
Latent Skill Models for Offline

Reinforcement Learning

Siddarth Venkatraman

CMU-RI-TR-23-26

May 21, 2023

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Jeff Schneider, advisor

David Held
Lili Chen

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright © 2023 Siddarth Venkatraman. All rights reserved.





To those who supported me, especially my parents and brother.



iv



Abstract

Offline reinforcement learning (RL) holds promise as a means to learn
high-value policies from a static dataset, without the need for further
environment interactions. However, a key challenge in offline RL lies in
effectively stitching portions of suboptimal trajectories from the static
dataset while avoiding extrapolation errors arising due to a lack of support
in the dataset. Existing approaches use conservative objectives that favor
pessimistic value functions or rely on generative modelling with noisy
Monte Carlo return-to-go samples for reward conditioning. The key
challenge in offline RL is identifying the behavioral primitives (a.k.a skills)
that exist in the offline dataset, and chain these behaviors together to
produce high-value policies.

In this thesis, we investigate latent variable models having different levels
of expressiveness to model skills as compressed latent vectors, and then
compose these skills to solve a specific task. We first describe a Variational
Autoencoder (VAE) based method which learns a temporally abstract
world model that predicts the state outcome of executing a skill, and
then uses this model to do Online Planning with Offline Skill Models
(OPOSM). We then extend this method to instead work with a Vector-
Quantized VAE to learn a bank of discrete latents skills (VQSkills).
Finally we investigate using latent diffusion models to learn a multimodal
skill prior, and then use this prior to perform batch constrained Q-learning.
We call this algorithm Latent Diffusion Constrained Q-Learning (LDCQ).
We empirically demonstrate the effectiveness of these algorithms to learn
high-value policies in the D4RL benchmark suite.
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Chapter 1

Introduction

Reinforcement Learning (RL) techniques have proven to be very effective at solving

complex decision making problems given enough environment interactions during

training. RL agents have achieved superhuman performance in complex games

such as Go (Silver et al. [58], Silver et al. [59]), Chess (Schrittwieser et al. [54]),

Atari (Mnih et al. [42]), Dota (Berner et al. [4]) and Starcraft (Vinyals et al. [71]).

Reinforcement Learning has also demonstrated great success in producing policies

suitable for complex optimization tasks such as prediction of protein folding (Jumper

et al. [30]), control of tokamaks for nuclear fusion (Degrave et al. [7]) and finding

efficient tensor factorization for matrix multiplication (Fawzi et al. [10]). Despite

these successes, RL has remained difficult to apply in real world robotics control

settings. A major reason for this is the sample complexity of popular RL algorithms,

and the difficulty with obtaining the required amount of data in any real world control

setting. In domains like self driving for example, it is prohibitively expensive, unsafe,

and slow to deploy an agent on real roads to collect the necessary data to learn a

high value driving policy.

Offline Reinforcement Learning (Levine et al. [37]) offers a promising approach to

learning policies from static datasets. These datasets are often comprised of undirected

demonstrations and suboptimal sequences collected using different behavior policies.

Unlike simple behavioral cloning, offline RL seeks to improve upon the behavior

policy instead of simply mimicking it. In many tasks such as self driving, while

deploying an RL agent to learn from environment interactions is not feasible, there is
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1. Introduction

a large amount of driving data we can collect from human drivers that we could use

to train offline RL policies. These policies can also then be finetuned with online RL

training with significantly fewer real world interactions. However, offline RL presents

a whole new host of challenges to deal with, as it is the most extreme version of

off-policy learning where the agent must learn from demonstrations not under its

own policy. Because the agent cannot interact with the environment, policies that

stray outside the support of the behavior datasets can have unpredictable behavior.

The key challenge in offline RL is to learn policies that improve upon the behavior

policy while remaining within states in the dataset support.

At the core of many offline RL algorithms is an attempt to mitigate the extrap-

olation error which arises while querying the learned Q-function on out-of-support

samples for policy improvement. In order to extract the best policy from the data,

Q-learning uses an argmax over actions to obtain the temporal-difference target. How-

ever, querying the Q-function on out-of-support state-actions can lead to errors via

exploiting an imperfect Q-function (Fujimoto et al. [13]). This leads to compounding

bootstrapping error that results in learning a suboptimal policy.

Behavior policies in offline RL data can be highly multimodal due to either being

collected from undirected demonstrations, or bevause the demonstrator can solve the

task in multiple ways. Human data especially can be very multimodal, and often

suboptimal. The offline RL objective in many cases can be reduced to stitching

together behavioral primitives from the offline dataset to solve the specified task. We

will refer to these behavioral primitives extracted from undirected demonstrations as

skills. If we can ensure our policy always picks skills that are in the dataset support,

we can prevent extrapolation error. To extract these skills from the dataset, recent

methods (Pertsch et al. [45], Ajay et al. [2]) have proposed to learn the behavior

policy using latent variable models, and to express these skills as compressed latent

vectors.

In chapter 3, we first describe a novel algorithm which learns temporally abstract

world models to predict the state outcome of executing these latent skills, and then

chains together skills to maximize reward in an environment using MPC. In many

environments the world model can be generalized easier than value function outside

the dataset support, thus mitigating extrapolation error. The use of a temporally

abstract world model also simplifies long horizon skill stitching as we will show.

2



1. Introduction

We use a Variational Autoencoder (Kingma and Welling [32]) to learn a latent

skill representation. The decoder of the VAE consists of both the low level control

policy and the temporally abstract world model. We show that naive optimization

of the VAE evidence lower bound objective (ELBO) does not result in learning

an approximate posterior that respects the true causal structure of the Markov

Decision Process (MDP). We instead propose an Expectation-Maximization (EM)

training objective that allows us to learn causally correct skill models with amortized

variational inference. We call this algorithm ”Online Planning with Offline Skill

Models”, or OPOSM. We then extends OPOSM to learn discrete latent skills by

replacing the VAE with a Vector-Quantized Variational Autoencoder (VQ-VAE)

(van den Oord et al. [68]) as the skill model. We show that the discrete latent

variables can better capture the multimodality present in the offline datasets than a

conditional Gaussian distribution used in a standard VAE. We also show that using

discrete latent variables can reduce exploitation of the world model during planning.

We call this algorithm VQSkills.

Next, we investigate further the relationship between the temporal abstraction of

the skills and the multimodality in the latent space. We show that more expressive

generative models are necessary to leverage more high information latents. Recently,

diffusion generative models (Sohl-Dickstein et al. [60], Song and Ermon [62]) have

demonstrated remarkable success in complex tasks such as image generation (Ramesh

et al. [47]) and neural rendering (Jun and Nichol [31]). Diffusion has been used for

offline RL by modelling trajectories in the offline dataset, and planning using classifier

guidance (Janner et al. [29]), or return conditioning (Ajay et al. [3]). In chapter 4

we propose a novel algorithm using latent diffusion models to learn for expressive

multimodal skill priors, and use this model to learn abstract Q-functions of the

form Q(s, z) through batch-constraining. The Batch-constrained Q-Learning (BCQ)

(Fujimoto et al. [13]) framework allows learning offline RL policies without introducing

pessimism in the value function or difficult to optimize objectives. This allows us to

learn Q functions only querying skills within the support of the behavior dataset,

preventing extrapolation error. We call this algorithm Latent Diffusion-Constrained

Q-Learning, or LDCQ.

We evaluate all our algorithms on the D4RL benchmark suite (Fu et al. [11]),

which contains several offline RL datasets for tasks in various environments. Our

3



1. Introduction

results are competitive with state-of-the-art (SOTA) offline RL algorithms. Our latent

skill algorithms particularly excel at sparse reward tasks which require long horizon

reasoning. We find that the performance gains come primarily due to temporal

abstraction. We also show empirically in these tasks that improving the generative

model from a VAE to an expressive latent diffusion model reduces extrapolation error

and thus results in better task performance.

To sum up, in this thesis we propose latent variable skill models of different levels

of expressiveness to model behaviors in offline datasets, and use these skill models to

create high value policies. We propose learning temporally abstract world models to

do MPC with these latent skills to do efficient long horizon planning. We also propose

a model-free skill learning algorithm using latent diffusion which achieves SOTA in

several challenging offline RL tasks in the D4RL benchmark suite. The proposed

algorithm is simple to tune, and scales well with more data since this is directly tied

to the expressiveness of the generative model. Diffusion models have been shown to

scale extremely well in other generative modelling domains, and by framing offline

RL as a generative modelling problem we can leverage these models to learn complex

and high-value control policies in domains where suboptimal demonstrator data is

cheap and simple to obtain but environment interactions are costly.

4



Chapter 2

Background

2.1 Reinforcement Learning

2.1.1 Preliminaries

Reinforcement Learning (RL) is a sub-field of machine learning inspired by dopamine-

maximization mechanisms studied in behavioral psychology. In the RL framework,

the agent exists in an environment, and takes actions in it to obtain rewards. This

reward is considered to be generated from the environment in response to actions

executed by the agent from a certain state. The goal in RL is for the agent to learn

through environment interactions to produce actions that maximize the total reward.

We now lay out the concrete mathematical framework for RL which previously

described at a high level. In the RL framework, every task has an associated Markov

Decision Process (MDP). This MDP is a tuple ⟨ρ0,S,A, r, P, γ⟩, where ρ0 is the initial

state distribution, S is a set of states, A is a set of actions, r : S × A → R is the

reward function, P : S × A × S → [0, 1] is the transition function that defines the

probability of moving from one state to another after taking an action, and γ ∈ [0, 1)

is the discount factor that determines the importance of future rewards. The goal in

RL is to learn a policy distribution π(a|s); a ∈ A, s ∈ S, i.e., a mapping from states

to actions, that maximizes the expected cumulative discounted reward E[
∑∞

t=0 γ
trt].

In deep RL, we parameterize the policy with parameters θ and represent this

as πθ(a|s). We represent a state-action trajectory tuple compactly with τ =

5



2. Background

Figure 2.1: The Reinforcement Learning framework: The agent uses its policy
to generate an action conditioned on its current state. The environment then changes
its state based on its transition dynamics, and the agent receives the new state and
reward generated by the environment. Figure from Sutton and Barto [66].

