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Abstract— This paper presents a new type of distributed dex-
terous manipulator: delta arrays. Our delta array setup consists
of 64 linearly-actuated delta robots with 3D-printed compliant
linkages. Through the design of the individual delta robots, the
modular array structure, and distributed communication and
control, we study a wide range of in-plane and out-of-plane
manipulations, as well as prehensile manipulations among sub-
sets of neighboring delta robots. We also demonstrate dexterous
manipulation capabilities of the delta array using reinforcement
learning while leveraging compliance. Our evaluations show
that the resulting 192 DoF compliant robot is capable of
performing various coordinated distributed manipulations of a
variety of objects, including translation, alignment, prehensile
squeezing, lifting, and grasping.

Index Terms— Multi-Robot Systems, Soft Robot Applica-
tions, Dexterous Manipulation

I. INTRODUCTION

The term dexterous manipulation often invokes the image
of a five-fingered hand delicately holding an object as a
human would. However, robots are not restricted to human
morphology. Imagine instead a surface covered in fingers.
Each finger can move its fingertip in a small 3D workspace
above its fixed base and interact with parts of objects that
enter its workspace. The fingers can work together to shift,
tilt, lift, block, and even pinch objects. The large number of
fingers provides additional redundancy, with larger objects
being manipulated by tens of fingers at a time. The dis-
tributed nature of the fingers also means that multiple objects
can be easily manipulated in parallel in different regions
of the surface. This type of system would thus represent
a distributed dexterous manipulation paradigm.

In this paper, we present an array of linear delta robots
for the development of distributed dexterous manipulation
strategies. Delta arrays consist of grids of small prismatic
soft delta robots (3 degrees-of-freedom (DoF) each) that
work together to manipulate objects. We propose a modular
design for the delta arrays that consist of 2 × 2 units (12
DoF each) with each unit having a standalone mechanical
and electronic design. Each unit has its own processor
and controllers, allowing for distributed computation with
a central computer providing high-level commands. We also
present a real hardware implementation of an 8 × 8 array
consisting of 16 units and providing 192 degrees of freedom.
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Fig. 1: Delta array dexterous manipulation setup with robots facing
down. (a) The setup consists of 64 delta robots actuated by linear
motors and a camera. (b) Checkered board on the object used for pose
estimation. (c) Distributed manipulation strategy for tilting wooden
block.

Each compliant delta robot in the array is actuated by three
linear actuators. These actuators are connected via parallel
mechanisms to an end-effector platform. The platform and
parallel linkages are 3D printed together out of thermoplastic
polyurethane (TPU - 95A shore hardness) for easier assem-
bly, compliant interactions, and low hysteresis under extreme
deformations. The linear-actuator design allows for the delta
robots to be packed closely together, in a hexagonal grid,
and for their end-effectors to move outside of the footprint
of the actuators. This allows the workspaces of neighboring
deltas to overlap, and perform prehensile manipulations such
as pinching between neighboring delta robots.

We present two modes of operating the delta array:

• Facing Down - Objects are placed on a plexiglass plane
and manipulated from the top with a camera underneath
the array for visual feedback (Fig. 1).

• Facing Up - Objects are placed on top of the array and
manipulated from underneath or on the sides (Fig. 5).

The delta array provides a basis for a wide range of
different manipulation strategies. Similar to smart conveyors,
delta arrays are capable of executing various planar trans-
portation behaviors. Unlike smart conveyors, delta arrays
need to use a finger gaiting approach, with coordinated
making and breaking of contacts across delta robots, to shift
objects across the array’s workspace. This added complexity,
however, means delta arrays can make better contact with
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Fig. 2: The modular design of the delta array. Each robot consists
of three linear actuators and a 3D printed TPU end effector (left).
Four robots organized in a 2 × 2 hexagonal grid form a module,
which shares the electrical components (middle). 16 modules form
the delta array (right).

objects that have non-planar surfaces. The additional flexi-
bility and non-planar motions of the deltas also allow for a
number of other strategies that require out-of-plane motions
in 3D workspaces. These strategies contrast with traditional
manipulators in the sense that the end-effectors are static as
opposed to being mounted on a robotic arm, and rely more
on cooperation between multiple agents to accomplish tasks.

