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Abstract

Dense 3D scene reconstruction is in high demand today for view syn-
thesis, navigation, and autonomous driving. A practical reconstruction
system inputs multi-view scans of the target using RGB-D cameras,
LiDARs, or monocular cameras, computes sensor poses, and outputs
scene reconstructions. These algorithms are computationally expensive
and memory-intensive due to the presence of 3D data. Thus, it is essen-
tial to exploit sparsity adequately to reduce memory footprint, increase
efficiency, and improve accuracy.

In this thesis, I will develop practical systems for fast and high-quality
scene reconstruction. First, I will introduce a highly efficient hierar-
chical reconstruction system that serves as a foundational pipeline for
integrating diverse pose estimation and scene reconstruction modules.
Next, I will focus on the global registration of point clouds by learning
deep features and their matches. Equipped with sparse convolutional
networks, these studies define the state-of-the-art at the scene scale
in both supervised and self-supervised setups. They are applied to
reconstruction systems to produce globally consistent poses.

I will then shift to the topic of scene representation and reconstruction,
introducing a modern engine, ASH, for parallel spatial hashing in the
era of tensor and auto-differentiation. I will elaborate on the details of
building this efficient and user-friendly engine from the ground up and
discuss a series of downstream applications. These applications include
real-time dense RGB-D SLAM, large-scale surface reconstruction from
LiDAR scans, and fast scene reconstruction from monocular data. While
achieving comparable or better accuracy than state-of-the-art methods,
we demonstrate 2-10 times speed improvements with less development
effort.
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Chapter 1

Introduction

1.1 Motivation

The recent decade has witnessed significant progress in 3D computer vision and

computer graphics applied to reconstruction. 3D models are being constructed with

real-world data, from the object scale for Mixed/Virtual Reality (MR/VR) [215, 231],

to the building scale for navigation [34, 262], and to the city scale for autonomous

driving [42]. These models are processed and viewed on PCs, laptops, and cell-

phones. To some extent, automatic 3D reconstruction systems have become indis-

pensable technology in our daily lives.

Typical 3D reconstruction workflows take in captured raw data from various

viewpoints, transform them into a shared coordinate system through pose estima-

tion (localization), and reproduce the target in a digital representation via scene

reconstruction (mapping). While pose estimation and sparse landmark reconstruc-

tion have been well-studied in the feature-based simultaneous localization and

mapping (SLAM) context [72, 127, 165], researchers in the recent decade have also

started to focus on dense reconstruction [58, 159, 169, 171, 231] due to increasingly

powerful computational resources and advances in neural representations.

Dense reconstruction emphasizes the realistic reproduction of the digitally

captured world, with applications including high-quality novel view synthesis

through rendering and 3D model export via surface extraction. To achieve this, a

large amount of data and optimizable parameters are usually required, necessitat-

1



1. Introduction

ing heavy computations. In light of this, exploiting sparsity for dense reconstruction

is crucial for retrieving the essential 3D data distribution, improving both the

accuracy and speed of algorithms, and building practical systems that run fast on

consumer-level machines.

In this thesis, I will examine the sparsity of data in the tasks of registration and

scene reconstruction for RGB-D, LiDAR, and monocular images. I will develop

ground-up systems that run fast and accurately in the real world, many of which

have been incorporated into the widely used open-source library Open3D [272].

1.2 Problem Definition

Given a sequence of scene scans {St} from a sensor (monocular camera, RGB-D

camera, or LiDAR), we want to estimate sensor poses {Tt ∈ SE(3)} for each scan

and reconstruct dense surfaces represented by a function fθ parameterized by

θ. Mathematically, it can be written as a joint optimization problem, where we

minimize the loss L between an evaluating function g (e.g., rendering, geometric

transformation) and an observed property y (e.g., pixel intensity, point location) at

spatial samples xi ∈ R
3:

argmin
θ,{Tt}

L
(

g(fθ,xi,Tt); y

)

. (1.1)

The problem is usually decoupled and solved in two steps, namely pose es-

timation (Tt) [72, 123, 203, 206, 262] and dense scene reconstruction (fθ) [67, 171,

231, 257], although incremental or batch joint optimization is possible in a SLAM

configuration [118]. In this thesis, I will take a decoupled viewpoint of the two

stages since it is convenient for self-inclusive discussions per topic.

In pose estimation, I will study pairwise point cloud registration [22, 51, 180]

and robust pose graph optimization [46] (Chapter 2-4):

argmin
{Tt}

∑

i,j,p,q

L
(

T−1
j Tip,q

)

, (1.2)

where p ∈ R
3 is taken from scan Si, and q ∈ R

3 is its correspondence in Sj .

2



1. Introduction

In dense reconstruction, I will stick to Signed Distance Function (SDF) [56] fθ as

the implicit surface representation:

fθ : R
3 → R, (1.3)

x 7→ sgnΩ(x) inf
y∈∂Ω
‖x− y‖, (1.4)

sgnΩ(x) =



















+1 x ∈ Ω+,

0 x ∈ ∂Ω,
−1 x ∈ Ω−.

(1.5)

where the 3D space is divided into positive (Ω+) and negative (Ω−) subspaces

separated by the surface (∂Ω) to be reconstructed. It is worth mentioning that

implicit here denotes that the surface ∂Ω is mathematically defined by the set {x |
fθ(x) = 0}, regardless of whether θ is hidden in a neural network or explicitly

stored at spatial grid points.

fθ can be approximated at a single point xi by projective signed distance:

argmin
θ

L
(

fθ(xi);D(xi;St,Tt)

)

, (1.6)

where the projected depth at viewpoint t can be directly computed via a geometric

transform function D (see Chapter 5-6). Alternatively, fθ can be estimated at

multiple points xr
i along rays r by differentiable volume rendering:

argmin
θ

L
(

VolumeRender(y(xr
i ), fθ(x

r
i ));Y (xi;St,Tt)

)

, (1.7)

where y and Y denote functions of additional properties (e.g. color, depth, normal)

from scene representations and measurements according to camera models and

rigid transformations (see Chapter 7).

All the aforementioned functions L are differentiable. For simple compositional

functions equipped with square losses (Eq. 1.2 and 1.6), we can derive analytical

Jacobians w.r.t. parameter w, and apply iterative second-order optimization (Gauss-

3



1. Introduction

Newton or Levenberg-Marquardt):

wk+1 = wk − λk
(

J⊤J(wk)

)−1

J⊤L(wk), (1.8)

where J is the Jacobian and L is the residual, k is the number of iterations, and

λk is the step size. J⊤J and J⊤L can usually be analytically written as a compact

function of wk. For non-trivial chained functions or non-square losses (Eq. 1.7), first-

order optimization (Stochastic Gradient Descent and variations) can be performed

through auto differentiation [181]:

wk+1 = wk − γk∇L(wk), (1.9)

where γk is the step size. A general guidance of the choice of optimizers are

provided by Dellaert and Kaess [59]. Representations, derivatives, and on-manifold

optimization of SE(3) parameters are discussed in-depth by Strasdat [212] and

Sola et al. [208].

Apart from optimization itself, I will also demonstrate that an effective choice

of xi results in fast convergence. This is achieved by accurately capturing surfaces’

sparse distribution in the 3D space with collision-free parallel spatial hash maps

with modern interfaces.

1.3 Overview

The thesis can be roughly divided into three parts.

• In Chapter 2, I will first define a hierarchical reconstruction system (IROS

2019 [65]). The system takes in unposed scans and outputs poses and surfaces

with a fragment-to-scene pipeline. While it is curated for RGB-D data, its

modularized design allows generalization to other data sources and encour-

ages improvement of separate components, leading to the following studies

in the thesis.

• In Chapter 3-4, I will attempt to address the global registration problem, i.e. ,

aligning point clouds without initial relative transformations. I will use su-

pervised (CVPR 2020 [51]) and self-supervised (CVPR 2021 [247]) approaches

4



1. Introduction

to learn point-wise features and their correspondences through sparse convo-

lutional networks. This efficiently captures the geometric properties for 3D

data from RGB-D and LiDAR sensors, defining state-of-the-art accuracy for

global registration at the scene scale.

• In Chapter 5-7, I will develop a modern, performant, and easy-to-use spa-

tial hashing engine for scene representation. I will demonstrate its usage in

dense RGB-D SLAM (PAMI [67]), surface reconstruction for large-scale Li-

DAR data (arXiv [66]), and fast scene reconstruction from monocular images

(CVPR [68]). While achieving similar or better accuracy to state-of-the-art

methods, these applications run 2-10× faster and require less development

effort.

I will conclude the thesis with ongoing and future works aiming at faster, more

robust, and more accurate reconstruction systems.
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Part I

Hierarchical Scene Reconstruction

System
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Chapter 2

GPU Accelerated Robust Scene

Reconstruction

2.1 Introduction

Dense 3D reconstruction of scenes is a fundamental component in localization and

navigation tasks for intelligent systems such as robots, drones, and surveillance

systems. Accurate 3D models of real-world scenes is a key element for mixed and

virtual reality applications, because it is directly related to realistic content creation

or telepresence. In recent years, research in scene reconstruction using RGB-D

frames has flourished with the presence of affordable, high-fidelity consumer-level

RGB-D sensors, and a number of off-the-shelf reconstruction systems have been

introduced so far.

Reconstruction systems can be generally classified into online and offline sys-

tems. Systems including VoxelHashing [171], InfiniTAM [119], and ElasticFu-

sion [237] are based on dense SLAM algorithms. These algorithms suffer from pose

drift, which usually causes corrupted models in large scenes. BundleFusion [58],

as an online system, is more similar to offline structure-from-motion systems. It

keeps track of all the RGB-D keyframes, hence is computationally expensive and

requires two high-end graphics cards to run. Offline systems such as Open3D [272]

and Robust Reconstruction Pipeline [46], on the other hand, include hierarchical

7



2. GPU Accelerated Robust Scene Reconstruction

global constraints such that the camera poses are globally consistent and accurate

even in large scenes. However, the expected running times of such systems span

from several hours to days.

Figure 2.1: Reconstructed large indoor scenes, boardroom and apartment. The largest
scene apartment (> 30K RGB-D frames) is reconstructed by our system within 1.5
hours, 6Hz on average. These scenes typically require more than 10 hours to run
on the offline system [272], and will fail on online systems [119, 237]

In this paper, we present an accelerated offline RGB-D reconstruction system.

The basic algorithm is based on offline systems such as Open3D [46, 272]. On top

of this, the major contributions in this work include:

• GPU acceleration of core modules in an offline reconstruction system such as

RGB-D odometry, Iterative Closest Point (ICP), global registration, volumetric

integration, and Marching Cubes.

• Designing new GPU data containers to boost basic operations.

• 10x faster on average than baseline offline systems, comparable to online

systems in terms of speed.

• While being fast as an offline system, the reconstruction accuracy is main-
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2. GPU Accelerated Robust Scene Reconstruction

tained on most datasets compared to the state-of-the-art offline system [46].
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Figure 2.2: System overview. Left shows workflows of the 3 major stages, displayed
in red (make submaps), blue (register submaps and refine registration), and green
(integrate scene) lines respectively. Right shows local and global reconstruction
results, along with the pose graph of submaps. Best viewed in color.

2.2 Related Work

State-of-the-art online dense 3D reconstruction systems [58, 119, 171, 237] track the

pose of the current frame using visual odometry (VO), fuse data into the dense

map, and search for loop closures to reduce drift. While these methods are fast

enough to track input sequences, inevitable drift can cause incorrect dense maps.

ElasticFusion [237] proposes to correct drift in a surfel-based [122] map by

introducing graph deformation. However, the deformation is sensitive to user

parameters and may easily fail on various benchmarks. In addition, as surfels

accumulate quickly, the system may not scale to larger scenes. InfiniTAM [119]

and VoxelHashing [171] apply frame-to-model tracking [168] to overcome the drift

issue. RGB-D data is fused into a Truncated Signed Distance Field (TSDF) [56] with

estimated poses, and the system extracts the model from the TSDF for tracking.

However, it may break down when incorrect camera poses corrupt the dense map,

even only locally. InfiniTAM [119] introduces a relocalizer to recover the system

from tracking failures, but there is no strategy to handle the corruptions in the

TSDF map.

BundleFusion [58] performs exhaustive feature-based bundle adjustment on

the keyframes in the entire sequence to correct camera poses, and uses brute-force
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2. GPU Accelerated Robust Scene Reconstruction

re-integration [74] to correct the TSDF map. For this reason, the system requires

two high-end graphics cards1 to ensure real-time, which is beyond consumer level.

Moreover, it keeps track of all the keyframes and performs global optimization

frequently, hence it is only applicable to scenes with ≤ 25000 RGB-D frames. It

suggests that the computational cost may be reduced by splitting large scenes and

processing hierarchical optimization.

On the other hand, offline reconstruction systems [46, 272] address the drift

issues in the online system by adopting a hierarchical framework, as mentioned

in [58]. The system splits input sequences of varying lengths into subsets and

generates submaps using methods similar to online SLAM systems. Afterwards,

these submaps are registered pairwise to form a pose graph [93], which is optimized

to provide accurate poses for submaps. Finally, all RGB-D frames with accurate

poses are integrated into a global TSDF volume to extract a complete 3D model.

This approach can easily modularize the overall procedure into small tasks such

as VO, dense mapping, and surface registration. Each decoupled component can

benefit from available state-of-the-art algorithms.

The offline systems use direct RGB-D odometry to estimate the pose between

subsequent frames. They can fully utilize available depth and color information by

directly minimizing joint photometric and geometric error [124, 180, 209], as well

as overcome challenging textureless scenes where feature-based method [164] may

fail. Assuming that pose drift is small over the course of each submap, the systems

fuse raw RGB-D data into a TSDF volume [168, 171] and extract the mesh or point

cloud as a submap.

At the level of submaps, point cloud registration is required to estimate rela-

tive poses between corresponding point sets. With proper initialization, classical

ICP [22] iteratively computes data association and registration. The state-of-the-art

Colored ICP [180] achieves high accuracy between dense colored point clouds. In

cases where the pose initialization is not reliable, globally optimal methods are pre-

ferred. [249] searches the SE(3) space with bound-and-branch strategy for potential

initializations and then performs ICP. A faster yet accurate algorithm Fast Global

Registration (FGR) [271] relies on Fast Point Feature Histograms (FPFH) [198] to

generate possible matches, and filters incorrect matches with fast and robust line

1An NVIDIA TITAN X and a TITAN black card were used for the real-time demonstration.
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processes [83] defined in [271].

The obvious limitation of aforementioned offline systems is that they take a

very long time to reconstruct large scale scenes. In this paper, we propose a GPU-

accelerated offline system to reach the level of online system performance while

not sacrificing accuracy.

2.3 Reconstruction System

The basic principle of the proposed system is similar to state-of-the-art offline

reconstruction systems [46, 272]. The overall procedure of the system consists of

four major stages, as shown in Fig. 4.1:

1. Make submaps. Frame-to-frame camera pose is estimated for evenly divided

subsets of the input sequence. Afterwards, TSDF volume integration is

performed for each subset of the sequence, and a submap is extracted in the

form of a triangle mesh.

2. Register submaps. Pairwise submap registration is applied. The submap

pairs that are temporally adjacent are registered using Colored ICP [180] with

reliable initial relative poses from RGB-D odometry. Temporally distant

submaps are registered using geometric feature-based FGR [271] to detect

loop closures. A pose graph is constructed and optimized to determine the

poses of submaps in the global coordinate system.

3. Refine registrations. The relative poses between each registered submap pair,

including both the adjacent and the distant submap pairs, are further re-

fined using multi-scale Colored ICP. A subsequent pose graph optimization

determines the final global poses for every submap.

4. Integrate scene. Given the optimized poses of the submaps and the poses

of every frame, TSDF integration fuses the entire RGB-D sequence, and

produces the final 3D reconstruction.

11



2. GPU Accelerated Robust Scene Reconstruction

2.3.1 Basic Data Containers for GPU

As the basic infrastructure, we designed several GPU data structures for general

usage in our system.

• 1D arrays. We implement atomic push back operation to support multi-thread

writing, mimicking a vector on CPU.

• 2D arrays. They are stored in row major order. In a typical parallel execution

on a large 2D array, each thread is designed to iterate over one column. Since

the threads are approximately accessing the same row simultaneously, they are

more likely to share the cache that loads the same section of global memory,

which increases accessing efficiency.

• Linked list and hash table. A generic templated (key, value, and hashing func-

tion) hash table is implemented for GPU. Each hashed key corresponds to

a fixed size bucket array plus a dynamic size bucket linked list to address

conflicts. The hash table is essential for spatial hashing used in 3D volume

storage.

All the data structures support memory transfer between GPU and CPU. Since

global memory allocation is expensive on GPU, we pre-allocate enough memory,

and rely on a dynamic memory manager to manually allocate and free memory on

GPU on demand. Reference counting is implemented for efficient GPU memory

sharing.

2.3.2 RGB-D Odometry

In RGB-D odometry, we seek to optimize an error function of relative pose between

two consecutive RGB-D frames 〈Fs,Ts〉 and 〈Ft,Tt〉.2 The error function is con-

structed as in [180], including both the photometric error rI and the difference of

2We define the terms as follows. 〈F ,T〉 denotes an RGB-D frame. Here, F = 〈I,D〉 consists of
color and depth images, and T ∈ SE(3) represents the 6-DOF pose vector in the local submap’s
coordinate system.
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depth rD:

E(Tt
s) =

∑

p

(1− σ) r2I (Tt
s,p) + σ r2D(T

t
s,p), (2.1)

rI = Is[p]− It[W(Tt
s,p,Ds[p])], (2.2)

rD = T (Tt
s,p, Ds[p]).z −Dt[W(Tt

s,p,Ds[p])], (2.3)

where Tt
s ∈ SE(3) is the relative pose from Fs to Ft, p ∈ R

2 is the pixel in the

RGB-D image Fs, and σ ∈ [0, 1] is a hyper parameter to balance the appearance and

geometry terms. We use T (T,p, d) andW(T,p, d) to denote rigid transformation

and warping (transformation + projection) of a 3D point with its pixel coordinate p

and depth value d respectively. For simplicity, the intrinsic matrix is not displayed

in these functions.

To minimize the non-linear error function, Gauss-Newton optimization is ap-

plied. By computing the first-order linearization, we have

rI(T
t
s +∆T,p) ≈ rI(T

t
s) + JI(T

t
s,p)∆T, (2.4)

rD(T
t
s +∆T,p) ≈ rD(T

t
s) + JD(T

t
s,p)∆T, (2.5)

where JI and JD are Jacobian matrices for each term per pixel. Finally, the problem

reduces to solving ∆T in the least squares system and updating Tt
s iteratively:

∑

p

A(p)∆T = −
∑

p

b(p), (2.6)

Tt
s = ∆T⊕Tt

s, (2.7)

where the system is built up with

A(p) = (1− σ) JT
I JI(T

t
s,p) + σ JT

DJD(T
t
s,p), (2.8)

b(p) = (1− σ) JT
I rI(T

t
s,p) + σ JT

DrD(T
t
s,p). (2.9)

To ensure faster convergence, we implement coarse-to-fine RGB-D odometry using

a image pyramid.

It is straightforward to parallelize building the Jacobian matrix, because each
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pixel contributes to the Jacobian independently. However, proper handling of

thread conflicts in the summation operation is critical here, because the number

of GPU threads is often larger than a few thousand, and thread conflicts degrade

performance. While an Atomic-Add operation is supported on most GPUs to avoid

conflicts, the more advanced technique Reduction [102] can accelerate the process

further by fully utilizing shared memory instead of global memory. There are two

variations of Reduction, the original one [102] and Warp Shuffle used in [237].

Based on our experiments, the original version runs two times faster than built-in

atomic-add, and outperforms warp shuffle.

As A(p) is a symmetric matrix, only the upper-right 21 elements are summed,

while the other elements are duplicated on CPU. Plus 6 elements in b(p), we need to

sum 27 elements separately. To accelerate, we allocate 3 arrays of shared memory

and sum 3 elements in the linear system at one time. With reasonable shared

memory consumption, the cost of frequent thread synchronization is reduced:

reduction takes around 2∼3 ms to sum elements in the linear system for a 640×480

image. This general reduction module is also used in Sec. 2.3.5, where similar

linear systems are defined.

2.3.3 Integration

With the known pose T of each frame F , we can use TSDF integration to fuse raw

RGB-D data into the volumetric scalar field. To improve the storage efficiency,

we use spatial hashing as described in [119, 171], with the modified hash table

structure described in Sec. 2.3.1. The space is coarsely divided into voxel blocks for

spatial hashing; each block contains an array of 8× 8× 8 voxels for fast and direct

parallel memory access by GPU threads.

The integration consists of three passes. In the first pass, a point cloud is

generated from frame F and transformed using its pose T. The blocks that can

cover the generated points will be created if they do not exist yet. In the second

pass, all generated blocks in the F ’s viewing frustum will be collected into a buffer.

Finally, parallel integration will be performed on collected blocks in the buffer.

Each voxel in the blocks will be projected onto F to find the projective closest pixel.
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After that, the voxels update their stored TSDF value using a weighted average:

d = φ(D[W(T,x)]− x.z), (2.10)

TSDF[x] =
TSDF[x] + d

Weight[x] + 1
, (2.11)

Weight[x] = Weight[x] + 1, (2.12)

where φ is the truncation function in [168], x ∈ R
3 is the voxel coordinate, and

W(T,x) projects x to the frame after transforming x with T. Weighted average

generally also applies to colors.

2.3.4 Mesh Extraction

After the TSDF has been generated, Marching Cubes (MC) [146] is applied to

extract surfaces from TSDF volumes. We improve the mesh extraction framework

in [63] both in terms of memory and speed.

As pointed out in [63], the vertex on the shared edge between two voxels

can be computed only once. By setting up a one-to-one correspondence between

edges and voxels, we can compute every unique vertex once. Directly maintaining

the edge-vertex correspondences in voxels along with the TSDF creates a large

overhead in memory. In the improved version, we detach the structure, so that

it can be allocated and attached only to the active parts of the TSDF volume that

require meshing.

One of the most computationally expensive operations in MC is normal esti-

mation from the TSDF. Given a vertex xv = (xv, yv, zv), the normal is computed by

normalized gradient∇TSDF(xv)/||∇TSDF(xv)||, where

∇TSDF(xv) =







TSDF(xv + 1, yv, zv)− TSDF(xv − 1, yv, zv)

TSDF(xv, yv + 1, zv)− TSDF(xv, yv − 1, zv)

TSDF(xv, yv, zv + 1)− TSDF(xv, yv, zv − 1)






. (2.13)

Since the 6 query points are not grid points, 8 spatial queries are required to get

a tri-linear interpolated TSDF value per query point. 48 spatial queries and 48

interpolations for one single point is expensive. We found that the final computed
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normal is identical to a simple interpolation of normals at the two adjacent grid

points, while the normal computation at a grid point only requires 6 queries, as

shown in Fig. 2.3. Therefore, we need only 12 spatial queries and 1 interpolation.

α
1-α

8 queries

6 queries

Figure 2.3: Illustration of normal extraction. Red lines show the redundant queries
(tri-linear interpolation for non-grid points) to extract normal. Blue lines show the
optimal interpolation of normals at adjacent grid points. α is the interpolation ratio
of normals, which can be directly computed in MC.

To further speed up MC in spatial hashed voxel blocks, we specifically imple-

ment MC for

1. Voxels inside a voxel block. Modified MC in [63] is directly performed on

such voxels.

2. Voxels at the boundary of a voxel block, where frequent hash table queries are

required. Despite the fact that hash tables are supposed to be O(1) look up, the

overhead is considerable. To speed up, for each block, we first cache pointers

of all 26 neighbor blocks. Then each voxel can access neighbor voxels from

the cached block instead of looking them up in the hash table.

2.3.5 Registration

Given extracted surfaces as submaps S , we perform a multiway registration defined

in [46] to get their poses ζ.
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Figure 2.4: Average runtime comparison of our system (GPU) and Open3D [272]
(CPU).

Colored ICP

Point cloud pairs with good initial pose guesses are registered using Colored

ICP [180]. Typically, we can obtain reasonable initialization between two consecu-

tive submaps by aligning the poses of the last RGB-D frame in the first submap

and the first RGB-D frame in the second submap.

Colored ICP builds up a linear system similar to Eq. 2.2. While RGB-D images

are dense in 2D, point clouds are sparse in 3D. Therefore, for point cloud regis-

tration, projective data association has to be replaced by nearest neighbor search.

Since there are no satisfying alternatives on GPU, we use Fast Library for Approxi-

mate Nearest Neighbors (FLANN) [162] on CPU to find 3D nearest neighbors, as a

legacy of [272]. In addition, the gradient operation that is natural on 2D images

is not well-defined on point clouds, causing problems in computing Jacobians. It

is easy to replace gradient of the depth image with each point’s normal; with the

correspondences from FLANN, we can compute approximated color gradient per
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Figure 2.5: Total system runtime on datasets. ∼ 8Hz on average is achieved on
most datasets.

point, as defined in [180]:





∑

p′∈N (p)

A(p′)TA(p′) + n(p)n(p)T



 d(p)

=
∑

p′∈N (p)

A(p′)T b(p′). (2.14)

Here p ∈ R
3 denotes the point we are processing, n(p) is its normal, p′ ∈ N (p)

represents its neighbors, and d(p) is the target color gradient at p. The linear

system depends on the projective distances and color differences between p and

its neighbors:

A(p′) = p′ − n(p)T (p′ − p) n(p), (2.15)

b(p′) = C(p′)− C(p), (2.16)

where C(p) is the intensity of a point. To solve these small linear systems in parallel,

we implement a complete module for LDL decomposition and forward substitution

on GPU.

After preprocessing, our implementation iterates between finding data corre-

spondences on CPU and building the linear system on GPU until convergence.

Apart from Colored ICP, classical point-to-point and point-to-plane ICP are also

supported within the same architecture.
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Figure 2.6: Marching Cubes runtime. Note in this experiment, ground truth
trajectories are used to ensure reasonable viewing frustums.

Fast Global Registration

We compute pairwise registrations between non-adjacent submaps to detect poten-

tial loop closures. As no initialization is provided, we have to rely on 3D features

to get correspondences. FPFH [198] is used in our case. FPFH only relies on lo-

cal neighbors, therefore feature extraction is possible to run in parallel, provided

nearest neighbors are found by FLANN.

As a high dimensional (33 dim) feature, FPFH is less efficient to match us-

ing FLANN. We turn to brute-force parallel NN matching by simplifying KNN-

CUDA [81] to the 1-NN case. Brute force NN consists of 2 passes. In the first

pass, a dense distance matrix is calculated in parallel after the matrix is divided

into small submatrices. Here, the cache friendly column-wise iterations we de-

signed in Sec. 2.3.1 help to accelerate the step by a factor of 2. In the second pass,

each query point will search for their nearest neighbor by Reduction with the min

operator, which resembles the Reduction with add we used. The drawback of

brute-force matching is the memory cost. The dense distance matrix will consume

all the GPU memory when the sizes of point clouds are large (> 20K). Under such

circumstances, downsampling is required.

With known matches, we reuse our framework to build a linear system for

the FGR algorithm [271]. As there are point-wise line processes involved, the

error function is much different from Eq. 2.2. We refer readers to the original

paper for more details. Before applying Gauss-Newton, feature matching tests are

performed in parallel, where each thread handles a random test set. All the data
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Figure 2.7: Pose graph of submaps on TUM household and desk datasets. Valid loop
closures are detected between submaps.

stay on GPU after feature extraction, including parallel random number generation.

No expensive CPU operation is required after FLANN has finished its job, hence

FGR can run very fast and stable.

After registration, estimated poses ζ are inserted in a pose graph as nodes, with

edges between adjacent submaps and potential loop closures. The information

matrices on the edges are computed similar to the building process of linear systems

with minor changes in residuals and Jacobians. We then perform robust multiway

registration [46] to eliminate false loop closures and obtain optimized poses.

2.4 Experimentals

The proposed system can reproduce the results of the state-of-the-art offline re-

construction system implemented in Open3D [46, 272] with significantly reduced

time budget. In this section, we compare runtime with the baseline offline recon-

struction system Open3D [272], and show qualitative and quantitative results with

state-of-the-art online reconstruction systems. The tested datasets include the TUM

RGB-D dataset [213], the Stanford and Redwood simulated dataset [46], and the

large Indoor LIDAR-RGBD Scan dataset [180]. The voxel size is set to 6mm in

real-world scenes and 8mm in Redwood simulated scenes.

The GPU part is implemented in CUDA, where CPU utility functions are built

upon Open3D [272]. The following experiments were run on a laptop with an Intel
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Figure 2.8: Distance heatmap from reconstructed model to ground truth on livin-
groom1, generated from CloudCompare. From left to right, ElasticFusion, InfiniTAM
(hybrid color and depth tracker fails, shift occurs in ICP tracker), ours.

i7-6700 CPU and a NVIDIA 1070 graphics card with 8G GPU memory.

2.4.1 Runtime Results

In Fig. 2.4, we first show the acceleration of the components in our system.

• Multi-scale RGB-D Odometry runs with {20, 10, 5} iterations from coarse to

fine scale. It is accelerated to around∼16ms per frame, around 40 times faster

than the baseline. As it already achieves real-time, RGB-D SLAM systems

may include this module.

• TSDF integration is accelerated to ∼10ms per frame on a volume with high

resolution, approximately 50∼120 times faster. This component can also serve

as a part of a real-time dense SLAM / mapping system.

• Multi-scale Colored ICP runs with {50, 30, 14} iterations from coarse to fine

scale. It is accelerated only with a factor of 1.5 to 2. The major reason is that

we still rely on FLANN for data correspondences, which takes a large amount

of time. Note the runtime excludes the slow point cloud downsampling,

which takes place in both CPU and GPU methods.

• FGR is accelerated to around 10Hz, 4∼5 times faster than CPU version. GPU

based feature extraction and matching significantly reduces the runtime.

These modules may also be separately used in other tasks such as naive 3D

object recognition and matching.

We also separately demonstrate the performance of parallel MC in Fig. 2.6. As it

runs very fast for visualizing surfaces in the viewing frustum, it can serve as a
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visualizer for dense SLAM systems. A screenshot is shown in Fig. 2.11.

Fig. 2.5 provides a general runtime overview of the system on real-world

datasets, where around 8Hz is achieved on most datasets. Note in the make submaps

stage we only account for pure odometry. Optional feature-based loop closure

detection may increase the local trajectory accuracy, with the cost of 2∼3 times

runtime. A major time consuming operation in refine registration is point cloud

downsampling on CPU, which can be accelerated on GPU.

2.4.2 Reconstruction Results

We now show the qualitative reconstruction results on the TUM dataset in Fig. 2.7.

The pose graph of the submaps is also illustrated, from which we can observe

correct loop closures are found with pairwise FGR. Additional experimental results

on lounge, copyroom, and stonewall can be viewed in Fig. 2.9. We can easily observe

that the details are well preserved in the scenes without drift or apparent artifacts.

Fig. 6.2 shows reconstruction results on more challenging scenes boardroom and

apartment with more than 20K frames. Our system can still successfully close the

loops and output accurate models, while other online SLAM systems fail.

Due to difficulties in configuration, we do not run BundleFusion [58] on our

machine. Instead, we compare against their results on the BundleFusion dataset

qualitatively. In Fig. 2.10 we can see that while producing similar results, our

pipeline can better align surfaces.

(a) stonewall (b) copyroom (c) lounge

Figure 2.9: Qualitative results on stonewall, lounge, and copyroom.

As for quantitative results, we show the heatmap of cloud-to-cloud distances

between estimated models and ground truth on the livingroom from the Redwood
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2. GPU Accelerated Robust Scene Reconstruction

Figure 2.10: Qualitative comparison to BundleFusion on copyroom and office3 in
bundlefusion dataset. Surfaces are better aligned in our reconstructed models.