(s0,a0, s1,a1, ...). Then we can represent the distribution of trajectories obtained

under the policy πθ as pθ(τ ). The objective in RL is now to find the optimal policy

parameters θ∗ such that:

θ∗ = argmax
θ

Eτ∼pθ(τ)[
∞∑
t=0

γtrt] (2.1)

2.1.2 Value functions

Value functions are useful tools to learn policies in RL. For a policy π there are two

types of value functions, the state value function V π(s) and the action value function

Qπ(s,a). The V-function is the expected discounted return starting at the state s

under the policy π, while the Q-function is the expected discounted return starting

from state s and taking action a and then following the policy π. There is a simple

equation relating these two functions:

V π(s) = Ea∼π(a|s)[Q
π(s, a)] (2.2)

6



2. Background

The optimal value functions denoted as V ∗ and Q∗ are the value functions under the

optimal policy πθ∗ . Given the optimal Q-function, we can get a deterministic optimal

policy function π∗(s) for any state s by greedy maximization:

π∗(s) = argmax
a

Q∗(s, a) (2.3)

Thus, all we need to obtain the optimal policy is the optimal Q-function.

2.1.3 Q-learning with Deep Q-Networks

The basis for many RL algorithms is Q-learning. In deep RL where the Q-function

is parameterized by a neural network, DQN (Mnih et al. [43]) is the base algorithm

for learning the optimal Q-function. In DQN, we collect rollouts under the current

policy π(s) = argmax
a

Qθ(s,a) and then minimize the error between the Q-function

prediction Qθ(st, at) and its corresponding temporal difference (TD) target r(st, at) +

γQθ(st+1, argmax
a

Qθ(st+1, a)) (Sutton and Barto [65]). To make learning more stable,

we maintain a separate target Q-network that lags behind the current Q-network.

The base DQN algorithm is detailed in Algorithm 1:

2.1.4 Online RL

This is the most straightforward RL setting, where the agent gathers experiences by

constantly exploring and exploiting the environment, getting live feedback to update

its policy. This can be further divided into on-policy and off-policy algorithms.

In the on-policy setting, all data used for policy updates are obtained under the

current policy. This form of RL can be very effective at learning high-value policies

but is quite data inefficient, since the agent cannot reuse data collected earlier in

training under a previous policy for making new policy updates. Some popular

on-policy RL algorithms are REINFORCE (Sutton et al. [67]) and Proximal Policy

Optimization (PPO) (Schulman et al. [55]).

Off-policy RL is a paradigm in which an agent can learn from data generated by

a different policy than the one being updated. For online off-policy algorithms, the

agent can interact with environment to collect new experiences as well, but stores

previously collected data into a replay buffer for future policy updates. Algorithms

7



2. Background

Algorithm 1 Deep Q-Network (DQN)

Input: Initialize replay buffer D
Initialize action-value function Qθ with random weights
Initialize target action-value function Q̂ with weights of Qθ

Set exploration rate ϵ, minibatch size B, discount factor γ, maximum number of
episodes N , maximum number of steps per episode T

1: for episode = 1 to N do
2: Initialize state s1
3: for t = 1 to T do
4: With probability ϵ select a random action at
5: Otherwise, select action at = arg maxaQ(st, a)
6: Execute action at, observe reward rt and new state st+1

7: Store transition (st, at, rt, st+1) in replay buffer D
8: Sample random minibatch of transitions (sj, aj, rj, sj+1) from D
9: Set target for iteration i as

yj =

rj if episode terminates at step j + 1

rj + γmaxa′ Q̂(sj+1, argmax
a

Q̂(sj+1, a))) otherwise

10: Perform a gradient descent step on the loss

L(θ) = (yj −Qθ(sj, aj))
2

11: Every C steps, reset Q̂ = Qθ

12: end for
13: end for

that can work with off-policy data are generally significantly more data efficient.

Some popular off-policy RL algorithms are DQN (Mnih et al. [43]), Soft Actor-Critic

(SAC) (Haarnoja et al. [16]) and Twin Delayed DDPG (TD3) (Fujimoto et al. [12]).

2.1.5 Offline RL

Offline RL (Levine et al. [37]) focuses on learning from a fixed dataset of pre-collected

experiences from a behavior policy without further interaction with the environment.

In offline RL, the data is typically obtained from an external source, such as human

demonstrations or historical data. The agent learns from this fixed dataset to improve

its policy without any additional interaction with the environment. Offline RL is

8



2. Background

particularly useful when online data collection is costly, dangerous, or slow. In this

thesis, we focus on the offline RL setting.

In offline RL, the agent has access to a static dataset D = {sit,ait, sit+1, r
i
t} of

transitions generated by a unknown behavior policy πβ(a | s) and the goal is to learn

a new policy using only this dataset without interacting with the environment. Unlike

simple behavioral cloning, offline RL methods seek to improve upon the behavior

policy used to collect the offline dataset. The distribution mismatch between the

behavior policy and the training policy can result in problems such as querying

the target Q-function with actions not supported in the offline dataset leading to

an optimism bias. This bias results in compounding error during Q-learning, and

the lack of new environmental interactions means these errors cannot be corrected

with feedback. This is called extrapolation error. At the goal of many offline RL

algorithms is mitigating the extrapolation error during Q-learning. We now discuss

some important offline RL algorithm classes.

Conservative methods

These methods alter the learning objective to try to keep the target policy close

the behavior policy, increasing conservatism. A popular offline RL algorithm of this

type is Conservative Q-Learning (CQL) (Kumar et al. [36]), which augments the

Q-Learning objective to encourage a pessimistic bias to the Q-function outside the

behavior support:

L(θ) = α(Es∼D,a∼µ(a|s)[Qθ(s, a)]− Es∼D,a∼π̂β(a|s)[Qθ(s, a)]) + ||TDError||22 (2.4)

The objective reduces Q-values for state-actions sampled by the current policy µ and

raises Q-values for state-actions drawn from the behavior support. The α multiplier

controls the trade-off between conservatism and policy improvement.

Batch-constrained methods

In batch-constrained Q-learning (BCQ), the target Q-function is constrained to only

be maximized using actions that were taken by the demonstrator from the given state

9



2. Background

(Fujimoto et al. [13]).

π(s) = argmax
a

s.t.(s,a)∈D

Q(s, a) (2.5)

In a deterministic MDP setting, BCQ is theoretically guaranteed to converge to the

optimal batch-constrained policy. In any non-trivial setting, constraining the policy

to actions having support from a given state in the dataset is not feasible, especially

if the states are continuous. Instead, a function of the form πψ(a | s) must be learned

on the demonstrator data and samples from this model are used as candidates for

the argmax:

π(s) = argmax
ai∼πψ(a|s)

Q(s, ai) (2.6)

The BCQ framework is attractive because the quality of the learnt policy is largely

dependent on the expressiveness of the generative model, and its fit to the behavior

policy. In our LDCQ method described in chapter 4, we leverage latent diffusion

models to do constrained Q-learning.

Some other algorithms such as Implicit Q-Learning (IQL) (Kostrikov et al. [34])

also try to learn a batch-constrained policy, but do so without the need for a generative

model to sample actions. In IQL’s case, it does so by using an expectile regression

loss to do a tradeoff between DQN and SARSA. This is dependent on the expectile

parameter τ , and as τ → 1 the policy converges to the optimal batch constrained policy.

However, raising τ closer to 1 makes the optimization problem more challenging.

2.1.6 Model-Free RL

Model-Free RL methods directly learn a policy or value function from interactions

with the environment without explicitly building a model of the environment. These

methods make decisions based on trial and error and learn from the observed rewards

and states. Some popular Model-Free RL algorithms are DQN, PPO and SAC.

2.1.7 Model-Based RL

Model-based RL (MBRL) methods involve building an explicit model of the environ-

ment. These models capture the transition dynamics of the environment, allowing

the agent to plan ahead and simulate possible trajectories before taking actions. The

10
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model can be a learned model or a known model of the environment. By leveraging

the learned model, the agent can optimize its policy more efficiently and reduce

the number of interactions with the real environment. Model-based RL methods

can achieve faster learning and sample efficiency compared to model-free methods.

However, building an accurate model can be challenging, and errors in the model can

lead to suboptimal policies. In some algorithms, the model is used for planning at test

time as well. Some popular model based RL algorithms are MuZero (Schrittwieser

et al. [54]), Dreamer (Hafner et al. [17]), MBPO (Janner et al. [27]) and PlaNet

(Hafner et al. [18]).
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2.2 Latent Variable Models

Latent variable models are a class of statistical models that aim to capture hidden or

unobserved factors, known as latent variables, that influence the observed data. These

models are used to represent complex relationships and dependencies among variables

in a more compact and interpretable manner. In latent variable models, the observed

variables are assumed to be generated from a set of underlying latent variables. The

latent variables are not directly observed but are inferred based on the observed data.

The idea is that the latent variables capture the underlying structure or sources of

variation in the data, which cannot be explained by the observed variables alone.

Many deep generative models are different forms of latent variable models. The

structure, representation, number of latent variables, and their causal relationship

give us different objectives to optimize, which result in generative models with varying

levels of expressiveness. We will now discuss latent variable model classes relevant to

this thesis.

2.2.1 Variational Autoencoder

Variational Autoencoders (VAE) (Kingma and Welling [32]) are deep generative

models which consist of an encoder and decoder network. VAEs try to model the

complex multimodal data distribution p(x) by introducing a latent variable z such

that p(x|z) is a simple distribution such as a Gaussian. Concretely, we have:

p(x) =

∫
p(x|z)p(z)dz (2.7)

Where p(z) is a simple to sample from distribution such as a standard Normal.

However, it is difficult to maximize this objective since for any data point x, most

z samples from p(z) will result in low probability p(x|z). Hence, we instead do

importance sampling from the posterior p(z|x):

p(x) =

∫
p(x|z)p(z)

p(z|x)

p(z|x)
= Ez∼p(z|x)[

p(x|z)p(z)

p(z|x)
] ≈ Ez∼qϕ(z|x)[

p(x|z)p(z)

qϕ(z|x)
] (2.8)

12



2. Background

Where in the final step we replaced the true posterior p(z|x) with an approximate

posterior qϕ(z|x) which is our encoder network, since the true posterior is intractable.

Taking log on both sides, applying Jensen’s inequality and shuffling around some terms,

we end up with a lower bound on p(x) which is tight when DKL(qϕ(z|x)||p(z|x)) = 0.

This bound is called the ELBO (Evidence Lower BOund), and is the objective we try

to maximize. We also parameterize the decoder pθ(x|z) and jointly optimize θ and ϕ

to maximize the lower bound:

log p(x) ≥ Ez∼qϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)||p(z)) (2.9)

The first term is the reconstruction objective and the second term is latent regular-

ization. The reconstruction term when optimized tries to create a latent space which

has rich information for the decoder to reconstruct x, while the regularization term

keeps the latent distribution structured. This regularization is necessary to later

generate new samples with the model by sampling z from the standard normal prior.