In the facing-up mode, the variable height allows for the
rolling and tilting of objects on the array surface. Fingers
can be raised to create fixture-like structures for aligning
objects. The lateral motions allow the deltas to grasp and
pinch objects of various sizes across the array. Although
many of these strategies have been individually supported by
other distributed or dexterous manipulation systems, to the
best of our knowledge, this is the first system that supports
all of these strategies and thus the possibility of combining
strategies, as well as learning new ones.

Implementing and controlling an array of delta robots
presents a number of challenges. The design needs to be
modular for easy construction, extension, and maintenance.
The individual delta robots need to be robust and safe,
but also precise and capable of supporting a wide range
of manipulation strategies. The communication needs to be
fast and scalable to minimize command latency throughout
the array network. In the remainder of this paper, we will
explain and discuss our design decisions in developing the
delta arrays and how we tackle each of these systemic
requirements. Sections II, III, and IV describe the modular
arrays in a bottom-up manner, while sections V, and VI
present basic control strategies for manipulating objects with
the arrays. The focus of this paper is on the design of the
delta arrays and demonstrating its ability to execute a variety
of distributed dexterous manipulation strategies. Developing
more advanced and hybrid strategies is left to future work.

II. RELATED WORK

A. Delta robots

Delta robots were introduced by Clavel in 1990 and
initially designed as a pick-and-place tool [1]. Conventional
delta robots have a fixed base and a moving stage that are
always parallel to each other. These platforms are connected
by three kinematic chains with revolute and universal joints.

These chains are each driven by single-DoF actuators that are
positioned at the fixed base. The motion is transmitted from
the base arm to the moving stage by three parallelograms,
which are the key to the delta robot’s functionality [2]. In
our recent work [3], we presented a gripper based on two
prismatic delta manipulators using 3D-printed parallelogram
links presented in [4]. Unlike traditional parallel jaw grip-
pers, our robots have compliant end-effectors, which makes
them modular and accessible. This 6-DoF system is able to
perform dexterous manipulation tasks, such as aligning a pile
of coins, picking up a card from a deck, plucking a grape
off of a stem, and rolling dough.

B. Robot hand and finger design for dexterous manipulation

Current robot hands with fingers span a range of different
designs and complexity. Basic two-fingered grippers often
have a single DoF, while complex anthropomorphic hands
will often have multiple DoF per finger [5], [6]. Current
designs use serial mechanisms for the individual fingers, sim-
ilar to human hands. However, the more dexterous designs
either require relatively bulky motors to be placed in the
fingers, where they significantly increase the inertia, or they
are actuated by cable drives [7], which are subject to highly
non-linear effects and temporal variations due to slack and
friction along the cables.

C. Dynamic surfaces

Dynamic surfaces have the potential to be used not only
for object manipulation, but also as shape-changing inter-
faces. Distributed manipulation systems have many types,
such as vibrating plates [8], actively controlled arrays of
air jets [9], planar micromechanical actuator arrays [10],
and actuated workbenches using magnetic forces [11]. These
dynamic surfaces with an actuator array are also widely used
in interactive displays. However, prior works focus on the
motion on a plane, rather than working on the motion in 3D
space. An additional DoF on the normal surface allows the
delta array to interact with objects while utilizing contacts
in 3D space.

D. Distributed and dexterous manipulation primitives

Dexterous manipulation using soft grippers is a challeng-
ing task due to stochasticity in the kinematics of the soft
robot bodies. Various robust model-based control strategies
use Lagrangian formulations to model the system [12] [13].
Another way is to use human demonstrations and Dynamic
Motion Primitives (DMPs) to generate dynamically con-
strained trajectories for manipulation [14] [15] [16]. How-
ever, using analytical methods for a multi-agent system can
lead to excessively high demand in compute, and generating
human demonstrations for such a high degree of freedom
system is logistically infeasible. Thus, we deploy a model-
free RL algorithm directly on the hardware to generate
trajectories for pushing and tilting an object against other
robots to demonstrate the dexterous manipulation capabilities
of the delta arrays.
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Fig. 3: (a) Cross-section view of the fingertip assembly in CAD (b)
Cross-section view of 3D printed fingertip shows air pocket created
by 0% infill (c) Attachment clip latches into underside of link using
catch on end of the 3 prongs.

