
Distributional Distance Classifiers for
Goal-Conditioned Reinforcement Learning

Ravi Tej Akella

CMU-RI-TR-23-27

July 26, 2023

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Professor Jeff Schneider, chair

Professor David Held
Homanga Bharadhwaj

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright © 2023 Ravi Tej Akella. All rights reserved.

Keywords: Reinforcement Learning, Goal-Conditioned, Dynamical Distance
Learning, Contrastive Learning.

To my grandmother, P. Sita Mahalakshmi.

iv

Abstract

Autonomous systems are increasingly being deployed in stochastic real-
world environments. Often, these agents are trying to find the shortest
path to a commanded goal. But what does it mean to find the shortest
path in stochastic environments, where every strategy has a non-zero
probability of failing? At the core of this question is a conflict between
two seemingly-natural notions of planning: maximizing the probability of
reaching a goal state, and minimizing the expected number of steps to
reach that goal state. Prior reinforcement learning (RL) methods based on
minimizing the steps to a goal make an implicit assumption: that the goal
is always reached, at least within some finite horizon. This assumption is
violated in practical settings and can lead to very suboptimal strategies.

In this work, we bridge the gap between these two notions of planning
by estimating the probability of reaching the goal at different future
timesteps. This is not the same as estimating the distance to the goal –
rather, probabilities convey uncertainty in ever reaching the goal at all.
We then propose a practical goal-conditioned RL algorithm, Distributional
NCE, for estimating these probabilities. Our value function will resemble
that used in distributional RL, but will be used to solve (reward-free)
goal-reaching tasks rather than (single) reward-maximization tasks. Not
only does Distributional NCE outperform state-of-the-art contrastive
RL algorithms on standard goal-reaching tasks, but it can also be used
to estimate the distribution of dynamical distances to the goal. Taken
together, we believe that our results provide a cogent framework for
thinking about probabilities and distances in stochastic settings, along
with a practical and effective algorithm for goal-conditioned RL.

v

vi

Acknowledgments

Much of the research in this thesis report would have been impossible
without my amazing collaborators, colleagues, and mentors. I would like
to start by thanking my advisor Prof. Jeff Schneider for his constant
support and guidance throughout my Master’s degree. Jeff gave me the
freedom to pursue my own research direction, challenged me to tackle more
ambitious research problems, and constantly critiqued my research ideas.
I have learned so much about reinforcement learning (RL), autonomous
driving, and robotics from Jeff during the 1:1 meetings and by attending
his self-driving reading group.

I would also like to extend my sincere appreciation to my collaborators,
Ben Eysenbach and Prof. Ruslan Salakhutdinov, whose expertise and
diverse perspectives have enriched the outcomes of this study. In particular,
I feel fortunate to have received guidance from Ben. Not only is Ben the
pioneer of the contrastive goal-conditioned RL paradigm that lays the
foundation for my thesis research, but he is also a rockstar mentor. I am
grateful for all the fruitful discussions that have challenged and expanded
my understanding of the subject.

I would like to acknowledge Piotr Bartosiewicz and Dr. Predrag Punosevac
for maintaining the AutonLab computing infrastructure, used for running
all the experiments in this report. I am also indebted to the members
of the DeadFast RACER team, who have provided their assistance and
support throughout the course of this research. Special thanks to Dr. Jose
Gonzalez, Mukhtar Maulimov, Charles Noren, Josh Spisak, and Ryan
Darnley. Their expertise, professionalism, and willingness to help have
been invaluable in facilitating the smooth progress of this study.

At CMU, I am humbled and honored to have had the opportunity to work
alongside some smart and talented colleagues. I will always remember
the long debates and stimulating discussions with Siddarth Venkatraman,
Sashank Tirumala, Soumith Udatha, and Shivesh Khaitan. Some of
these discussions led to successful research projects, and one of them
resulted in a full-fledged conference paper that I am super proud of.
Masters at CMU can be stressful, and I am grateful for all the support
and motivation from the RI family, especially Meghana Reddy Ganesina,
Anirudh Chakravarthy, Sri Nitchith Akula, Vanshaj Chowdhary, Nitheesh

vii

K Lakshminarayana, Naveen Venkat, Neha Boloor, and Shirsendu Halder.

Saving the last for the best, I am profoundly grateful to my parents and
family. Their constant support and understanding have been my driving
force during challenging times. I dedicate this thesis to them for their
unwavering love, encouragement, and belief in me.

viii

Funding

This work was supported by the DARPA Robotic Autonomy in
Complex Environments with Resiliency (RACER) program under grant
HR001121C0189.

ix

x

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Outline . 2

2 Background & Related Work 5
2.1 Noise Constrastive Estimation . 5
2.2 Goal-Conditioned Reinforcement Learning 6

2.2.1 Hindsight Experience Replay 6
2.2.2 Contrastive Goal-Conditioned RL 6
2.2.3 Model-based RL and Planning 7

2.3 Distances in Reinforcement Learning 8
2.4 Distributional Reinforcement Learning 8

3 Problem Statement 11
3.1 MDP Formulation . 11

4 The Perils of Monte Carlo Distance Functions 13
4.1 Toy example illustrating pathological behavior 13
4.2 Distance Regression is secretly learning a Normalized Classifier 16
4.3 Connection between Maximizing Likelihood and Stochastic Shortest

Path Methods . 17

5 The Fix: Estimate Probabilities, not Distances 21
5.1 Our Method: Distributional NCE . 21

5.1.1 Getting Distances from Distributional NCE 23
5.1.2 Convergence Proof . 24

5.2 Self-Supervised Temporal Consistency Objective 24
5.3 A Practical Algorithm . 25

5.3.1 Introducing a catch-all bin . 26
5.3.2 Generalizing 1-step to Multi-step Temporal Consistency 27

xi

6 Experimental Details 31
6.1 Task Descriptions . 31
6.2 Implementation Details . 33

6.2.1 Distributional Critic Implementation 33
6.2.2 Network Architecture . 34
6.2.3 Hyperparameters . 34

7 Results and Analysis 37
7.1 Comparison with distance regression 38
7.2 Comparing to prior goal-conditioned RL algorithms 39
7.3 Comparing to prior (non-contrastive) GCRL algorithms 40
7.4 Analyzing distributional NCE’s predictions 42
7.5 How well does consistency regularization work in practice? 43
7.6 Performance of Distributional NCE with different number of bins . . 44
7.7 Comparison with the last-layer ensemble baseline 45
7.8 Exploring the loss landscape of Distributional Classifiers 46
7.9 Performance on driving task . 47

8 Conclusions 51

Bibliography 53

xii

List of Figures

4.1 Toy MDPs to illustrate the pathological behaviors exhibited by MC
distance regression. Solid lines and dashed lines denote deterministic
and stochastic state transitions, respectively. 14

4.2 MC distances and optimal negative Q-values at disagreement for 1 → 4
on the toy MDP in Fig. 4.1(a) with γ = 0.99 and p = 0.1. The y-axis
has a logarithmic scale. 15

6.1 Illustration of the goal-reaching tasks used in our experiments. The
top row is a sample state at the time of initialization, and the bottom
row is the corresponding goal state. 32

7.1 Distributional NCE is able to solve all the goal-reaching tasks with a
good success rate, whereas the MC distance functions fail at almost
all the tasks. This result supports our hypothesis that MC distances
are not a good choice for the Q-function of goal-conditioned RL tasks. 38

7.2 Comparison with baselines. Distributional NCE outperforms the
Contrastive NCE [14] and C-Learning [13] in all but the easiest tasks
(fetch_reach, fetch_reach_image). Applying temporal consistency on
top of Distributional NCE accelerates learning and boosts asymptotic
performance. 39

7.3 Comparison with (non-contrastive) RL baselines. Distributional
NCE methods outperform the prior (non-contrastive) GCRL baselines,
TD3+HER [2], Goal-conditioned behavior cloning (GCBC) [9] and
model-based approach [8, 10, 24], across all the tasks. 40

7.4 Visualizing the probabilistic distance predictions for future goals that
are 5 (Left) and 10 (Right) steps away, on the fetch_push task. These
results confirm that the distance predictions offered by distributional
NCE correlate well with the true distance and are well-calibrated in
uncertainty. 41

7.5 The predictions from distributional NCE can be converted into a
distance classifier by normalization. See text for details. 42

xiii

7.6 Multi-step temporal consistency regularization is significantly more
effective than 1-step consistency regularization. In some cases, 1-step
consistency regularization actually hurts the performance of the Dis-
tributional NCE algorithm, but Multi-step consistency almost always
improves the performance. 43

7.7 Varying the number of classifier bins has little effect on the performance
of Distributional NCE for sawyer_push task. 44

7.8 Distributional Critic trained with Contrastive NCE (last layer ensem-
ble baseline) does not match Distributional NCE, highlighting the
importance of the training algorithm over architectural choice. 45

7.9 Visualization of the training losses and gradient norms for the actor
and critic networks over the course of training. We do not see a huge
difference in critic loss or gradients but observe that the actor loss is
consistently lower and has a smaller gradient norm for Distributional
NCE relative to Contrastive NCE. 49

xiv

List of Tables

6.1 Environment details for the selected goal-reaching tasks. 33
6.2 A list of important hyperparameters used in our method and the

baselines. 35

7.1 Limitations of reward-free setting: Maximizing the likelihood of reach-
ing the goal is a poor incentive to reach the goal sooner. The results
are averaged over 100 trajectories across three random seeds. 48

xv

xvi

Chapter 1

Introduction

1.1 Motivation

The reinforcement learning (RL) community has seen growing excitement in goal-
conditioned methods in recent years. These methods promise a way of making RL
self-supervised: RL agents can learn meaningful (goal-reaching) behaviors from data
or interactions without reward labels. This excitement is reinforced by the fact that
goal-conditioned RL also seems to suggest effective ways of learning representations
that are directly aligned with the RL objective [14, 31]. However, for a long time,
there has been a sticking point in both discussion and algorithmic development of
goal-conditioned RL: what is the objective?

Perhaps the most natural objective is to minimize the hitting time, the expected
number of steps required to reach a goal. Indeed, this is the basis for much of
the classical work in this area (often under the guise of stochastic shortest-path
problems [4]), as well as more recent work based on dynamical distance learning [1, 21,
50]. However, these methods implicitly assume that the goal state is always reached;
without this assumption, the expected hitting time can be infinite. Nonetheless, RL
researchers have proposed a number of methods to optimize this “natural” notion of
distance, often with methods that first estimate this distance and then select actions
that minimize this distance, methods that often achieve excellent results.

In this work, we attempt to reconcile this tension with the steps-to-goal objective.
We first lay out a few subtle issues with this objective. We show that it can lead to

1

1. Introduction

suboptimal behavior, both on analytic examples and on continuous-control bench-
marks. What, then, is the right way to think about hitting times for goal-conditioned
tasks? We advocate for taking a probabilistic approach: estimate the probability
of reaching the goal after exactly t steps. We extend prior work that estimates the
discounted stationary distribution of future goals via contrastive learning. We do
this by learning a classifier that explicitly predicts the probability of reaching the
goal at specific timesteps. By estimating the probability at different values of t, we
are able to capture the local temporal structure and thereby reason about when the
goal will be reached. But, importantly, these probabilities do not assume that the
goal will always be reached, i.e., these probabilities remain well-defined in settings
with stochastic policies and dynamics. Our analysis shows that, in deterministic
environments, these two objectives are closely related.

