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Abstract

While the application of differential privacy (DP) has been well-studied in cross-device federated
learning (FL), there is a relative lack of work considering DP and its implications for cross-silo
FL, a setting characterized by a limited number of clients each containing many data subjects. In
cross-silo FL, the usual notions of client-level DP are less suitable as real-world privacy regulations
typically concern the in-silo data subjects (e.g. persons) rather than the data silos themselves.

This thesis explores the notion of silo-specific example-level DP as a more appropriate privacy model,
where data silos set their own privacy targets for their local examples. We establish mean-regularized
multi-task learning (MR-MTL) as a strong baseline for private cross-silo learning and provide both
empirical and theoretical analyses to highlight the interplay between privacy, utility, and statistical
heterogeneity across data silos.

In addition, we showcase the practical application of our research through the US/UK PETs Prize
Challenge,1 where our CMU team2 (“puffle”) developed a 1st place solution for the Pandemic Fore-
casting and Response track3 based on the research presented in this thesis.

Our work also serves to identify key directions for future research in this area, such as developing
auto-tuning algorithms for private model personalization, exploring alternative privacy notions for
imbalanced data and graph analyses, and investigating novel training frameworks under the honest
privacy cost of hyperparameter search.

1https://petsprizechallenges.com/
2https://drivendata.co/blog/federated-learning-pets-prize-winners-phases-2-3#puffle
3https://www.whitehouse.gov/ostp/news-updates/2023/03/31/us-uk-annouce-winners-innovation-pets-d

emocratic-values/
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Chapter 1

Privacy, Personalization, and Cross-Silo
Federated Learning

In recent years, differential privacy (DP) has gained significant attention in the field of cross-device
federated learning (FL). However, the application and understanding of DP in cross-silo FL, where
a limited number of clients each possess data from numerous subjects, remains underexplored. In
cross-silo FL, usual notions of client-level DP are less suitable as real-world privacy regulations
typically concern the in-silo data subjects rather than the silos themselves. This chapter delves into
the notion of silo-specific example-level DP, where individual silos set their privacy targets for their
own local training examples.

Under this setting, we reconsider the roles of personalization in federated learning. In particular, we
show that mean-regularized multi-task learning (MR-MTL), a simple personalization framework,
is a strong baseline for cross-silo FL: under stronger privacy requirements, silos are incentivized to
federate more with each other to mitigate DP noise, resulting in consistent improvements relative
to standard baseline methods. We provide an empirical study of competing methods as well as a
theoretical characterization of MR-MTL for mean estimation, highlighting the interplay between
privacy and cross-silo data heterogeneity. Our work serves to establish baselines for private cross-silo
FL as well as identify key directions of future work in this area.
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1.1 Introduction

Recent advances in machine learning often rely on large, centralized datasets [123, 36, 100], but
curating such data may not always be viable, particularly when the data contains private informa-
tion and must remain siloed across clients (e.g. mobile devices or hospitals). Recently, federated
learning (FL) [108, 81] has emerged as a paradigm for learning from such distributed data, but
it has been shown that its data minimization principle alone may not provide adequate privacy
protection for participants [149, 154]. To obtain formal privacy guarantees, there has thus been
extensive work applying differential privacy (DP) [43, 44] to various parts of the FL pipeline (e.g.
[55, 110, 67, 79, 5, 97, 71, 122, 57]).

Existing approaches for differentially private FL are typically designed for client-level DP in that
they protect the federated clients, such as mobile devices (“user-level”), tasks in multi-task learning
(“task-level”), or data silos like institutions (“silo-level”), and DP is achieved by clipping and noising
the client model updates. While client-level DP is considered a strong privacy notion as all data of
a single client is protected, it may not be suitable for cross-silo FL, where there are fewer clients but
each hold many data subjects that require protection. For example, when hospitals/banks/schools
wish to federate patient/customer/student records, it is the people owning those records rather
than the participating silos that should be protected. In fact, laws and regulations may mandate
such participation in FL be disclosed publicly [142], compromising the privacy of the federating
clients.

…

Hospital 𝑗Hospital 𝑖

Client-level DP: Participating silos are protected 
(with notions of local/central/distributed DP)

Silo-specific example-level DP: Individual records 
within silos are protected with silo-specific targets

(𝜀𝑗, 𝛿𝑗)

…

Hospital 𝑗Hospital 𝑖

(𝜀𝑖, 𝛿𝑖)
model

updates
model

updates
= protected(𝜀, 𝛿) serverserver

Figure 1.1: Client-level DP vs silo-specific example-level DP.

We instead consider a more natural model of silo-specific example-level privacy (Fig. 1.1, with
variants appearing in [67, 101, 164, 82]): the k-th silo may set its own (εk, δk) example-level DP target
for any learning algorithm with respect to its local dataset. With this formulation in mind, we then
reconsider the impact of privacy, heterogeneity, and personalization in cross-silo FL. In particular, we
explore existing baselines for FL (mostly developed in cross-device settings) across private cross-silo
benchmarks, and we find that the simple baseline of mean-regularized MTL (MR-MTL) has many
advantages for this setting relative to other more common (and possibly more complex) methods.
We then further analyze the performance of MR-MTL under varying levels of heterogeneity and
privacy, both in theory and practice. In addition to establishing baselines for cross-silo FL, we also
identify interesting future directions in this area (Section 1.7 and Appendix F).

