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Abstract
Explicit communication among humans is key to coordinating and learning.

In multi-agent reinforcement learning for partially-observable environments, agents
may convey information to others via learned communication, allowing the team to
complete its task. However, agents need to be able to communicate more than sim-
ply referential messages about their observations. Agents must use communication
to coordinate their actions to effectively accomplish their goals. This thesis argues
that sparse emergent communication in multi-agent teams is essential for agents to
encompass general decision-making prowess and fully reach potential in decentral-
ized and social settings. First, I show the previous issues with emergent communica-
tion through the lens of interfacing between humans and groups of agents. Through
human experiments, I find that humans learn to work best with agent partners which
use discrete communication tokens with continuous encodings and a sparse message
rate. An interpretability analysis shows that the tokens that work best with humans
have the best representation capacity. Then, I investigate the usage of autoencoders
to increase the representational capacity of observations. These results further con-
firm that sparser communication can be enabled without any loss of performance
strictly based on intrinsic messaging objectives through mutual information and the
information bottleneck. Lastly, I explore the development of language and commu-
nication through a social learning lens. In order to understand the minimal amount
of communication, one needs to understand how communication may arise, espe-
cially in decentralized systems and teams where new agents are added without prior
experience. Together, these techniques allow for sparse, intelligent communication
between agents and groups of agents with a human partner with strong representa-
tional properties that allow for low empirical sample complexity and the potential to
learn in social scenarios.
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Chapter 1

Introduction

Machine learning is currently being applied, with generous results, to everything from healthcare
to manufacturing, with various perspectives occasionally crossing from one discipline to another.
Multi-agent systems are intriguing in the fact that they abstract individual decision-making such
that they are able to be applied to many real problems, including microprocessor design [41],
multi-robot pathfinding [20], vehicle rescheduling and multi-agent pathfinding [33], and inter-
net packet routing [90]. Although, in order to fully test the capabilities and limitations of these
systems, there is preference to apply testing in "toy" environments such as StarCraftII [69, 15].
One may easily argue that all problems are, in fact, multi-agent in formulation. Though, most
practitioners abstract this and consider other agents in the system as part of the environment or
deal with the combinatorial aspect directly, which have scaling issues. There are a set of disjoint
communities that have studied multi-robot systems for communication: End-to-end observation-
to-action systems have recently seen increasing success [47], The goal of this thesis is to address
the combination of challenges in multi-robot systems, machine learning for end-to-end observa-
tion to action and communication policies, and provide enough generality to apply to arbitrary
decision-making artificial intelligence problems.

The current machine learning paradigm requires the use of explicit supervision in order to
maximize performance. Supervised learning requires carefully hand-labeled data, usually from a
human expert-an expensive operation. Traditional planning shows that using explicit supervision
in order to learn a complex action control it is unclear how to generate data for high-dimensional
action spaces [36]. Due to combinatorial explosion, it is unfeasible for a human to collect this
data. Rather, it is better to learn using hierarchical methods that use reinforcement learning [74]
in order to learn how to perform complex multi-step tasks directly from experience. These meth-
ods allow for emergent behaviors directly from purposefully explored trajectories in the environ-
ment. Unsupervised learning has started to play a large role in reinforcement learning when the
usage of direct reward is insufficient [17]. Rather, these methods use information theory [79] in
order to provide a mutual information intrinsic reward between the latent spaces of the agent and
encodings of desired future states.

How can we use recent advances in machine learning and artificial intelligence to allow
agents to perform arbitrary decision-making with the help of tabula rasa communication in or-
der to coordinate cooperative teams of agents, and in some cases, humans? Previous research
has enabled cooperative multi-agent teams which may operate in partially observable environ-
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ments through the use of multi-agent reinforcement learning [19, 45]. These agents learn to
communicate through backpropagation in a team setting. Their messages are grounded in their
observations. The key is to enable communication that is more than just communicating their
observations. These messages need to provide insight regarding what action should be performed
in order to induce cooperative behavior for arbitrary decision-making. We evaluate whether it is
better learn an emergent communication language directly through task reward or in combination
with recent advances in unsupervised learning and information theory.

A core area of this work is to understand interfacing between humans and groups of agents.
Learning interpretable communication is essential for multi-agent and human-agent teams (HATs).
In multi-agent reinforcement learning for partially-observable environments, agents may convey
information to others via learned communication, allowing the team to complete its task. In-
spired by human languages, recent works study discrete (using only a finite set of tokens) and
sparse (communicating only at some time-steps) communication. However, the utility of such
communication in human-agent team experiments has not yet been investigated. In chapter 3,
we analyze the efficacy of sparse-discrete methods for producing emergent communication that
enables high agent-only and human-agent team performance. We develop agent-only teams that
communicate sparsely via our scheme of Enforcers that sufficiently constrain communication to
any budget. Our results show no loss or minimal loss of performance in benchmark environ-
ments and tasks. In human-agent teams tested in benchmark environments, where agents have
been modeled using the Enforcers, we find that a prototype-based method produces meaningful
discrete tokens that enable human partners to learn agent communication faster and better than
a one-hot baseline. Additional HAT experiments show that an appropriate sparsity level lowers
the cognitive load of humans when communicating with teams of agents and leads to superior
team performance.

As soon as one adds communication among agents, the most prevalent concern is to remove
it. In multi-robot systems, there is latency between sending and receiving messages. Addi-
tionally, there are other constraints that warrant the prevention of communication to that which is
only necessary. There many be adversaries listening. Learning when to communicate, i.e., sparse
(in time) communication, and whom to message is particularly important when bandwidth is lim-
ited. However, recent work in learning sparse individualized communication suffers from high
variance during training, where decreasing communication comes at the cost of decreased re-
ward, particularly in cooperative tasks. We use the information bottleneck to reframe sparsity
as a representation learning problem, which we show naturally enables lossless sparse commu-
nication at lower budgets than prior art. In chapter 4, we propose a method for true lossless
sparsity in communication via Information Maximizing Gated Sparse Multi-Agent Communica-
tion (IMGS-MAC). Our model uses two individualized regularization objectives, an information
maximization autoencoder and sparse communication loss, to create informative and sparse com-
munication. We evaluate the learned communication ‘language’ through direct causal analysis
of messages in non-sparse runs to determine the range of lossless sparse budgets, which allow
zero-shot sparsity, and the range of sparse budgets that will inquire a reward loss, which is
minimized by our learned gating function with few-shot sparsity. To demonstrate the efficacy
of our results, we experiment in cooperative multi-agent tasks where communication is essential
for success. We evaluate our model with both continuous and discrete messages. We focus our
analysis on a variety of ablations to show the effect of message representations, including their
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properties, and lossless performance of our model.
Lastly, we explore the development of language and communication through a social learn-

ing lens. In order to understand the minimal amount of communication, we need to understand
how communication may arise, especially in decentralized systems and teams where new agents
are added without prior experience. Explicit communication among humans is key to coordi-
nating and learning. Social learning, which uses cues from experts, can greatly benefit from
the usage of explicit communication to align heterogeneous policies, reduce sample complexity,
and solve partially observable tasks. Emergent communication, a type of explicit communica-
tion, studies the creation of an artificial language to encode a high task-utility message directly
from data. However, in most cases, emergent communication sends insufficiently compressed
messages with little or null information, which also may not be understandable to a third-party
listener. Finally, chapter 5 proposes an unsupervised method based on the information bottleneck
to capture both referential complexity and task-specific utility to adequately explore sparse so-
cial communication scenarios in multi-agent reinforcement learning (MARL). We show that our
model is able to i) develop a natural-language-inspired lexicon of messages that is independently
composed of a set of emergent concepts, which span the observations and intents with minimal
bits, ii) develop communication to align the action policies of heterogeneous agents with dis-
similar feature models, and iii) learn a communication policy from watching an expert’s action
policy, which we term ‘social shadowing’.

1.1 Contributions
The goal of this work is to establish a reliable means of developing robust minimally communi-
cating methods between groups of agents, humans and agents, as well as learning to communi-
cate to coordinate when agents have already learned about their environments. This thesis makes
the following contributions:

• Explore the interpretability of emergent communication and show its link to human work-
load in human-agent teams.

• Novel techniques to enable agents to learn to communicate tabula rasa through self-play.
• Show that the learned representation of emergent communication has a strong relationship

with the sample complexity and overall performance of multi-agent teams.
• Show how to minimize communication to only causal messages (of the total messages)

and reduce the learned size of the emergent communication messages to the least number
of bits.

• Novel techniques for combining unsupervised learning with reinforcement learning in or-
der to learn the best emergent messaging representation.

• Novel techniques for adapting prior message and action policies as part of social learning
for emergent communication.

In addition to these conceptual contributions, the work has led to several research arti-
facts [38, 37, 35, 34] as well as open-source software available at https://github.com/
sethkarten.
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Chapter 2

Background

In this chapter, we provide relevant background on learning methods and problem setups used
through the thesis.

2.1 Reinforcement Learning
Reinforcement learning is a learning paradigm in which an agent learns an action policy from
interactions with the environment. Each interaction at a time-step produces a new state and
reward. The series of states st ∈ S, actions at ∈ A and rewards rt ∈ R in an episode form a
trajectory τ that makes up the episode. Reinforcement learning is not a learned fundamental law
of the universe. Rather, the Bellman Equation [78] recursively defines the expected return of a
state s to be the maximum for any action a of the expected reward for taking an action a in the
state s plus a discounted value of the next state s′.

V (s) = max
a

(R(s, a) + γV (s′))

In deep reinforcement learning, the idea is to perform informed random permutations to the
action policy (from backpropagation). A deep neural network parameterizes the policy with
network parameters θ. In order to maximize reward, the agent learns a policy π(st; θ), which is
a mapping from state to actions.

2.1.1 Markov Decision Processes
Standard single-agent reinforcement learning abstracts other agents as part of the environment.
Instead, multi-agent reinforcement learning understands the the necessity to model each agent
individually in order to model their theory of mind [50, 51]. In cooperative multi-agent settings,
we can model this as a decentralized, partially observable Markov Decision Process with com-
munication (Dec-POMDP-Comm). Formally, our problem is defined by the tuple,
⟨S,A,M, T ,R,O,Ω, γ⟩. We define S as the set of states, Ai , i ∈ [1, N ] as the set of actions,
which includes task-specific actions, andMi as the set of communications for N agents. T is
the transition between states due to the multi-agent joint action space T : S × A1, ...,AN → S.
Ω defines the set of observations in our partially observable setting. Partial observability requires
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communication to complete the tasks successfully. Oi :M1, ...,MN × Ŝ → Ω maps the com-
munications and local state, Ŝ, to a distribution of observations for each agent. R defines the
reward function and γ defines the discount factor. At every time-step, agents have the option to
both send a message and execute an action in the environment.

2.1.2 Policy Gradient
One method of determining the gradient for backpropagation to train our deep neural network
within the reinforcement learning paradigm is to use the policy gradient algorithm. The network
outputs a probability distribution (usually via outputting a score and then normalizing it into
a probability distribution through the softmax function ϕ(xi) = exi∑

j e
xj ) and then acts in the

environment by sampling from this distribution at ∼ πθ(at|st). The goal of any policy gradient
algorithm is to maximize the total expected future reward during an episode given our policy:

Eπθ
[R(τ)] = Eπθ

[γtrt]

The first policy gradient algorithm, REINFORCE [91], uses the gradient of this function in order
to determine the gradient update for the policy network:

∇θEπθ
[R(τ)] = Eπθ

[
T∑
t=0

rt∇θ log πθ(at|st)]

2.2 Mutual Information
Not all reward functions may be specified. Our work considers using unsupervised objectives in
order to create an intrinsic reward. Our work uses mutual information as the basis of deriving
intrinsic rewards. Mutual information, denoted as I(X;Y ), looks to measure the relationship
between random variables,

I(X;Y ) = Ep(x,y)

[
log

p(x|y)
p(x)

]
= Ep(x,y)

[
log

p(y|x)
p(y)

]
which is often measured through Kullback-Leibler divergence [42],
I(X;Y ) = DKL(p(x, y)||p(x)⊗p(y)). By bounding the dependence between random variables,
we can derive a Langrangian term for our loss function to optimize the intrinsic reward.

2.3 Communication and Lewis Games
A Lewis game [48] is a referential game between a speaker and a listener. In emergent com-
munication, a speaker and a listener must learn to share a common referential language strictly
through backpropagation. The difficulty of the Lewis game lies in the decentralized nature of
the game. Without a common training signal to rate the utility of the language tokens, it may be
difficult to converge to the same language. With this in mind, in the reinforcement learning setup,
we either use a shared critic to act as a mediator to learn a similar language or use decentralized
critics with the same reward function.
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Chapter 3

Human Agent Teaming

3.1 Introduction

Multi-agent reinforcement learning (MARL) has been successfully applied in a variety of multi-
player games [25, 94], but trained agents often only collaborate well with humans in specific set-
tings. For example, in StarCraft [65] and Dota 2 [7], teams of agents may be trained to compete
against humans; or in Hanabi [73] and Overcooked [8], only a single agent may cooperate with a
human. Prior art in training agents to collaborate in more complex settings that require commu-
nication among teammates (e.g., blindly crossing a traffic junction) has considered agent-only
teams [77, 72], but translating such techniques to support human teammates, especially without
human data during training, remains challenging [6].