We can control the information contained in the latent variable z by multiplying the

regularization term with a hyper-parameter β:

J(θ, ϕ) = Ez∼qϕ(z|x)[log pθ(x|z)]− βDKL(qϕ(z|x)||p(z)) (2.10)

This formulaation is called a β-Variational Autoencoder (Higgins et al. [20]). Higher

values of β correspond to a better regularized, disentangled latent space at the cost

of reconstruction loss, whereas low β values result in high information latents which

are not structured to be sampled from the prior distribution.

2.2.2 Vector-Quantized Variational Autoencoder

Discrete latent variables are attractive since they can express latent multi-modality

quite well, at the cost of increased difficulty in modelling the distribution they are

drawn from. VQ-VAEs ((van den Oord et al. [68])) offer a way of learning discrete

latent variables using continuous optimization.

In a VQ-VAE, a codebook Qzdim×k is a matrix of k embedding vectors the size of

the latent vectors z which are output by the encoder, each of length zdim. During

training, the latents(There can be multiple) ze output by the encoder are compared
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against all the vectors of the codebook to find their nearest neighbours, which are

then assembled together to pass to the decoder. We call this nearest codebook latent

zq. A uniform prior eliminates the KL term from the standard VAE ELBO. The

training loss for a VQ-VAE is:

L(θ, ϕ, zq) = Ex∼D[||x− pθ(zq)||2 + ||sg(zϕ)− zq||2 + β||zϕ − sg(zq)||2] (2.11)

Where zϕ refers to z output by the encoder qϕ, zq is the nearest neigbour of zϕ

in the codebook, pθ is the decoder, sg is the stop gradient operator. Since the

vector quantization (nearest neighbor) step is not differentiable, we can propagate

approximate gradients into the encoder by using the straight through gradient trick

where instead of directly passing zq into the decoder, we can pass a differentiable

version using zq := zϕ + sg(zq − zϕ). After jointly training the encoder, codebook

and decoder, a discrete prior pω(z) is trained, and we sample from this during data

generation at test time.

2.2.3 Diffusion Probabilistic Models

Diffusion models (Sohl-Dickstein et al. [60], Song and Ermon [62]) are a class of

latent variable generative model which learn to generate samples from a probability

distribution p(x) by mapping Gaussian noise to the target distribution through an

iterative process. They are of the form pψ(x0) :=
∫
pψ(x0:T )dx1:T where x0, . . .xT are

latent variables and the model defines the approximate posterior q(x1:T | x0) through

a fixed Markov chain which adds Gaussian noise to the data according to a variance

schedule β1, . . . , βT . This process is called the forward diffusion process :

q(x1:T | x0) :=
T∏
t=1

q(xt | xt−1), q(xt | xt−1) := N (xt;
√

1− βtxt−1, βtI) (2.12)

The forward distribution can be computed for an arbitrary timestep t in closed form.

Let αt = 1− βt and ᾱt =
∏t

i=1 αi. Then q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I).

Diffusion models learn to sample from the target distribution p(x) by starting

from Gaussian noise p(xT ) ∼ N (0, I) and iteratively denoising the noise to generate
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in-distribution samples. This is defined as the reverse diffusion process pψ(xt−1 | xt):

pψ(x0:T ) := p(xT )
T∏
t=1

pψ(xt−1 | xt), pψ(xt−1 | xt) := N (xt−1;µψ(xt, t),Σψ(xt, t))

(2.13)

The reverse process is trained by minimizing a surrogate loss-function (Ho et al. [22]):

L(ψ) = Et∼[1,T ],x0∼q(x0),ϵ∼N (0,I) || ϵ− ϵψ(xt, t) ||2 (2.14)

Diffusion can be performed in a compressed latent space z (Rombach et al. [49])

instead of the final high-dimensional output space of x. This separates the reverse

diffusion model pψ(zt−1 | zt) from the decoder pθ(x | z). The training is done in two

stages, where the decoder is jointly trained with an encoder, similar to a β-Variational

Autoencoder with a low β. The diffusion prior is then trained to fit the optimized

latents of this model.
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Chapter 3

Planning with Latent Skills for

Offline RL

3.1 Introduction

In recent years, there has been great interest in trying to learn control policies that

can act at different levels of hierarchy. For many tasks, low level control is easier

when they are used to follow some higher level instruction. Humans routinely form

hierarchical plans to break down complex tasks into simpler blocks. In driving for

example, we have higher level behaviors like yielding to incoming traffic, changing

lanes, overtaking etc. Skill Learning has emerged as a popular area in Reinforcement

Learning, which tries to jointly tackle the problem of automatically inferring useful

skills from data and then learning to predict the appropriate skill using a high level

policy.

Learning temporally abstract skills using variational inference has become a

popular method for learning these hierarchical policies. The primary challenge that

our approach overcomes is in learning a causal skill-conditioned world model, when

online experimentation is not possible. We propose learning a Temporally Abstract

World Model (TAWM) which predicts the state outcome of executing a skill for a

fixed horizon, and then use this model for Model Predictive Control (MPC). In the

offline setting, deducing the true causal effect of skills on the state of the environment
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is challenging because one cannot repeatedly deploy skills in the environment to

observe their effect (Pearl [44]). In fact, we show that a naive VI-based approach

similar to that taken by previous methods like OPAL (Ajay et al. [2]), PLAS (Zhou

et al. [73]), and SPiRL (Pertsch et al. [45]) are not guaranteed to correctly model

these causal relationships, instead leading the agent to overestimate its influence on

the environmental state. We propose a principled method to fix this issue with a

modified VI approach, in which the approximate posterior is constrained to match

the true causal structure of the environment. We call our algorithm Online Planning

with Offline Skill Models (OPOSM).

We next show that optimization of these continuous skill latent variables using

algorithms like CEM during MPC can exploit the neural network dynamics model and

find faulty optima that degrade task performance. We show that this problem can be

mitigated by expressing the skills using a small number of discrete latents. We propose

using vector quantization to learn these discrete skills, inspired by the success of VQ-

VAEs for image generative modelling. We demonstrate our offline MBRL approach

called VQSkills for long horizon planning in the antmaze D4RL environments (Fu

et al. [11]), which require long horizon planning with complex dynamics, achieving

state of the art results. We also match state of the art performance in the Carla

NoCrash autonomous driving benchmark (Codevilla et al. [6]), which we use to

illustrate the advantage of vector quantization over continuous skills.

18



3. Planning with Latent Skills for Offline RL

3.2 Related Work

There have been a number of algorithms proposed which try to use variational

inference in order to build a skill model (Ajay et al. [2], Pertsch et al. [45], Achiam

et al. [1], Pertsch et al. [46], Eysenbach et al. [9]). PLAS ([73]) is also similar to these

skill learning methods, despite not referring to the latent variables as skills. Most of

these skill learning methods are model-free, but a few model based skill approaches

have also been proposed (Sharma et al. [56], Sharma et al. [57]). Unlike these, we

learn a temporally abstract world model that predict the state T time steps away

from the start of skill execution. This allows us to plan long horizon trajectories with

fewer optimization variables.

SPLT (Villaflor et al. [70]) learns discrete latents that characterize different

behavioral modalities. Since they only have a small number of discrete latents, they

can optimize using exhaustive search. If the latents need to be more expressive this

would mean increasing the number greatly which is not computationally feasible

to optimize. The vector quantized skills proposed in this paper can be optimized

with a modified CEM planner which is significantly more efficient. VQ-VAE and its

successors (Razavi et al. [48]) are state of the art latent variable models for image

generation. Other methods of using discrete latent variables have been proposed,

like Gumbel-Softmax[26]. However, these methods are not stable for deep network

optimization, and produce worse log-likelihoods.
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3.3 OPOSM

In this section, we describe our method Online Planning with Offline Skill Models

(OPOSM). We begin by explaining and how to train a Temporally Abstract World

Model (TAWM) while respecting the causal structure of the MDP. We then describe

how to use the TAWM for MPC.

Figure 3.1: Skill Model and TAWM Overview The skill posterior/VAE encoder
takes as input a sub-trajectory τ and infers the skill z. The skill prior tries to also
predict this z but only conditioned on the first state s0. The policy and TAWM
are conditioned on the skill, and try to predict the action sequence and future state
respectively. z is detached from the computational graph before passing to the TAWM,
so that it doesn’t propagate gradients to the encoder.

3.3.1 Training Skill Model and TAWM

The primary challenge of learning a TAWM from offline data is ensuring that the

TAWM accurately captures the true causal influence of skills on long-term state

transitions. A naive approach to learning the skill model and the TAWM pψ would

be to treat skills as latent variables, and optimize the following evidence lower bound
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(ELBO):

L(θ, ψ, ϕ, ω) = Eτ∼D

[
Eqϕ(z|τ) [log πθ (⃗a|s⃗, z) + log pψ(sT |s0, z)]−DKL(qϕ(z|τ)||pω(z|s0))

]
(3.1)

Where τ represents a tuple of states and actions from a sub-trajectory, qϕ is the

encoder/approximate posterior of the VAE, πθ is the decoder of the VAE and the low

level control policy conditioned on the current state and skill latent z, pψ is the TAWM,

and pω is the state conditional skill prior. The first two terms in Eq.(3.1) correspond to

the log-likelihood of demonstrator actions and long-term state-transitions, respectively.

The final term represents the KL divergence between our skill posterior and prior,

and encourages learning a compressed representation of skills.

The problem with this naive-VI formulation is that the information required to

reconstruct the state sT by the TAWM can be stored in the latent z. During planning

time, since our reward is a function of states, we can easily exploit the world model

by picking latents which have the information of the high reward state, without the

corresponding action sequence that will actually get us to that state. In an MDP, the

transition dynamics p(st+1|st, at) is a part of the environment and not in the control

of the agent. With this knowledge, we can derive the form of the true posterior

p(z|s⃗, a⃗) of the latent variable model:

p(z|s⃗, a⃗) =
p(s1:T , a0,T−1|z, s0)pω(z|s0)

p(s1:T , a0,T−1|s0)
(3.2)

=
(
∏T−1

t=0 p(st+1|st, at)πθ(at|st, z))pω(z|s0)
p(s1:T , a0:T−1|s0)

(3.3)

The transition dynamics p(st+1|st, at) and p(s1:T , a0:T−1|s0) do not depend on the skill

z, and so can be absorbed into a normalization constant η. This leaves us with the

true posterior:

p(z|s⃗, a⃗) =
1

η
((
T−1∏
t=0

πθ(at|st, z))pω(z|s0) (3.4)

Thus, now we need to minimize the KL between our approximate posterior qϕ and

this true posterior. We can now optimize the parameters of our models with an EM

style algorithm:

E-Step: ϕ is updated with a gradient descent step so as to minimize the expected
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KL divergence between qϕ and the true posterior, which is equivalent to minimizing

Eτ∼D

[
Ez∼qϕ

[
log

qϕ(z|s⃗,⃗a)
πθ(a⃗|s⃗,z)pω(z|s0)

]]
.