Table 2.1: Reconstruction Accuracy (meter) on simulated and real-world datasets
with ground truth models.

SYSTEM
livingroom1 livingroom2 office1 office2 apartment boardroom

MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD

InfiniTAM [119]0.0391 0.0451 0.0045 0.0018 0.0661 0.0504 0.0052 0.0028 fail - fail -
ElasticFusion [237]0.0060 0.0036 0.0100 0.0051 0.0258 0.0306 0.0074 0.0038 fail - fail -
Ours 0.0049 0.0043 0.0068 0.0049 0.0051 0.0040 0.0054 0.0043 0.0533 0.0521 0.0607 0.0567

simulated dataset. The ground truth model is adapted from [100]. The heatmaps

are computed by CloudCompare software. In Fig. 2.8, we can see there are only

minor discrepancies between our output model and the ground truth, while a shift

is observable in the online systems. More results on the Redwood simulated and

Indoor LIDAR-RGBD datasets are listed in Table 2.1. Our system has consistently

higher reconstruction accuracy, and works on large scenes where other online

systems fail to recover the whole scene.

2.4.3 Additional Result using Mobile Device

Our system not only works on laptops and PCs, but also on mobile devices support-

ing CUDA. Given real-world data collected from an Intel RealSense, our system is

able to reconstruct the road in minutes on a NVIDIA Jetson TX2, see Fig. 2.12.

2.5 Conclusions

We implemented a GPU-accelerated dense RGB-D offline reconstruction system

which runs fast on real-world datasets while maintaining state-of-the-art recon-

struction results. The system is open source, and the major components can be used

separately in various applications, such as real-time SLAM and object recognition.
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2. GPU Accelerated Robust Scene Reconstruction

Figure 2.11: A screenshot of real-time Marching Cubes for voxels in frustum.

In the future, we intend to introduce advanced relocalizers to replace pair-

wise submap matching for higher speed and robustness in loop closure detection.

Equipped with an efficient relocalizer, we may bring up an online system that

accepts streaming input frames. Another research direction is a fast 3D nearest

neighbor search. Advance techniques such as parallel cuckoo hashing in [4] may

be considered.
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Figure 2.12: Real-world road reconstrction and elevation visualization. Results are
from Ben Guidarelli.
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Chapter 3

Deep Global Registration

3.1 Introduction

A variety of applications, including 3D reconstruction, tracking, pose estimation,

and object detection, invoke 3D registration as part of their operation [32, 186, 198].

To maximize the accuracy and speed of 3D registration, researchers have developed

geometric feature descriptors [50, 60, 125, 233], pose optimization algorithms [148,

201, 249, 271], and end-to-end feature learning and registration pipelines [6, 233].

In particular, recent end-to-end registration networks have proven to be ef-

fective in relation to classical pipelines. However, these end-to-end approaches

have some drawbacks that limit their accuracy and applicability. For example,

PointNetLK [6] uses globally pooled features to encode the entire geometry of

a point cloud, which decreases spatial acuity and registration accuracy. Deep

closest point [233] makes strong assumptions on the distribution of points and

correspondences, which do not hold for partially overlapping 3D scans.

In this work, we propose three modules for robust and accurate registration

that resolve these drawbacks: a 6-dimensional convolutional network for corre-

spondence confidence estimation, a differentiable Weighted Procrustes method

for scalable registration, and a robust SE(3) optimizer for fine-tuning the final

alignment.

The first component is a 6-dimensional convolutional network that analyzes

the geometry of 3D correspondences and estimates their accuracy. Our approach
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3. Deep Global Registration

RANSAC [198] FGR [271]

DCP [233] Ours

Figure 3.1: Pairwise registration results on the 3DMatch dataset [260]. Our method
successfully aligns a challenging 3D pair (left), while RANSAC [198], FGR [271],
and DCP [233] fail. On an easier pair (right), our method achieves finer alignment.

is inspired by a number of learning-based methods for estimating the validity of

correspondences in 2D [187, 256] and 3D [178]. These methods stack coordinates

of correspondence pairs, forming a vector [x;y] ∈ R
2×D for each correspondence

x,y ∈ R
D. Prior methods treat these 2×D-dimensional vectors as a set, and apply

global set processing models for analysis. Such models largely disregard local

geometric structure. Yet the correspondences are embedded in a metric space

(R2×D) that induces distances and neighborhood relationships. In particular, 3D

correspondences form a geometric structure in 6-dimensional space [52] and we

use a high-dimensional convolutional network to analyze the 6D structure formed

by correspondences and estimate the likelihood that a given correspondence is

correct (i.e., an inlier).

The second component we develop is a differentiable Weighted Procrustes

solver. The Procrustes method [90] provides a closed-form solution for rigid reg-

istration in SE(3). A differentiable version of the Procrustes method by Wang

et al. [233] has been used for end-to-end registration. However, the differentiable

Procrustes method passes gradients through coordinates, which requires O(N2)

time and memory for N keypoints, limiting the number of keypoints that can be
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3. Deep Global Registration

processed by the network. We use the inlier probabilities predicted by our first

module (the 6D convolutional network) to guide the Procrustes method, thus form-

ing a differentiable Weighted Procrustes method. This method passes gradients

through the weights associated with correspondences rather than correspondence

coordinates. The computational complexity of the Weighted Procrustes method

is linear in the number of correspondences, allowing the registration pipeline to

use dense correspondence sets rather than sparse keypoints. This substantially

increases registration accuracy.

Our third component is a robust optimization module that fine-tunes the align-

ment produced by the Weighted Procrustes solver. This optimization module

minimizes a differentiable loss via gradient descent on the continuous SE(3) repre-

sentation space [274]. The optimization is fast since it does not require neighbor

search in the inner loop [265].

Experimentally, we validate the presented modules on a real-world pairwise

registration benchmark [260] and large-scale scene reconstruction datasets [46, 100,

180]. We show that our modules are robust, accurate, and fast in comparison to

both classical global registration algorithms [7, 198, 249, 271] and recent end-to-end

approaches [6, 178, 233]. All training and experiment scripts are available online1.

3.2 Related Work

We divide the related work into three categories following the stages of standard

registration pipelines that deal with real-world 3D scans: feature-based correspon-

dence matching, outlier filtering, and pose optimization.

Feature-based correspondence matching. The first step in many 3D registration

pipelines is feature extraction. Local and global geometric structure in 3D is

analyzed to produce high-dimensional feature descriptors, which can then be used

to establish correspondences.

Traditional hand-crafted features commonly summarize pairwise or higher-

order relationships in histograms [116, 197, 198, 199, 226]. Recent work has shifted

to learning features via deep networks [125, 260]. A number of recent methods

1https://github.com/chrischoy/DeepGlobalRegistration
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3. Deep Global Registration

are based on global pooling models [60, 266], while others use convolutional

networks [50, 86].

Our work is agnostic to the feature extraction mechanism. Our modules pri-

marily address subsequent stages of the registration pipeline and are compatible

with a wide variety of feature descriptors.

Outlier filtering. Correspondences produced by matching features are commonly

heavily contaminated by outliers. These outliers need to be filtered out for robust

alignment. A widely used family of techniques for robust model fitting is based on

RANdom SAmple Consensus (RANSAC) [3, 106, 158, 198, 201], which iteratively

samples small sets of correspondences in the hope of sampling a subset that is

free from outliers. Other algorithms are based on branch-and-bound [249], semi-

definite programming [149, 154], and maximal clique selection [35]. These methods

are accurate, but commonly require longer iterative sampling or more expensive

computation as the signal-to-noise ratio decreases. One exception is TEASER [35],

which remains effective even with high outlier rates. Other methods use robust

loss functions to reject outliers during optimization [25, 271].

Our work uses a convolutional network to identify inliers and outliers. The

network needs only one feed-forward pass at test time and does not require iterative

optimization.

Pose optimization. Pose optimization is the final stage that minimizes an align-

ment objective on filtered correspondences. Iterative Closest Points (ICP) [22] and

Fast Global Registration (FGR) [271] use second-order optimization to optimize

poses. Makadia et al. [151] propose an iterative procedure to minimize correlation

scores. Maken et al. [152] propose to accelerate this process by stochastic gradient

descent.

Recent end-to-end frameworks combine feature learning and pose optimization.

Aoki et al. [6] combine PointNet global features with an iterative pose optimiza-

tion method [148]. Wang et al. [233, 234] train graph neural network features by

backpropagating through pose optimization.

We further advance this line of work. In particular, our Weighted Procrustes

method reduces the complexity of optimization from quadratic to linear and en-

ables the use of dense correspondences for highly accurate registration of real-

world scans.
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3.3 Deep Global Registration

3D reconstruction systems typically take a sequence of partial 3D scans as input

and recover a complete 3D model of the scene. These partial scans are scene

fragments, as shown in Fig. 6.2. In order to reconstruct the scene, reconstruction

systems often begin by aligning pairs of fragments [46]. This stage is known as

pairwise registration. The accuracy and robustness of pairwise registration are

critical and often determine the accuracy of the final reconstruction.

Our pairwise registration pipeline begins by extracting pointwise features.

These are matched to form a set of putative correspondences. We then use a high-

dimensional convolutional network (ConvNet) to estimate the veracity of each

correspondence. Lastly, we use a Weighted Procrustes method to align 3D scans

given correspondences with associated likelihood weights, and refine the result by

optimizing a robust objective.

The following notation will be used throughout the paper. We consider two

point clouds, X = [x1, ...,xNx
] ∈ R

3×Nx and Y = [y1, ...,yNy
] ∈ R

3×Ny , with Nx and

Ny points respectively, where xi,yj ∈ R
3. A correspondence between xi and yj is

denoted as xi ↔ yj or (i, j).

3.3.1 Feature Extraction

To prepare for registration, we extract pointwise features that summarize geometric

context in the form of vectors in metric feature space. Our pipeline is compatible

with many feature descriptors. We use Fully Convolutional Geometric Features

(FCGF) [50], which have recently been shown to be both discriminative and fast.

FCGF are also compact, with dimensionality as low as 16 to 32, which supports

rapid neighbor search in feature space.

3.3.2 Correspondence Confidence Prediction

Given the features Fx = {fx1 , ..., fxNx
} and Fy = {fy1 , ..., fyNx

} of two 3D scans, we

use the nearest neighbor in the feature space to generate a set of putative correspon-

dences or matchesM = {(i, argminj ‖fxi
− fyj

‖)|i ∈ [1, ..., Nx]}. This procedure is

deterministic and can be hand-crafted to filter out noisy correspondences with
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ratio or reciprocity tests [271]. However, we propose to learn this heuristic filtering

process through a convolutional network that learns to analyze the underlying

geometric structure of the correspondence set.

We first provide a 1-dimensional analogy to explain the geometry of cor-

respondences. Let A be a set of 1-dimensional points A = {0, 1, 2, 3, 4} and

B be another such set B = {10, 11, 12, 13, 14}. Here B is a translation of A:

B = {ai + 10|ai ∈ A}. If an algorithm returns a set of possible correspondences

{(0, 10), (1, 11), (2, 12), (3, 13), (4, 14), (0, 14), (4, 10)}, then the set of correct corre-

spondences (inliers) will form a line (first 5 pairs), whereas incorrect correspon-

dences (outliers) will form random noise outside the line (last 2 pairs). If we extend

this to 3D scans and pointclouds, we can also represent a 3D correspondence xi ↔
yj as a point in 6-dimensional space [xT

i ,y
T
j ]

T ∈ R
6. The inlier correspondences

will be distributed on a lower-dimensional surface in this 6D space, determined by

the geometry of the 3D input. We denote P = {(i, j)| ‖T ∗(xi)−yj‖ < τ, (i, j) ∈M}
as a set of inliers or a set of correspondences (i, j) that align accurately up to the

threshold τ under the ground truth transformation T ∗. Meanwhile, the outliers

N = PC ∩M will be scattered outside the surface P . To identify the inliers, we

use a convolutional network. Such networks have been proven effective in related

dense prediction tasks, such as 3D point cloud segmentation [49, 91]. The convolu-

tional network in our setting is in 6-dimensional space [52]. The network predicts

a likelihood for each correspondence, which is a point in 6D space [xT
i ,y

T
j ]

T . The

prediction is interpreted as the likelihood that the correspondence is true: an inlier.

Note that the convolution operator is translation invariant, thus our 6D Con-

vNet will generate the same output regardless of the absolute position of inputs

in 3D. We use a similar network architecture to Choy et al. [50] to create a 6D con-

volutional network with skip connections within the spatial resolution across the

network. The architecture of the 6D ConvNet is shown in Fig. 3.2. During training,

we use the binary cross-entropy loss between the likelihood prediction that a corre-

spondence (i, j) is an inlier, p(i,j) ∈ [0, 1], and the ground-truth correspondences P
to optimize the network parameters:

Lbce(M, T ∗) =
1

|M|

(

∑

(i,j)∈P

log p(i,j) +
∑

(i,j)∈N

log pC(i,j)

)

, (3.1)

where pC = 1− p and |M| is the cardinality of the set of putative correspondences.
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Figure 3.2: 6-dimensional convolutional network architecture for inlier likelihood
prediction (Sec. 3.3.2). The network has a U-net structure with residual blocks
between strided convolutions. Best viewed on the screen.

3.3.3 Weighted Procrustes for SE(3)

The inlier likelihood estimated by the 6D ConvNet provides a weight for each

correspondence. The original Procrustes method [90] minimizes the mean squared

error between corresponding points 1
N

∑

(i,j)∈M ‖xi − yj‖2 and thus gives equal

weight to all correspondences. In contrast, we minimize a weighted mean squared

error
∑

(i,j)∈Mw(i,j)‖xi − yj‖2. This change allows us to pass gradients through the

weights, rather than through the position [233], and enables the optimization to

scale to dense correspondence sets.

Formally, Weighted Procrustes analysis minimizes:

e2 = e2(R, t;w, X, Y ) (3.2)

=
∑

(i,j)∈M

w̃(i,j)(yj − (Rxi + t))2 (3.3)

= Tr
(

(Y −RX − t1T )W (Y −RX − t1T )T
)

, (3.4)

where 1 = (1, ..., 1)T , X = [x1, ...,x|M|], and Y = [yJ1 , ...,yJ|M|
]. J is a list of

indices that defines the correspondences xi ↔ yJi . w = [w1, · · · , w|M|] is the weight

vector and w̃ = [w̃1, · · · , w̃|M|] ,
φ(w)

||φ(w)||1
denotes the normalized weight after a

nonlinear transformation φ that applies heuristic prefiltering. W = diag(w̃) forms

the diagonal weight matrix.
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Theorem 1. : The R and t that minimize the squared error e2(R, t) =
∑

(i,j)w(i,j)(yj
−

Rxi − t)2 are t̂ = (Y − RX)W1 and R̂ = USV T where UΣV T = SVD(Σxy), Σxy =

Y KWKXT , K = I −
√
w̃
√
w̃

T
, and S = diag (1, · · · , 1, det(U)det(V )).

Proof. The weighed mean squared error is defined as follows

e2 =
∑

(i,j)∈M

w̃(i,j)(yj − (Rxi + t))2 (3.5)

= Tr
(

(Y −RX − t1T )W (Y −RX − t1T )T
)

. (3.6)

Theorem 2. : TheR and t that minimize the squared error e2(R, t) =
∑

(i,j)∈Mw(i,j)(yj
−

Rxi − t)2 are t̂ = (Y − RX)W1 and R̂ = USV T where UΣV T = SVD(Σxy), Σxy =

Y KWKXT , K = I −
√
w̃
√
w̃

T
, and S = diag (1, · · · , 1, det(U)det(V )).

Proof. First, we differentiate e2 w.r.t. t and equates the partial derivative to 0:

∂

∂t
e2 =

∂

∂t

∑

(i,j)∈M

w̃(i,j)(yj −Rxi − t) (3.7)

= −2





∑

(i,j)

w̃(i,j)yj −
∑

(i,j)

w̃(i,j)Rxi −
∑

(i,j)

w̃(i,j)t



 = 0. (3.8)

Thus, t̂ = (Y −RX)W1. Next, we substitute X = KX +X
√
w̃
√
w̃

T
on Eq. 3.6 and

do the same for Y :

e2 = Tr
(

(Y −RX − t1T )W (Y −RX − t1T )T
)

(3.9)

= Tr

(

(Y K + Y
√
w̃
√
w̃

T −RXK −RX
√
w̃
√
w̃

T − t1T )

W (Y K + Y
√
w̃
√
w̃

T −RXK −RX
√
w̃
√
w̃

T − t1T )T
)

= Tr((Y K −RXK)W (Y K −RXK)T ) (3.10)

= Tr(Y KWKTY T ) + Tr(RXKWKTXTRR)− 2Tr(Y KWKTXTRT ), (3.11)

where we use the fact that W11T =
√
w̃
√
w̃

T
. The minimum occurs when we
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maximize the last negative term:

max
R

Tr(Y KWKTXTRT ) =
∑

k

σk(Y KWKTXT ), (3.12)

where σk(A) is the k-th largest singular value of the matrix A. Thus, the maximum

of Eq. 3.12 occurs when R = USV T where UΣV T = SVD(Σxy), Σxy = Y KWKXT

and S = diag (1, · · · , 1,det(U)det(V )). The last det(U)det(V ) is either +1 or -1

depending on the direction of the orthonomal basis. �

We can easily extend the above theorem to incorporate a scaling factor c ∈ R
+,

or anisotropic scaling for tasks such as scan-to-CAD registration, but in this paper

we assume that partial scans of the same scene have the same scale.

The Weighted Procrustes method generates rotation R̂ and translation t̂ as

outputs that depend on the weight vector w. In our current implementation, R̂ and

t̂ are directly sent to the robust registration module in Section 3.4 as an initial pose.

However, we briefly demonstrate that they can also be embedded in an end-to-end

registration pipeline, since Weighted Procrustes is differentiable. From a top-level

loss function L of R̂ and t̂, we can pass the gradient through the closed-form solver,

and update parameters in downstream modules:

∂

∂w
L(R̂, t̂) =

∂L(R̂, t̂)

∂R̂

∂R̂

∂ŵ
+
∂L(R̂, t̂)

∂t̂

∂t̂(R̂, ŵ)

∂ŵ
, (3.13)

where L(R̂, t̂) can be defined as the combination of differentiable rotation error

(RE) and translation error (TE) between predictions R̂, t̂ and ground-truth R∗, t∗:

Lrot(R̂) = arccos
Tr(R̂TR∗)− 1

2
, (3.14)

Ltrans(t̂) =||t̂− t∗||22, (3.15)

or the Forbenius norm of relative transformation matrices defined in [6, 233]. The

final loss is the weighted sum of Lrot, Ltrans, and Lbce.
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3.4 Robust Registration

In this section, we propose a fine-tuning module that minimizes a robust loss

function of choice to improve the registration accuracy. We use a gradient-based

method to refine poses, where a continuous representation [274] for rotations is

adopted to remove discontinuities and construct a smooth optimization space.

This module initializes the pose from the prediction of the Weighted Procrustes

method. During iterative optimization, unlike Maken et al. [152], who find the

nearest neighbor per point at each gradient step, we rely on the correspondence

likelihoods from the 6D ConvNet, which is estimated only once per initialization.

In addition, our framework naturally offers a failure detection mechanism. In

practice, Weighted Procrustes may generate numerically unstable solutions when

the number of valid correspondences is insufficient due to small overlaps or noisy

correspondences between input scans. By computing the ratio of the sum of the

filtered weights to the total number of correspondences, i.e.
∑

i φ(wi)/|M|, we can

easily approximate the fraction of valid correspondences and predict whether an

alignment may be unstable. When this fraction is low, we resort to a more time-

consuming but accurate registration algorithm such as RANSAC [3, 198, 201] or

a branch-and-bound method [249] to find a numerically stable solution. In other

words, we can detect when our system might fail before it returns a result and

fall back to a more accurate but time-consuming algorithm, unlike previous end-

to-end methods that use globally pooled latent features [6] or a singly stochastic

matrix [233] – such latent representations are more difficult to interpret.

3.4.1 SE(3) Representation and Initialization

We use the 6D representation of 3D rotation proposed by Zhou et al. [274], rather

than Euler angles or quaternions. The new representation uses 6 parameters

a1, a2 ∈ R
3 and can be transformed into a 3× 3 orthogonal matrix by

f













| |
a1 a2

| |












=







| | |
b1 b2 b3

| | |






, (3.16)
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where b1,b2,b3 ∈ R
3 are b1 = N(a1), b2 = N(a2 − (b1 · a2)b1), and b3 = b1 × b2,

and N(·) denotes L2 normalization. Thus, the final representation that we use is

a1, a2, t which are equivalent to R, t using Eq. 3.16.

To initialize a1, a2, we simply use the first two columns of the rotation matrix R,

i.e., b1, b2. For convenience, we define f−1 as f−1(f(R)) = R though this inverse

function is not unique as there are infinitely many choices of a1, a2 that map to the

same R.

3.4.2 Energy Minimization

We use a robust loss function to fine-tune the registration between predicted inlier

correspondences. The general form of the energy function is

E(R, t) =
n
∑

i=1

φ(w(i,Ji))L(yJi , Rxi + t), (3.17)

where w̃i and Ji are defined as in Eq. 3.5 and φ(·) is a prefiltering function. In the

experiments, we use φ(w) = I[w > τ ]w, which clips weights below τ elementwise

as neural network outputs bounded logit scores. L(x,y) is a pointwise loss function

between x and y; we use the Huber loss in our implementation. The energy

function is parameterized by R and t which in turn are represented as a1, a2, t. We

can apply first-order optimization algorithms such as SGD, Adam, etc. to minimize

the energy function, but higher-order optimizers are also applicable since the

number of parameters is small. The complete algorithm is described in Alg. 1.

3.5 Experiments

We analyze the proposed model in two registration scenarios: pairwise registration

where we estimate an SE(3) transformation between two 3D scans or fragments,

and multi-way registration which generates a final reconstruction and camera

poses for all fragments that are globally consistent. Here, pairwise registration

serves as a critical module in multi-way registration.

For pairwise registration, we use the 3DMatch benchmark [260] which consists

of 3D point cloud pairs from various real-world scenes with ground truth trans-
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Algorithm 1: Deep Global Registration

Input: X ∈ R
n×3, Y ∈ R

m×3

Output: R ∈ R
3×3, t ∈ R

3×1

1 Fx ← Feature(X) // § 3.3.1

2 Fy ← Feature(Y )
3 Jx→y ← NearestNeighbor(Fx,Fy) // § 3.3.2

4 M← {(i, Jx→y,i) | i ∈ [1, ..., n]}
5 w← InlierProbability(M)
6 if Eiφ(wi) < τs then
7 return SafeGuardRegistration(X, Y ) // §3.4

8 else

9 R̂, t̂← argminR,t e
2(R, t;w, X, Y ) // § 3.3.3

10 a← f−1(R̂), t← t̂ // § 3.4.1

11 while not converging do
12 ℓ←∑

(i,j)∈M φ(w(i,j))L(Yj, f(a)Xi + t)

13 a← Update(a, ∂
∂a
ℓ(a, t))

14 t← Update(t, ∂
∂t
ℓ(a, t))

15 return f(a), t

formations estimated from RGB-D reconstruction pipelines [58, 97]. We follow

the train/test split and the standard procedure to generate pairs with at least 30%

overlap for training and testing [50, 60]. For multi-way registration, we use the

simulated Augmented ICL-NUIM dataset [46, 100] for quantitative trajectory re-

sults, and Indoor LiDAR RGB-D dataset [180] and Stanford RGB-D dataset [46] for

qualitative registration visualizations. Note in this experiment we use networks

trained on the 3DMatch training set and do not fine-tune on the other datasets.

This illustrates the generalization abilities of our models. Lastly, we use KITTI

LIDAR scans [82] for outdoor pairwise registration. As the official registration

splits do not have labels for pairwise registration, we follow Choy et al. [50] to

create pairwise registration train/val/test splits.

For all indoor experiments, we use 5cm voxel downsampling [198, 272], which

randomly subsamples a single point within each 5cm voxel to generate point

clouds with uniform density. For safeguard registration, we use RANSAC and

the safeguard threshold τs = 0.05, which translates to 5% of the correspondences
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should be valid. We train learning-based state-of-the-art models and our network

on the training split of the 3DMatch benchmark. During training, we augment data

by applying random rotations varying from −180 to 180 degrees around a random

axis. Ground-truth pointwise correspondences are found using nearest neighbor

search in 3D space. We train the 6-dimensional ConvNet on a single Titan XP with

batch size 4. SGD is used with an initial learning rate 10−1 and an exponential

learning rate decay factor 0.99.

3.5.1 Pairwise Registration

Figure 3.3: Global registration results of our method on all 8 different test scenes in
3DMatch [260]. Best viewed in color.

In this section, we report the registration results on the test set of the 3DMatch

benchmark [260], which contains 8 different scenes as depicted in Fig. 3.3. We
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Figure 3.4: Overall pairwise registration recall (y-axis) on the 3DMatch benchmark
with varying rotation (left image) and translation (right image) error thresholds
(x-axis). Our approach outperforms baseline methods for all thresholds while
being 6.5× faster than the most accurate baseline.

measure translation error (TE) defined in Eq. 3.14, rotation error (RE) defined in

Eq. 3.15, and recall. Recall is the ratio of successful pairwise registrations and we

define a registration to be successful if its rotation error and translation error are

smaller than predefined thresholds. Average TE and RE are computed only on

these successfully registered pairs since failed registrations return poses that can

be drastically different from the ground truth, making the error metrics unreliable.

We compare our methods with various classical methods [198, 249, 271] and

state-of-the-art learning based methods [6, 178, 233, 234]. All the experiments are

evaluated on an Intel i7-7700 CPU and a GTX 1080Ti graphics card except for

Go-ICP [249] tested on an Intel i7-5820K CPU. In Table 3.1, we measure recall with

the TE threshold 30cm which is typical for indoor scene relocalization [165], and

RE threshold 15 degrees which is practical for partially overlapping scans from

our experiments. In Fig. 3.4, we plot the sensitivity of recall on both thresholds by

changing one threshold and setting the other to infinity. Fig. 3.5 includes detailed

statistics on separate test scenes. Our system outperforms all the baselines on

recall by a large margin and achieves the lowest translation and rotation error

consistently on most scenes.

Classical methods. To compare with classical methods, we evaluate point-to-

point ICP, Point-to-plane ICP, RANSAC [198], and FGR [271], all implemented

in Open3D [272]. In addition, we test the open-source Python bindings of Go-

ICP [249] and Super4PCS [158]. For RANSAC and FGR, we extract FPFH from
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Figure 3.5: Analysis of 3DMatch registration results per scene. Row 1: recall rate
(higher is better). Row 2-3: TE and RE measured on successfully registered pairs
(lower is better). Our method is consistently better on all scenes, which were
not seen during training. Note: a missing bar corresponds to zero successful
alignments in a scene.

voxel-downsampled point clouds. The results are shown in Table 3.1.

ICP variants mostly fail as the dataset contains challenging 3D scan sequences

with small overlap and large camera viewpoint change. Super4PCS, a sampling-

based algorithm, performs similarly to Go-ICP, an ICP variant with branch-and-

bound search.

Feature-based methods, FGR and RANSAC, perform better. When aligning 5cm-

voxel-downsampled point clouds, RANSAC achieves recall as high as 70%, while

FGR reaches 40%. Table 3.1 also shows that increasing the number of RANSAC

iterations by a factor of 2 only improves performance marginally. Note that our

method is about twice as fast as RANSAC with 2M iterations while achieving

higher recall and registration accuracy.

Learning-based methods. We use 3DRegNet [178], Deep Closest Point (DCP) [233],
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Table 3.1: Row 1-6: registration results of our method and classical global reg-
istration methods on point clouds voxelized with 5cm voxel size. Our method
outperforms RANSAC and FGR while being as fast as FGR. Row 7-10: results of
ICP variants. Row 11 - 12: results of learning-based methods. The learning-based
methods generally fail on real-world scans. Time includes feature extraction.

Recall TE (cm) RE (deg) Time (s)

Ours w/o safeguard 85.2% 7.73 2.58 0.70
Ours 91.3% 7.34 2.43 1.21

FGR [271] 42.7% 10.6 4.08 0.31

RANSAC-2M [198] 66.1% 8.85 3.00 1.39
RANSAC-4M 70.7% 9.16 2.95 2.32
RANSAC-8M 74.9% 8.96 2.92 4.55

Go-ICP [249] 22.9% 14.7 5.38 771.0
Super4PCS [158] 21.6% 14.1 5.25 4.55
ICP (P2Point) [272] 6.04% 18.1 8.25 0.25
ICP (P2Plane) [272] 6.59% 15.2 6.61 0.27

DCP [233] 3.22% 21.4 8.42 0.07
PointNetLK [6] 1.61% 21.3 8.04 0.12

Table 3.2: ATE (cm) error on the Augmented ICL-NUIM dataset with simulated
depth noise. For InfiniTAM, the loop closure module is disabled since it fails in all
scenes. For BAD-SLAM, the loop closure module only succeeds in ‘Living room 2’.

ElasticFusion [237] InfiniTAM [120] BAD-SLAM [204] Multi-way + FGR [271] Multi-way + RANSAC [272] Multi-way + Ours

Living room 1 66.61 46.07 fail 78.97 110.9 21.06

Living room 2 24.33 73.64 40.41 24.91 19.33 21.88
Office 1 13.04 113.8 18.53 14.96 14.42 15.76
Office 2 35.02 105.2 26.34 21.05 17.31 11.56

Avg. Rank 3 5 5 3.5 2.5 2

PRNet [234], and PointNetLK [6] as our baselines. We train all the baselines on

3DMatch with the same setup and data augmentation as ours for all experiments.

For 3DRegNet, we follow the setup outlined in [178], except that we do not

manually filter outliers with ground truth, and train and test with the standard

realistic setup. We find that the registration loss of 3DRegNet does not converge

during training and the rotation and translation errors are consistently above 30

degrees and 1m during test.

We train Deep Closest Point (DCP) with 1024 randomly sampled points for each

point cloud for 150 epochs [233]. We initialize the network with the pretrained

weights provided by the authors. Although the training loss converges, DCP fails

to achieve reasonable performance for point clouds with partial overlap. DCP uses
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a singly stochastic matrix to find correspondences, but this formulation assumes

that all points in point cloud X have at least one corresponding point in the convex

hull of point cloud Y . This assumption fails when some points in X have no

corresponding points in Y , as is the case for partially overlapping fragments. We

also tried to train PRNet [234] on our setup, but failed to get reasonable results due

to random crashes and high-variance training losses.

Lastly, we fine-tune PointNetLK [6] on 3DMatch for 400 epochs, starting from

the pretrained weights provided by the authors. PointNetLK uses a single feature

that is globally pooled for each point cloud and regresses the relative pose between

objects, and we suspect that a globally pooled feature fails to capture complex

scenes such as 3DMatch.

In conclusion, while working well on object-centric synthetic datasets, current

end-to-end registration approaches fail on real-world data. Unlike synthetic data,

real 3D point cloud pairs contain multiple objects, partial scans, self-occlusion,

substantial noise, and may have only a small degree of overlap between scans.

3.5.2 Multi-way Registration

Multi-way registration for RGB-D scans proceeds via multiple stages. First, the

pipeline estimates the camera pose via off-the-shelf odometry and integrates mul-

tiple 3D scans to reduce noise and generate accurate 3D fragments of a scene.

Next, a pairwise registration algorithm roughly aligns all fragments, followed

by multi-way registration [46] which optimizes fragment poses with robust pose

graph optimization [133].

We use a popular open-source implementation of this registration pipeline [272]

and replace the pairwise registration stage in the pipeline with our proposed

modules. Note that we use the networks trained on the 3DMatch training set

and test on the multi-way registration datasets [46, 100, 180]; this demonstrates

cross-dataset generalization.