Based on this analysis, we propose a new algorithm for goal-conditioned RL,
which estimates the probability of reaching the goal for varying values of t. Our
method can be viewed as a distributional extension to recent work on contrastive
RL. Our experiments show that this framing of “distances as probabilities” yields
substantially higher performance than simply regressing to distances. Compared to
prior contrastive RL methods, our distributional approach achieves higher performance
on both low-dimensional and image-based goal-reaching tasks. Finally, based on our
analysis, we propose an auxiliary objective based on a self-consistency identity that
these probabilities should satisfy. Augmenting our goal-conditioned methods with
this auxiliary objective can further boost performance. Taken together, our analysis
not only provides a better algorithm for goal-conditioned RL, but also provides a
mental model to reason about “distances” in settings with uncertainty.

1.2 Thesis Outline

This thesis starts with a brief primer on related works from the literature in Chapter 2.
Next, we describe the goal-conditioned reinforcement learning problem setting in
Chapter 3. Having laid down the fundamentals for the study, we begin by outlining
a problem with dynamical distance learning approaches in Chapter 4 that can
result in very suboptimal behavior. Subsequently, in Chapter 5, we propose our fix:
Distributional NCE, a principled goal-conditioned RL algorithm with convergence

2

1. Introduction

guarantees. In Chapter 6, we describe (i) the goal-reaching tasks (Sec. 6.1) that were
used in our study to test our hypotheses and (ii) the implementation details (Sec. 6.2)
for running the proposed Distributional NCE algorithm in practice. Chapter 7
describes the hypotheses that were tested in this study, the results of our experiments,
and the corresponding analysis. Lastly, Chapter 8 concludes with a summary of our
work.

3

1. Introduction

4

Chapter 2

Background & Related Work

2.1 Noise Constrastive Estimation

Noise Contrastive Estimation (NCE) [19] is a simple idea to model an unknown
probability density function up to proportionality, using samples from this density. It
relies on the fact that a good density model needs to be able to distinguish positive
samples under the distribution against noise examples. Imagine training a binary
classifier to distinguish samples under the true distribution p+(x) against negative
examples drawn from a noise distribution p−(x) using the cross-entropy loss:

Ex+∼p+,x−∼p− [logC(x+) + log(1− C(x−))]

It can be seen that the Bayes optimal classifier for the above-mentioned training
objective is as follows:

C∗(x) =
p+(x)

p+(x) + p−(x)
;

C∗(x)

1− C∗(x)
=

p+(x)

p−(x)
.

Thus, the learned classifier approximates the p+(x) distribution up to a proportionality
defined by the noise distribution p−(x).

5

2. Background & Related Work

2.2 Goal-Conditioned Reinforcement Learning

Goal-conditioned RL (GCRL) is one of the long-standing problems in RL, with
roots back to the early days of AI [38]. GCRL can be viewed as a multi-task RL
problem, where the objective is to learn a policy that is capable of reaching multiple
goals. In the recent decade, researchers have proposed a wide array of successful
approaches for goal-conditioned RL, including those based on conditional imitation
learning [17, 30, 47], temporal difference learning [11], quasimetric learning [28, 52],
contrastive learning [13, 14] and planning [32, 49]. More recent approaches employ a
form of hindsight relabeling [2] to improve sample efficiency, or even as a basis for
the entire algorithm [14].

2.2.1 Hindsight Experience Replay

Imagine a goal-reaching task with sparse 0-1 rewards, where the agent only receives a
reward of 1 when it reaches the commanded goal. With such low supervision, naive
reinforcement learning approaches either completely fail or end up requiring a large
number of samples to solve the task. However, even when the RL agent fails to reach
the commanded goal, it still ends up at a different goal. This information can be
used to effectively train an off-policy algorithm by hindsight relabeling a subset of
unsuccessful trajectories with reached goals. Hindsight Experience Replay (HER)
[2] has emerged as a very effective technique for increasing the supervision in goal-
reaching tasks, and can significantly reduce the number of samples required to solve
the task. Hindsight relabeling can be combined with any off-policy algorithm [2] and
often provides a significant boost in sample efficiency. Moreover, simple supervised
learning methods such as goal-conditioned behavior cloning (GCBC) [9, 27] that are
based on imitating suboptimal hindsight-relabelled goals can be very successful for
some goal-reaching tasks.

2.2.2 Contrastive Goal-Conditioned RL

In most RL problems, the Q-function is trained to minimize the squared Bellman error
objective. Interestingly, in sparse 0-1 reward goal-reaching tasks, the Q-function is sim-
ply the discounted future state occupancy distribution, i.e., Q(s, a, g) = pπ(.|.,g)(s+ =

6

2. Background & Related Work

g|s, a). As a result, the Q-function can also be approximated using density estimation
techniques. Contrastive NCE [14], a prior contrastive RL approaches uses this insight
to train a binary classifier using noise contrastive estimation (NCE) objective (Sec. 2.1,
[19]) as follows:

max
C

Ep(st,at)

[
Eg∼pπ(st+|st,at)[logC(st, at, g)] + Ep(g)[log(1− C(st, at, g))]

]
.

The above-mentioned objective is very straightforward to implement in practice -
Pick a random state-action tuple (st, at) from the buffer, a future state st+ and a
random state (not conditioned on st, at), train a classifier to distinguish future states
from random states when conditioned on the current state-action tuple. The Bayes
optimal classifier for this is as follows:

Cπ(s, a, g)

1− Cπ(s, a, g)
=

pπ(st+ = g | st, at)
p(g)

Since the transformation C(s,a,g)
1−C(s,a,g)

is monotonic in C(s, a, g), i.e.:

argmax
a

C(s, a, g)

1− C(s, a, g)
= argmax

a
C(s, a, g)

one can directly maximize C(s, a, g) w.r.t the actions to learn the optimal goal-
reaching policy. Note that this derivation holds for any negative goal distribution as
long as it does not depend on the action at. C-learning [13] extends the Contrastive
NCE RL objective into a recursive classification problem akin to temporal difference
learning, that can be trained in off-policy and offline RL settings. Our work directly
builds on top of these contrastive RL methods. Our key contribution will be to show
how such methods can be extended to give finer-grain predictions: predicting the
probability of arriving at a goal state at specific future timesteps.

2.2.3 Model-based RL and Planning

Model-based approaches in RL learn a dynamics model of the world, which can then
be used for online planning [35, 51] and policy optimization [23]. In goal-conditioned
settings, these methods have been used for planning intermediate waypoints to distant

7

2. Background & Related Work

goals [36, 37]. Akin to hindsight relabeling, a learned dynamics model can also be
used for foresight relabeling [55], i.e., overwriting the goals with future states from
imagined rollouts. Further, curiosity-driven approaches [33] alternate between using
an ensemble of learned dynamics models to discover unseen goal states and training
the policy to achieve these goals. Instead of predicting the single-step future, one can
also train a γ-model [24], i.e., a generative model fit to the discounted state occupancy
measure. A goal-reaching policy is then obtained by maximizing the likelihood of the
goal under the γ-model.

2.3 Distances in Reinforcement Learning

Shortest path planning algorithms are the workhorse behind many successful robotic
applications, such as transportation and logistics [6, 15, 25, 40]. Many reinforcement
learning methods have built upon these ideas, such as devising methods for estimating
the distances between two states [1, 12, 21, 50]. The key point of our analysis is to
highlight some subtle but important details in how these distances are learned and
what they represent. More precisely, we show that distances can be ill-defined in
situations when the commanded goals are actually unreachable under the current
policy distribution. As a result, using distances for selecting actions can yield poor
performance. The fix we propose is simple, take a probabilistic perspective - estimate
the probability for each distance, and reason jointly in this space of probability over
distances.

2.4 Distributional Reinforcement Learning

Our proposed method will be reminiscent of distributional approaches to RL [3, 7, 46]:
rather than estimating a single scalar value, they estimate a full distribution over
possible future returns. In the goal-reaching setting, it is natural to think about this
distribution over future values as a distribution over distances [12]. However, as we
will show, distances are not well defined in many stochastic settings, yet a probabilistic
analogue does make theoretical sense and achieves superior empirical performance.
While our proposed method does not employ temporal difference updates, Sec. 5.2 will

8

2. Background & Related Work

introduce an auxiliary objective that resembles TD updates. This auxiliary objective
boost performance, perhaps in a similar way that the distributional RL loss enjoys
stable gradients and smoothness characteristics [48].

9

2. Background & Related Work

10

Chapter 3

Problem Statement

3.1 MDP Formulation

We consider the reward-free goal-conditioned RL framework, which is defined by
a state-space S, action-space A, a transition dynamics function p(st+1 | st, at), an
initial state distribution ρ0 and a goal distribution p(g). The goal-conditioned RL
objective is to simply find the goal-conditioned policy π(a|s, g) that maximizes the
following objective:

π∗ = argmax
π

Es0∼ρ0,p(g)

[
∞∑
t=0

γtr(st, at, g)

]
, (3.1)

where at ∼ π(.|st, g), st+1 ∼ p(. | st, at)

In the reward-free RL framework, the reward function is implicitly defined by
the transition dynamics and a discount factor γ ∈ [0, 1) : rg(st, at) = (1− γ)p(st+1 =

g | st, at). For this reward function, the corresponding action-value function of a
goal-conditioned policy πg(a|s) = π(a | s, g) takes the form of the discounted future
density pπg(s+ = g | s, a) over the goal states:

Qπg(st, at) = (1− γ)Eπ

[
∞∑

∆=0

γ∆p(st+∆+1 = g | st+∆, at+∆)

]
= pπg(s+ = g | st, at).

(3.2)

11

3. Problem Statement

By using this Q-function to score actions, the policy directly maximizes the chance of
reaching the goal in the future. To estimate the Q-function, we will use contrastive
RL [13, 14] (Sec. 2.1), which trains a binary classifier with cross-entropy objective to
represent this Q function:

argmin
C

Eg∼pπ(g|s,a)[logC(s, a, g)] + Eg∼p(g)[log(1− C(s, a, g))]

The resulting Bayes’ optimal classifier Cπ for a policy π is proportional to its Q
function:

Cπ(s, a, g)

1− Cπ(s, a, g)
=

pπg(s+ = g | s, a)
p(g)

Since the noise distribution p(g) is independent of the actions, we can then optimize
a policy with respect to the classifier by argmaxaC

π(s, a, g).

π(s, g) = argmax
a

Cπ(s, a, g)

12

Chapter 4

The Perils of Monte Carlo Distance
Functions

A common strategy in prior work is to predict the number of steps that elapse between
one observation and another [45, 49]. This estimate is then used as a distance function,
either for greedy action selection [45], planning [49], or reward shaping [21]. We will
call this approach “Monte Carlo distance regression.”