This chapter is summarized as the following:

• We consider the notion of silo-specific example-level differential privacy (DP) as a more realistic
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privacy model for cross-silo federated learning (FL). We analyze its implications on existing FL
algorithms and, in particular, how it interfaces with data heterogeneity across silos.
• We empirically show that mean-regularized multi-task learning (MR-MTL), a simple form of model

personalization, is a remarkably strong baseline under silo-specific example-level DP. Core to its
effectiveness is its ability to (roughly) interpolate on the model personalization spectrum between
local training and FedAvg with minimal privacy overhead.
• We provide a theoretical analysis of MR-MTL under mean estimation and characterize how MR-

MTL navigates the tension between privacy and cross-silo data heterogeneity.
• Finally, we examine the complications of deploying an optimal MR-MTL instance that stem from

the privacy cost of hyperparameter tuning. Our reasoning also applies to other personalization
methods whose advantage over local training and/or FedAvg hinges on selecting the best hyperpa-
rameter(s). This raises important questions around the practicality of leveraging personalization
to balance the emerging tradeoffs under silo-specific example-level DP.

The code corresponding to this chapter and the related publication [98] can be found at https:
//github.com/kenziyuliu/private-cross-silo-fl.

1.2 Background and Related Work

Federated Learning (FL) [108, 89, 81] is a distributed learning paradigm with an emphasis on
data minimization. Typically:

• a central server sends a model to participating clients;

• the clients train that model using their own local data and send back updated models; and

• the server aggregates the updates (e.g., via averaging)

and the cycle repeats. Companies like Apple and Google have deployed FL to train models for
applications such as predictive keyboards1, text election2, and speaker verification3 in networks of
user devices.

A basic instantiation of FL is FedAvg [108], where clients are stateless and the server performs a
simple (weighted) average. Cross-device FL refers to settings with many clients each with limited
data, bandwidth, availability, etc. (e.g. mobile devices). In contrast, cross-silo FL typically involves
less clients (e.g. banks, schools, hospitals) but each with more resources. Two distinguishing char-
acteristics of cross-silo FL relevant to our work are that (1) silos may have sufficient data to fit a
reasonable local model without FL, and (2) each data point in a silo tends to map to a data subject
(a person) requiring privacy protection.

Although the high-level federated learning workflow described above can help to mitigate systemic
privacy risks, past work [81, 154, 149] suggests that FL’s data minimization principle alone isn’t suf-
ficient for data privacy, as the client models and updates can still reveal sensitive information.

Differential Privacy (DP). Differential privacy is often used in conjunction with FL to ensure
that an algorithm (provably) does not leak the privacy of its inputs. DP provides both a formal
guarantee and an effective empirical mitigation to attacks like membership inference [28] and data

1https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
2https://ai.googleblog.com/2023/03/distributed-differential-privacy-for.html
3https://machinelearning.apple.com/research/improving-on-device-speaker
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poisoning [140]. In a nutshell, DP is a statistical notion of privacy where we add randomness to
a query on a "dataset" to create quantifiable uncertainty about whether any one "data point" has
contributed to the query output. DP is typically measured by two scalars (ε, δ)—the smaller, the
more private.

Definition 1.2.1 (Differential Privacy [43, 44]). A randomized algorithm M : X n → Y, where X n
is the set of datasets with n samples and Y is the set of outputs, is (ε, δ)-DP if for any subset S ⊆ Y
and any neighboring x, x′ differing in only one sample (by replacement), we have

Pr[M(x) ∈ S] ≤ exp(ε) · Pr[M(x′) ∈ S] + δ. (1.1)

To apply DP to a dataset query, one commonly used method is the Gaussian mechanism [44], which
involves bounding the contribution (`2-norm) of each sample in the dataset followed by adding
Gaussian noise proportional to that bound onto the aggregate. To apply DP in FL, one needs to
define the “dataset” to protect; typically, as in client-level DP, this is the set of FL participants and
thus the model updates from each participant in every round should be bounded and noised.

In learning settings, we need to repeatedly query a dataset and the privacy guarantee composes.
We use DP-SGD [133, 13, 1] for ensuring example-level DP for model training, and we use Rényi
DP [114] and zCDP [22] for tight privacy composition, as discussed below. In certain FL algorithms,
clients also perform additional work such as cluster selection [106, 56] that incurs privacy overhead
with respect to its local dataset that must be accounted for independently from DP-SGD.

Rényi Differential Privacy (RDP). We make use of a relaxation of different privacy known as
Rényi Differential Privacy [114] for tight privacy accounting.

Definition 1.2.2 (Rényi Differential Privacy (RDP) [114]). A randomized algorithm M : X n → Y
is (α, ε)-RDP with order α > 1 if for any adjacent datasets x, x′ ∈ X n,

Dα(M(x)‖M(x′)) ≤ ε, (1.2)

where Dα(P‖Q) is the Rényi divergence4 between distributions P and Q:

Dα(P‖Q) ,
1

α− 1
log E

x∼P

[(
P (x)

Q(x)

)α−1
]
. (1.3)

Under Rényi DP, the privacy composition is simple: if every step of an algorithm satisfies (α, ε)-
RDP, then over T steps the algorithm satisfies (α, Tε)-RDP. The following lemma from [22, 25]
provides a conversion from RDP to standard (ε, δ)-DP guarantees.

Lemma 1.2.3 (Conversion from Rényi DP to approximate DP [22, 25]). If a mechanismM satisfies
(α, ε(α))-RDP, then for any δ > 0, it also satisfies (ε(δ), δ)-DP where

ε(δ) = inf
α>1

ε(α) +
1

α− 1
log

(
1

αδ

)
+ log

(
1− 1

α

)
. (1.4)

Zero-Concentrated Differential Privacy (zCDP). A closely related privacy notion is zero-
concentrated DP (zCDP [22]), where ρ-zCDP is equivalent to satisfying (α, ρα)-Rényi DP simultane-
ously for all orders α. Thus, algorithms that satisfy zCDP guarantees are compatible with standard

4The Rényi divergence at α = 1 is defined as D1(P‖Q) , E
x∼P

[
log
(
P (x)
Q(x)

)]
= limα→1Dα(P‖Q), which is also the

KL divergence.
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RDP accounting routines implemented in open-source libraries (e.g. TensorFlow Privacy [109]). In
our work, we make use of zCDP and a related result for the Exponential Mechanism [127] for tight
privacy composition when implementing private cluster selection for IFCA [56, 106] (discussed in
more details in Section 1.5 and Appendix B.3).