We test the modified pipeline on the Augmented ICL-NUIM dataset [46, 100]

for quantitative trajectory results, and Indoor LiDAR RGB-D dataset [180] and

Stanford RGB-D dataset [46] for qualitative registration visualizations. We measure

the absolute trajectory error (ATE) on the Augmented ICL-NUIM dataset with
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Bedroom Boardroom

Loft Apartment

Figure 3.6: Full scene reconstructions from a modified multi-way registration
pipeline with deep global registration for pairwise registration.

simulated depth noise. As shown in Table 3.2, compared to state-of-the-art online

SLAM [120, 204, 237] and offline reconstruction methods [271], our approach yields

consistently low error across scenes.

For qualitative results, we compare pairwise fragment registration on these

scenes against FGR and RANSAC in Fig. 3.8-3.9. Full scene reconstruction results

are shown in Fig. 3.6.

3.5.3 Outdoor LIDAR Registration

We use outdoor LIDAR scans from the KITTI dataset [82] for registration, follow-

ing [50]. The registration split of Choy et al. [50] uses GPS-IMU to create pairs that

are at least 10m apart and generated ground-truth transformation using GPS fol-
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lowed by ICP to fix errors in GPU readings. We use FCGF features [50] trained on

the training set of the registration split to find the correspondences and trained the

6D ConvNet for inlier confidence prediction similar to how we trained the system

for indoor registration. We use voxel size 30cm for downsampling point clouds

for all experiments. Registration results are reported in Tab. 3.3 and visualized in

Fig. 3.7.

Figure 3.7: KITTI registration results. Pairs of scans are at least 10m apart.

Table 3.3: Registration on the KITTI test split [50, 82]. We use thresholds of 0.6m
and 5 degrees. ‘Ours + ICP’ refers to our method followed by ICP for fine-grained
pose adjustment. The runtime includes feature extraction.

Recall TE (cm) RE (deg) Time (s)

FGR [271] 0.2% 40.7 1.02 1.42
RANSAC [198] 34.2% 25.9 1.39 1.37
FCGF [50] 98.2% 10.2 0.33 6.38

Ours 96.9% 21.7 0.34 2.29

Ours + ICP 98.0 3.46 0.14 2.51

3.6 Conclusions

We presented Deep Global Registration, a learning-based framework that robustly

and accurately aligns real-world 3D scans. To achieve this, we used a 6D convolu-

tional network for inlier detection, a differentiable Weighted Procrustes algorithm

for scalable registration, and a gradient-based optimizer for pose refinement. Ex-

periments show that our approach outperforms both classical and learning-based

registration methods, and can serve as a ready-to-use plugin to replace alternative

registration methods in off-the-shelf scene reconstruction pipelines.
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Real-world: Apartment

Real-world: Boardroom

Synthetic: Office

Figure 3.8: Fragment registrations on [46, 180]. From left to right: FGR [271],
RANSAC [198], Ours. Our method succeeds on scenes with small overlaps or
ambiguous geometry structures while other methods fail.
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Real-world: Copyroom

Real-world: Loft

Synthetic: Livingroom

Figure 3.9: By combining Weighted Procrustes and gradient-based refinement, our
method outputs more accurate registrations in one pass, leading to better aligned
details.
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Chapter 4

Self-supervised Geometric

Perception

4.1 Introduction

Geometric perception is the task of estimating geometric models (e.g., camera poses,

rigid transformations, and 3D structures) from visual measurements (e.g., images

or point clouds). It is a fundamental class of problems in computer vision that has

extensive applications in object detection and pose estimation [35, 259], motion

estimation and 3D reconstruction [46, 65], simultaneous localization and map-

ping (SLAM) [30], structure from motion (SfM) [202], and virtual and augmented

reality [127], to name a few.

Modern geometric perception typically consists of a front-end that detects, rep-

resents, and associates (sparse or dense) keypoints to establish putative correspon-

dences, and a back-end that performs estimation of the geometric models while

being robust to outliers (i.e., incorrect correspondences). Traditionally, hand-crafted

keypoint detectors and feature descriptors, such as SIFT [147] and FPFH [198], have

been used for feature matching in 2D images and 3D point clouds. Despite be-

ing general and efficient to compute, hand-crafted features typically lead to an

overwhelming number of outliers so that robust estimation algorithms struggle to

return accurate estimates of the geometric models. For example, it is not uncom-
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mon to have over 95% of the correspondences estimated from FPFH be outliers in

point cloud registration [28, 246]. As a result, learning feature descriptors from

data, particularly using deep neural networks, has become increasingly popular.

Learned feature descriptors have been shown to consistently and significantly

outperform their hand-crafted counterparts across applications such as relative

camera pose estimation [200, 232], 3D point cloud registration [50, 86], and object

detection and pose estimation [183, 222, 238, 259].

However, existing feature learning approaches have several major shortcom-

ings. First, a large number of ground-truth geometric model labels are required

for training. For example, ground-truth relative camera poses are needed for

training image keypoint descriptors [71, 157, 232], pairwise rigid transformations

are required for training point cloud descriptors [50, 86, 233, 240, 258], and object

poses are used to train image keypoint predictors [183, 259]. Second, although

obtaining ground-truth geometric labels is trivial in some controlled settings such

as robotic manipulation [76], in general the labels come from full 3D reconstruction

pipelines (e.g., COLMAP [202], Open3D [272]) that require delicate parameter tuning,

partial human supervision, and extra sensory information such as IMU and GPS.

As a result, the success of feature learning is limited to a handful of datasets with

ground-truth annotations [26, 57, 143, 238, 260].

In this paper, we ask the key question: Can we design a general framework for feature

learning that requires no ground-truth geometric labels or sophisticated reconstruction

pipelines? Our answer is affirmative.

Contributions. We formulate geometric perception as an optimization problem

that jointly searches for the best feature descriptor (for correspondence matching)

and the best geometric models given a large corpus of visual measurements. This

formulation incorporates robust model fitting and deep feature learning as two

subproblems: (i) robust estimation only searches for the geometric models, while

consuming putative correspondences established from a given feature descriptor;

(ii) feature learning searches purely for the feature descriptor, while relying on full

supervision from the ground-truth geometric models. This generalization naturally

endows geometric perception with an iterative algorithm that solves the joint

optimization based on alternating minimization, which we name as self-supervised

geometric perception (SGP). At each iteration, SGP alternates two meta-algorithms: a
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teacher, that generates geometric pseudo-labels using correspondences established

from the learned features, and a student, that refines the learned features under

the noisy supervision from the updated geometric models. SGP is initialized by

generating geometric pseudo-labels using a bootstrap descriptor, e.g., a descriptor

that is hand-crafted or is trained using synthetic data. We apply SGP to solve

two perception problems – relative camera pose estimation and 3D point cloud

registration – and demonstrate that (i) SGP achieves on-par or superior performance

compared to the supervised oracles; (ii) SGP sets the new state of the art on the

MegaDepth [143] and 3DMatch [260] benchmarks.

4.2 Related Work

Deep feature learning. With the recent advance of deep learning, a plethora of

deep features have been developed to replace classical hand-crafted feature descrip-

tors such as SIFT [147] and FPFH [198] for correspondence matching, and boost the

performance of geometric perception tasks. For 2D features, Choy et al. [48] develop

Universal Correspondence Network (UCN) for visual correspondence estimation

with metric contrastive learning. Tian et al. [224] introduce L2-Net to extract patch

descriptors for keypoints. While these methods require direct correspondence su-

pervision, Wang et al. [232] only use 2D-2D camera poses to supervise the learning

of feature descriptors. The success of 2D feature learning extends to 3D. Khoury

et al. [125] created Compact Geometric Features (CGF) by optimizing deep networks

that map high-dimensional histograms into low-dimensional Euclidean spaces.

Gojcic et al. [86] propose 3DSmoothNet for 3D keypoint descriptor generation with its

network structure based on L2-Net. Choy et al. [50] developed fully convolutional

geometric features (FCGF) based on sparse convolutions. Bai et al. [11] build D3Feat

on kernel point convolution (KPConv) [223] and emphasize 3D keypoint detection.

Since ground-truth 3D correspondences are non-trivial to obtain, nearest neighbor

search using known 3D transformations is the standard supervision signal.

Robust estimation. Robust estimation ensures reliable geometric model esti-

mation in the presence of outlier correspondences. Consensus maximization [44]

and M-estimation [24] are the two popular formulations. Algorithms for solving

both formulations can be divided into fast heuristics, global solvers, and certifiable
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algorithms. Fast heuristics, such as RANSAC [12, 13, 75] and GNC [5, 245, 271], are

efficient but offer few performance guarantees. Global solvers, typically based on

branch-and-bound [17, 18, 28, 111, 140, 248] or exhaustive search [9, 33, 45, 73], are

globally optimal but often run in exponential time. Recently proposed certifiable

algorithms [242, 243, 244, 246] combine fast heuristics with scalable optimality

certification. Outlier-pruning methods [28, 35, 207] can significantly boost the

robustness and efficiency of estimation algorithms. In this paper, we use robust

estimation to teach feature learning.

Self-supervision. Self-supervision has been widely adopted in visual learn-

ing [115] to avoid massive human annotation. In such tasks, labels can be au-

tomatically generated by standard image operations [135, 263], classical vision

algorithms [114, 142], or simulation [69, 191]. In real-world setups, geometric

vision has actively employed self-supervision in optical flow [145], depth predic-

tion [85, 230], visual odometry [250, 273], and registration [11, 50, 255]. These

tasks rely on the supervision from camera poses or relative rigid transformations

for image warping and correspondence generation, and thus benefit from well-

established SLAM [164], 3D reconstruction [272], and SfM [202] pipelines. Although

these systems are off-the-shelf, they usually require long execution times, deli-

cate parameter tuning, and human supervision to safeguard their correctness. In

this paper, we show how to perform self-supervised feature learning without 3D

reconstruction pipelines and ground-truth geometric labels.

Self-training. Self-training [92, 254], as a special case of semi-supervised learn-

ing, has gained popularity in visual learning due to its potential to adapt to large-

scale unlabeled data. Self-training first trains a model on a labeled dataset, then

applies it on a larger unlabeled dataset to obtain pseudo-labels [136] for further

training. Although pseudo-labels can be noisy, recent studies have shown that

SOTA performance can be achieved on image classification [239, 278], and initial

theoretical analyses have been proposed [235]. Our work uses robust estimation to

generate pseudo-labels without initial supervised training, the first work to show-

case the effectiveness of pseudo-labels in training feature descriptors for geometric

perception.
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4.3 The SGP Formulation

In this section, we first formulate geometric perception as a problem that jointly

optimizes a correspondence matching function (i.e., learning a descriptor) and the

geometric models given a corpus of visual data (Section 4.3.1). Then we show

that two of the most important research lines in computer vision, namely robust

estimation and feature learning, correspond to fixing one part of the joint problem

while optimizing the other part (Sections 4.3.2 and 4.3.3).

4.3.1 Joint Feature Learning and Model Estimation

We focus on geometric perception with pairwise correspondences between visual

measurements.

Problem 1 (Geometric Perception). Consider a corpus of M pairwise visual measure-

ments {ai, bi}Mi=1, such as images or point clouds, and assume ai and bi are related through

a geometric model with unknown parameters xi ∈ X , where X is the domain of the

geometric models such as 3D poses. Suppose there is a preprocessing module φ that can

extract a sparse or dense set of keypoint locations for each measurement, i.e.,

pa
i = φ (ai) ∈ R

da×Nai , pb
i = φ (bi) ∈ R

db×Nbi , (4.1)

for all i = 1, . . . ,M , where da, db are the dimensions of the keypoint locations (e.g., 2 for

images keypoints and 3 for point cloud keypoints), and Nai , Nbi are the number of keypoints

in ai and bi (w.l.o.g., assume Nai ≤ Nbi), then the problem of geometric perception seeks

to jointly learn a correspondence function C and estimate the unknown geometric models

xi by solving the following optimization:

min
C,{xi}

M
i=1∈X

M

M
∑

i=1

Nai
∑

k=1

ρ
(

r
(

xi,p
a
i,k, q

b
i,k

))

(4.2)

s.t. qb
i,k = C(pa

i,k,ai,p
b
i , bi), (4.3)

where pa
i,k ∈ R

da denotes the location of the k-th keypoint in ai, q
b
i,k ∈ R

db denotes the

location of the corresponding keypoint in bi, r (·) is the residual function that quantifies

the mismatch between the two keypoints pa
i,k and qb

i,k under the geometric model xi, ρ (·)
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is a robust cost function that penalizes the residuals, and C (·) is a function that takes each

keypoint in ai as input and predicts the corresponding keypoint in bi, by learning features

from the visual data.

To the best of our knowledge, Problem 1 is the first formulation that considers

joint feature learning and model estimation in geometric perception. The correspon-

dence function C typically contains a learnable feature descriptor (e.g., parametrized

by a deep neural network) and a matching function (e.g., soft or hard nearest

neighbor search) that generates correspondences using the learned descriptor. We

now give two examples of Problem 1.

Example 1 (Relative Pose Estimation). Consider a corpus of image pairs {ai, bi}Mi=1

with known camera intrinsics, where ai, bi are RGB images, let φ(·) be a keypoint de-

tector, e.g., SIFT [147], SuperPoint [62], or a dense random pixel location sampler [232],

such that pa
i = φ(ai) ∈ R

2×Nai and pb
i = φ(bi) ∈ R

2×Nbi are two sets of 2D keypoint

locations. Relative pose estimation seeks to jointly learn a correspondence prediction func-

tion C and estimate the relative poses xi = (Ri, ti) ∈ SO(3) × S
2 between images.1 In

particular, following [232], let C be a composition of a deep feature descriptor F(·), a softmax

function [88], and a weighted average:

qb
i,k =

Nbi
∑

j=1

pb
i,j

exp
(

F(pa
i,k,ai)

TF(pb
i,j, bi)

)

∑Nbi

j=1 exp
(

F(pa
i,k,ai)TF(pb

i,j, bi)
)

, (4.4)

where the descriptor F takes the image and the keypoint location as input and outputs

a high-dimensional feature vector for each keypoint, i.e., F(pa
i,k,ai) ∈ R

dF , where dF

denotes the dimension of the descriptor, the softmax function computes the probability of

pb
i,j being a match to pa

i,k according to their inner product in the descriptor space, and the

weighted average function returns the keypoint location as a weighted sum of all keypoint

locations discounted by their matching probabilities.

Example 2 (Point Cloud Registration). Consider a corpus of point cloud pairs {ai, bi}Mi=1,

where ai, bi are 3D point clouds, let φ(·) be a 3D keypoint detector, e.g., ISS3D [267], USIP [141],

or a dense uniform voxel downsampler [50], such that pa
i = φ(ai) ∈ R

3×Nai , and φ(bi) ∈
R

3×Nbi are two sets of 3D keypoints. Point cloud registration seeks to jointly learn a corre-

spondence function C and estimate the rigid transformation xi = (Ri, ti) ∈ SO(3)× R
3

1The translation t ∈ S
2 .
= {t ∈ R

3| ‖t‖ = 1} is up to scale.

53



4. Self-supervised Geometric Perception

between point clouds. In particular, following [50, 86], let C be a composition of a deep

feature descriptor F(·) and nearest neighbor search:

qb
i,k = argmin

pb
i,j∈p

b
i

∥

∥F(pb
i,j, bi)−F(pa

i,k,ai)
∥

∥ , (4.5)

where the descriptorF takes the point cloud and the keypoint location as input and outputs a

high-dimensional feature vector for each keypoint, i.e.,F(pa
i,k,ai) ∈ R

dF , with dF denoting

the descriptor dimension, and condition (4.5) asks that the corresponding keypoint qb
i,k is

the keypoint among pb
i that achieves the shortest distance to pa

i,k in descriptor space.2

Examples 1-2 represent two key problems in vision that concern pose estima-

tion from 2D-2D and 3D-3D measurements, all of which involve the coupling of

correspondence matching (a.k.a. data association) and geometric model estima-

tion. Interestingly, although little is known about how to solve Problem 1 directly,

significant efforts have been made to solve its two subproblems.

4.3.2 Robust Estimation

Problem 2 (Robust Estimation). In Problem 1, assuming the correspondence matching

function C is known, robust estimation seeks to estimate the unknown parameters of the

geometric models given putative correspondences (corrupted by outliers), by optimizing

the following objective:

min
{xi}

M
i=1∈X

M

M
∑

i=1

Nai
∑

k=1

ρ
(

r
(

xi,p
a
i,k, q

b
i,k

))

. (4.6)

Problem 2 shows that robust estimation is a subproblem of Problem 1 with

a known and fixed correspondence function. Despite the nonconvexity of prob-

lem (4.6) (e.g., due to a nonconvex X or a nonconvex ρ), research in robust es-

timation has focused on improving the robustness [28, 246], efficiency [13] and

theoretical guarantees [244] of estimation algorithms to mitigate the adversarial

2Alternatively, one can establish correspondences through cross check [271] or ratio test [147]. In
addition to (4.5), cross check asks pa

i,k is also the closest keypoint to qb
i,k among pa

i , while ratio test

asks the ratio ‖F(pa
i,k,ai)−F(qb

i,k, bi)‖/‖F(pa
i,k,ai)−F(pb

i,j , bi)‖ is below a predefined threshold

ζ < 1 for all pb
i,j 6= qb

i,k.
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effects of outliers on the estimated geometric models.

4.3.3 Supervised Feature Learning

Problem 3 (Supervised Feature Learning). In Problem 1, assuming the parameters of

the geometric models are known and denoting them as x◦
i , i = 1, . . . ,M , feature learn-

ing seeks to find the best correspondence matching function Cθ by solving the following

optimization problem:

min
θ∈RNC

M
∑

i=1

Nai
∑

k=1

ρ(r(x◦
i ,p

a
i,k, q

b
i,k))s.t. qb

i,k = Cθ(pa
i,k,ai,p

b
i , bi), (4.7)

where the correspondence function is parametrized by the weights θ ∈ R
NC of a deep

(descriptor) neural network and NC is the number of weight parameters in the network.

At first glance, the optimization (4.7) is different from the loss functions de-

signed in the supervised feature learning literature [50, 232, 259]. However, the

next proposition states that, if we take ρ(·) to be the truncated least squares (TLS)

cost function, then common loss functions can be designed using the Augmented

Lagrangian Method (ALM) [21].

Proposition 1 (Feature Learning as ALM). Let ρ(r) = min {r2, c̄2} be the TLS cost

function [244], where c̄ > 0 sets the maximum allowed inlier residual, supervised feature

learning [50, 232] in Examples 1-2 can solve the optimization (4.7). In particular, the loss

functions in [50, 232] can be interpreted as the Augmented Lagrangian of problem (4.7).

Proof. See the Appendix of [247].

Proposition 1 states that, just as robust estimation algorithms optimize geomet-

ric models given a fixed correspondence matching function, supervised feature

learning methods optimize the feature descriptor given known geometric models.

In the next section, we show that this framework naturally allows us to solve

Problem 1 by alternating the execution of robust estimation and feature learning.
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4.4 The SGP Algorithm

We first give an overview of the SGP algorithm (Section 5.3), then discuss its

applications (Section 5.6.4).

4.4.1 Overview

Geometric 

Pseudo-labels

Learned  

Correspondence

Student

Teacher

Bootstrap 

Correspondence

SGP

Verifier

Figure 4.1: Algorithmic overview of SGP.

An overview of SGP is shown in Fig. 4.1, and details of SGP are summarized

in Algorithm 2. SGP does not have access to the ground-truth geometric models

and internally creates geometric pseudo-labels. SGP contains three key components: a

teacher, a student and (optionally) a verifier.

Definition 1 (Teacher). An algorithm that estimates geometric pseudo-labels given a

correspondence matcher.

Definition 2 (Student). An algorithm that estimates the parameters of a correspondence

matching function under the supervision of geometric models.

Definition 3 (Verifier). An algorithm that verifies if a geometric model estimated by the

teacher is correct.
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From the definitions above, one can see that a teacher is a solver for the robust

estimation problem (4.6), while a student is a solver for the supervised feature

learning problem (4.7). Because problems (4.6) and (4.7) are the two subproblems

of the joint geometric perception problem (4.2), the SGP algorithm 2 alternates in

executing the teacher and the student (cf. line 21-23), referred to as the teacher-

student loop, to perform alternating minimization for the joint problem (4.2).

In particular, at the τ -th iteration of the teacher-student loop, the student initial-

izes the network parameters at θ, and updates the parameters to θ(τ), by minimiz-

ing problem (4.7) (using stochastic gradient descent) under the noisy “supervision”

of the geometric pseudo-labels estimated from iteration τ − 1 (line 21). The student

either initializes θ at random (line 17, referred to as retrain), or initializes θ from the

weights of the last iteration θ(τ−1) (line 19, referred to as finetune). Then, using the

correspondence function with updated parameters, denoted by Cθ(τ) , the teacher

solves robust estimation (4.6) to update the models (line 23).

Throughout the teach-student loop, neither the correspondence matcher nor the

teacher are perfect, leading to a significant fraction of the geometric pseudo-labels

being incorrect, which can potentially bias the student. Therefore, SGP optionally

uses a verifier to generate a verified set of pseudo-labels, denoted by S, that are

more likely to be correct (line 11). If the flag verifyLabel is False, then S = [M ] is the

full set of pseudo-labels (line 13). The verifier design is application dependent, as

discussed in Section 5.6.4.

An initialization is required to start the iterative updates in alternating minimiza-

tion. To do so, we initialize the geometric models by performing model estimation

using a bootstrap matcher B (line 6). Based on the specific application, the bootstrap

matcher can be designed from a hand-crafted feature descriptor that requires no

learning, or a descriptor that is trained with a small amount of data, or a descriptor

that is trained on synthetic datasets. On the other hand, since we typically do not

have prior information about the weights of C, θ(0) is initialized at random.

Remark 1 (Implementation Considerations). (i) Convergence: In the current SGP

implementation, we execute the teacher-student loops for a fixed number of iterations

T . However, one can stop SGP if the difference between x
(τ)
i and x

(τ−1)
i , or between θ(τ)

and θ(τ−1) is below some threshold. One can also choose the best C from SGP by using

a validation dataset if available. (ii) Speedup: When running the teacher to generate
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pseudo-labels (line 23) at each iteration, one can skip the updates for some labels that

are already “stable”. For example, if a label xi remains unchanged for consecutively 3

iterations, or the robust solver achieves high confidence about xi (e.g., RANSAC has inlier

rate over 80%), then the teacher can skip the update for xi.

4.4.2 Applications

We now discuss the application of SGP to Examples 1-2.

SGP for Example 1. The teacher performs robust relative pose estimation [103].

Therefore, a good candidate for a teacher is RANSAC [75] (with Nister’s 5-point

method [173]) and its variants, such as GCRANSAC [12] and MAGSAC [13]. The student

performs descriptor learning using relative camera pose supervision. Recent work

CAPS [232] is able to learn a descriptor under the supervision of fundamental

matrices, which can be computed from relative pose and camera intrinsics [103].

Therefore, CAPS is the student network. The verifier can be designed based on the

inlier rate estimated by RANSAC, i.e., the number of inlier matches divided by the

total number of putative matches. Intuitively, the higher the inlier rate is, the more

likely it is that RANSAC has found a correct solution. To initialize SGP, we use the

hand-crafted SIFT descriptor (with ratio test) [147].

SGP for Example 2. The teacher performs robust registration. Many robust

registration algorithms can serve as the teacher: RANSAC (with Horn’s 3-point

method [107]) and its variants, FGR [271], and TEASER++ [246]. As for the student,

methods such as FCGF [50], 3DSmoothNet [86], and D3Feat [11] can learn point cloud

descriptors under the supervision of rigid transformations. The verifier can be

designed based on the overlap ratio computed from the estimated pose, i.e., the

number of point pairs that are close to each other after transformation, divided

by the total number of points in the point cloud. One can also use the certifier

in TEASER++ [246]. To initialize SGP, we can use the hand-crafted FPFH descriptor

(with cross check) [198].

Remark 2 (Novelty). Hand-crafted descriptors, robust estimation and feature learning

are mature areas in computer vision. In this paper, instead of creating new techniques in

each area, we show that combining existing techniques from each field in the SGP framework

can tackle self-supervised geometric perception in full generality.
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Remark 3 (Generality). Although we only provide experimental results for relative pose

estimation and point cloud registration, the joint optimization formulation in Problem 1

is general and the SGP algorithm 2 can be applied in any perception problem where a

robust solver and a supervised feature learning method is available. For example, we also

present the formulation for object detection and pose estimation [41, 183, 222, 259],

and discuss the application of SGP in the Appendix.

4.5 Experiments
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Figure 4.2: Dynamics of SGP on MegaDepth [143]. PLSR: Pseudo-Label Survival Rate.
PLIR: Pseudo-Label Inlier Rate. BS: Boostrap.

We first provide results demonstrating successful applications of SGP to relative

pose estimation (Section 4.5.1) and point cloud registration (Section 4.5.2), then

report ablation studies on point cloud registration where we vary the algorithmic

settings of SGP (Section 4.5.3). Detailed experimental data are tabulated in the Appendix.

4.5.1 Relative Pose Estimation

Setup. We first showcase SGP for Example 1 on the MegaDepth [143] benchmark

containing a large collection of Internet images for the task of relative pose estima-

tion. We adopted RANSAC10K (i.e., RANSAC with maximum 10, 000 iterations) with
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(a) Success (top) and failure (bottom) by SIFT. (b) Successes by S-CAPST .

(c) Cross-dataset generalization of S-CAPST .

Figure 4.3: Qualitative results showing the improved performance of (b)
S-CAPST over the bootstrap descriptor (a) SIFT for relative pose estimation on
MegaDepth [143], and (c) cross-dataset generalization of S-CAPST for relative pose esti-
mation on the ScanNet dataset [57]. Green lines are inlier correspondences estimated
by RANSAC10K. S-CAPST outputs reliable and dense matches. [Best viewed digitally]

99.9% confidence and 0.001 inlier threshold as the teacher. We used the recently

proposed CAPS [232] feature learning framework as the student.3 To bootstrap SGP,

we performed RANSAC10K with SIFT detector, SIFT descriptor, and 0.75 ratio test to

initialize the geometric pseudo-labels (i.e., relative poses).

To speed up the training of SGP, we sampled 10% of the original MegaDepth train-

ing set used in [232] uniformly at random, resulting in 78, 836 pairs of images

without relative pose labels. To train CAPS, we modified the publicly available CAPS

implementation4, adopted a smaller batch size 5, and kept the Adam optimizer

with initial learning rate 10−4. We used finetune (cf. line 19) for the teacher-student

3We assumed known camera intrinsics so the fundamental matrix can be computed from the
essential matrix to supervise CAPS.

4https://github.com/qianqianwang68/caps
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loop, and in every iteration, we trained CAPS for 40, 000 steps. We trained SGP for a

fixed number of T = 10 iterations.

In the teacher-student loop, we designed a verifier that prunes pseudo-labels

according to the results of RANSAC10K – we only pass to the student pairs whose

number of putative matches (either from SIFT with ratio test or CAPS with cross

check) is above 100 and whose RANSAC estimated inlier rate is over 10%. Intuitively,

pseudo-labels satisfying these two conditions are more likely to be correct.

We name the CAPS descriptor learned from SGP without ground-truth supervi-

sion as S-CAPS. We evaluated the performance of S-CAPS on (i) the MegaDepth test set,

provided in [232], including 3, 000 image pairs equally divided into easy, moderate,

and hard categories; (ii) the ScanNet [57] dataset to test cross-dataset generalization.

Results. Fig. 4.2 plots the dynamics of SGP on MegaDepth. PLSR stands for

Pseudo-Label Survival Rate and is computed as |S| /M × 100%, i.e., the percentage of

pseudo-labels that survived the verifier (cf. line 11). PLIR stands for Pseudo-Label

Inlier Rate and denotes the percentage of correct labels in S, a number that is not

used by SGP but computed a posteriori using the ground-truth labels to show that

SGP is robust to partially incorrect labels. Besides PLSR and PLIR, Fig. 4.2 plots the

rotation recalls on both the training and the test sets (the translation recalls exhibit

a similar trend and are shown in the Appendix).5 The BS (bootstrap) iteration

plots the training and test recalls using SIFT. We make the following observations

from Fig. 4.2: (i) PLSR gradually increases and approaches 90% w.r.t. iterations,

indicating that the S-CAPS descriptor establishes dense correspondences with high

inlier ratio, encouraged by the verifier; (ii) PLIR remains close to 90%, and is always

higher than the recall, indicating that the verifier is effective in removing wrong

labels; (iii) S-CAPS gradually improves itself on both the training and the test sets.

(iv) While SIFT works better than S-CAPS on the training set, S-CAPS significantly

outperforms SIFT on the test set.

Table 4.1 compares the performance of two versions of S-CAPS to other SOTA

methods. S-CAPST is the S-CAPS descriptor at the last iteration, while S-CAPS⋆ is the

S-CAPS descriptor that performs best on the MegaDepth test set. We see that both

5Recall is defined as the percentage of correctly estimated models divided by the total number
of pairs. Following [232], we say a rotation or a translation is estimated correctly if it has angular
error less than 10◦ w.r.t. to the groundtruth (note that translation is estimated up to scale).
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versions of S-CAPS outperform the strong baseline using SIFT with ratio test and

RANSAC10K, as well as the two SOTA results from the original CAPS [232] using both

SIFT detector and SuperPoint detector [62].6 Moreover, we report the performance of

RANSAC10K plus the supervised oracle, CAPS◦, that is trained using full ground-truth

supervision, on the test set. One can see that S-CAPS, trained using only 10% of the

unlabeled training set, performs on par compared with the supervised oracle.

Fig. 4.3 provides qualitative examples of correspondence matching results on

both MegaDepth and ScanNet. More examples are provided in the Appendix.

4.5.2 Point Cloud Registration
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Figure 4.4: Dynamics of SGP on 3DMatch [260]. PLSR: Pseudo-Label Survival Rate. PLIR:
Pseudo-Label Inlier Rate. BS: Boostrap.

Setup. To demonstrate SGP for Example 2, we conducted experiments on

3DMatch [260], a benchmark containing point clouds of real-world indoor scenes. We

used RANSAC10K (with 7cm inlier threshold) plus ICP [22] as the teacher, FCGF [50] as

the student, and FPFH [198] as the bootstrap descriptor to initialize transformation

labels.

SGP was trained on the training set provided by DGR [51] containing 9, 856 pairs

of scans, without ground-truth transformation labels. Input point clouds were all

6We suspect the RANSAC in [232] is not carefully tuned.
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voxelized with 5cm resolution before feature extraction (both FPFH and FCGF) and

registration. To train FCGF, we followed the configuration of the original FCGF and

used SGD with initial learning rate 0.1.8 In the teacher-student loop, we used

finetune, where we train FCGF for 100 epochs at iteration 1 and 50 epochs for the rest

of the iterations. We designed a verifier based on estimated overlap ratio, i.e., only

pairs with estimated overlap ratio over η are passed to FCGF. We set η = 30% for

the first two iterations and η = 10% for the rest. SGP is trained for T = 10 iterations.

We name the FCGF descriptor learned from SGP without ground-truth supervi-

sion as S-FCGF. We evaluated the performance of S-FCGF on (i) the 3DMatch test set

including 1, 623 pairs; and (ii) the unseen Stanford RGBD dataset [46] for multi-way

registration [272].

Results. Fig. 4.4 plots the dynamics of SGP on 3DMatch. We observe that: (i)

PLSR increases and approaches 96%, indicating that more pairs enter the noisy

student training; (ii) PLIR remains close to 93%, and is always higher than the recall,

showing the effect of the verifier; (iii) S-FCGF gradually improves itself on both

training and test sets.