Intuitively, it seems like such an approach is performing reinforcement learning
with the reward function that is −1 at every step until the goal is reached. Prior
work thus interprets the distances as a Q function. However, it turns out that this
distance function is not a Q function. In this section, we show that these distance
functions do not (in general) correspond to a Q function, and their predictions can
be misleading.

4.1 Toy example illustrating pathological behavior

Consider the toy MDP example in Fig. 4.1(a) with a goal state 4 and an absorbing
state 3. From state 1, the agent can choose an action a1 to directly reach the goal
state 4 in a single step with a probability of p, but risks getting trapped in state 3 with
1− p odds. On the other hand, the agent can choose an action a2 to deterministically
reach the goal 4 in 2 steps. The agent receives a reward of −1 at every timestep it is
not at the goal.

13

4. The Perils of Monte Carlo Distance Functions

(a) (b)

Figure 4.1: Toy MDPs to illustrate the pathological behaviors exhibited by MC
distance regression. Solid lines and dashed lines denote deterministic and stochastic
state transitions, respectively.

Proposition 1. Relative to the reward-maximizing policy, MC regression can incur
regret that is arbitrarily large.

Assuming a discount factor γ, we can compute the optimal Q function analytically:
Q(1, a1,4) = − (1−γp)

(1−γ)
and Q(1, a2,4) = −(1 + γ). This suggests that for transition

probability p < γ, choosing the action a1 is suboptimal with a linear regret of
Q(1, a∗ = a2,4) − Q(1, a1,4) = γ(γ−p)

(1−γ)
. In the limit γ → 1, this regret becomes

unboundedly large for any p ∈ [0, 1), suggesting that even a slight risk of getting
indefinitely stuck in a trap state is much more costly than the reward of reaching the
goal a few steps early.

Now, imagine if we regressed a distance function d(s1, s2, a) to the Monte-Carlo
rollouts from state 1. The distance function suggests that the d(1, 4, a1) = 1, since
all the trajectories that start from 1 and end up in 4 after taking an action of a1
are of unit length. Similarly, d(1, 4, a2) = 2. Notice that the optimal MC distances
do not depend on the transition probability p, suggesting that MC distances offer
an optimistic distance estimate by ignoring the stochasticity in dynamics. Acting
greedily with an MC distance function results in a policy that takes the shortest
path on the graph by treating stochastic edges as being deterministic, which can
be very suboptimal in stochastic settings. For instance, Fig. 4.2 shows that if the
transition probability p = 0.1 for 1 → 4, MC distance suggests the suboptimal action
a1 which incurs a significantly higher regret that the optimal action a2, as suggested
by the optimal Q-function. This demonstrates a fundamental disconnect between

14

4. The Perils of Monte Carlo Distance Functions

Figure 4.2: MC distances and optimal negative Q-values at disagreement for 1 → 4 on
the toy MDP in Fig. 4.1(a) with γ = 0.99 and p = 0.1. The y-axis has a logarithmic
scale.

shortest-path solutions and reasoning about the likelihood of reaching a goal state in
the future.

Proposition 2. Monte-Carlo distance functions are generally not a valid distance
under any metric (or quasimetric).

To show this, consider the MDP in Fig. 4.1b, where the agent has no control
over state transitions through actions. The MC distance function d(s, g) answers the
following question: if the agent traveled from s to g, how many steps would elapse (on
average)?. For example, d(3, 4) = 1 because this state 4 always occurs one step after
state 3. But, perhaps strangely, d(1, 2) = 1: even though it may be unlikely that state
2 occurs after state 1, if state 2 occurs, it would occur after a single step. Similarly,
d(2, 6) = 1. However, these distances violate the triangle inequality. Even though
d(1, 2)+d(2, 6) = 2, the estimated distance directly from 1 to 6 is d(1, 6) = 2p2+3(1−p)

p2+(1−p)
,

which is greater than 2 for all p ∈ [0, 1). Thus, these MC distances are not a valid
distance metric (nor quasimetric).

Proposition 3. Monte-Carlo distance functions do not obey the quasimetric property
and hence do not represent the optimal goal-conditioned value function for any reward
function.

An optimal goal-conditioned value function is a quasimetric: it always has to obey

15

4. The Perils of Monte Carlo Distance Functions

the triangle inequality [52]. This is enforced because of the optimality and Markov
property in MDPs: the optimal reward going from s1 to s3 should be atleast as high
as the sum of optimal sub-paths from s1 to an intermediate state s2, followed by s2 to
s3, i.e., V ⋆(s1, s2) + V ⋆(s2, s3) ≤ V ⋆(s1, s3) ∀ s1, s2, s3. Proposition 3 directly follows
from Proposition 2, since MC distance functions violate the triangle inequality.

What is the cause for MC distance functions to exhibit these pathological behaviors?
In the examples from Fig. 4.1, the MC distance estimates do not account for the
transitions that could result in getting stuck in a trap state (3 and 5 in Fig. 4.1(a)
and (b) respectively). More generally, the pathological behaviors of MC distances
can be attributed to their optimism bias, wherein they are computed assuming the
agent will inevitably reach the goal without considering the associated risks.

However, these pathologies are not exhibited when using the Q-function correspond-
ing to the sparse reward function rg(st, at) = (1− γ)p(st+1 = g | st, at) (Eq. 3.2). For
instance, consider the toy MDP in Fig. 4.1(a), where the Q(s = 1, a1, g = 4) = pπ(s+ =

4|s = 1, a1) = (1 − γ)p and Q(s = 1, a2, g = 4) = pπ(s+ = 4|s = 1, a2) = (1 − γ)γ.
As a result, this Q-function suggests picking the optimal action a2 when p < γ, as
Q(s = 1, a1, g = 4) < Q(s = 1, a2, g = 4).

4.2 Distance Regression is secretly learning a

Normalized Classifier

Monte-Carlo distance regression is equivalent in the limit to learning a normalized
distance classifier over the observed horizon, followed by using the bin probabilities
to obtain the mean distance. More precisely, let H ∈ {0, 1, · · ·B − 1} be a random
variable denoting how far ahead to look to sample the future states (a.k.a goals).
The distance classifier represented by C(s, a, g) ∈ PB can then be learned using a
categorical cross-entropy loss:

Ep(H),st,at∼p(s,a),g∼pπ(st+H |st,at) [logC(st, at, g)[H]] .

16

4. The Perils of Monte Carlo Distance Functions

Obtaining distances from this classifier is straightforward:

d(s, a, g) =
∑
H

H C(s, a, g)[H].

Using Bayes’ Rule, we can express the Bayes optimal classifier as

Cπ(st, at, g)[H] = P πg(H | st, at, g) =
pπg(st+H = g | st, at)p(H)

pπg(s+ = g | s, a)
.

This expression reveals a subtle nuance with distance regression. The distance
classifier predicts normalized probabilities, which implicitly assume that the goal
can be reached within a finite horizon. Consider this example: say that action a1

has pπg(g | s, a1, H = 1, 2, 3, ...) = [0.01, 0, 0, · · ·] while a2 has pπg(g | s, a2, H =

1, 2, 3, ...) = [1, 1, 1, · · ·]. Then, distance classifier prefers action a1 over a2 since
d(s, a1, g) = 1 and d(s, a2, g) > 1, despite it succeeding in reaching the goal with
100× lower probability.

4.3 Connection between Maximizing Likelihood and

Stochastic Shortest Path Methods

The overall objective of contrastive RL methods [13, 14] is to maximize the likelihood
of the goal state under the discounted state occupancy measure; it is about maximizing
a probability (density). This stands in contrast to prior work on stochastic shortest
path problems, where the aim is to minimize the expected distance to the goal. Our
motivation for using probabilities, rather than distances, is that distances can be
ill-defined in settings where there is some probability of never reaching the goal.
However, in settings where the goal is reached with probability one, we can directly
relate these two objectives; this section explains this connection.

Let’s consider a policy π for reaching a goal and define ∆ as the number of
timesteps required to reach the goal from the start state. Note that ∆ is a discrete
random variable that takes integer values. Formally, we define π(∆) as the distribution
over the number of timesteps required to reach the goal under the policy. Then,
a policy that tries to reach the goal as soon as possible is trying to optimize the

17

4. The Perils of Monte Carlo Distance Functions

following objective:
max

π
−E∆∼π[∆] (4.1)

Alternatively, consider an MDP where the episode does not terminate upon reaching
the goal. In this setting, the reward-free goal-conditioned RL agent is incentivized to
maximize its time at the goal:

max
π

(1− γ)Eπ

[
∞∑
t=0

γtr(st, at, g)

]
= max

π
(1− γ)Eπ

[
∞∑
t=0

γtδ(st == g)

]

= max
π

(1− γ)E∆∼π

[
∞∑
t=0

γt+∆

]

= max
π

(1− γ)E∆∼π

[
γ∆

1− γ

]
= max

π
E∆∼π

[
γ∆
]
.

By applying a log transformation on both sides of the equation, followed by Jensen’s
inequality, we get:

max
π

log

(
(1− γ)Eπ

[
∞∑
t=0

γtr(st, at, g)

])
= max

π
log
(
E∆∼π

[
γ∆
])

≥ max
π

E∆∼π

[
log
(
γ∆
)]

= max
π

−E∆∼π [∆] log

(
1

γ

)
. (4.2)

The final RHS expression can be interpreted as minimizing the expected time to the
goal under the policy (Eq. 4.1), which corresponds to the shortest-path planning
objective. Thus, optimizing the shortest-path planning objective is a lower bound of
the max likelihood objective. If the policy always takes the same number of steps
to reach the goal, i.e. π(∆) is a Dirac distribution, then the lower bound becomes
an equality and maximizing the probability of reaching the goal (LHS) is equivalent
to minimizing the expected steps to reach the goal (RHS). One setting where this
always happens is deterministic MDPs with deterministic policies.

If both maximizing likelihood and shortest-path planning seem closely related in
theory, why do shortest-path methods suffer from pathological behaviors? The answer

18

4. The Perils of Monte Carlo Distance Functions

lies in the logarithmic transformation that gets applied to the likelihood. In simple
words, the likelihood of success while failing to reach the goal is 0, which is a
well-defined number, whereas the corresponding expected distance to the goal is
unboundedly large (the negative logarithm of 0). More formally, the problem with
optimizing the shortest-path objective in RHS is that it remains unclear how to
correctly train a distance function in stochastic settings, when every strategy has
a non-zero chance of failing to reach the goal. For instance, training a distance
function via MC regression [21, 49] provides optimistic distance estimates because
the training goals are always reached within some finite horizon, which can result
in very sub-optimal behaviors as shown in Sec. 4.1. A naive approach to fixing this
optimism bias is to train the distance function on unreachable goals as well. However,
this poses two practical problems:

1. Sampling from the distribution of unreachable goals under a policy is non-trivial :
One can sample from the set of easily reachable goals (positive examples) under
the policy by simply rolling it out in the environment for a short duration.
However, sampling far-away goals (hard to reach under the current policy)
requires one to run long policy rollouts, making such far-away goals sparser
than easily reachable goals in the collected dataset. Extending this idea to the
limit, one can simply never know if a state is unreachable from the policy even
after a large number of steps through Monte-Carlo policy rollouts alone. But
even if one could sample these negative goals,

2. optimal distance functions become ill-defined when the regression targets are
unboundedly large: An unreachable state has an unboundedly large target
distance (infinity). This makes it numerically unstable to perform direct MC
regression since a part of the dataset involves regressing to infinite target
distances. Alternatively, one can learn a normalized distance classifier (Sec. 4.2)
with a catch-all bin to handle hard-to-reach and unreachable goals. However,
converting such a distance classifier into an MC distance function by computing
the expected distance d(s, a, g) =

∑
H H C(s, a, g)[H] is again ill-defined since

the upper-bound of the catch-all bin is unboundedly large (infinity).