III. PRISMATIC DELTA ROBOTS

A delta array consists of multiple delta robots arranged in a
planar grid structure. In this section, we explain the design of
the individual delta robots. Each delta robot consists of three
actuators connected by a parallel-bar linkage end-effector
platform, as shown in Fig.2.

A. Actuators

Delta robots are often designed with rotational actuators
that provide torque to individual links [2], [17]. These
designs provide rapid and precise movements at the end-
effector, but at the cost of a wide robot base. Due to the
excessive width, which would conflict with the goal of
creating a closely packed array of delta robots, we utilize
linear actuators that enable us to position each robot in close
proximity to one another. The linear actuators (Actuonix)
have a 10 cm stroke length and internal potentiometers
to provide analog feedback for position control. The end
effector design is based on our previous work [3].

B. End Effector and Parallelogram Linkages

The end-effector platform is connected to three actuators
through a parallelogram link, which converts linear motions
into precise 3D x-y-z motions at the end-effector while
keeping the platform parallel to the base.

The delta links are 3D printed as a single part with living
hinges. Additional details can be found at [4]. The delta links
were printed using thermoplastic polyurethane (TPU) for its
low Young’s modulus. This compliance allows the robots to
safely interact with objects, other robots, and reduce the wear
and tear of the system.

To perform dexterous manipulation, we design a fingertip
that is inspired by the texture and feel of a human finger. The
fingertip is attached as an end-effector to the delta platform
using a reusable clip printed using durable formv3 resin
for strength and flexibility. The fingertips were 3D printed
using Polylactic acid (PLA) for the inner bone structure
and NinjaFlex 85A for the outer skin which was fused
together using a dual extrusion printer. Fig. 3 shows the
cross-sectional structure of the design.We achieve this hollow
structure by using 0% infill for the NinjaFlex and thin, two-
layer walls which results in an enclosed cavity that provides
the surface compliance for the finger.

C. Delta Robot Workspace

A key benefit of the prismatic delta design is that the
workspace of the delta’s end-effector extends beyond the
triangular footprint of the three actuators. For our implemen-
tation, the horizontal distance between the centers of two
actuators in a delta robot is 2cm, while the width of the
workspace is approximately 6cm. To avoid excessive colli-
sions between neighboring deltas, we restrict the horizontal
workspace to a diameter of 3cm. The vertical workspace
corresponds to the 10cm stroke length of the actuators.

The delta robots are operated within a workspace that is
far away from their singularities. Ambiguities in the inverse
kinematics can therefore be easily resolved to determine
a suitable joint trajectory for a given desired end-effector
trajectory.

IV. MODULAR ARRAY STRUCTURE

Sets of delta robots are arranged into hexagonal grids to
create delta arrays. Rather than constructing an array out
of single deltas, we instead developed a modular 2 × 2
array unit for four deltas. Each unit can be operated in a
standalone manner and provides a shared set of electronics
and microcontrollers. To create an 8 × 8 array, we simply
place 16 of the modules in a 4 × 4 macro grid, and a
central computer then communicates to all of the modules to
create coordinated manipulation strategies. The 2×2 modules
thus provide a modular and extendable basis for easily
constructing arrays of different sizes and replacing parts as
needed. Our 8× 8 configuration allows the manipulation of
objects of a range of sizes and demonstrates the potential of
such arrays in dexterous tasks.

A. 2× 2 Delta Modules

Each 2×2 module employs a hexagonal structure as shown
in the middle image of Fig.2. The linear actuator bodies are
held together using two laser-cut plexiglass plates, which
are, in turn, supported by aluminum stand-offs. The stand-
off configuration equally compresses the 12 linear actuators
from both sides forming a stable structure.