Teaming with artificial agents is generally novel for humans; therefore, teaming requires a
learning process for humans to adapt to new protocols for communication and collaboration. The
dissimilarity of decision-making and lack of co-training [63] introduces a significant challenge
for learning a shared ‘language’ for both humans and agents. A large body of research investi-
gates the problems of translating natural language into a form usable by agents and generating
intelligible replies in return. Our work takes the complementary approach of searching for ways
to make it easier for humans to communicate with agents in their own language. Biases in human
cognition are a product of both neural substrates [76] and evolutionary processes [40], which pre-
dispose humans to perceive and think in particular ways and not in others. Policies learned in the
absence of human data, such as unsupervised interaction among agents, are less likely to con-
form to human biases than approaches that incorporate human inputs. Developers of AlphaGo, a
family of Go playing programs that outperform human experts, found that while versions trained
through supervised learning were superior in predicting the moves of human experts, versions
trained exclusively through self-play were much better players [71]. These self-trained programs
had perfect records against human opponents, found new joseki (corner sequences) unknown to
human players [71], and were described by human players as “amazing, strange or alien” [9].
A sister StarCraft playing program, AlphaStar [89], followed the opposite tack by learning from
replays of human matches and limiting speed and observations to human-like values [89]. In this
case, despite reaching Grandmaster status (99.8%), the AlphaStar agents team could be defeated
and was described as “like it is playing a ‘real’ game of StarCraft and doesn’t completely throw
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Figure 3.1: Our method has three phases: During sparse communication training, we train agents
through self-play to learn an emergent message paradigm and to communicate infrequently ac-
cording to a budget. In the interpretability analysis, messages are analyzed to determine the
observations that they encode. Additional messages are removed in case they contain no in-
formation. Finally, in human-agent teaming, a ghost agent decodes the information and sends
encoded messages for the human, who chooses the action.

the balance off by having unrealistic capabilities” [89]. Human difficulty in understanding be-
havior developed through self-play can be seen in even very simple games. Despite providing
saliency maps and/or reward decomposition graphics for offering extra insight into the factors
contributing to an action, observers could not predict the next action in Ms. Pac-Man [30] or a
drastically simplified real-time strategy game [5] at better than chance levels.

During human-agent teaming, humans often struggle to understand the intent of agent part-
ners, which is necessary for an effective partnership. Recent work has shown that bidirectional
human-agent communication is sometimes required for peak performance in human-agent team-
ing [58]. While prior work in emergent communication establishes how agents may learn to
communicate to accomplish their goals, the learned communication conventions often exhibit
undesirable properties and fail to conform to human cognitive mechanisms. For example, emer-
gent communication is often continuous, while humans communicate in natural language, which
consists of discrete linguistic tokens or prototypes. Furthermore, humans learn from few ex-
amples and use compositional language that encompasses more complex meanings than was
demonstrated to them [43]. Prior art has taken initial steps towards closing the gap between
emergent and human communication: in agent-only teams in specific scenarios, discrete com-
munication can perform as well as continuous communication [53], and in our prior work, we
showed how learning discrete prototypes promotes robustness in noisy communication channels,
as well as human interpretability and zero-shot generalization [81]. However, learning suitable
discrete communication protocols that exhibit high performance in achieving team goals in se-
quential team decision-making remains a big challenge.

A recent meta-analysis [59] found that communication quality (rating as “effective and clear”)
had a significantly more substantial relationship with performance than the frequency of com-
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munication in human teams. In fact, excessive communication can present problems both in
recognizing critical information and in remembering it. Recognizing an actionable message
from a background of irrelevant ones is a classic signal detection problem [24] for which misses
are known to rise as the number of irrelevant messages increases. Cognitive load theory [84]
suggests that a large volume of communication may also interfere with the process of transfer-
ring information from working memory to long-term memory, which creates difficulty in re-
membering previously received information accurately. Thus, high frequency/high redundancy
communication is likely to harm humans’ abilities to recognize and learn from ‘high quality’
communication.

As an attempt to make agent communication akin to human communication in agent self-play,
sparsity constraints have been shown to reduce the total amount of communication. Sparsity aims
to minimize the number of unnecessary communications between agents to adhere to bandwidth
constraints. Previous methods attempt to minimize the total communication while minimizing
the loss of performance [90]. However, achieving this is very challenging: works that use gating
(a function that determines whether to pass a message or not) often exhibit high variance and
tend not to converge to the optimal communication budget [3]. Our Enforcers scheme builds
upon gating methods but reduces variance sufficiently to converge to the optimal gating value by
using a soft threshold.

To the best of our knowledge, this is the first work investigating the intelligibility of agent-
generated communication models and their effects on performance in human-agent teams. We
train our agents to learn human interpretable, discrete prototypes to interpret a message’s intent
by the receiver. The agent self-play method also constrains communication and considers the ef-
fects of different communication budgets on communication robustness and team performance.
We develop an emergent communication interpretability scheme to transition from an agent-only
communication space to a human-interpretable interface. In human-agent communication exper-
iments, we explore the efficacy of humans learning to communicate with agents using discrete
prototypes compared to a discrete 1-hot representation.1

Human-agent teaming experiments test two hypotheses. The first is whether humans can
learn to communicate in Human-Agent Teams (HATs) using the emergent discrete prototypes
from agent self-play. This is tested with single-agent HATs in the Parent and Lost Child en-
vironment, a variant of Predator-Prey. The second hypothesis is that an appropriate level of
sparsity in communication reduces the cognitive load of human teammates and leads to better
team performance. This is tested with multi-agent HATs in a blind Traffic Junction environment.

Our work additionally analyzes the effects of sparsity at various communication budgets
to find the optimal minimum budget for human-agent teams through cognitive load and task
performance.

Our contributions are as follows:

• We propose a novel MARL method that uses an interpretability analysis to produce sparse-
discrete communication in HAT. We evaluate its efficacy in human subject experiments in
HATs with (a) single human-single agent in different roles and (b) single human-multiple

1A one-hot is a group of bits among which the legal combinations of values are only those with a single high (1)
bit and all the others low (0). In statistics, dummy variables represent a similar technique for representing categorical
data.
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agents.
• Our results indicate that humans can learn the emergent discrete prototype ‘language’ gen-

erated by agent self-play faster as compared to a baseline.
• This work is the first that focuses not only on learning human interpretable communica-

tion but, most crucially, on the effects of learned sparse communication in MARL on HAT
performance and human workload. In particular, we expand previous findings about com-
munication sparsity from human-human teams to human-agent teams. Our results show
that an appropriate frequency level leads to the best team performance and the lowest cog-
nitive load of human teammates.

3.2 Related Work
Our work studies multi-agent reinforcement learning at the intersection of research in sparse and
discrete emergent communication, evaluated in the context of human-agent teams.

3.2.1 Multi-Agent Reinforcement Learning

Multi-agent reinforcement learning studies a team of agents working to maximize shared per-
formance on a task. By learning to communicate through backpropagation, agents can learn
task-specific coordination directly from error derivatives. Typically, a centralized training, de-
centralized execution paradigm enables agents to learn from privileged information but act in-
dependently [19]. Instead, we use a fully decentralized training setup with shared parameters to
foster faster training in cooperative tasks [77].

3.2.2 Sparse Communication

In the context of multi-agent systems, sparse communication necessitates limiting the total com-
munication exhibited between agents, measured by the number of bits sent. Sparse communi-
cation has been explored by learning a communication gate, learning whom to target, and com-
pressing communication tokens. Gating methods use a neural network layer to learn a gating
function to decide whether to pass through the message [57, 88]. Targeting methods learn who to
send messages and/or who would be receiving messages [11, 1, 23, 39]. Information bottleneck
methods attempt to minimize the entropy of messages between agents to learn whom to target
communications with a centralized communication targeting system [68, 90]. These methods try
only to remove unnecessary communication, but they have been shown to decrease the overall re-
ward, which leads to suboptimal task performance. Targeting methods work as a complementary
model to gating and information bottleneck methods. Thus, this may be used as an additional
model to reduce communication further. All these methods only have one suboptimal budget to
reduce communication. Compression is enabled by limiting the size of communication tokens
to a fixed size or a bitwise encoding [70, 20] though recent work has shown that continuous en-
codings can contain more information [81]. Our work builds upon gating methods but reduces
variance sufficiently to converge to the optimal gating value by using a soft threshold. We are
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able to converge to various communication budgets, allowing our models to learn communi-
cation conventions that complement human preferences while maintaining multi-agent system
performance. This chapter also analyzes the performance of sparsity in human trials.

3.2.3 Interpretable Communication Formats
Regardless of communication frequency, researchers have developed a variety of communica-
tion formats in an effort to improve human interpretability. For example, inspired by the discrete
nature of words in human language, one work discretizes emergent communication by forcing
agents to communicate via one-hot or binary vectors [55]. Other works focus on the composi-
tionality of tokens to create simplified “sentences” [61] or train agents to communicate directly
via natural language [66, 12, 2]. Unfortunately, agents trained by such techniques often perform
worse in human trials than in multi-agent teams, indicating that the communication interpretabil-
ity remains limited [45]. Other work decides the interpretation of messages based on the effect
on a human listener [6]. In our work, we train agents to communicate via a discrete set of to-
kens in a continuous space [81]. While maximally informative to the agents, these sets of tokens
may conflate intent with location or relations among items in correlated but indirect ways. Our
experiments test the degree to which discretization and sparsity can overcome potential cogni-
tive incompatibilities and allow humans to exploit the semantic richness of agent token sets. In
our single-trial experiments, participants must learn the semantics of tokens while using them to
accomplish their joint tasks. The one-hot encoding provides an isomorphic mapping, known to
be compatible with human cognition, but must be learned token by token as a paired-associate
task. By contrast, embedding spaces learned by the agents provide a relational structure among
tokens, reducing the learning that must occur [80].

3.2.4 Human-Agent Teaming
Most human-agent teaming has focused on adapting policies to allow humans and agents to
understand their partners’ intent, which is necessary for effective partnership. Both human and
agent adaptation benefits team performance [49]. Some agents are able to recognize changes
in human intent given observations of their actions. The agents can then adapt their policy to
coordinate better with the human [29]. Agents have also been trained to learn the effects of
their actions on other agents. When combined with communication, this has led to increased
coordination of agent-only teams [31]. These works assume agents will adapt to their teammates’
policies by observing their actions. Instead, given the importance of bidirectional human-agent
communication in team performance, we focus on enabling humans and agents to also adapt
based on communication [58].

Recent works have begun to explore communication in human-agent teams. In agent self-
play and human-agent teaming, sharing the intent or goal was most useful towards increasing
performance [52]. However, this study only involved tasks with simplistic agents who follow
hard-coded randomized paths, in which communication was not required to successfully com-
plete the task. Other work has built upon this by introducing tasks that may require communica-
tion. They found that communicating both beliefs and goals, while minimizing communication
frequency, improved human-agent teaming [86], but worked with simplistic agents that are given
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Figure 3.2: Above is the Enforcers architecture, including the MARL with communication
pipeline.

human-designed observation information to complete their task. They then learn to recognize
when they need additional information and learn to communicate from a list of predefined goals.
In our work, we use state-of-the-art agents to team with humans using emergent communication.
Our agents learn both communication and action policies. In our benchmarks, communication
is necessary to behave optimally, including cases when a single human must coordinate with
multiple agents.

3.3 Agent Self-Play

In this section, we introduce the Enforcers, a curriculum of constraints necessary for enabling
stable multi-agent sparse-discrete emergent communication. Agents are trained exclusively with
other agents. In agent-only experiments, we show that our models can perform competitively
with respect to other agent-only models on benchmark multi-agent tasks and environments that
utilize communication. Additionally, our method can train agents to adhere to various communi-
cation budgets from maximum communication (100% of the time) to the optimal communication
budget for a task (e.g., only communicating 10% of the time), which is assessed in benchmark
environments: Predator-Prey and Traffic Junction.
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Traffic Junction
Easy Medium

Model Convergence Epoch Success % Convergence Epoch Success %
Fixed-Cts 101 .993 675 .997

Fixed-Proto 199 .993 927 .959
Gated-Cts 652 .968 1320 .926

Gated-Proto 1262 .977 1518 .920
Enforcer-b∗ +35 .983 +196 .947

Table 3.1: Traffic Junction: In two Traffic Junction environments, we compared the conver-
gence epoch and success rate for fixed (at all time-steps) vs. gated (sparse) communication and
continuous vector vs. prototype-based (discrete) tokens. Prototype-based agents achieve a simi-
lar success rate to continuous communication agents. The Enforcer method can stably maximize
success while using optimal communication b∗ and discrete prototypes with a few additional
epochs from Fixed-Proto.

Predator-Prey Cooperative
5×5, N=3 10×10, N=5

Model Average Rewards
Fixed-Cts 2.25 7.64

Fixed-Proto 2.18 7.13
Gated-Cts 1.38 6.51

Gated-Proto 0.94 5.69
Enforcer-b∗ 2.07 7.22

Table 3.2: Predator-Prey: In two cooperative predator-prey environments, we measured the
team reward for agents using fixed vs. gated communication and continuous vector vs. prototype-
based (discrete) tokens. Unlike naive gating approaches, the Enforcer method stably maximizes
reward while using optimal communication b∗ and discrete prototypes.

3.3.1 Problem Setup

We formulate our multi-agent problem as a decentralized, partially observable Markov Decision
Process with communication (Dec-POMDP-Comm). Each agent or human receives a partial
observation of the environment, so as a team, they must learn to communicate essential infor-
mation to complete the task adequately. Additionally, we require sparse communication: each
agent must minimize total communications according to a communication budget b. First, define
B as the total number of bits communicated if an agent emits a communication vector at each
time-step. We define b = B

tδ
as the average number of bits communicated over any contiguous

subset of the episode tδ. For ease of analysis, we define B = |T | ∗ |c| as the length of the episode
times the size in bits of the communication vector, which makes b ∈ [0, 1]. We encode this into
the reward function in section 3.3.2. Our problem is formulated by the tri-objective of discov-
ering the optimal constrained communication-action policy. That is, the agents must learn to
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Soft Enforcer (Comm % \ Success %)
Budget Easy Medium

100 - \ .993 - \ .959
90 .889 \ .983 .883 \ .955
70 .781 \ .986 .682 \ .946
50 .588 \ .980 .445 \ .947
30 .282 \ .983 .261 \ .931
20 .195 \ .959 - \ -

Table 3.3: Traffic Junction: The table above shows the training results using the Enforcers
with various budgets b. The fraction of total communication \ success rate is compared for each
imposed budget. The method is able to yield consistent performance while an optimal budget is
observed.

1) communicate effectively, 2) act effectively, and 3) obey communication sparsity constraints.
Communications occur at discrete, uniform time-steps.

Formally, our problem is defined by the 8-tuple, (S,A, C, T ,R,O,Ω, γ). We define S as the
set of states, Ai , i ∈ [1, N ] as the set of actions, which includes task-specific actions, and Ci
as the set of communications for N agents. T is the transition between states due to the multi-
agent joint action space T : S × A1, ...,AN → S. Ω defines the set of observations in our
partially observable setting. Partial observability requires communication to complete the tasks
successfully. Oi : C1, ..., CN × S → Ω maps the communications and state to a distribution of
observations for each agent. R defines the reward function and γ defines the discount factor.
We build on the objective in [81], in which we aim to maximize the total expected reward of all
agents, as follows,

max
π:S→A×C

E
∑
t∈T

∑
i∈N

γR(st, at)

such that, (at, ct) ∼ π, st ∼ T (st−1).
We use REINFORCE [91] to train both the gating function and policy network subject to

the previous constraints. In order to calculate the information similarity, we compute loss by
comparing each agent’s decoded state against the entire state but enforce decentralized execution
and testing.