Prior works in contrastive RL [13, 14] are closely related to the former idea of
sampling negative goal examples with subtle modifications: (1) instead of sampling

19

4. The Perils of Monte Carlo Distance Functions

from the distribution of unreachable goal states, we simply sample from a noise
distribution, and (2) replace regression objective with the NCE classification objective
[18] to differentiate between samples drawn from the positive and negative goal
distributions. However, these methods directly estimate the likelihood of reaching
the goal without providing any information about the dynamical distance, i.e., the
expected timesteps to reach the goal. Our work proposes a distributional variant of
contrastive NCE algorithm [14], which can: (1) estimate the likelihood of reaching
the goal, and (2) reason about the dynamical distance via normalization using Bayes
rule (Eq. 5.4).

20

Chapter 5

The Fix: Estimate Probabilities, not
Distances

In this section, we propose a method that directly estimates the probabilities of
reaching goals at different horizons. We describe our method and provide analysis
in Sec. 5.1. As we will show in our experiments, this method can already achieve
excellent results in its own right. Sec. 5.2 proposes a regularization term based on an
identity that our probabilities should satisfy. Our experiments will demonstrate that
adding this regularization term can further boost performance.

5.1 Our Method: Distributional NCE

The underlying issue with distance classifiers (discussed in Sec. 4.2) is that they
are normalized across the horizon; they have a softmax activation. Replacing that
softmax activation with a sigmoid activation resolves this issue and opens the door
to new algorithms that resemble distributional RL.

The connection with distributional RL is interesting because it motivates distribu-
tional RL in a different way than before. Usually, distributional RL is motivated as
capturing aleatoric uncertainty, providing information that can disambiguate between
a strategy that always gets +50 returns and a strategy that gets +100 returns 50% of
the time. Here, we instead show that distributional RL emerges as a computationally
efficient way of learning distances, not because it gives us any particular notion of

21

5. The Fix: Estimate Probabilities, not Distances

uncertainty. This is also interesting in light of prior work that distributional RL does
not necessarily produce more accurate value estimates [3].

We start by introducing an MC method to learn a distance classifier C(s, a, g) ∈
[0, 1]B; note that each element of this vector is a probability, but they need not sum
up 1. This distance classifier can be learned via binary classification:

max
C

Ep(H)p(st,at)

[
Eg∼pπ(st+H |st,at)[logC(st, at, g)[H]] + Ep(g)[log(1− C(st, at, g)[H])]

]
.

(5.1)

The Bayes’ optimal classifier satisfies

Cπ(st, at, g)[H]

1− Cπ(st, at, g)[H]
=

pπg(st+H = g | st, at)
p(g)

. (5.2)

On the RHS, note that actions only appear in the numerator. This means that selecting
the actions using the LHS is equivalent to selecting the actions that maximize the
probability of getting to the goal in exactly H steps. While this notion of success
is non-Markovian, this same classifier can be used to maximize the (Markovian) RL
objective with r(s, a, g) = 1(s = g) using the following:

∞∑
∆=1

γ∆−1 Cπ(st, at, g)[∆]

1− Cπ(st, at, g)[∆]
=

∞∑
∆=1

γ∆−1p
πg(st+∆ = g | st, at)

p(g)
=

pπg(s+ = g | st, at)
(1− γ)p(g)

.

(5.3)

The expression on the RHS is the same as the objective in Contrastive NCE [14],
which corresponds to maximizing the likelihood of the goal state under the discounted
state occupancy measure.

In practice, we use the last bin of the distributional NCE classifier as a catch-all
bin. This modification avoids ill-defined Q-values due to a finite number of bins, by
accounting for the future states from the trajectory that are at least h steps away,
where h is the number of classifier bins in the distributional NCE algorithm. We
discuss more details about using the catch-all bin in Sec 5.3.1, but on a high-level,
implementing the distributional NCE fix is easy: (1) change the final activation of the
distance classifier from a softmax to a sigmoid; (2) change the loss for the distance
classifier from a categorical cross-entropy to an (elementwise) binary cross entropy.

22

5. The Fix: Estimate Probabilities, not Distances

Algorithm 1 Distributional NCE: h is the number of bins in the classifier output,
which may be less than the task horizon. Comments denote the shapes of tensors.

def critic_loss(states, actions, future_states, dt):
logits = classifier(states, actions, future_states) # (batch_size, batch_size, h)
probs = sigmoid(logits)
labels = one_hot(dt, num_classes=h)
loss = BinaryCrossEntropy(logits, labels)
return loss.mean()

def actor_loss(states, goals):
actions = policy.sample(states, goal=goals) # (batch_size, action_dim)
logits = classifier(states, actions, goals) # (batch_size, batch_size, h)
prob_ratio = exp(logits) # p(g|s,a,h) / p(g) = C(s,a,g)[h] / (1 - C(s,a,g)[h])
Q = sum(discount ** range(h) * prob_ratio, axis=-1) # (batch_size, batch_size)
return -1.0 * Q.mean()

One way to look at our method is that we are learning a distributional critic to
represent the likelihood of reaching the goal at each future timestep, as opposed to
learning a single scalar unnormalized density over future goals [13, 43]. Adding this
temporal dimension to the contrastive RL algorithm enables the critic network to
break down a complex future density distribution into hopefully simpler per-timestep
probabilities. This framework also allows one to (i) enforce structural consistency for
probabilities across timesteps (closely related to n-step Bellman backup), (ii) make
the critic more interpretable, and (iii) reason over future probabilities as distances.

5.1.1 Getting Distances from Distributional NCE

The Bayes optimal MC distance classifier can be obtained from normalizing the Bayes
optimal distributional NCE classifier across the horizon:

P πg(H = h | st, at, g) =
pπg(st+h = g | st, at)P (h)

pπg(s+ = g | st, at)
=

wπ(st, at, g)[h]P (h)∑
h′ wπ(st, at, g)[h′]P (h′)

,

(5.4)

where wπ(st, at, g)[h] =
Cπ(st, at, g)[h]

1− Cπ(st, at, g)[h]
.

23

5. The Fix: Estimate Probabilities, not Distances

5.1.2 Convergence Proof

The Q-function we obtain from aggregating the bins of the distributional NCE
classifier with geometric weights (Eq. 5.3) is the same as the contrastive NCE method
[14]. To prove convergence of the Distributional NCE algorithm, we make the same
assumptions as the Contrastive NCE [14] work:

1. Bayes-optimality of the Critic: We assume that the distributional critic is
Bayes-optimal for the current policy.

2. Training Data Filtering : We only consider (st, at, st+h) tuples for the policy im-
provement step, whose probability of the trajectory τt:t+h = (st, at, st+1, at+1, ..., st+h)

when sampled from π(.|., sg) under the commanded goal sg is close to the proba-
bility of the same trajectory when sampled from π(.|., st+h), under the relabelled
goal st+h.

Proposition 4. When the above-mentioned assumptions hold, the Distributional
NCE update corresponds to approximate policy improvement in tabular settings.

Proof. We first point out that the Bayes optimal Distribuitional NCE critic can
be used to obtain the Bayes optimal Contrastive NCE [14] critic, by geometrically
averaging the classifier bins according to Eq. 5.10. Using this result, Proposition 4 is
validated by the proof for the Contrastive NCE update corresponding to approximate
policy improvement in tabular settings (Sec 4.5 and Appendix B in [14]).

5.2 Self-Supervised Temporal Consistency Objective

The problem of learning goal-directed behavior exhibits a certain structure: if you
can predict the probability of reaching a goal in 10 days starting today, then you can
predict the probability of reaching that same goal in 9 days starting tomorrow. This
idea highlights a simple identity that the distributional probabilities must satisfy to
remain temporally consistent:

pπg(g | st, at, H) = E(st+1,at+1)∼(st,at) [p
πg(g | st+1, at+1, H − 1)] .

24

5. The Fix: Estimate Probabilities, not Distances

We use this result to derive a temporal consistency identity for distributional NCE,
which is satisfied by the Bayes’ optimal classifier (the solution to Eq. 5.2):

Cπ(st, at, g)[H]

1− Cπ(st, at, g)[H]
= E(st+1,at+1)∼(st,at)

[
Cπ(st+1, at+1, g)[H − 1]

1− Cπ(st+1, at+1, g)[H − 1]

]
. (5.5)

We now turn this identity into a penalty for the distributional NCE classifier as
follows:

LTC = E(st,at,g,st+1,at+1)

[
⌊C(st+1, at+1, g)[H − 1]⌋ logC(st, at, g)[H]

+ ⌊(1− C(st+1, at+1, g)[H − 1])⌋ log (1− C(st, at, g)[H])
]
, (5.6)

where ⌊.⌋ denotes the stop-gradient operator. Because the identity in Eq. 5.5 is
satisfied by the Bayes’ optimal classifier, adding the corresponding penalty (Eq. 5.6)
to the distributional NCE loss (Eq. 5.1) does not change the solution. In on-policy
settings, we can generalize 1-step consistency to k−step consistency (more details in
Sec. 5.3.2):

Lk
TC = E(st,at,g,st+k,at+k)

[
⌊C(st+k, at+k, g)[H − k]⌋ logC(st, at, g)[H]

+ ⌊(1− C(st+k, at+k, g)[H − k])⌋ log (1− C(st, at, g)[H])
]
. (5.7)

We will empirically study this k-step consistency in our experiments. We hypothesize
that the temporal consistency objective, like temporal difference learning, enables
information to flow back in time, accelerating the Monte-Carlo classifier training. We
will test this hypothesis in our experiments in Chapter 7 (Fig. 7.2).

5.3 A Practical Algorithm

In this section, we introduce the modifications to the Distributional NCE framework
from Sec. 5.1 to turn it into a practical algorithm. We start by introducing a catch-
all bin in 5.3.1 to avoid truncation errors and optimize for the true (Markovian)
RL objective. Subsequently, we provide the derivation for 1-step and Multi-step
temporal consistency regularization in 5.3.2, highlighting their connections to temporal

25

5. The Fix: Estimate Probabilities, not Distances

difference (TD) learning approaches.

5.3.1 Introducing a catch-all bin

In Sec. 5.1, we introduced the Distributional NCE algorithm (Alg. 1) that estimates
the likelihood of reaching the goal at specific future timesteps (up to proportionality,
Eq. 5.2). We then showed that these estimates can be aggregated using geometrically-
decaying weights to optimize for the (Markovian) RL objective with r(s, a, g) = 1(s =

g) in Eq. 5.3. However, implementing this naively would require a large number of
bins to prevent temporal truncation errors and could lead to ill-defined Q-values.

