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Abstract 
 
Identifying the pose of fingers is used for basic research on the human hand and analyzing 
dexterous movements.  Joint angles can be extracted from instrumented gloves or by tracking 
markers with video cameras.  Such methods are cumbersome, however, and can even impede 
complex manipulatory tasks as in surgery. We propose a novel solution, using ultrasound images 
of the muscles in the forearm to determine finger pose. We calibrate its use for monitoring the 
contraction and relaxation of the flexor digitorum superficialis muscles in the index finger, 
relative to marker-based tracking, and demonstrate machine classification of finger angle from 
ultrasound. 
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Introduction 
 
The evolution of the human hand prepared our species for highly dexterous activities.  Much 
research has been devoted to understanding the functional morphology of the hand, which is 
uniquely advantaged for use of tools through finger/thumb opposition and supporting muscles, 
tendons, and nerves [1-6].  The forearm muscles of humans, in particular, appear to be essential 
to manipulatory advantages over lower primates [2]. In addition to anatomical analyses, tracking 
the motion of the fingers during dexterous movement is a valuable tool for evaluating skills [7], 
predicting overuse in syndromes like carpal tunnel [8], or assessing recovery from adventitious 
events like stroke [9].   
 
Present methods for tracking finger motion generally fall into two categories.  The first depends 
on mechanical devices, mounted on the finger and hand, or built into a glove, that determine 
joint angles directly.  The use of mechanical devices is inherently cumbersome, inhibiting their 
use for many activities.  The second method depends on video surveillance of the hand, with one 
or more camera tracking markers mounted at key locations on the hand, or by using computer 
vision techniques to identify and track the un-instrumented hand.  Camera tracking suffers from 
the requirement of a direct line of sight between the hand and the camera(s) as well as 
appropriate lighting. Direct line of sight and sufficient lighting are not always possible to 
maintain, for example, when studying the manipulation of surgical tools during an operation. 
 
We propose a novel solution, using ultrasound images of the muscles in the forearm to determine 
finger pose.  The flexor digitorum tendons, located in the forearm, cause the index, middle, ring, 
and small fingers to flex. Using ultrasound imaging, the flexor digitorum superficialis muscles, 
attached to the flexor digitorum superficialis tendons, can be seen contracting and thickening 
when the fingers are curled, potentially allowing an image recognition computer program to 
calculate the position of the finger based on the width of the muscle at any point in time. By 
placing an ultrasound scanner on a subject’s forearm, it should be possible to track the fingers 
without impeding the hand itself with a mechanical device or depending on an external camera.  
 
To demonstrate the basic concept, we have developed a method limited to a single finger. The 
method determines the flexing of the index finger from ultrasound images monitoring the 
contraction and relaxation of the flexor digitorum superficialis muscle.  We describe our method 
and results below. 
 
Methods and Results 
 
To establish ground truth for joint angle, the index finger was tracked by means of three circular 
reflective markers. The markers were attached to the lateral side of the index finger at the center 
of each phalanx, where they could be the most easily visible without being obscured by other 
fingers. The positions of the markers were recorded using a digital webcam (Hamilton Buhl 
SuperFlix, model: WEBCAM). Ultrasound imaging of the flexor digitorum muscles was 
accomplished using a Terason t3000 ultrasound scanner and a Terason 12L5V ultrasound 
transducer probe operating at 5.98 MHz, which provided a real-time video recording of the 
forearm.  
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Two studies were conducted so that the overall feasibility of ultrasound tracking could be 
evaluated prior to the use of any machine learning techniques. The first of these studies used 
computer vision analysis to measure the width of the muscle and the angle of the finger. These 
time series measurements were compared using linear regression to create a direct numerical  
relationship between the instantaneous angle of the finger and the width of the muscle.  The 
second study trained and tested a neural network that attempted to identify the finger angle 
directly from the ultrasound image, without the mediating step of computer vision. These studies 
are described in detail next. 
 