3.3.2 Methodology
The MARL with communication pipeline consists of an observation encoding step, a message
passing step, and an action decoding step. Similar to IC3Net [72], each agent uses a recurrent
encoding and decoding step. However, our model novelly addresses the communication gen-
eration and message passing step. As depicted in Fig. 3.2, during each time-step, each agent
receives an observation, which is passed into each agent’s LSTM2. The hidden state is passed
to the gating function and the prototype network. Rather than a probabilistic gate in IC3Net,

2Long Short-term Memory is a Recurrent Neural Network (RNN) architecture
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the Enforcers’ gating function decides whether to pass a message to other agents based on the
latent state information. The prototype network receives continuous hidden state information.
The prototype network encodes and compresses the relevant observation and intent/coordination
information into one of a discrete set of emergent prototype vectors. We then take the Hadamard
product between the gating value and discrete prototype vectors, which masks communication
output according to the gating value. These communication messages are passed to other agents,
where each agent takes the mean of the messages received. This value is passed to an agent’s
LSTM, which, finally, produces an action.

The construction of the communication message is similar to an unsupervised learning ob-
jective, which determines useful latent information to pass to other agents based on the policy
loss gradient. Due to the high variance of dual communication and action policy learning, a
communication curriculum is applied. A success criterion must be achieved at each level of the
curriculum to advance to the next phase. Let λ define some hyperparameter. The communication
curriculum changes the reward,

Ri = Ri
env − λRi

comm,

at each phase, where Ri
comm is defined during each phase. During the “Open Gate” phase, com-

munication is hard-coded to always occur and Ri
comm = 0. After achieving the success criterion,

the “Positive Communication Reward” phase rewards communication with Ri
comm = |1 − c|.

This phase reduces instability when transitioning from an open gate to a learned gating func-
tion. After achieving the same success criterion with the new constraint, the Enforcers phase is
implemented.

The Enforcers apply a soft constraint to the reward function to ensure that the communi-
cation is within a budget. The communication reward penalty’s main purpose is to constrain
communication for the total budget and prevent communication bursts. This helps the reward-
based sparse method achieve a particular sparse budget. Define a reward penalty proportional to
a scaled distance to the proposed fraction of the total budget b for some observed fraction of total
communication c,

Ri
P =

{
b−c
b

c ≤ b
b−c
1−b

c > b
,

We also incorporate a first-order derivative term,

Ri
D = Ri

P −Ri−1
P ,

and an integral term,

Ri
I =

i∑
j=0

Rj
P ,

to the communication penalty,

Ri
commSoft = λPR

i
P + λDR

i
D + λIR

i
I .

The hyperparameters are tuned empirically. Note that the method limits the integral term such
that |Ri

I | < K for some hyperparameter K for stability. Even with our optimizations, we find
reward-based sparsity methods to be high variance. We find that the hyperparameter ranges
are binary in that only carefully determined ranges work. Outside these ranges, there is no
convergence to the sparse budgets. We use λP = 1., λD = 1.6, λI = 0.026, K = 50.
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Figure 3.3: Left: 10×10 Predator-Prey. The human in the red square denotes the prey, while the
remaining entities denote the predators. The arrows denote the actions taken by each predator,
and the gray shading denotes the vision of the predators. Right: Two-lane bidirectional traffic
junction. The agents enter the junction, driving on the right lane from any of the four entrances
randomly. The agent’s path entails either going straight at the intersection, turning left at the
intersection, or turning right at the intersection. The agents then directly proceed to exit the
intersection.

3.3.3 Benchmark Agent-Only Experiments
Experimental Setup

We tested the Enforcers scheme in Predator-Prey and Traffic Junction benchmark environments [72].
In Predator-Prey, a precursor to the Human and Lost Child scenario, N predator-agents search
for one prey agent and then travel to its location. This is a fully-cooperative scenario, so ide-
ally, the prey learns to communicate its location to allow for optimal navigation of the predators.
Predator and prey agents each have a uniformly random chance of spawning in any cell in the
grid at the beginning of the episode before searching for T time-steps (5× 5: T = 20; 10× 10:
T = 40).

In Traffic Junction, up to 10 agents navigate a two-lane bidirectional traffic junction as shown
in Fig. 3.3. The agents are unable to observe each other; they are "blind", so they must commu-
nicate to avoid collisions both in the junction and within a given lane (e.g., if the front agent
brakes). Agents are spawned in the environment with probability p at each time-step for a fixed
total number of time-steps T (easy: p = 0.1, T = 20; medium: p = 0.05, T = 40).

Results

Setting a budget with the Enforcers, the model can converge to various communication budgets,
including the optimal communication budget b∗. Performance is evaluated over three seeds. The
Enforcer method is able to yield performance equivalent to unconstrained methods, i.e., contin-
uous communication, while exhibiting discrete-sparse properties. Table 3.1 and table 3.2 show
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Figure 3.4: The distance between a pair of prototypes was highly correlated with the distance
between the locations the prototypes referred to (left plot). A single prototype referred to a cluster
of nearby locations (middle and right plots), with lighter colors denoting more frequent locations.
Here, the two prototypes were both in the bottom right of the 2D PCA of the communication
space and both referred to locations in the upper left of the grid.

Figure 3.5: 1-hot communication vectors show no correlation between prototype locations and
environment locations.

that our method, Enforcer-b∗, is able to converge to a high success rate with few additional train-
ing epochs after introducing the Enforcer constraints on the Fixed-Proto method. Table 3.3 shows
that the method can constrain communication until an optimal budget threshold with nearly no
change in reward. Overall, the Enforcer method is able to provide high task performance at
various communication budgets with limited additional training.

3.4 Agent Interpretability

This section discusses the analysis of the properties that we observed in the agent training experi-
ments and deem useful for learning the prototypes and sparsity of communication. Using domain
knowledge of the task, we can deconstruct the prototypes to understand latent space communi-
cation. We performed a 2D Principal Component Analysis (PCA) of the prototypes for each
environment and task based on the agents’ observations while communicating their respective
messages.
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3.4.1 Setup
Our purpose of interpretability is to find a post-hoc analysis of the emergent message paradigm
learned in self-play. We analyze the degree to which we can determine the white box meaning
of learned messages. We compare 1-hot encodings with prototype encodings. We analyze the
learned messages in the Medium Traffic Junction scenario as described in section 3.3.3 and the
Parent and Lost Child scenario, which is a single predator and single prey subcase of Predator-
Prey as described in section 3.3.3. Simply, or analysis aims to solve the follow question: What
are the properties of the different emergent communication policies that we foresee being most
useful in HAT?

3.4.2 Methodology
From intuitive and mathematical perspectives, we analyze how agents convey observation infor-
mation using prototype or one-hot messages. First, we visualize associations between prototypes
and agent locations (a subset of observation information), as shown in the rightmost figures in
Fig. 3.4. The eight gray dots and one red dot denote the 2D principal component analysis (PCA)
of the 9 prototypes that the agent used. The red dot denotes a particular prototype; the heatmap
to the right of the PCA plot shows which agent locations were observed when the agent emitted
the denoted prototype. Intuitively, these heatmaps show the meaning of each prototype. Ad-
ditionally, we analyze the relationship between the Euclidean distance between vectors and the
information that they contain, e.g., in Parent and Lost Child the information is environment lo-
cations, in order to determine any correlation. Ideally, we want to see structured interpolation
between information and messages in the latent space to prevent null messages, which contain
ambiguous or no information.

3.4.3 Results
Parent and Lost Child

Property 1: Relational Observation Encodings. We found that the learned prototypes ex-
hibited several desirable characteristics. First, only 9 prototypes were used, indicating that the
agents divided the 9 × 9 grid into coarser areas. Second, each prototype referred to a distinct
patch of the grid. Lastly, and most interestingly, prototypes that were close together in communi-
cation space referred to nearby locations in the grid. For example, the two visualized prototypes
in Fig. 3.4 are both in the bottom right of the communication space, and both refer to grid lo-
cations in the upper right. We confirmed this anecdotal evidence by finding that the distance
between prototypes and the distance between the locations the prototypes referred to was tightly
correlated (with an r2 ≈ 0.5).

While one-hot based communication also successfully represented grid locations, as shown
in Fig. 3.5, it was fundamentally unable to exhibit a similar correlation as found between environ-
ment location and prototype location with prototypes. All one-hot vectors are equally far apart
by definition, so one cannot predict grid distances as a function of distance between communi-
cation vectors (r2 = 0). Furthermore, given that all one-hot vectors are orthogonal, conducting
PCA on the vectors does not provide any information on distance relations.
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Figure 3.6: Recurrence with learned prototypes leads to null prototypes for communication. That
is, it conveys no information to the other agent. These communications are unnecessary and show
that sparsity is feasible. Left: Human and Lost Child. Right: Traffic Junction.

Figure 3.7: Above shows the correlation for prototypes in Traffic Junction with full commu-
nication (left), medium sparsity at 50% communication (middle), and optimal sparsity at 30%
communication (right).

Traffic Junction

Property 2: Sparse Communication Through Information Content. Results from prototype-
based communication vectors yield that they encode intrinsic information of the environment
locations. Fig. 3.7 shows the correlation of the Euclidean distance between each prototype vector
to each other and the corresponding Euclidean distance in the environment. The slope for the full
continuous communication, 50% communication (mid-sparse), and 30% communication (max
sparsity) are 1.94, 1.09, and 2.36, respectively. The emergent prototypes tend to have multiple
location mappings per distinct prototype. This results from the prototypes often representing
information similarly per lane instead of uniquely for each environment location.

Since navigating the traffic junction “blind” is a complex task, communicating the location
alone is insufficient information to avoid a collision. One may think that the agent’s intent is also
necessary to interpret. A car may communicate its location, but it is useful to know if they are
going to accelerate (move to the next cell) or brake (stay in the same cell). However, the agents
communicate the same prototype token regardless of the action that they take, which implies that
the agents rely on recurrent and coordination information within their communications. This
follows from homogeneous action policies among agents.
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Figure 3.8: Above shows the Traffic Junction locations (right figures) represented by their corre-
sponding prototype as shown in a principal component analysis (left figures).

Recurrence and other coordination information play a large role for the agents in Traffic Junc-
tion. The agents tend to announce themselves when they enter the environment, but afterwards
they communicate only at key points depending on the direction that they are traveling. Addition-
ally, the agents repeat prototypes irrespective of the lane. See Fig. 3.8. This means that agents
send less information later in their trajectory, implying that agents can remember important de-
tails from previous messages. In Fig. 3.6, the last figure shows that a null prototype is often used.
This communication vector shows that, while the agents will still optimally traverse the junction,
at least 30% of all communications may be gated (prevented from being communicated).

3.5 Human-Agent Teaming
This section discusses the setup and results of the human-agent teaming experiments. In pre-
vious sections, we introduced our multi-agent sparse-discrete emergent communication method
and showed its effectiveness in agent self-play experiments. The next intuitive question is: would
the communication method work when a human is swapped with one of the agents in the orig-
inal problem setup? Although humans and MARL agents use entirely different communication
systems, we deliberately design two human subject experiments with reasonable translations and
approximations in order to evaluate our method in multiple human-agent teaming task scenarios.
Specifically, two hypotheses are tested:

• H1: Humans can learn to communicate in a human-agent team using the emergent proto-
types from agent self-play.

• H2: Sparsity in communication reduces the cognitive workload on a human teammate such
that they are able to perform better at the task.

3.5.1 Human Experiment Design
Interpretability

The core of H1 lies in the interpretability of communication tokens learned by MARL agents. If
the emergent “language” is interpretable, then the human can effectively develop a mental model
and use it to collaborate with agent teammates. Participants in the first human-agent teaming
experiment teamed with MARL agents to solve the Parent and Lost Child task. Half of the
participants use prototype-based communication, and the other half use one-hot communication.
The first experiment aims to test whether humans can learn the mapping relationship between
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Figure 3.9: Learning curves of human-agent communication in the parent and lost child sce-
nario. Top Left: Average steps taken per trial in one-hot and prototype conditions. Top Right:
Percentages of completed trials by roles and conditions. Bottom: Reaction time learning curves
of human participants in the child (dashed lines) and parent roles (solid lines). Shaded areas
indicate 95% confidence intervals.
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Figure 3.10: User interface of the human-agent communication experiment in the Parent and Lost
Child scenario. The left panel displays the game environment state, including the locations and
vision of the parent and child. The right panel consists of a communication space and selection
buttons. Communication tokens are arranged in the 2D space based on PCA analysis to indicate
potential semantic meanings.
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tokens and child locations better than rote memorization and use it in a human-agent team task.
The prototype vectors are translated into communication tokens and plotted on a 2D space using
PCA as described in section 3.4. For 1-hot vectors, we use the same spatial arrangement with
prototype tokens but randomize the token mapping between subjects. By doing so, we eliminate
the confounding effect of spatial structure in human learning and can better focus on the core
comparison between prototype-based and 1-hot communication.

Sparsity

Human-agent communication is usually limited by the divergent cognitive capacity of humans
and agents in information processing. That is, humans are good at spatial, heuristic, and analog-
ical reasoning while autonomous agents process high-frequency information continuously [18].
H2 assesses if introducing sparse messaging helps humans process the information sent by agents
and lower the overall cognitive workload. We evaluate this hypothesis in the Traffic Junction ex-
periment, where a human participant is swapped with one of the cars in lane. Other cars are
MARL agents trained with a budget only to send messages when necessary, as described in
section 3.3. A “ghost” agent processes incoming messages to facilitate human understanding,
which is translated into a graphic user interface based on the prior PCA analysis in section 3.4.
Since the analyzed communication method does not create an injection with environment loca-
tions, the car’s location is represented as a probability distribution. A caution triangle visualizes
the likelihood of a cell being occupied by other agents on the user interface. Messages from
the human are handled by a “ghost” agent, which acts as an interface between the human and
messages from/to artificial agents. Previous literature has shown this method to be effective in
studying communication understanding in HATs [52]. By implementing the experiment in this
way, we directly present the meaning of the prototype communication to the human to speed up
the learning process. Thus, the experiment can better focus on the influence of sparsity on human
understanding of agent communication.