The noise contrastive estimation (NCE) framework (Sec. 2.1, [18]) used in Dis-
tributional NCE and prior works [13, 14] can estimate any arbitrary positive goal
distribution upto a proportionality, as long as one can draw samples from it. In the
Distributional NCE implementation with h classifier bins, we repurpose the last bin
to predict if the goal was sampled for t ≥ h rather than t == h event, referring to it
as the “catch-all” bin in the rest of the document. More precisely, the objective for
the catch-all bin is as follows:

max
C

Ep(H≥h)p(st,at)

[
Eg∼pπ(st+H |st,at)[logC(st, at, g)[h]] + Ep(g)[log(1− C(st, at, g)[h])]

]
,

(5.8)

where p(H ≥ h) = (1 − γ)γH−h = GEOM(γ)[H − h] is a Geometric distribution
shifted by h units. Then, the Bayes’ optimal catch-all classifier for a policy π satisfies:

Cπ(st, at, g)[h]

1− Cπ(st, at, g)[h]
= Ep(H≥h)

[
pπg(st+H = g | st, at)

p(g)

]
. (5.9)

This classifier can be used to maximize the (Markovian) RL objective with r = 1(s = g)

26

5. The Fix: Estimate Probabilities, not Distances

as follows:

h−1∑
∆=1

(
(1− γ)γ∆−1 Cπ(st, at, g)[∆]

1− Cπ(st, at, g)[∆]

)
+ γh−1 Cπ(st, at, g)[h]

1− Cπ(st, at, g)[h]

=
h−1∑
∆=1

(
(1− γ)γ∆−1p

πg(st+∆ = g|st, at)
p(g)

)
+ γh−1Ep(H≥h)

[
pπg(st+H = g | st, at)

p(g)

]

=
h−1∑
∆=1

(
(1− γ)γ∆−1p

πg(st+∆ = g|st, at)
p(g)

)
+ γh−1

∞∑
∆=h

(
(1− γ)γ∆−hp

πg(st+∆ = g|st, at)
p(g)

)
= (1− γ)

∞∑
∆=1

(
γ∆−1p

πg(st+∆ = g|st, at)
p(g)

)
=

pπg(s+ = g|st, at)
p(g)

(5.10)

The expression on the RHS is the same as the objective in Contrastive NCE [14],
which corresponds to maximizing the likelihood of the goal state under the discounted
state occupancy measure.

In Distributional NCE, each classifier bin is crucial for estimating the corresponding
component in the discounted future state density. An interesting future direction can
be to employ redundancy in classifier bins, i.e., use multiple catch-all bins and exploit
the relation between them as additional temporal consistency. Such a temporal
ensembling procedure can be very similar to consistency training approaches [53]
from semi-supervised learning literature.

5.3.2 Generalizing 1-step to Multi-step Temporal Consistency

In Sec. 5.2, we detailed the temporal consistency identity in Eq. 5.5 and proposed a
1-step temporal consistency regularization objective in Eq. 5.6 to enforce it. We also
briefly introduced a k-step extension of this objective in Eq. 5.7. In this section, we
formally derive the k-step consistency objective.

Deriving the multi-step consistency regularization. Let pπ(τ)(st, at, g,H)

be the distribution over H-length state-action trajectories generated by the goal-
conditioned policy πg = π(.|., g) with st as the start state and at as the first action.

27

5. The Fix: Estimate Probabilities, not Distances

Then, the future state probabilities under πg satisfy the following identity:

pπg(g | st, at, H) = E(st+1,at+1,st+2,at+2,...,st+H−1,at+H−1)∼pπ(τ)(st,at,g,H−1) [p(g | st+H−1, at+H−1)]

= Est+1∼p(.|st,at),at+1∼π(.|st+1,g)

[
E(st+2,at+2,...,st+H−1,at+H−1)∼pπ(τ)(st+1,at+1,g,H−2)

[p(g | st+H−1, at+H−1)]
]

= Est+1∼p(.|st,at),at+1∼πg(.|st+1) [p
πg(g | st+1, at+1, H − 1)] . (5.11)

This identity can be enforced over the distributional classifier using the 1-step temporal
consistency regularization objective in Eq. 5.6. However, this property also holds for
k > 1 steps:

pπg(g | st, at, H) = E(...,st+k,at+k)∼pπ(τ)(st,at,g,k) [p
πg(g | st+k, at+k, H − k)] . (5.12)

We use the identity in Eq. 5.12 to derive a temporal consistency identity for distribu-
tional NCE. This identity is satisfied by the Bayes’ optimal classifier (the solution to
Eq. 5.2)1:

Cπ(st, at, g)[H]

1− Cπ(st, at, g)[H]
= E(...,st+k,at+k)∼pπ(τ)(st,at,g,k)

[
Cπ(st+k, at+k, g)[H − k]

1− Cπ(st+k, at+k, g)[H − k]

]
,

(5.13)
and then turn this identity into an auxiliary, consistency objective:

Lk
TC = E(st,at,g,st+k,at+k)

[
⌊C(st+k, at+k, g)[H − k]⌋ logC(st, at, g)[H]

+ ⌊(1− C(st+k, at+k, g)[H − k])⌋ log (1− C(st, at, g)[H])
]
.

(5.14)

The consistency objective above is valid for any goal-conditioned policy π(.|., g),
as long as (st+k, at+k) is the kth intermediate step on the Markov chain generated
by the policy that connects st and g. In our practical implementation, we sample
(st, at, st+k, at+k, st+H), k < H, from the replay buffer, and relabel the goal g = st+H

to train the critic via direct contrastive loss (Eq. 5.1) and k-step temporal consistency
regularization (Eq. 5.14). As a result, the critic estimates the future state density of

1We use Cπ(s, a, g) to denote the Bayes’ optimal classifier for a policy π(a|s, g).

28

5. The Fix: Estimate Probabilities, not Distances

the average hindsight-relabeled policy over the replay buffer rather than the current
policy, just like prior MC contrastive RL algorithms [14]. In our implementation, the
future goal distance H is a random variable sampled from a Geometric distribution
H ∼ GEOM(γ), and the intermediate state distance k is sampled from a truncated
distribution to enforce that k < H. We call this method “Distributional NCE with
Multi-step temporal consistency regularization.” Like temporal difference methods
[13], the temporal consistency regularization enables information and uncertainty
over future states to flow back in time, thereby accelerating the Monte-Carlo classifier
training.

Handling the edge-case: Consistency update for the catch-all bin. When
applying the k-step temporal consistency loss, the catch-all bin gets mapped to k + 1

bins from the future state, unlike regular classifier bins that have a 1 : 1 mapping
with a corresponding future classifier bin. This is an artifact of using a finite number
of bins to represent the infinite-horizon discounted probabilities. More precisely, the
equivalent temporal consistency identity (Eq. 5.13) for the catch-all bin, which is
satisfied by the Bayes’ optimal classifier (the solution to Eq. 5.2):

Cπ(st, at, g)[h]

1− Cπ(st, at, g)[h]
=

E(st+k,at+k)

[
h−1∑
i=1

(
(1− γ)γi−1 Cπ(st+k, at+k, g)[i− k]

1− Cπ(st+k, at+k, g)[i− k]

)
+ γh−1 Cπ(st+k, at+k, g)[h− k]

1− Cπ(st+k, at+k, g)[h− k]

]
,

where h is the total number of classifier bins and also the index of the catch-all bin.
This identity can then be turned into a penalty as follows:

Lk
TC = E(st,at,g,st+k,at+k)

[
⌊w(st+k, at+k, g)⌋ logC(st, at, g)[H]

+ ⌊(1− w(st+k, at+k, g))⌋ log (1− C(st, at, g)[H])
]
,

where w(s, a, g) =
∑h−1

i=1

(
(1− γ)γi−1 C(s,a,g)[i−k]

1−C(s,a,g)[i−k]

)
+ γh−1 C(s,a,g)[h−k]

1−C(s,a,g)[h−k]
.

29

5. The Fix: Estimate Probabilities, not Distances

30

Chapter 6

Experimental Details

6.1 Task Descriptions

We conduct our experiments on four standard simulated robot manipulation tasks
[41, 54] with increasing complexity: fetch_reach, fetch_push, sawyer_push, and
sawyer_bin. All our tasks are framed as reward-free goal-reaching problems where
the performance of the agent is tracked by the fraction of times it successfully reaches
the goal.

fetch_reach: This task involves controlling a simulated fetch robotic arm to
move the gripper to a specified 3D goal position. This is the simplest of all four tasks,
where greedily moving the gripper toward the target position solves the task.

fetch_push: In this task, the same simulated fetch robotic arm needs to push
a block placed on the table to a specified position. This is a harder task since the
agent needs to reason about the dynamics of precisely pushing a block to a specified
location. The agent needs to be careful as it can enter unrecoverable states, such
as the block falling off the table if pushed incorrectly. Note that the gripper fingers
are disabled, in order to force the agent to push the block to the goal rather than
pick-and-place it at the goal.

sawyer_push: This task is similar to fetch_push but involves controlling a
simulated sawyer robotic arm. A key difference is that this is a longer horizon task
with 3× as many steps as fetch_push in each episode before termination.

sawyer_bin: In this task, the same simulated sawyer robotic arm needs to

31

6. Experimental Details

(a) fetch_reach (b) fetch_push (c) sawyer_push (d) sawyer_bin

Figure 6.1: Illustration of the goal-reaching tasks used in our experiments. The
top row is a sample state at the time of initialization, and the bottom row is the
corresponding goal state.

pick a block from a randomized position in one bin and put it in a goal location in
another bin. This is a hard exploration problem1 since the agent must learn the skills
associated with (i) picking and dropping an object and (ii) moving the gripper to a
desired location, and learn to coordinate these skills in the pick-move-drop sequence
to solve the task. Failing to do even one of these skills/sub-tasks correctly will result
in an unsuccessful outcome.

We also conduct our experiments on the following image-based variants of the
above-mentioned tasks: fetch_reach_image, fetch_push_image, and sawyer_push_image.
In these tasks, the low-dimensional observation space is replaced with a 64×64 image.
We chose these tasks to demonstrate that the Distributional NCE algorithm is able
to estimate the probability of reaching the goal over future timesteps directly from
image observations. To get a better idea of the tasks, we visualized a random start
state and the corresponding goal state for each of these tasks in Fig. 6.1. Moreover,
the dimensionality of the observation and action space is described in Table 6.1.

1Note that the exploration in the sawyer_bin task is with regard to searching for a goal-reaching
policy that is capable of solving the task. This work does not consider the problem of unsupervised
exploration via goal selection [22, 39], since the goal is assumed to be provided by the environment
in our framework.

32

6. Experimental Details

Task Observation Space (state and goal) Action Space Max Episode Length

fetch_reach 20 4 50
fetch_push 50 4 50

sawyer_push 14 4 150
sawyer_bin 14 4 150

fetch_reach_image 64× 64× 6 4 50
fetch_push_image 64× 64× 6 4 50

sawyer_push_image 64× 64× 6 4 150

Table 6.1: Environment details for the selected goal-reaching tasks.

