre-training it has explored almost all Apartment 0 uniformly.

3.4.2.2 Habitat Transfer Results

Here, we evaluate scene coverage of pre-trained policies in seven unseen scenes
for episodes of fixed steps. A better exploration policy will exhibit generalization

29



Figure 3.9: Habitat pre-training.
C-BET explores the scene faster and
scores the highest unique state count.

Figure 3.10: Habitat offline transfer. Bars denote the
unique state count in an new scene during one episode. C-
BET visits more than twice as many states than all baselines.

C-BET RIDE Count Curiosity RND

Figure 3.11: Scene coverage of exploration policies during pre-training (2M steps) in
Apartment 0. Darker red cells denote higher visitation rates. Only C-BET visits all of the
scene uniformly.

by covering a larger portion of all scenes as evenly as possible, an impressive feat
given the visual complexity of the observations. Indeed, generalization is harder
thanMiniGrid because the lighting, colors, objects, and layout can be very different
between scenes.Figures 3.10 and 3.12 show that, once again, C-BET clearly outper-
forms all baselines. Its exploration policy transfer well to all scenes, as it uniformly
discovers more states. No baseline comes closer to its results. Actually, in many
scenes baselines perform worse than a random policy.

C-BET RIDE Count Curiosity RND Random

R
oo

m
0

Figure 3.12: Scene coverage of exploration policies after 100 episodes (50,000 total steps)
at offline transfer to Room 0. C-BET outperforms baselines and exhibits great transfer by
visiting all of the scene uniformly.

3.5 Discussion

In this work, we proposed a paradigm change in task-agnostic exploration. Instead
of studying task-agnostic exploration in isolated environments, we proposed to (1)
learn task-agnostic exploration policies from one or multiple environments, and
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(2) transfer learned exploration policies to unseen environments at testing time. In
our setup, the agent interacts with the environment without any extrinsic goal and
learns to explore environments in a task-agnostic manner. To this end, we proposed
a novel intrinsic reward to encourage interaction with the environment and the vis-
itation of unseen states. Subsequently, our agent effectively transfers its exploration
policy to unseen environments.
Advantages. The proposed two-phase framework achieves two important features,
making it fundamentally different from prior work. First, we account for environ-
ment interestingness without relying on additional models. Instead, we use a data-
driven approach, estimating the rarity of states and environment changes. Rare
changes are considered more interesting, actions causing them receive higher in-
trinsic rewards, and the agent is encouraged to perform them again. For instance,
when navigating through rooms, opening doors will be more interesting due to rar-
ity: the agentmust navigate to the corresponding key, collect it, navigate to the door,
and finally open it. Thus opening a door is rarer than picking up a key, in turn rarer
than simple navigation movements. Furthermore, relying on environment-centric
intrinsic rewards rather than task-centric extrinsic rewards facilitates learning from
multiple environments at the same time. Second, contrary to prior transfer and con-
tinual learning algorithms we transfer policies learned on interestingness of the envi-
ronment rather than task-specific policies. In the interest-based pre-training phase,
we learn through interaction with the environment in a task-agnostic fashion, i.e.,
the agent freely explores the environment without any extrinsic task.
Limitations. In this work, we assumed that interacting with the environment
while looking for rare changes helps find better extrinsic rewards faster. However,
exploration and the task goals may be misaligned, thus a highly exploratory pol-
icy may slow down the discovery of extrinsic rewards. For instance, there may be
dangerous states or harmful objects that the agent should avoid, even though they
would make it curious during pre-training. Furthermore, C-BET is currently tied
to (pseudo)counts to compute the rarity of states and changes. While extensions to
continuous spaces exist, count-based metrics are more suited for discrete spaces.
Impact. RL can positively impact real-world problems, e.g., healthcare [66], as-
sistive robotics [53], and climate change [135]. Yet, RL may have negative impacts,
e.g., in autonomousweapons or workforce displacement [18]. Our work focuses on
exploration in RL. Better understanding of what is interesting to do or visit helps
exploration in unseen environments, as the agent will not waste time with random
actions. Similarly, transferring policies learned in a related setting –as we do– can
help narrow the range of the agent’s expected behavior. Conversely, in many real-
world scenarios exploration by curiosity and interestingness is unacceptable. For
instance, autonomous cars cannot run over pedestrians just for the sake of curios-
ity. At present, our work is far from these impacts, but we hope to direct research to
focus more on learning from multiple environments and transferring experiences,
while at the same time ensuring the safety and reliability of autonomous agents.
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Chapter 4

Hearing Touch: Audio-Visual
Pretraining for Contact-Rich
Manipulation

4.1 Introduction

Figure 4.1: Hearing touch: We enable mul-
tisensory pretraining for manipulation by
transferring audio-visual representations to
robotic tasks using vision and contact audio.

Two key components consistently
improve the performance of robotic
manipulation: (1) pre-training on a
large amount of data [51, 88, 99, 100,
108] and (2) using multisensory in-
put, especially tactile sensing [22, 23,
93, 96, 106]. While recent work has
leveraged pretraining on large-scale
video datasets to create reusable vi-
sion representations for robot learn-
ing [99, 100, 108], there has been little
focus on large-scale pretraining for
other modalities such as tactile sens-
ing. This gap arises due to the lack
of relevant data at a comparable scale for tactile sensing. As a result, current ap-
proaches using non-visual sensory modalities are restricted to learning from a lim-
ited amount of task-specific data [93, 160]. How can we leverage internet data in
pretraining tactile representations for manipulation?

Piezo contact microphones have emerged as a promising sensor in robotics due
to their ability to capture high-frequency temporal information through structural
vibrations captured as audio. Prior work has already demonstrated the ability to
use contact audio for manipulation tasks [33, 96, 160]. In contrast to traditional tac-
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tile sensors, the signal provided by contact microphones is inherently audio; hence
recent work on learning audio-visual representations may apply to contact audio
obtained from robot interactions.

We investigate how large-scale audio-visual trainingmight be beneficial for learn-
ing contact audio representations for robotic manipulation. Our method makes
use of Audio-Visual Instance Discrimination (AVID) [104], a self-supervised learn-
ing approach to learn audio-visual representations, pre-trained on Audioset [64],
a dataset containing over 2 million human-labeled 10-second video clips of human
and animal sounds, music, and environmental sounds drawn from the internet. Ini-
tializing our encoder with AVID weights, we train a policy with behavior cloning
that fuses visual and audio inputs with self-attention in order to predict actions.