Table 4.2 compares the performance of S-FCGFTand S-FCGF⋆ to other SOTA meth-

ods.9 We see that S-FCGF⋆ outperforms the baseline FPFH, FCGF [50], and the recently

proposed DGR (even with RANSAC80K) [51]. We also provide results using RANSAC10K

plus the supervised oracle, FCGF◦, that is trained using full ground-truth supervi-

sion. S-FCGF⋆ outperforms the supervised oracle, while S-FCGFT achieves similar

performance.

Fig. 4.5 shows qualitative results using S-FCGF for pairwise registration on

3DMatch and for multi-way registration on Stanford RGBD. More qualitative results

are shown in the Appendix.

4.5.3 Ablation Study

We first study the effect of using retrain vs finetune in SGP for point cloud registration.

We used the same setup as in Section 4.5.2, except that we changed from finetune

to retrain, where in each iteration, we initialized the weights of FCGF at random

8https://github.com/chrischoy/FCGF
9Following [51], we say a registration is successful if rotation error is below 15◦ and translation

error is below 30cm.
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and trained it for 100 epochs. We also set the verifier overlap ratio η = 10% for

all iterations. Fig. 4.6(a) plots the corresponding dynamics, which overall looks

similar to Fig. 4.4. The finetune train recall is slightly higher and more stable than

the retrain train recall, due to the “continuous” weight update nature of finetune. SGP

with retrain achieves similar performance on the test set: S-FCGF⋆ has overall recall

91.2% and S-FCGFT has overall recall 90.9%.

We then study the effect of the verifier by running SGP on 3DMatch without

verification, i.e., we set η = 0. As shown in Fig. 4.6(b), PLSR is always 100%. Despite

higher noise in the pseudo-labels, the performance of SGP remains unaffected on

the test set: S-FCGF⋆ has overall recall 91.4% and S-FCGFT has overall recall 90.6%.

In the Appendix, we provide two more ablation studies on 3DMatch: (i) we

trained SGP on the small test set and tested S-FCGF on the large training set, to

show better generalization of a large training set; (ii) we replaced RANSAC10K with a

non-robust registration solver as the teacher to show the importance of a robust

solver.

4.6 Conclusions

We proposed SGP, the first general framework for feature learning in geometric

perception without any supervision from ground-truth geometric labels. SGP

iteratively performs robust estimation of the geometric models to generate pseudo-

labels, and feature learning under the supervision of the noisy pseudo-labels. We

applied SGP to camera pose estimation and point cloud registration, demonstrating

performance that is on par or even superior to supervised oracles in large-scale

real datasets.

Future research includes (i) increasing the training recall towards 100%; (ii) dif-

ferentiating the robust estimation layer [89]; (iii) designing an optimality-based [244]

and learnable verifier based on cycle consistency [87, 110, 153]; (iv) speeding up

the teacher-student loop; (iv) forming image and point cloud pairs using image

retrieval [55, 225].
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4.7 Appendix

4.7.1 Application of SGP on Object Detection and Pose

Estimation

Example 4 (Object Detection and Pose Estimation). Given a collection of 3D mod-

els {ai}Oi=1, where each model ai ∈ R
3×Nai consists of a set of 3D keypoints, let a ∈

R
3×Na , Na =

∑O

i=1Nai , be the concatenation of all 3D keypoints. In addition, given a

corpus of 2D images {bi}Mi=1, where each bi is an RGB image that contains the (partial,

occluded) projections of the 3D models plus some background. Object detection and pose

estimation seeks to jointly learn a keypoint prediction function C and estimate the poses of

the 3D models xi = {(Ri,j, ti,j)}j∈S⊂[O] ∈ (SO(3)× R
3)|S|, where S ⊂ [O] is the subset

of 3D models observed by the i-th 2D image (|S| denotes the cardinality of the set). In

particular, following [259], let C be a combination of UVW mapping and semantic ID

masking, i.e., for each pixel in bi, C predicts which 3D model it belongs to (from 1 to O,

and 0 for background), and what is the corresponding 3D coordinates in the specific model,

thus deciding which point in a is the corresponding 3D point.10

SGP for Example 4. The teacher performs robust absolute pose estimation,

a.k.a. perspective-n-point (PnP) [103, 129]. A good candidate for the teacher is RANSAC

and its variants (e.g., using P3P [78]). The student trains a 2D keypoint predic-

tor under the supervision of camera poses. Recent works such as YOLO6D [222],

PVNet [183], and DPOD [259] can all serve as the student network, despite using

different methodologies. As for the verifier, similar to Example 1, it can be designed

based on the estimated inlier rate by RANSAC. Alternatively, one can project the

3D models onto the 2D image using the estimated absolute poses and compute

the overlap ratio (in terms of pixels) between the 2D projection and the estimated

semantic ID mask. To initialize SGP, we can train a bootstrap predictor using

synthetic datasets, i.e., by rendering synthetic projections of the 3D models under

different simulated poses, which is common in [41, 183, 222, 259].

10There are many different ways to establish 2D-3D correspondences, see PVNet [183],
YOLO6D [222] and references therein.
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4.7.2 Detailed Experimental Data

Relative Pose Estimation

In Section 4.5.1, Fig. 4.2 plots the rotation statistics for running SGP on the MegaDepth [143]

dataset for relative pose estimation. Here in Fig. 4.7(a), we plot the translation

statistics. In addition, the full statistics of SGP are tabulated in Table 4.3. Fig. 4.8

visualizes 9 qualitative examples of relative pose estimation using S-CAPSTon the

MegaDepth test set.

Point Cloud Registration

In Section 4.5.2, Fig. 4.4 plots the dynamics of runing SGP on the 3DMatch [260]

dataset. Here we provide the full statistics in Table 4.4.

For qualitative results, in Fig. 4.9 we showcase multiway registration results on

various RGB-D datasets [46, 47, 180, 213] in addition to Fig. 4.5. With S-FCGF, rich

loop closures can be detected (in green lines), ensuring high-fidelity camera poses

for dense reconstruction. It is worth noting that global registration with trained

S-FCGF+RANSAC10K, unlike DGR, can easily run in parallel on a single graphics card

due to its inexpensive memory cost. This results in at least 4× speedup comparing

to DGR in practice when multi-thread loop closure detection is enabled [272].

Ablation Study

In Section 4.5.3, Fig. 4.6 plots the dynamics of running SGP on 3DMatch with two

different algorithmic settings: (a) set retrain =True and use retrain instead of finetune; (b)

set verifyLabel = False and turn off the verifier. Here we provide the full statistics for

(a) and (b) in Table 4.5 and Table 4.6, respectively.

Additionally, we show results for two extra ablation experiments on the 3DMatch

dataset for point cloud registration.

Exchange the training and test sets. Because SGP requires no ground-truth

pose labels, there is no fundamental difference between the training and test set,

except that the training set (9, 856 pairs) is much larger than the test set (1, 623 pairs).

Therefore, we ask the question: Can SGP learn an equally good feature representation

from the much smaller test set? Our answer is: it depends on the purpose. We performed
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an experiment where we trained SGP on the test set, and tested the learned S-FCGF

representation on the much larger training set. For SGP we used retrain = False

and verifyLabel = False. Fig. 4.7(b) plots the dynamics and Table 4.7 provides the

full statistics. Two observations can be made: (i) Exchanging the training and

test set has almost no effect on the recall of S-FCGF on the test set (cf. Table 4.7 vs

Table 4.4-4.6). This means that, if one only cares about the performance of the

learned representation on the test set, then running SGP directly on the target test

set is sufficient. (ii) Although exchanging the training and test set does not hurt

the recall on the test set, it indeed decreases the recall on the training set by more

than 10%. This suggests that a small training set has the shortcoming of overfitting

and the learned representation fails to generalize to a larger dataset. Therefore, if

one cares generalization of the learned representation, then a larger training set

is still preferred. Nevertheless, this ablation study demonstrates the power of the

alternating minimization nature of SGP, that is, SGP is able to find a sufficiently

good local minimum.

Use a non-robust solver as the teacher. All the experiments so far showed

successes of the teacher-student loop, and the robustness of the SGP algorithm to

imperfections of both the student and the teacher (noisy geometric pseudo-labels).

However, we ask another question: Can we, intentionally, make SGP fail? Our answer

is: yes if we try badly. We performed an experiment running SGP on 3DMatch, this

time replacing RANSAC10K with the non-robust Horn’s method [107]. We remark

that Horn’s method is a subroutine of RANSAC and in practice nobody would use

Horn’s method alone in the presence of outlier correspondences. Nevertheless,

for the purpose of ablation study, we adopted this pessimistic choice. Again, for

SGP we used retrain = False, verifyLabel = True with a constant overlap ratio threshold

η = 10%. Fig. 4.7(c) shows the dynamics. We see that the PLIR is always below 20%,

meaning that 8 out of 10 geometric labels passed to FCGF training are wrong. In

this case, the learned S-FCGF representation keeps getting worse, as shown by the

decreasing recalls on both the training and test set. Note that for testing, we actually

used RANSAC10K as the registration solver to be consistent with other experiments

we performed on 3DMatch. However, even with RANSAC10K, the test recall drops to

below 30%. Therefore, this ablation study shows the necessity of a robust teacher

for SGP to work. Fortunately, we have plenty of robust solvers, as discussed in the

67



4. Self-supervised Geometric Perception

main text. So we think this is a strength of SGP, rather than a weakness.
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Algorithm 2: SGP

1 Input: A corpus of visual measurements: {ai, bi}Mi=1; a preprocessing
module: φ; an initial correspondence matching method: B; an architecture
for a learned correspondence prediction function: C, with initial weights:

θ(0) (default: randParam); Number of iterations: T ; boolean: verifyLabel
(default True); boolean: retrain (default False);

2 Output: final weights of C: θ̂; estimated geometric models: {x̂i}Mi=1;
3 % Compute keypoint locations
4 pa

i = φ(ai), p
b
i = φ(bi), ∀i ∈ [M ];

5 % Bootstrap (Initialize pseudo-labels)

6 x
(0)
i = teach(ai, bi,p

a
i ,p

b
i ,B), ∀i ∈ [M ];

7 % Alternating minimization
8 for τ = 1 : T do
9 if verifyLabel = True then

10 % Verify correctness of labels

11 S = verify({x(τ−1)
i ,ai, bi,p

a
i ,p

b
i}Mi=1);

12 else
13 S = [M ];
14 end
15 % Feature learning (problem (4.7))
16 if retrain = True then
17 θ = randParam; % retrain

18 else

19 θ = θ(τ−1); % finetune

20 end

21 θ(τ) = learn({x(τ−1)
i ,ai, bi,p

a
i ,p

b
i}i∈S ,θ);

22 % Robust estimation (problem (4.6))

23 x
(τ)
i = teach(ai, bi,p

a
i ,p

b
i , Cθ(τ)), ∀i ∈ [M ];

24 end

25 return: θ̂ = θ(T ), x̂i = x
(T )
i , i = 1, . . . ,M .
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Easy (%) Moderate (%) Hard (%)

Methods Rotation Translation Rotation Translation Rotation Translation

SIFT+RANSAC10K [147] 80.9 48.8 58.1 43.5 40.4 34.0

SIFT+Wang-CAPS [232] 70.0 30.5 50.2 24.8 36.8 16.1

SuperPoint+Wang-CAPS [232] 72.9 30.5 53.5 27.9 38.1 19.2

SIFT+CAPS◦+RANSAC10K 87.1 52.7 72.5 53.8 52.7 45.6

SIFT+S-CAPST+RANSAC10K 86.3 53.1 69.2 50.3 51.3 47.1

SIFT+S-CAPS⋆+RANSAC10K 87.1 53.5 70.4 53.3 51.8 47.1

Table 4.1: Rotation and translation recalls on the MegaDepth [143] test dataset using
different methods. S-CAPST : last CAPS trained by SGP. S-CAPS⋆: best CAPS trained
by SGP. SIFT and RANSAC implemented in OpenCV [27]. SIFT uses 0.75 ratio test.
All RANSAC use 99.9% confidence. Row 2-3, recall statistics are adapted from the
original CAPS paper [232]. Row 4: recall is computed by using RANSAC10K with the
pretrained CAPS◦(i.e., the supervised oracle).

Methods
Kitchen

(%)
Home 1

(%)
Home 2

(%)
Hotel 1

(%)
Hotel 2

(%)
Hotel 3

(%)
Study

(%)
MIT
(%)

Overall
(%)

FPFH+RANSAC10K [198] 80.6 84.6 69.2 88.1 76.9 88.9 71.2 70.1 78.4

FCGF [50]7 93.0 91.0 71.0 91.0 87.0 69.0 75.0 80.0 82.0

DGR [51] 94.5 89.7 77.9 92.9 85.6 79.6 69.9 72.7 85.2

DGR+RANSAC80K [51] 98.8 96.2 81.7 97.3 91.2 87.0 81.9 79.2 91.3

FCGF◦+RANSAC10K 97.2 97.4 77.9 97.8 91.3 83.3 86.3 76.6 91.1

S-FCGFT+RANSAC10K 98.4 94.2 75.0 98.7 89.4 79.6 87.3 76.6 90.8

S-FCGF⋆+RANSAC10K 98.0 94.2 76.0 98.7 90.4 85.2 88.0 80.5 91.4

Table 4.2: Scene-wise and overall recalls on the 3DMatch [260] test dataset using
different methods. S-FCGFT : last FCGF trained by SGP. S-FCGF⋆: best FCGF trained
by SGP. FPFH is implemented in Open3D [272]. All RANSAC use 99.9% confidence.
Row 5: recall is computed by using RANSAC10K with the pretrained FCGF◦(i.e., the
supervised oracle).
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(a) Success (top) and failure (bottom) by FPFH. (b) Successes by S-FCGF⋆.

(c) Burghers with S-FCGF⋆. (d) Lounge with S-FCGF⋆.

Figure 4.5: Qualitative results showing the improved performance of (b)
S-FCGF⋆ over the bootstrap descriptor (a) FPFH for pairwise registration on
3DMatch [260], and (c)-(d) cross-dataset generalization of S-FCGF⋆ for multi-way
registration on the Stanford RGBD dataset [46]. In (a)-(b), the top pair has overlap ra-
tio 89%, the bottom pair has overlap ratio 50%. Green lines: inlier correspondences.
Red lines: outlier correspondences. In (c)-(d), Blue lines: odometry. Green lines:
loop closures. [Best viewed digitally]
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(a) retrain = True. (b) verifyLabel = False.

Figure 4.6: Dynamics of SGP on 3DMatch [260] with (a) retrain instead of finetune

(line 17); (b) the verify (line 13) turned off. SGP still achieves over 91% overall recall
on the test set.
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(a) SGP on MegaDepth. (b) SGP on 3DMatch. (c) SGP on 3DMatch with Horn.

Figure 4.7: Supplementary statistics. (a) The translation statistics for using SGP on
MegaDepth [143] (rotation statistics shown in Fig. 4.2 in the main text). (b) Dynamics
of SGP on 3DMatch [260] with training and test sets exchanged, i.e., we train SGP on
the smaller test set (1, 623 pairs), but test S-FCGF on the larger training set (9, 856
pairs). (c) Dynamics of SGP on 3DMatch by replacing the original RANSAC10K teacher
with a non-robust Horn’s method [107] as the teacher.
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SIFT SGP trained CAPS (S-CAPS)

Statistics (%) Bootstrap 1 2 3 4 5 6 7 8 9 10
Tr

ai
n

PLSR ∗∗ 64.79 84.44 86.14 87.78 88.34 88.80 89.15 89.41 89.62 89.64

Rot. PLIR ∗∗ 92.50 88.83 88.35 88.41 88.25 88.52 88.50 88.57 88.43 88.48

Rot. Recall 87.75 79.33 79.69 80.62 80.70 81.20 81.34 81.57 81.57 81.56 81.68

Trans. PLIR ∗∗ 62.20 53.70 53.58 53.68 54.13 54.09 54.22 54.33 54.43 54.43

Trans. Recall 52.25 46.74 47.30 48.09 48.66 48.87 49.16 49.36 49.54 49.52 49.70

Te
st

R
ec

al
l

Rot., Easy 80.88 85.39 85.49 84.68 85.69 85.79 85.79 86.29 87.09 85.49 86.29

Rot., Moderate 58.06 70.37 68.27 70.37 69.77 69.67 69.27 69.87 68.87 70.07 69.17

Rot., Hard 40.35 48.36 49.38 50.31 49.59 50.10 51.75 50.10 50.72 51.23 51.33

Trans., Easy 48.75 50.55 51.65 52.35 49.75 50.05 52.25 53.05 53.45 50.95 53.05

Trans., Moderate 43.54 50.45 51.35 53.25 50.55 51.65 51.75 52.95 51.75 52.75 50.25

Trans., Hard 33.98 43.53 44.35 45.28 45.17 46.71 47.02 44.46 45.60 46.10 47.13

Table 4.3: Train and test statistics of running SGP on MegaDepth [143]. SGP setting:
retrain = False, verifyLabel = True, verifier criteria: number of matches larger than 100
and RANSAC estimated inlier rate larger than 10%. Rotation statistics plotted in
Fig. 4.2 in the main text. Translation statistics plotted in Fig. 4.7(a).

(a) Easy

(b) Moderate

(c) Hard

Figure 4.8: Supplementary qualitative results for relative pose estimation on the
MegaDepth dataset [143] using S-CAPST .
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FPFH SGP trained FCGF (S-FCGF)

Statistics (%) Bootstrap 1 2 3 4 5 6 7 8 9 10
Tr

ai
n

PLSR ∗∗ 69.98 73.91 95.53 95.69 95.74 95.73 95.75 95.73 95.76 95.77

PLIR ∗∗ 92.03 93.42 92.19 92.82 93.02 93.25 93.24 93.43 93.41 93.39

Recall 82.68 89.14 90.92 91.14 91.43 91.76 91.78 91.95 91.97 91.95 92.05

Te
st

R
ec

al
l

Kitchen 80.63 98.42 98.02 98.22 98.02 98.22 98.42 98.02 97.83 98.62 98.42

Home 1 84.62 92.31 93.59 91.03 93.59 92.95 94.23 94.23 94.23 94.23 94.23

Home 2 69.23 77.88 74.04 75.48 75.00 75.96 73.08 75.96 76.92 73.08 75.00

Hotel 1 88.05 96.90 97.35 98.23 97.79 98.23 99.12 98.67 98.67 98.23 98.67

Hotel 2 76.92 87.50 85.58 86.54 90.38 89.42 90.38 90.38 89.42 89.42 89.42

Hotel 3 88.89 85.19 83.33 83.33 79.63 81.48 79.63 85.19 79.63 77.78 79.63

Study 71.23 85.27 86.30 87.67 86.99 85.96 86.99 88.01 86.99 86.30 87.33

MIT 70.13 79.22 79.22 80.52 77.92 77.92 77.92 80.52 76.62 79.22 76.62

Overall 78.44 90.57 90.14 90.63 90.57 90.57 90.70 91.37 90.82 90.45 90.82

Table 4.4: Train and test statistics of running SGP on 3DMatch [260]. SGP setting: retrain
= False, verifyLabel = True, verifier overlap ratio threshold η: η = 30% for iterations
τ = 1, 2, η = 10% for iterations τ = 3, . . . , 10. Statistics plotted in Fig. 4.4 in the
main text.

FPFH SGP trained FCGF (S-FCGF)

Statistics (%) Bootstrap 1 2 3 4 5 6 7 8 9 10

Tr
ai

n

PLSR ∗∗ 68.48 95.68 95.61 95.61 95.69 95.64 95.60 95.61 95.67 95.65

PLIR ∗∗ 90.86 91.16 92.27 92.40 92.29 92.47 92.52 92.61 92.95 92.44

Recall 79.24 89.53 90.60 90.69 90.68 90.79 90.77 90.88 91.20 90.72 90.84

Te
st

R
ec

al
l

Kitchen ∗∗ 97.23 97.63 98.22 97.83 98.42 97.83 97.83 97.23 98.42 98.22

Home 1 ∗∗ 91.67 93.59 94.23 95.51 94.87 93.59 95.51 95.51 91.03 93.59

Home 2 ∗∗ 73.56 71.63 76.92 73.56 75.00 74.04 72.60 76.44 75.00 75.00

Hotel 1 ∗∗ 96.90 96.90 96.90 96.46 96.90 96.46 96.90 98.23 97.35 96.90

Hotel 2 ∗∗ 85.58 89.42 92.31 88.46 87.50 90.38 88.46 88.46 86.54 91.35

Hotel 3 ∗∗ 85.19 88.89 83.33 81.48 83.33 83.33 83.33 85.19 85.19 83.33

Study ∗∗ 82.88 84.59 86.64 88.36 88.70 87.67 87.67 86.30 87.33 86.64

MIT ∗∗ 85.71 83.12 79.22 79.22 83.12 80.52 83.12 77.92 77.92 84.42

Overall ∗∗ 89.34 89.96 91.07 90.57 91.19 90.57 90.63 90.70 90.39 90.94

Table 4.5: Train and test statistics of running SGP on 3DMatch [260]. SGP setting: retrain
= True, verifyLabel = True, verifier overlap ratio threshold η: η = 10% for all iterations
τ = 1, . . . , 10. Statistics plotted in Fig. 4.6(a) in the main text.
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(a) copyroom from Stanford RGBD [46]. (b) long office from TUM RGBD [213].

(c) bedroom from Indoor LIDAR RGBD [180]. (d) truck from Redwood Objects [47].

Figure 4.9: Supplementary qualitative results for 3D registration. Multi-way recon-
struction using S-FCGF+RANSAC10K as the global registration method succeeds on
various unseen RGB-D datasets. Blue lines: odometry. Green lines: loop closures.

FPFH SGP trained FCGF (S-FCGF)

Statistics (%) Bootstrap 1 2 3 4 5 6 7 8 9 10

Tr
ai

n

PLSR ∗∗ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

PLIR ∗∗ 79.24 88.82 90.86 91.25 91.63 91.59 91.93 92.12 91.89 91.97

Recall 79.24 88.82 90.86 91.25 91.63 91.59 91.93 92.12 91.89 91.97 92.05

Te
st

R
ec

al
l

Kitchen ∗∗ 97.43 98.22 98.62 97.83 98.62 98.81 98.22 98.62 98.22 98.22

Home 1 ∗∗ 92.31 94.23 91.67 94.23 94.23 92.95 93.59 93.59 94.87 92.95

Home 2 ∗∗ 74.04 75.00 72.12 77.40 74.04 74.04 73.56 74.04 73.56 73.08

Hotel 1 ∗∗ 95.58 98.23 97.35 97.79 99.12 98.23 98.67 96.90 97.79 97.35

Hotel 2 ∗∗ 90.38 93.27 88.46 90.38 88.46 87.50 86.54 88.46 88.46 89.42

Hotel 3 ∗∗ 88.89 85.19 83.33 87.04 85.19 85.19 81.48 85.19 83.33 81.48

Study ∗∗ 84.59 87.33 87.67 86.64 88.01 88.01 87.67 88.70 88.70 87.67

MIT ∗∗ 76.62 83.12 77.92 84.42 79.22 80.52 80.52 84.42 83.12 83.12

Overall ∗∗ 89.65 91.44 90.26 91.37 91.19 91.00 90.63 91.19 91.13 90.63

Table 4.6: Train and test statistics of running SGP on 3DMatch [260]. SGP setting: retrain
= False, verifyLabel = False. Statistics plotted in Fig. 4.6(b) in the main text.
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FPFH SGP trained FCGF (S-FCGF)

Statistics (%) Bootstrap 1 2 3 4 5 6 7 8 9 10
Tr

ai
n

PLSR ∗∗ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

PLIR ∗∗ 73.32 86.20 88.05 89.40 89.96 91.00 90.76 91.37 90.70 90.88

Recall 73.32 86.20 88.05 89.40 89.96 91.00 90.76 91.37 90.70 90.88 90.82

Kitchen ∗∗ 94.66 96.84 98.42 98.81 99.21 99.60 99.41 99.01 99.21 99.21

Home 1 ∗∗ 91.03 89.74 93.59 95.51 95.51 94.87 94.87 95.51 96.15 95.51

Home 2 ∗∗ 70.67 70.67 71.63 69.23 71.15 70.19 74.04 72.60 72.12 72.60

Hotel 1 ∗∗ 94.69 96.02 97.35 98.67 98.67 99.12 99.12 99.12 99.12 99.12

Hotel 2 ∗∗ 77.88 79.81 77.88 80.77 84.62 83.65 86.54 83.65 84.62 83.65

Hotel 3 ∗∗ 83.33 85.19 81.48 85.19 88.89 87.04 85.19 83.33 84.19 85.19

Study ∗∗ 79.79 84.93 87.33 86.64 88.36 87.33 87.67 87.33 87.67 86.99

MIT ∗∗ 75.32 75.32 75.32 79.22 79.22 80.52 80.52 77.92 76.62 79.22

Test on train set 79.24 81.94 81.56 80.72 81.06 80.73 80.87 80.63 80.48 80.54 80.44

Table 4.7: Train and test statistics of running SGP on 3DMatch [260] with training
and test sets exchanged, i.e., we train SGP on the smaller test set (1, 623 pairs),
but test S-FCGF on the larger training set (9, 856 pairs). SGP setting: retrain = False,
verifyLabel = False. Statistics plotted in Fig. 4.7(b). We see SGP demonstrates overfitting
while training on the smaller test set: S-FCGF achieves equally good (91.37%) recall
on the test set, but only achieves below 82% recall on the training set (while in
Tables 4.4-4.6 S-FCGF has over 92% recall on the training set). Statistics plotted in
Fig. 4.7(b).
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Sparsity in Scene Representation
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Chapter 5

ASH: A Modern Framework for

Parallel Spatial Hashing

5.1 Introduction

3D space is only one dimension higher than the 2D image space, yet the additional

dimension introduces an unpredictable multiplier to the computational and storage

cost. This increased dimension makes 3D perception tasks such as geometric

reconstruction and appearance refinement challenging to implement. To reduce

complexity, one compromise is to reuse dense data structures and constrain the 3D

space by bounding the region of interest, e.g., adopting a 3D array in a bounded

space [168]. While this simple approach succeeds at the scale of objects, it cannot

meet the demand of room or city scale perception, which is necessary for virtual

tour, telepresence, and autonomous driving.

Since the 3D space is generally a collection of 2D surface manifolds, its sparsity

can be exploited by partitioning to reduce computational cost. The general idea is to

split the large 3D space into smaller regions and only proceed with the non-empty

ones. There is a plethora of well-established data structures for 3D space partition-

ing. Examples include trees (Octree [156], KD-tree [20]) and hash maps (spatial

hashing [171]). While trees are able to adaptively achieve high precision, they 1)

require an initial bounding volume and 2) usually take unbalanced traversal time
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for a batch of spatial queries and hence 3) are less friendly to batched operations.

On the other hand, spatial hashing coupled with a plain array structure is more

scalable and parallelizable for reconstruction tasks.

In classical dense SLAM pipelines [171, 184], spatial hashing is used to map

3D coordinates to internal pointers that are only accessible in GPU device code.

A pre-allocated memory pool allows dynamic growing hash maps, but adaptive

rehashing is generally unavailable. Recent feature-grid encoders [163] apply spatial

hashing to map 3D coordinates to features stored at grid points in a static bounded

region. While differentiable spatial query is supported, collisions are not resolved,

limiting its usage to stochastic feature optimization where incorrect key-value

mappings are tolerated. A general, user-friendly, collision-free hash map is missing

for efficient spatial perception at scale.

The reason for this absence is understandable. A parallel hash map on GPU

has to resolve collisions and thread conflicts and preferably organize an optimized

memory manager, none of which is trivial to implement. Previous studies have

attempted to tackle the problem in one or more aspects, driven by their selected

downstream applications. Furthermore, most of the popular parallel GPU hash

maps are implemented in C++/CUDA and only expose low-level interfaces. As a

result, customized extensions must start from low-level programming. While these

designs usually guarantee performance under certain circumstances [4, 8, 171, 184],

as of today, they leave a gap from the standpoint of the research community, which

prefers to use off-the-shelf libraries for fast prototyping with a high-level scripting

language using tensors and automatic differentiation. Our motivation is to bridge

this gap to enable researchers to develop sophisticated 3D perception routines with

less effort and drive the community towards large-scale 3D perception.

To this end, we design a modern hash map framework with the following major

contributions:

1. a user-friendly dynamic, generic1, and collision-free hash map interface that enables

tensor I/O, advanced indexing, and in-place automatic differentiation when bridged

to autodiff engines such as PyTorch;

2. an index-first adaptor that supports various state-of-the-art parallel GPU hash

1A dynamic hash map supports insertion and deletion after hash map construction. A generic
hash map supports arbitrary dimensional keys and values in various data types.
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map backends and accelerates hash map operations with an improved structure-

of-array (SoA) data layout;

3. a number of downstream applications that achieve higher performance com-

pared to state-of-the-art implementations with fewer LoC.

Experiments show that ASH achieves better performance with fewer LoC on both

synthetic and real-world tasks.

5.2 Related Work

5.2.1 Parallel Hash Map

The hash map is a data structure that seeks to map sparse keys (e.g. unbounded

indices, strings, coordinates) from the setK to values from the set V with amortized

O(1) access. It has a hash function h : K → In, k 7→ h(k) that maps the key to

the index set In = {0, 1, . . . , n− 1} for indexing (or addressing) that is viable on a

computer.

Ideally, with a perfect injective hash function h, a hash map can be implemented

by H : K → V , k 7→ vA
[

h(k)
]

, where vA is an array of objects of type V and [·] is

the trivial array element accessor. However, in practice, it is intractable to find an

injective map given a sparse key distribution in K and a constrained index set In
of size n due to the computational budget. Therefore, modifications are required to

resolve inevitable collisions, where i = h(k1) = h(k2), k1 6= k2. There are two classes

of techniques for collision resolution, open addressing and separate chaining. Open

addressing searches for another candidate j 6= i, j ∈ In via a probing algorithm until

an empty address is found. The simplest probing, linear probing [121], computes

j = (h(k) + t) mod n starting from i = h(k), where t is the number of attempts.

Separate chaining, on the other hand, maintains multiple entries per mapped index

where a linked list is grown at i if i = h(k1) = h(k2), k1 6= k2.

While hash map implementations are widely available for CPU, their GPU

counterparts have only emerged in the recent decade. Most GPU hash maps use

open addressing [4, 80, 117, 219], mainly due to simplicity in implementation and

capability of handling highly concurrent operations. CUDPP [4] utilizes Cuckoo

Hashing [177], while CoherentHash [80] adopts Robin Hood Hashing [37] – both
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Table 5.1: Comparison of existing parallel GPU hash maps. ASH preserves the
dynamic, generic, and atomic properties, and is extendable to the non-templated
high-level Python interfaces.

Dynamic Generic Collision-free Python

SlabHash [8] ✓ ✗ ✓ ✓

CUDPP [4] ✗ ✗ ✓ ✗

cuDF [219] ✗ ✗ ✓ ✓

WarpCore [117] ✓ ✗ ✓ ✗

stdgpu [210] ✓ ✓ ✓ ✗

InfiniTAM [184] ✓ ✗ ✓ ✗

VoxelHashing [171] ✓ ✗ ✗ ✗

GPURobust [65] ✓ ✓ ✗ ✗

Instant-NGP [163] ✗ ✓ ✗ ✓

ASH ✓ ✓ ✓ ✓

involving advanced probing design. Although being performant when K,V are

limited to integer sets, these variations cannot be generalized to spatial hashing and

only allow static input. Recently, WarpCore [117] proposes to support non-integer

V and dynamic insertion, but the key domain is still limited to at most 64 bits.

There are also a few separate chaining implementations on GPU involving

device-side linked lists. SlabHash [8] builds a linked list with a 128-bit Slab as

the minimal unit, optimized for Single Instruction Multiple Threads (SIMT) warp

operations. Although SlabHash allows dynamic insertions, similar to the aforemen-

tioned GPU hash maps, only integer K,V are supported. stdgpu [210] follows the

conventional C++ Standard Library std::unordered map and builds supporting

vectors, bitset lock guards, and linked lists from scratch, resulting in a generic, dy-

namic hash map. With these rich functionalities, however, stdgpu is not optimized

for large value sets. In addition, due to its low-level templated design, users have

to write device code for simple tasks.