Exponential Mechanism for Private Selection. The Exponential Mechanism (EM) is a stan-
dard algorithm for making private selection from a set of candidates based on their scores [111].
Specifically, there is a dataset x ∈ X n requiring DP protection, and a scoring function s : X n×[G]→
R that evaluates a set of candidates g ∈ [G]. We want to pick the candidate with the highest score
(i.e. argmaxg∈[G] s(x, g)) subject to (ε, 0)-DP for neighboring datasets x, x′. The mechanism M is
defined by setting the probability of choosing any g ∈ [G] as

Pr[M(x) = g] =
exp

(
ε

2∆ · s(x, g)
)∑

g′∈[G] exp
(
ε

2∆ · s(x, g′)
) , (1.5)

where ∆ is the sensitivity of the scoring function. EM also satisfies 1
8ε

2-zCDP [127] and thus
(α, α8 ε

2)-RDP for all α. A variant of EM is the Permute-and-Flip mechanism [107].

The Exponential Mechanism can be implemented as “Report Noisy Max” with Gumbel noise: we
can add independent noises drawn from the Gumbel distribution with scale 2∆

ε to the candidate
scores s(x, g) for all g ∈ [G] and simply report the max noisy score. If the score function is a loss
metric (where we want the minimum instead of the maximum), we can similarly implement “Report
Noisy Min” by subtracting the Gumbel noises from the scores and report the minimum.

Privacy Budgeting for Machine Learning. A typical accounting workflow, as used in our
experiments, thus involves (1) composing the RDP guarantees of all private operations in the algo-
rithm and (2) trying a list of α values that give the lowest ε for a target δ when converting back to
(ε, δ)-DP that captures the overall privacy cost. For SGD training, we also use existing results on
privacy amplification via subsampling [115, 1]: if a gradient step is (ε, δ) w.r.t. the dataset without
amplification and the gradient is computed with a minibatch (assumed to be a random sample) of
batch size b = q/n where q is the sampling ratio and n is the size of the dataset, then the privacy
of the gradient step is amplified to (O(qε), δ)-DP. In a silo-specific example-level DP setup, the size
of the dataset nk at each silo thus determines the extent of the amplification, and thus even if silos
target for the same (ε, δ) example-level DP, they may end up adding different amounts of noise
when running DP-SGD. For this reason our experiments (in the coming Section 1.4) primarily focus
on having the same privacy target for all silos.

Heterogeneous Differential Privacy. A related privacy notion is heterogeneous DP [6, 78], where
each item within a dataset to be protected by DP may opt for a different (ε, δ) target. Our setting
primarily focuses on different (ε, δ) values for disjoint datasets, and all items within a specific dataset
share the same DP target.

Personalized Federated Learning. Model personalization is a key technique for improving utility
under data heterogeneity across silos.5 Past work has examined the roles of local adaptation [147,
157, 32], multi-task learning [132, 129], clustering [56, 35, 106, 129], public data [163, 106], meta
learning [76, 88, 47], or other forms of model mixtures [93, 91, 106, 63, 38, 3]. Notably, many
methods leverage extra computation to some extent (e.g. extra iterations [93, 91, 32] or cluster
selection [56, 106]), which will result in privacy overhead under silo-specific example-level DP as
discussed in the following section. Of particular interest is the family of mean-regularized multi-task

5Note that “personalization” refers to customizing models for each client in FL rather than a specific person.
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learning (MR-MTL) methods [46, 136, 63, 64] (see Algorithm 1 for a typical instantiation). We find
that MR-MTL, while extremely simple, is a strong baseline for private cross-silo FL.

1.3 Privacy Granularity for Cross-Silo Federated Learning

To date, the prevalent privacy model for federated learning has been to protect the participating
clients, i.e. client-level DP. For cross-silo FL, however, several factors render client-level DP less
appropriate. First, cross-silo FL often involves a small number of clients and it can be utility-wise
more costly to attain the same privacy targets. For example, privacy amplification via sampling [1,
115] may not apply on the client level since all silos typically participate in every round. Second,
many existing methods focus on enforcing client-level DP in a non-local model and thus defines a
shared privacy target for all participants, but in real-world cross-silo settings, participants under
different jurisdictions (e.g. states) may have varying privacy requirements and thus opt for different
privacy-utility tradeoffs. Third, while silo-level protection implies example-level protection, it may
be too stringent in practice as silos often have large local datasets. These unique properties for
private cross-silo learning motivate us to consider silo-specific example-level DP as an alternative
privacy model (Fig. 1.1):

Definition 1.3.1 (Silo-specific example-level DP). A cross-silo FL algorithm with K clients (silos)
satisfy {(εk, δk)}k∈[K]-“silo-specific example-level DP” if the local (personalized) model Mk of every
silo k ∈ [K] satisfies (εk, δk)-DP w.r.t. the silo’s local dataset of training examples.