We validate our approach with experiments on three real-world manipulation
tasks in the low-data regime, using at most 60 demonstrations per task. Surpris-
ingly, despite the domain gap between the audio in Audioset and contact audio
obtained through manipulation, we find that our approach improves performance
over visual-only policies—especially in test settings where objects and locations dif-
fer significantly from the training data. Furthermore, our approach outperforms
equivalent policies with audio encoders trained from scratch. Our experimental
results reveal a promising avenue for multimodal pretraining across many robotic
applications where neither vision alone nor training multisensory representations
from scratch are sufficient.

4.2 Related Work

Audio in robotics Several works have shown the ability to reason over audio in
robotics scenarios including object recognition [60], material classification, [35], es-
timating the volume and flow of granular material [33], exploration in RL [41], oc-
cludedmanipulation [49], manipulation for sound replication [160], and waypoint
setting in audio-visual navigation [28]. [96] introduce a mechanism for fusing in-
put from a camera, a Gelsight sensor [171], and a contact microphone attached
to the object of interest with self-attention for manipulation. Though our method
also uses self-attention to fusemultisensory representations, we focus on leveraging
large-scale audio pretraining, using visual input from a third-person camera and a
contact microphonemounted directly on the robot. Our approach enables the robot
to reason over vibrations caused by contact between tools and objects.

Tactile sensing for manipulation Several types of tactile sensors exist for appli-
cation to robotic manipulation [91, 97, 14, 48, 156, 13]. We use contact microphones
as an alternative tactile sensor, which are relatively inexpensive in comparison to
common tactile sensors and can record vibrations with up to 1000 times higher fre-
quency than other common tactile sensors (48000 Hz vs 30-400 Hz) [91, 97, 14]. Re-
cent work has focused on applying traditional tactile sensors for learning to grasp
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objects without visual observations [106] and in combination with visual observa-
tions for learning to improve the grasp of an object [23]. Our method using contact
audio allows the sensor to measure vibrations directly via the sensor mounted on
the gripper as well as indirectly through vibrations traveling along tools grasped by
the gripper.

Audio-visual representation learning Self-supervised representation learning has
been applied to the audio-visual domain, using audio-visual correspondence (AVC)
as a form of cross-modal self-supervision from video [2, 3]. Other approaches have
made use of the synchronization between vision and sound for sound representa-
tions [7], audio-visual sound separation [172], and sound localization [29]. More
recent work has explored contrastive learning methods to discriminate between
training instances using cross-modal and within-modal targets [104, 103, 122]. In
our work, we use a pre-trained implementation of AVID [104] for obtaining audio-
visual representations.

Representation learning for robotic manipulation

Several recent works have shown the benefit of using self-supervision to decouple
representation learning of sensory inputs from behavior learning for roboticmanip-
ulation tasks [126, 160, 116, 93, 4]. A recent trend aims to obtain a universal visual
representation—a single perception module pre-trained on large amounts of video
data that can be frozen and used for downstream policy learning [99, 100, 108],
however, there has been little focus on large scale pre-training for representation
learning beyond vision in the context of robot manipulation. [160] also explores
contact audio pre-training for behavior learning, however, their approach utilizes
self-supervised learning using only task-specific data, whereas our method lever-
ages the richness and diversity of large-scale audio-visual data for pre-training a
contact audio representation. Further, we operate in the low-data regime with less
than 100 demonstrations per task, whereas [160] collects 5,000 data points per task.
We demonstrate the benefit of large-scale pre-training over SSL using only task-
specific data in the low-data setting. To the best of our knowledge, our approach
is the first to utilize large-scale multi-sensory representation learning for robotic
manipulation.

4.3 Manipulation with Audio-Visual Pretraining

Given the difficulty and expense of collecting data in robotic settings, we turn to-
ward leveraging more easily attainable large-scale sources of information such as
internet data for learning manipulation policies. By utilizing contact microphones,
we move beyond pre-training solely for visual input and obtain a means of pre-
training a tactile sensor with large amounts of rich, audio-visual data. We outline

34



Figure 4.2: Two-stage model training. AVID and R3M pretraining leverages the
large scale of internet video data (blue dashed box). We initialize the vision and
audio encoders with the resulting pre-trained representations and then train the
entire policy end-to-end with behavior cloning from a small number of in-domain
demonstrations. The policy takes image and spectrogram inputs (left) and outputs
a sequence of actions in delta end effector space (right).

further details of our approach in the following sections.

4.3.1 Sensors

At each timestep, we collect image observations ot and two-second clips of contact
audio at. The image observations are obtained from a third-person view camera
and the audio is obtained by averaging the signal captured from four contact mi-
crophones mounted on the robot. Since contact microphones capture vibrations,
they are sensitive to contact not only directly between objects and the sensors but
also contact that results in vibrations traveling between objects. As a result, our
setup allows the robot to sense subtle interactions between surfaces and tools that
are grasped by the arm, as we show in the flipping task which requires the use of a
spatula and the scooping task requiring the use of a spoon (Section 4.4.1).

4.3.2 Audio and Visual Representation Pretraining

Our method uses large-scale audio-visual pre-training to initialize our audio en-
coder and large-scale visual pre-training to initialize our visual encoder. The au-
dio encoder is extracted from AVID [104] pre-trained on audio-visual pairs from
Audioset [64] with cross-modal discrimination, encouraging the network to learn
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video features that match the corresponding audio features and vice-versa. To iso-
late the effect of large-scale pre-training for our audio encoder, we use R3M [108],
a proven method for pre-training visual features in robotic applications, R3M, with
a ResNet18 [72] pre-trained on Ego4D human video dataset [68] with time con-
trastive learning and video-language alignment. Following [43], we keep both en-
coders unfrozen, continuing to update the weights during policy learning.

4.3.3 Audio-Visual Behavior Cloning

We train a policy with behavior cloning on a small number of in-domain demon-
strations (described in Section 4.4.1). The model architecture is visualized in Fig-
ure 4.2. At each timestep, the policy takes in a two-second sound audio clip st and
a sequence of i images vt−i, . . . , vt spanning the same two-second window, which
are fed through the audio and image encoders, respectively. We apply learned po-
sitional embeddings to each of the five encoded representations and pass the re-
sult as input to a transformer decoder network similar to [96]. Similar to [32, 173]
our method is quasi open-loop—the final component of our network is a multi-
layer perceptron that outputs the predicted delta actions at, . . . , at+h over a hori-
zon of h timesteps. We optimize the network to minimize the standard MSE loss
ℓ = 1

h

∑h
j=0(∆t+j − π(vt−i, . . . , vt, st)j)

2 averaged across all samples.