We refer the readers to a comprehensive review of GPU hash maps [138].

5.2.2 Space Partitioning Structures

3D data is not as simple to organize as 2D images. While a 2D image can be stored

in a dense matrix, exploiting sparsity in 3D data is paramount due to the limits in

computer memory of the current day.
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The most widely used data structures for 3D indexing are arguably trees. A KD-

tree [20] recursively sorts k-dimensional data along a selected axis and partitions

data at the median point. By nature, a KD-Tree is designed for neighbor search.

In 3D, it is mainly used to organize 3D points and their features. Examples include

normal estimation and nearest neighbor association in Iterative Closest Points

(ICP) [195, 272] and 3D feature association in global registration [198, 271]. GPU

adaptations exist for KD-trees[196, 268], but are not suitable for incrementally

changing scenes, as they are usually constructed once and queried repeatedly.

Bounding volume hierarchy (BVH) is another hierarchical representation that

organizes primitives such as objects and triangles in 3D. There are various GPU

adaptations [94, 134, 229] mostly targeted at ray tracing and dynamic collision

detection. While a parallel construction is possible and deformation of the nodes is

allowed, the tree structure typically remains unchanged, assuming a fixed layout.

While KD-trees and BVH split the space unevenly by data distribution, an

Octree [156], on the other hand, recursively partitions the 3D space evenly into

8 subvolumes according to space occupation states. It has been widely used in

adaptive 3D mapping [108, 167] for robot navigation. There have been parallel

implementations on GPU, from optimized data structures [105] to domain-specific

languages [109]. However, these works generally focus on physics simulation

within a bounded region of interest where the spatial partition is predefined. While

parallel incremental division [261] is possible, an initial bounding region is still

required, and the trees are not guaranteed to be balanced.

Spatial hashing is another variation of spatial management with O(1) access

time depending on hash maps. Bundled with small dense 3D arrays, it has been

widely used in real-time volumetric scene reconstruction within unbounded region

of interest. A handful of CPU implementations have achieved real-time perfor-

mance [99, 128] at the expense of resolution. Similarly, GPU implementations

[64, 65, 171, 184] reach high frame rates using GPU-based spatial hashing. How-

ever, all of the studies depend on ad hoc GPU hash maps exclusive to these specific

systems. Concurrent race conditions have not been fully resolved in several im-

plementations [65, 171], where volumes can be randomly under-allocated. Recent

neural feature grids [163] apply spatial hashing in a bounded volume to query vox-

elized feature embeddings. These approaches use simplified hashing designs that
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are not collision-free, and thus are only compatible with stochastic optimization

that tolerates noise from an incorrect query.

Keys
Value

SDF
<latexit sha1_base64="EkRmR6gU/uABHpsxzKuPAKuiwJY=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4kJKIqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju6nfekKleSwfzDhBP6IDyUPOqLFS/bxXKrsVdwayTLyclCFHrVf66vZjlkYoDRNU647nJsbPqDKcCZwUu6nGhLIRHWDHUkkj1H42O3RCTq3SJ2GsbElDZurviYxGWo+jwHZG1Az1ojcV//M6qQlv/IzLJDUo2XxRmApiYjL9mvS5QmbE2BLKFLe3EjakijJjsynaELzFl5dJ86LiXVXc+mW5epvHUYBjOIEz8OAaqnAPNWgAA4RneIU359F5cd6dj3nripPPHMEfOJ8/dK+MtQ==</latexit>,
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Figure 5.1: The interface illustration of ASH. Left: ASH takes a key and/or a
list of value tensors as input, with a one-liner interface. For insertion, tensors are
organized in SoA. Right: buffer indices and masks are returned upon insertion
and query, organized together in SoA. Chained functions can be easily applied to
hashed data by indexing ASH buffers with indices and masks. Examples include
selecting unique keys through insertion, and applying in-place value increment
through query. Differentiable ops can be applied in downstream applications.

5.2.3 Spatially Varying 3D Representations

A truncated signed distance function (TSDF) [56] is an implicit representation of

surfaces, recording point-wise distance to the nearest surface point. It is frequently

used for dense scene reconstruction with noisy input. The distribution of surfaces

is generally spatially varying and therefore, a proper parameterization is often

necessary, either in a discrete [171] or neural [38, 163] form. Non-rigid deformation

methods [170, 269] seek to embed point clouds in a deformable grid, where each

point is anchored to and deformed by neighbor grids. They are mainly used

for animation or non-rigid distortion calibration. Similar to a deformation grid,

complex lighting for rendering can be approximated by spatially-varying spherical

harmonics (SVSH) [150] placed at a sparse grid. These grids are natural applications

of spatial hashing. A comprehensive review of spatially varying representations
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for real-world scene reconstruction is available [277].

While ad hoc implementations have been introduced for these representations

either on CPU or GPU, ASH provides a device-agnostic interface requiring less

code written and providing better performance. Table 5.1 compares various aspects

of existing GPU hash maps, either as a standalone data structure (Section 5.2.1) or

embedded in an application (Section 5.2.2). To the best of our knowledge, ASH is

the first implementation that simultaneously supports dynamic insertion, ensures

correctness via atomic collision-free operations, allows generic keys, and has a

modern tensor interface and Python binding for better usability.

5.3 Overview

Before plunging into the details, we first provide a high-level overview of our

framework in Fig. 5.1.

Conventional parallel hash maps reorganize the structure of arrays (SoA) input,

i.e., the separated key array and value array, into an array of structures (AoS) where

keys and values are paired, inserted, and stored. Therefore, array of pointers to pair

structures (std::pair in C++, thrust::pair in CUDA, and tuple in Python) are

returned upon query. Consequently, the operations from insertion and query to

in-place value increment require users to write device code and visit AoS at the

low-level pointers.

In contrast, ASH sticks to SoA. Fig. 5.1 shows the workflow of ASH. Instead of

pointers to pairs, ASH returns indices and masks arrays that can be directly consumed

by tensor libraries such as PyTorch [182] (without memory copy) and NumPy [101]

(with GPU to host memory copy). As a result, post-processing functions such as

duplicate key removal and in-place modification can be chained with insertion

and query in ASH via advanced indexing without writing any device code. As

a general and device-agnostic interface for parallel hash maps, our framework

is built upon switchable backends with details hidden from the user. Currently,

separate chain backends are supported, including the generic stdgpu [210] backend,

and the extended integer-only SlabHash [8] backend for arbitrary key-value data

types. TBB’s concurrent hash map [132] powers the CPU counterpart with the

identical interface to GPU.
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In this paper, we use calligraphic letters to represent sets, and normal lower-case

letters for their elements. Normal upper-case letters denote functions. Bold lower-

case letters denote vectors of elements or arrays in the programmer’s perspective.

Bold upper-case letters are for matrices. For instance, in a hash map, we are

interested in key elements k ∈ K and their vectorized processing, e.g. query Q(k).

Specifically, we use In to denote a set of indices {0, 1, . . . , n − 1}, and Θ as the

boolean selection {0, 1}. Given an arbitrary vector x, we denote x(i) and x(θ) as

indexing and selection functions applied to x when ∀i ∈ i, i ∈ In and ∀θ ∈ θ, θ ∈ Θ.

We use 〈K,V〉 as the key and value sets for a hash map. h : K → In is the internal

hash function that converts a key to an index. H : K → V is the general hash map

enclosing h.

5.4 The ASH framework

5.4.1 Classical Hashing

In a hash map 〈K,V〉, since the hash function h cannot be perfect as discussed in

Section 6.2, we have to store keys to verify if collisions happen (h(k1) = h(k2) but

k1 6= k2, k1, k2 ∈ K).

In separate chaining, to resolve hash collisions, the bucket-linked list architec-

ture is used. With n initial buckets, we construct the hash function h : K → In where

In is defined in Section 6.2. As shown in Fig. 5.2, keys with the same hashed index

i = h(k) ∈ In are first aggregated in the i-th bucket, where a linked list grows adap-

tively to accommodate different keys. A conventional hash map stores key-value

pairs as the storage units. Consequently, two keys k1, k2 can be distinguished by

checking h(k1) = h(k2) and k1 = k2 from the pair in order, and manipulation of the

keys and values can be achieved by iterating over such pairs.

With this formulation, assuming a subset X ⊂ K has been inserted into the

hash map with associated values Y ⊂ V , a query function can be described as

QK,V : K → K× V
k 7→ 〈k, v〉, ∀k ∈ X , (5.1)
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where 〈k, v〉 forms a concrete pair stored in the hash map. This format is common

in implementations, e.g. in C++ (std::unordered map) and Python (dict).

Linked list
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k6

Keys

0

1
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3

4

5

Buckets

hash function

k1 v1 k3 v3

k0 v0

k5

k4 k6

k2

v4

v5

v2

v6

Figure 5.2: Illustration of a classical hash map using separate chaining. Keys (left)
are put into corresponding buckets (middle) obtained by the hash function h. A
linked list (right) is constructed per bucket to store key-value pairs within the same
bucket but with unequal keys.

5.4.2 Function Chaining and Parallel Hashing

The element-wise operation in Eq. 5.1 can be extended to vectors via parallel device

kernels. However, interpretation of the returned iterators of pairs is still required

at the low level. In other words, although the parallel version can be implemented

efficiently, results are still packed in an AoS instead of SoA:

QK,V(k) = array{〈k, v〉}. (5.2)

This forms a barrier when the parallel query is located in a chain of functions.

For instance, to apply any functionG (e.g., geometry transformation) over the result

of a query, the low-level function second that selects the value element from a pair

〈k, v〉must be provided to dereference the low-level structures and manipulate the
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keys and values in-place. In other words, we have to implement a non-trivial G̃:

G̃(k) = (G ◦ second ◦QK,V)(k), (5.3)

to force the conversion from AoS to SoA and chain a high-level function G with

QK,V
2. This could be tedious when prototyping geometry perception that requires

hash map structures since off-the-shelf operations have to be reimplemented in

device code.

We reformulate this problem by introducing two affiliate arrays, kB and vB

(note with a superscript B for buffering, they are not the input k,v) of capacity

c ≥ n, where n is the number of buckets. These arrays are designed for explicit

storage of keys and values, respectively, and serve as buffers to support natural

SoA. They are exposed to users for direct access and in-place modification. Now

the query function can be rewritten as

QK,V : K → Ic, k 7→ i,

s.t. kB(i) = k, vB(i) = v, ∀〈k, v〉 ∈ 〈X ,Y〉 (5.4)

and this version is ready for parallelization. At this stage, to combine G and QK,V ,

we can chain G ◦ vB ◦Q to manipulate values:

G(k) = G

(

vB(QK,V(k))

)

, (5.5)

which retains convenient properties such as array vectorization and advanced

indexing.

When the input set X̃ 6⊂ X is not fully stored in the hash map, our formulation

2This can be achieved simply by returning a copy of values, but it is not feasible, especially when
dealing with large-scale data, e.g. hierarchical voxel grids.
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maintains its effectiveness by a simple masked extension:

QI
K,V : K → Ic, QΘ

K,V → {0, 1},
QI

K,V(k̃) = i, QΘ
K,V = θ,

s.t. θ = 1; kB(i) = k̃, vB(i) = ṽ, if k̃ ∈ X , (5.6)

θ = 0; i = undefined, otherwise,

which is also ready for parallelization. Now the chaining of functions is given by

G(k) = G

(

vB
(

i(θ)
)

)

, (5.7)

i = QI
K,V(k),θ = QΘ

K,V(k), (5.8)

using advanced indexing with masks. We can also select valid queries with k(θ)

without visiting kB . While our discussion was about the query function, the same

applies to insertion.

In essence, by converting the pair-first AoS to an index-first SoA format with

the help of array buffers, we can conveniently chain high-level functions over

hash map query and insertion. This simple change enables easy development on

hash maps and unleashes their potential for fast prototyping and differentiable

computation. However, the layout requires fundamental changes to the hash map

data structure. With this in mind, we move on to illustrate how the ASH layer

converts the AoS in native backends to our SoA layout.

5.4.3 Generic Backends

We start with converting stdgpu [210], a state-of-the-art generic GPU hash map

as the backend of ASH. stdgpu follows the convention of its CPU counterpart

std::unordered map by providing a templated interface. The underlying imple-

mentation is a classical bucket - linked list structure with locks to avoid race

conditions on GPU. To exploit the power of a generic hash map without reinvent-

ing the wheel, we seek to reuse the operations over keys (i.e. lock-guarded bucket

and linked list operations) and redirect the value mapping to our buffer vB.

A dynamic GPU hash map requires dynamic allocation and freeing of keys
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and values in device kernels. With pre-allocated key buffer kB and value buffer

vB, we maintain an additional index heap h, as shown in Fig. 5.3. The index heap

stores buffer indices i pointing to the buffers kB,vB as a map P : Ic → Ic, where the

heap top t maintains the currently available buffer index in h[t]. Heap top starts at

t = 0, and is atomically increased at allocation and decreased at free. With h and

the dynamically changing t, we instantiate a generic hash map with the templated

value in stdgpu to be V = Int32, where the values are buffer indices i stored in h to

access kB,vB exposed to the user.
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Figure 5.3: Illustration of a generic hash map bridged to tensors in ASH. Buffer
indices i are dynamically provided by the available indices maintained in the index
heap at the increasing heap top t (middle), acting as the values in the underlying
hash map (left). It connects the hash map and the actual key values stored in the
buffer (right) by accessing i. The key-bucket correspondences are the same as
Fig. 5.2, omitted for simplicity.

Insertion

The insertion of a 〈k, v〉 ∈ 〈K,V〉 pair is now decoupled into two steps, with i)

insertion of 〈k, i〉 ∈ 〈K, Ic〉 into the hash map, where i is the buffer index dynami-

cally acquired from the heap top h[t] and ii) insertion of kB(i) := k,vB(i) := v into

buffers.
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A naive implementation will acquire a buffer index i from h on every insertion

attempt and free it if the insertion fails because the key already exists. However,

when running in parallel, atomicAdd and atomicSub may be conflicting among

threads, leading to race conditions. A two-pass insertion could resolve the issue: in

the first pass, we allocate a batch of indices from h determined by the input size,

attempt insertions, and record results; in the second pass, we free the indices to h

from failed insertions.

We adopt a more efficient one-pass lazy insertion. We first attempt to insert

〈k,−1〉with−1 as the dummy index into the backend and observe if it is successful.

If not, nothing needs to be done. Otherwise, we capture the returned pointer to the

pair, trigger an index i allocation from h, and directly replace the dummy -1 with i.

This significantly reduces the overhead when the key uniqueness is low (i.e., many

duplicates exist in the keys to be inserted).

Query

The query operation is relatively simpler. We first look up the buffer index i ∈ Ic
given k in the backend. If it is a success, we end up with k = kB(i), and the target

v = vB(i) is accessible with i by users.

5.4.4 Non-generic Backends

While the generic GPU hash map has only recently been available, the research

community in parallel computation has been focusing on more controlled setups

where both K and V are limited to certain dimensions or data types. We seek to

generalize this non-generic setup with our index heap and verify their performance

in more real-world applications. In this section, we show how ASH can be used to

generalize SlabHash [8], a warp-oriented dynamic GPU hash map that only allows

insertions and queries to Int32 data type.

An extension to generic key types is non-trivial for SlabHash since its warp

operations only apply to variables with limited word length. Our implementa-

tion extends the hash set variation of SlabHash, where only integers as keys are

maintained in the backend.
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Generalization via Index Heap

The index heap h is the core to generalizing the SlabHash backend. In brief, a

generic key is represented by its associated buffer index i in an integer-only hash

set, allocated the same way as discussed in Section 5.4.3. As illustrated in Fig. 5.4,

all the insertions and queries are redirected from the buffer indices to actual keys

and values via the index heap. However, the actual implementation involves more

complicated changes in design.
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Figure 5.4: Illustration of a non-generic hash set enhanced by ASH. Integer buffer
indices i allocated from the index heap (middle) are inserted as delegate keys directly
into the hash set (left), associated with actual keys in the buffer (right) at i. The
key-bucket correspondences are the same as Figs. 5.2 and 5.3, omitted for simplicity.

Given a generic key k, we first locate the bucket b = h(k) ∈ In. Ideally, we can

then allocate a buffer index i at h’s top t and insert it into the linked list at the

bucket b in the integer-only hash set. The accompanying key and value are put in

kB(i),vB(i). During query, we similarly first locate the bucket b then search the

key in the linked list by visiting kB via the stored index i.
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Multi-Pass Insertion

Although query can be applied as mentioned above, lazy insertion mentioned in

Section 5.4.3 is problematic in this setup. The main reason is that while the race

condition in inserting index i does not occur in warp-oriented insertions, the copy

of the actual key k ∈ K to kB requires global memory write. They may not be

synchronized among threads, as copying a multi-dimensional key takes several

non-atomic instructions. As a result, the insertion of a key k2 could be accidentally

triggered when i) a duplicate k1(= k2)’s index i1 ∈ Ic has been inserted but ii)

whose actual key k1 has only been partially copied to the buffer kB. This would

mistakenly result in kB(i1) = k1 6= k2 followed by the unexpected insertion of k2

when unsynchronized. In practice, with more than 1 million keys to be inserted

in parallel, these kinds of conflicts happen with probability as low as ≤ 0.1%. To

resolve conflicts, we split insertion into three passes:

• Pass 1: batch insert all keys k to kB by directly copying all candidates via batch

allocated corresponding indices i from h;

• Pass 2: perform parallel hashing with indices i from pass 1. In this pass, keys

are read-only in global buffers and hence do not face race conditions. Successful

insertions are marked in a mask array.

• Pass 3: batch insert values to vB with successful masks, and free the rest to h.

While there is overhead due to the multi-pass operation, it is still practical for a

dynamic hash map. First, keys are relatively inexpensive to copy, especially for

spatial coordinates, while the more expensive copying of values is done without

redundancy. Second, a dynamic hash map generally reserves sufficient memory for

further growth so that the all key insertion would not exceed the buffer capacity.

5.4.5 Rehashing and Memory Management

While buffers are represented as fixed-size arrays, growth of storage is needed

to accommodate the accumulated input data, which can exceed the hash map’s

capacity, e.g. 3D points from an RGB-D stream. This triggers rehashing, where we

adopt the conventional ×2 strategy to double the buffer size as common in the C++

Standard Library, collect all the active keys and values, and batch insert them into
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the enlarged buffer.

In dynamic insertions, there can be frequent free and allocation of small memory

blobs that are adjacent and mergeable. In view of this, we implement another tree-

structured global GPU manager similar to PyTorch [182].

5.4.6 Dispatch Routines

To enable bindings to non-templated languages, e.g. Python, the tensor interface

is non-templated so that it can take data types and shapes as arguments. In the

context of spatial hashing, we support arbitrary dimensional keys by expanding

the dispatcher macros in C++. Float types have undetermined precision behaviors

on GPU. Therefore, a conversion to the integers given the desired precision is

recommended to use the hash map.

We also additionally dispatch values by their element byte sizes into intrinsi-

cally supported vectors: int, int2, int3, and int4. This adaptation accelerates

trivially copiable value objects such as int3, and supports non-trivially copiable

value blocks (e.g. an 83 array pointed to a void pointer). This improves the insertion

of large value chunks by a factor of 10 approximately.

5.4.7 Multi-value Hash Map and Hash Set

ASH supports multi-value hash maps that store values organized in SoA, as well

as hash sets with only keys and no values.

Multi-value hash maps. Various applications in 3D processing require mapping

coordinates to several properties. For instance, a 3D coordinate can be mapped to

a normal, a color, and a label in a point cloud. While the mapped values can be

packed as an array of structures (i.e., AoS) to fit a hash map, code complexity could

increase since structure-level functions have to be implemented. We generalize the

hash map’s functionality by extending the single value buffer vB to an array of value

buffers {vB
i } and applying loops over properties per index during an insertion. This

simple change supports the storage of complex value types in SoA that allows easy

vectorized query and indexing.

Hash set. A hash set, on the other hand, is a simplified hash map – an unordered

set that stores unique keys. It is generally useful in maintaining a set by rejecting

93



5. ASH: A Modern Framework for Parallel Spatial Hashing

duplicates, such as in point cloud voxelization. By removing vB and ignoring value

insertion, a hash map becomes a hash set.

5.5 Experiments
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Figure 5.5: Hash map performance comparison between ASH-stdgpu and the
vanilla stdgpu with 3D integer keys. Each curve shows the average operation
time (y-axis) with varying hash map value sizes in bytes (x-axis), given a controlled
backend, input length, and input key uniqueness ratio. Lower is better. Further
factors are denoted by the legends on the right. ASH-stdgpu runs consistently
faster than the vanilla stdgpu.

We start with synthetic experiments to show that ASH, with its optimized

memory layout, increases performance while improving usability. All experiments

in this section are conducted on a laptop with an Intel i7-6700HQ CPU and an

Nvidia GTX 1070 GPU. In all experiments, we assume the hash map capacity is

equivalent to the number of input keys (regardless of duplicates). Each reported

time is an average of 10 trials.

5.5.1 Spatial Hashing with Generic Backend

The first experiment is the performance comparison between vanilla stdgpu and

ASH with stdgpu backend (ASH-stdgpu). For fairness, we extend the examples of
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stdgpu such that an array of iterators and masks are returned for in-place manipu-

lations. The number of buckets and the load factor are determined internally by

stdgpu.

Setup 1. We test randomly generated 3D spatial coordinates mapped to float value blocks

of varying sizes. The key K, value V , capacity c, and uniqueness ρ are chosen as follows:

K = {Tensor((3), Int32)},
V = {Tensor((2j), Float32) | j = 0, 1, . . . , 12},
c = {10j | j = 3, 4, 5, 6},
ρ = {0.1, 0.99},

where ρ indicates the ratio of the unique number of keys to the total number of keys being

inserted or queried.

Fig. 5.5 illustrates the comparison between vanilla stdgpu and ASH-stdgpu.

For insert operation, ASH-stdgpu is significantly faster than stdgpu when ρ = 0.1

is low, and the performance gain increases when the value byte size increases.

This is mainly due to the SoA memory layout and the lazy insertion mechanism,

where a lightweight integer i ∈ Ic is inserted in an attempt instead of the actual

value v ∈ V . At a high input uniqueness ρ = 0.99, ASH-stdgpu maintains the

performance advantage with low and medium value sizes, and its performance

is comparable to stdgpu with a large value size. This indicates that our dispatch

pattern in copying values helps in a high throughput scenario. For find operation,

ASH-stdgpu is consistently faster than vanilla stdgpu, under both high and low

key uniqueness settings.

In addition to to insert and find, we introduce a new activate operation. It “ac-

tivates” the input keys by inserting them into the hash map and obtaining the

associated buffer indices. This is especially useful when we can pre-determine and

apply the element-wise initialization. Examples include the TSDF voxel blocks

(zeros) and multi-layer perceptrons (random initializations). The activate oper-

ation is absent in most existing hash maps and is only available as hard-coded

functions [65, 171, 184].

With the activate operation, we conduct ablation studies to compare the insertion

time of merely the keys versus the insert time of both the keys and values. Fig. 5.6
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compares the runtime between insert and activate in ASH-stdgpu. The key, value,

capacity, and uniqueness choices are the same as in Setup 1. We observe that while

the insertion time increases as the value size increases, the activation time remains

stable.
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Figure 5.6: Study of the activate operation introduced in ASH against insert with 3D
integer keys on the ASH-stdgpu backend. Each curve shows the average operation
time (y-axis) with varying hash map value sizes in bytes (x-axis), given an input
length and input key uniqueness ratio. Lower is better. Activate keeps a stable
runtime in the tasks that do not require explicit value insertion, while insert time
increases corresponding to the hash map value size.

5.5.2 Integer Hashing with Non-Generic Backend

Next, we compare ASH based on the SlabHash backend (ASH-slab) with the vanilla

SlabHash. Since SlabHash only supports integers as keys and values, we limit our

ASH-slab backend to the same integer types here. The number of buckets is 2×
capacity (load factor is approx. 0.5), since it is empirically the best factor when

ASH-slab is applied to non-generic and generic tasks. Since vanilla SlabHash only

supports data I/O from the host, we include the data transfer time between host

and device when measuring the performance of ASH-slab.

Setup 2. We test random scalar integer values mapped to scalar float values. The key K,
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value V , capacity c, and uniqueness ρ are chosen as follows:

K = {Tensor((1), Int32)},
V = {Tensor((1), Float32)},
c = {10j | j = 3, 4, 5, 6},
ρ = {0.1, 0.2, . . . , 0.9, 0.99},

As shown in Fig. 5.7, although ASH-slab does not make use of the non-blocking

warp-oriented operations in SlabHash in order to enable support for generic key

and value types, our insert is still comparable to vanilla SlabHash which is only

optimized for integers. The drop in performance of ASH-slab when ρ increases is

an expected indication that the overhead of multi-pass insertion increases corre-

spondingly.
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Figure 5.7: Hash map performance comparison between ASH-slab and the vanilla
SlabHash with 1D integer keys and values. Each curve shows the average operation
time (y-axis) with varying input key uniqueness ratio (x-axis), given an input length.
Lower is better. ASH-slab retains a comparable performance for integers while
supporting generalization to arbitrary dimensional keys and values of various data
types.

It is worth mentioning that with an improved global memory manager, the

construction of an ASH-slab hash map takes less than 1ms under all circumstances,

while the vanilla SlabHash constantly takes 30ms for the redundant slab memory

manager. In practice, where the hash map is constructed and used once (e.g. vox-

elization), ASH-slab is a more practical solution.
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5.5.3 Ablation Between Backends

We now conduct an ablation study with different backends in ASH, namely ASH-

stdgpu and ASH-slab, with arbitrary input key-value types beyond integers. The

experimental setup follows Section 5.5.1.
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Figure 5.8: Ablation study of the hash map performance with 3D integer keys over
different backends. Each curve shows the average operation time (y-axis) with
varying hash map value sizes in bytes (x-axis), given a controlled backend, input
length, and input key uniqueness ratio. Lower is better. ASH-stdgpu outperforms
ASH-slab in most circumstances with the 3D integer keys and varying length
values, which are common in real-world applications.

In Fig. 5.8, we can see that ASH-stdgpu outperforms ASH-slab in most circum-

stances with the 3D coordinate keys and varying length values that are common

in real-world applications. While warp-oriented operations heavily used in Slab-

Hash enjoy the benefits of intrinsic acceleration, they sacrifice the granularity of

operations. Threads can only move on to the next task once all the operations

in a warp (of 32) are finished. As a result, early termination when an insertion

failure occurs are less likely in a warp-oriented hash map. If the data layout is not

well-distributed for the intrinsic operations (e.g., low-uniqueness input, keys with

long word width), the performance drop could be significant.

This observation is more apparent in insertion under varying input densities.

With a relatively small value size and a high uniqueness, ASH-slab performs better.

When the uniqueness is low, however, each thread in ASH-slab still has to finish a
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Table 5.2: Comparison of the complexity of coding (top) and LoC (bottom) of each
operation among the implementations. Unlike stdgpu and SlabHash, ASH does
not require that users write device code or use a CUDA compiler. It requires few
LoC for construction, query, and insertion.

stdgpu SlabHash ASH

Device code free? ✗ ✓ ✓

CUDA compiler free? ✗ ✗ ✓

Construct 3 9 3

Find 22 2 2

Insert 27 1 2

similar workload before termination, while ASH-stdgpu can reject many failure

insertions early and move on to the following workloads. As of now, ASH-slab

is suitable for the voxel downsampling application, while ASH-stdgpu is better

for other tasks. Therefore, we set stdgpu as the default backend for ASH in the

remaining sections.

5.5.4 Code Complexity

We now study the usage at the user end. First of all, the ASH framework, regardless

of the backend used, is already compiled as a library. A C++ developer can easily

include the header and build the example directly with a CPU compiler and link to

the precompiled library with a light tensor engine. An equivalent Python interface

is provided via pybind [113] as shown in Fig. 5.1.

In comparison, to use SlabHash’s interface with an input array from host

memory, a CUDA compiler is required, along with manual bucket-linked list

chain configurations. For further performance improvement, detailed memory

management has to be done manually via cudaMalloc, cudaMemcpy and cudaFree.

stdgpu provides a built-in memory manager but requires writing device and host

functions. In a query operation, the found values are returned by-copy for SlabHash,

so in-place modification requires further modification of the library. stdgpu exposes

iterators in an AoS fashion, therefore the device code needs to be implemented to

reinterpret an array of iterators and masks for further operations.

The compilation complexity and the interface LoC required for the same func-

tionality in C++ are listed in Table 5.2.
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5.6 Applications

We now demonstrate a number of applications and ready-to-use systems in 3D per-

ception to demonstrate the power of ASH with fewer LoC and better performance.

The presented applications include:

1. Point cloud voxelization;

2. Retargetable volumetric reconstruction;

3. Non-rigid registration and deformation;

4. Joint geometry and appearance refinement.

The first two experiments are conducted on an Intel i7-6700HQ CPU and an Nvidia

GeForce GTX 1070 GPU for indoor scenes. Outdoor scene experiments are run on

an Intel i7-11700 CPU and an Nvidia RTX 3060 GPU. The rest are done on an Intel

i7-7700 CPU and an Nvidia GeForce GTX 1080Ti GPU.

5.6.1 Point Cloud Voxelization

Setup 3. In voxelization, a hash map maps a point cloud’s discretized coordinates to its

natural array indices, and the hash map capacity is the point cloud size, typically ranging

from 105 to 107

K = {Tensor((3), Int32)},
V = {Tensor((1), Int32)}.

Voxelization is a core operation for discretizing coordinates. It is essential for

sparse convolution [49, 51] at the quantization preprocessing stage, and is often

used to generate point cloud “pyramids” [272] in coarse-to-fine 3D registration for

improved speed and robustness.

Voxelization is a natural task for parallel hashing, as the essence of the operation

is to discard duplicates at grid points. To achieve this, we first discretize the input

by converting the coordinates described by the continuous meter metric to the voxel

units. Then a simple hash set insertion eliminates the duplicates and corresponds

them to the remaining unique coordinates. The returned indices can be reused for

tracing other properties such as colors and point normals associated with the input.
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Figure 5.9: Visualization of point cloud voxelization. Top: scene-level large-scale
inputs. Bottom: fragment-level small-scale inputs. Left: original point clouds.
Right: voxelized point clouds.

The python code for voxelization can be found in Listing 1.

We compare voxelization implemented in ASH with two popular implemen-

tations, MinkowskiEngine [49] on CUDA and Open3D [272] on CPU. Our experi-

ments are conducted on a large scene input with 8× 106 points which is typical for

scene perception, and a small fragment of the scene with 5× 105 points which is

typical for an RGB-D input frame, as shown in Fig. 5.9.

To evaluate the performance, we vary the parameter voxel size from 5mm to

5cm, which is typical in the spectrum of voxelization applications, from dense

reconstruction to feature extraction. In Fig. 5.10 we can see that our implementa-

tion outperforms baselines consistently for inputs at both scales. Meanwhile, in

measuring the LoC written in C++ (the Python wrappers are one-liners) required

for the functionality given the hash map interface, we observe that ASH requires

only 28 LoC, while MinkowskiEngine and Open3D on CPU take 71 and 72 LoC

respectively.
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import open3d.core as o3c

def voxelize(pcd, voxel_size):

xyz = pcd.point.positions

N = len(xyz)

hashset = o3c.HashSet(N, o3c.int32, (3,))

xyz_int = (xyz / voxel_size).floor().to(o3c.int32)

_, mask = hashset.insert(xyz_int)

# Return points with indices

return xyz[mask], o3c.arange(N)[mask]

Listing 1: Voxelization
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Figure 5.10: Performance comparison of voxelization. Each curve shows the run
time (y-axis) over the varying voxel size (x-axis). Lower is better. ASH is consistently
faster than Open3D’s default voxelizer (CPU) and MinkowskiEngine (CUDA).