Characteristics of silo-specific example-level privacy. Importantly, silo-specific example-level
DP is defined over the disjoint datasets of the individual silos, rather than the combined dataset
of all silos.6 To instantiate this setup in FL, each silo can simply run DP-SGD [133, 13, 1] with a
noise scale calibrated to gradually spend its privacy budget over T training rounds, and return the
noisy model update at each round. This privacy notion has several important implications on the
dynamics of FL:

1. Silos incur privacy costs with queries to their data, but not with participation in FL.
This follows from DP’s robustness to post-processing: the silos’ model updates in each round
already satisfy their own example-level DP targets, and participation by itself does not involve
extra dataset queries (e.g. DP-SGD steps). In contrast, local training without communication
can be kept noise-free under client-level DP, but participation in FL requires privatization. Two
immediate consequences of the above are that
(a) local training and FedAvg now have identical privacy costs, and
(b) local finetuning for model personalization may no longer work as expected (Fig. 1.2).

2. Less reliance on a trusted server. As a corollary of the above, all model updates of silo
k satisfy (at least) (εk, δk)-DP against external adversaries, including all other silos and the
orchestrating server [44, 164]. In contrast, client-level DP under a non-local model necessitates
some trust on the server, even for distributed DP methods (e.g. [45, 34, 79, 5, 33, 31]).

3. Tradeoff emerges between costs from privacy and heterogeneity. As privacy-perserving
noises are added independently on each silo, they are reflected in silos’ model updates and can
thus be smoothed out when the model updates are aggregated (e.g. via FedAvg), leading to a
6 A record in such a combined dataset is at most (maxi εi, maxi δi)-DP [112, 156, 97]. Moreover, if multiple

records (either within a silo or across silos) map to the same person, then it is more intricate to protect the person
rather than their records. Here we focus on the case where each entity has at most one record across the combined
dataset (e.g. students attending exactly one school). See Appendix A for discussions.
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Figure 1.2: Two notable phenomena under silo-specific example-level DP : (1) FedAvg can serve to
cancel out per-silo DP noise and thus outperform local training even when the latter works better without
privacy (left); (2) Local finetuning [157, 32] (FedAvg followed by local training) may not improve utility as
expected, as the effect of noise reduction is removed when finetuning begins (mid & right). Results report
mean test acc ± std on the Vehicle dataset over 5 seeds. For simplicity, all silos budgets for the same labeled
ε with δ = 10−7. Transparent curves refer to local/FedAvg runs with the same ε labeled for finetuning
(compare left & mid).

smaller utility drop due to DP for the shared model. On the other hand, federation also means
that the shared model may suffer from client heterogeneity (non-iid data across silos). This
intuition is observed in Fig. 1.2: while local training may outperform FedAvg without privacy,
the opposite can be true when privacy is added.

The first and last in the above are of particular interest because they suggest that model personal-
ization can play a key and distinct role in our privacy setting. Specifically, local training (no FL
participation) and FedAvg (full FL participation) can be viewed as two ends of a personalization
spectrum with identical privacy costs; if local training minimizes the effect of data heterogeneity
but enjoys no DP noise reduction, and contrarily for FedAvg, it is then natural to ask whether
there exist personalization methods that lie in between and achieve better utility, and, if so, what
methods would work best.

Related privacy settings. Past work on differentially private FL has concentrated on client-level
DP and cross-device FL (e.g. [55, 110, 71, 57, 80, 79, 7]), and the application of DP in cross-silo FL,
particularly where each silo defines its own DP targets for records of its own dataset, is relatively
underexplored. Privacy notions closest to ours first appeared in [141, 88, 67, 164, 101, 82, 97]. In
[141], each client adds its own one-shot noise onto its outgoing update, but in learning scenarios this
provides client-level protection. The works of [88, 101, 164, 67, 97] study analogous privacy notions,
though they respectively focus on boosting utility [88], analyzing statistical rates [101], adapting
FL to f -DP [164, 40], applying security primitives [67], and learning a better global model; the
aspects of heterogeneity, DP noise reduction, the personalization spectrum, and their interplay (e.g.
Figs. 1.2 and 1.5) were unexplored. The work of [82] also considers a similar privacy notion, but the
authors study a disparate trust assumption where DP noise is not added to local training/finetuning
such that the final personalized models lack privacy guarantees. We note that the trust model most
suitable for private cross-silo FL may be application-specific; here, we focus on the setting where
the outputs of the FL procedure (the personalized models) must remain differentially private, as,
for example, they may be served to non-curator users within the silo through an API.
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Figure 1.3: Privacy-utility tradeoffs (privacy budgets ε vs. test metrics, mean ± std w/ 5 seeds) for
various personalization methods on Vehicle, School, GLEAM, and Heterogeneous CIFAR-10 datasets
respectively. For simplicity, every silo targets for the same (ε, δ) under silo-specific example-level DP. λ∗
denotes a tuned regularization strength where applicable. “Local” denotes local training (clients train and
keep their own models). “IFCA (10%)” denotes forming clusters for only first 10% of training rounds due to
privacy overhead (Fig. 1.4).

1.4 Baselines for Private Cross-Silo Federated Learning

With the characteristics from Section 1.3 in mind, we now explore various methods on cross-silo
benchmarks. We defer additional details as well as results on more settings and datasets to the
appendix.

Datasets. We consider four cross-silo datasets that span regression/classification and convex/non-
convex tasks: Vehicle [42], School [58], Google Glass (GLEAM) [121], and CIFAR-10 [85]. The
first three datasets have real-world cross-silo characteristics: Vehicle contains measurements of
road segments for classifying the type of passing vehicles, School contains student attributes for
predicting exam scores, and GLEAM contains motion tracking data to classify wearers’ activities.
CIFAR-10 has heterogeneous client splits following [136, 130]. See Appendix B.1 for more details
and datasets.