4.4 Experiments

In our experiments, we aim to answer two key questions: (1) Do contact micro-
phones mounted on a robot arm capture interactions difficult to perceive with vi-
sion alone? (2) Does large-scale pre-training for audio-based tactile sensors yield
representations that are useful for robot manipulation?

We answer these questions through real-robot experiments in the low-data set-
ting. These experiments span three tasks (Section 4.4.2) and four methods (Section
4.4.3). We first describe our hardware setup (Section 4.4.1) before sharing imple-
mentation details. Our setup includes evaluation conditions requiring significant
generalization beyond the training data.

4.4.1 Setup

Hardware We control a Franka Emika Panda Arm using an inverse kinematics
solver to convert 6-DoF delta end effector Cartesian position and Euler rotation in-
put to 7-DoF joint action. The end effector actions are commanded at 30 Hz. On the
Franka gripper, we mount four Piezo contact microphones, each of which records
audio at 32 kHz. We use an Intel D435 RealSense camera with a fixed third-person
view to collect image observations at 30 Hz.
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Figure 4.3: Tasks and hardware setup. We attach the Piezo contact microphones
to our gripper (left), which record vibrations in the form of audio. We run experi-
ments on three real-world tasks: scooping, spatula flipping, and zipping (right).

Data Collection Demonstrations are collected via teleoperation using an Oculus
Quest headset. The visual data collected by the Intel D435RealSense camera collects
images with a resolution of 480× 640. The audio waveforms from each of the four
contact microphones are averaged across each sensor and downsampled to 16 kHz.
We normalize the audio waveforms and generate mel spectrograms of the 2s audio
segment, following the preprocessing of audio in [104].

4.4.2 Tasks

We present experiments on three real-world manipulation tasks, each described
below. The scooping and zipping tasks are inspired by those in recent manipu-
lation benchmarking efforts [40, 173]. The zipping task demonstrates the contact
microphone’s abilities to directly record vibrations touching the gripper, while the
flipping and scooping tasks show their ability to record indirect contacts through
vibrations traveling along tools (the spoon and spatula). Images of the three tasks
are shown in Figure 4.3.

Flipping This task requires the robot to slide a spatula underneath an object, push
the object to be “anchored" on the edge of the pan, and perform an upward motion
that lifts one end of the object up and over onto its other side without pushing
the object out of the pan. We collect 40 total demonstrations of flipping half of an
upright bagel in a regular-sized pan (Figure 4.3). We then record the success rate of
each model with the task of flipping four different objects, including three unseen
during training, within a small pan, requiring the model to adjust to both the visual
and physical differences due to the different objects and different pan (Figure 4.4a).

Scooping The robot is tasked with maximizing the weight of material scooped
froma container using a spoon. The training andvalidation set consists of 60 demon-
strations of scooping almonds out of a white bowl across three locations. We then
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evaluate eachmodel across two unseen locations, two types of scoopingmaterials—
includingmints, unseenduring training—and twodifferent unseen containers (metal
pot, red bowl) across three different joint configurations for each bowl and location
for a total of 24 evaluations per model (Figure 4.4b). We record and report the
average weight of the scooped material as well as the success rate (greater than 0
weight) across rollouts.

Zipping The robot begins the episode grasping the zipper of a lunchbox at the
bottom left corner. The goal of the task is to entirely unzip the lunchbox, dragging
the zipper along the edge of the lunchbox across three sides. In order to succeed
the robot must pull the zipper in the right direction with the right amount of force
and have the ability to turn corners which requires pulling the zipper in a rounding
motion with a steady amount of force. We collect 50 total demonstrations split be-
tween two different lunchboxes and evaluate on three unseen lunchboxes (Figure
4.4c), recording the average distance zipped across all trials.

4.4.3 Baselines and Implementation Details

We conduct experiments with our method and three other baselines. We use dif-
ferent methods of pretraining in order to measure the effect of large-scale audio-
visual pretraining on learning a useful contact audio representation for manipula-
tion. All methods incorporating audio use the same audio encoder architecture,
and all methods use R3M [108] pre-trained on Ego4d [68] with a ResNet18 [72]
backbone as the initialization of the image encoder.

• Vision-Only: a baseline that shares the same architecture as our method, ex-
cept that it only uses image frames as input. This baseline tests whether the
signal from contact microphones is beneficial in our setup.

• Scratch: a baseline with randomly initialized weights for the audio encoder.
This baseline tests how contact audio pretraining affects performance.

• BYOL-A: Bootstrap Your Own Latent for Audio (BYOL-A) [111], a self super-
vised approach to learning general-purpose audio representations that obtains
multiple views of the same audio clip through augmentations and is trained to
minimize the distance between these views in representation space. For each
task, we train amodel on the corresponding audio spectrograms for 100 epochs
with a batch size of 1024, a learning rate of 0.0003, and the default settings for
the network parameters and augmentations. We use the resulting network to
initialize the audio encoder. This baseline compares the effect of large-scale
audio-visual pre-training to task-specific audio pre-training, with an emphasis
on the amount of pre-training data.
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(a) Flipping task (b) Scooping task (c) Zipping task

Figure 4.4: Train and Test Objects. We perform experimental evaluations across
a wide variety of objects with distinct visual differences in comparison with the
objects used during data collection and training. The items on the left in each figure
are the objects used for training and the objects on the right are used for evaluations.

Figure 4.5: Success rates across methods and tasks. Our method, shown in blue,
outperforms baselines in all but one setup of the zipping task. Furthermore, our
method displays much less variation in performance between different configura-
tions of each task, showcasing an increase in the ability to generalize to drastic visual
differences as a result of learning useful audio representations.

We train all BC policies using a dropout probability of 0.5 and a batch size of
64 for a maximum of 100 epochs using early stopping with a patience of 15 epochs,
choosing themodel with the lowest validation loss. We use an Adam optimizer and
a cosine annealing learning rate scheduler with a starting learning rate of 0.001. We
train across three seeds and report the average results of each model across our
three tasks. The different train and test objects are shown in Figure 4.4.
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4.4.4 Results

The evaluation results across the different variations of each task are visualized in
Figure 4.5 and summarized in Table 4.1. Ourmethod using large-scale audio-visual
pre-training outperforms all baselines across each of the three tasks with an aver-
age 23% higher 0-1 success rate and an average 76% increase in reward against the
next best-performing baseline. Further, our method outperforms or matches the
performance of all baselines in 8/9 tasks, displaying a lower variation in perfor-
mance between different configurations of each task, indicating greater robustness
to visual features.