5.6.2 Retargetable Volumetric Reconstruction

Truncated Signed Distance Function

Scene representation with truncated signed distance function (TSDF) from a se-

quence of 3D input has been introduced [56] and adapted to RGB-D [168]. It takes a

sequence of depth images {Dj} with their poses {Tj ∈ SE(3)} as input, and seeks

to optimize the signed distance, an implicit function value d per point at x ∈ R
3.

The signed distance measured for frame j is given by3

[u, v, r]⊤ = Π(Tj−1
x), (5.9)

dj = Dj(u, v)− r, (5.10)

3Details including depth masking and projective pinhole camera model are omitted for clarity
and could be found in KinectFusion [168].
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where Π projects the 3D point to 2D with a range reading after a rigid transforma-

tion. To reject outliers, a truncate function Ψµ(d) = clamp(d,−µ, µ) is applied to dj .

There are multiple variations of Ψ and the definition of signed distance dj [29]. For

this paper, we follow the convention in KinectFusion [168].

With a sequence of inputs, per-point signed distance can be estimated in least

squares with a closed-form solution

d = argmin
t

∑

j

wj‖t− dj‖2, d =

∑

j w
jdj

∑

j w
j
, (5.11)

where wj is the selected weight depending on view angles and distances [29]. In

other words, with a sequence of depth inputs and their poses, we can measure

TSDF at any point in 3D within the camera frustums. We can also rewrite Eq. 5.11

incrementally:

d :=
w · d+ wj · dj

w + wj
, w := w + wj, (5.12)

where w is the accumulated weight paired with d.

Equipped with a projection model Π that converts a point to signed distance,

TSDF reconstruction can be generalized to imaging LiDARs [66] for larger scale

scenes.

Spatially Hashed TSDF Blocks

Setup 4. In a scene represented by a volumetric TSDF grid, a hash map maps the coarse

voxel blocks’ coordinates to the TSDF data structure of the voxel block, and the hash map

capacity is typically 103 to 105 for small to large-scale indoor scenes:

K = {Tensor((3), Int32)},
V = {Tensor((ℓ3), Float32), Tensor((ℓ3), Float32)},

where ℓ is the voxel block resolution, which is set to 8 or 16.

While recent neural representations utilize multi-layer perceptrons to approxi-

mate the TSDF in continuous space [38], classical approaches use discretized voxels.

103



5. ASH: A Modern Framework for Parallel Spatial Hashing

Such representations have a long history and are ready for real-world, real-time

applications. They can also provide data for training neural representations.

The state-of-the-art volumetric discretization for TSDF reconstruction is spatial

hashing, where points are allocated around surfaces on-demand at a voxel resolu-

tion of around 5mm. While it is possible to hash high-resolution voxels directly, the

access pattern could be less cache-friendly, as the neighbor voxels are scattered in

the hash map. A hierarchical structure is a better layout, where small dense voxel

grids (e.g. in the shape of 83 or 163) are the minimal unit in a hash map; detailed

access can be redirected to simple 3D indexing. In other words, a voxel can be

indexed by a coupled hash map lookup and a direct local addressing

xblock = ⌊x/(sℓ)⌋, (5.13)

xvoxel = ⌊(x− xblock · sℓ)/s⌋, (5.14)

where s is the voxel size and ℓ is the voxel block resolution as described in Setup 4.

While previous implementations [65, 171, 184] have achieved remarkable per-

formance, modularized designs are missing. Geometry processing and hash map

operations were coupled due to the absence of a well-designed parallel GPU hash

map. One deficiency of this design is unsafe parallel insertion, where the capacity

of a hash map can be exceeded. Another is ad hoc recurring low-level linked

list access in geometry processing kernels that cause high code redundancy. Our

implementation demonstrates the first modularized pipeline where safe hash map

operations are used without any ad hoc modifications.

Voxel Block Allocation and TSDF Integration

Setup 5. For an input depth image, a hash map maps the unprojected point coordinates to

the active indices as described in Setup 4, and the capacity of a hash map is typically 105 to

106, with 102 to 103 valid entries:

K = {Tensor((3), Int32)},
V = {Tensor((1), Int32)}.

In the modularized design, we first introduce a double hash map structure
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for voxel block allocation and TSDF estimation. Voxel block allocation identifies

points from {Dj} as surfaces and computes coordinates with Eq. 5.13. Intuitively,

they can be directly inserted to the global hash map described in Setup 4. This is

achievable in an ad hoc implementation where the core of the hash map is modified

at the device code level, and unsafe insertion is allowed [171, 184]. However, in a

modularized and safe setup, this could lead to problems. A VGA resolution depth

input contains 640× 320 ≈ 3× 105 points and easily exceeds the empirical global

hash map capacity. As we have mentioned, rehashing will be triggered under such

circumstances, which is both time and memory consuming, especially for a hash

map with memory-demanding voxel blocks as values.

To address this issue without changing the low-level implementation and

sacrificing safety, we introduce a second hash map, the local hash map from Setup 5.

This hash map is similar to the one used in voxelization: it maps discretized 3D

coordinates unprojected from depths to integer indices. With this setup, a larger

input capacity is acceptable, as the local hash map is lightweight and can be cleared

or constructed from scratch per iteration.

Viewing 

Frustum

Input points

Local hash map blocks

Global hash map blocks

Isosurface 

Figure 5.11: Illustration of local and global hash maps iteratively used in real-
time reconstruction. The local hash map activates voxel blocks enclosing points
observed in the viewing frustum. The global hashmap accumulates such activated
blocks and maintains all the blocks around the isosurface.

There are two main benefits to using a local hash map: it converts the input

from the 105 raw point scale to the 103 voxel block scale, which is safe for the global

hash map without rehashing; as a byproduct, it keeps track of the active voxel

blocks for the current frame j, which can be directly used in the following TSDF
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integration and ray casting. The local and global hash maps can be connected

through indices, where a query of coordinate in the local map is redirected to the

global map in-place. Fig. 5.11 shows the roles of the two hash maps. Listing 2

details the construction and interaction between the two hash maps.

import open3d.core as o3c

# Map block coords to actual storage

global_hashmap = o3c.HashMap(

global_capacity,

key_dtype=o3c.int32,

key_shape=(3,),

# Float 1-channel TSDF and 3-channel color

value_dtypes=(o3c.float32, o3c.float32),

values_shapes=((8, 8, 8, 1), (8, 8, 8, 3)))

# Map block coords to global hashmap indices

local_hashmap = o3c.HashMap(

local_capacity,

key_dtype=o3c.int32,

key_shape=(3,)

# Index in global hash map

value_dtypes=(o3c.int32),

value_shapes=((1,)))

# Discretize and insert to local map

xyz_int = (xyz / block_size).floor().to(o3c.int32)

i_local, mask = local_hashmap.activate(xyz_int)

# Remove duplicates

xyz_int = xyz_int[mask]

i_local = i_local[mask]

# Activate and query in the global map

global_hashmap.activate(xyz_int)

i_global, mask = global_hashmap.find(xyz_int)

# Associate local and global maps via indices

local_v = local_hashmap.value()

local_v[i_local] = i_global

Listing 2: Double hash map allocation

By accessing the global hash map’s TSDF and colors through returned indices,

TSDF integration can then be implemented following Eq. 5.12 in a pure geometry

function, either in a low-level GPU kernel or a high-level vectorized Python script.

Spatial hash map is detached from the core geometric computation, providing

more flexibility in performance optimization.
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Surface Extraction

A volumetric scene reconstruction is not usable for most software and solutions

until the results are exported to point clouds or triangle meshes. Hence we imple-

ment a variation of Marching Cubes [146] that extracts vertices with triangle faces

at zero crossings in a volume. In a spatially hashed implementation, boundary

voxels in voxel blocks are harder to process since queries of neighbor voxel blocks

are frequent, and shared vertices among triangles are hard to track. One common

approach is to simply visit vertices at isosurfaces and disregard duplicates, but this

usually results in a heavily redundant mesh [128, 184], or time-consuming post-

processing to merge vertices [171]. Another method is to introduce an assistant

volumetric data structure to atomically record the vertex-voxel association, but

the implementations are over-complex and require frequent low-level hash map

queries coupled with surface extraction [63, 65].

Now that we have a unified hash map interface, we simplify the voxel block

neighbor search routine [65] and set up a 1-radius neighbor lookup table in advance,

as described in Listing 3. Surface extraction is then detached from hash map access

and can be optimized separately. As a low-hanging fruit, point cloud extraction is

implemented with the same routine by ignoring the triangle generation step. In

fact, surface extraction of a median-scale scene shown in Fig. 5.13 takes less than

100ms, making interactive surface updates possible in a real-time reconstruction

system.

Ray Casting

Another way to interpret a volume is through ray casting or ray marching. Given

camera intrinsics and extrinsics, ray casting renders depth and color images by

marching rays in the spatially hashed volumes, querying color and TSDF values,

and finding zero-crossing interfaces. It allows rendering at known viewpoints,

synthesizing novel views, and estimating camera poses.

Various accelerations can speed up ray casting. Adaptive spherical ray casting

and a precomputed min-max range estimate [184] will constrain the search range

and boost performance. The latter can be conducted by simply projecting the active

keys collected in Listing 2 without the involvement of hash maps. In addition,
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import open3d.core as o3c

def radius_nns(xyz, r):

N = len(xyz)

hashset = o3c.HashSet(N, o3c.int32, (3,))

hashset.insert(xyz)

# Get offset tensors

# ([-r, -r, -r], ..., [r, r, r])

offsets = enumerate_radius_offsets(r)

# Collect neighbors

xyz_query = xyz.clone()

for offset in offsets:

xyz_query.append(xyz + offset, 0)

# Query

indices, masks = hashset.find(xyz_query)

# Reshape to get neighbor indices for each point

indices = indices.view(N, -1)

masks = indices.view(N, -1)

Listing 3: Radius nearest neighbor search in 3D.

we can squeeze more from our double-hash-map architecture. Conventional ray

marching applies query in the global hash map [65, 171, 184]. Since the local hash

map is directly associated with the global hash map with shared active indices, we

can replace the global hash map with the local one accompanied with the vB buffer

in the global hash map. With such a simple change, we can now query the more

compact local hash map, and access the global hash map in-place without touching

the geometric computations. Since out-of-frustum voxel blocks are ignored, this

operation slightly sacrifices rendering completeness at image boundaries, as shown

in Fig. 5.12. However, it is able to boost speed by a factor of 5, and is useful for

real-time systems such as dense SLAM.

Retargetable Reconstruction System

Thanks to the design where spatial hashing and geometry processing are detached,

the spatially hashed volumetric representation can be reused for multiple purposes,

from posed RGB-D surface reconstruction, dense RGB-D SLAM, to large-scale

LiDAR surface reconstruction, with minimal modifications. For RGB-D input, a

handful of existing reconstruction systems [65, 171, 184] run on GPU. We first

retarget our system to fast SLAM setup for fair comparisons. In this setup, we use

a less aggressive ray-based allocation strategy [184] and store only weighted TSDF,
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Figure 5.12: Visualization of volumetric ray casting. From left to right: rendered
depth from local, global hash maps, and input ground truth depth. Note the
difference at boundaries.

Figure 5.13: Visualization of triangle mesh extracted from the real-time dense
SLAM system on scene lounge and copyroom in the fast mode. Rendered with
Mitsuba 2 [172].

consistent with the baselines. Camera poses are estimated in real-time via frame-

to-model alignment [171] between input frames and ray-casting rendering through

the double-hash-map. We compare the performance of this setup against the state-

of-the-art implementations with the same parameters: voxel size is 5.8mm, voxel

block resolution is ℓ = 8, TSDF truncation distance is 4cm, min/max acceptable

range of depth scanning is 0.2m and 3m. Performance is profiled on the lounge

scene shown in Fig. 5.13. Breakdown analysis of runtime and LoC4 is shown in

Fig. 5.15. In most comparisons, we can see a significant performance gain, with

fewer LoC to write thanks to the elimination of redundant hash map look-ups in

geometry kernels.

4All the code are reformatted with clang-format with a modified Google style.
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Fast mode runs far beyond framerate and reconstructs pure geometry. In

addition, we implement a quality mode for richer volumetric information including

color, and reduce noise by integrating depth into 163 TSDF voxel blocks from

a 1-radius-neighbor allocation [272]. The introduction of color requires double

memory and triple computation cost in trilinear interpolation for ray casting and

surface extraction, thus the quality mode is around 3× slower. However, it still runs

in real-time, and provides a better user experience. Fig. 5.14 shows the interactive

reconstruction system in the quality mode. The system runs at 30Hz on a mid-end

laptop, providing incremental volumetric reconstruction and interactive point

cloud extraction and realistic rendering. Note that to retarget from a fast system

to a user-friendly quality application, we only need to change the block allocation

function and several parameters, in total several dozen of lines, without re-writing

the core.

Figure 5.14: Visualization of the real-time dense SLAM system in the quality mode
with colored and interactive surface reconstruction. Viewpoints can be changed by
users to visualize the incremental reconstruction of the scene.

The system can also be adapted to LiDAR point clouds. By simply replacing

the conventional pinhole camera model with a customized spherical projection

model [66], we can reconstruct large-scale scenes from LiDAR data, see Chapter 6

for details.

To conclude this subsection, we presented a retargetable volumetric recon-

struction system with a modular design, separating hash maps and geometric

operations. With minimal changes in geometry functions, the core volumetric
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Figure 5.15: Performance and LoC comparison of our real-time dense SLAM
pipeline in the fast mode (ASH-fast) against state-of-the-art implementations: In-
finiTAM [184], VoxelHashing [171], GPU-robust [63]. Evaluated on the lounge
scene [46]. Left: detailed comparison of separating modules. Right: corresponding
LoC comparison. Lower is better. Note the meshing LoC in InfiniTAM is signif-
icantly fewer since the implementation is over-simplified and requires further
postprocessing. ASH-fast achieves a consistent fast speed with fewer LoC.

representation can be used for RGB-D and LiDAR scene reconstruction, and inter-

active dense SLAM. Our system is faster, requires fewer LoC, and supports an easy

switch between speed and fidelity.

5.6.3 Non-Rigid Volumetric Deformation

While fast online volumetric reconstruction is useful in exploration and visualiza-

tion, offline reconstruction systems [46] are sometimes preferred when a higher

quality is required for design and evaluation.

State-of-the-art offline systems adopt divide-and-conquer. Long input se-

quences are split into smaller subsets, each yielding a submap point cloud Mj

reconstruction with less drift. In this setup, we can simply reuse the integration

and surface extraction components in the previous subsection [46, 65]. A global

pose graph is then constructed and optimized after robust registration [51, 247] of

submaps. For the details, we refer the readers to state-of-the-art RGBD reconstruc-

tion systems [46, 65].

However, issues still persist in challenging scenes, e.g., heavy misalignment

due to the strong simulated noise in the Augmented ICL dataset [46], and the

artifacts presented in the large-scale indoor RGBD LiDAR dataset [180], as shown

in Fig. 5.17. To deal with this, non-rigid volumetric deformation is presented in

Simultaneous Localization and Calibration (SLAC) [269, 270].
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SLAC attempts to minimize the distance between correspondences from dif-

ferent submaps by optimizing a combination of rigid transformations and non-

rigid deformations. While the rigid transformations are simply the submap

poses {Tj}, deformation is parameterized by a control grid c. In c, each grid

point u stores a local Euclidean offset cu ∈ R
3, and the accompanying function

Cc(x) = x +
∑

u∈Nx

wu(x)cu deforms a point x ∈ R
3 by applying interpolated

neighbor grid offsets, where wu(x) is the interpolation ratio. The loss function is

then parameterized over {Tj} and c with as-rigid-as-possible regularizers:

min
c,T

∑

p∈Mi,q∈Mj

‖(TiCc(p)−TjCc(q)‖2 + λ
∑

u,v∈Nu

‖cu −Rcv
v u‖2, (5.15)

where p ∈Mi,q ∈Mj are corresponding 3D points between submaps obtained

by nearest neighbor search. RCv

v is the rigid rotation that minimizes ‖RCv

v (v−u)−
(cv − cu)‖ locally, where v is a 1-ring neighbor Nu of u. It controls local distortions

in the as-rigid-as-possible regularizer.

This problem formulation is complicated to realize in code, and in the original

implementation, the deformation grid is a simplified dense 3D array where points

out-of-bound are discarded during optimization. As of today, SLAC has never

been reproduced apart from the original implementation. We observe that similar

operations for TSDF grids can be applied here by ASH to generate a spatially

hashed control grid.

Setup 6. A volumetric deformation hash map maps grid coordinates to position offsets,

and the capacity of the hash map is typically 103 to 104:

K = {Tensor((3), Int32)},
V = {Tensor((3), Float32)}.

Equipped with ASH, the non-rigid deformation can be written in several lines

which results in a significant drop in LoC. We first voxelize the input point cloud

with the deformation grid size following Listing 1. Then, instead of the 1-radius

nearest neighbors (33 entries in Listing 3), we look for 1-cube nearest neighbors

(23), where a point is enclosed in a cube formed by grid points. The interpolation

ratio can be computed jointly. We also adapt the 1-radius neighbor search to 1-ring
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neighbors for the regularizer. The embedding of a submap point cloud is visualized

in Fig. 5.16, where the edges indicate the association between points to grids, and

the colors show the interpolation ratio. Note that this visualization is also made

easy thanks to the simple interface of ASH.

Figure 5.16: Visualization of a point cloud and its embedding in the volumetric
deformation grids. Left: original point cloud. Right: embedding graph connecting
the input points and associated deformation grid points. Each edge’s color indicates
the interpolation weight: blue shows a lower weight (closer to 0), while red shows
a higher weight (closer to 1).

With this parameterization, we reproduce SLAC after rewriting the non-linear

least squares solver and jointly optimizing the grid points and submap poses

given the correspondences. In addition, the hash map can be saved and loaded

from the disk for further processing, including deformed TSDF integration that

reconstructs the scene from the deformed input depth images embedded in the

grids. Experiments show that with a modularized design and a spatial hash map,

we can reproduce SLAC by reducing artifacts after optimization, as shown in

Fig. 5.17.

We can see a gain in performance with fewer LoC in Table 5.3 in the livingroom 1

scene with heavy simulated noise5. Note while the hash map generalizes deforma-

5To control the experiment, we use the initial submap pose graph from the baseline implementa-
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tion grids from bounded to unbounded scenes, the LoC and time contributing to

the core non-linear least squares optimization are slightly reduced. Meanwhile, the

deformation and integration speed per frame is significantly faster (11.8×), which is

critical for large-scale (≥ 30K frames) sequences. While being faster and easier to

develop, our system achieves a higher reconstruction quality in terms of precision,

recall, and F-score with a distance threshold τ = 20mm [180].

Table 5.3: Performance and LoC (top) and reconstruction quality (bottom) compari-
son between ASH-SLAC and the original implementation [269] on the livingroom-1
scene [46]. ASH-SLAC is faster with fewer LoC, and produces a better reconstruc-
tion.

Operation
Original SLAC ASH-SLAC

Time (ms) LoC Time (ms) LoC

Non-rigid optim. 2041.1 1585 1982.1 1535

Deformed integration 125.38 944 10.62 446

Reconstruction quality

Precision (↑) 29.19 36.10

Recall (↑) 51.44 61.34

F-score (↑) 37.24 45.45

5.6.4 Joint Geometry and Appearance Refinement

SLAC reduces artifacts for large-scale scenes. For small-scale objects, while volu-

metric reconstruction outputs smooth surfaces, fine details are often impaired due

to the weight averaging of the TSDF.

Shape-from-Shading (SfS) refines details by jointly optimizing volumetric TSDF

functions given the initial geometry and appearance [276]. It takes a reconstructed

volumetric TSDF grid d0 with a set of high-resolution key frame RGB images Ij

and their poses Tj as input, and outputs jointly optimized TSDF d and albedo a

tion.

114



5. ASH: A Modern Framework for Parallel Spatial Hashing

through an image formation model

min
a,d

∑

x,j

‖∇B(x)−∇Ij(Π(Tj−1
x′))‖2 + λsmooth

∑

x

‖∆dx‖2 + λinit

∑

x

‖dx − d0
x‖2

+ λchrome

∑

x,y∈Nx

w(x,y)‖ax − ay‖2, (5.16)

where the estimated voxel-wise appearance is computed by B(x) = axSH(nx) (SH

stands for spherical harmonics), and associated with the closest surface point

x′ = x− dxnx, nx =
∇x(d)

‖∇x(d)‖
, (5.17)

which is projected to image Ij through Π after a rigid transformation Tj−1
. Here

the voxel-wise gradient is directly derived from d with a finite difference

∇x(d) =
dx+δ − dx−δ

2δ
. (5.18)

Similar to SLAC, we use dx, ax to access TSDF and albedo values at grid point

x ∈ R
3. λsmooth, λinit, λchrome are coefficients for regularizing smoothness through the

Laplacian, stability, and piece-wise albedo constancy via a weighted chromaticity

regularizer w(x,y), respectively [276].

While the image formation model is straightforward, similar to SLAC, the

underlying data structure used in implementing the model can be complex mainly

because of the prevalent nearest neighbor search in normal computation and

neighbor voxel regularizers. As a result, to enable such a system without a modern

hash map, one has to rely on low-level C++ implementation and is consequently

limited to the low-level Ceres solver [2] for autodiff in optimization. Further, the

spatially hashed voxels have to be bounded to reduce computation cost [150].

Now equipped with ASH, we provide a simplified solution that is built upon the

hash map and advanced indexing. Unlike SLAC which requires time-consuming

deformable TSDF re-integration for final scene reconstruction, SfS allows reusing

accelerated surface extraction from the TSDF grids without further optimization.

Therefore, we implement the SfS pipeline in pure Python as an example of fast

prototyping of a differentiable rendering pipeline. Running on GPU, we lift the
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constraint of a user-defined bounding box and optimize the full reconstructed

surface.

Without the requirement of extreme performance, we drop the hierarchical

volumetric layout and use the simple voxel-based hash map:

Setup 7. A voxel indexer is given by a hash set K = {Tensor((3), Int32)}. The

typical capacity is 109 to 1010.

With this setup, we can reuse the code in SLAC to look up the 1-ring neighbors

for normal estimation and Laplacian regularization. There is, however, another

lookup required since we are minimizing the difference of appearance gradient in

Eq. 5.16: we need to find the 1-ring neighbors that also have 1-ring neighbors. In

other words, we have to find the intersection of two sets. While NumPy provides the

functionality for 1D arrays through ordered sorting, our hash map allows unordered

intersection that can be generalized to multi-dimensional inputs:

Setup 8. With two input sets k1 ⊂ K,k2 ⊂ K, the intersection k1

⋂

k2 is given by the

following operations: initialize a hash set with k1; query k2 and obtain success mask θ;

return k2(θ).

After data association is found and SH parameters are estimated in a prepro-

cessing step, all the terms in Eq. 5.16 are converted to a trivial combination of

indexing and arithmetic operations. We can take advantage of PyTorch’s autodiff,

and backpropagate the gradient through the built-in differentiable index layer.

ADAM [126] with an initial learning rate 10−3 is used. Thus the core volumetric

SfS pipeline [276] is reproduced in pure Python.

An extension can be easily implemented by introducing spatially varying

lights [150], wrapped up with a hash map.

Setup 9. Spatially varying spherical harmonics (SVSH) (bands = 3) can be described by a

hash map that maps lighting subvolume coordinates to the corresponding coefficients:

K = {Tensor((3), Int32)},
V = {Tensor((9), Float32)}.

The embedding of an active voxel in an SVSH map is identical to SLAC, with

1-cube neighbors for the data term and 1-ring neighbors for the regularizer. Further

description is omitted here as the formulation and implementation are similar to
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Eq. 5.16 [150].

Having both SfS and SVSH optimization implemented6 [150], we show the

results on the scene lion in Fig. 5.18. Without voxel grid upsampling, both the

geometry and appearance details are sharper. Regarding performance and code

complexity, we show in Table 5.4 that our code is much shorter in pure Python,

and 150× faster per iteration thanks to the CUDA autodiff engine in PyTorch. Note

that Ceres is a 2nd-order optimizer on CPU that empirically converges faster than

the 1st-order ADAM optimizer. In practice, however, we found that in 50 iterations

ADAM converges well against the preset 10 iterations for the non-linear least

squares solver. Thus the total optimization performance of our implementation is

still 30× faster with more voxels to process (remember that we do not require an

additional bounding box).

We also evaluate reconstruction quality in Table 5.4. We render our optimized

mesh given the keyframe camera extrinsic and intrinsic parameters and compute

RMSE against the raw input images. For the baseline [150], we follow a similar

procedure and render the optimized mesh (not upsampled for fairness) given

refined camera parameters. We use the same mask given by the baseline to ensure

the same region of interest. The results show that our implementation produces

improved RMSE despite the simplified development.

Table 5.4: Performance per epoch and LoC (top), and rendering quality (bottom)
comparison between ASH-Intrinsic3D and the original implementation [150] on
the lion scene [150]. ASH-Intrinsic3D is faster with fewer LoC, and results in
comparable rendering from the refined reconstruction.

Operation
Original-Intrinsic3D ASH-Intrinsic3D

Time (s) LoC Time (s) LoC

SVSH optim. 0.503 605 0.092 254

Joint optim. 147.323 7399 0.916 1416

Rendering quality

RMSE mean (↓) 0.677 0.627

RMSE std (↓) 0.095 0.120

6Pose optimization and voxel upsampling are disabled at current.
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5.7 Conclusions

We presented ASH, a performant and easy-to-use framework for spatial hash-

ing. Both synthetic and real-world experiments demonstrate the power of the

framework. With ASH, users can achieve the same or better performance in 3D

perception tasks while writing less code.

There are various avenues for future work. At the architecture level, we seek to

introduce the open address variation [4, 117] of parallel hash maps for flexibility

and potential high performance static hash maps. At the low level, we plan to

further optimize the GPU backend, and accelerate the CPU counterpart, potentially

with cache level optimization and code generation [109, 112]. We also plan to apply

ASH to sparse convolution [49, 228] and neural rendering [79, 190], where spatially

varying parameterizations are exploited.

ASH accelerates a variety of 3D perception workloads. We hope that the

presented framework will serve both research and production applications.
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Figure 5.17: Visualization of scene reconstructions before and after ASH-SLAC.
First row: before ASH-SLAC. Second row: after ASH-SLAC. Left: livingroom-1 from
Augmented ICL [46]. Right: apartment from Indoor LiDAR RGBD [180]. Artifacts
are eliminated by global pose adjustment and local deformation via deformable
TSDF integration. Rendered with Mitsuba 2 [172].
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(a) Normal map (b) Color map

Figure 5.18: Appearance and geometry refinement before and after ASH-
Intrinsic3D on lion [276]. First row: initial reconstruction from volumetric in-
tegration. Second row: refined reconstruction after optimization.
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Chapter 6

Revisiting LiDAR Registration and

Reconstruction

6.1 Introduction

LiDAR scanners are prevalent sensors used to obtain range data and provide 3D

geometry by measuring the time of flight of modulated laser pulses. Compared

with camera-like solid-state LiDARs, spinning LiDARs capture full 360◦ views, thus

they are widely applicable to robotics, remote sensing, and autonomous driving.

Popular spinning LiDARs such as Velodyne [98] and Ouster [176] are designed

in a similar fashion: a line of scan is measured vertically; a complete 360◦ scan is

formed by horizontally spinning the sensor to accumulate line scans in a consistent

coordinate system.

It is clear that intrinsic geometric transformations exist in the conversion from

raw scans to a 3D point cloud, consisting of spherical projective and rigid trans-

formations. Yet the value of low-level conversions are down-weighted for conve-

nience, and many hardware drivers and downstream datasets [82, 96, 218] only

provide 3D point clouds to the user. There is an advantage of the design, since that

prevalent 3D data format is acceptable to most 3D processing pipelines. How-

ever, the intrinsic relations between the scanned points are discarded, and k-d

trees [20] have to be constructed to find nearest neighbors in the Euclidean 3D
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Figure 6.1: Visualization of a LiDAR scan as a cylindrical range image in various
forms. Synthetically projecting a point cloud to a cylindrical image [19, 206] results
in artifacts (middle) due to inaccurate altitude mapping. The cylindrical image
view (bottom) of raw scans (top) with a lookup table (LUT) is loseless.

space, which require highly optimized implementation for real-time systems such

as LiDAR odometry (LO) and simultaneous localization and mapping (SLAM).

Recent studies [19, 206] generate proxy 2D range images from point clouds via

synthetic projections to accelerate neighbor search, reducing the query complexity

from O(N logN) to O(N) for a point cloud of size N with the drop of a k-d tree.

Yet further advantages of the image representation, from fast down-sampling to

signed distance computation, are not well-studied; a loss of data quality is also

inevitable due to synthetic projection, as shown in Fig. 6.1.

A cylindrical image view of spinning LiDAR’s raw scan lines, on the other hand,

is efficient without losing the data quality against its geometry-equivalent point

cloud. By nature, it supports fast projective data association [237] and neighbor

search in images. Therefore, direct visual odometry [168, 237] and signed distance

function (SDF) reconstruction [56, 168] are applicable.

In this paper, we revisit the LiDAR1 data formulation, and propose the range

image-based representation shown in Fig. 6.1. Our contributions can be summa-

rized as:

• A cylindrical image view of LiDAR data directly from the scan lines along

with an intrinsic spherical projective model that supports accurate conversions

between 2D and 3D;

1Without confusion, we regard camera-like solid-state LiDARs as Depth sensors in contrast to
spinning LiDARs. The term LiDAR specifically denotes spinning LiDARs in the rest of the paper.
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Figure 6.2: Surface reconstruction via SDF integration of the lab sequence from
LiDAR range images. Top and bottom left are the ground and the ceiling rendered
with Mitsuba 2 [172]. Bottom right are pictures of the scene.

• Fast and effective multi-scale registration and scalable SDF reconstruction for

range LiDAR images, accelerated on GPU. These operations are backward com-

patible to synthesized range images from point clouds, e.g., KITTI [82];

• A new collection of LiDAR range image sequences of both indoor and outdoor

scenes with pseudo ground truth poses, along with comprehensive evaluations

on the task of registration and surface reconstruction.

6.2 Related Work

Representation. LiDAR data are generally viewed as point clouds, an unordered

set of 3D points, the major format in prevalent LiDAR datasets [82, 96, 218]. Several

datasets and systems [19, 23, 31, 40, 43, 82, 206] project point clouds to the cylindri-
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cal image space and synthesize range images, but the data distribution is sparse

with significant artifacts. In RGB-D cameras, however, 3D point clouds are densely

packed as 2D images [46, 57, 180, 213], also known as organized point clouds [196].

The major difference comes from the hardware. LiDARs rely on the rotation of a

line scanner, hence the output is more likely to be interpreted as an unordered set,

whereas RGB-D scanners use structured sensors that by nature capture images. An

image formation allows efficient operations by indexing with coordinates, while a

point cloud requires trees [20, 156] or spatially hashed voxels [171] to enable fast

accessing by location.

Registration. Point cloud registration is a well-studied topic that aligns two point

sets with a known initial pose. In the point cloud format, variations of iterative

closest points (ICP) are classical solutions [22, 180, 195, 205]. These methods depend

on nearest neighbor search in 3D using trees [20], which is the bottleneck of the

performance. Learning-based algorithms [11, 51, 52, 137, 233] seek to avoid nearest

neighbor search via deep feature matching and/or the weighted Procrustes solver,

but in practice require even more computation resources. In the range image form,

projective nearest neighbor is used instead to circumvent the 3D nearest neighbor

search [123, 168, 237]. This formulation is introduced to LiDAR data [19, 206] by

synthetically projecting point clouds to cylindrical images.