Benchmark methods. We consider several representative methods in the personalized FL litera-
ture beyond local training and FedAvg [108]: local finetuning [147, 157, 32] (a simple but strong base-
line for model personalization), Ditto [91] (state-of-the-art personalization method), Mocha [132]
(personalization with task relationship learning), IFCA/HypCluster [56, 106] (state-of-the-art hard
clustering method for client models), and the mean-regularized multi-task learning (MR-MTL) meth-
ods [46, 136, 63, 64] (which we analyze in Section 1.5). For fair comparison under silo-specific
example-level DP, we align all benchmark methods on the total privacy budget by first restricting
the total number of iterations over the local datasets and then account for any privacy overheads
(in the form of necessary extra steps [91] or cluster selection for IFCA/HypCluster [56, 106]). Im-
portantly, many other personalization methods can either be reduced to one of the above under
convex settings (e.g. [76, 93]) or are unsuitable due to large privacy overheads (e.g. large factor of
extra steps for [47]).

Training setup. For all methods, we use minibatch DP-SGD in each silo to satisfy silo-specific
example-level privacy; while certain methods may have more efficient solvers (e.g. dual form for [132]),
we want compatibility with DP-SGD as well as privacy amplification via sampling on the example
level for tight accounting. For all experiments, silos train for 1 local epoch in every round (except
for [91] which runs ≥ 2 epochs). Hyperparameter tuning is done via grid search for all methods.
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Importantly, when comparing the benchmark methods, we do not account for the privacy cost of
hyperparameter tuning in order to focus on their inherent privacy-utility tradeoff; we revisit this
issue in Section 1.7. For simplicity, we use the same privacy budget for all silos, i.e. (εi, δi) = (εj , δj)
for all i, j ∈ [K]; note that this is not a restrictive assumption since the effect of having varying DP
noise scales from different budgets can be attained by varying local dataset sizes.
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Figure 1.4: The privacy over-
head of cluster selection (IFCA)
and extra iterations (Ditto)
compared to local, FedAvg,
and MR-MTL under silo-specific
example-level DP.

Results. Fig. 1.3 shows the privacy-utility tradeoffs across four
datasets. We observe that MR-MTL consistently outperforms a suite
of baseline methods, and that it performs at least as good as local
training and FedAvg (endpoints of the personalization spectrum),
except at high-privacy regimes (possibly different for each dataset).
In particular, there exists a range of ε values where MR-MTL can
give significantly better utility over local training and FedAvg un-
der the same privacy budgets (ε ≈ 0.5, 6, 1.5 for Fig. 1.3 (a, b, c)
respectively); this is our key regime of interest.

Effects of silo-specific example-level privacy. In Fig. 1.2 we
saw that local finetuning may not improve utility as expected, mo-
tivating us to reconsider the roles of federation and personalization
(Section 1.5 below). In Fig. 1.4, we consider the implication of silo-
specific example-level DP from the effects of privacy overhead due
to additional dataset queries: (1) If IFCA [56, 106] performs cluster
selection at every round (default behavior), then the extra privacy
cost can be prohibitive; (2) Despite its similarity to MR-MTL, Ditto [91]’s privacy overhead makes
it less competitive (see also Fig. 1.5).

1.5 On the Effectiveness of Mean-Regularized MTL for Private
Cross-Silo FL

Following the observations in Section 1.4, we now examine the desirable properties of a good algo-
rithm under silo-specific example-level privacy and understand why MR-MTL may be an attractive
candidate.

Federation as noise reduction. A key message from Section 1.3 and Fig. 1.2 is that the utility
cost from DP can be significantly smaller for FedAvg compared to local training even when the
latter spends an identical privacy budget. This implies that FedAvg may have inherent benefits for
DP noise reduction, despite the noise are added in the gradient space rather than the parameter
space (as in client-level DP). Consider a simple setting of DP gradient descent: the update rule
w

(t+1)
k = w

(t)
k − η

nk

(
z(t) +

∑nk
i=1 g

(t)
k,i

)
for silo k recursively expands to w(T )

k = w
(0)
k − η

nk

∑T−1
t=0 z(t)−

η
nk

∑T−1
t=0

∑nk
i=1 g

(t)
k,i over T steps, where g(t)

k,i is the clipped gradient of the i-th local example at step
t (with norm bound c) out of a total of nk examples, and z(t) ∼ N (0, σ2I) is the Gaussian noise
added to the gradient sum at step t that targets for an overall privacy budget of (εk, δk) over T
steps with σ2 = O

(
c2T ln(1/δk)/ε

2
k

)
[1]. The cumulative noise term

Z(T ) , − η
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∑
t
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(

0, O

(
η2c2T 2 ln(1/δk)

n2
kε

2
k

)
· I
)

(1.6)
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indeed implies that each silo’s model update has an independent Gaussian random walk compo-
nent [128, 8, 148] whose variance can be reduced by averaging with other silos’ updates, as in
FedAvg.7 A similar reasoning applies to SGD cases since the additive DP noises are i.i.d. across the
minibatches.

Model personalization for privacy-heterogeneity cost tradeoff. A major downside of Fe-
dAvg is that it may underperform simple local training due to data heterogeneity (e.g. [157] and
Fig. 1.2), particularly given that clients in cross-silo FL often have sufficient data to fit reasonable
local models. This suggests an emerging role for model personalization on top of its benefits in terms
of utility [147], robustness [157], or fairness [91] under heterogeneity: our privacy model allows local
training and FedAvg to be viewed as two endpoints of a personalization spectrum that respectively
mitigate the utility costs of heterogeneity and privacy noise with identical privacy budgets (recall
Section 1.3); this means that personalization methods could be viewed as interpolating between
these endpoints and that various personalization methods essentially do so in different ways. How-
ever, our empirical observations motivate the following key properties of a good personalization
algorithm:

1. Noise reduction: The effect of noise reduction is present throughout training so that the utility
costs from DP can be consistently mitigated. Local finetuning is a counter-example (Fig. 1.2).