The Vision-Only baseline yields the worst performance across all tasks, provid-
ing evidence that contact audio improves the performance of manipulation poli-
cies over vision alone. Between BYOL-A and Scratch, the results are mixed—in the
Flipping task BYOL-A outperforms Scratch and in Scooping and Zipping, Scratch
performs better. Although BYOL-A includes an additional pre-training phase, the
comparable performance with Scratch suggests that the augmentation techniques
used by BYOL-A, while useful for learning audio representations for audio classifi-
cation tasks when pre-trained on large audio datasets [111], are not effective when
restricted to a small set of contact audio for learning manipulation policies. In con-
trast, our method utilizing AVID pre-training on Audioset greatly improves perfor-
mance over Scratch and BYOL-A, demonstrating that the large-scale aspect of our
method’s audio-visual pre-training is the component most crucial to its success.

4.4.4.1 Qualitative Analysis

Many of the configurations of the task are difficult due to the noticeable visual dif-
ferences between the train and test settings. As a result, the baselines suffer heavily
from the domain shift and fail to generalize, often moving in jerk motions or away
from the object of interest, even before coming into contact with objects. In con-
trast, our method appears to suffer less so from the significant visual differences,

Table 4.1: Average rewards and success rates across methods and tasks.

Flipping Scooping Zipping

Success % Reward Success % Reward Success %

Ours 50.0% 15.4 78.1% 8.9 88.9%
BYOL-A 25.0% 2.3 25.0% 3.8 66.7%
Scratch 15.4% 7.7 50.0% 6.9 72.2%
Vision-Only 0.0% 2.5 28.1% 4.4 44.4%
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suggesting that a good audio representation may prevent the model from overfit-
ting to visual features during training.

The Vision-Only approach suffers most from the inability to perceive subtle in-
teractions between surfaces, such as whether the spatula has successfully been slid
under the bagel or the zipper is stuck on a corner. Despite having access to the
same information as our method, the BYOL-A and Scratch baselines fail to reason
effectively over the audio and utilize the additional information for taking actions.

In the case of the scooping task, our method consistently learns to push the
spoon deeper into the bowl until contact is made with the edge, and then tilt the
spoon upward as the edge drags along the side of the bowl, increasing the amount
of material scooped. This is more similar to the behavior of the training data in
comparison with the baselines, which often fail to begin digging the spoon into the
material as a result of misestimating the depth and relying on vision alone, or scoop
too shallow.

4.4.4.2 t-SNE Visualizations

To better understand the learned representations of ourmethod in comparisonwith
the baselines, we visualize 2D projections of the transformer output embeddings
using t-SNE initialized with PCA. For each method, we plot the projections of the
embeddings from a sample trajectory over time for each variation of the flipping
task, including both train and test settings. The visualizations are shown in Figure
4.6. For ourmethod, although the representations are spaced apart at the beginning
of the trajectories likely due to the visual differences across settings, the projections
converge over the course of trajectories as the flipping motion is performed and
completed. The visualization suggests the audio representations learned as a re-
sult of large-scale pre-training allow for the attention mechanism to better combine
the audio-visual tokens, resulting in a more well-structured embedding space in
comparison with the baselines.

4.5 Conclusion

In this chapter, we present a simple yet effective approach for improving manipula-
tion performance by utilizing contactmicrophones as a tactile sensor. We argue that
a primary strength of this sensor is that, in contrast to other sensors, it allows us to
leverage large-scale internet data of the same modality and pretrain a representa-
tion that is useful for downstream robotic tasks. We show that the representations
learned from large-scale audio-visual pretraining transfer well to such tasks despite
the domain gap between contact audio in robotic manipulation and audio in inter-
net videos. Future work could investigate which properties of pre-training datasets
and objectives are most conducive to learning audio-visual representations for ma-
nipulation policies.
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(a) Vision-Only (b) Scratch (c) BYOL-A (d) Ours

Figure 4.6: t-SNE 2D projection. For comparative analysis of the learned em-
bedding spaces, we visualize projections of the learned representations from each
method in each variation of the flipping task. Lighter hues indicate the starting
points and darker hues indicate the end points of the trajectories. Please see the
video on our website for a better visualization.

The lessons learned from our experiments echo those being shared across other
machine learning subfields—more data is the driving factor in learning better mod-
els. Considering the safety issues, inefficiency, and resources required in collecting
robotic data, it is unlikely that robotics will experience the scaling properties wit-
nessed in data-rich domains such as natural language [17, 165]. Thus our goal is
to widen the data scarcity bottleneck via methods that extract information from
broader data sources that may be useful to an embodied agent.

4.6 Limitations

While contact microphones work well in our experiments, there are many tasks for
which they may be less useful: less dynamic tasks such as pick and place, tasks
with long periods of gripper movement in free space, situations where the robot
itself generates vibrations that may affect the contact microphones or cases where
the robot is workingwith deformable objects that do not emit perceptible vibrations
upon contact.

Further, the gap between vision-only approaches in our experiments could be
partially alleviated by equipping a robot with a wrist-based camera, although it
may be impractical to modify the viewpoint of such a camera—especially in tasks
involving tools. Successful robots of the future will likely be equipped with more
than two types of sensors, and future work could develop policies that learn across
several sensory modalities, performing active perception in order to increase the
understanding of a situation or environment.
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Chapter 5

Train Offline, Test Online: A Real
Robot Learning Benchmark

5.1 Introduction

Figure 5.1: Train Offline, Test Online: Our
benchmark lets remote users test offline learn-
ing methods on shared hardware.

One of the biggest drivers of suc-
cess inmachine learning research is
arguably the availability of bench-
marks. From GLUE [163] in nat-
ural language processing to Im-
ageNet [45] in computer vision,
benchmarks have helped identify
fundamental advances in many ar-
eas. Meanwhile, robotics struggles
to establish common benchmarks
due to the physical nature of eval-
uation. The experimental condi-
tions, objects of interest, and hard-
ware vary across labs, oftenmaking
methods sensitive to implementation details. Finally, the difficulties of purchasing,
building, and installing infrastructure make it challenging for newcomers to con-
tribute to the field.