3.5.2 Methodology

Parent and Lost Child

Each participant is teamed up with an AI agent in the Parent and Lost Child environment. The
humans complete 20 trials in each parent and child role, with corresponding communication
tasks. We counterbalance the sequence of two experimental sessions between subjects. At the
beginning of the trial, the parent and child spawn at random locations. A trial ends when the
parent reaches the child or exceeds the maximum step limitation (20). The human-agent team
performance is measured by 1) the number of steps the parent takes to find the child, 2) the
percentage of trials in which the parent successfully found the child, and 3) the time it takes the
human to make decisions.

The task interface, shown in Fig. 3.10, consists of two panels: the task environment and the
communication panel. The task environment displays the true game state, the parent’s vision
radius, and the parent’s trajectories. Interface visibility is subject to change according to the
human’s role. The communication panel presents numbered tokens for the child to send its
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Figure 3.11: Learning curves of human-agent communication in Traffic Junction. Top left: Per-
centages of success in trials with three communication sparsity conditions. Top Right: Average
progress made per trial. Bottom: Average reaction time. Error bars indicate 95% confidence
intervals.

location. The number and arrangement of tokens are determined by the 2D PCA analysis from
section 3.4. Once the child selects a token, it is highlighted on the panel.

When the human is playing the parent role, one fixed token is highlighted on the communi-
cation panel throughout the trial to signal to the human what the child agent is communicating.
The human then must select a movement action to move using arrow keys on their keyboard.
The participants’ task as the parent is to learn to understand the meaning of the communication
tokens in order to find the child in the least number of steps. When the human is in the child
role, she may select only one communication token to send to the parent agent per trial but can
use a different token in different trials. The human then views a replay of the entire trajectory
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Figure 3.12: The human interface for Traffic Junction is shown above. The participants’ task
is to move the yellow car along the designated path (red dashed line) using two actions: go
or brake. Black caution triangles refer to potential locations of other cars as revealed by agent
communication.

of the parent agent as feedback to determine if the communication is helpful. Similarly, partic-
ipants in the child role do not know the semantic meanings of each communication token at the
beginning. Therefore, they must learn to develop the mapping between tokens and locations via
repeated interactions.

Traffic Junction

In order to evaluate the effect of sparsity, human participants were recruited to team up with
multiple agents in Traffic Junction. Fig. 3.12 shows the user interface of the Traffic Junction
experiment. Humans act as one of the cars traversing through the junction. The goal of this task
is to traverse through one’s lane as far as possible without collision. All cars, including both the
human and the agents, are ’blind’ and have predetermined goals. The human car will enter the
environment while between 5 and 9 agents are currently navigating the junction. Each trial lasts
for 40 steps. The human can choose whether to accelerate or brake on the designated path to
navigate the intersection without collision before the end of the trial.

3.5.3 Results
Human and Lost Child

106 participants were recruited from Amazon MTurk and Prolific, 30 were removed due to an in-
complete session or failure to pass the attention check. Participants were randomly divided into
two conditions, receiving either one-hot communication or prototype communication tokens.
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The average number of steps taken per trial is 12.74 in the prototype condition and 13.64 in the
one-hot condition. This measurement quantifies the collaboration outcome of the human-agent
team. The fewer steps taken, the better the team’s performance. We conducted a mixed-ANOVA
in which the human role is the within-subject variable and the experimental condition is the
between-subject variable. Results show that the main effects of the condition are significant
(F (1, 74) = 5.95, p = .017), indicating the proposed prototype communication indeed leads to
better team performance as compared to the one-hot baseline. In addition, the main effect of the
role and interaction effect between the condition and role are both significant (p < .05) for each
one. Paired t-tests show that prototype communication significantly outperforms one-hot base-
line in the human child condition (13.09 vs. 14.54, t(52.4) = 3.43, p = .001, cohen d = .83),
but not in the human parent condition. The other measurement of human-agent team perfor-
mance is the completion rate shown in Fig. 3.9-middle. Chi-squared analysis shows similar
patterns as above: prototype communication leads to significantly better team performance, and
this difference is mainly due to the human child condition.

Another research question is how can one reveal a human’s learning process of a communica-
tion language generated by reinforcement learning agents. To answer this question, we measure
the reaction time of humans to decide what action to take or what communication token to send
as an indicator of participants’ cognitive workload. As shown in Fig. 3.9-right, the required re-
action time decreases along the course of interaction between the human and agent teammates.
Trial number is negatively correlated with reaction time in both child (r = −.17, p < .001) and
parent (r = −.24, p < .001) roles. Specifically, this learning effect is more substantial when
the human child was using prototype-based communication (r = −.24, p < .001) as compared
to one-hot communication (r = −.08, p = .045). While the learning effect of team perfor-
mance is not observed directly, participants actually learn the communication language during
the interaction with reinforcement learning agents and complete the task faster. Our proposed
prototype communication can speed up this learning process by allowing the human to bear a
lower cognitive load and select the correct communication token more quickly in the child role.

In summary, H1 confirmed that 1) prototype communication is interpretable to humans and
leads to better HAT performance, and 2) prototype communication speeds up the learning pro-
cess of humans by lowering the cognitive load. Our proposed method is especially effective when
the human sends messages as the child. A possible explanation is the different levels of initia-
tive between human (exploratory) and agent (exploitative) parent’s searching strategies. When
receiving an invalid communication, unlike the agent, the human will continue exploration.

Traffic Junction: Evaluating Sparsity

142 human participants were recruited from Amazon MTurk and Prolific, but 16 were removed
due to incomplete sessions. Participants were divided into three conditions, either use prototype
communication with fixed non-sparse b = 1, medium sparsity b = 0.5, or minimum sparsity
b = b∗ = 0.3. This condition division is based on agent training results, in which b∗ was shown to
be the minimum frequency without sacrificing performance. Each participant completed 20 trials
of the experiment. Team performance in the Traffic Junction task is measured by the percentage
of trials in which a human’s car successfully arrived at its destination without collision. The
average success rate for the three conditions is min: 79.1%, med: 80.1%, fixed: 74.6% (as
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shown in Fig. 3.11-left). A chi-squared test shows that the relationship between task success and
communication sparsity is significant (χ2(2, N = 2408) = 7.28, p = .026). Human participants
who received sparse communication (i.e., min and med conditions) from agents are more likely
to succeed in passing through the junction.

Recording how far each human managed to proceed before collision is also a good measure
of a human’s task progress. Fig. 3.11-middle shows the average progress Similar to the above
analysis, one-way ANOVA shows a significant difference between conditions (F (2, 2405) =
5.27, p = .005). T-tests indicate that both min (11.57) and med (11.74) conditions outperform
the fixed baseline (11.23) in making more progress (p < .05) for each condition.

To reveal the reasons of performance improvement brought by sparse communication, we
plot the average reaction time of participants in three conditions in Fig. 3.11-right. ANOVA anal-
ysis shows a significant difference in reaction time between conditions (F (2, 2405) = 7.49, p =
.001). Paired t-tests show that participants in the medium sparsity communication condition had
a significantly shorter reaction time (0.98s) than those in either minimum (1.16s) and full com-
munication (1.12s) conditions. Considering reaction time as an indicator of human cognitive
workload, we found an inverted ’U’ shape relationship between communication sparsity and hu-
man cognitive load. Our proposed sparse method with appropriate configuration was shown to
reduce human cognitive load by sending fewer communication messages; that is, messages are
sent only at necessary moments, confirming H2.

3.6 Conclusion
Recent work in MARL has aimed to develop sparse-discrete communication paradigms. In this
work, we have analyzed a sparse-discrete method to determine its interpretability and perfor-
mance when used in human-agent teaming. Through the Enforcers we can train sparse-discrete
models to perform competitively with unconstrained alternatives. The results show that the in-
tent of the communication can be trained to correlate with human-understandable observations
of information necessary to complete tasks.

We conducted two human-agent teaming experiments to explore the relationship between the
human learning effect and various properties of agent communication. In the first experiment,
we evaluated whether humans are able to learn the communication “language” generated by
reinforcement learning agents. We compared our proposed interpretable prototype-based com-
munication against a one-hot encoding communication baseline. Results validate the superiority
of prototype-based communication in better overall team performance and a faster learning ef-
fect over the baseline, confirming our proposed method’s interpretability. Based on the analysis
in section 3.4, we attribute these results to the correlation relationship between tokens’ locations
in the communication space and referenced child locations in the task environment. Prototype-
based messages have a structured latent space, allowing for learning ease. Our results verify this
hypothesis since there is a steeper learning curve of reaction time to decide what communication
token to send.

The results of the traffic junction experiment support our hypothesis about communication
sparsity in human-agent teaming with multiple agents. Both minimum and medium sparse com-
munication enable better team performance than the full communication baseline. Measurements
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of reaction time as a proxy for human cognitive workload [85] provided further corroborating evi-
dence. Reaction times followed an inverted ’U’ shape, in which medium communication sparsity
led to lower cognitive loads than minimum or maximum frequency; one explanation for this trend
is that overly-frequent communication overloads humans, while overly-sparse communication is
hard to recall. These findings align with previous literature [59] and imply that introducing an
appropriate communication frequency budget is essential in supporting human-agent interaction.
As emphasized by our agent self-play and HAT experiments, adapting communication to many
sparse budgets is critical for effective human-agent teaming. An additional interesting discovery
was that an adaptive function might be necessary to find the appropriate communication spar-
sity for each individual human teammate or population of humans. We will pursue this research
avenue in future work.
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Chapter 4

Sparse Communication

4.1 Introduction

In multi-agent teams, communication is necessary to successfully complete tasks when agents
have partial observability of the environment. Multi-agent reinforcement learning (MARL) has
recently seen success in scenarios that require communication [19, 77, 22, 55, 45]. Sparse multi-
agent communication (wherein agents communicate during only some time-steps) has been
shown to be an effective solution to internet packet routing [57], multi-robot navigation [21],
complex multiplayer online games such as StarCraft [77, 72], and human-agent teaming [38]. In
particular, these successes have been achieved using neural network architectures in conjunction
with a reinforcement learning framework. Simultaneously, research in individualized multi-agent
communication [77, 72, 11, 1] has solved sparse cooperative-competitive multi-agent problems
where adversaries are listening, and sparsity is built into their competitive objective. But such
research is unable to provide sparse individualized communication in fully-cooperative settings,
where there is no built-in incentive. This is particularly unreasonable in real-world settings where
multiple robots may need to adhere to bandwidth/budget restrictions. A budget (or bandwidth) b
defines the maximum percentage of the time an agent may communicate.

Emergent communication enables agents to learn a set of communications vectors apt for
solving a particular task; however, learning emergent communication simultaneously with an
action policy is highly unstable. Agents often converge to undesirable policies in which com-
munication is ignored, unless special training terms are used [14, 54]. Enforcing sparse com-
munication, i.e., limiting the number of messages over time or communicating within a band-
width/budget, only worsens this problem due to the additional constraint. Using the information
bottleneck framework [79] may adequately address sparsity constraints [90], but due to their ob-
jective, exhibit a trade-off between the total bandwidth and task performance. In these scenarios,
the agents fail to send necessary messages and transmit unnecessary messages, which we dub
null communications. In fact, many papers on sparsity suggest lossless sparsity, but in actuality,
have a non-trivial decrease in reward.

In this chapter, we propose a novel framework, Information Maximizing Gated Sparse Multi-
Agent Communication (IMGS-MAC), which aims to learn a communication-action policy and
then enforce a sparse communication budget (learning when and whom to send messages) with
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Figure 4.1: Overview of our multi-agent architecture with gated sparse, informative commu-
nication. At every timestep, each agent receives an occluded observation x. Each agent cre-
ates a communication message, which is passed to the learned gating function g as well as the
Decoder. The gating function determines whether to communicate the message to the other
agents. The Decoder receives all messages and attempts to reconstruct the full state of the
environment.

lossless performance. Our key insight in IMGS-MAC is reframing the sparse multi-agent com-
munication problem as a representation learning problem. The use of an information maximizing
autoencoder prevents shortcut solutions in order to structure the latent communication space to
allow for high reward with little communication. After learning a non-sparse communication
policy, we analyze the direct causal effect of choosing to send each token to any other agent to
determine null messages. Then, IMGS-MAC uses a table of these null messages to prevent them
from being emitted, enabling sparsity with lossless performance without additional reinforce-
ment learning, which we call zero-shot sparsity. To further promote sparsity for over-constrained
budgets, we finetune our model using an individualized communication regularization term for a
learned gating/targeting function g, which we call few-shot sparsity.

4.2 Related Work

4.2.1 Emergent Communication Vectors

Prior art in emergent communication establishes how agents may learn to communicate to ac-
complish their goals with continuous communication vectors [32, 77, 72]. Motivated by hu-
man communication in which people speak only when necessary and using only a discrete set
of words, we wish for agents to learn sparse (in number of listeners over time) and discrete
communication. While previous work has been successful in learning discrete communication
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vectors [44, 53, 19, 3, 21], the learned communication conventions often exhibit undesirable
properties. Learning discrete prototypes has been shown to promote robustness in noisy commu-
nication channels, as well as human interpretability and zero shot generalization [81]. Similar to
word embeddings in natural language processing, they capture the relationship between vectors.
However, many of these methodologies only try to learn token meanings through rewards. In our
work, we show that grounding messages in reproducing the concatenated state of all agents with
an autoencoder creates desirable representations regardless of continuous or discrete settings.

4.2.2 Sparsity: Gating Total Messages
In this work, we attempt to reduce communication in MARL problems through gating total mes-
sages. Gating methods learn a function that dictates whether an agent will communicate to each
other agent at any given timestep. Some methods try to learn a gating probability to decide
whether to broadcast a budget, but these are unable to follow a communication budget [72, 28].
In reward-based sparse communication [38, 88], by penalizing communication reward during
training, gating/targeting methods have reduced communication. However, this method is not
able to adequately choose a budget (what maximum percentage of the time to communicate).
Overall, gating methods are high variance and often unstable [3]. Rather than building the ob-
jective into the reward, I2C [13] tries to measure the causal effect of an individualized message
through a learned Q-value. However, I2C only tries to address sparse targeting in the lossless
sparsity case and fails to account for the effect of message representation. In our work, we
measure the actual effect of each token and mask the emergent vocabulary accordingly.