2. Minimal privacy overhead: There are little to no additional local dataset queries to prevent
extra noise for DP-SGD under a fixed privacy budget. In effect, such privacy overhead can
shift the utility tradeoff curve downwards, and Ditto [91] may be viewed as a counter-example
(Fig. 1.4).

3. Smooth interpolation along the personalization spectrum: The interpolation between
local training and FedAvg should be fine-grained (if not continuous) such that an optimal tradeoff
should be attainable. Clustering [56, 106] may be viewed as a counter-example when there are
no clear heterogeneity strucutre across clients.

These properties are rather restrictive and they render many promising algorithms less attractive.
For example, model mixture [93, 16, 38] and local adaptation [157, 32] methods can incur linear
overhead in dataset iterations, and so can multi-task learning [91, 132, 129] methods that benefit
from additional training. Clustering methods [56, 35, 106, 129] can also incur overhead with cluster
selection [56, 106], distillation [35], or training restarts [129], and they discretize the personalization
spectrum in a way that depends on external parameters (e.g., the number of clients, clusters, or
top-down partitions).

The case for mean-regularization. These considerations point to mean-regularized multi-task
learning (MR-MTL) as one of the simplest yet particularly suitable forms of personalization. MR-
MTL has manifested in various forms in the literature [46, 160, 136, 63, 32, 71] with the key idea
that a personalized model wk for each silo k should be close to the mean of all personalized models
w̄ via a regularization penalty λ/2‖wk − w̄‖22 (see Algorithm 1 for a typical instantiation). The
hyperparameter λ serves as a smooth knob between local training and FedAvg, with λ = 0 recovering
local training and a larger λ forces the personalized models wk to be closer to each other (“federate
more”). However, it is an imperfect knob as λ → ∞ may not recover FedAvg under a typical

7 The work of [80] examines the benefits of adding negatively correlated (instead of independent) noises zt across
time steps. While this is a potential orthogonal extension to our use of local DP-SGD within each silo, it may not be
directly applicable to our main focus of reducing noise variance across silos, since for each silo k to satisfy its own
(εk, δk) requirement, it must add noise independent to other silos.
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optimization setup as the regularization term may dominate the gradient step

w
(t+1)
k = w

(t)
k − η

(
gt + λ

(
w

(t)
k − w̄(t)

))
where gt is the noisy clipped gradient, and MR-MTL may thus underperform FedAvg in high-privacy
regimes that necessitate a large λ to mitigate DP noise (Fig. 1.3).

MR-MTL has the attractive properties that: (1) noise reduction is achieved throughout training via
a soft constraint that personalized models are close to an averaged model; (2) for fixed λ it has
zero additional privacy cost compared to local training/FedAvg as it does not involve extra dataset
queries; and (3) λ provides a smooth interpolation along the personalization spectrum. Moreover,
compared to other regularization-based MTL methods, it adds only one hyperparameter λ (cf.
[74, 165, 59]); this has important practical implications as will be discussed in Section 1.7. It also
has fast convergence [161] and easily extends to deep learning with good empirical performance in the
primal [136, 71] (cf. [12, 132, 99]). It is also sufficently extensible to handle structured heterogeneity
(discussed below). We argue through the following empirical analyses that these properties make
MR-MTL a strong baseline under silo-specific example-level DP.

10°3 10°1 101

Regularization strength ∏

84

86

88

90

92

94

A
vg

S
ilo

T
es

t
A
cc

(%
) Local

Local (" = 0.5)
FedAvg
FedAvg (" = 0.5)
Ditto
Ditto (" = 0.5)
MR-MTL
MR-MTL (" = 0.5)

λ* (non-private)

λ* (private)

Figure 1.5: Test acc ± std of MR-MTL with varying λ (corresponding to ε = 0.5 in Fig. 1.3 (a)).
Optimal points (λ∗) exist where it outperforms both ends of the spectrum under the same privacy. Ditto [91]
gives a similar interpolation but has strictly worse privacy-utility tradeoffs due to its privacy overhead. See
Appendix G.2 for extensions of this figure to other privacy settings and datasets.

Navigating the emerging privacy-heterogeneity cost tradeoff. In Fig. 1.5 we study the effect
of the regularization strength λ on the model utility directly. There are several notable observations:
(1) In both private and non-private settings, λ serves to roughly interpolate between local training
and FedAvg. (2) The utility at the best λ∗ may outperform both endpoints. This is significant
for the private setting since MR-MTL achieves an identical privacy guarantee as the endpoints. (3)
Moreover, the advantage of MR-MTL over the best of the endpoints are also larger under privacy.
(4) The value of λ∗ also increases under privacy, indicating that the personalized silo models are
closer to each other (i.e. silos are encouraged to “federate more”) for noise reduction. We will
characterize these behaviors in Section 1.6. We also consider Ditto [91] in Fig. 1.5, a state-of-the-art
personalization method that resembles MR-MTL and exhibits similar behaviors, to illustrate the
effect of privacy overhead from its extra local training iterations.