M-Step: θ, ψ, and ω are updated with a gradient ascent step to maximize the

ELBO from Eq. 3.1.

Observing the KL objective to minimize in the E-Step reveals that it is simply

optimizing ϕ by maximizing the same ELBO, but just without the TAWM recon-

struction error term Eτ∼D

[
Eqϕ(z|τ) [log pψ(sT |s0, z)]

]
. Hence, we can replace the EM

updates with a single forward-backwards pass for every paramater where we detach

the latent z before passing it into the TAWM, thus not backpropagating gradients

from it to the encoder.

3.3.2 Online Planning with Skill Latents

Once a world model has been learned and a reward function has been specified

for a given task, our agent can plan a sequence of skills to maximize its predicted

cumulative reward. We use a cross entropy method (CEM) planner to optimize the

skill sequence. However, rather than directly optimizing a sequence of z vectors, we

plan in a “whitened” version of Z-space. Specifically, we optimize a sequence of ϵ

vectors, where ith element of the plan ϵi ∈ E is related to zi according to a shifting

and scaling by the learned skill prior mean µ0(si) and standard deviation σ0(si), i.e.,

zi = µ0(si) + σ0(si) · ϵi.
Planning in E-space allows the agent to search in the space of normalized biases

away from the demonstration policy. This provides the agent with a well-conditioned

search space, where reasonable plan values lie within a (roughly-)unit ball around the

origin, regardless of the state, rather than having different state-dependent means and

scales. Additionally, planning in E-space allows us to easily warm-start the planning

procedure, since our initial plan can easily be sampled from the demonstrator policy.
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3.4 VQSkills

To the limited expressiveness of the simple conditional Gaussian prior used earlier, we

next propose using a VQ-VAE to a model for discrete skills. We also show empirically

that it helps reduce exploitation of the world model during planning. We begin by

describing the architecture and training process. An interesting quirk with vector

quantization is the fact that if the posterior is regularized to roughly be within a unit

ball through L2 regularization, we can actually use continuous optimization methods

like CEM to optimize a sequence of discrete latent vectors extremely efficiently, and

so we next explain this planning process.

Figure 3.2: VQSkills Overview VQSkill consists of a deterministic encoder, a prior,
a codebook, a low level policy and a temporally abstract world model. At test time,
we do not use the encoder. The prior gives a proposed latent ẑ ∼ pω(z|s0), which we
center our CEM optimizer on. In situations where behavioral cloning suitable(for
example in the goal conditioned antmaze setting), the prior is used as a high level
policy.

3.4.1 VQSkill Model

VQSkill extends the skill model described earlier to include vector quantization and a

temporally abstract world model. We have an encoder pθ(z|τ) which outputs n vectors

of size zdim which we label ze1, ze2, ..., zen. The codebook Q consists of k vectors of

size zdim. We include a prior model pω(z|s0). Finally, we have 2 decoders- the action
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Algorithm 2 VQSkill training

Randomly initialize parameters in pθ, pω, πϕ, pψ, Q

while models not converged do τ1,...,m ∼ D ▷ Sample m trajectories from dataset
L := 0

for i = 1, 2, . . . ,m do ze1, ze2, ..., zen = pθ(τi) ▷ Get n latents from deterministic
encoder
zq1, ..., zqn = vector quantization(Q, ze1, ..., zen)▷ Nearest neighbor column in Q for zei
zq = concat(zq1, ..., zqn), ze = concat(ze1, ..., zen)
L+ = 1

m
α||sg(ze)− zq||2 + β||ze − sg(zq)||2 + γ||ze||2 ▷ Embedding Loss

zq := ze + sg(zq − ze) ▷ Trick to propagate gradients

for t = 0, 1, . . . , T − 1 do L+ = − 1
mT

log πϕ(at|zq, st, a<t)▷ Action decoder log
prob for loss L+ = − 1

m
log pψ(sT |z, s0) ▷ World model log prob for loss

L+ = − 1
m

log pω(zq|s0) ▷ Prior latent log prob of quantized vector Use Adam or
other optimizer to minimize L

decoder/low level policy πϕ(at|z, st, a<t) and the world model which predicts the state

T timesteps in the future pψ(sT |z, s0). The training pipeline is given in algorithm 2,

and shown in figure 3.2 above.

The encoder is a deterministic network which takes an input a trajectory and

outputs a sequence of latent vectors, which are vector quantized to vectors in the

codebook. All other networks are parameterized as gaussians, outputting a mean and

standard deviation. The prior tries to learn a distribution over the possible vector

quantized latents. It might be expected that at convergence the prior should predict

a point mass (standard deviation σ near 0) for a given trajectory input since the

latents are fixed vectors and the encoder is deterministic. However, in situations

where there can be multiple behavioral modes such as near an intersection in antmaze,

there are multiple possible skills that can be executed, depending on the goal for that

episode in the dataset which the encoder is unaware of(we treat all demonstrations

as undirected). In these cases, the prior tries to spread out probability mass over the

possible latents. We regularize the output of the encoder to remain roughly in a unit

ball around the origin, thus packing the skill latents relatively close together. We

leverage this to do continuous planning over discrete skills at test time, where we can

navigate to any goal waypoint in the maze.
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3.4.2 Online Planning with Skill Latents

While discrete spaces can be searched using techniques like Monte-Carlo Tree Search,

we instead opt to do continuous optimization. By doing this, we can make use of

the intuition that even though they are discrete vectors, due to the mechanism of

vector quantized training and regularization of the latents, we end up with a latent

space where skill latents that are closer to each other in euclidean space correspond

to similar behaviors as compared to a skills that are mutually seperated by a longer

distance. Thus, we can almost treat the discrete space as a continuous latent space,

but while maintaining many of the advantages of discrete latents over continuous

latents.

In the equations below, µω(s) and σω(s) are the mean and variance of the prior

pω(z|s). We use CEM to plan over the noise vectors ϵi to optimize the objective

below:

max
ϵ1,...,H

H∑
i=1

R(sT×i)

s.t. sT×i = E[pψ(sT |zi, sT×(i−1))],

z
(0)
i = µω(sT×(i−1)) + σω(sT×(i−1))ϵi

zi = vector quantization(Q, z
(0)
i )

(3.5)

This formulation assumes the reward to optimize can be a function of a H states

each seperated by T timesteps. In tasks where we wish to navigate to some goal this

can be acceptable. Planning at this lower frequency can allow us to look forward

much further than we reasonably could planning at the smallest time scale.

We optimize the objective using Cross-Entropy Method(CEM), which is an efficient

zeroth order optimization algorithm. Every iteration, we select a top fraction of elite

candidates with the highest reward per batch, and use MLE to fit a new distribution

(gaussian here) to these candidates which we sample from during the next iteration.

Each iteration, the entire candidate batch can be evaluated in parallel. In This version

of CEM for discrete planning, after we generate each new z
(0)
i using ϵi, we quantize it

to the closest vector in the codebook.

The choice to plan over ϵi which is scaled by the standard deviation of the prior
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latent distribution allows us to plan accounting for the actual necessity for planning

at a given state. We initialize ϵi ∼ N (0, 1). This corresponds to our initialization of zi

being sampled from pω. Small standard deviation indicates that the prior mean itself

is likely close to the optimal skill, so the samples are drawn close to it, which means

only skills close to the mean are considered. In states where planning is important, we

expect to see a higher standard deviation in the prior distribution, which encourages

exploration.
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3.5 Experimental Evaluation and Analysis

We conduct experiments on 4 benchmarks - 1)Maze2D, 2)Antmaze and 3)FrankaK-

itchen from D4RL, and 3)Carla NoCrash. Maze2d is a maze navigation environment

which requires stitching together trajectories in the dataset in order to learn to

navigate towards any point on the maze. Antmaze is a much more difficult version

of the maze challenge where apart from planning the path through the maze, the

agent must also learn to control an ant robot with moderately complicated dynamics.

FrankaKitchen involves controlling a Franka arm to do specified tasks in a kitchen

setting such as moving a kettle, opening a microwave etc. Carla NoCrash is an

autonomous driving benchmark in the Carla simulator, where the agent must control

a car to drive through busy urban roads while adhering to traffic rules.

In these tasks, we compare against popular offline RL algorithms and behavioral

cloning. We include Decision Diffuser (Ajay et al. [3]) since it is a SOTA offline RL

algorithm which excels at skill stitching using diffusion, which we investigate further

in the next chapter.

3.5.1 Maze2D

We test on two variants of the maze2D task: medium and large. In both variants, a

point-mass agent moves around a 2-dimensional maze. The goal of the task is for

the agent to navigate from one corner of the maze to the opposite corner. The size

of the maze differs between the two environments, with large using the larger of the

two. In both cases, our agent was trained on the corresponding task dataset provided

by D4RL, which contain a single long state-action sequence of the agent moving

about the maze, towards randomly-chosen waypoints. An episode is considered a

success if the agent comes within a 0.5-unit radius of the goal. The cost assigned to a

predicted trajectory during planning is the negative L2 distance between the goal

and the nearest predicted state to the goal. Rewards are therefore sparse in the sense

that an entire trajectory is assigned one scalar reward value; no per-timestep rewards

are used.

Both OPOSM and VQSkills achieve 100% success rate on both Maze2D tasks.
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For VQSkills, we use a skill model with zdim = 8,n = 4(number of discrete latents

per skill),k = 8(number of latents in codebook). We set T = 20, where T is the

number of time steps ahead the world model pψ(sT |z, s0) predicts. We choose same

T for OPOSM, and zdim = 64. This environment served as a sanity test before the

significantly increased challenge of antmaze.

Figure 3.3: Maze2d environment consists of a simple pointmass agent navigating to a
given goal location in a maze.

3.5.2 AntMaze

We test on the antmaze-medium and antmaze-hard. Using MPC allows us to learn

from undirected examples and do online planning to reach goals in the test setup.