For robotics research to advance, we clearly need a common way to evaluate
and benchmark different algorithms. A good benchmark will not only be fair to
all algorithms but also have a low participation barrier: setup to evaluation time
should be as low as possible. Efforts like YCB [25] and the Ranking-Based Robotics
Benchmark (RB2) [39] have aimed to standardize objects and tasks, but the onus of
setting up infrastructure still lieswith each lab. A simpleway to overcome this is the
use of a common physical evaluation site, as the Amazon Picking Challenge [37]
and DARPA Robotics Challenges [19, 86, 145] have done. However, the barrier is
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still high since participantsmust set up their own training infrastructure. Both of the
above frameworks leave the method development phase unspecified and struggle
to provide apples to apples comparisons.

Many robot learning algorithms do online training, where a policy is learned
concurrently with data collection. One way to standardize online training is with
simulation [16, 162, 170, 174]. While simulation mitigates issues with variation
across labs, the findings from simulated benchmarks may not transfer to the real
world. On the other hand, if we conduct online training in the real world, compari-
son across labs becomes difficult due to physical differences. In recent years, larger
offline datasets have surfaced in robotics [36, 38, 101], and with them the rise of of-
fline training algorithms. From imitation learning to offline reinforcement learning
(RL), these algorithms can be trained using the same data and tested in a common
physical setup.

Inspired by this observation, wepropose a new robotics benchmark calledTOTO
(Train Offline, Test Online). TOTO has two key components: (a) an offline ma-
nipulation dataset to train imitation learning and offline RL algorithms, and (b) a
shared hardware setup where users can evaluate their methods now and going for-
ward. Because all TOTO participants train using the same publicly-released dataset
and evaluate on shared hardware, the benchmark provides a fair apples-apples
comparison.

TOTO paves a path forward for robot learning by lowering the entry barrier:
when designing a new method, a researcher can train their policy on our dataset,
evaluate it on our hardware, and directly compare it to the existing baselines for our
benchmark. TOTO means no more time devoted to setting up hardware, collecting
data, or tuning baselines for one individual’s environment. In this chapter, we lay
out our benchmark design and present the initial methods contributed by bench-
mark beta testers across the country. These results show that our benchmark suite
is challenging yet possible, providing room for growth as users iterate on TOTO.

5.2 Related Work

For a thorough description of work related to remote robotics benchmarking, we re-
fer to the Robotics Cloud concept paper [42]. Herewe describe relatedwork specific
to our instantiation of a robotics cloud (TOTO).

5.2.1 Shared Tasks and Environments

A necessary step in comparing method performance is evaluation on a common
task. Common tasks might mean a standard object set such as YCB [25], which can
be distributed to remote labs, allowing for sharedmetrics like grasp success on these
objects. RB2 [39] provides four common manipulation tasks (similar to those we
use, described in Section 5.3.2) as well as a framework for comparing and ranking
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methods across results from multiple labs. Another route is sharing the environ-
ment itself, as the Amazon Picking Challenge [37] andDARPARobotics Challenges
[19, 86, 145] have done. Sharing tasks or environments gives metrics by which we
can compare approaches. However, users must still develop the approach on their
own hardware in their own lab, and recreating identical environment setups is quite
challenging.

5.2.2 Shared, Remote Robots

Going one step further, remotely-accessible robots can be shared across the commu-
nity, enabling method development and evaluation without users acquiring their
own hardware. Georgia Tech’s Robotarium [123] allows for remote experimenta-
tion of multi-agent methods on a physical robotic swarm, which has been exten-
sively used not just in research but also in education. OffWorld Gym [87] provides
remote access to navigation tasks using a mobile robot with closely mirrored simu-
lated and physical instances of the same environment. A recent survey paper [155]
provides an overview of robotic grasping and manipulation competitions, includ-
ing some involving remotely-accessible, shared robots such as [98]. Finally, most
closely related to our work, the Real Robot Challenge [58] runs a tri-finger manipu-
lation competition on cube reorientation tasks. The success of the Real Robot Chal-
lenge inspires our work, which also allows for evaluation of manipulation tasks on
shared robots. Our work, however, is designed to evaluate generalization in robot
learning through challenging variations (lighting, unseen test objects, etc.) and an
image-based dataset (as opposed to assuming ground-truth state access).

5.2.3 Open-Source Robotics Datasets

Collecting real-world robotics data is challenging and expensive due to physical
constraints like environment resets andhardware failures. Thus open-source robotics
datasets serve an important role in the field by enabling larger-scale offline robot
learning. Some work has improved the way we collect robotics data, such as self-
supervised grasping [124] and further parallelization of robots [95]. RoboTurk
[101] provides a system for simple teleoperated data collection which can be exe-
cuted remotely. Much work in robot learning has introduced datasets more gen-
erally, such as MIME [147] (8260 demonstrations over 20 tasks), RoboNet [38]
(162,000 trajectories collected across 7 robots), and Bridge Data (7,200 demonstra-
tions across 10 environments). However, it is hard to understand the value of these
datasets without a common evaluation platform, something that [36] addresses by
using simulation to replicate a real-world dataset. In contrast, we address this issue
with real-world evaluation that matches the domain of the data collection. Our ini-
tial dataset is 2,898 trajectories, but this will grow over time as we add evaluation
trajectories collected from users’ policies.
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5.2.4 Offline Robot Learning

TOTO focuses on offline robot learning, including imitation learning and offline RL.
Our initial set of baselines is described and contextualized in Section 5.5.2.

5.3 The TOTO Benchmark

Our benchmark focuses on manipulation due to the lack of benchmarking in this
area. Our hardware (Section 5.3.1) is set in environments that enable a set of bench-
mark manipulation tasks described in Section 5.3.2. We collect an initial dataset
on these tasks, detailed in Section 5.3.3. Finally, in Section 5.3.4, we present the
evaluation protocol for all policies contributed to our benchmark. For more infor-
mation about our dataset and contributing to the benchmark, please see: https:
//toto-benchmark.org/.

5.3.1 Hardware

Our hardware includes a Franka Emika Panda robot arm and workstation for real-
time inference. A simple joint position control stack runs at 30 Hz. The actions are
joint targets, which are converted to motor control signals using a high-frequency
PD controller. We also provide an end effector controller in which actions are spec-
ified via the position and orientation of the gripper. End effector control using X, Y,
Z positions alone is not feasible to solve our tasks: for example, the orientation of
the grippermust change as the robot pours. All the results presented in this chapter
were attained using the joint position controller. We use an Intel D435 RealSense
camera for recording RGB-D image observations.