6.2 Implementation Details

We used the official contrastive RL codebase2 [14] in the JAX framework [5] to run
the contrastive RL baselines: Contrastive NCE [14] and C-Learning [13]. Moreover,
we implemented the distributional NCE algorithms by modifying this codebase as
follows:

1. Change the last layer in the critic’s architecture to output h bins (Alg. 2).

2. Change the Contrastive NCE objective to the Distributional NCE objective
(Alg. 1).

3. Add the consistency loss (Eq. 5.7,5.14) to the classifier training module.

The actor is trained using the actor loss from soft actor-critic [20], while the critic is
optimized for the contrastive classification objective in Eq. 5.1. For non-contrastive
RL baselines, we use the sparse reward function for training the policy for a fair
comparison with the reward-free contrastive RL framework. In all our experiments,
we report the mean performance and the 95% confidence interval computed across 5
random seeds. We ran all our experiments on a single RTX 2080 Ti GPU with 11GB
memory.

6.2.1 Distributional Critic Implementation

In this section, we go over the pseudo-code to implement a distributional critic network
with h classifier bins in Alg. 2. The output of the distributional critic is a ternary
tensor with the first two axes corresponding to the state-action and goal indices,

2https://github.com/google-research/google-research/tree/master/contrastive_rl

33

6. Experimental Details

and the last axis h is the classifier bin index. The main diagonal along the first two
axes corresponds to positive examples, i.e., state-action representations paired with
their corresponding future states (reachable goals). Every other off-diagonal term
corresponds to a negative example, i.e., a state-action representation paired with a
randomly sampled goal.
Algorithm 2 Distributional Classifier: The contrastive classifier block, where
the main diagonal corresponds to positive examples and off-diagonal entries correspond
to negative examples. h is the number of bins in the classifier output, which may be
less than the task horizon. Comments denote the shapes of tensors.

def classifier(states, actions, goals):
sa_repr = sa_encoder(states, actions) # (batch_size, h, repr_dim)
g_repr = g_encoder(goals) # (batch_size, h, repr_dim)
logits = einsum('ikl, jkl->ijk') # (batch_size, batch_size, h)
logits[i, j, k] is the probability of going from s[i] to s[j] in k steps.
return logits

6.2.2 Network Architecture

We use the same architecture as the Contrastive NCE baseline while modifying the
last layer in the critic. The policy is a standard 2-layer MLP with ReLU activations
and 256 hidden units. The critic network comprises of a state-action encoder and a
goal encoder (Alg. 2), which are each 2-layer MLP with ReLU activations and 256
hidden units, and a final dimension of repr_dim× h (repr_dim = 64 and h = 21 in
all our experiments). For image-based tasks, we use the standard Atari CNN encoder
[14, 34] to project the state and goal image observations into the latent space before
passing them into the policy and critic networks.

6.2.3 Hyperparameters

We keep the default hyperparameters of Contrastive NCE [14] for all our experiments
(Table 6.2). The proposed Distributional NCE algorithm only introduces one extra
hyperparameter - the number of classifier bins, which is set to 21 in all the experiments.

34

6. Experimental Details

Hyperparameter Value

number of classifier bins (h) 21
batch_size 256
EMA target network (τ) 0.005
discount (γ) 0.99
hidden dims (policy and critic representations) (256, 256)
critic representation dimension 64
learning rate 3e-4
policy and critic optimizers Adam (β1 = 0.9, β2 = 0.999)
goal relabelling ratio for actor loss 0.5
maximum replay buffer size 1,000,000
minimum replay buffer size (initial data from random policy) 10,000

Table 6.2: A list of important hyperparameters used in our method and the baselines.

35

6. Experimental Details

36

Chapter 7

Results and Analysis

In this section, we provide empirical evidence to answer the following questions:

1. Does the distributional NCE algorithm offer any benefits over the MC distance
regression and distance classifier in deterministic goal-reaching environments,
with function approximation and a stochastic policy?

2. Can distributional NCE accurately estimate the probability of reaching the goal
at a specific future time step?

3. Are there any benefits to using the distributional architecture for classifier
learning?

4. Does the temporal consistency term accelerate the distributional NCE training?

Environments. We selected seven standard goal-conditioned environments
[41, 54] to test these hypotheses: fetch_reach, fetch_push, sawyer_push, sawyer_bin,
fech_reach_image, fetch_push_image, and sawyer_push_image. The latter three
environments have image-based observations. fetch_reach is the simplest task; The
fetch_push and sawyer_push environments are more challenging, and require the
robot to use its gripper to push an object to the specified goal position. Lastly, the
pick-and-place in sawyer_bin presents a hard exploration challenge. See Sec. 6.1 for
more details about the tasks.

37

7. Results and Analysis

Figure 7.1: Distributional NCE is able to solve all the goal-reaching tasks with a
good success rate, whereas the MC distance functions fail at almost all the tasks.
This result supports our hypothesis that MC distances are not a good choice for the
Q-function of goal-conditioned RL tasks.

7.1 Comparison with distance regression

In Chapter 4, we showed that using the MC distance metric can be very suboptimal
for stochastic MDPs with a countable state space, where the optimal policy was known
beforehand. Our first experiment is designed to test if distance functions learned
via MC regression and distance classifier can be used in the place of a Q-function to
greedily optimize a stochastic policy. We hypothesize that the stochasticity in action
sampling from the policy, along with the associated risk of choosing the shortest path
are ignored by MC distance functions, which will result in suboptimal behavior. We
test out the MC distance regression and distance classifier algorithms on the three
following tasks with increasing difficulty: fech_reach, fetch_push, and sawyer_push.
We also included a comparison with distributional NCE to check if the proposed
algorithm fills in the shortcomings of using MC distance functions. We use the same
number of classifier bins for both the distance classifier and the distributional NCE.

Our results from Fig. 7.1 suggest that MC distance regression only succeeds at
fetch_reach, the simplest of the selected tasks, which only requires greedily moving
to a target goal position. Surprisingly, MC distance classifier fails at all the tasks. In
every other setting, MC distance functions are not able to do considerably better than
a randomly initialized policy. On the other hand, the distributional NCE algorithm
is able to learn a policy that solves all the tasks.

38

7. Results and Analysis

Figure 7.2: Comparison with baselines. Distributional NCE outperforms the
Contrastive NCE [14] and C-Learning [13] in all but the easiest tasks (fetch_reach,
fetch_reach_image). Applying temporal consistency on top of Distributional NCE
accelerates learning and boosts asymptotic performance.

7.2 Comparing to prior goal-conditioned RL

algorithms

We now compare the performance of distributional NCE against two high-performance
goal-conditioned RL algorithms: Contrastive NCE and C-learning algorithms. Com-
paring against Contrastive NCE directly allows us to study whether our distributional
architecture boosts performance, relative to a contrastive method (contrastive NCE)
that predicts a single scalar value. Distributional NCE is an on-policy algorithm, so
the comparison with C-learning (an off-policy algorithm) lets us study whether this
design decision decreases performance.

The results, shown in Fig. 7.2, demonstrate that distributional NCE is roughly on
par with the prior methods on the easiest tasks (fetch_reach and fetch_reach_image),
but can perform notably better on some of the more challenging tasks; relative to the
strongest baseline, distributional NCE realizes a +24% improvement on fetch_push
and a +20% improvement on sawyer_bin.

As discussed in Sec. 5.2, the predictions from distributional NCE should obey a
certain consistency property: the probability of getting to a goal after t time steps
from the current state should be similar to the probability of getting to that same

39

7. Results and Analysis

Figure 7.3: Comparison with (non-contrastive) RL baselines. Distributional
NCE methods outperform the prior (non-contrastive) GCRL baselines, TD3+HER [2],
Goal-conditioned behavior cloning (GCBC) [9] and model-based approach [8, 10, 24],
across all the tasks.

goal after t− 1 steps starting at the next state. We equip distributional NCE with
the auxiliary objective proposed in Eq. 5.7 based on this property.

We show the results from this variant of distributional NCE (“distributional NCE
with consistency”) in green in Fig. 7.2. While we see no effect on the easiest tasks
(fetch_reach, fetch_reach_image), the auxiliary term improves the sample efficiency
of the fetch_push task (2.8 × 105 fewer samples to get to 60% success rate) and
improves the asymptotic performance on the sawyer_push and sawyer_bin tasks by
+16% and +13% respectively.

7.3 Comparing to prior (non-contrastive) GCRL

algorithms

Unlike contrastive RL methods [13, 14], prior works have also used hindsight relabeling
[2] and generative modeling over the discounted future state occupancy to solve goal-
reaching tasks. In Fig. 7.3, we compare the proposed Distributional NCE methods
with three exemplar (non-contrastive) GCRL algorithms:

1. TD3+HER: A common approach to solve goal-conditioned RL tasks is to use

40

7. Results and Analysis

Figure 7.4: Visualizing the probabilistic distance predictions for future goals that are
5 (Left) and 10 (Right) steps away, on the fetch_push task. These results confirm
that the distance predictions offered by distributional NCE correlate well with the
true distance and are well-calibrated in uncertainty.

a high-performance off-policy RL algorithm with goal-relabeling via hindsight
experience replay (HER) [2, 26, 42, 44]. As our first baseline, we choose TD3 [16],
an off-policy actor-critic algorithm, and combine it with hindsight relabeling
[27].

2. Goal-Conditioned Behavior Cloning (GCBC): A simple baseline where a goal-
conditioned policy is trained directly with behavior cloning on hindsight rela-
beled trajectories [9]. Unlike regular behavior cloning, where expert trajectories
are used for supervision, GCBC uses suboptimal trajectories from the replay
buffer. While this approach can result in sub-optimal policies in theory, prior
work [9] has demonstrated impressive empirical results.

3. Model-based approach: This baseline is simply fitting a generative model on
the future state occupancy distribution pπ(.|.)(st+|s, a) [8, 10, 24]. A policy
is then trained to maximize the likelihood under this density model. Unlike
contrastive RL methods that estimate the probabilities directly, these methods
learn a generative model and thus do not scale favorably with high-dimensional
state-spaces such as image-based observations.

It can be seen in Fig. 7.3 that the proposed Distributional NCE methods outperform
TD3+HER, GCBC and model-based approach on all the tasks. While the difference
is marginal on the easier fetch_reach environments, the Distributional NCE method
achieves greater than +50% higher median success rate on the harder pushing tasks.

41

7. Results and Analysis

7.4 Analyzing distributional NCE’s predictions

To better understand the success of distributional NCE, we visualize its predictions.
We do this by taking two observations from the fetch_reach task that take 5 steps
to transit between under a well-trained policy. We show the predictions from distri-
butional NCE in Fig. 7.4 (left). Note that distributional NCE outputs a probability
for each time step t. The highest probability is for reaching the goal after exactly 5
steps, but the method still predicts that there is a non-zero probability of reaching
the goal after 4 steps or after 6 steps. We also compare to the predictions of the
“MC Distance” baseline from Fig. 7.1. We see that this baseline makes an accurate
estimate for when the goal will be reached.