MR-MTL under structured heterogeneity. We further study (1) the extensibility of MR-MTL
as a strong baseline method to handle clustering structures of silo data distributions and (2) its
flexibility to handle varying heterogeneity levels, by manually introducing two layers of heterogeneity
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Figure 1.6: Test acc ± std on Rotated & Masked MNIST. (IFCA 5%) denotes warm-starting the
method by running IFCA [56, 106] for first 5% of rounds followed by running the method within the cluster
structures.

to the MNIST dataset [86]. The first layer is 4-way rotations: train/test images are evenly split into
4 groups of 10 silos, with each group applying {0◦, 90◦, 180◦, 270◦} of rotation to their images. The
second layer is silo-specific masking: each silo generates and applies its unique random mask of 2×2
white patches to its images, with varying masking probability. Together, the 1st layer creates 4 well-
defined silo clusters, and the 2nd layer (gradually) adds intra-cluster heterogeneity. Importantly,
our goal is not to contrive a utility advantage of MR-MTL (in fact, the added heterogeneity is
disadvantageous to mean-regularization), but to examine its extensibility and flexibility as a strong
baseline method to match the best methods by construction. Under the 1st layer of heterogeneity,
clustered FL methods [56, 106] should be optimal if the correct clusters are formed since there
is no intra-cluster heterogeneity; with increasing silo-specific heterogeneity in the 2nd layer, local
training should be increasingly more attractive. See Appendix B.1 for more details on the setup
and examples of images.

We propose a simple heuristic to precondition or “warm-start” MR-MTL with a small number of
training rounds by running private clustering (with IFCA [56, 106]) followed by mean-regularized
training within each formed cluster (see Appendix C for details). We find that this simple heuristic,
with convergence properties carried forward from its components [56, 46, 161], enables MR-MTL to
excel at all levels of heterogeneity: in Fig. 1.6 (a), the preconditioning allows MR-MTL to match
IFCA (optimal by construction) while local training (full personalization) does not benefit from
the same preconditioning; in Fig. 1.6 (b, c, d), MR-MTL remains optimal across different levels
of silo-specific heterogeneity (the 2nd layer) while the gains from warm-start gradually drop. We
argue that extensibility and flexibility are good properties that make MR-MTL a strong baseline, as
heterogeneity in practical settings is likely less adversarial than what we presented.

1.6 Analysis

In this section we provide a theoretical analysis of MR-MTL under mean estimation as a simplified
proxy for (single-round) FL using a Bayesian framework extending on [91]. We provide expressions
for the Bayes optimal estimator MR-MTL (λ∗) and describe how MR-MTL behaves with varying λ
in relation to the personalization spectrum to characterize our observations from Fig. 1.5. Proofs
and extensions are deferred to Appendix D.

Setup. We start with a total of K silos where the k-th silo holds n training samples Xk , {xk,i ∈
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R}i∈[n], each normally distributed around a hidden center wk with variance σ2; i.e. xk,i = wk + zk,i
with zk,i ∼ N (0, σ2). To quantify heterogeneity, the silo centers {wk}k∈[K] are also normally
distributed around some unknown fixed meta-center θ with variance τ2; i.e. wk = θ + z with
z ∼ N (0, τ2). A large τ means that the silo centers are distant from each other and thus their local
objectives are heterogeneous, and contrarily for a small τ . Our goal is for each silo k to compute a
example-level private estimate of wk that minimizes the generalization error (i.e. on unseen points
from the same local distribution). Each silo targets (ε, δ) example-level DP and runs the Gaussian
mechanism with noise scale σDP = c

√
2 ln(1.25/δ)/ε and clipping bound c.8 Under this setting, the

MR-MTL objective for the k-th silo is

hk(w) = F̃k(w) +
λ

2
‖w − w̄‖22. (1.7)

Here, F̃k(w) , 1
2(w − 1

n(ξk +
∑n

i=1 xk,i · min(1, c/‖xk,i‖2)))2 is the local objective to privately
estimate the mean of the local data points with privacy noise ξk ∼ N (0, σ2

DP). Since the data are
(sub-)Gaussian, we assume one can choose c such that no clipping error is introduced w.h.p., so
ŵk , argmin F̃k(w) = 1

n (ξk +
∑

i xk,i) is the best local estimator. w̄ = 1
K

∑
k ŵk is the average

estimator across silos, which is the same as the FedAvg estimator under mean estimation. We
also consider the external average local estimators for silo k, defined as ŵ\k , 1

K−1

∑
j 6=k ŵj . The

following lemma gives the best MR-MTL estimator ŵk(λ) as a function of λ.

Lemma 1.6.1. Let λ ≥ 0 and α = K+λ
(1+λ)K ∈ (1/K, 1]. The minimizer of hk(w) is given by

ŵk(λ) = α · ŵk + (1− α) · ŵ\k. (1.8)

Note that the best λ is always 0 for training error (i.e. estimating the empirical mean of the local
data {xk,i}); our hope is that with some λ > 0, ŵk(λ) yields a better generalization error.

We now present the main takeaways. At a high level, the basis of our analysis relies on expressing
the true center wk in terms of ŵk and ŵ\k conditioned on the local datasets {Xk}k∈[K]. Let

σ2
loc ,

σ2

n
+
σ2

DP

n2
(1.9)

denote the “local variance” of ŵk around wk due to both data sampling and privacy noise.

Behavior of MR-MTL at optimal λ∗. We first derive the following lemma using Lemma 11
of [105].

Lemma 1.6.2. Given ŵk, ŵ\k, and {Xk}k∈[K], we can express wk = µk+ζk, where ζk ∼ N (0, σ2
w),

σ2
w ,

(
1

σ2
loc

+
K − 1

Kτ2 + σ2
loc

)−1

and µk , σ2
w

(
1

σ2
loc

· ŵk +
K − 1

Kτ2 + σ2
loc

· ŵ\k
)
. (1.10)

Lemma 1.6.2 expresses the unobserved true silo centers wk in terms of the (private) empirical
estimators ŵk and ŵ\k. This expression requires conditioning on the datasets Xk as they form the
Markov blankets of ŵk. Combining Lemma 1.6.1 and Lemma 1.6.2 gives the optimal λ.