4.3 Preliminaries
We formulate our setup as a centralized training, decentralized execution (CTDE) [19], partially
observable Markov Decision Process with individualized communication (POMDP-Comm). For-
mally, our problem is defined by the tuple, (S,A,M, T ,R,O,Ω, γ). We define S as the set of
states, Ai , i ∈ [1, N ] as the set of actions, which includes task specific actions, andMi as the
set of communications for N agents. T is the transition between states due to the multi-agent
joint action space T : S × A1, ...,AN → S . Ω defines the set of observations in our partially
observable setting. The partial observability requires communication to complete the tasks suc-
cessfully. Oi : M1, ...,MN × S → Ω maps the communications and state to a distribution of
observations for each agent. R defines the reward function and γ defines the discount factor.

4.3.1 The Sparsity Objective
The multi-agent emergent communication problem is phrased as a combination of a Lewis
game [48] and the information bottleneck [79]. We seek to develop a message representation
M , which contains sufficient referential and ordinal information to successfully complete a task.
Notably, the information bottleneck defines a trade-off between referential (X) mutual informa-
tion, I(X;M), which is observable to an agent, and ordinal (Y ) mutual information, I(M ;Y ),
which requires coordination between agents.
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The communication graph Gt = (V,E) is a set of agents (vertices) and active communication
edges between them, where connectivity changes at each timestep. Messages flow through the
edges from agents to agents, E : vi → vj . We aim to learn a masking function g to dynamically
modify the graph to prevent messages from flowing along the graph. The total number of bits
communicated, s(M) can be defined in terms of vertices (gating), v ∈ V , s(M) =

∑
m∈M vm

or in terms of edges (targeting), e ∈ E, s(M) =
∑

m∈M em, over an episode. One can see that
gating is a special form of targeting in which a vertex is disjoint from the graph. We will use
gating and targeting interchangeably, but in terms of sparsity, limit the total number of message
edges during an episode.

In MARL, the objective of sparse communication is to minimize the total number of bits
communicated while maximizing team task performance,

max
π:S→A×M

E

[∑
t∈T

∑
i∈N

γR(st, at)

]
s.t. (at,mt) ∼ π, st ∼ T (st−1)

subject to
minEM∼π [s(M)]

(4.1)

That is, to achieve this objective, first one maximizes task performance; then one reduces total
communication while keeping task performance fixed.
Definition 4.3.1 (Lossless Sparse Communication). A communication policy πm is lossless and
sparse iff it satisfies the objective in equation 4.1. A lossless sparse communication policy defines
the minimum sparse budget (fraction of total messages) b∗.

Most sparse communication work rephrases the minmax problem to a single objective by
introducing a Lagrangian,

max
π:S→A×M

E

[∑
t∈T

∑
i∈N

γR(st, at)− λs(mt)

]
s.t. (at,mt) ∼ π, st ∼ T (st−1),mAV G < b

(4.2)

However, depending on the Lagrange multiplier, the objective in equation 4.1 is not always the
same as equation 4.2. Due to the dual-objective, equation 4.2 also introduces the possibility of
suboptimal sparse communication even when lossless sparse communication is possible. It also
explains the high variance of lossless sparsity in prior art [3].
Definition 4.3.2 (Sub-Optimal Sparse Communication). A communication policy πM is subop-
timal and sparse iff there exists a trade-off between task performance and messaging constraints
as defined in equation 4.2.

Thus, in our methodology, we cannot directly optimize equation 4.2. Recall that in emergent
communication, messages are generated based on their observations. This implies that, in terms
of the information bottleneck, messages represent a combination of referential, I(X;M), and or-
dinal, I(M ;Y ), information. That is, observations help guide ordinal (task-specific) information.
Suppose, we have a Lagrangian objective (see section 4.4.1), which allows for our messages to
have independent referential information. Then, given a communication policy which adequately
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Algorithm 1 IMGS-MAC
1: θ ← randomly initialized network parameters
2: useDiscreteMessaging← {true|false}
3: while not converged do
4: for i← 1 to N {simultaneously} do
5: xi ∼ S
6: hi ← GRU(xi)
7: if useDiscreteMessaging then
8: mi ← DiscreteProtoNet(hi)
9: else

10: mi ← hi

11: end if
12: SendMessages(mi ⊙ g(hi))
13: m̄i ← AggregateMessages()
14: h̃i ← GRU({hi, m̄i})
15: ai, vi, x̃i ← π(h̃i), V (h̃i),DecoderNet(h̃i)
16: L← πLoss(ai, vi) + L1(x, x̃

i) + L2(m
i
AV G)

17: end for
18: end while

solves the task, one can determine the ordinal utility of each token. By removing unnecessary
tokens, we can satisfy the objective in equation 4.1. Thus, in our methodology, we emphasize
learning emergent communication with properties that enable sparse communication with lower
optimal budgets b∗ (lossless sparsity).

4.4 Proposed Methodology

In this section, we introduce the IMGS-MAC architecture as well as two types of individ-
ualized regularization. The first is an autoencoder, which is used to stabilize the dual training
of the communication-action policy. The latter is an individualized communication penalty to
enforce each agent individually follows a fixed communication budget/bandwidth. Note that it
is important to provide individualized regularization, as otherwise the gradient signal will not be
adequately recognized. Our model builds on related art [72, 3], but our technique can be easily
applied to any individualized MARL communication module. Below, we introduce our informa-
tion maximization autoencoder and individualized communication regularization. Overall, the
combined framework can be observed in Alg. 1.

4.4.1 Sparsity through Information Maximization

The information bottleneck principle [79] is naturally encoded into any communication module
that uses deep learning. By creating a latent representation, any nontrivial solution enforces the
network to provide the relevant information within the communication vector. Rather than re-
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quiring centralized execution to maintain sparsity through the information bottleneck, we provide
a form of information regularization that allows for individualized communication. Additionally,
we enforce a structured representation for message tokens, ensuring that tokens represent inde-
pendent referential and ordinal information from their observations.

We define the autoencoder as follows: The communication module of our network serves as
the encoder. Each agent produces their own hidden state hi and receives communication vectors
mj such that i ̸= j. For each agent, the model feeds hi +mj into the decoder. We then calculate
the l2 loss U(st, s

i,decoded
t ) between the state of all agents st = {x1

t , . . . , x
N
t } and the decoded

state si,decodedt , which effectively measures the similarity between the latent communication and
the concatenated state of all agents.

L1(θ) = λ1U(st, s
i,decoded
t ) (4.3)

To enable sparsity, we first train IMGS-MAC with the autoencoder module and non-sparse
communication (b = 1). Afterwards, we run evaluation episodes while collecting data regarding
each message token to detect null messages.
Definition 4.4.1 (Null Communication Vector). A null communication vector from agent i pro-
vides a lack of information to another agent j. That is, in terms of the information bottleneck,
I(mi; yj) = 0.

To determine the mutual information between a message m and the task specific information
y, we measure if there is a change in the reward within a small ϵ ≈ 1e − 3. If there is no
significant change, we consider this token a null message.

While simple, in our experiments, we show that by combining this trick with strong latent
representations, our model can remove larger amounts of unnecessary communication, or null
communication vectors, without impacting the performance. In fact, our lossless sparsity method
requires no additional reinforcement learning training, which we define as zero-shot sparsity.

Similar to zero-shot learning, which requires no additional data to satisfy an objective, zero-
shot sparsity enables satisfaction of sparse communication constraints from non-sparse training
through careful analysis of the emergent communication policy. Our methodology exhibits zero-
shot sparsity since no additional reinforcement learning training is required to enforce sparsity
given our non-sparse model with informative communication, which is shown in section 4.6.

4.4.2 Sparsity through Individualized Regularization
In the overconstrained bandwidth case, b < b∗, which implies that we will not be able to max-
imize task performance, inducing the suboptimal sparsity case. However, we can use the prop-
erties of lossless sparsity to maximize performance such that mAV G <= b. We combine previ-
ous techniques with a second regularization term, a per-agent communication penalty L2. The
penalty depends on the nature of the communication budget. At each discrete time-step t, each
agent has the opportunity to choose to emit a message. Thus, we define our budget b as a fraction
of the total agents multiplied by the time-steps in which we measure communications. We let
mAV G define the actual fraction of messaging. Finally, we can define the regularization penalty,

L2(θ) = λ2

∥∥∥∥mi
AV G − (b+ (1− b∗))

∥∥∥∥2

2

(4.4)
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Figure 4.2: Above are the easy, medium, and hard traffic junction environments. Visibility is
limited to the cell the car is located, so agents are effectively blind. The bottom shows a zoomed-
in view of the 20 × 20 predator-prey environment. The predators are denoted by green aliens,
while the prey is denoted by a human (in a red square).

where we penalize messages when b < mAV G < b∗.
Similar to few-shot learning where a limited amount of data, we define few-shot sparsity as

enabling the satisfaction of sparse communication constraints from non-sparse training through
limited additional MARL training. We quantify the amount of data in our experiments, notably
Fig. 4.4. We finetune our model using the regularization penalty in Eq. 4.4 to observe overcon-
strained budgets, thus exhibiting few-shot sparsity.

4.5 Experimental Setup
We train and evaluate our model in a blind traffic junction and predator-prey environment settings
following prior benchmarks [72, 77, 13]. For each of these variants, we train on 10 random seeds
and one epoch uses 5000 samples. We used an RMSProp optimizer with a learning rate of 0.003.
See Figure 4.2.

The blind traffic junction scenario involves multiple agents navigating a discretized narrow
intersection with no observability regarding the locations of the other agents. Clearly, this ne-
cessitates informative communication in order to avoid collisions in the environment. Note that
both communication and action occur in a single time-step. We study three variants of the blind
traffic junction and report results on the easiest and hardest environments which converge for
continuous and discrete communication.
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The predator-prey scenario involves multiple agents, where one agent is denoted as the prey
and the remaining agents are denoted as predators. The predator agents move and search the
environment for the prey agent. The predator agents can only observe its current cell and the
adjacent cells (limited visibility to 1 cell around itself). The episode terminates when all predator
agents reach the prey agent or when the maximum episode length is hit.

Predator-prey does not necessarily require communication to solve the task. However, in
the fully-cooperative predator-prey environment, predators are rewarded for maximizing the
number of predators who reach the discovered prey. Thus, there is no built-in incentive for
fully-cooperative teams to decrease total communication. In our experiments, we show that our
method, IMGS-MAC, is able to decrease messaging to a minimum sparse budget b∗ with lossless
performance.

Overall, our proposed method is trained (“pretraining”) using the autoencoder in Eq. 4.3. We
then analyze to determine if our model will follow a lossless sparse budget. If not, we finetune
our model for a suboptimal sparse budget (Def. 4.3.2) using the message penalty in Eq. 4.4.

We use REINFORCE [91] to train both the gating function and policy network subject to
the previous constraints. In order to calculate the information similarity, we compute loss, using
Eq. 4.3, between each agent’s decoded state si,decodedt and the concatenation of all agents’ states
st.

4.6 Experiments
In this section, we first describe the benchmark environment. Then, we present ablations show-
ing the efficacy of our sparse model with informative communication. As stated in section 4.2,
IC3Net and I2C provide close framework compatibility. We compare IMGS-MAC with IC3Net
with non-sparse (b = 1) communication to understand the effect of our information maximiz-
ing autoencoder in developing independent referential (based in observations x) representations,
I(mj;mk) = 0. We evaluate with both continuous and discrete messages to show the necessity
of using our methodology to develop structured latent tokens (messages m). Then we show the
few-shot sparsity benefits of finetuning sparse budgets when b < b∗ as compared with solving the
tri-objective (1: communicate effectively, 2: act effectively, and 3: obey communication sparsity
constraints), which is akin to trying to satisfy the objective in Eq. 4.2 when b ≥ b∗. We analyze
our model’s communication vectors to find zero-shot sparsity b = b∗. We show that our method
can provide lower optimal budgets b∗ than I2C. Finally, we verify that IMGS-MAC has lossless
performance at b = b∗ as compared with its non-sparse performance b = 1, and show the op-
timized trade-off between suboptimal budgets b < b∗ and task performance, e.g., reward. We
detail our experimental setup in Appendix 4.5.

4.6.1 Information Maximization Analysis
To show the benefits of the autoencoder for information maximization, we first show comparison
with IC3Net with a fixed gate, i.e., non-sparse communication (b = 1). In Figure 4.3, our results
show that our method has much lower variance. Note that IC3Net may have a shaded area higher
than IMGS-MAC, but it never actually performs that well. Rather, the variance comes from very
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Figure 4.3: Left and middle figures compare the training IC3Net (blue) vs. our IMGS-MAC
(orange) with non-sparse communication (b = 1) in Traffic Junction. Our method converges
to higher success earlier and with less variance. Right figures compare in Predator-Prey. Our
method converges to higher success earlier and with less variance. Top figures use continuous
communication vectors while bottom figures use discrete.

low performing runs. In the simple, easy setting, our method is able to find solutions of equivalent
quality as IC3Net. However, in hard settings, and in all discrete communication vector settings,
our method outperforms IC3Net in terms of performance and the number of epochs required to
find the solution. Particularly, in the more difficult discrete communication vector scenarios, the
autoencoder drastically outperforms IC3Net. Note that the decreased variance results in much
more stable solutions.

Our hypothesis is that decreasing the training epochs to converge to high task performance
implies that we have more informative communication. Our results show that communication
tokens which represent information more independently allow for lower b∗. This is found by
analyzing the number of states in which the same message is emitted. Overall, this strengthens
our hypothesis that a structured latent space naturally allows for lower b∗ for lossless sparsity.
We analytically study the performance of the autoencoder in Table 4.1.

Percent null communication vectors determines the number of null tokens in the emergent
‘vocabulary’, i.e., all possible messages. The number of observations per vector reports the in-
dependence of a token or mutual information between any two distinct tokens, I(mj;mk). We
want to minimize I(mj;mk) in order to decouple information into independent messages, so
that we can later promote stronger sparsity through the analysis of the utility of each token in
determining optimal actions. The percent of null communications emitted reports the percentage
of null messages that were communicated to other agents over 500 episodes. We aim to mini-
mize these unnecessary null messages. We see that the IC3Net method uses more null vectors
on average and has high mutual information between tokens. Further, using our IMGS-MAC,

37



Table 4.1: Average µ ± σ for quality and performance of null communication vectors. IMGS-
MAC (ours) provides significantly more informative communication, as recognized by its low
usage of null communications. Lower is better.