We allow users to opt for a lower control frequency if desired. The training data
can be subsampled by taking one of N frames since the actions are in absolute joint
angles. We decrease the test time control frequency accordingly.

5.3.2 Tasks

The task suite consists of twomanipulation tasks that humans encounter every day,
similar to those introduced in prior work [10, 39]. The tasks are pouring and scoop-
ing, excluding the easiest and hardest RB2 tasks (zipping and insertion). Example
image observations for these tasks are shown in Fig. 5.2. To see the original task
designs, please refer to RB2: https://agi-labs.github.io/rb2/. Our tasks differ
from those in RB2 in a fewways. We randomize the robot start state at the beginning
of each episode. We apply a bit more noise to the target object locations. We use
different combinations of objects based on availability. Lastly, we do not normalize
the reward: the reward is the weight in grams of the material successfully scooped
or poured. For detailed information on the task configurations, such as locations
and objects, see our website.
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Figure 5.2: TOTO Task Suite. Our benchmark tasks are pouring and scooping,
similar to those in RB2 [39]. Each involves challenging variations in objects, posi-
tion, and more.

Scooping The robot startswith a spoon in its gripper and a bowl ofmaterial on the
table. The objective is to scoop material from the bowl into the spoon. The training
set includes all combinations of three target bowls, three materials, and six bowl
locations (front left, front center, front right, back left, back center, and back right).

Pouring The robot starts with a cup containing granular material in its gripper.
The goal is to pour the material into a target cup on the table. The training set
includes all combinations of four target cups, two materials, and six target cup lo-
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cations (same locations as scooping). The cup in the robot gripper is always clear
plastic, enabling better perception of the material remaining in the cup.

5.3.3 Dataset

A key pillar of our benchmark is the release of a manipulation dataset. Dataset
statistics (number of trials, average trajectory length, success rate, and data collec-
tion breakdown) are shown in Table 5.1. We consider a trajectory successful if it
obtains a positive reward, and unsuccessful if the reward is zero. The initial re-
lease includes between 1000 and 2000 trajectories per task. Pouring data collection
using replay and behavior cloning proved challenging to reset (unsuccessful trials
require more cleanup), so it was nearly all collected with teloperation. Each trajec-
tory includes images, robot actions (joint angle targets), joint states (joint angles),
and rewards. To improve diversity, the data were collected with three techniques,
each described below.

Table 5.1: Dataset overview.

Task statistics Collection technique

Trials Length Success Teleop BC Replay

Scooping 1895 495 0.690 41% 33% 26%
Pouring 1003 324 0.977 99% 0% 1%

Teleoperation We collected the majority of trajectories with teleoperation using
Puppet [89]. The human controls the robot in an intuitive end effector space using
an HTC Vive virtual reality headset and controller. While this teleoperation is the-
oretically possible to use remotely, we collect the data with the human and robot
in the same room, giving the human direct perception of the scene. Our multiple
teleoperators have different dominant hands, leading to more diverse data. Most
teleoperation trials are successful.

Behavior cloning rollouts After collecting teleoperation trajectories, we train sim-
ple, state-based behavior cloning (BC) policies on each target location, so no visual
perception is required. We roll out BC trajectories with noise added to actions at
each step. The amount of noise varies across trajectories for additional diversity.

Trajectory replay Finally, we also replay individual teleoperated trajectories with
added noise. While these might seem overly similar to the original teleoperated
trajectories, keep in mind that conditions like lighting also vary with time of day, so
this replay still expands the dataset in other ways.
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5.3.4 Evaluation Protocol

To evaluate each task, we use two unseen objects (bowls and cups) and one unseen
material (mixed nuts for scooping and Starburst candies for pouring). We evaluate
three object locations seen during training (front left, front center, front right) and
three unseen locations. We evaluate three training seeds of each method. We ini-
tialize the robot with a randomly sampled pose at the beginning of each trajectory.
However, the robot’s initial poses are kept the same across seeds to ensure mini-
mal variance. Combining 2 objects, 1 material, 3 locations, and 3 seeds means that
eachmethod is evaluated across 18 trials each for train and test locations. We report
mean and variance of these trials.

5.4 Benchmark Use

Here we introduce the framework for our benchmark. TOTO is designed to make
the user workflow (Section 5.4.1) easy for newcomers with well-documented soft-
ware infrastructure (Section 5.4.2) including examples and tests.

5.4.1 User Workflow

We provide a real-world dataset (Section 5.3.3) collected using our hardware setup
(Section 5.3.1). Participants optionally use our software starter kit (Section 5.4.2)
and locally train policies of their choosing using this data. Users submit policies
through Google Forms for evaluation on our real-world setup. They do not receive
the low-level data from these evaluation trials; they simply receive a video showing
the policy behavior as well as the reward and success rate.

An engineer supervises the real-world evaluations; thus evaluation turnaround
time is currently around 12 hours (depending on time of day submitted). Our goal
is to emphasize offline learning and prevent overfitting, removing the need for real-
time results or large quantities of evaluation.

As new users evaluate methods after the TOTO release, we will post (anony-
mous) evaluation scores for each attempt on a website leaderboard. We will also
periodically add data collected by the users’ policies to the original dataset.

5.4.2 Software Infrastructure

Our software starter kit includes documented code and instructions for policy for-
matting and dataset usage. We have open-sourced baseline code, trajectory data,
and pretrained models (see our website). These components ensure that TOTO is
easily accessible to a broad portion of the robotics, ML, and even computer vision
communities.
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We adapt the agent format from [80], which requires a predict function taking
in the observation and returning the action. We use a standard config format and
require an init_agent_from_config function to create the agent.

We provide userswith code for training an example image-based BC agent and a
docker environment which wraps the minimum required dependencies to run this
code. Users can optionally extend the docker containers with additional dependen-
cies. We also provide a stub environment for users to locally verify whether their
agent’s predictions are compatible with our robot environment. This setup allows
users to resolve all agent format and library dependency issues before submitting
agents for evaluation.

5.5 Baselines

We highlight the importance of establishing a benchmark by running two sets of
experiments: (a) what is a good visual representation for manipulation? and (b)
what is a good offline algorithm for policy learning? To test the benchmark in-
frastructure, we have solicited baseline implementations for both experiments from
several labs.