Surface reconstruction. Conventional LiDAR reconstruction uses occupancy

grids [104, 108], where the space is coarsely divided into grids recording the

occupancy probability. While it preserves the coarse 3D geometry, a dense surface

reconstruction is often not applicable. Several surfel based dense reconstruction

algorithms exist for LiDARs [19, 179], but they are hardware or system dependent

and cannot be easily generalized; time-consuming triangulation is required to

generate a mesh. Truncated SDF (TSDF) reconstruction [161, 175, 193] has been

adapted to LiDARs, but still relies on the point cloud representation with point-ray

tracing, thus an adaptation to GPU is non-trivial due to the race conditions at ray

intersections. Surface reconstruction using depth images for RGB-D sensors is

more flexible due to the calibrated pinhole camera model. In addition to surfel-

based reconstruction [122, 237], dense volumetric TSDF reconstruction produces

water-tight surfaces for medium to large scale scenes [46, 65, 168, 171, 180] and can

function alone given pose and depth image inputs.
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In this paper we represent raw scans of LiDARs as cylindrical range images along

with projective LiDAR intrinsics. We then propose efficient approaches for LiDAR

range image based registration and reconstruction, accelerated on GPU. Due to the

simplicity of the formulation, while retaining a similar accuracy, our approach is

15–50× faster in surface reconstruction, and 5–150× faster in registration.

6.3 Representation
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Figure 6.3: Illustration of the projection/unprojection procedure of a spinning
LiDAR. Using the spherical projection model given the sensor intrinsics, 3D opera-
tions can be constrained on 2D range images with the routine of image processing.

LiDAR scanners of our interest complete scans by rotation. A fixed number

(H) of points are scanned roughly in a vertical line (corresponding to elevations)

through aligned laser rays, and an accumulation of W such lines form a complete

scan spanning horizontally from 0◦ to 360◦. Therefore, a H ×W range image can

be naturally formed, where each pixel stores a range scalar associated to a ray.

However, direct use of the raw LiDAR range map is not desirable. As shown in

Fig. 6.1, the interlacing artifacts occur due to the local ray offset of each scan line.

Hence, we need to adopt an azimuth intrinsic look-up table (LUT) θlut provided

by the manufacturer to compensate the offset. Similarly, a nonlinear elevation
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distribution associated with rays is defined by hardware design, in the form of

another LUT φlut. Given the ray-range image representation and the LUTs, we now

analyze the spherical projection Π : R3 → S(3) and unprojection Π−1 : R2×Ω→ R
3

functions defined on the range image Ω. We use (u, v) to indicate a pixel coordinate,

r = Ω(u, v) for the range reading, and (x, y, z) for the corresponding 3D coordinate.

6.3.1 Unprojection Π−1

A spinning LiDAR’s receiver in charge of range sensing is located on a cylinder of

radius r0 enclosing the sensor center, see Fig. 6.3. Therefore, the unprojection is a

combination of the receiver’s location on the cylinder, and a spherical transform of

a ray centered at the receiver:
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, (6.1)

θ(u, v) =
2πu

W
+ θlut[v], φ(v) = φlut[v], (6.2)

where θ(u, v) converts the column index u to the azimuth with a linear transform by

the ray’s horizontal offset θlut[v]. φ(v) directly reads the elevation from φlut. As the

LUTs and image size are predefined, pixel-wise LUTs can be further constructed

by reorganizing Eq. 6.1 as a pixel-wise linear function of r.

6.3.2 Projection Π

While the unprojection model is straightforward, its inversion is not due to the

receiver offset and the non-parametric LUTs. Assuming r0<<r in Eq. 6.1, we obtain

an approximation:
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then get û = W
2π
θ2 by temporarily omitting the offset θlut[v]. We then compensate

x and y from the r0 offset in Eq. 6.1 with approximated û and repeat the estimate

until convergence. With the known LUT φlut, we then search v by

v = argmin
t∈{0,1,··· ,H−1}

∥

∥φlut[t]− φ
∥

∥. (6.4)

To speed up the process, we construct an inverse LUT φ−1
lut with a predefined

resolution, and apply v = φ−1
lut (φ). In practice, for a φlut with H entries, a φ−1

lut

with 2H entries ensures the elevation index error bounded by ±1. Given the

estimated v, we finally obtain u by reverting Eq. 6.2: u = û− W
2π
θlut[v]. A chain of

aforementioned operations form the imperative projection function
[

u, v, r
]⊤

=

Π(
[

x, y, z
]⊤

). To our best knowledge, the consideration of pixel-wise ray offset

has not been presented so far in previous LiDAR unprojection and projection on

range images. Note that for the popular LiDAR dataset presented in unstructured

point clouds without intrinsics, such as KITTI [82], our model reduces to synthetic

projection [19] with θlut(·) = 0 and φlut(φ) = H · φmax−φ

φmax−φmin
, where (φmin, φmax)

indicate the sensor’s field of view.

6.4 Registration and Surface Reconstruction

6.4.1 Multi-scale Cylindrical Range Image Registration

We now register two LiDAR scans through index-based projective data association.

We take the source scan in the point cloud form p ∈ Psrc (by applying unprojection),

and the target scan in the range image form Ωdst.

With an initial transformation Rk ∈ SO(3), tk ∈ R3 (typically Rk initialized to

identity and tk estimated by aligning two point set centers), we get the associated

2A warp to [0, 2π] from [−π, π] is required when using arctan2.
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(a) Point2Plane [272] (c) FGR [271] (e) Synthetic (g) LUT

(b) G-ICP [205] (d) RANSAC [198] (f) Synthetic-Multi (h) LUT-Multi

Figure 6.4: Illustration of registration of a challenging pair in the dormitory sequence.
While point cloud based ICP variants fail, multi-scale projective range image
registration has a better convergence, and achieves comparable performance to
global registration methods with known intrinsic LUTs.

point cloud q ∈ Qdst by3

[u, v, r]⊤ = Π(Rkp+ tk), (6.5)

q = Π−1

(

u, v,Ωdst(u, v)

)

, (6.6)

where u, v, r are pixel coordinates and range, and Ωdst reads the range measure-

ments at (u, v). These operations can be easily vectorized and run in parallel.

Denote the correspondence set with C = {(pi,qj) | pi ∈ Psrc, qj ∈ Qdst}, we have

the nonlinear least squares estimate using Gauss-Newton from

Rk+1, tk+1 = argmin
R,t

∑

pi,qj∈C

ρ

(

L(Rpi + t,qj)

)

, (6.7)

whereL is the point-to-plane lossL(x,y) = n⊤
y (x−y) given the normal ny, attached

3 Image boundary check is ignored for clarity. Same for SDF reconstruction.
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with a robust kernel ρ [14]. The normal image can be efficiently constructed by

eigenvalue decomposition of nearest neighbors in a searching window, or simply

a cross product of two neighbor pixels [19]. Iterating Eqs. 6.5-6.7 constructs the

range image based registration algorithm. Implementation-wise, the projective

data assciation discards the use of a k-d tree that requires O(N logN) construction

and query time in two passes, therefore the O(N) correspondence search and linear

system construction can be finished in one pass in parallel.

While the cylindrical range image has a wide receptive field in the horizontal

direction, putative correspondences C are still limited. In view of this, we propose

multi-scale registration for the task. A range image pyramid is constructed by ac-

cessing strided range and normal images, retaining the original LiDAR intrinsics.

Projective transforms are performed at the finest level, but down-sampled on coor-

dinates at the given stride. Compared to point clouds, image-based downsampling

takes no time by only changing the strides in the projection model, and does not

need voxelization of point clouds that requires the O(N) construction of a spatial

hash map.

As a result, multi-scale registration for cylindrical images significantly boosts

fidelity of registration, and it lifts the local registration algorithm in the ICP-fashion

to be comparable to global registration approaches such as RANSAC. Fig. 6.4 and

Fig. 6.6 show registration examples.

6.4.2 Signed Distance Function from LiDAR Range Images

One of the key benefits of using range images for LiDARs is that we can naturally

apply parallel SDF estimation for dense surface reconstruction. SDF measures the

distance from an arbitrary query point to its nearest surface. With a perfect water-

tight mesh model, signed distance per point can be computed via ray casting [217].

In real world with accumulating data, such computation is intractable especially for

online usages. For LiDAR data, a common practice is to cast rays from sensor origin

to scan points and update samples along the ray. This formation, however, limits

the sampling distribution, and is not friendly to parallel computation due to race

conditions at ray intersections. Classical volumetric reconstruction [56, 168, 171]

projects arbitrary 3D points to depth images and computes weight average of
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(a) Students room (b) Lecture building (c) Lounge

(d) Square (e) Fountain (f) Dormitory

Figure 6.5: Surface reconstruction via SDF integration of selected sequences from
our dataset, overlaid with sensor trajectory (poses in blue, loop closures in green).
Top: indoor scenes. Bottom: outdoor scenes. Loop closures for indoor scenes are
omitted to avoid occlusion of geometry details.
truncated projective SDF to approximate the real SDF. It requires a range image

and a projection model where our representation fits.

To estimate the projective SDF from a query point x ∈ R
3, we find its projective

association in a range image Ωj with pose Rj ∈ SO(3), tj ∈ R
3, and estimate the

signed distance dj(x) along the projection ray:

[

u v r
]⊤

= Π(Rjx+ tj), (6.8)

dj(x) = Ωj(u, v)− r. (6.9)

With a sequence of LiDAR range measurements {ΩN
j=1} and their associated poses,

we can get a least squares estimate at query points, typically at discretized voxel

grid points:

d(x) = argmin
t

‖t− dj(x)‖2 =
∑

dj
N

, (6.10)
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which can be updated incrementally [168]. While the formulation still holds when

using LiDAR projective model, LiDAR has wide range, therefore a dense grid does

not scale to LiDAR range images. In this regard, we use ASH [67] to generate a

globally sparse locally dense hash grid for unbounded scene reconstruction. For

each point unprojected from a range image, we activate dense voxel blocks in

the shape of 163 within a certain radius; only the SDF value of activated voxel

blocks in the cylindrical viewing volume will be updated. Accelerated Marching

Cubes [63, 146] is applied to extract a triangle mesh at zero-crossing isosurfaces.

This approximate SDF computation at arbitrary x ∈ R
3 also opens the door to

the online training of the neural SDF [163, 217] with incremental LiDAR inputs,

where a multi-layer perceptron (MLP) is trained to predict SDF value at continuous

sampled positions with SDF readings. We leave a full adaptation of neural SDF

and surface reconstruction to range images as future work.

6.5 Dataset

There has been a plethora of LiDAR datasets [82, 96, 218], but most of them, if not

all, are presented in point clouds. We therefore construct a new dataset in the range

image format to fix this absence.

Data Collection.

We collect various indoor and outdoor sequences with an Ouster OS0 128 LiDAR.

The selection of Ouster is the result of its user-friendly access to raw scans; an

adaptation to Velodyne is also possible with low-level driver modifications. The

LiDAR is placed on a portable cart, see supplementary for details. A cart is a

good trade-off between flexibility and stability. It provides a stable platform that

reduces vibration comparing to a hand-held setup, and is akin to the most prevalent

vehicle-top setup but more flexible and works indoor. The easy-to-control motion

pattern enriches registration patterns and improves scene coverage for surface

reconstruction, in comparison to vehicle-top setups. The outdoor sequences are

collected on campus, varying from squares to dormitories. The indoor sequences

are collected in buildings, ranging from halls to lecture rooms. All the sequences

131



6. Revisiting LiDAR Registration and Reconstruction

are captured in the 128× 1024 resolution at 10 Hz. The sequence names are listed

in Table. 6.1 and their detailed statistics are in supplementary.

Pseudo Groundtruth Pose Generation.

To acquire poses of the range images without an available large scale motion

capture system, we utilize a modified multiway registration system [46] based on

Generalized ICP (G-ICP) [205], 3-pt FPFH-RANSAC [75], and robust pose graph

optimization. This setup of pseudo ground truth pose generation is common in the

RGB-D datasets [58, 247, 260] and has been widely used in the vision community.

For each sequence, we first apply G-ICP between adjacent frames to obtain

odometry measurements and build an initial pose graph. We then select key frames

every K = 10 frames, and exhaustively apply RANSAC (max 1M iterations with

confidence 0.999) between key frames. Valid global registration results are refined

with G-ICP, and inserted into the pose graph as loop closure edges. Finally, the pose

graph is optimized with a robust line process [46] to filter inconsistent edges and

output poses. The LiDAR scans per sequence are accumulated as a pseudo-ground

truth 3D point cloud for reconstruction evaluation.

6.6 Experiments

6.6.1 Baselines and Experimental Setups

Registration.

We denote our approach with LUT and LUT-Multi, when intrinsic LUTs are avail-

able, and their simplified versions [19, 206] denoted by Synthetic and Synthetic-Multi

with synthetic intrinsics. We select point-to-plane (Pt2Pl) and G-ICP [205] as ICP-

variant baselines, and fast global registration (FGR) [271], RANSAC [198] as global

registration baselines. We also compare against deep global registration (DGR) [51]

pretrained on KITTI, one of the state-of-the-art learning-based registration ap-

proaches. In all experiments, we run 50 iterations for ICP variants and single-scale

projective registration, {20, 20, 10} iterations for 3-level multi-scale registration,

1M iterations for RANSAC, and the default 64 iterations for FGR. For a controlled
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(a) Point2Plane [272] (c) FGR [271] (e) Synthetic

(b) G-ICP [205] (d) RANSAC [198] (f) Synthetic-Multi

Figure 6.6: Illustration of registration results on KITTI. While ICP variants con-
verge to inaccurate transformations, projective registration with synthetic intrinsics
results in better estimates, and can be further refined by multi-scale registration.

comparison, we estimate normals in the point cloud form with radius nearest

neighbor search, but organize them in the image domain. An accelerated computa-

tion of normal map directly from range image [168] is also available. We conduct

experiments on real-world sequences with enumerated frame distances, defined

by |j − i| for frame i and j. A larger frame distance indicates a more challenging

registration task. We use rotation error e(R,Rgt) = arccos
RR⊤

gt−1

2
and translation

error e(t, tgt) = ‖t − tgt‖2 as the evaluation metric. At each frame distance, we

sample M = 50 pairs and compute the errors. The distance threshold, serving as

the radius for neighbor search in baselines, and the robust psuedo-Huber kernel

size for our approaches, is 0.5m for outdoor scenes (KITTI and our dataset), and

0.2m for indoor scenes (our dataset).

Surface reconstruction.

We also compare our surface reconstruction module against volumetric reconstruc-

tion pipelines that supports LiDAR data, namely voxblox [175] (outputs triangle

meshes) and Octomap [108] (outputs point clouds). For evaluation, we use F-score

computed by F = 2precision·recall
precision+recall

, where precision defines the percentage of points in

the reconstruction with valid correspondences in the GT point cloud, and recall

is the opposite. Unless mentioned, we use 0.1m as the voxel size for outdoor
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Figure 6.7: Registration accuracy evaluation on KITTI sequence 00 with sampled
pairs of enumerated frame differences. For each box plot, a lower median and
smaller rectangle box is better. Without a LUT, projective registration with synthetic
LiDAR intrinsics achieves comparable performance to ICP variants and global
approaches.

scenes, and 4cm for indoor scenes. We clip faraway points to maintain a reasonable

memory footage and filter potential outliers. For indoor scenes and outdoor scenes

the clipping distances are 10m and 30m, respectively.

Implementation.

All the experiments are conducted on a machine with an NVIDIA RTX 3060 graph-

ics card and an 16 core Intel i7-11700 CPU. The code is written in C++/CUDA with

modularized python bindings.

6.6.2 KITTI Dataset

Before going through the evaluation on our collected dataset, we first briefly

evaluate on the KITTI dataset [82] with synthetic intrinsics to demonstrate the com-

patibility of our algorithms to point clouds. We deliver qualitative and quantitative

registration experiments and provide qualitative reconstruction results.
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Registration.

Fig. 6.6 shows the qualitative registration results. We observe that with challenging

translation, the projective association ensures a wider search range for correspon-

dences, and results in better convergence especially enhanced with multi-scale

processing. We also quantitatively evaluate the registration accuracy with varying

frame distances. Due to the fast moving speed, we limit the frame distance to 6

(otherwise overlaps between point clouds are limited). Here we use poses obtained

from CMRNet [36, 39] as refined GT poses.

In Fig. 6.7 we can observe that in comparison to ICP variants, projective reg-

istration has a comparable performance on translation and is consistently better

on rotation due to the cylindrical presentation’s advantage of a wide azimuth

receptive field. At large frame distances, their medium rotation and translation

error are also comparable to global registration results, including learning-based

DGR.

Surface Reconstruction.

In Fig. 6.8 we show the meshes extracted from TSDF reconstruction at city scale

on LiDAR data. With a limited GPU memory budget, we are able to reconstruct

scenes with a 20cm voxel size at 40 Hz, where points farther than 30m are clipped.

6.6.3 LiDAR Range Image Dataset

Registration.

On our LiDAR range image dataset, we select a typical indoor scene lecture building

and outdoor scene dormitory. The results are shown in Fig. 6.9. In general, regard-

less of indoor or outdoor setups, we observe that range image based projective

registration is comparable to ICP variants with small frame distances, and achieves

better performance on more challenging registration tasks with large frame dis-

tances. At such setups, multi-scale registration with an LUT even outperforms

global registration, including DGR, in most scenarios.
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Table 6.1: F-score of surface reconstruction. Our method is consistently the best.
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Surface Reconstruction.

In Fig. 6.5, we qualitatively show the reconstructed surfaces from SDF volumes

overlaid with the camera trajectory. We observe that in indoor scenes, our algorithm

reconstructs high quality surfaces, despite our range images having lower spatial

density. In addition, we are able to reconstruct high quality surfaces of large scale

outdoor scenes.

Quantitative results are shown in Table 6.1, where the valid correspondence

searching range is set to 3× voxel size for precision and recall computation in

F-score. Comparing to the baselines, our reconstruction achieves consistently the

highest F-score.

Runtime Evaluation.

We then demonstrate the efficiency of our approaches by evaluating average run

time on indoor and outdoor scenes separately. In Table 6.2 we observe that while

achieving comparable or better accuracy than state-of-the-art approaches, our

method is 15–50× faster in volumetric reconstruction, and 5–150× faster in regis-

tration.

6.6.4 Limitations

Our registration method has presented benefits both in efficiency and accuracy

in the experiments, yet there are several limitations. Although it has achieved

good performance with challenging rotations, it still has a reduced stability on

large translations that cannot be addressed by the cylindrical representation. Since
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Table 6.2: Run time evaluation. With parallel projective operations implemented
on GPU, our methods are at least one magnitude faster than baselines.
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fundamentally it is depending on dense nonlinear optimization, similar to other

local registration approaches, it may also fall into local optima when the scene’s

structures are not salient. Another limitation is that the projective model can be

disturbed by fast sensor motions and dynamic environments, where the projection

model needs modification for moving ray centers. In the future, we would attempt

to learn deep cylindrical image features for global feature matching using e.g. Spher-

ical CNNs [54]; we will also consider non-rigid transform with consecutive poses

assigned to each column [262].

6.7 Conclusions

We presented a range image based LiDAR data representation from raw sensor

data that naturally preserves the neighbor information. With an intrinsic spherical

projective model, it allows us to perform fast and accurate range image based

multi-scale registration and dense reconstruction. We then collected a new LiDAR

dataset in the image form, and perform comprehensive experiments for dense re-

construction and registration demonstrating the efficiency of our approaches. With

the proof of concept, we humbly hope the hardware manufacturers may expose

more user-friendly interfaces to generate LiDAR images for fast and accurate 3D

perception, and the vision community may find it easier to transfer the knowledge

from 2D to 3D.
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Figure 6.8: City-scale TSDF surface reconstruction of sequences 00 and 07 from
KITTI. Left: full reconstruction. Right: selected details.
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Figure 6.9: Registration accuracy evaluation on the indoor lecture building (top) and
the outdoor dormitory (bottom) sequences with sampled pairs of enumerated frame
differences. For each box plot, a lower median and smaller rectangle box is better.
Projective registration achieves comparable performance to baselines in general.
Multi-scale projective registration equipped with an LUT is the best, with a stable
performance at small frame distances and a better performance than even global
approaches at large frame distances.
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Chapter 7

Fast Monocular Scene Reconstruction

7.1 Introduction

Reconstructing indoor spaces into 3D representations is a key requirement for many

real-world applications, including robot navigation, immersive virtual/augmented

reality experiences, and architectural design. Particularly useful is reconstruction

from monocular cameras which are the most prevalent and accessible to causal

users. While much research has been devoted to this task, several challenges

remain.

Conventional monocular reconstruction from multi-view RGB images uses

patch matching [202], which takes hours to reconstruct even a relatively small

scene. Several 3D reconstruction methods [215, 251] have demonstrated fast recon-

struction by applying 3D convolutional neural networks to feature volumes, but

they have limited resolution and struggle to generalize to larger scenes.

Recently, unified neural radiance fields [160] and neural implicit representa-

tions were developed for the purpose of accurate surface reconstruction from

images [174, 231, 253]. While this was successfully demonstrated on single objects,

the weak photometric constraint leads to poor reconstruction and slow conver-

gence for large-scale scenes. Guo et al. [95] and Yu et al. [257] improved the quality

and convergence speed of neural field reconstruction on large-scale scenes by

incorporating learned geometrical cues like depth and normal estimation [70, 189],

however, training and evaluation remain inefficient. This is primarily because
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Figure 7.1: Color and semantic scene reconstruction from our system with monoc-
ular images and learned monocular priors.

these approaches rely on MLPs and feature grids [163] that encode the entire scene

rather than concentrating around surfaces.

In contrast to MLPs, an explicit SDF voxel grid can be adaptively allocated

around surfaces, and allows fast query and sampling. However, an efficient imple-

mentation of differentiable SDF voxel grids without MLPs is missing. Fridovich-

Keil and Yu et al. [77] used an explicit density and color grid, but is limited to

rendering small objects. Muller et al. [163] developed a feature grid with spatial

hashing for fast neural rendering, but its backbone hash map is not collision-free,

causing inevitable slow random access and inaccurate indexing at large scales.

Dong et al. [67] proposed a collision-free spatially hashed grid following Niess-

ner et al. [171], but lacks support for differentiable rendering. Several practical

challenges hinder the implementation of an efficient differentiable data structure:

1. a collision-free spatial hash map on GPU that supports one-to-one indexing

from positions to voxels; 2. differentiable trilinear interpolations between spatially

hashed voxels; 3. parallel ray marching and uniform sampling from a spatial hash
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(a) COLMAP [202] (b) NeRF [160] (c) VolSDF [253] (d) NeuS [231]

(e) ManhattanSDF [95] (f) MonoSDF-MLP [257](g) MonoSDF-Grid [257] (h) Ours

Figure 7.2: Qualitative reconstruction comparison on ScanNet [57]. While being
10× faster in training, we achieve similar reconstruction results to state-of-the-art
MonoSDF [257], with fine details (see Fig. 7.9).

map.

Our approach: we address such challenges using a differentiable globally sparse

and locally dense voxel grid. We transform a collision-free GPU hash map [211] to

a differentiable tensor indexer [181]. This generates a one-to-one map between

positions and globally sparse voxel blocks around approximate surfaces, and enables

skipping empty space for efficient ray marching and uniform sampling. We further

manage locally dense voxel arrays within sparse voxel blocks for GPU cache-friendly

contiguous data query via trilinear interpolation. As a result, using explicit SDF

grids leads to fast SDF gradient computation in a single forward pass, which can

further accelerate differentiable rendering.

This new data structure presents a new challenge — we can only optimize grid

parameters if they are allocated around surfaces. To resolve this, we make use

of off-the-shelf monocular depth priors [70, 189] and design a novel initialization

scheme with global structure-from-motion (SfM) constraints to calibrate these

unscaled predicted depths. It results in a consistent geometric initialization via

volumetric fusion ready to be refined through differentiable volume rendering.
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We additionally incorporate semantic monocular priors [139] to provide cues

for geometric refinement in 3D. For instance, we use colors and semantics to guide

the sharpening of normals around object boundaries, which in turn improves the

quality of colors and semantics. We enforce these intuitive notions through our

novel continuous Conditional Random Field (CRF). We use Monte Carlo samples

on the SDF zero-crossings to create continuous CRF nodes and define pairwise

energy functions to enforce local consistency of colors, normals, and semantics. Im-

portantly, we define similarity in a high dimensional space that consists of coordinates,

colors, normals, and semantics, to reject spatially close samples with contrasting

properties. To make inference tractable, we follow Krahenbuhl et al. [131] and use

variational inference, leading to a series of convolutions in a high-dimensional

space. We implement an efficient permutohedral lattice convolution [1] using the

collision-free GPU hashmap to power the continuous CRF inference.

The final output of our system is a scene reconstruction with geometry, colors,

and semantic labels, as shown in Fig. 7.1. Experiments show that our method is 10×
faster in training, 100× faster in inference, and has comparable accuracy measured

by F-scores against state-of-the-art implicit reconstruction systems [95, 257]. In

summary, we propose a fast scene reconstruction system for monocular images.

Our contributions include:

• A globally sparse locally dense differentiable volumetric data structure that

exploits surface spatial sparsity without an MLP;

• A scale calibration algorithm that produces consistent geometric initialization

from unscaled monocular depths;

• A fast monocular scene reconstruction system equipped with volume rendering

and high dimensional continuous CRFs optimization.

7.2 Related Work

Surface reconstruction from 3D data. Surface reconstruction has been well-studied

from 3D scans. The general idea is to represent the space as an implicit signed dis-

tance function, and recover surfaces at zero-crossings with Marching Cubes [146].

Classical works [56, 58, 67, 168, 171] quantize the 3D space into voxels, and inte-
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grate frame-wise SDF observations into voxels. Instead of direct voxels, recent

neural representations [214, 217, 275] use either a pure MLP or a feature grid to

reconstruct smoother surfaces. These approaches are often fast and accurate, but

heavily depends on high-quality depth input from sensors.

Surface reconstruction from RGB. A variety of classical and learning-based meth-

ods [169, 215, 251, 264] have been developed to achieve high quality multi-view

depth reconstruction from monocular images. These techniques usually construct

a cost volume between a reference frame and its neighbor frames, and maximize

the appearance consistency. A global volume can be optionally grown from the

local volumes [166, 215, 264] for scene reconstruction. While these approaches

succeed on various benchmarks, they rely on fine view point selection, and the

performance may be significantly reduced when the view points and surfaces are

sparse in space. Training on a large datasets is also required.

Recent advances in neural rendering [15, 160, 227] and their predecessors have

defined the surface geometry by a density function predicted by an MLP in 3D

space. They seek to minimize ray consistency with the rendering loss using test-

time optimization. While being able to achieve high rendering quality, due to the

ambiguity in the underlying density representation, accurate surfaces are hard to

recover. In view of this, implicit SDF representations [216, 231, 252, 253] are used

to replace density, where surfaces are better-defined at zero-crossings. To enable

large-scale indoor scene reconstruction, ManhattanSDF [95] and MonoSDF [257]

incorporate monocular geometric priors and achieve state-of-the-art results. These

approaches initialize the scene with a sphere [10], and gradually refine the details.

As a result, the training time can be long, varying from hours to half a day.

Monocular priors in surface reconstruction. Priors from monocular images have

been used to enhance reconstruction and neural rendering from images, by pro-

viding reasonable initialization and better constrained sampling space. A light

weight prior is the structure-from-motion (SfM) supervision [202], where poses

and sparse point clouds are reconstructed to provide the geometry. Similarly, dense

monocular priors including depths [144, 188, 189], normals [70], and semantic seg-

mentations [139]. Existing approaches either use only SfM [61], or enhance dense

priors by SfM via finetuning depth prediction networks [236] or depth completion

networks [192] for density-based neural rendering. Similarly, monocular priors
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Approximate Surface Viewing Ray

Sparse Voxel Blocks

Dense Voxel Arrays

Figure 7.3: Illustration of the sparse-dense data structure. The large voxel blocks (in
blue) are allocated only around approximate surfaces, and indexed by a collision-
free hash map. The voxel arrays (in red) further divide the space to provide
high-resolution details. Ray marching skips empty space and only activates hit
blocks (in bold blue). Trilinear interpolation of neighbor voxel properties allows
sampling at continuous locations.

are used to enhance SDF-based neural reconstruction [95, 257] with remarkable

performance. While emphasizing the guidance in sampling, these approaches

usually stick to MLPs or dense voxel grids, without being able to fully exploit the

sparsity of the surface distribution.

Sparse spatial representations. Sparse spatial representations have been well-

studied for 3D data, especially point clouds [49, 67, 171]. Often used data structures

are hash maps, Octrees [156], or a combination [167]. These data structures have

been adapted to neural 3D reconstructions and rendering to exploit spatial sparsity,

but they either depend on high quality 3D input [217], or focus on object-centered

reconstruction [53, 77, 163]. Their usage to scene reconstruction from monocular

images is yet to be explored.
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Figure 7.4: Illustration of our pipeline. We first use structure-from-motion (SfM)
to obtain sparse feature-based reconstruction. With the sparse point cloud and
covisibility information from SfM, we optimize the scale of predicted monocular
depth images (§7.3.3), and perform volumetric fusion to construct a globally sparse
locally dense voxel grid (§7.3.4). After initialization, we perform differentiable vol-
ume rendering to refine the details (§7.3.5), and apply high dimensional continuous
CRFs to finetune normals, colors, and labels (§7.3.5).

7.3 Method

7.3.1 Overview

The input to our method is a sequence of monocular images {Ii}. Prior to recon-

struction, similar to previous works [95, 257], we generate per-image monocular

priors including unscaled depth {Di} and normal {Ni} predicted by Omnidata [70],

and semantic logits {Si} from LSeg [139]. Afterwards, the system runs in three

major stages.

• Sparse SfM reconstruction [202] and initial depth scale optimization;

• Direct volumetric fusion for sparse voxel allocation and geometric initialization;

• Differentiable volume rendering and dense CRF smoothing for detail refinement.

Fig. 7.4 shows the pipeline of our framework. We will describe these stages in

detail after introducing our core data structure.
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7.3.2 Sparse-Dense Data Structure

In order to facilitate multi-view sensor fusion, SDF are approximated by truncated

SDF (TSDF) that maintain averaged signed distances to surface in a narrow band

close to the surface [56, 168, 171]. We take advantage of this property and develop

a globally sparse locally dense data structure. Global sparsity is attained through

allocating voxels only around approximate surfaces, which we index using a

collision-free hash map. Within these sparse voxels we allocate cache-friendly

small dense arrays that allow fast indexing and neighbor search storing SDF, color,

and optionally labels. The data structure is visualized in Fig. 7.3.

While similar structures have been used for RGB-D data that focus on forward

fusion [67, 171], our implementation supports both forward fusion via hierarchical

indexing, and auto-differentiable backward optimization through trilinear interpo-

lation, allowing refinement through volume rendering. In addition, SDF gradients

can be explicitly computed along with SDF queries in the same pass, allowing

efficient regularization during training.

Our data structure is akin to any neural networks that maps a coordinate x ∈ R
3

to a property [241], thus in the following sections, we refer to it as a function f . We

use fθd , fθc , fθs to denote functions that query SDF, color, and semantic labels from

the data structure, respectively, where θd, θc, and θs are properties directly stored at

voxels.

7.3.3 Depth Scale Optimization

Our sparse-dense structure requires approximate surface initialization at the allo-

cation stage, hence we resort to popular monocular geometry priors [70] also used

in recent works [257]. Despite the considerable recent improvement of monocular

depth prediction, there are still several known issues in applications: each image’s

depth prediction is scale-ambiguous, often with strong distortions. However, to

construct an initial structure we require a consistent scale.