 
 
Study 1: Establishing the joint-angle to muscle-width relationship 
 
In the first study, the transducer was oriented in the sagittal plane along the muscles in the 
forearm, as shown in Figure 1. The webcam was positioned to image the lateral side of the index 
finger at the same view as is seen in Figure 1. In each frame of the webcam video, the edges of 
the markers were isolated using the built-in functions findContours() and approxPolyDP() in the 
OpenCV library (https://opencv.org). The function minEnclosingCircle() was used to return the 
vertical and horizontal coordinates of the center of each marker. The Pythagorean theorem was 
used to find the distances between each marker (in pixels), allowing the marker on the medial 
phalanx to be identified as the point with the shortest combined distance to the other two 
markers, highlighted in green in Figure 2 a. Using the medial marker as the vertex, the angle 
between the three markers was calculated. For each ultrasound frame, the functions 
findContours() and approxPolyDP() were again used to isolate the edges in the image. The flexor 
digitorum superficialis appears as an approximately rectangular contour spanning the width of 
the image and positioned directly below the skin. The function boundRect() was used on the 
contour corresponding to the flexor digitorum superficialis to draw a bounding rectangle around 
it (Figure 2 b), allowing the vertical width of the rectangle to be measured in pixels.  
 

Markers 

Ultrasound 
Scanner 

Figure 1.  Setup for tracking the finger using markers via a camera, while scanning the 
muscles of the forearm with the Terason ultrasound scanner in an axial orientation. 
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Video frames were captured from both the ultrasound scanner and the webcam, creating two 
synchronous recordings in which the index finger was repeatedly flexed and extended. Both 
recordings used a rate of 14 fps and were 100 frames in length.  The first 11 ultrasound frames 
were too blurry for muscle width to be reliably determined by the OpenCV algorithm and were 
omitted from analysis in both recordings.  Linear regression was used to assess the relation on a 
frame-by-frame basis between the ground truth finger angle from the webcam image and muscle 
width determined from the ultrasound image. Initial examination of the data indicated a weak 
correlation of R2 = 0.60 (Figure 3), suggesting a delay in ultrasound processing relative to the 
camera. Accordingly, the data were adjusted by shifting the ultrasound frame number forward in 
time relative to the webcam frame until an optimal temporal offset was identified by the 
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Figure 2b: Positions of the reflective 
markers identified by OpenCV. The 
medial segment, outlined in green, is used 
as the vertex of the calculated angle. 
 

Figure 2a: Sample ultrasound image from 
trial 1. The flexor digitorum muscle is 
outlined in a red bounding box. The length 
of the vertical dimension of the box is 
recorded as the muscle width. 
 

Figure 3. Finger Angle (from markers) vs Muscle Width (from ultrasound scanner) on a frame 
by-frame basis, with no offset.  
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maximum R2 value in the regression relating the two variables.  The optimal value was found to 
be 214 ms (3 frames). Linear regression analysis suggests a numerical relationship shown in 
equation 1, where θfinger is the angle of the index finger (degrees) and wmuscle is the width of the 
flexor digitorum superficialis muscle (pixels), resulting in R2 = 0.91 (Figure 4). We conclude that 
the joint angle is, to a significant degree, linearly related to the muscle width as measured by 
ultrasound.   

𝜃!"#$%& = −2.764 ∗ 𝑤'()*+% + 266.7   Eq. 1 
 

 

 
 

 
 
Study 2: Training a neural network to determine joint angle from the ultrasound images 
 
A Convolutional Neural Network (CNN) was implemented with the goal of classifying images 
of the flexor digitorum muscles based on the measured angle of the finger.  As in Study 1, 
recordings were made at 14 fps using a webcam of the reflective markers on the index finger 
along with ultrasound images, using the same 3-frame delay to ensure synchrony.  However, this 

Figure 4. Finger Angle (from markers) vs Muscle Width (from ultrasound scanner) on a 
frame-by-frame basis, with offset of 214 ms. 

R² = 0.9063
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Figure 5. Setup for tracking the finger using markers via a camera, while scanning the 
muscles of the forearm with the Terason ultrasound scanner in a transverse orientation. 
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time the ultrasound transducer was oriented transversely across the arm (Figure 5), resulting in 
cross-sectional images of the flexor digitorum superficialis muscle.   A total of 812 frames were 
recorded.  The finger-angle measurement for each frame was obtained from the webcam data, as 
before, and each ultrasound frame was labelled with the corresponding finger-angle value. The 
angles were then quantized into ten 10° bins, with each bin labeled by its midpoint (e.g., angles 
between 90° and 100° were collected in a bin labelled 95°). Thirty-three frames (4.1%) 
evidenced blurring or smearing and were eliminated from analysis.  Among the frames in each 
10° bin, 80% were used as the training set, 10% were used as the validation set, and 10% were 
used as the test set.   
 