We include another visualization of the distributional NCE predictions in Fig. 7.4
(right), this time for two observations that occur 10 steps apart. Again, the predictions
from distributional NCE appear accurate: the goal has the highest probability of
being reached after 10 – 12 steps. These predictions highlight an important property
of the distributional NCE predictions: they do not sum to one. Rather, it may be
likely that the agent reaches the goal after 9 steps and remain at that goal, so the
probability of being in that goal after 11 steps is also high.

Figure 7.5: The predictions from distributional NCE can be converted into a distance
classifier by normalization. See text for details.

42

7. Results and Analysis

Our final visualization draws a connection between distributional NCE and the
“Distance Classifier” baseline from Fig. 7.1. We can recover the Bayes’ optimal distance
classifier from the distributional NCE predictions by normalizing the predicted
probabilities (Eq. 5.4). We visualize a confusion matrix of these predictions in
Fig. 7.5 by averaging over 1000 states sampled from a trained policy. We observe
that there is a clear trend along the diagonal, indicating that the distributional
NCE predictions (after normalization) can be used to estimate “distances.” This
visualization not only provides a further sanity check that distributional NCE makes
reasonable predictions, but also highlights that (by normalization) distributional NCE
retains all the capabilities of distance prediction.

7.5 How well does consistency regularization work

in practice?

We empirically found that 1-step temporal consistency regularization does not improve
the performance of Distributional NCE; occasionally it decreases performance. On
the other hand, we found that the multi-step temporal consistency regularization
significantly boosts the performance of Distributional NCE in Fig. 7.6.

Figure 7.6: Multi-step temporal consistency regularization is significantly more
effective than 1-step consistency regularization. In some cases, 1-step consistency
regularization actually hurts the performance of the Distributional NCE algorithm,
but Multi-step consistency almost always improves the performance.

43

7. Results and Analysis

7.6 Performance of Distributional NCE with

different number of bins

Figure 7.7: Varying the number of classifier bins has little effect on the performance
of Distributional NCE for sawyer_push task.

In this section, we study if the choice of the number of classifier bins has an
impact on the performance of the Distributional NCE algorithm. In theory, this
hyperparameter should have no effect on the final policy since any Bayes-optimal
distributional classifier can be mapped to the Bayes optimal contrastive NCE classifier
(num_bins=1) as shown in Eq. 5.10. We verify this empirically on the sawyer_push
task in Fig. 7.7, wherein we see very little difference in performance for four distinct
choices for the number of classifier bins: 11, 21, 51, and 101. For the rest of the
experiments in the report, we fix the number of classifier bins to 21.

44

7. Results and Analysis

7.7 Comparison with the last-layer ensemble

baseline

Figure 7.8: Distributional Critic trained with Contrastive NCE (last layer ensemble
baseline) does not match Distributional NCE, highlighting the importance of the
training algorithm over architectural choice.

The Distributional NCE algorithm uses a distributional critic with h classifier
bins, while the Contrastive NCE [14] uses a regular critic with 1 output bin to directly
denote the probability of reaching the goal in the future (up to proportionality). For
the distributional critic, we simply modified the last linear layer in the regular critic
network to have h outputs in all our experiments. In this section, we examine the
importance of the distributional critic architecture by training a distributional critic
with the Contrastive NCE algorithm. We do this by treating the distributional critic
as an ensemble of critic networks, with all but the last-layer parameters shared.

We report the performance of the last-layer ensemble baseline in comparison
to Contrastive NCE and Distributional NCE algorithms on the fetch_push task in

45

7. Results and Analysis

Fig. 7.8. We observe that the last-layer ensemble baseline outperforms the Contrastive
NCE algorithm by +10% higher success. It can also be seen that the Distributional
NCE algorithm outperforms this ensemble baseline by +7%. Further, Distributional
NCE with consistency loss offers a +15% improvement over the ensemble baseline.
This experiment confirms that the algorithm used to train the distributional critic
has a huge impact on the overall performance: Distributional NCE with Consistency
> Distributional NCE > Contrastive NCE.

7.8 Exploring the loss landscape of Distributional

Classifiers

Prior works [3, 48] have identified that distributional RL methods enjoy stable op-
timization and better learning signal compared to their counterpart RL methods.
In particular, Sun et al. [48] demonstrates that distributional value function ap-
proximations have a desirable smoothness property during optimization, which is
characterized by small gradient norms. In this section, we try to examine if using
the proposed distributional NCE algorithm enjoys some of these benefits. Note that
prior works use the distributional critic to estimate the continuous return distribution
with discretized bins [3, 7], which is different from our work that estimates the
distributional probabilities of reaching the goal at discrete future timesteps.

In Fig. 7.9, we visualize the training loss and the gradient norm for the actor and
critic networks over the course of training when optimized with the contrastive NCE
and Distributional NCE algorithms. We note that the training loss for the critic
network remains nearly unchanged, and the gradient norm is slightly smaller when
switching from contrastive NCE to the Distributional NCE objective. On the other
hand, we observe that actors trained with distributional critics receive gradients with
smaller norms and achieve an overall lower loss. Note that plots in Fig. 7.9 are not
a fair comparison since the Distributional NCE and Contrastive NCE agents were
trained on different data, one that was collected by their respective actors interacting
with the environment. However, we find the consistently low actor loss and smaller
actor gradient norms with Distributional critics as compelling evidence to inspire
future research works to study these optimization advantages more rigorously.

46

7. Results and Analysis

7.9 Performance on driving task

Most goal-conditioned RL benchmarks [29] exclude navigation tasks, which we find
surprising. In this section, we consider a goal-reaching driving task with bicycle model
dynamics. In particular, the agent’s state is determined by a 5-D tuple (x, y, θ, v, ϕ),
the x and y coordinates, orientation/yaw θ, velocity v, and steering angle ϕ. The
goal is specified by a 2-D tuple indicating the target x and y coordinates. The agent’s
action space comprises of acceleration v̇ and steering angle rate ϕ̇. Under the bicycle
model dynamics, the state is updated as follows:

x = x+ v cos θ ∗∆t

y = y + v sin θ ∗∆t

θ = θ +
v tanϕ

L
∗∆t

v = v + v̇ ∗∆t

ϕ = ϕ+ ϕ̇ ∗∆t,

where ∆t = 0.1 sec is the time discretization, and L = 1 meter is the longitudinal
length of the vehicle.

In this environment, we test the Distributional NCE algorithm, along with TD3,
a performant off-policy algorithm, trained with sparse 0-1 rewards and dense rewards
that measure progress toward the goal. From Table 7.1, we see that all three methods
achieve a high success rate, but the TD3 algorithm trained with dense rewards reaches
the goal twice as fast as the other. We hypothesize this is because reward-free or
sparse 0-1 reward methods are trained to maximize the likelihood of reaching the goal,
and are not explicitly rewarded for anything else, such as "minimum-time" behaviors.
While the discount factor implicitly encodes the urgency to reach the goal, we observe
that this enforcement alone is insufficient in practice.

One way to address this issue is to explicitly use a reward-maximization objective
to optimize the policy and train the Distributional NCE critic as a standalone proba-
bilistic distance function. This distance function offers a well-calibrated approximation
of the distribution over dynamical distances under the policy, and can be used for
stochastic shortest-path planning. Another future research direction can be to extend

47

7. Results and Analysis

Algorithm Success Episode Steps

Distributional NCE 0.85 37.5
TD3 (sparse rewards) 0.8 59.3
TD3 (dense rewards) 1.0 20.1

True Dynamics + MPC (near optimal) 1.0 18.5

Table 7.1: Limitations of reward-free setting: Maximizing the likelihood of reaching
the goal is a poor incentive to reach the goal sooner. The results are averaged over
100 trajectories across three random seeds.

the proposed Distributional NCE framework to reward-maximization settings. One
possible approach to doing this is by constructing an importance sampling estimator
of the policy optimization objective (Eq. 3.1) using the learned density model over
future states [24].

48

7. Results and Analysis

Figure 7.9: Visualization of the training losses and gradient norms for the actor and
critic networks over the course of training. We do not see a huge difference in critic
loss or gradients but observe that the actor loss is consistently lower and has a smaller
gradient norm for Distributional NCE relative to Contrastive NCE.

49

7. Results and Analysis

50

Chapter 8

Conclusions

This work takes aim at the tension between two conflicting objectives for goal-reaching:
maximizing the probability of reaching a goal, and minimizing the distance (number
of steps) to reach a goal. Our analysis shows that distance-based objectives can cause
poor performance on both didactic and benchmark tasks. Based on our analysis, we
propose a new method that predicts the probability of arriving at the goal at many
different time steps; this method outperforms prior goal-conditioned RL methods,
most notably those based on regressing to distances. Our analysis also suggests a
temporal-consistency regularizer, which can be added to boost performance. Together,
we believe that these results may prove hopeful both to new researchers attempting to
build a mental model for goal-conditioned RL, as well as veteran researchers aiming
to develop ever more performant goal-conditioned RL algorithms.

51

8. Conclusions

52

Bibliography

[1] Minttu Alakuijala, Gabriel Dulac-Arnold, Julien Mairal, Jean Ponce, and
Cordelia Schmid. Learning reward functions for robotic manipulation by observ-
ing humans. arXiv preprint arXiv:2211.09019, 2022. 1.1, 2.3

[2] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,
Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech
Zaremba. Hindsight experience replay. Advances in neural information processing
systems, 30, 2017. (document), 2.2, 2.2.1, 7.3, 7.3, 1

[3] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective
on reinforcement learning. In International conference on machine learning,
pages 449–458. PMLR, 2017. 2.4, 5.1, 7.8

[4] Dimitri P Bertsekas and John N Tsitsiklis. An analysis of stochastic shortest
path problems. Mathematics of Operations Research, 16(3):580–595, 1991. 1.1

[5] J Bradbury, R Frostig, P Hawkins, MJ Johnson, C Leary, D Maclaurin, G Nec-
ula, A Paszke, J VanderPlas, S Wanderman-Milne, et al. Jax: composable
transformations of python+ numpy programs, v0. 2.5. Software available from
https://github. com/google/jax, 2018. 6.2

[6] Raymond K Cheung. Iterative methods for dynamic stochastic shortest path
problems. Naval Research Logistics (NRL), 45(8):769–789, 1998. 2.3

[7] Will Dabney, Mark Rowland, Marc G. Bellemare, and Rémi Munos. Distribu-
tional reinforcement learning with quantile regression. CoRR, abs/1710.10044,
2017. URL http://arxiv.org/abs/1710.10044. 2.4, 7.8

[8] Peter Dayan. Improving generalization for temporal difference learning: The
successor representation. Neural computation, 5(4):613–624, 1993. (document),
7.3, 3

[9] Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-
conditioned imitation learning. Advances in neural information processing sys-
tems, 32, 2019. (document), 2.2.1, 7.3, 2

[10] Alexey Dosovitskiy and Vladlen Koltun. Learning to act by predicting the future.