We get state of the art results on these tasks
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We plan with H = 5 (number of world model calls per rollout), and T = 20, which

means our effective planning horizon is 100 timesteps. The cost function(negative

reward) that we use for both antmaze and maze2d is C(sT , s2T , ..., sHT ) = mini||siT [:

2]− goal||2 which is the minimum distance(in xy coordinates) to the goal reached by

the states in the rollout.

VQSkills performs very similarly to OPOSM in antmaze-medium, and beats it in

antmaze-large. The medium setting does not require complex high level path planning

due to the simplicity of the layout, which might have made it difficult to improve

performance with online planning. Qualitatively, the ant controlled with VQSkills

seemed to rarely take a wrong turn and its failures were mostly wall collisions that

toppled it. The OPOSM agent on the other hand seemed more prone to taking wrong

paths through the maze, despite the predicted cost after CEM optimization being

low. This suggests that the continuous skill latents when optimized may exploit

the world model. We directly test this hypothesis by greatly increasing the CEM

population size from 100 to 10000 and the number of iterations from 10 to 1000 and

then evaluating the model on 50 runs. This over-optimization breaks the OPOSM

planning and the performance drops from roughly 70% on antmaze-large to around

46%, whereas the VQSkills much more modestly drops from 74% to 64% (results

included in table 3.4). We believe this is due to VQSkills constraining the latents to

only the discrete vectors in the codebook, which mitigates over-exploitation of the

world model. Snapping to the closest discrete latent may also limit the divergence

from the prior.

We expect to see a similar drop off happen if we increase the number of latents

in VQSkill by a large amount, which would exponentially increase the number of

optimization variables bringing it closer to the continuous case. We compare the best

skill model with k = 8 to others with increasing values of k on antmaze-large, and

also overoptimize them. With models that have a large codebook, the overoptimized

dropoff is more significant, worse than OPOSM. We also find that reducing k (size

of codebook) too much also hurts performance, due to reduced expressivity. The

degenerate case when k = 1 means the latent has no information, reducing to

behavioral cloning. This shows that choosing the number of latent codes is extremely

important, and a good balance must be struck. Note that all these experiments used

n = 4 which means there are 4 latent codes per skill. Increasing this parameter would
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also exponentially grow the optimization complexity.

Table 3.1: Comparison of algorithms on antmaze. OPOSM and VQSkill outperform all
methods except CQL+OPAL on antmaze-medium.

Task VQSkill OPOSM BC CQL IQL DD
antmaze-medium-diverse 79.67± 4.5 78.29± 4.32 0.0 53.7 70.0 24.6
antmaze-large-diverse 74.33± 4.9 70.2± 4.6 0.0 14.9 47.5 7.5

Table 3.2: Comparison of various values of k on antmaze-large-diverse, the number of
vectors in codebook Q. There is significant drop off in performance with overoptimization
when k is large. We run 50 episodes of evaluation for each model and report fraction of
successes.

Task k=1 k=4 k = 8 k=32 k=128 k=1024 OPOSM
short optimization 0.0 66 74.33 72 68 68 70.2

overoptimized − 48(24/50) 64(32/50) 58(29/50) 36(18/50) 18(9/50) 46(23/50)

Figure 3.4: AntMaze environment consists of an ant robot agent navigating to a
given goal location in a maze. This ant agent has more complex dynamics than the
pointmass in Maze2D.
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3.5.3 FrankaKitchen

We train our skill model on different datasets, referred to as mixed and partial.

The mixed dataset consists of non-task-directed demonstrations, and is typically

considered the hardest to learn from, while the partial dataset consists of partially

task-directed demonstrations.

We find that OPOSM is outperformed by Decision Diffuser on the kitchen tasks,

which we hypothesize is due to the fact that these tasks require constraining to

the multimodal behavior support which requires a more expressive prior than the

conditional Gaussian used by our VAE. Currently, we do not explicitly constrain plans

computed by OPOSM to remain within the support of the dataset. We outperform

other algorithms under consideration.

VQSkills performs relatively poorly in the FrankaKitchen tasks, with the training

process being very unstable. Vector Quantized networks suffer from training instability

due to approximation with straight through gradients (Huh et al. [25]). If not for

this instability, we suspect the VQ-VAE could have outperformed the standard VAE

in OPOSM, since discrete latent posteriors can be more expressive than a conditional

Gaussian. In the next chapter, we propose using Diffusion models which are stable to

train while also having better expressiveness than VQ-VAEs. The Latent Diffusion

skill model proposed in chapter 4 performs significantly better.

Table 3.3: Comparison of algorithms on kitchen tasks.

Task VQSkill OPOSM BC CQL IQL DD
kitchen-mixed-v0 47 54.5 51.5 52.4 51.0 62.3
kitchen-partial-v0 54.33 65.25 38.0 50.1 46.3 67.8
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Figure 3.5: In the kitchen tasks, the Franka arm must be controlled to perform several
tasks in the kitchen environment. Only certain tasks provide rewards, so the agent
must learn to only do those in the required sequence order.
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3.5.4 Carla NoCrash

We use the modified low dimensional observation space used in SPLT (Villaflor et al.

[70]) and MPPO (Huang [24]) which consists of the current steering angle and speed

of the car, the next intermediate waypoint heading, the distance and velocity of the

nearest car in front, distance and color of the nearest traffic light. The NoCrash

environment requires the agent to do lane following, avoid collisions and traffic light

violations, and navigate to the goal. Due to simple dynamics of the car to be controlled,

lane following is generally a simple task, and the difficulty arises from knowing how

to avoid collisions with other agents. For online planning, we use a simple reward

function of the state R(s) = (vehicle speed)2 − traffic violation penalty.

where traffic violation penalty = 200.

The datasets are collected on Carla Town1 by an expert autopilot with added

noise, and the evaluations are done on Carla Town2, where there are 25 routes. We

run evaluation on NoCrash Dense, which is the most challenging heavy traffic setting.

Due to the relative simplicity in modes of behavior in NoCrash, we train a VQSkill

model where the skill consists of a single latent(n = 1), and the codebook consists

of k = 4 total latents. This means there are only 4 possible skills. After training,

we observe that these 4 skills collapse to just 2 final skills. One of these skills if

active causes the car to stop regardless of situation, while the other causes the car

to move forward along the required trajectory, taking turns and following the lane

perfectly. The prior learns to predict which of these 2 skills to run at every step, and

it essentially learns when to stop and when to move. Simply running the prior as

a higher level policy without any online planning actually gets better performance

than naive behavioral cloning. We do not use CEM for online optimization here,

instead simply trying out all combinations of skills. We run with H = 4 with T = 10,

which is 40 timesteps lookahead planning, which due to the simulator tick time of

10 Hz is 4 seconds lookahead. Tring out all skills involves 44 = 256 forward passes

of the world model, which can be done in a single batch. With online planning, we

beat other online and offline RL algorithms that have been tried in the modified

NoCrash Dense benchmark. OPOSM however does not efficiently learn this policy,

performing on par with behavioral cloning when running the prior, and worse than

comparing algorithms with planning. Since exhaustive search is not an option, we
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must use CEM for optimizing OPOSM, and we also find that optimizing any more

than just 5 steps of CEM completely fails every run due to exploitation of the world

model. To compare this, we also train a VQSKills model with n = 4 and k = 8.

The performance is worse than the n = 1, k = 4 case, but better than OPOSM, and

overoptimization does not make performance any worse.

Table 3.4: Comparison of algorithms for NoCrash Dense Town2 routes. SPLT and
Behavioral Cloning are offline, while MPSAC and MPPO are online.

VQSkill(n = 1) VQSkill(n=4) OPOSM SPLT MPPO MPSAC BC
Town2 success (%) 97.6 90.4 87.2 96.3 96 92 84

3.6 Limitations

OPOSM

1. Standard VAEs are not as expressive as more complex generative models, and

as such may sample points of low likelihood form multimodal distributions due

to mode averaging. This is investigated further in the next chapter.

2. The assumption of a reward function that depends only on states in which skills

begin or terminate may not hold for many tasks. This assumption is made

because these are the only states predicted by our TAWM.

3. The use of fixed-length skills is limiting because for many tasks, the most natural

decomposition may result in subtasks (and thus skills) that require differing

amounts of time to be completed.

VQSkills

1. The same limitations regarding fixed skill length and state conditioned reward

function apply.

2. While a discrete skill model is more expressive than the VAE in OPOSM,

it suffers from an unstable training process. The learning algorithm is also

extremely sensitive to hyperparameters, such as the regularizing constant γ

that limits the norm of the encoder output latent ze. The training process must
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be carefully monitored to make sure the skills do not collapse, at which point

training must be restarted.
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Chapter 4

Latent Diffusion for Offline RL

4.1 Introduction

Framing offline RL as a generative modeling problem has gained significant traction

(Chen et al. [5], Janner et al. [28]); however, the performance is dependent on the

power of the generative models used. These methods either avoid learning a Q-

function or rely on other offline Q-learning methods. Recently diffusion models

(Sohl-Dickstein et al. [60], Song and Ermon [62]), have emerged as state-of-the-art

generative models for conditional image-generation (Ramesh et al. [47]). Rather than

avoiding Q-learning, we model the behavioral policy with diffusion and use this to

avoid extrapolation error through batch-constraining.

Previous diffusion-based sequence modeling methods in offline RL diffused over

the raw state-action space. However, the low-level trajectory space tends to be poorly

suited for reasoning. Prior works (Pertsch et al. [45], Ajay et al. [2]) have proposed to

instead reason in more well-conditioned spaces composed of higher-level behavioral

primitives, and we demonstrated this as well in the previous chapter. Such temporal

abstraction has been shown to result in faster and more reliable credit assignment

(Machado et al. [40], Mann and Mannor [41]), particularly in long-horizon sparse-

reward tasks. We harness the expressivity of powerful diffusion generative

models to reason with temporal abstraction and improve credit assignment.

Inspired by the recent successes of Latent Diffusion Models (LDMs) (Rombach et al.

[49], Jun and Nichol [31]), we propose learning similar latent trajectory representations
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for offline RL tasks by encoding rich high-level behaviors and learning a policy decoder

to roll out low-level action sequences conditioned on these behaviors. The idea is to

diffuse over semantically rich latent representations while relying on powerful decoders

for high-frequency details. Prior works which explored diffusion for offline RL (Janner

et al. [29], Ajay et al. [3]) directly diffused over the raw state-action space, and their

architectural considerations for effective diffusion models limited the networks to

be simple U-Nets (Ronneberger et al. [50]). The separation of the diffusion model

from the low-level policy allows us to model the low-level policy using a powerful

autoregressive decoder.