Each robot in the module is then secured through the base
of the linear actuators using a 3D-printed connector made
from PLA and then attached to a 3D-printed enclosure made
of PLA. This hardware box houses the electronics needed to
control the four deltas in that module and allows the module
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Fig. 4: Communication flowchart for a 2×2 module. The control of
three actuators of each robot in a four-robot module is accomplished
by three motor drivers. Colored arrows show the distributed control
framework between drivers, actuators, and ADCs.

to be connected with a base plate that supports the array.
The resulting 2 × 2 delta modules offer a balance between
modularity and ease of maintenance.

For the face-down mode of operation, the setup is in-
verted and mounted onto pillars made of 80/20 aluminum
extrusions—constrained at the top by the base plate and on
the bottom by an optical breadboard. Between the array and
the breadboard, a clear plexiglass platform is supported by
a movable linear slide on each corner. Planar manipulations
are performed ontop of this platform. These sliders allow the
height of the platform to be manually adjusted depending on
the size of the objects being manipulated. The transparent
platform enables our vision pipeline to track the pose of
objects from below as they are manipulated.

B. Electronics

Adafruit Feather M0 boards control four deltas (12 ac-
tuators) in a module and they are housed in the hardware
enclosure box. Adafruit DC Motor/Stepper FeatherWing is
used to control the velocity of the end effectors through
PWM signals. We use an analog-to-digital converter (ADC)
to couple the position feedback from the linear actuators.
This also acts as a low-pass filter to eliminate high-frequency
noise from the electromagnetic interference generated in the
circuit for precise position control. We use a 12-bit ADC that
resolves the 100 mm length, and we apply a low level PID
control with a final precision of upto 0.3 mm.

We use the I2C bus on the Feather M0 and distribute
the data bus, clock, and a 12W power supply across three
FeatherWing motor drivers using a custom electronic shield
circuit. The compactness of the design allows us to maintain
close proximity among all the delta modules.

For perception, we mount a USB camera module on the
bottom plane looking upwards. The camera tracks object
poses with minimal occlusions while dexterous manipulation

(a)

(c)

(b)

(d)

Top View Side View

Dexterous 
Gripping 
Primitive

Planar 
Rotation 
Primitive

Fig. 5: Top-view and side-view representation of the ellipsoid trajec-
tories of the two-beat gaits. (a) represents 2 odd rows from the array
for execution of the Dexterous Gripping Primitive and (c) represents
the entire delta array executing the Planar Rotation Primitive. Both
follow two-beat gait patterns shown in (b) and (d) respectively

is being performed by the delta array from above.

C. Communication Across the Array

To efficiently control the entire array of 64 robots, com-
munication factors like latency, noise, and amplitude of
signal need to have stable optimal values. Instead of using
TTL communication using wires, which results in exhaustive
cable management and noise, we use off-the-shelf ESP-01
WiFi modules operating at 115,200 baud rate, enabling low
latency, low noise, and speedy wireless communication. A
high-level flowchart of communication is shown in (Fig. 4).
We use protocol buffers (protobuf) to transmit control data
because of their high compressibility and effectiveness in
networked communications as shown in [18].

V. PREDEFINED DISTRIBUTED MANIPULATION
STRATEGIES

The 8×8 array in ”facing-up” mode can execute a variety
of dexterous manipulation strategies distributed across its
delta robots. These strategies include planar manipulations
like translation, rotation, and convergence, as well as out-of-
plane and prehensile manipulations. To test the capabilities
of the delta array, we implemented a series of basic manip-
ulation policies. Each delta robot is given (x, y) coordinates
representing its position p⃗. For every primitive, we use
simple linear algebraic operations to determine the position-
controlled trajectories of the delta robots.