5.5.1 Visual Representation Baselines

A core unanswered question, due to the lack of benchmarking, is what is a good
visual representation for manipulation? Is ResNet trained on ImageNet great or
do self-supervised approaches outperform supervised models? We evaluate five
visual representations provided by TOTOusers frommultiple labs. Two are trained
on our data (in-domain) and three are generically pretrained.

BYOL (BootstrapYourOwnLatent) [69] is a self-supervised representation learn-
ingmethod trained on our dataset. The BYOL representation embedding size is 512.

MoCo (Generic) refers to the Momentum Contrast (MoCo) model trained on
ImageNet [73], while MoCo (In-Domain) is trained on our data with crop-only aug-
mentations [118].

Resnet50 is trained with supervised learning on ImageNet [72].
R3M (Reusable Representations for RobotManipulation) [108] is trained onEgo4D

[68] with time-contrastive learning and video-language alignment. For R3M, MoCo,
and Resnet50, we use the 2048-dimensional embedding vector following the fifth
convolutional layer.

These representations performed the best among a larger set of visionmodels on
which we ran an initial brief analysis (including offline visualizations and BC roll-
outs). Additional representations that performed less well (and therefore are not
included as baselines) included CLIP [125] and a lower-level MoCo model (from
the third layer instead of the fifth).
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5.5.2 Policy Learning Baselines

Remote users have contributed the below policy learning baselines, which span the
spectrum from nearest neighbor querying to BC to offline RL. They were selected
according to each TOTO contributor’s expertise with approach coverage in mind.
All methods use RGB image observations, and some run these images through a
frozen, pretrained visionmodel before passing the resulting embedding to a policy.

BC is trained on top of each vision representation baseline. Closed-loop BC pre-
dicts a newaction every timestep, while open-loopBCpredicts a sequence of actions
to execute without re-planning. Our BC baseline is quasi open-loop: training trajec-
tories are split into 50-step action sequences, and the policy is trained to predict
such a sequence given the current observation. During evaluation, these 50 actions
are executed between each prediction step. We find that this performs better than
closed-loop or open-loop alone: closed-loop struggles without history, and open-
loop is challenging with our variable-length tasks. We filter the training data to
only include trajectories with nonzero reward [30].

VINN (Visual Imitation through Nearest Neighbors) [116] is a nearest neigh-
bor policy using an image encoder trained with BYOL [69]. While using nearest
neighbors as a policy has been previously explored [102], this approach alone does
not scale well to high-dimensional observations like images. BYOL maps the high-
dimensional observation space to a low dimension to obtain a robust policy. VINN
was originally closed-loop (query and execute a new action at each timestep), but in
this work we mirror the 50-step quasi open-loop approach used in the BC baseline
(described above).

IQL (Implicit Q-learning) [85] uses the open-source implementation from the
d3rlpy package [146]. We use MoCo (In-Domain) as a frozen visual representation
since it performed the best in our comparison of representations with BC. We con-
catenate the frozen image embeddings with the robot’s joint angles as the input
state to the model.

DT (Decision Transformers) [30] recasts offline RL as a conditional sequence
modeling task using transformers. Similar to BC, it is trained to predict the action
in the dataset, but conditions on the trajectory history as well as target return (de-
sired level of performance). We use the Hugging Face DT implementation. The
model receives an RGB image and the robot’s joint angles: the former is embedded
using MoCo (In-Domain) and concatenated with the latter at each step. DT uses a
sub-sampling period of 8 and a history window of 10 frames. For inference and
evaluation, the target return prompt is approximately chosen as the mean return
from the top 10% of trajectories in the dataset for each task.
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5.6 Experimental Results

5.6.1 Visual Representation Comparison Using BC

Our first set of experiments compares BC agents using the vision representations
detailed in Section 5.5.1 and evaluated with the protocol described in Section 5.3.4.
The success rates across all representations and tasks are visualized in Fig. 5.3, and
the numerical rewards are presented in Table 5.2.

Figure 5.3: Vision representation comparisonwith BC.Models trained on our data
(left of dashed line) perform better than generic ones (right of dashed line), and
results tend to be better for training object locations than unseen test locations.

Table 5.2: Performance of vision representations with BC across all locations.

Method
Scooping Pouring

Reward Success % Reward Success %

In
Domain

BYOL 4.39 72.2% 20.22 66.6%
MoCo 7.42 83.3% 22.86 72.2%

Out of
Domain

MoCo 2.11 33.3% 14.89 55.5%
ResNet50 2.83 47.2% 18.86 50.0%
R3M 2.97 44.4% 6.94 33.3%

These results show that finetuning theMoComodel on our data outperforms the
generic version, as expected. MoCo (In-Domain) achieves the highest success rate
and average reward on both tasks, followed by BYOL, the other in-domain model. In
general, the relative performance between models is mostly consistent across tasks.
Resnet50 and MoCo (Generic) perform slightly better on pouring than on scooping.

Fig. 5.3 also visualizes performance differences due to object locations. Loca-
tions seen during training perform better, but performance does not degrade sig-
nificantly, suggesting that the representations have a generalizable notion of where
the target object is. Surprisingly, the two representations trained on our data (MoCo
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(In-Domain) and BYOL) perform equally good or even slightly better on unseen lo-
cations for scooping.

5.6.2 Policy Learning Results

Table 5.3 shows the comparison of policy learning methods (described in 5.5.2)
evaluated on TOTO. Due to compute constraints, we have 1 and 2 seeds for DT and
IQL respectively. We compensate by duplicating the evaluation of these seeds to
keep the number of trials consistent. The results are visualized in Fig. 5.4. We
find that VINN performs the best in train locations. We also note that offline-RL
approaches (especially IQL) achieve some success unlike in RB2[39]. This is likely
due to a larger andmore diverse dataset thanRB2,which contributes to better offline
RL performance.

Table 5.3: TOTO policy learning results across train and test locations.

Method
Scooping Pouring

Reward Success % Reward Success %

BC + MoCo 7.42 83.3% 22.86 72.2%
VINN 7.89 63.9% 21.75 47.2%
IQL 6.08 47.2% 9.86 38.9%
DT 2.83 27.8% 0.00 0.0%

Figure 5.4: Evaluating offline policy learning results. VINN sees the best perfor-
mance on train locations, but its performance degrades on unseen locations, as does
the performance of other methods.