Environment Method
% Null Comm.
Vectors

# Observations
per Vector

% Null Comms.
Emitted

TJ Easy Cts.
IC3Net 0.59 ± 0.107 3.81 ± 0.304 0.529 ± 0.112
IMGS-MAC 0.0550 ± 0.198 1.785 ± 0.507 0.0565 ± 0.196

TJ Hard Cts.
IC3Net 0.404 ± 0.0753 26.892 ± 6.662 0.543 ± 0.0999
IMGS-MAC 0.0334 ± 0.107 16.928 ± 10.113 0.0310 ± 0.167

TJ Easy Discrete
IC3Net 0.589 ± 0.265 3.39 ± 1.09 0.846 ± 0.263
IMGS-MAC 0.0194 ± 0.0394 1.390 ± 0.220 0.0320 ± 0.0719

TJ Med. Discrete
IC3Net 0.724 ± 0.139 15.944 ± 8.127 0.964 ± 0.0424
IMGS-MAC 0.0857 ± 0.172 5.105 ± 3.154 0.201 ± 0.322

PP Hard Cts.
IC3Net 0.784 ± 0.0445 73.148 ± 12.099 0.497 ± 0.0887
IMGS-MAC 0.284 ± 0.160 17.523 ± 6.231 0.300 ± 0.173

PP Hard Discrete
IC3Net 0.482 ± 0.145 104.803 ±

6.0713
0.719 ± 0.312

IMGS-MAC 0.380 ± 0.0909 82.809 ± 6.507 0.141 ± 0.114

we effectively remove null messages and decrease mutual information between tokens, further
improving performance. In fact, IMGS-MAC removes almost all null messages. We will later
further see that it does so without any reduction in performance.

4.6.2 Sparsity Analysis

Few-shot Sparsity

In the case where b < b∗ we require a small amount of additional training data to enable sparse
communication. We introduce an autoencoder to include independent referential communication
in order to ease the dual communication-action policy learning. When we introduce the sparsity
constraint (and the corresponding individualized communication regularization), our model must
additionally learn a gating function, which further increases the complexity. In order to avoid
requiring more data, we introduce a pretraining and finetuning paradigm. First, we pretrain
dual communication-action policy with a fixed open gate (non-sparse b = 1). Then, we apply
finetuning to train the gating function (with the rest of the network) at any b < b∗. In Figure 4.4,
we see that the total number of epochs required for task success convergence under a budget
is about half as many for the pretraining+finetuning paradigm than for the tri-objective, which
aims to solve the objective in Eq. 4.2 directly. Note that the variance entirely comes from the dual
objective pretraining. The sparsity finetuning requires less than 10% of the total training epochs.
In fact, we can apply finetuning for any budget b rather than having to train the tri-objective
from scratch, further decreasing training time. In Figure 4.5, we observe that our model only
needs a few dozen epochs to converge to a communication budget and is able to safely reduce
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Figure 4.4: Average success and 95% confidence interval for Tri-objective (left bar, orange)
vs. Pretraining with non-sparse b = 1 (blue), then Finetuning (orange) with b = 0.7. The
Pretraining+Finetuning paradigm takes half the amount of training as the Tri-objective.

Table 4.2: Minimum sparse budget b∗ with lossless performance, µ± σ. Observe that our model
can reduce 20-60% without a loss in task performance.

Environment IMGS-MAC b∗ I2C-Cts. b∗

TJ Easy Cts. 0.610 ± 0.191 -
TJ Hard Cts. 0.462 ± 0.249 0.63
TJ Easy Discrete 0.815 ± 0.00469 -
TJ Med Discrete 0.519 ± 0.140 0.66
PP Hard Cts. 0.244 ± 0.0644 0.48
PP Hard Discrete 0.263 ± 0.00757 0.48

total communication below the allowed budget. Overall, our objective exhibits few-shot sparsity
(b < b∗). The performance of few-shot sparsity is analyzed in Figure 4.6.

Zero-shot Sparsity

We use sparsity through information maximization in section 4.4.1 to reduce the number and us-
age of null prototypes. In Table 4.1, one can see that through our analysis, we are able to remove
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Figure 4.5: Above, the model follows the budget b = 0.7 average over each episode. Observe
that the model (in blue) only needs to run for a few dozen epochs before adequately following
the budget (in red).

significant usage of null communication vectors, which allow our model to only use informative
communication, enabling true lossless sparsity. That is, the task performance, or success in our
case, will not decrease at all by decreasing the budget within the true lossless range. Otherwise,
enforcing a budget requires the learned gating function g to determine whether an agent should
communicate, which may induce a loss in task performance. Of course, this is dependent on
how well the initial communication model is learned, i.e., the range is dependent on the learned
model. Each model has its own minimum lossless budget b∗, which depends on the emergent
communication model. In Table 4.2, we report the lossless budget b∗ for each environment. We
are able to reduce communication by 20-75% with no additional training. Interestingly, we are
able to reduce communication more when we have continuous communication vectors instead of
discrete communication vectors. This implies that our continuous vectors have more informative
communication. Though, it most likely follows from the fact that discrete communication is a
harder problem than continuous communication, confirming results from [82]. Additionally, we
are able to find lower optimal budgets b∗ than I2C, even without specific reinforcement learning
training to reduce the communication overhead.

Finally, we analyze the lossless, b = b∗, and suboptimal, b < b∗, performance for sparse bud-
gets for our model in Figure 4.6, which uses the lossless budget b∗ as reported in Table 4.2. We
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Figure 4.6: Success versus budget for IMGS-MAC at baseline non-sparse b = 1, lossless b = b∗,
and suboptimal b < b∗. Our model provides lossless performance for b = b∗ for b∗ in Table 4.2
as compared with the baseline non-sparse b = 1. Our performance tapers for smaller budgets
until it approaches the no communication performance. Top: continuous communication vectors;
Bottom: discrete; Left, middle: Traffic Junction; Right: Predator-Prey.

find that the lossless budget b∗ provides true lossless performance. Unsurprisingly, for overcon-
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strained budgets b < b∗, there is a small task performance tradeoff for adherence to the budget.

4.7 Conclusion and Future Work
In this paper, we have proposed a method for multi-agent individualized sparse communication.
We reframed sparsity as a representation learning problem through the information bottleneck
problem. We have shown that through training a communication-action policy grounded with
an autoencoder and analysis during execution of non-sparse messaging, one can exhibit lossless
zero-shot sparsity. That is, the sparsity objective may be achieved without any cost of perfor-
mance with no additional reinforcement learning training. Additionally, we produce individu-
alized regularization to limit performance loss with few-shot sparsity. This allows our model
to adhere to messaging constraints in over-constrained bandwidth scenarios. In a limitation of
our work, once the ’vocabulary’ is restricted by removing some null messages, other messages
are discovered later that could be removed and mutual information between tokens is nonzero.
Stronger theoretical bounds on message content independence will further allow sparser com-
munication. In our future work, we aim to create an overarching framework that combines
gating/targeting sparsity and communication compression. This will remove the need for tuning
message sizes, but still opt for a decoupled training scenario. That is, first learn an emergent lan-
guage. Then adhere to sparsity constraints. Additionally, further increases to the unsupervised
representation learning will allow for sparser performance.
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Chapter 5

Compositional Messages and Social
Learning

5.1 Introduction

Social learning [31, 62] agents analyze cues from direct observation of other agents (novice
or expert) in the same environment to learn an action policy from others. However, observing
expert actions may not be sufficient to coordinate with other agents. Rather, by learning to com-
municate, agents can better model the intent of other agents, leading to better coordination. In
humans, explicit communication for coordination assumes a common communication substrate
to convey abstract concepts and beliefs directly [60], which may not be available for new part-
ners. To align complex beliefs, heterogeneous agents must learn a message policy that translates
from one theory of mind [50] to another to synchronize coordination. Especially when there is
complex information to process and share, new agent partners need to learn to communicate to
work with other agents.

Emergent communication studies the creation of artificial language. Often phrased as a Lewis
game, speakers and listeners learn a set of tokens to communicate complex observations [48].
However, in multi-agent reinforcement learning (MARL), agents suffer from partial observabil-
ity and non-stationarity (due to unaligned value functions) [64], which aims to be solved with
decentralized learning through communication. In the MARL setup, agents, as speakers and
listeners, learn a set of tokens to communicate observations, intentions, coordination, or other
experiences which help facilitate solving tasks [37, 38]. Agents learn to communicate effec-
tively through a backpropagation signal from their task performance [19, 55, 45, 77, 72]. This
has been found useful for applications in human-agent teaming [38, 58, 43, 44], multi-robot
navigation [21], and coordination in complex games such as StarCraft II [69]. Communication
quality has been shown to have a strong relationship with task performance [59], leading to a
multitude of work attempting to increase the representational capacity by decreasing the con-
vergence rates [14, 54, 37, 90, 82]. Yet these methods still create degenerate communication
protocols [38, 37, 21], which are uninterpretable due to joined concepts or null (lack of) infor-
mation, which causes performance degradation.

In this work, we investigate the challenges of learning a messaging lexicon to prepare emer-
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gent communication for social learning (EC4SL) scenarios. We study the following hypotheses:
H1) EC4SL will learn faster through structured concepts in messages leading to higher-quality
solutions, H2) EC4SL aligns the policies of expert heterogeneous agents, and H3) EC4SL en-
ables social shadowing, where an agent learns a communication policy while only observing an
expert agent’s action policy. By learning a communication policy, the agent is encouraged to
develop a more structured understanding of intent, leading to better coordination. The setting is
very realistic among humans and many computer vision and RL frameworks may develop rich
feature spaces for a specific solo task, but have not yet interacted with other agents, which may
lead to failure without alignment.

We enable a compositional emergent communication paradigm, which exhibits clustering
and informativeness properties. We show theoretically and through empirical results that com-
positional language enables independence properties among tokens with respect to referential
information. Additionally, when combined with contrastive learning, our method outperforms
competing methods that only ground communication on referential information. We show that
contrastive learning is an optimal critic for communication, reducing sample complexity for the
unsupervised emergent communication objective. In addition to the more human-like format,
compositional communication is able to create variable-length messages, meaning that we are
not limited to sending insufficiently compressed messages with little information, increasing the
quality of each communication.

In order to test our hypotheses, we show the utility of our method in multi-agent settings
with a focus on teams of agents, high-dimensional pixel data, and expansions to heterogeneous
teams of agents of varying skill levels. Social learning requires agents to explore to observe
and learn from expert cues. We interpolate between this form of social learning and imitation
learning, which learns action policies directly from examples. We introduce a ’social shadowing’
learning approach where we use first-person observations, rather than third-person observations,
to encourage the novice to learn latently or conceptually how to communicate and develop an
understanding of intent for better coordination. The social shadowing episodes are alternated
with traditional MARL during training. Contrastive learning, which works best with positive
examples, is apt for social shadowing. Originally derived to enable lower complexity emergent
lexicons, we find that the contrastive learning objective is apt for agents to develop internal
models and relationships of the task through social shadowing.

The idea is to enable a shared emergent communication substrate (with minimal bandwidth)
to enable future coordination with novel partners. Our contributions are deriving an optimal critic
for a communication policy and showing that the information bottleneck helps extend communi-
cation to social learning scenarios. In real-world tasks such as autonomous driving or robotics,
humans do not necessarily learn from scratch. Rather they explore with conceptually guided
information from expert mentors. In particular, having structured emergent messages reduces
sample complexity, and contrastive learning can help novice agents learn from experts. Emergent
communication can also align heterogeneous agents, a social task that has not been previously
studied.
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5.2 Related Work

5.2.1 Multi-Agent Signaling

Implicit communication conveys information to other agents that is not intentionally commu-
nicated [26]. Implicit signaling conveys information to other agents based on one’s observable
physical position [26]. Implicit signaling may be a form of implicit communication such as
through social cues [31, 62] or explicit communication such as encoded into the MDP through
“cheap talk" [75]. Unlike implicit signaling, explicit signaling is a form of positive signaling [53]
that seeks to directly influence the behavior of other agents in the hopes that the new information
will lead to active listening. Multi-agent emergent communication is a type of explicit signaling
which deliberately shares information. Symbolic communication, a subset of explicit communi-
cation, seeks to send a subset of pre-defined messages. However, these symbols must be defined
by an expert and do not scale to particularly complex observations and a large number of agents.
Emergent communication aims to directly influence other agents with a learned subset of infor-
mation, which allows for scalability and interpretability by new agents.

5.2.2 Emergent Communication

Several methodologies currently exist to increase the informativeness of emergent communica-
tion. With discrete and clustered continuous communication, the number of observed distinct
communication tokens is far below the number permissible [81]. As an attempt to increase the
emergent “vocabulary” and decrease the data required to converge to an informative communi-
cation “language”, work has added a bias loss to emit distinct tokens in different situations [14].
More recent work has found that the sample efficiency can be further improved by grounding
communication in observation space with a supervised reconstruction loss [54]. Information-
maximizing autoencoders aim to maximize the state reconstruction accuracy for each agent.
However, grounding communication in observations has been found to easily satisfy these input-
based objectives while still requiring a myriad more samples to explore to find a task-specific
communication space [37]. Thus, it is necessary to use task-specific information to communicate
informatively. This will enable learned compression for task completion rather than pure com-
pression for input recovery. Other work aims to use the information bottleneck [79] to decrease
the entropy of messages [90]. In our work, we use contrastive learning to increase representation
similarity with future goals, which we show optimally optimizes the Q-function for messages.

5.2.3 Natural Language Inspiration

The properties of the tokens in emergent communication directly affect their informative abil-
ity. As a baseline, continuous communication tokens can represent maximum information but
lack human-interpretable properties. Discrete 1-hot (binary vector) tokens allow for a finite vo-
cabulary, but each token contains the same magnitude of information, with equal orthogonal
distance to each other token. Similar to word embeddings in natural language, discrete proto-
types are an effort to cluster similar information together from continuous vectors [81]. Building

45



on the continuous word embedding properties, VQ-VIB [82], an information-theoretic observa-
tion grounding based on VQ-VAE properties [83], uses variational properties to provide word
embedding properties for continuous emergent tokens. Like discrete prototypes, they exhibit a
clustering property based on similar information but are more informative. However, each of
these message types determines a single token for communication. Tokens are stringed together
to create emergent “sentences”.