To resolve this, we define a scale function φi per monocular depth image Di to

optimize scales and correct distortions. φi is represented by a 2D grid, where each

grid point stores a learnable scale. A pixel’s scale φi(p) can be obtained through

bilinear interpolating its neighbor grid point scales. We optimize {φi} to achieve
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consistent depth across frames

min
{φi}

∑

i,j∈Ω

h(φi, φj) + λ
∑

i

g(φi), (7.1)

where h and g impose mutual and binary constraints, and Ω is the set of covisible

image pairs.

Previous approaches [130] use fine-grained pixel-wise correspondences to con-

struct h via pairwise dense optical flow, and introduce a regularizer g per frame.

This setup is, however, computationally intensive and opposes our initial moti-

vation of developing an efficient system. Instead, we resort to supervision from

SfM’s [202] sparse reconstruction. It estimates camera poses {Ri, ti}, produces

sparse reconstruction with 3D points {xk} and their associated 2D projections

pxk→i at frame {Ii,Di}, and provides the covisible frame pair set Ω. With such, we

can define the unary constraint g via a reprojection loss

g(φi) =
∑

xk

‖dxk→i −Di(pxk→i)φi(pxk→i)‖2, (7.2)

dxk→i ·
[

pxk→i 1
]⊤

, Π
(

R⊤
i (xk − ti)

)

, (7.3)

where Π is the pinhole projection. Similarly, we define binary constraints by

minimizing reprojection errors across covisible frames:

h(φi, φj) =
∑

p∈Di

‖di→j −Dj(pi→j)φj(pi→j)‖2 + ‖Ii(p)− Ij(pi→j)‖2, (7.4)

x = Π−1

(

p,Di(p)φi(p)

)

, (7.5)

di→j ·
[

pi→j 1
]⊤

, Π(Ri,jx+ ti,j), (7.6)

where Π−1 unprojects a pixel p in frame i from deformed depth to a 3D point x, and

{Ri,j, ti,j} are relative poses. This loss enforces local consistency between visually

adjacent frames.

We use a 24× 32 2D grid per image, λ = 10−3, and optimize {φi} via RMSprop

with a learning rate of 10−2 for 500 steps.
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Figure 7.5: Sparse voxel grid (blue) allocation around 3D points from unprojection.
The grids are adaptive to scenes with different overall surface shapes. Ground
truth surface mesh are visualized for illustration.

7.3.4 Direct Fusion on Sparse Grid

Allocation

Similar to aforementioned works for online reconstruction [67, 171], the sparse

blocks are allocated by the union of voxels containing the unprojected points,

X = ∪iXi,Xi = ∪p
{

Dilate (Voxel(p))

}

, (7.7)

Voxel(p) =

⌊

RiΠ
−1(p,Di(p)φi(p)) + ti

L

⌋

, (7.8)

where L is the sparse voxel block size, and the dilate operation grows a voxel block

to include its neighbors to tolerate more uncertainty from depth prediction. A

dynamic collision-free hash map [67] is used to efficiently aggregate the allocated

voxel blocks. The dense voxel arrays are correspondingly allocated underlying the

sparse voxel blocks.

Fig. 7.5 shows the surface-adaptive allocation. In contrast to popular sparse

grids in a fixed bounding box used by neural rendering [77, 163], this allocation

strategy is more flexible to various shapes of rooms.
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Figure 7.6: With scale calibration and volumetric fusion, room-scale geometry
initialization can be achieved from monocular depth without any optimization of
the voxel grid parameters. The remaining task would be refining noisy regions
and prune outliers.

Depth, Color, and Semantic Fusion

Following classical volumetric fusion scheme [168, 171], we project voxels v back

to the images to setup voxel-pixel associations, and directly optimize voxel-wise

properties, namely SDF (θd), color (θc), and semantic label logits (θs).

θd(v) = argmin
d

∑

i

(

−
(

dv→i
−Di(pv→i

)φi(pv→i
)

)2

, (7.9)

θc(v) = argmin
c

∑

i

‖c− Ii(pv→i
)‖2, (7.10)

θs(v) =
s∗

‖s∗‖ , s
∗ = argmin

s

∑

i

‖s− Si(pv→i
)‖2, (7.11)

where the projection v→ i is given by Eq. 7.3. Note by definition, only associations

with SDF smaller than a truncation bound will be considered, minimizing the effect

of occlusion. It is worth mentioning that we use a simple L2 loss for semantic

logit instead of entropy losses, as it is considered one of the best practices in label

fusion [155]. The closed-form solutions of aforementioned voxel-pixel association

losses are simply averages. Therefore, with minimal processing time, we can

already achieve reasonable initial surface reconstruction by classical volumetric

SDF and color fusion, see Fig. 7.6.
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(a) Init fusion (b) De-noised (c) Refined

Figure 7.7: Comparison between 3 stages of reconstruction: initialization, de-
noising, and volume rendering refinement.

De-noising

Direct fused properties, although being smoothed average of observations across

frames per voxel, are spatially noisy and can result in ill-posed SDF distributions

along rays. Therefore, we perform a Gaussian blurring for the voxels along all the

properties. Thanks to the direct representation, with a customized forward sparse

convolution followed by a property assignment, we could accomplish the filtering

without backward optimizations. The effect of the de-noising operation can be

observed in Fig. 7.7(a)-(b).
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7.3.5 Differentiable Geometry Refinement

Volume Rendering

We follow MonoSDF [257] to refine geometry using monocular priors. For a pixel

p from frame i, we march a ray x(t) = ro + t · rd to the sparse voxel grid, sample a

sequence of points {xk = x(tk)}, apply volume rendering, and minimize the color,

depth, and normal losses respectively:

Lc(θc, θd) =

∥

∥

∥

∥

∑

k

w(xk)fθc(xk)− Ii(p)
∥

∥

∥

∥

, (7.12)

Ld(θd) =

∥

∥

∥

∥

∑

k

w(xk)tk − (aDi(p) + b)

∥

∥

∥

∥

2

, (7.13)

Ln(θd) =

∥

∥

∥

∥

∑

k

w(xk)∇fθd(xk)−Ni(p)

∥

∥

∥

∥

, (7.14)

w(xk) = exp
(

−
∑

j<k

α(xj)δj
)(

1− exp(−α(xk)δk)
)

, (7.15)

where δi = ti+1 − ti, depth scale a and shift b are estimated per minibatch in depth

loss with least squares [189], and the density α(xk) = l(fθd(xk)) is converted from

SDF with a Laplacian density transform from VolSDF [253]. To accelerate, points

are sampled in the sparse grid where valid voxel blocks have been allocated, and

the empty space is directly skipped.

Regularization

Eikonal regularization [10] forces SDF gradients to be close to 1,

LEik = (‖∇fθd(x)‖ − 1)2 . (7.16)

Similar to related works [253, 257], {x}s are samples combined with ray-based

samples around surfaces, and uniform samples in the sparse grids. It is worth

noting that in an explicit SDF voxel grid, fθd and ∇fθd can be jointly computed in
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the same pass:

fθd(x) =
∑

xi∈Nb(x)

r(x,xi)θd(xi), (7.17)

∇xfθd(x) =
∑

xi∈Nb(x)

∇xr(x,xi)θd(xi), (7.18)

where θd(xi) are directly stored SDF values at voxel grid points xi, and r is the

trilinear interpolation ratio function that is a polynomial with closed-form deriva-

tives. This circumvents costly double backward pass for autodiff gradient estima-

tion [253, 257], therefore speeds up training both by reducing computation burden

and allowing larger batch size.

Differentiable Continuous Semantic CRF

Through differentiable volume rendering, we have achieved fine geometry recon-

structions. We want to further sharpen the details at the boundaries of objects (e.g.,

at the intersection of a cabinet and the floor). We resort to CRFs for finetuning all

the properties, including colors, normals, and labels. Unlike conventional CRFs

where energy functions are defined on discrete nodes, we propose to leverage our

data structure and devise a continuous CRF to integrate energy over the surface

E(S) =

∫

S

ψu(x)dx+

∫

S

∫

S

ψp(xi,xj)dxidxj, (7.19)

where x ∈ S denotes a point on the surface. ψu and ψp denote unary and pairwise

Gibbs energy potentials. Following Krahenbuhl et al. [131], we adopt the Gaussian

edge potential

ψp(xi,xj) = µprop(xi,xj) exp
(

−(fi − fj)
TΛ(fi − fj)

)

, (7.20)

where µprop denotes a learnable compatibility function of a node property (e.g. nor-

mal), exp computes the consistency strength between nodes from feature distances

with the precision matrix Λ. A feature fi concatenates 3D positions, colors, normals,

and label logits queried at xi. We approximate the integration over the surface with

Monte Carlo sampling by finding zero-crossings from random camera viewpoints.
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The variational inference of the Gibbs energy potential with the mean-field

approximation results in a simple update equation

Q(xi)
+ ∝ exp

(

−ψu(xi)−
∑

j

ψp(fi, fj)Q(xj)

)

. (7.21)

Note that the summation in Eq. 7.21 is over all the sample points and compu-

tationally prohibitive. Thus, we use a high-dimensional permutohedral lattice

convolution [1] to accelerate the message passing, driven by our collision-free hash

map at high dimensions.

For each of the target properties prop ∈ {color, normal, label}, we define a loss

Lprop = Df

(

xprop‖Q(xprop)
)

with f-diveregence, conditioned on the remaining

properties plus the 3D positions. A joint loss is defined to optimize all the proper-

ties:

LCRF = λcolorLcolor
CRF + λnormalLnormal

CRF + λlabelLlabel
CRF. (7.22)

Optimization

The overalls loss function at refinement stage is

L = Lc + λdLd + λnLn + λEikLEik + LCRF. (7.23)

We optimize the grid parameters {θd, θc, θs}with RMSProp starting with a learning

rate 10−3, and an exponential learning rate scheduler with γ = 0.1.

7.4 Experiments

7.4.1 Setup

We follow Manhattan SDF [95] and evaluate on 4 scenes from ScanNet [57] and

4 scenes from 7-scenes [84] in evaluation. We use reconstruction’s F-score as the

major metric, along with distance metrics (accuracy, completeness), precision,

and recall. We compare against COLMAP [202], NeRF [160], UNISURF [174],
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NeuS [231], VolSDF [253], Manhattan SDF [95], and MonoSDF [257]. We train

MonoSDF to obtain output mesh. For the rest of the compared approaches, we

reuse reconstructions provided by the authors from Manhattan SDF [95], and eval-

uate them against high-resolution ground truth via TSDF fusion. The evaluation

metric and implementation details are in supplementary.

For geometric priors, unlike MonoSDF [257] that generates monocular cues

from 384 × 384 center crops, we follow DPT [189]’s resizing protocol and adapt

Omnidata [70] to obtain 480× 640 full resolution cues.

In all the experiments, we use a 83 voxel block grid with a voxel size 1.5cm. At

each step, we randomly sample 1024 rays per image with a batch size of 64. Due to

the reasonable geometric initialization, the loss usually drops drastically within

2× 103 iterations, and converges at 104 iterations, therefore we terminate training

at 104 steps for all scenes. Thanks to the efficient data structure, accelerated ray

marching, and closed-form SDF gradient computation, it takes less than 30 mins to

reconstruct a scene on a mid-end computer with an NVIDIA RTX 3060 GPU and

an Intel i7-11700 CPU.

Table 7.1: Train and inference time (per image) analysis on the ScanNet scene 0084.
Our approach both trains and evaluates faster.

Method Train (h) Inference (s)

NeuS [231] 6.64 28.32

VolSDF [253] 8.33 29.64

ManhattanSDF [95] 16.68 28.49

MonoSDF (MLP) [257] 9.89 33.80

MonoSDF (Grid) [257] 4.36 19.13

Ours 0.47 0.25

7.4.2 Runtime Comparison

We first profile the SDF query time given a collection of points on the aforemen-

tioned machine. Specifically, we sample k3, k ∈ {24, · · · , 29} grid points of 3D

resolution k, query the SDF and their gradients, and compare the run time. This

is frequently used for Marching Cubes [146] (requiring SDFs) and global Eikonal
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Figure 7.8: Query time comparison between ours and NGP-grid, lower is better. For
end-to-end query, ours is two magnitudes faster, and maintains a high efficiency
with a large number of point query. For the grid query operation itself, ours also
have a better performance than multiresolution feature grids.

regularization [10] (requiring SDF gradients). We compare against MonoSDF’s

NGP-grid backbone that uses the multi-resolution grid from Instant-NGP [163]. In

this implementation, three steps are conducted to obtain required values: query

from the feature grid; SDF inference from an MLP; SDF grad computation via

autograd. In contrast, ours allows its explicit computation in one forward pass, see

Eq. 7.18. Fig. 7.8 shows the breakdown time comparison.

We also show the training and inference time comparison in Table 7.2. Due to

the fine initialization and sparse data structure with accelerated ray sampling, our

approach can complete training in less than half an hour, and allows fast rendering

of color and depth at inference time.

7.4.3 Reconstruction Comparison

The comparison of reconstruction accuracy can be seen in Table 7.2. We can see

that our approach achieves high accuracy at initialization that surpasses various

baselines. With volume rendering and CRF refinement, it reaches comparable
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Table 7.2: Quantitative comparison of reconstruction quality. While being much
faster, our approach is comparable to the state-of-the-art MonoSDF [257] on Scan-
Net [57] and better on 7-scenes [84].

Method
ScanNet 7-Scenes

Acc ↓ Comp ↓ Prec ↑ Recall ↑ F-score ↑ Acc ↓ Comp ↓ Prec ↑ Recall ↑ F-score ↑

COLMAP [202] 0.074 0.239 0.602 0.363 0.442 0.069 0.417 0.536 0.202 0.289

NeRF [160] 0.605 0.178 0.186 0.302 0.225 0.573 0.321 0.159 0.085 0.083

UNISURF [174] 0.497 0.167 0.224 0.327 0.265 0.407 0.136 0.195 0.301 0.231

NeuS [231] 0.166 0.221 0.296 0.237 0.262 0.151 0.247 0.313 0.229 0.262

VolSDF [253] 0.378 0.139 0.284 0.330 0.301 0.285 0.140 0.220 0.285 0.246

ManhattanSDF [95] 0.081 0.099 0.626 0.544 0.581 0.112 0.133 0.351 0.326 0.336

MonoSDF (MLP) [257] 0.031 0.057 0.783 0.652 0.710 0.097 0.192 0.441 0.311 0.361

MonoSDF (Grid) [257] 0.034 0.046 0.796 0.711 0.750 0.113 0.100 0.433 0.392 0.411

Ours (Scale Optim.) 0.058 0.064 0.655 0.605 0.627 0.151 0.080 0.367 0.462 0.409

Ours (+ Volume Rendering) 0.045 0.060 0.774 0.667 0.714 0.140 0.081 0.417 0.450 0.433

Ours (+ CRF) 0.042 0.056 0.751 0.678 0.710 0.136 0.079 0.436 0.475 0.454

accuracy to the state-of-the-art MonoSDF [257] on ScanNet scenes, and achieves

better results on 7-scenes. The last three rows serve as the ablation study, showing

a major gain from volume rendering followed by a minor refinement gain from

CRF.

We also demonstrate qualitative scene-wise geometric reconstruction in Fig. 7.2,

and zoomed-in details in Fig. 7.9. It is observable that while achieving similar

global completeness, our method enhances details thanks to the adaptive voxel

grid and direct SDF mapping from coordinates to voxels.

The control experiments of CRF’s incorporated properties are visualized in

Fig. 7.10, where we see that semantic labels and normals have the highest impact

on reconstruction quality. Colors, on the other hand, have a lower impact mostly

due to the prevalent appearance of motion blurs and exposure changes in the

benchmark dataset. The same reason also affects feature-based SfM and monocular

depth estimate and leads to reduced performance of our approach on certain

sequences, see supplementary. We plan to incorporate more advanced semi-dense

reconstruction [220, 221] for robust depth prior estimate.
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(a) MonoSDF-MLP (b) MonoSDF-Grid (c) Ours

Figure 7.9: Detail comparisons between our method and current state-of-the-art
neural implicit method MonoSDF [257]. We preserve better geometry details while
being faster.

7.5 Conclusions

We propose an efficient monocular scene reconstruction system. Without an MLP,

our model is built upon a differentiable globally sparse and locally dense data

structure allocated around approximate surfaces. We develop a scale calibration

algorithm to align monocular depth priors for fast geometric initialization, and

apply direct refinement of voxel-level SDF and colors using differentiable ren-

dering. We further regularize the voxel-wise properties with a high-dimensional

continuous CRF that jointly refines color, geometry, and semantics in 3D. Our

method is 10× faster in training and 100× faster in inference, while achieving

similar reconstruction accuracy to state-of-the-art.
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Figure 7.10: Control experiments of the CRF modules’ impact to final reconstruction
quality on scene 0084, see Eq. 7.22.

7.6 Appendix

7.6.1 Depth Scaler Optimization

Our system adopts monocular depth map predictions from off-the-shelf net-

works [70] using the DPT backbone [189]. However, these depth priors are not

metric and the scale of each depth prediction is independent of others. Thus, we

define the unary and binary (pairwise) constraints to estimate consistent metric

scales.

Unary Constraints

Our pipeline relies on COLMAP’s [202] sparse reconstruction for unary constraints.

COLMAP supports sparse reconstruction with or without poses. Both modes start

with SIFT [147] feature extraction and matching. The with pose mode then runs

triangulation, while the without pose mode runs bundle adjustment to also estimate

poses. With pose mode usually runs within 1 min, while the without pose mode often

finishes around 5 mins for a sequence with several hundred frames. While our

system integrates both modes, for fair comparison on the benchmark datasets, we

adopt the with pose mode in quantitative experiments where ground truth poses

from RGB-D SLAM are given. Fig. 7.11 shows the sparse reconstructions from the
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0050 0084 0580 0616

Figure 7.11: Sparse reconstruction and covisibility matrix of ScanNet scenes se-
lected by ManhattanSDF [95].

with pose mode.

Binary Constraints

Once we have camera poses and the sparse reconstruction, we can define which

triangulated feature points are visible to which cameras (covisible). Thus, we can

create pairwise reprojection constraints between frames, similar to loop closures in

the monocular SLAM context [165]. We directly retrieve the feature matches ob-

tained by COLMAP, and setup such frame-to-frame covsibility constraints. Fig. 7.11

shows the covisibility matrices, where entry (i, j) indicates the number of covisible

features between frame i and j. They are used to establish binary constraints

between frames for refining monocular depth scales.

7.6.2 Volumetric Fusion

Eq. 9 in the main paper shows the least squares to initialize voxel-wise SDF. The

more detailed implementation follows KinectFusion [168], where a truncation
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function ψ is used to reject associations.

θd(v) = argmin
d

∑

i

‖d− ψ
(

do, µ
)

‖2, (7.24)

do = dv→i
−Di(pv→i

)φi(pv→i
), (7.25)

ψ(x, µ) = min(x, µ), (7.26)

where µ is the truncation distance. µ is associated with the Dilate operation and

voxel block resolution in Eq. 7-8 in the main paper. Formally, we define

DilateR(x) =

{

xi |
∥

∥

∥

∥

xi −
⌊x

L

⌋

∥

∥

∥

∥

0

≤ R

}

, (7.27)

where L is the voxel block size, xi are quantized grid points around, and R is

the dilation radius. We use R = 2 (corresponding to two 83 voxel blocks) to

account for the uncertainty around surfaces from the monocular depth prediction.

Correspondingly, we use µ = L ·R to truncate the SDF.

The volumetric fusion runs at 50 Hz with RGB and SDF fusion, and at 30 Hz

when additional semantic labels are also fused, hence serves as a fast initializer.

7.6.3 Hyper Parameters

We followed [257]’s hyperparameter choices and used λd = 0.1, λn = 0.05 for the

rendering loss.

For regularizors, we obtained from hyper param sweeps from the 0084 scene of

ScanNet that λeik = 0.1 for the Eikonal loss, and λcolor = 10−3, λlabel = 0.1, λnormal = 1

for the CRF loss.

In Gaussian kernels, we fix σsdf = 1.0 and σcolor = 0.1.

7.6.4 Evaluation

Metrics

We follow the evaluation protocols defined by ManhattanSDF [95], where the

metrics between predicted point set P and ground truth point set P ∗ are
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D(p, p∗) = ‖p− p∗‖, (7.28)

DAcc(P, P
∗) = mean

p∈P
min
p∗∈P ∗

D(p, p∗), (7.29)

DComp(P, P
∗) = mean

p∗∈P ∗
min
p∈P

D(p, p∗), (7.30)

Prec(P, P ∗) = mean
p∈P

(

(

min
p∗∈P ∗

D(p, p∗)
)

< T
)

, (7.31)

Recall(P, P ∗) = mean
p∗∈P ∗

(

(

min
p∈P

D(p, p∗)
)

< T
)

, (7.32)

F-score(P, P ∗) =
2 · Prec · Recall
Prec + Recall

, (7.33)

where T = 5cm.

Generation of P and P ∗

We follow previous works [95, 257] that applied TSDF refusion to generate P for

evaluation: use Marching Cubes [146] to generate a global mesh; render depth map

from mesh at selected viewpoints to crop points out of viewports; apply TSDF

fusion [272] to obtain the final mesh and point cloud P . For fairness, we render

depth at the resolution 480× 640 for all approaches to be consistent with input (in

contrast to MonoSDF that uses 968× 1296 in their released evaluation code), and

conduct refusion to a voxel grid at the resolution of 1cm.

To ensure the same surface coverage, we generate ground truth P ∗ at the same

viewpoints with the same image and voxel resolution, only replacing rendered

depth with ground truth depth obtained by an RGB-D sensor.

7.6.5 Additional Experimental Results

Ablation of scale optimization

To further illustrate the necessity of per-frame scale optimization, we show quantita-

tive reconstruction results without scale optimization in Table 7.3. Here, volumetric

fusion is conducted on an estimated single scale factor across all frames between

monocular depth and SfM, resulting in poor initial reconstruction.
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Table 7.3: Initial reconstruction results without per-frame scale optimization
(c. f. Ours (Init) in Table 7.4-7.5.)

Acc ↓ Comp ↓ Prec ↑ Recall ↑ F-score ↑
ScanNet 0.42 0.19 0.13 0.28 0.17

7-Scenes 0.36 0.12 0.19 0.43 0.26

Fusion and Refinement

Please see video supplementary for the incremental fusion from scaled depth, and

the refinement stage that converges to general shapes within several hundred steps.

Scene-wise statistics on ScanNet

We use reconstructed mesh provided by ManhattanSDF [95], and report scene-wise

statistics in Table 7.4. Reconstructions and corresponding ground truths are shown

in Fig. 7.12.

It is observable that our reconstructions have low error at fine details with rich

textures (e.g. 0050, furniture in 0580), but problems exist at texture-less regions

(e.g. walls in 0580 and 0616, floor in 0084) due to the inaccurate scale estimate

from sparse reconstructions. We plan to improve these by learning-based sparse or

semi-dense reconstruction, e.g. [220, 221].

Scene-wise statistics on 7-scenes

The reconstructed mesh and scene-wise statistics are not provided by Manhat-

tanSDF [95] for COLMAP, NeRF, UNISURF, NeuS, VolSDF, and ManhattanSDF.

Therefore, we reuse their reported averages as a reference in the main paper. Here

we report scene-wise numbers in Table 7.5 for the state-of-the-art MonoSDF [257]

and our method. Reconstructions and ground truths are in Fig. 7.13.

7-scenes have challenging camera motion patterns and complex scenes, thus

the overlaps between viewpoints are small, leading to reduced accuracy for all the

approaches. Although our approach produces less accurate floor and walls with

fewer features, it achieves fine reconstruction of desktop objects in general.
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Table 7.4: Scene-wise quantitative results on ScanNet.

Method
0050 0084

Acc ↓ Comp ↓ Prec ↑ Recall ↑ F-score ↑ Acc ↓ Comp ↓ Prec ↑ Recall ↑ F-score ↑

COLMAP [202] 0.049 0.129 0.707 0.531 0.607 0.032 0.121 0.807 0.577 0.673

NeRF [160] 0.704 0.081 0.215 0.517 0.304 0.733 0.248 0.157 0.213 0.181

UNISURF [174] 0.432 0.087 0.309 0.482 0.376 0.594 0.242 0.218 0.339 0.266

NeuS [231] 0.091 0.103 0.528 0.455 0.489 0.231 0.365 0.159 0.090 0.115

VolSDF [253] 0.071 0.071 0.600 0.599 0.599 0.507 0.165 0.163 0.247 0.196

ManhattanSDF [95] 0.032 0.050 0.849 0.755 0.800 0.029 0.041 0.822 0.784 0.802

MonoSDF (MLP) [257] 0.025 0.054 0.865 0.713 0.781 0.036 0.048 0.700 0.646 0.672

MonoSDF (Grid) [257] 0.027 0.045 0.854 0.764 0.807 0.035 0.043 0.796 0.774 0.785

Ours (Init) 0.034 0.051 0.775 0.684 0.727 0.047 0.048 0.705 0.725 0.715

Ours (+Rendering) 0.026 0.044 0.875 0.780 0.825 0.038 0.046 0.762 0.748 0.755

Ours (+CRF) 0.026 0.044 0.880 0.788 0.832 0.043 0.043 0.750 0.780 0.765

Method
0580 0616

Acc ↓ Comp ↓ Prec ↑ Recall ↑ F-score ↑ Acc ↓ Comp ↓ Prec ↑ Recall ↑ F-score ↑

COLMAP [202] 0.169 0.300 0.204 0.112 0.145 0.045 0.406 0.689 0.230 0.344

NeRF [160] 0.402 0.186 0.125 0.216 0.159 0.582 0.196 0.249 0.263 0.256

UNISURF [174] 0.392 0.192 0.131 0.188 0.155 0.571 0.148 0.237 0.300 0.265

NeuS [231] 0.206 0.275 0.167 0.114 0.135 0.137 0.140 0.330 0.289 0.308

VolSDF [253] 0.197 0.183 0.197 0.189 0.193 0.736 0.129 0.176 0.284 0.217

ManhattanSDF [95] 0.205 0.240 0.149 0.124 0.135 0.058 0.066 0.684 0.513 0.586

MonoSDF (MLP) [257] 0.025 0.040 0.867 0.759 0.809 0.039 0.087 0.702 0.488 0.576

MonoSDF (Grid) [257] 0.039 0.048 0.718 0.661 0.688 0.033 0.048 0.815 0.646 0.721

Ours (Init) 0.076 0.059 0.574 0.582 0.578 0.076 0.097 0.566 0.427 0.487

Ours (+Rendering) 0.070 0.080 0.760 0.636 0.692 0.046 0.070 0.699 0.504 0.586

Ours (+CRF) 0.046 0.050 0.707 0.682 0.694 0.057 0.080 0.659 0.504 0.571

Table 7.5: Scene-wise quantitative results on 7-Scenes.

Method
chess heads

Acc ↓ Comp ↓ Prec ↑ Recall ↑ F-score ↑ Acc ↓ Comp ↓ Prec ↑ Recall ↑ F-score ↑

MonoSDF (MLP) [257] 0.160 0.390 0.250 0.132 0.173 0.068 0.188 0.586 0.353 0.440

MonoSDF (Grid) [257] 0.113 0.143 0.324 0.267 0.293 0.133 0.099 0.305 0.327 0.315

Ours (Init) 0.164 0.108 0.278 0.350 0.310 0.186 0.083 0.288 0.401 0.335

Ours (+Rendering) 0.147 0.111 0.367 0.389 0.378 0.074 0.062 0.543 0.568 0.555

Ours (+CRF) 0.147 0.107 0.368 0.391 0.379 0.071 0.057 0.559 0.626 0.591

Method
office fire

Acc ↓ Comp ↓ Prec ↑ Recall ↑ F-score ↑ Acc ↓ Comp ↓ Prec ↑ Recall ↑ F-score ↑

MonoSDF (MLP) [257] 0.087 0.128 0.338 0.236 0.278 0.075 0.064 0.592 0.522 0.555

MonoSDF (Grid) [257] 0.147 0.077 0.539 0.471 0.503 0.061 0.081 0.564 0.504 0.533

Ours (Init) 0.168 0.068 0.398 0.483 0.436 0.087 0.058 0.503 0.616 0.554

Ours (+Rendering) 0.180 0.081 0.330 0.400 0.362 0.160 0.072 0.426 0.445 0.435

Ours (+CRF) 0.164 0.080 0.340 0.400 0.367 0.162 0.068 0.474 0.490 0.482

164



7. Fast Monocular Scene Reconstruction

0050 0084 0580 0616

Figure 7.12: Error heatmap from our reconstruction (first row) to groundtruth
(second row) for each scene in ScanNet [57]. Points are colorized by distance error
ranging from 0 (blue) to 5cm (red) to its nearest neighbor in ground truth. Points
with error larger than 5cm are regarded as outliers and colored in black.

chess heads office fire

Figure 7.13: Error heatmap from our reconstruction (first row) to groundtruth
(second row) for each scene in 7-Scenes [84]. The colorization is the same as
Fig. 7.12.
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Chapter 8

Conclusions

8.1 Contributions

In this thesis, I have developed reconstruction systems aimed at high-quality dense

surface reconstruction for RGB-D, LiDAR, and monocular data. By emphasizing

spatial sparsity in 3D, I have improved the quality and speed of global registration

and surface reconstruction across various scenarios. The main contributions of this

thesis can be summarized as follows:

• A hierarchical reconstruction system that serves as a foundation for the devel-

opment and integration of various registration and reconstruction techniques.

• Novel supervised and self-supervised approaches for global registration,

leveraging sparse convolutional networks to learn point-wise features and

their correspondences, significantly improving registration speed and accu-

racy.

• A high-performance spatial hashing engine that enables efficient scene rep-

resentation, demonstrated through its applications in dense RGB-D SLAM,

large-scale LiDAR surface reconstruction, and fast monocular scene recon-

struction with better performance and less effort of development.
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8.2 Future Works and Open Problems

The immediate ongoing work is the combination of the spatial hashing engine with

neural networks. In contrast to Instant-NGP [163], our approach, with collision-free

hashing, can precisely capture the spatial sparsity and neighbors of the place-of-

interest at the encoding stage. I hope this will lead to faster convergence and better

detail recovery, especially for the large-scale surface reconstruction task. I also aim

to study how the sampler from the spatial sparse data structure can be enhanced

by neural samplers [15, 16], which can quickly skip hard empty spaces and allow

soft sampling in occupied space simultaneously.

In the long term, there are various open problems to investigate.

Semantic Information

We can extract geometric sparsity purely from input data, through which we

can extract, correspond, and register point cloud features and conduct surface

reconstruction in regions of interest. However, they face problems with insufficient

input. For instance, learned features can be inaccurate on smaller objects with much

sparser measurements, leading to registration failure; occlusions during scans will

cause incomplete reconstruction of larger scenes. To address such problems, I hope

to incorporate multi-modal and semantic information so that objects and scenes can

be completed, better sampled, registered, and reconstructed properly. A direct

application will be densifying sparse LiDAR scans along with RGB data annotated

with rich semantic labels and reconstructing complete scenes at scale.

Dynamic Scenes

While the 3D sparsity can be intuitively captured through measurements in the

static setup, properly defining sparsity in the spatio-temporal 4D space is yet

to be revealed. We need to determine whether we should maintain sparsity in

the 3D canonical space [170] and deform it in time or simply encode it in the 4D

space [185]. We also need to consider whether volumetric space division is still a

good candidate or if the curse of dimensions (e.g.the number of 1-radius neighbors

grows from 33 = 27 to 34 = 81) will force us to adopt another representation, such
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8. Conclusions

as permutohedral lattices [194]. To investigate these questions, we need theoretical

proofs, controlled experiments, and comprehensive datasets.

Ultimately, we are to reconstruct the real world in 3D at scale with permanent static

components (floors and walls), temporary static objects (furniture and plants),

and dynamic objects (humans, animals, and interactable small objects) through

semantic understandings and dynamic modeling, and develop practical interactive

applications with tractable computation enabled by exploiting sparsity.
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