The delta array policies are designed as two-beat finger-
gaiting strategies that repeatedly cause the deltas to make and
break contact with the objects being manipulated. The planar
trajectory moves in the vertical direction, with a constant
gait, and along a horizontal direction as given by a high-
level primitive. The movements can be considered as going
from [−p⃗, zmin] to [p⃗, zmax] as shown in Fig.5A, where
zmin = 7cm and zmax = 10cm are the alternating end-
effector positions on Z−axis. The two-beat gait means that
half of the deltas in the array will be in an up configuration
while the other half are in a down configuration, i.e., 180
degrees out of phase. We use a two-beat gait to maximize
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Fig. 6: The rows of images demonstrate manipulations of different
objects using the 8× 8 delta array. The numbers beneath each row
indicate the timestamp. (A) A toy bell pepper object that weighs
4g with a characteristic length of 60mm is transported from one
edge of the array to the other using a dexterous gripping primitive
from (a) to (e). (B)A box object is rotated while the position on
the array stayed the same as shown from (f) to (j).

the number of deltas in contact with the object at a given
time as described in [19].

A. Dexterous Gripping Primitive

Apart from purely planar manipulation strategies, we
present a grip-and-push primitive that can be deployed to
grasp objects within a line of delta robots and push the
object forward or backward along the line. We use a two-
beat finger gait with a constant Z value, and periodically
switching Ymax and Ymin to push objects along the X−axis.
A demonstration of the strategy on a foam bell pepper is
shown in Fig.5[(a), (b)] and Fig. 6A.

B. Planar Translation Primitive

For planar translations, a straightforward implementation
of up, down, left, and right movements can be shown by
placing a point along the X and Y axes at infinity, computing
the unit distance vector from the center of the robot to that
point and plug the unit vector in the aforementioned two-beat
finger-gaiting pattern for planar translation of objects on the
surface of the linear delta arrays.

C. Planar Rotation Primitive

For planar rotation, the distance vector from each robot
to the center is multiplied by the rotation matrix to generate
rotating unit vectors for planar rotation as shown in Fig.5[(c),
(d)] and Fig.6B.

D. Wall Primitive

A unique feature of linear delta arrays is the ability to use
a subset of delta robots to form walls of various shapes for
restricting the movements of objects. Dexterous tasks like
clamping or aligning an object along the wall and turning
it around for inspection can be performed using simple yet
effective policies, an inverted version of which we present
in the next section.

Fig. 7: Using the delta robots for tilting an object using learned
trajectories

VI. LEARNING DEXTEROUS MANIPULATION
STRATEGIES

The array can also be used to learn basic dexterous
manipulation skills. We design an RL environment on the
real hardware with the delta array in the facing-down mode
7. From the robot’s camera, we track the SE(3) pose of a
checkerboard pattern attached to a wooden block that the
robot should manipulate using the neighboring 6 delta robots.
The pose of the object is tracked to generate the reward for
performing the task. We compute the L2 error between the
current pose and desired pose and compare it with a threshold
of 0.1 cm for translation and 0.5 rad for rotation. We use the
following formula to compute the reward to maximize:

f(x) =

{
−1 ∗ Te − 3 ∗Re, if Te > 0.1 ∨Re > 0.5

+10, otherwise
(1)

Where Te is the translational error and Re is the rotational
error.

The errors generated by the vision system are used to
train fingertip trajectories for grasping and tilting the wooden
block using episodic relative entropy policy search (eREPS)
[20]. The trajectories are generated by weighting the output
of eREPS on 5 basis functions of the DMPs. eREPS is a
model-free RL algorithm that iteratively optimizes a Gaus-
sian distribution over the weights of the DMP. We initialize
the distribution with a zero mean and a diagonal covariance
matrix of 0.7.

In each execution episode, the robot samples the weights
of the DMP, generates and executes the corresponding fin-
gertip trajectory, and computes the resulting reward. The
Gaussian policy is updated every ten episodes. The algorithm
runs until a success rate of at least 90% has been achieved,
which takes approximately 270 epochs.

VII. EXPERIMENTS

This section describes the experimental evaluations per-
formed using the delta array.