We perform state-conditioned latent diffusion on the learnt latent space and then

learn a Q-function over states and corresponding latents. During Q-learning, we

batch-constrain the candidate latents for the target Q-function using our expressive

diffusion prior, thus mitigating extrapolation error. Our final policy samples latent

skills from the LDM, scores the latents using the Q-function and executes the best

behavior with the policy decoder. We refer to our method as Latent Diffusion-

Constrained Q-learning (LDCQ). Our method significantly improves results over

previous offline RL methods, which suffer from extrapolation error or have difficulty

in credit assignment in long-horizon sparse reward tasks.
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4.2 Related Work

4.2.1 Offline RL

As discussed previously, offline RL poses the challenge of distributional shift while

stitching suboptimal trajectories together. Conservative Q-Learning (CQL) (Kumar

et al. [36]) tries to constrain the policy to the behavioral support by learning a

pessimistic Q-function that lower-bounds the optimal value function. Implicit Q-

Learning (IQL) (Kostrikov et al. [34]) tries to avoid extrapolation error by performing

a trade-off between SARSA and DQN using expectile regression. However, it achieves

the optimal batch-constrained policy only as their expectile parameter τ → 1, which

leads to an increasingly difficult-to-optimize objective. Our method instead learns the

optimal batch-constrained Q-function without introducing any pessimism or trade-off.

Inspired by notable achievements of generative models in various domains including

text-generation (Vaswani et al. [69]), speech synthesis ([33]) and image-generation

(Ramesh et al. [47]), Chen et al. [5] proposed to use a generative model for offline

RL and bypass the need for Q-learning or bootstrapping altogether with return-

conditioning (Kumar et al. [35], Srivastava et al. [64]). While these ideas have

found success, getting a good return estimate for arbitrary states is not trivial and

conditioning on returns outside the support of the training dataset can lead to the

generative model producing low-value out-of-distribution sequences. Our method

instead avoids return-conditioning and formulates a solution with batch-constraining

which uses generative models to model the data distribution and use it to generate

candidate actions to learn a Q-function without extrapolation-error (Fujimoto et al.

[13]). This formulation relies on the assumption that sampling from the generative

model does not sample out-of-support samples, which has been difficult to achieve

with previously used generative models in offline RL.

Our method circumvents this problem with the latent diffusion model. Further, to

effectively address the problem of long horizon stitching, Pertsch et al. [45] and Ajay

et al. [2] proposed learning policies in latent-trajectory spaces. However, they have to

rely on a highly constrained latent space which is not rich enough for the downstream

policy. This is due to the limitations of the generative model used like VAEs. Our

proposed method to use latent diffusion, which can model complex distributions,
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allows for the needed flexibility in the latent space for effective Q-learning and the

final policy.

4.2.2 Diffusion Probabilistic Models

Recently, diffusion models (Sohl-Dickstein et al. [60], Song and Ermon [62]) have

emerged as state-of-the-art generative models for conditional image-generation (Ramesh

et al. [47], Saharia et al. [52]), super-resolution (Saharia et al. [51]) and inpainting

(Lugmayr et al. [39]). They are a much more powerful class of generative model

compared to Variational Autoencoders (VAEs), and benefit from a more stable train-

ing process as compared to Generative Adversarial Networks (GANs) ([15]). Recent

works in offline RL (Janner et al. [29], Ajay et al. [3]) have proposed using diffusion

to model trajectories and showcased its effectiveness in stitching together behaviors

to improve upon suboptimal demonstrations. However, Janner et al. [29] make the

assumption that the value function is learnt using other offline Q-learning methods

and their classifier-guided diffusion requires querying the value function on noisy

samples, which can lead to extrapolation-error. Similarly, Ajay et al. [3] can suffer

from distributional shift, as it relies on return-conditioning, and maximum returns

from arbitrary states can be unknown without having access to a value function. Our

work proposes a method for learning Q-functions in latent trajectory space with latent

diffusion while avoiding extrapolation-error and facilitating long horizon trajectory

stitching and credit assignment.
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4.3 Latent Diffusion Reinforcement Learning

We begin by describing the two-stage training process for obtaining the low-level

policy and the high-level latent diffusion prior. Next, we discuss how to use this prior

to train a temporally abstract Q-function while avoiding bootstrapping error, and

then use this Q-function during the policy execution phase. We finally describe an

additional method to use the latent diffusion prior with goal-conditioning, which is

more suitable for certain navigation tasks. Model architectures and hyperparameter

choices are detailed in the appendix.

4.3.1 Two-Stage LDM training

Latent Representation and Low-Level Policy

The first stage in training the latent diffusion model is comprised of learning a latent

trajectory representation. This means, given a dataset D of H -length trajectories τH

represented as sequences of states and actions, s0, a0, s1, a1, · · · sH−1, aH−1, we want

to learn a low-level policy πθ(a|s, z) such that z represents high-level behaviors in

the trajectory. This is done using a β-Variational Autoencoder (VAE). Specifically,

we maximize the evidence lower bound (ELBO):

L(θ, ϕ, ω) = EτH∼D[Eqϕ(z|τH)[
H−1∑
t=0

log πθ(at | st, z)]− βDKL(qϕ(z | τH) || pω(z | s0))]

(4.1)

where qϕ represents our approximate posterior over z given τH , and pω represents

our conditional Gaussian prior over z, given s0. Note that unlike BCQ, which uses

a VAE’s conditional Gaussian prior as the state-conditioned generative model, our

latent diffusion model only uses the β-VAE to learn a latent space to diffuse over.

As such, the prior pω is simply a loose regularization of this latent space, and not

a strong constraint. This is facilitated by the ability of latent diffusion models to

later sample from such complex latent distributions. As discussed in the earlier

chapters, prior works (Pertsch et al. [45], Ajay et al. [2]) have learned latent space

representations of skills using VAEs. Their use of weaker Gaussian priors forces them

to use higher values of the KL penalty multiplier β to ensure the latents are well
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regularized. However, doing so restricts the information capacity of the latent, which

limits the variation in behaviors captured by the latents. As we show in section 4.4.1,

increasing the horizon H reveals a clear separation of useful behavioral modes when

the latents are weakly constrained.

The low-level policy πθ is represented as an autoregressive model which can capture

the fine details across the action dimensions, and is similar to the decoders used by

Ghasemipour et al. [14] and Ajay et al. [2]. While all the environments we test in this

work use continuous action spaces, the use of latent diffusion allows the method to

easily translate to discrete action spaces too, since the decoder can simply be altered

to output a categorical distribution while the diffusion process remains unchanged.

Latent Diffusion Prior

For training the diffusion model, we collect a dataset of state-latent pairs (s0, z) such

that τH ∼ D is a H-length trajectory snippet, z ∼ qϕ(z | τH) where qϕ is the VAE

encoder trained earlier, and s0 is the first state in τH . We want to model the prior

p(z | s0), which is the distribution of the learnt latent space z conditioned on a state

s0. This effectively represents the different behaviors possible from the state s0 as

supported by the behavioral policy that collected the dataset. To this end, we learn a

conditional latent diffusion model pψ(z | s0) by learning the time-dependent denoising

function µψ(zt, s0, t), which takes as input the current diffusion latent estimate zt

and the diffusion timestep t to predict the original latent z0. Like Ramesh et al. [47]

and Jun and Nichol [31], we found predicting the original latent z0 works better than

predicting the noise ϵ. We reweigh the objective based on the noise level according

to Min-SNR-γ strategy (Hang et al. [19]). This re-balances the objective, which

otherwise is dominated by the loss terms corresponding to diffusion time steps closer

to T . Concretely, we modify the objective in Eq. 2.14 to minimize:

L(ψ) = Et∼[1,T ],τH∼D,z0∼qϕ(z|τH),zt∼q(zt|z0)[min{SNR(t), γ}(|| z0 − µψ(zt, s0, t) ||2)]
(4.2)

Note that qϕ(z | τH) is different from q(zt | z0), the former being the approximate

posterior of the trained VAE, while the latter is the forward Gaussian diffusion noising

process. We use DDPM (Ho et al. [23]) to sample from the diffusion prior in this

work due to its simple implementation.
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As proposed in Ho and Salimans [21], we use classifier-free guidance during the

sampling process. This modifies the original training setup to learn both a conditional

µψ(zt, s0, t) and an unconditional model. The unconditional version, is represented as

µψ(zt,Ø, t) where a dummy token Ø takes the place of s0. The following update is

then used to generate samples: µψ(zt,Ø, t) +w(µψ(zt, s0, t)− µψ(zt,Ø, t)), where w is

a tunable hyper-parameter. Increasing w results in reduced sample diversity, in favor

of samples with high conditional density.

4.3.2 Latent Diffusion-Constrained Q-Learning (LDCQ)

As described in chapter 2, in the batch-constrained, we can mitigate extrapolation

error by choosing a policy that only selects actions with support in the dataset batch.

With function approximation, we can learn a generative model of the behavior policy

and constrain our candidate actions with this model:

π(s) = argmax
ai∼πψ(a|s)

Q(s, ai) (4.3)

However, in many offline RL datasets, the behavior policy is highly multimodal either

due to the demonstrations being undirected, or because the behavior policy is actually

a mixture of unimodal policies, making it difficult for previously used generative

models like VAEs to sample from the distribution accurately. The multimodality of

this policy is further exacerbated with increases in temporal abstraction in the latent

space, as we show in section 4.4.1. We propose using latent diffusion to model this

distribution, as diffusion is well suited for modelling such multi-modal distributions.

We propose to learn a Q-function in the latent action space with latents sampled

from the diffusion model. Specifically, we learn a Q-function Q(s, z), which represents

the action-value of a latent action sequence z given state s. At test time, we generate

candidate latents from the diffusion prior pψ(z | s) and select the one which maximizes

the learnt Q-function. We then use this latent with the low-level policy πθ(ai | si, z)

to generate the action sequence for H timesteps.
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Algorithm 3 Latent Diffusion-Constrained Q-Learning (LDCQ)

1: Input: prioritized-replay-buffer B, horizon H, target network update-rate ρ, mini-
batch sizeN , number of sampled latents n, maximum iterationsM , discount-factor
γ, latent diffusion denoising function µψ, variance schedule α1, . . . , αT , ᾱ1, . . . , ᾱT ,
β1, . . . , βT .