53

http://arxiv.org/abs/1710.10044

Bibliography

arXiv preprint arXiv:1611.01779, 2016. (document), 7.3, 3
[11] Ishan Durugkar, Mauricio Tec, Scott Niekum, and Peter Stone. Adversarial

intrinsic motivation for reinforcement learning. Advances in Neural Information
Processing Systems, 34:8622–8636, 2021. 2.2

[12] Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Search on the
replay buffer: Bridging planning and reinforcement learning. Advances in Neural
Information Processing Systems, 32, 2019. 2.3, 2.4

[13] Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. C-learning:
Learning to achieve goals via recursive classification. arXiv preprint
arXiv:2011.08909, 2020. (document), 2.2, 2.2.2, 3.1, 4.3, 4.3, 5.1, 5.3.1, 5.3.2,
6.2, 7.2, 7.3

[14] Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov.
Contrastive learning as goal-conditioned reinforcement learning. Advances in
Neural Information Processing Systems, 35:35603–35620, 2022. (document), 1.1,
2.2, 2.2.2, 3.1, 4.3, 4.3, 5.1, 5.1.2, 5.1.2, 5.3.1, 5.3.1, 5.3.2, 6.2, 6.2.2, 6.2.3, 7.2,
7.3, 7.7

[15] Liping Fu and Larry R Rilett. Expected shortest paths in dynamic and stochastic
traffic networks. Transportation Research Part B: Methodological, 32(7):499–516,
1998. 2.3

[16] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approxi-
mation error in actor-critic methods. In International conference on machine
learning, pages 1587–1596. PMLR, 2018. 1

[17] Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Devin, Ben-
jamin Eysenbach, and Sergey Levine. Learning to reach goals via iterated
supervised learning. arXiv preprint arXiv:1912.06088, 2019. 2.2

[18] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics, pages
297–304. JMLR Workshop and Conference Proceedings, 2010. 4.3, 5.3.1

[19] Michael U Gutmann and Aapo Hyvärinen. Noise-contrastive estimation of
unnormalized statistical models, with applications to natural image statistics.
Journal of machine learning research, 13(2), 2012. 2.1, 2.2.2

[20] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon
Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al.
Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905,
2018. 6.2

[21] Kristian Hartikainen, Xinyang Geng, Tuomas Haarnoja, and Sergey Levine.

54

Bibliography

Dynamical distance learning for semi-supervised and unsupervised skill discovery.
arXiv preprint arXiv:1907.08225, 2019. 1.1, 2.3, 4, 4.3

[22] Edward S Hu, Richard Chang, Oleh Rybkin, and Dinesh Jayaraman. Planning
goals for exploration. arXiv preprint arXiv:2303.13002, 2023. 1

[23] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust
your model: Model-based policy optimization. Advances in neural information
processing systems, 32, 2019. 2.2.3

[24] Michael Janner, Igor Mordatch, and Sergey Levine. gamma-models: Generative
temporal difference learning for infinite-horizon prediction. Advances in Neural
Information Processing Systems, 33:1724–1735, 2020. (document), 2.2.3, 7.3, 3,
7.9

[25] Seongmoon Kim, Mark E Lewis, and Chelsea C White. State space reduction for
nonstationary stochastic shortest path problems with real-time traffic information.
IEEE Transactions on Intelligent Transportation Systems, 6(3):273–284, 2005.
2.3

[26] Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning
multi-level hierarchies with hindsight. arXiv preprint arXiv:1712.00948, 2017. 1

[27] Xingyu Lin, Harjatin Singh Baweja, and David Held. Reinforcement learning
without ground-truth state. arXiv preprint arXiv:1905.07866, 2019. 2.2.1, 1

[28] Bo Liu, Yihao Feng, Qiang Liu, and Peter Stone. Metric residual networks
for sample efficient goal-conditioned reinforcement learning. arXiv preprint
arXiv:2208.08133, 2022. 2.2

[29] Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-conditioned reinforcement
learning: Problems and solutions. arXiv preprint arXiv:2201.08299, 2022. 7.9

[30] Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson,
Sergey Levine, and Pierre Sermanet. Learning latent plans from play. In
Conference on robot learning, pages 1113–1132. PMLR, 2020. 2.2

[31] Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash
Kumar, and Amy Zhang. Vip: Towards universal visual reward and representation
via value-implicit pre-training. arXiv preprint arXiv:2210.00030, 2022. 1.1

[32] Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash
Kumar, and Amy Zhang. Vip: Towards universal visual reward and representation
via value-implicit pre-training. arXiv preprint arXiv:2210.00030, 2022. 2.2

[33] Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak
Pathak. Discovering and achieving goals via world models. Advances in Neural
Information Processing Systems, 34:24379–24391, 2021. 2.2.3

[34] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

55

Bibliography

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013. 6.2.2

[35] Anusha Nagabandi, Kurt Konolige, Sergey Levine, and Vikash Kumar. Deep
dynamics models for learning dexterous manipulation. In Conference on Robot
Learning, pages 1101–1112. PMLR, 2020. 2.2.3

[36] Suraj Nair and Chelsea Finn. Hierarchical foresight: Self-supervised learning of
long-horizon tasks via visual subgoal generation. arXiv preprint arXiv:1909.05829,
2019. 2.2.3

[37] Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey Levine. Planning with
goal-conditioned policies. Advances in Neural Information Processing Systems,
32, 2019. 2.2.3

[38] Allen Newell, John C Shaw, and Herbert A Simon. Report on a general problem
solving program. In IFIP congress, volume 256, page 64. Pittsburgh, PA, 1959.
2.2

[39] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-
driven exploration by self-supervised prediction. In International conference on
machine learning, pages 2778–2787. PMLR, 2017. 1

[40] Parichart Pattanamekar, Dongjoo Park, Laurence R Rilett, Jeomho Lee, and
Choulki Lee. Dynamic and stochastic shortest path in transportation networks
with two components of travel time uncertainty. Transportation Research Part
C: Emerging Technologies, 11(5):331–354, 2003. 2.3

[41] Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker,
Glenn Powell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder,
et al. Multi-goal reinforcement learning: Challenging robotics environments and
request for research. arXiv preprint arXiv:1802.09464, 2018. 6.1, 7

[42] Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas
Degrave, Tom Wiele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg.
Learning by playing solving sparse reward tasks from scratch. In International
conference on machine learning, pages 4344–4353. PMLR, 2018. 1

[43] Tim GJ Rudner, Vitchyr Pong, Rowan McAllister, Yarin Gal, and Sergey Levine.
Outcome-driven reinforcement learning via variational inference. Advances in
Neural Information Processing Systems, 34:13045–13058, 2021. 5.1

[44] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value
function approximators. In International conference on machine learning, pages
1312–1320. PMLR, 2015. 1

[45] Dhruv Shah, Benjamin Eysenbach, Gregory Kahn, Nicholas Rhinehart, and
Sergey Levine. Ving: Learning open-world navigation with visual goals. In

56

Bibliography

2021 IEEE International Conference on Robotics and Automation (ICRA), pages
13215–13222. IEEE, 2021. 4

[46] Matthew J Sobel. The variance of discounted markov decision processes. Journal
of Applied Probability, 19(4):794–802, 1982. 2.4

[47] Hao Sun, Zhizhong Li, Xiaotong Liu, Bolei Zhou, and Dahua Lin. Policy
continuation with hindsight inverse dynamics. Advances in Neural Information
Processing Systems, 32, 2019. 2.2

[48] Ke Sun, Bei Jiang, and Linglong Kong. How does value distribution in
distributional reinforcement learning help optimization? arXiv preprint
arXiv:2209.14513, 2022. 2.4, 7.8

[49] Stephen Tian, Suraj Nair, Frederik Ebert, Sudeep Dasari, Benjamin Eysen-
bach, Chelsea Finn, and Sergey Levine. Model-based visual planning with
self-supervised functional distances. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=UcoXdfrORC.
2.2, 4, 4.3

[50] Srinivas Venkattaramanujam, Eric Crawford, Thang Doan, and Doina Precup.
Self-supervised learning of distance functions for goal-conditioned reinforcement
learning. arXiv preprint arXiv:1907.02998, 2019. 1.1, 2.3

[51] Tingwu Wang and Jimmy Ba. Exploring model-based planning with policy
networks. arXiv preprint arXiv:1906.08649, 2019. 2.2.3

[52] Tongzhou Wang, Antonio Torralba, Phillip Isola, and Amy Zhang. Optimal
goal-reaching reinforcement learning via quasimetric learning. arXiv preprint
arXiv:2304.01203, 2023. 2.2, 4.1

[53] Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. Unsupervised
data augmentation for consistency training. Advances in neural information
processing systems, 33:6256–6268, 2020. 5.3.1

[54] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea
Finn, and Sergey Levine. Meta-world: A benchmark and evaluation for multi-
task and meta reinforcement learning. In Conference on robot learning, pages
1094–1100. PMLR, 2020. 6.1, 7

[55] Menghui Zhu, Minghuan Liu, Jian Shen, Zhicheng Zhang, Sheng Chen, Weinan
Zhang, Deheng Ye, Yong Yu, Qiang Fu, and Wei Yang. Mapgo: Model-assisted
policy optimization for goal-oriented tasks. arXiv preprint arXiv:2105.06350,
2021. 2.2.3

57

https://openreview.net/forum?id=UcoXdfrORC

	1 Introduction
	1.1 Motivation
	1.2 Thesis Outline

	2 Background & Related Work
	2.1 Noise Constrastive Estimation
	2.2 Goal-Conditioned Reinforcement Learning
	2.2.1 Hindsight Experience Replay
	2.2.2 Contrastive Goal-Conditioned RL
	2.2.3 Model-based RL and Planning

	2.3 Distances in Reinforcement Learning
	2.4 Distributional Reinforcement Learning

	3 Problem Statement
	3.1 MDP Formulation

	4 The Perils of Monte Carlo Distance Functions
	4.1 Toy example illustrating pathological behavior
	4.2 Distance Regression is secretly learning a Normalized Classifier
	4.3 Connection between Maximizing Likelihood and Stochastic Shortest Path Methods

	5 The Fix: Estimate Probabilities, not Distances
	5.1 Our Method: Distributional NCE
	5.1.1 Getting Distances from Distributional NCE
	5.1.2 Convergence Proof

	5.2 Self-Supervised Temporal Consistency Objective
	5.3 A Practical Algorithm
	5.3.1 Introducing a catch-all bin
	5.3.2 Generalizing 1-step to Multi-step Temporal Consistency

	6 Experimental Details
	6.1 Task Descriptions
	6.2 Implementation Details
	6.2.1 Distributional Critic Implementation
	6.2.2 Network Architecture
	6.2.3 Hyperparameters

	7 Results and Analysis
	7.1 Comparison with distance regression
	7.2 Comparing to prior goal-conditioned RL algorithms
	7.3 Comparing to prior (non-contrastive) GCRL algorithms
	7.4 Analyzing distributional NCE's predictions
	7.5 How well does consistency regularization work in practice?
	7.6 Performance of Distributional NCE with different number of bins
	7.7 Comparison with the last-layer ensemble baseline
	7.8 Exploring the loss landscape of Distributional Classifiers
	7.9 Performance on driving task

	8 Conclusions
	Bibliography