A. Facing-up Manipulation Experiment

We constructed an 8 × 8 delta array using the design
described in Sections III and IV. We implemented the
distributed manipulation strategies explained in Section V
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Fig. 8: Using REPS to generate weights of the basis functions of a
DMP to generate a 2D trajectory (curved lines from (0,0) till end-
point predicted by REPS) for the delta robots. Faint trajectories
represent initial exploration trajectories with low/negative rewards,
darker trajectories represent learned exploitation with high rewards

for the upward facing configuration. The robot could then
manipulate objects placed on top of the array. The robot
successfully performed non-prehensile translation and rota-
tion manipulations of objects of dimensions ranging from
60mm × 40mm × 20 mm to 300mm × 300mm × 80mm
and weights ranging from 4g to 1kg. Examples of different
manipulations are shown in Fig. 6. Each picture represents
a snapshot of the manipulation task being performed. Our
methods work on objects with a stable center of mass and a
moderate coefficient of friction. Objects like soda cans with
a shifting center of mass are hard to manipulate in an open-
loop control setting.

B. Facing-down Manipulation Experiment

We implemented the learning of dexterous manipulation
strategies in Section VI for the downward facing configura-
tion. This was done only in the facing-down configuration
due to the ease of resetting the environment as compared
to the upright configuration.The robot could learn to grasp
and tilt objects placed on a planar surface directly in the
real world without simulation. The face-down mode provides
a more stable environment for easier resetting of objects
between episodes. Throughout the training, the trajectories
generated by the robot are shown in Fig. 8.

In the initial stages, the algorithm explores the action
spaces while generating very low rewards shown as the faint
tinted trajectories in Fig. 8. As the training progresses, the
actions converge to more optimal values and the model be-
comes exploitative to generate maximum reward consistently
towards the end of the training as shown by the darker lines
in Fig. 8. The learning approach could be used to generate
DMPs for other shapes of objects as well. Due to the soft
linkages, heavy objects with smooth surfaces are hard to lift
using the delta robots.

C. Discussion

For the upward facing configuration, the results show that
the delta arrays can be used for a variety of manipulation
types. In-plane translation and rotations perform better when
applied to larger objects where more delta robots make
contact with the objects at any time. In some cases, smaller
objects can get stuck between deltas in the array, but the
compliance keeps the system safe in these situations. The
weight of objects plays an important role in the performance
of the non-prehensile manipulations as well. We found that
heavier objects tended to be manipulated more easily. Part of
this may be due to the correlation in size and higher friction
forces between the delta robots and the object.

The wall policy allows the delta array to successfully align
objects against the side of sets of delta robots. In this manner,
the delta array can remove some of the uncertainty of the
object’s position. The wall policy can also be seen as a hybrid
policy that combines the use of the translational policy with
using some fingers as fixtures/obstacles. The delta array thus
presents a suitable base for exploring a variety of mixed
manipulation strategies in the future.

For the downward facing configuration, we observe that
the design of the fingertips played an important role since
higher friction generated by the fingertip surface made ob-
jects easier to tilt against the walled fingertips. The hollow
cavity in the fingertips helps the surface to conform to the
surface of the object to make lifting the objects easier. The
compliance of the robots also adds robustness to the policy
which makes it slightly more sample efficient.

VIII. CONCLUSION

We proposed delta arrays as a new type of dexterous
manipulation robot. We presented the assembly of individ-
ual delta robot modules for close packing and overlapping
workspaces, and we proposed a modular design and dis-
tributed control framework. We constructed and tested an
8× 8 array of delta robots and showed that the delta arrays
can be used to perform a variety of manipulation strategies in
two different configurations. For the facing-up configuration,
our current manipulation primitives tend to be better suited
for larger objects, where the redundancy of the array provides
robustness. While for the facing-down configuration, we
were able to learn grasping and tilting strategies directly on
the hardware with low-level visual supervision.

To show generalizability across objects, we plan to in-
corporate vision feedback to extract object poses and learn
grasping strategies to generalize to objects of various shapes
and sizes. We also plan to extend the use of the delta arrays
for deformable object manipulation and to demonstrate the
effectiveness of compliant multi-agent manipulation systems.
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