2: Initialize Q-networks QΘ1 and QΘ2 with random parameters QΘ1 , QΘ2 and target
Q-networks QΘtarget1

and QΘtarget2
with Θtarget

1 ← Θ1, Θtarget
2 ← Θ2

3: for iter = 1 to M do
4: Sample a minibatch of N transitions {(st, z, rt:t+H , st+H)} from B
5: Sample n latents for each transition: zT ∼ N (0, I)
6: for t = T to 1 do ▷ DDPM Sampling
7: ẑ = µψ(zt,Ø, t) + w(µψ(zt, st+H , t)− µψ(zt,Ø, t))

8: zt−1 ∼ N (
√
αt(1−ᾱt−1)

1−ᾱt zt +
√
ᾱt−1βt
1−ᾱt ẑ, I(t > 1)βtI)

9: end for
10: Compute the target values y = rt:t+H + γH{max

z0
{min
j=1,2

QΘtargetj
(st+H , z0)}}

11: Update Q-networks by minimizing the loss: 1
N
||y −QΘ(st, z)||22

12: Update target Q-networks: Θtarget ← ρΘ + (1− ρ)Θtarget

13: end for=0

Training

We collect a replay buffer B for the dataset D of H-length trajectories and store

transition tuples (st, z, rt:t+H , st+H) from τH ∼ D, where st is the first state in τH ,

z ∼ qϕ(z | τH) is the latent sampled from the VAE approximate posterior, rt:t+H

represents the γ-discounted sum of rewards accumulated over the H time-steps in

τH , and st+H represents the state at the end of H-length trajectory snippet. The

Q-function is learned with temporal-difference updates (Sutton and Barto [66]), where

we sample a batch of latents for the target argmax using the diffusion prior pψ(z | st+H).

This should only sample latents which are under the support of the behavioral policy,

and hence with the right temporal abstraction, allows for stitching skills to learn

an optimal policy grounded on the data support. The resulting Q update can be

summarized as:

Q(st, z)← (rt:t+H + γHQ(st+H , argmax
zi∼pψ(z|st+H)

(Q(st+H , zi)))) (4.4)
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We use Clipped Double Q-learning as proposed in (? ]) to further reduce overes-

timation bias during training. We also use Prioritized Experience Replay (? ]) to

accelerate the training in sparse-reward tasks like AntMaze and FrankaKitchen. We

summarize our proposed LDCQ method in Algorithm 3.

Policy Execution

The final policy for LDCQ comprises generating candidate latents z for a particular

state s using the latent diffusion prior z ∼ pψ(z | s). These latents are then scored

using the learnt Q-function and the best latent zmax is decoded using the VAE

autoregressive decoder a ∼ πθ(a | s, zmax) to obtain H-length action sequences which

are executed sequentially. Note that the latent diffusion model is used both during

training the Q-function and during the final evaluation phase, ensuring that the

sampled latents do not go out-of-support.

4.3.3 Latent Diffusion Goal Conditioning (LDGC)

Diffuser (Janner et al. [29]) proposed framing certain navigation problems as a

sequence inpainting task, where the last state of the diffused trajectory is set to

be the goal during sampling. We can similarly condition our diffusion prior on the

goal to sample from feasible latents that lead to the goal. This prior is of the form

pψ(z | s0, sg), where sg is the target goal state. Since with latent diffusion, the training

of the low-level policy alongside the VAE is done separately from the diffusion prior

training, we can reuse the same VAE posterior to train different diffusion models,

such as this goal-conditioned variant. At test time, we perform classifer-free guidance

to further push the sampling towards high-density goal-conditioned latents. For tasks

which are suited to goal conditioning, this can be simpler to implement and achieves

better performance than Q-learning. Also, unlike Diffuser, our method does not

need to have the goal within the planning horizon of the trajectory. This allows our

method to be used for arbitrarily long-horizon tasks.
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4.3.4 Latent Diffusion-Constrained Planning (LDCP)

In this section, we explore another method to derive a policy for offline RL with latent

diffusion. This is a model-based method which learns a temporally abstract world

model of the environment with the offline data. Specifically, we learn a temporally

abstract world model pη(st+H | st, z) that predicts the state outcome of executing a

particular latent behavior after H steps. That is, given the current state st and a

latent behavior z the model predicts the distribution of the state sH . This is trained

in a supervised manner by sampling transition tuples (st, z, st+H) from τH ∼ D and

minimizing the objective:

L(η) = EτH∼D || pη(st+H | st, z)− st+H ||2 (4.5)

where pη is the temporally abstract world model. In goal reaching environments, we

leverage this model to do planning using the diffusion prior. We sample n latents

using the diffusion prior for a given state, s and use the learnt dynamics model to

compute the final state siH for each latent zi. These final states are then scored

using a cost-function and the latent corresponding to the best final state is chosen for

execution. We refer to this method as Latent Diffusion-Constrained Planning. The

planning procedure is described in Algorithm 4.
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Algorithm 4 Latent Diffusion-Constrained Planning (LDCP)

1: Input: horizon H, number of latents to sample n, maximum iterations M , cost-
function J , policy decoder πθ, temporally abstract world model pη, latent diffusion
denoising function µψ, variance schedule α1, . . . , αT , ᾱ1, . . . , ᾱT , β1, . . . , βT .

2: done = False
3: while not done do
4: Observe environment state s0
5: Sample n latents: zT ∼ N (0, I)
6: for t = T to 1 do ▷ DDPM Sampling
7: ẑ = µψ(zt,Ø, t) + w(µψ(zt, s0, t)− µψ(zt,Ø, t))

8: zt−1 ∼ N (
√
αt(1−ᾱt−1)

1−ᾱt zt +
√
ᾱt−1βt
1−ᾱt ẑ, I(t > 1)βtI)

9: end for
10: Compute future states for each latent zi0: siH = pη(s

i
H | s0, zi0)

11: Find best latent based on the cost-function: i = argmin
i

J (siH)

12: Compute action-sequence using policy decoder πθ(a | s0, zi0)
13: h = 0
14: while h < Hand not done do
15: Execute action ah
16: Update done
17: h = h+ 1
18: end while
19: end while
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Figure 4.1: Latent Diffusion Reinforcement Learning Overview a) We first
learn the latent space and low-level policy decoder by training a β-VAE over H-
length sequences from the demonstrator dataset. b) We train a latent diffusion prior
conditioned on s0 to predict latents generated by the VAE encoder. c) After learning
a Q function using LDCQ (Algorithm 3), we score latents sampled by the prior with
this Q function and execute the low-level policy πθ conditioned on the argmax latent.
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4.4 Experimental Evaluation and Analysis

In our experiments, we focus on 1) studying the effect of temporal abstraction on

the latent space (section 4.4.1) 2) understanding the need for diffusion to model

the latent space (section 4.4.2 and 4.4.3) and 3) evaluating the performance of our

method in the D4RL offline RL benchmarks (section 4.4.4).

4.4.1 Temporal abstraction induces multi-modality in latent

space

In this section, we study how the horizon length H affects the latent space and provide

empirical justification for learning long-horizon latent space representations. For our

experiment, we consider the kitchen-mixed-v0 task from the D4RL benchmark suite

(Fu et al. [11]). The goal in this task is to control a 9-DoF robotic arm to manipulate

multiple objects (microwave, kettle, burner and a switch) sequentially, in a single

episode to reach a desired configuration, with only sparse 0-1 completion reward for

every object that attains the target configuration. As Fu et al. [11] states, there is a

high degree of multi-modality in this task arising from the demonstration trajectories

because different trajectories in the dataset complete the tasks in a random order.

Thus, before starting to solve any task, the policy implicitly needs to choose which

task to solve and then generate the actions to solve the task. Given a state, the

dataset can consist of multiple behavior modes, and averaging over these modes leads

to suboptimal action sequences. Hence, being able to differentiate between these

tasks is desirable.

We hypothesize that as we increase our sequence horizon H, we should see better

separation between the modes. In Figure 4.2, we plot a 2D (PCA) projection of

the VAE encoder latents of the starting state-action sequences in the kitchen-mixed

dataset. With a lower horizon, these modes are difficult to isolate and the latents

appear to be drawn from a Normal distribution (Figure 4.2). However, as we increase

temporal abstraction from H = 1 to H = 20, we can see three distinct modes emerge,

which when cross-referenced with the dataset correspond to the three common tasks

executed from the starting state by the behavioral policy (microwave, kettle, and

burner). These modes capture underlying variation in an action sequence, and having
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picked one we can run our low-level policy to execute it. As demonstrated in our

experiments, such temporal abstraction facilitates easier Q-stitching, with better

asymptotic performance. However, in order to train these abstract Q functions, it

becomes necessary to sample from the complex multi-modal distribution and the

conventional VAE conditional Gaussian prior is no longer adequate for this purpose,

as shown in section 4.4.2.

Figure 4.2: Projection of latents across horizon. Latent projections of trajectory
snippets with different horizon lengths H. From the initial state there are 3 tasks
(Kettle, Microwave, Burner) which are randomly selected at the start of each episode.
These 3 primary modes emerge as we increase H, with the distribution turning
multi-modal.

4.4.2 LDMs address multi-modality in latent space

In this section, we provide empirical evidence that latent diffusion models are superior

in modelling multi-modal distributions as compared to VAEs. For our experiment,

we again consider the kitchen-mixed-v0 task. The goal of the generative model here

is to learn the prior distribution p(z | s) and sample from it such that we can get

candidate latents corresponding to state s belonging to the support of the dataset.

However, as demonstrated earlier, the multi-modality in the latent spaces increases

with the horizon. We visualize the latents from the initial states of all trajectories

in the dataset in Figure 4.3 using PCA with H = 20. The three clusters in the

figure correspond to the latents of three different tasks namely microwave, kettle

and burner. Similarly, we also visualize the latents predicted by the diffusion model

and the VAE conditional prior for the same initial states by projecting them onto

the principal components of the ground truth latents. We can see that the diffusion

prior is able to sample effectively all modes from the ground truth latent distribution,
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while the VAE prior spreads its mass over the three modes, and thus samples out of

distribution in between the three modes. Using latents sampled from the VAE prior

to learning the Q-function can thus lead to sampling from out of the support, leading

to extrapolation error.

Figure 4.3: Visualization of latents projected using PCA for kitchen-mixed with
H = 20. The diffusion prior models the ground truth much more accurately while
the VAE prior generates out-of-distribution samples.

4.4.3 Performance improvement with temporal abstraction

We empirically demonstrate the importance of temporal abstraction and the perfor-

mance improvement with diffusion on modelling temporally abstract latent spaces.