5.3 Preliminaries
We formulate our setup as a decentralized, partially observable Markov Decision Process with
communication (Dec-POMDP-Comm). Formally, our problem is defined by the tuple,
⟨S,A,M, T ,R,O,Ω, γ⟩. We define S as the set of states, Ai , i ∈ [1, N ] as the set of actions,
which includes task-specific actions, andMi as the set of communications for N agents. T is
the transition between states due to the multi-agent joint action space T : S × A1, ...,AN → S.
Ω defines the set of observations in our partially observable setting. Partial observability requires
communication to complete the tasks successfully. Oi : M1, ...,MN × Ŝ → Ω maps the
communications and local state, Ŝ, to a distribution of observations for each agent. R defines
the reward function and γ defines the discount factor.

5.3.1 Architecture

The policy network is defined by three stages: Observation Encoding, Communication, and
Action Decoding. The best observation encoding and action decoding architecture is task-
dependent, i.e., using multi-layer perceptrons (MLPs), CNNs [46], GRUs [10], or transformer [87]
layers are best suited to different inputs. The encoder transforms observation and any sequence
or memory information into an encoding H . The on-policy reinforcement learning training uses
REINFORCE [91] or a decentralized version of MAPPO [93] as specified by our experiments.

Our work focuses on the communication stage, which can be divided into three substages:
message encoding, message passing (often considered sparse communication), and message de-
coding. We use the message passing from [37]. For message decoding, we build on a multi-
headed attention framework, which allows an agent to learn which messages are most impor-
tant [1]. Our compositional communication framework defines the message encoding, as de-
scribed in section 5.4.

5.3.2 Objective

Mutual information, denoted as I(X;Y ), looks to measure the relationship between random
variables,

I(X;Y ) = Ep(x,y)

[
log

p(x|y)
p(x)

]
= Ep(x,y)

[
log

p(y|x)
p(y)

]
which is often measured through Kullback-Leibler divergence [42],
I(X;Y ) = DKL(p(x, y)||p(x) ⊗ p(y)). The message encoding substage can be defined as an
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information bottleneck problem, which defines a trade-off between the complexity of informa-
tion (compression, I(X, X̂)) and the preserved relevant information (utility, I(X̂, Y )). The deep
variational information bottleneck defines a trade-off between preserving useful information and
compression [4, 79]. We assume that our observation and memory/sequence encoder provides
an optimal representation H i suitable for sharing relevant observation and intent/coordination in-
formation. We hope to recover a representation Y i, which contains the sufficient desired outputs.

In our scenario, the information bottleneck is a trade-off between the complexity of infor-
mation I(H i;M i) (representing the encoded information exactly) and representing the relevant
information I(M j ̸=i;Y i), which is signaled from our contrastive objective. In our setup, the rel-
evant information flows from other agents through communication, signaling a combination of
the information bottleneck and a Lewis game. We additionally promote complexity through our
compositional independence objective, I(M i

1; . . . ;M
i
L|H i). This is formulated by the following

Lagrangian,

L( p(mi|hi) ) = βuÎ(M
j ̸=i;Y i) − βcÎ(H

i;M i)

− βI Î(M
i
1; . . . ;M

i
L|H i)

where the bounds on mutual information Î are defined in equations 5.1, 5.2, and 5.7. Overall,
our objective is,

J(θ) = max
π
E

[∑
t∈T

∑
i∈N

γtR(st, at) + L( p(mt|ht) )

]
s.t.(at,mt, ht) ∼ πi, st ∼ T (st−1)

5.4 Complexity through Compositional Communication
We aim to satisfy the complexity objective, I(H i,M i), through compositional communication.
In order to induce complexity in our communication, we want the messages to be as non-random
as possible. That is, informative with respect to the input hidden state h. In addition, we want
each token within the message to share as little information as possible with the preceding tokens.
Thus, each additional token adds only informative content. Each token has a fixed length in bits
W . The total sequence is limited by a fixed limit,

∑L
l Wl ≤ S, of S bits and a total of L tokens.

We use a variational message generation setup, which maps the encoded hidden state h to a
message m; that is, we are modeling the posterior, πi

m(ml|h). We limit the vocabulary size to K
tokens, ej ∈ RD, j ∈ [1, K] ⊂ N, where each token has dimensionality D and l ∈ [1, L] ⊂ N.
Each token ml is sampled from a categorical posterior distribution,

πi
m(ml = ek|h) =

1 for k = argmin
j
||ml − ej||2

0 otherwise

such that the message ml is mapped to the nearest neighbor ej . A set of these tokens makes
a message m. To satisfy the complexity objective, we want to use mi to well-represent hi and
consist of independently informative mi

l.
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Figure 5.1: By using contrastive learning, our method seeks similar representations between the
state-message pair and future states while creating dissimilar representations with random states.
Thus satisfying the utility objective of the information bottleneck. The depicted agents are blind
and cannot see other cars.

5.4.1 Independent Information
We derive an upper bound for the interaction information between all tokens.
Proposition 5.4.1. For the interaction information between all tokens, the following upper bound
holds: I(m1; . . . ;mL|h) ≤ Eh∼p(h) [DKL (q(m̂|h)||πi

m(m1|h)⊗ · · · ⊗ πi
m(mL|h))].

The proof is in Appendix 5.8.
Since we want the mutual information to be minimized in our objective, we minimize,

Î(m1; . . . ;mL|h) =
Eh∼p(h)

[
DKL

(
q(m̂|h)||πi

m(m1|h)⊗ · · · ⊗ πi
m(mL|h)

)] (5.1)

5.4.2 Input-Oriented Information
In order to induce complexity in the compositional messages, we additionally want to minimize
the mutual information I(H;M) between the composed message m̂ and the encoded information
h. We derive an upper bound on the mutual information that we use as a Lagrangian term to
minimize.
Proposition 5.4.2. For the mutual information between the composed message and encoded in-
formation, the following upper bound holds: I(H;M) ≤

∑L
l Eh∼p(h) [DKL (q(ml|h)||z(ml)))].

The proof is in Appendix 5.8. Thus, we have our Lagrangian term,

Î(H i,M i) =
L∑
l

Eh∼p(h) [DKL (q(ml|h)||z(ml)))] (5.2)

Conditioning on the input or observation data is a decentralized training objective.

5.4.3 Sequence Length
Compositional communication necessitates an adaptive limit on the total length of the sequence.
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Algorithm 2 Compositional Message Gen.(ht)

1: T ← num_tokens
2: m = 0 {T × dm, dm ← token_size}
3: Q← Q_MLP(ht)
4: V ← V_MLP(ht)
5: for i← 1 to T do
6: K ← K_MLP(m)

7: ĥ = softmin(Q
⊺mean(K,1)√

dk
)⊺V

8: mi ∼ N (ĥ;µ, σ)
9: end for

10: return m

Corollary 5.4.3. Repeat tokens, w, are redundant and can be removed.
Suppose one predicts two arbitrary tokens, wk and wl. Given equation 5.1, it follows that

there is low or near-zero mutual information between wk and wl.
A trivial issue is that the message generator will predict every available token as to follow

the unique token objective. Since the tokens are imbued with input-oriented information (equa-
tion 5.2), the predicted tokens will be based on relevant referential details. Thus, it follows that
tokens containing irrelevant information will not be chosen.

A nice optimization objective that follows from corollary 5.4.3 is that one can use self-
supervised learning with an end-of-sequence (EOS) token to limit the variable total length of
compositional message sequences.

H(mEOS,ml) = −π(mEOS) log(π(ml)) (5.3)

5.4.4 Message Generation Architecture

Now, we can define the pipeline for message generation. The idea is to create an architecture
that can generate features to enable independent message tokens. We expand each compressed
token into the space of the hidden state h (1-layer linear expansion) since each token has a natural
embedding in R|h|. Then, we perform attention using a softmin to help minimize similarity
with previous tokens and sample the new token from a variational distribution. See algorithm 2
for complete details. During execution, we can generate messages directly due to equation 5.1,
resolving any computation time lost from sequential compositional message generation.

5.5 Utility through Contrastive Learning

First, note that our Markov Network is as follows: Hj → M j → Y i ← H i. Continue to denote
i as the agent identification and j as the agent ID such that j ̸= i. We aim to satisfy the utility
objective of the information bottleneck, I(M j;Y i), through contrastive learning as shown in
figure 5.1.
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Figure 5.2: An example of two possible classes, person and horse, from a single observation in
the Pascal VOC game.

Proposition 5.5.1. Utility mutual information is lower bounded by the contrastive NCE-binary
objective, I(M,Y ) ≥ log σ(f(s,m, s+f )) + log σ(1− f(s,m, s−f )).

The proof is in Appendix 5.8.
This result shows a need for gradient information to flow backward across agents along com-

munication edge connections.

5.6 Experiments and Results

We condition on inputs, especially rich information (such as pixel data), and task-specific in-
formation. When evaluating an artificial language in MARL, we are interested in referential
tasks, in which communication is required to complete the task. With regard to intent-grounded
communication, we study ordinal tasks, which require coordination information between agents
to complete successfully. Thus, we consider tasks with a team of agents to foster messaging
that communicates coordination information that also includes their observations. To test H1,
structuring emergent messages enables lower complexity, we test our methodology and analyze
the input-oriented information and utility capabilities. Next, we analyze the ability of hetero-
geneous agents to understand differing communication policies (H2)). Finally, we consider the
effect of social shadowing (H3), in which agents solely learn a communication policy from an
expert agent’s action policy. We additionally analyze the role of offline reinforcement learning
for emergent communication in combination with online reinforcement learning to further learn
emergent communication alongside an action policy. We evaluate each scenario over 10 seeds.

5.6.1 Environments

Blind Traffic Junction We consider a benchmark that requires both referential and ordinal ca-
pabilities within a team of agents. The blind traffic junction environment [72] requires multiple
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Table 5.1: Beta ablation: Messages are naturally sparse in bits due to the complexity loss. Re-
dundancy measures the capacity for a bijection between the size of the set of unique tokens and
the enumerated observations and intents. Min redundancy is 1.0 (a bijection). Lower is better.

β Success Message Size in Bits Redundancy
0.1 1.0 64 1.0
0.01 .996 69.52 1.06
0.001 .986 121.66 2.06
0 .976 147.96 2.31
non-compositional .822 512 587

agents to navigate a junction without any observation of other agents. Rather, they only ob-
serve their own state location. Ten agents must coordinate to traverse through the lanes without
colliding into agents within their lane or in the junction. Our training uses REINFORCE [91].

Pascal VOC Game We further evaluate the complexity of compositional communication with
a Pascal VOC [16]. This is a two-agent referential game similar to the Cifar game [54] but
requires the prediction of multiple classes. During each episode, each agent observes a random
image from the Pascal VOC dataset containing exactly two unique labels. Each agent must
encode information given only the raw pixels from the original image such that the other agent
can recognize the two class labels in the original image. An agent receives a reward of 0.25 per
correctly chosen class label and will receive a total reward of 1 if both agents guess all labels
correctly. See figure 5.2. Our training uses heterogeneous agents trained with PPO (modified
from MAPPO [93] repository). For simplicity of setup, we consider images with exactly two
unique labels from a closed subset of size five labels of the original set of labels from the Pascal
VOC data. Furthermore, these images must be of size 375 × 500 pixels. Thus, the resultant
dataset comprised 534 unique images from the Pascal VOC dataset.

5.6.2 Baselines
To evaluate our methodology, we compare our method to the following baselines: (1) no-comm,
where agents do not communicate; (2) rl-comm, which uses a baseline communication method
learned solely through policy loss [72]; (3) ae-comm, which uses an autoencoder to ground
communication in input observations [54]; (4) VQ-VIB, which uses a variational autoencoder
to ground discrete communication in input observations and a mutual information objective to
ensure low entropy communication [82].

5.6.3 Input-Oriented Information Results
We provide an ablation of the loss parameter β in table 5.1 in the blind traffic junction scenario.
When β = 0, we use our compositional message paradigm without our derived loss terms. We
find that higher complexity and independence losses increase sample complexity. When β = 1,
the model was unable to converge. However, when there is no regularization loss, the model
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Figure 5.3: Blind Traffic Junction Left: Our method uses compositional complexity and con-
trastive utility to outperform other baselines in terms of performance and sample complexity. The
legend provides the mean ± variance of the best performance. Right: Top: success, contrastive,
and complexity losses for our method. Right, Bottom: success, autoencoder loss for ae-comm
with supervised pretraining.

performs worse (with no guarantees about referential representation). We attribute this to the
fact that our independence criteria learns a stronger causal relationship. There are fewer spurious
features that may cause an agent to take an incorrect action.

In order to understand the effect of the independent concept representation, we analyze the
emergent language’s capacity for redundancy. A message token ml is redundant if there exists
another token mk that represents the same information. With our methodology, the emergent
‘language’ converges to the exact number of observations and intents required to solve the task.
With a soft discrete threshold, the independent information loss naturally converges to a discrete
number of tokens in the vocabulary. Our β ablation in table 5.1 yields a bijection between each
token in the vocabulary and the possible emergent concepts, i.e., the enumerated observations
and intents. Thus for β = 0.1, there is no redundancy.

Sparse Communication In corollary 5.4.3, we assume that there is no mutual information
between tokens. In practice, the loss may only be near-zero. Our empirical results yield inde-
pendence loss around 1e− 4. In table 5.1, the size of the messages is automatically compressed
to the smallest size to represent the information. Despite a trivially small amount of mutual in-
formation between tokens, our compositional method is able to reduce the message size in bits
by 2.3x using our derived regularization, for a total of an 8x reduction in message size over non-
compositional methods such as ae-comm. Since the base unit for the token is a 32-bit float, we
note that each token in the message may be further compressed. We observe that each token uses
three significant digits, which may further compress tokens to 10 bits each for a total message
length of 20 bits.
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5.6.4 Communication Utility Results

Due to coordination in MARL, grounding communication in referential features is not enough.
Finding the communication utility requires grounding messages in ordinal information. Overall,
figure 5.3 shows that our compositional, contrastive method outperforms all methods focused on
solely input-oriented communication grounding. In the blind traffic junction, our method yields a
higher average task success rate and is able to achieve it with a lower sample complexity. Training
with the contrastive update tends to spike to high success but not converge, often many episodes
before convergence, which leaves area for training improvement. That is, the contrastive update
begins to find aligned latent spaces early in training, but it cannot adapt the methodology quickly
enough to converge. The exploratory randomness of most of the early online data prevents
exploitation of the high utility f+ examples. This leaves further room for improvement for an
adaptive contrastive loss term.