We found that scooping proves challenging due to a non-markovian aspect of
the task: the spoon is above the bowl both before and after scooping. Thuswewould
expect open-loop methods (BC, VINN) and those with history (DT) to perform better
than others in this setting. While BC and VINN achieve competitive performance on
scooping, DT only achieves moderate success on scooping and does not see any pos-
itive rewards on pouring. Meanwhile, IQL provides decent performance without
history on a non-markovian task.
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Comparing the train and test location results for policy learning proves interest-
ing. VINN performs the best on train locations, but it struggles on unseen locations,
since it selects actions using the nearest neighbor trajectory from the training data.
All other methods also experience some level of degradation when moving to un-
seen locations, leaving one clear direction for method improvement using TOTO.

5.6.3 Dataset Size Ablation

Table 5.4: Dataset size ablation with BC.

Dataset size Reward Success %

5% 2.89 38.9%
25% 5.94 72.2%
50% 6.22 77.8%
Successes (∼70%) 8.06 83.3%
100% 5.00 72.2%

To understand the impact of dataset
size onpolicy learningperformance, we
perform an ablation in which we train
BC on the scooping task with varying
amounts of data. We sort the scoop-
ing trajectories by reward and train
policies with the top 5%, 25%, 50%,
100% of the data, as well as all success-
ful trajectories with positive rewards
(∼70%). This sorting by reward en-
sures that policies trained in the small-
data regime are not overcome by un-
successful trajectories. We present the
dataset size ablation results in Table 5.4.

The all success number uses the same policy as the BC policy in Table 5.3, but we
evaluate it again with the ablations to ensure minimal variance in conditions. As
expected, training on more data generally leads to a higher success rate. Training
on all of the data (including unsuccessful trajectories) leads to a lower reward than
training on only the successful trajectories, also unsurprising given the use of BC to
learn the policies in this ablation (we might expect offline RL to improve with the
inclusion of unsuccessful trials).

Overall, these ablation results suggest that the TOTO dataset size is the right
order of magnitude in terms of policy learning. We have reached the point of di-
minishing returns: training on 50% versus 70% of the data does not substantially
improve performance. However, additional data might still improve visual repre-
sentation learning.

5.6.4 Metrics for Offline Policy Evaluation

A TOTO user might wish to sanity check their policy before submitting it for real-
world evaluation or otherwise have performance metrics to guide offline tuning.
Here we present simple example metrics for offline evaluation: action similarity
to a validation set of expert demonstrations using both joint angle error and end
effector pose error. From a chosen validation set of 100 trajectories, we estimate
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the joint angle error and end effector error by computing the mean squared error
between agent’s predicted actions and actual actions for all samples.

Figure 5.5: Comparing offline evaluation to
online performance. While offline evalua-
tion is imperfect, it provides a sanity check to
the user, guiding development at a higher fre-
quency than real-world evaluation.

Fig. 5.5 shows these valida-
tion metrics on BC checkpoints
throughout training and the real-
world reward evaluated on four
representative checkpoints. The re-
ward increases as the validation er-
ror metrics decrease, matching ex-
pectations. These metrics capture
overfitting: the overtrained policy
from 2,000 epochs shows a signifi-
cant decrease in real-world reward
and likewise has higher validation
error. While offline metrics alone
should not fully guide the develop-
ment of an algorithm, it provides
a signal as to whether the policy
might achieve any success in the
real world.

5.7 Discussion

The main goal of this work is to introduce TOTO, our robotics benchmark. We pre-
sented a broad initial set of baselines containing both vision representations and
policy learning approaches, which can be built off of by future TOTO users. No-
tably, these baselines were contributed in the same way that TOTO will be used in
the future: by collaborators who locally train policies and submit them for remote
evaluation on shared hardware. This shows the feasibility of our user workflow.
The initial baseline results show the challenging nature of our tasks, especially with
respect to generalization. By using TOTO as a community, we can more quickly it-
erate on ideas and make progress on the real-world bottlenecks to robot learning.

5.7.1 Limitations and Future Work

The evaluation protocol currently hasmanual steps: wemeasure thematerial trans-
ferred during pouring and scooping to compute rewards and reset by returning the
material to the original object. We do see future potential to automate reward mea-
surements and resets, such as by adding a scale beneath the target object and using
an additional robot to reset the transferred materials. Spills of the transferred ma-
terial, however, might still require manual intervention.

Weplan to expand the evaluation setup to include additional robots. Thiswould

55



help us meet the increasing demand in evaluations as more users adopt the bench-
mark. One challenge will be visual differences across robots, but we plan to collect
additional demonstrations on new robots, and this would be an opportunity to ex-
pand the set of tasks as well (we could designate one robot per task).

As user demand further grows, we will implement an evaluation job queue
which prioritizes evaluation requests from different users and schedules the jobs
based on the number of robots currently available.
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Chapter 6

Outlook

Thework presented in this thesis improves robot learning for real-world practicality
through two directions: using prior data and shared evaluation. First, I have im-
proved training efficiency by leveraging multimodal richness, transferring knowl-
edge from past environments, and using cheap passive data. These improvements
together enable an agent to learn quickly in newenvironments,mitigating the amount
of costly trial-and-error data required. Second, the TOTO benchmark for shared
evaluation has the aim of simultaneously accelerating technical research and de-
mocratizing contributions to robotics.

I amexcited to continue improving robot learning, especially by extendingTOTO.
The TOTO benchmark is a prototype of a larger vision for shared evaluation: the
Robotics Cloud, a center filledwith dozens (if not hundreds) of real, remotely oper-
able robots on which any researcher can run experiments, collect data, and bench-
mark their algorithms. TOTO has shown that remote evaluation is possible for
robotics researchers. Scaling TOTO to the full vision means enabling remote data
collection, perhaps teleoperation, and scaling the hardware to accomodate a larger
capacity.

More than solving a technical problemof benchmarking algorithms, theRobotics
Cloud effort also approaches a larger problem in the robotics community: making
the field accessible. The TOTO infrastructure we have developed makes getting
started easy: in fact, three of five initial TOTO submissions had undergraduate con-
tributors. This shows promise for making the Robotics Cloud accessible to not only
those at elite research institutions but also those without the expertise or funding to
work directly with robots (such as vision researchers or even high school students).
I see the Robotics Cloud bringing another kind of richness to robotics: a diverse set
of people and ideas.
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