We compare our method with a variant of BCQ which uses temporal abstraction

(H > 1), which we refer to as BCQ-H. We use the same VAE architecture here as

LDCQ, and fit the conditional Gaussian prior with a network having comparable

parameters to our diffusion model. We find that generally, increasing the horizon H

results in better performance, both in BCQ-H and LDCQ, and both of them eventually

saturate and degrade, possibly due to the limited decoder capacity. With H = 1, the

latent distribution is roughly Normal as discussed earlier and our diffusion prior is

essentially equivalent to the Gaussian prior in BCQ, so we see similar performance.

As we increase H, however, the diffusion prior is able to efficiently sample from the

more complex latent distribution that emerges, which allows the resulting policies to

benefit from temporal abstraction. BCQ-H, while also seeing a performance boost

with increased temporal abstraction, lags behind LDCQ. We plot D4RL score-vs-H

for BCQ-H and LDCQ evaluated on the kitchen-mixed-v0 task in Figure 4.4.
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Figure 4.4: D4RL score of LDCQ and BCQ-H on kitchen-mixed-v0 with varying
sequence horizon H

Table 4.1: Performance comparison on D4RL tasks which require long-horizon stitch-
ing with high multimodality. LDGC and LDCP variants are evaluated in the naviga-
tion environments.

Dataset BC BCQ CQL IQL DT Diffuser DD LDCQ (Ours) LDGC (Ours) LDCP (Ours)

maze2d-large-v1 5.0 6.2 12.5 58.6 18.1 123.0 - 150.1 ± 2.9 206.8 ± 3.1 184.3

antmaze-medium-diverse-v2 0.0 0.0 53.7 70.0 0.0 45.5 24.6 68.9 ± 0.7 75.6 ± 0.9 77.0
antmaze-large-diverse-v2 0.0 2.2 14.9 47.5 0.0 22.0 7.5 57.7 ± 1.8 73.6 ± 1.3 59.7

kitchen-partial-v0 38.0 31.7 50.1 46.3 42.0 - 57.0 67.8 ± 0.8 - -
kitchen-mixed-v0 51.5 34.5 52.4 51.0 50.7 - 65.0 62.3 ± 0.5 - -

Table 4.2: Performance comparison on the D4RL locomotion tasks.

Dataset BC BCQ CQL IQL DT Diffuser DD LDCQ (Ours)

halfcheetah-medium-expert-v2 55.2 64.7 91.6 86.7 86.8 88.9 90.6 90.2 ± 0.9
walker2d-medium-expert-v2 107.5 57.5 108.8 109.6 108.1 106.9 108.8 109.3 ± 0.4
hopper-medium-expert-v2 52.5 110.9 105.4 91.5 107.6 103.3 111.8 111.3 ± 0.2

halfcheetah-medium-v2 42.6 40.7 44.0 47.4 42.6 42.8 49.1 42.8 ± 0.7
walker2d-medium-v2 75.3 53.1 72.5 78.3 74.0 79.6 82.5 69.4 ± 3.5
hopper-medium-v2 52.9 54.5 58.5 66.3 67.6 74.3 79.3 66.2 ± 1.7

halfcheetah-medium-replay-v2 36.6 38.2 45.5 44.2 36.6 37.7 39.3 41.8 ± 0.4
walker2d-medium-replay-v2 26.0 15.0 77.2 73.9 66.6 70.6 75.0 68.5 ± 4.3
hopper-medium-replay-v2 18.1 33.1 95.0 94.7 82.7 93.6 100.0 86.2 ± 2.5
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4.4.4 Offline RL benchmarks

In this section, we investigate the effectiveness of our Latent Diffusion Reinforcement

Learning methods on the D4RL offline RL benchmark suite (Fu et al. [11]). We

compare with Behavior Cloning and several state-of-the-art offline RL methods:

Batch Constrained Q-Learing (BCQ) (Fujimoto et al. [13]), Conservative Q-Learing

(CQL) (Kumar et al. [36]), Implicit Q-Learning (IQL) (Kostrikov et al. [34]), Decision

Transformer (DT) (Chen et al. [5]), Diffuser (Janner et al. [29]) and Decision Diffuser

(Ajay et al. [3]). The last two algorithms are previous trajectory diffusion methods.

We found that our method does not require much hyperparameter tuning and only

had to vary the sequence horizon H across tasks. In maze2d and AntMaze tasks we

use H = 30, in kitchen tasks we use H = 20 and in locomotion tasks we use H = 10.

We train our diffusion prior with T = 200 diffusion steps. The other hyperparameters

which are constant across tasks are provided in the Appendix.

In Table 4.1, we show results on the sparse-reward tasks in D4RL which require

long horizon trajectory stitching. In particular, we look at tasks in Maze2d, AntMaze

and FrankaKitchen environments which are known to be the most challenging in

D4RL, with most algorithms performing poorly. Maze2d and AntMaze consist of

undirected demonstrations controlling the agent to navigate to random locations

in a maze. AntMaze is quite difficult because the agent must learn the high-level

trajectory stitching task alongside low-level control of the ant robot with 8-DoF. In

the maze navigation tasks, we also evaluate the performance of our goal-conditioned

(LDGC) and planning (LDCP) variants. For Diffuser runs we use the goal-conditioned

inpainting version proposed by the authors since the classifier-guided version yielded

poor results. We found our implementation of BCQ improved over previous reported

scores in kitchen tasks. Both our methods (LDCQ and LDGC) achieve state-of-the-art

results in all sparse reward D4RL tasks. The goal-conditioned variant outperforms

all others in maze2d and AntMaze. This variant is extremely simple to implement

through supervised learning of the diffusion prior with no Q-learning or online planning

and is ideal for goal-reaching tasks.

We also provide an evaluation of our method on the D4RL locomotion suite

(Table 4.2). While these tasks are not specifically focused on trajectory-stitching,

our method is competitive with other offline RL methods. We only run the LDCQ
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variant here since they are not goal-reaching tasks.

4.5 Limitations

We list some limitations of our approach:

1. Our method, like other diffusion-based RL algorithms is slow at inference

time due to the iterative sampling process, especially since we use a simple

implementation of DDPM. This could be mitigated with methods that can

perform faster sampling (Song et al. [61], Lu et al. [38], Dockhorn et al. [8],

Xiao et al. [72]), or by distilling these diffusion models into others methods

which need fewer sampling steps (Song et al. [63], Salimans and Ho [53]).

2. Our method has average performance on the locomotion task suite while having

significant gains in the sparse reward tasks. We suspect the high periodicity of

the walking gaits in the locomotion suite does not benefit much from reasoning

with temporal abstraction. We also do not use a perturbation function during

Q-learning like Fujimoto et al. [13], which makes it difficult for us to improve

over the poor controllers in medium and medium-replay locomotion datasets.

Introducing a perturbation function requires careful tuning to avoid extrapola-

tion error, and the converged Q-learning wouldn’t necessarily correspond to a

high value policy, which is why other offline RL methods, which try to balance

this tradeoff, evaluate online during training and consider the best scores. We

however only evaluate a policy once after training is fully complete.

3. Another shortcoming of our work is that the sequence horizon H for temporal

abstraction has to be fixed for the entire experiment. We expect that being

able to vary this adaptively could improve performance.
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Conclusions

We began by proposing an approach for simultaneously learning a set of skills, and a

temporally abstract world model capable of predicting the long-term state transitions

caused by those skills, purely from offline data. We have demonstrated that this

world model enables sequences of skills to be planned rapidly online on an array of

challenging, long time-horizon tasks. We then proposed using vector quantization

to improve the quality of learnt latent variables for skill learning. These discrete

skills learnt using VQ-VAEs are better suited for online optimization than continuous

skills modeled with a standar VAE. Experiments in D4RL and Carla show that

overoptimization causes problems with planning when using continuous latents. We

hope future work finds engineering tricks to make training VQ-VAEs for skill learning

simpler to implement and work consistently well across different environments.

Next, we moved to latent diffusion models which are significantly more expres-

sive than standard VAEs, and have a much more stable optimization process than

VQ-VAEs. We showed that offline RL datasets comprised of suboptimal demon-

strations have expressive multi-modal latent spaces which can be captured with

temporal abstraction and is well suited for learning high-reward policies. With a

powerful conditional generative model to capture the richness of this latent space,

we demonstrated that the simple batch-constrained Q-learning framework can be

directly used to obtain strong performance. Our biggest improvements come from

long-horizon sparse reward tasks, which most prior offline RL methods struggled

with, even previous raw trajectory diffusion methods. Our approach also required
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no task-specific tuning, except for the sequence horizon H. We believe that latent

diffusion has enormous potential in offline RL and our work has barely scratched the

surface of possibilities.
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Appendix A

Model Architectures and

Hyperparameters

We list the model architectures used for OPOSM, VQSkills and LDCQ here.

A.1 OPOSM

A.1.1 Model

For the VAE encoder, we use 2 stacked bidirectional GRU with 256 hidden units. It

then has 2 heads which output the mean and standard deviation of the posterior.

The conditional prior is a 2 layer MLP with 256 hidden units, and 2 output heads

which each have 2 layers that produce the mean and standard deviation of the prior

distribution. The standard deviation heads all have a SoftPlus activation to ensure

they are positive. THe low level policy network and the TAWM are both MLPs that

take as input the skill and current state and output the corresponding action and

future state respectively. All networks use ReLU activations between hidden layers.

A.1.2 Planning

We use CEM (Cross-Entropy Method) for planning. We use a skill planning depth of

10 skills. We do only 10 iterations of CEM so that we don’t over-optimize, and find
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that this is enough.

A.2 VQSkills

A.2.1 Model

The VAE encoder and decoder is identical to OPOSM described above. The prior is

however instead a categorical distribution over the discrete latents in the codebook.

For our best experiments in FrankaKitchen and AntMaze, The size of the codebook

k = 8, and the number of discrete latents per skill n = 4.

A.2.2 Planning

We use the same planning parameters as OPOSM, however we use the modified CEM

planner as described in 3.4.2.

A.3 LDCQ

A.3.1 Model

The VAE encoder and decoder is identical to OPOSM described above, however while

training we now use β = 1e− 3 instead of β = 1.

The diffusion model is a resnet architecture with 8 layers. It takes as input the

current timestep noisy latent zt, the state s and diffusion timestep t. We use a linear

variance schedule during diffusion model training. During classifer-free guidance

while sampling, we set the weight w = 0.5. We use T = 100 diffusion steps for all

experiments.

The Q networks for LDCQ are simple 4 layer MLPs with 4 layers. There is a

LayerNorm applied before each activation as this has been found to help train value

functions. There are 128 units in the hidden layers. We use prioritized experience

replay buffer during Q-learning. We set the inverse temperature α = 0.7 and

importance weight parameter β is linearly from 0.3 to 1.0 throughout training.
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