 
 
The open-source machine learning framework, PyTorch (https://pytorch.org) was used to create 
the CNN. The goal was to classify an input ultrasound image of the flexor digitorum muscles 
according to the angle of the finger as measured by the webcam. To speed up the process of 
training the network, VGG-11 was used for transfer learning. VGG-11 is a model containing 11 
weighted layers and has been pretrained on the ImageNet dataset. In a process called 
“finetuning,” the weights of the model were trained to classify the ultrasound images.  Training 

Figure 6.  CNN predicted angle measure as a function of the angle derived from the webcam 
algorithm. 
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utilized Cross Entropy Loss and the RMSprop optimizer, both of which are pre-built into 
PyTorch. A learning rate of .001 and momentum of 0.9 was used. Training was run for 20 
epochs, after which the model with the highest validation accuracy was saved. The test accuracy 
of the selected model was 80%. The model was then implemented into software that fed the 
ultrasound images to the CNN in real time and reported joint angle measurements.  
 
Figure 6 shows the CNN predicted angle measure (adjusted for lag) against the data provided by 
the webcam. Although the effect of binning the output of the CNN is evident, there is a strong 
linear relationship with slope near 1.0.  Figure 7 shows the frame-by-frame correspondence 
between the model and data.  These results indicate that by using a trained CNN, it is possible to 
track the position of a finger with high accuracy using only ultrasound images of the forearm.  
 

 
 
Discussion 
 
Our demonstration of the basic concept of extracting finger position and motion in real time from 
ultrasound images of the forearm is promising, but presently limited to the joint angle of one 
finger.  It is possible that the demand for monitoring multiple joint positions might be reduced, 
by capitalizing on predictable synergistic relations between fingers or across multiple joints of a 
single digit.  When required, multi-finger or multi-joint tracking with the current approach would 
require training of independent neural networks for each case. An alternative is to increase the 
available ultrasound data on the muscles, and hence the scope of the CNN, by using a real-time 

Figure 7.  Frame-by-frame correspondence between the CNN output and the angle provided 
by the webcam.  Missing data from thirty-three frames that experienced blurring or smearing 

are excluded. 
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3D matrix-array ultrasound scanner to gather volumetric data. Another limitation of our 
prototype is that only the finger’s flexion and extension were predicted. Fingers also experience 
abduction and adduction, that is, lateral motion relative to each other. While flexion and 
extension are controlled by muscles in the forearm, the so-called extrinsic muscles, abduction 
and adduction are controlled by muscles in the hand itself, the so-called intrinsic muscles. To 
monitor these, an ultrasound scanner would need to scan the hand, thus becoming more 
cumbersome to dexterous movement. A possible solution to this may be provided by ultrasound 
scanners that are rapidly becoming smaller, cheaper, and designed for flexibility. One 
experimental transducer, for example, uses a flexible substrate for the ultrasound array to 
conform to the skin like a bandage [10]. Such designs could eventually be more non-obtrusive 
for our application than present ultrasound scanners and permit a practical alternative to present 
methods of determining finger position and motion. 
 

Supplemental Video Clip 

A video screen capture of the system resulting from training the CNN in Study 2 is available 
online at: 

http://www.vialab.org/main/Images/Movies/CNN_output_unfiltered_29Hz_short.mov 

The video shows 4 panes simultaneously: (Upper Right) cross-sectional ultrasound images of the 
flexor digitorum superficialis muscle in the forearm, (Upper Left) camera images of the 3 
reflective markers on the phalanges of the index finger used to establish ground truth of joint 
angle, (Lower Right) printed results for each frame of the CNN output in degrees, with 
approximate frame rate (Hz) at that point in time, and (Lower Left) visualization of the joint 
angles predicted by the CNN, with proximal, middle, and distal phalanges represented by the 
green, red, and blue rectangles, respectively.  A visual comparison of the Lower Left and Upper 
Left panes lends confidence to our conclusion that the prediction of the CNN does indeed follow 
the ground truth and determine joint angle. 
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