Regularization loss convergence After convergence to high task performance, the autoen-
coder loss increases in order to represent the coordination information. This follows directly
from the information bottleneck, where there exists a tradeoff between utility and complex-
ity. However, communication, especially referential communication, should have an overlap
between utility and complexity. Thus, we should seek to make the complexity loss more convex.
Our compositional communication complexity loss does not converge before task performance
convergence. While the complexity loss tends to spike in the exploratory phase, the normal-
ized value is very small. Interestingly, the method eventually converges as the complexity loss
converges below a normalized 0.3. Additionally, the contrastive loss tends to decrease mono-
tonically and converges after the task performance converges, showing a very smooth decrease.
The contrastive f− loss decreases during training, which may account for success spikes prior
to convergence. The method is able to converge after only a moderate decrease in the f+ loss.
This implies empirical evidence that the contrastive loss is an optimal critic for messaging. See
figure 5.3.

5.6.5 Heterogeneous Alignment Through Communication

In order to test the heterogeneous alignment ability of our methodology to learn higher-order
concepts from high-dimensional data, we analyze the performance on the Pascal VOC game. We
compare our methodology against ae-comm to show that concepts should consist of independent
information directly from task signal rather than compression to reconstruct inputs. That is,
we show an empirical result on pixel data to verify the premise of the information bottleneck.
Our methodology significantly outperforms the observation-grounded ae-comm baseline, as
demonstrated by figure 5.4. The ae-comm methodology, despite using autoencoders to learn
observation-grounded communication, performs only slightly better than no-comm. On the
other hand, our methodology is able to outperform both baselines significantly. It is important
to note that based on figure 5.4, our methodology is able to guess more than two of the four
labels correctly across the two agents involved, while the baseline methodologies struggle to
guess exactly two of thew four labels consistently. This can be attributed to our framework being
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Figure 5.4: Pascal VOC Game Representing compositional concepts from raw pixel data in
images to communicate multiple concepts within a single image. Our method significantly out-
performs ae-comm and no-comm due to our framework being able to learn composable, inde-
pendent concepts.

able to learn compositional concepts that are much more easily discriminated due to mutual
independence.

5.6.6 Social Shadowing

Critics of emergent communication may point to the increased sample complexity due to the
dual communication and action policy learning. In the social shadowing scenario, heteroge-
neous agents can learn to generate a communication policy without learning the action policy of
the watched expert agents. To enable social shadowing, the agent will alternate between a batch
of traditional MARL (no expert) and (1st-person) shadowing an expert agent performing the task
in its trajectory. The agent only uses the contrastive objective to update its communication policy
during shadowing. In figure 5.5, the agent that performs social shadowing is able to learn the ac-
tion policy with almost half the sample complexity required by the online reinforcement learning
agent. Our results show that the structured latent space of the emergent communication learns
socially benevolent coordination. This tests our hypothesis that by learning communication to
understand the actions of other agents, one can enable lower sample complexity coordination.
Thus, it mitigates the issues of solely observing actions.
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Figure 5.5: Blind Traffic Junction Social shadowing enables significantly lower sample com-
plexity when compared to traditional online MARL.

5.7 Discussion
By using our framework to better understand the intent of others, agents can learn to commu-
nicate to align policies and coordinate. Any referential-based setup can be performed with a
supervised loss, as indicated by the instant satisfaction of referential objectives. Even in the Pas-
cal VOC game, which appears to be a purely referential objective, our results show that intelligent
compression is not the only objective of referential communication. The emergent communica-
tion paradigm must enable an easy-to-discriminate space for the game. In multi-agent settings,
the harder challenge is to enable coordination through communication. Using contrastive com-
munication as an optimal critic aims to satisfy this, and has shown solid improvements. Since
contrastive learning benefits from good examples, this method is even more powerful when there
is access to examples from expert agents. In this setting, the communication may be boot-
strapped, since our optimal critic has examples with strong signals from the ’social shadowing’
episodes.

Additionally, we show that the minimization of our independence objective enables tokens
that contain minimal overlapping information with other tokens. Preventing trivial communica-
tion paradigms enables higher performance. Each of these objectives is complementary, so they
are not trivially minimized during training, which is a substantial advantage over comparative
baselines. Unlike prior work, this enables the benefits of training with reinforcement learning in
multi-agent settings.

In addition to lower sample complexity, the mutual information regularization yields addi-
tional benefits, such as small messages, which enables the compression aspect of sparse com-
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munication. From a qualitative point of view, the independent information also yields discrete
emergent concepts, which can be further made human-interpretable by a post-hoc analysis [92].
This is a step towards white-box machine learning in multi-agent settings. The interpretability
of this learned white-box method could be useful in human-agent teaming as indicated by prior
work [38]. The work here will enable further results in decision-making from high-dimensional
data with emergent concepts. The social scenarios described are a step towards enabling a zero-
shot communication policy. This work will serve as future inspiration for using emergent com-
munication to enable ad-hoc teaming with both agents and humans.

5.8 Proofs
Proposition 5.4.1 For the interaction information between all tokens, the following upper bound
holds: I(m1; . . . ;mL|h) ≤ Eh∼p(h) [DKL (q(m̂|h)||πi

m(m1|h)⊗ · · · ⊗ πi
m(mL|h))].

Proof. Starting with the independent information objective, we want to minimize the interaction
information,

I(m1; . . . ;mL|h) =∫
. . .

∫
fm(m1, . . . ,mL, h)dh dm1 . . . dmL

which defines the conditional mutual information between each token and,

fm(∗) = p(h)p(m1; . . . ;mL|h) log
p(m1; . . . ;mL|h)∏L

l p(ml|h)
(5.4)

Let πi
m(ml|h) be a variational approximation of p(ml|h), which is defined by our message

encoder network. Given that each token should provide unique information, we assume in-
dependence between ml. Thus, it follows that our compositional message is a vector, m =
[m1, . . . ,mL], and is jointly Gaussian. Moreover, we can define q(m̂|h) as a variational approx-
imation to p(m|h) = p(m1; . . . ,mL|h). We can model q with a network layer and define its loss
as ||m̂−m||2. Thus, transforming equation 5.4 into variational form, we have,

gm(m1, . . . ,mL, h) = p(h)q(m̂|h) log q(m̂|h)∏L
l π

i
m(ml|h)

Since Kullback-Leibler divergence DKL is non-negative,

DKL

(
q(m̂|h)||πi

m(m1|h)⊗ · · · ⊗ πi
m(mL|h)

)
≥ 0,

it follows that ∫
q(m̂|h) log q(m̂|h)dm̂ ≥

∫
q(m̂|h) log

L∏
l

πi
m(ml|h)dm̂

Thus, we can bound our interaction information,

I(m1; . . . ;mL|h) ≤
∫

. . .

∫
gm(∗)dhdm1 . . . dmL

= Eh∼p(h)

[
DKL

(
q(m̂|h)||πi

m(m1|h)⊗ · · · ⊗ πi
m(mL|h)

)]
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Proposition 5.4.2 For the mutual information between the composed message and encoded
information, the following upper bound holds: I(H;M) ≤

∑L
l Eh∼p(h) [DKL (q(ml|h)||z(ml)))].

Proof. By definition of mutual information between the composed messages M and the encoded
observations H , we have,

I(H;M) =

∫ ∫
p(h)p(m̂|h) log p(m̂|h)

p(m̂)
dm̂ dh

Substituting q(m̂|h) for p(m̂|h), the same KL Divergence identity, and defining a Gaussian ap-
proximation z(m̂) of the marginal distribution p(m̂), it follows that,

I(H;M) ≤
∫ ∫

p(h)q(m̂|h) log q(m̂|h)
z(m̂)

dm̂ dh

In expectation of equation 5.1, we have,

q(m̂|h) = q(m̂|h) =
L∏
l

πi
m(ml|h).

This implies that, for m̂ = [m1, . . . ,mL], there is probabilistic independence between mj,mk, j ̸=
k. Thus, expanding, it follows that,

I(H;M) ≤
L∑
l

∫ ∫
p(h)q(ml|h) log

q(ml|h)
z(ml)

dml dh

=
L∑
l

Eh∼p(h) [DKL (q(ml|h)||z(ml)))]

where z(ml) is a standard Gaussian.

Proposition 5.5.1. Utility mutual information is lower bounded by the contrastive NCE-
binary objective, I(M,Y ) ≥ log σ(f(s,m, s+f )) + log σ(1− f(s,m, s−f )).

Proof. We suppress the reliance on h since this is directly passed through. By definition of
mutual information, we have,

I(M j;Y i) =

∫ ∫
p(m)πR+(y|m) log

πR+(y|m)

πR−(y)
dmdy

Our network model learns πR+(y|m) from rolled-out trajectories, R+, using our policy. The
prior of our network state, πR−(y), can be modeled from rolling out a random trajectory, R−.
Unfortunately, it is intractable to model πR+(y|m) and πR−(y) directly during iterative learning,
but we can sample y+ ∼ πR+(y|m) and y− ∼ πR−(y) directly from our network during training.
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It has been shown that log p(y|m) provides a bound on mutual information [67],

I(M j;Y i) ≥ E

[
1

K

K∑
k=1

log πR+(yk|mk) + log πR−(yk)

]
(5.5)

with the expectation over
∏

l p(ml, yl). However, we need a tractable understanding of the infor-
mation Y .

Lemma 5.8.1. πR−(y) = p(s′ = s−f |y).

In the information bottleneck, Y represents the desired outcome. In our setup, y is coor-
dination information that helps create the desired output, such as any action a−. This implies,
y =⇒ a−. Since the transition is known, it follows that a− =⇒ s−f , a random future state.
Thus, we have, πR−(y) = p(s′ = s−f |y).

Lemma 5.8.2. πR+(y|m) = p(s′ = s+f |y,m).

This is similar to the proof for lemma 5.8.1, but requires assumptions on messages m from
the emergent language. We note that when m is random, the case defaults to lemma 5.8.1.
Thus, we assume we have at least input-oriented information in m given sufficiently satisfying
equation 5.2. Given a sufficient emergent language, it follows that y =⇒ a+, where a+ is an
intention action based on m. Similarly, since the transition is known, a+ =⇒ s+f , a desired goal
state along the trajectory. Thus, we have, πR+(y|m) = p(s′ = s+f |y,m).

Recall the following (as shown in [17]), which we have adapted to our communication ob-
jective,

Proposition 5.8.3 (rewards → probabilities). The Q-function for the goal-conditioned reward
function rg(st,mt) = (1 − γ)p(s′ = sg|yt) is equivalent to the probability of state sg under the
discounted state occupancy measure:

Qπ
sg(s,m) = pπ(s+f = sg|y) (5.6)

and

Lemma 5.8.4. The critic function that optimizes equation 5.5 is a Q-function for the goal-
conditioned reward function up to a multiplicative constant

1
p(sf )

: exp(f ∗(s,m, sf ) =
1

p(sf )
Qπ

sf
(s,m).

The critic function f(s,m, sf ) = y⊺enc(sf ) represents the similarity between the encoding
y = enc(s,m) and the encoding of the future rollout sf .

Given lemmas 5.8.1 5.8.2 5.8.4 and proposition 5.8.3, it follows that equation 5.5 is the NCE-
binary [56] (InfoMAX [27]) objective,

Î(M j, Y i) = log
(
σ(f(s,m, s+f ))

)
+ log

(
1− σ(f(s,m, s−f ))

)
(5.7)

which lower bounds the mutual information, I(M j, Y i) ≥ Î(M j, Y i). The critic function is
unbounded, so we constrain it to [0, 1] with the sigmoid function, σ(∗).
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Chapter 6

Conclusion

Communication is necessary for optimal performance of multi-agent teams. We have shown that
human interpretability and workload is dependent on the representational power of the emer-
gent communication space. We have proposed a method for multi-agent individualized sparse
communication. We reframed sparsity as a representation learning problem through the informa-
tion bottleneck problem. We have shown that through training a communication-action policy
grounded with an autoencoder and analysis during execution of non-sparse messaging, one can
exhibit lossless zero-shot sparsity. That is, the sparsity objective may be achieved without any
cost of performance with no additional reinforcement learning training. Additionally, we pro-
duce individualized regularization to limit performance loss with few-shot sparsity. This allows
our model to adhere to messaging constraints in over-constrained bandwidth scenarios. We have
also shown that a mutual information objective can be used to shrink the total size of messages
by using a compositional setup.

By using our framework to better understand the intent of others, agents can learn to com-
municate to align policies and coordinate. Any referential-based setup can be performed with
a supervised loss, as indicated by the instant satisfaction of referential objectives. Our results
show that intelligent compression is not the only objective of referential communication. The
emergent communication paradigm must enable an easy-to-discriminate space for the game. In
multi-agent settings, the harder challenge is to enable coordination through communication. Us-
ing contrastive communication as an optimal critic aims to satisfy this, and has shown solid im-
provements. Since contrastive learning benefits from good examples, this method is even more
powerful when there is access to examples from expert agents. In this setting, the communication
may be bootstrapped, since our optimal critic has examples with strong signals from the ’social
shadowing’ episodes.

Additionally, we show that the minimization of our independence objective enables tokens
that contain minimal overlapping information with other tokens. Preventing trivial communica-
tion paradigms enables higher performance. Each of these objectives is complementary, so they
are not trivially minimized during training, which is a substantial advantage over comparative
baselines. Unlike prior work, this enables the benefits of training with reinforcement learning in
multi-agent settings.
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6.1 Future Work
The future of scalable agent learning will require the use of emergent communication. All multi-
agent learning will be learned without the explicit use of any one team. This will allow for social
learning of skills from other agents and ad-hoc teaming with any arbitrary agent or human. The
decentralized training policy of these multi-agent methods will also enable scalability. The social
scenarios described are a step towards enabling a zero-shot communication policy. This work
will serve as future inspiration for using emergent communication to enable ad-hoc teaming with
both agents and humans. While much of this work is still in its infancy, the results shown in this
thesis motivate a clear path towards arbitrary decision-making and teaming through the use of
purposeful emergent communication.
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