Theorem 1.6.3 (Optimal MR-MTL estimate). The best λ∗ for the generalization error is given by

λ∗ = argmin
λ

E
[
(wk − ŵk(λ))2 | ŵk, ŵ\k, {Xk}k∈[K]

]
=

1

nτ2

(
σ2 +

σ2
DP

n

)
. (1.11)

8 For simplicity, we start with the same n, σ, σDP for all silos and extend to silo-specific values in Appendix D.
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Theorem 1.6.3 suggests that there indeed exists an optimal point ŵ(λ∗) on the personalization
spectrum. Moreover, λ∗ grows smoothly with stronger privacy (σ2

DP → ∞) to encourage silos to
“federate more” with others. This was empirically observed in Fig. 1.5. We now characterize the
utility of ŵ(λ∗).

Corollary 1.6.4 (Optimal error with ŵ(λ∗)). The MSE of the optimal estimator ŵ(λ∗) is given by

E∗ , E
[
(wk − ŵk(λ∗))2 | ŵk, ŵ\k, {Xk}k∈[K]

]
= σ2

w =
σ2

loc(σ
2
loc +Kτ2)

K(σ2
loc + τ2)

. (1.12)

Note also that ŵ(λ∗) is the MMSE estimator of wk. Using Corollary 1.6.4, we can compare ŵk(λ∗)
against the endpoints of the personalization spectrum (local training and FedAvg) with the following
propositions.

Proposition 1.6.5 (Optimal error gap to local training). Let Eloc , E
[
(wk − ŵk)2 | Xk

]
= σ2

loc be
the error of the local estimate. Then, compared to the optimal estimator ŵ(λ∗) (Corollary 1.6.4),
the local estimator incurs an additional error of

∆loc , Eloc − E∗ =

(
1− 1

K

)
· σ4

loc

σ2
loc + τ2

. (1.13)

Proposition 1.6.6 (Optimal error gap to FedAvg). Let Efed , E
[
(wk − w̄)2 | {Xk}k∈[K]

]
be the

error under FedAvg. Then, compared to the optimal estimator ŵ(λ∗) (Corollary 1.6.4), the FedAvg
estimator incurs an additional error of

∆fed , Efed − E∗ =

(
1− 1

K

)
· τ4

σ2
loc + τ2

. (1.14)

Together, Propositions 1.6.5 and 1.6.6 suggest that the effects of stronger privacy (σ2
DP, σ

2
loc →∞)

on how MR-MTL compares against the personalization endpoints are mixed, with the benefit of
MR-MTL increasing against local training and diminishing against FedAvg. They also suggest
that MR-MTL has an optimal utility advantage over both the endpoints when σ2

loc ≈ τ2 and local
training performs on par with FedAvg, and the utility “bump” under privacy observed in Fig. 1.5
can be viewed as a result of this balance. It is worth noting that since the data variance σ2 and
heterogeneity τ2 are often fixed in practice, the freedom for silos to vary their privacy targets (ε and
σ2

DP) makes the utility advantage of MR-MTL more flexible compared to non-private settings.

Behavior of MR-MTL as a function of λ. The above captures how MR-MTL behaves at its
optimum, but in Fig. 1.5 we also observed that MR-MTL has the desirable property that the utility
cost from DP shrinks smoothly with larger λ (Section 1.5). Lemma 1.6.7 and Theorem 1.6.8 below
provides a characterization.

Lemma 1.6.7 (Error of ŵk(λ)). Let E(λ) , E
[
(wk − ŵk(λ))2 | ŵk, ŵ\k, {Xk}k∈[K]

]
be the error of

MR-MTL as a function of λ. Then,

E(λ) =

(
1− 1

K

)
σ2

loc + λ2τ2

(λ+ 1)2
+
σ2

loc

K
. (1.15)
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Figure 1.7: Privacy costs of tuning λ on mean estimation (setup follows Section 1.6). Labels “Private”
and “Non-Private” denote the errors of varying λ with and without silo-specific example-level DP (the
privacy cost of tuning λ is not included). “Private, TNB/Poisson” [117] denotes the same errors but
accounts for the privacy cost of trying on average E[h] = 10 values of λ, with h sampled from the truncated
negative binomial distribution with parameters η, γ / the Poisson distribution with parameter µ to arrive
at the same E[h]. To interpret, observe that the lowest points of “Private, TNB/Poisson” may be still
higher than one of the endpoints of “Private”.

Using Lemma 1.6.7 we can now characterize how λ affects the utility cost from DP (recall from
Figs. 1.2 and 1.5 that federation helps with noise reduction). As a side note, Lemma 1.6.7 also
suggests that MR-MTL’s utility as a function of λ would have a quasi-concave shape, as was empir-
ically observed in Fig. 1.5. This could potentially help make heuristic or automated search over λ
easier.

Theorem 1.6.8 (Private utility gap). Let ŵk(λ) and ŵDP
k (λ) be the non-private and private esti-

mate of wk with σ2
loc ← σ2/n and σ2

loc ← σ2/n+ σ2
DP/n

2, respectively. Let E(λ) and EDP(λ) be the
error of ŵk(λ) and ŵDP

k (λ) respectively as in Lemma 1.6.7. Let ∆DP(λ) , EDP(λ) − E(λ) be the
utility cost due to privacy as a function of λ. Then,

∆DP(λ) =

(
1− 1

K

)
1

(λ+ 1)2

σ2
DP

n2
+
σ2

DP

Kn2
. (1.16)

Theorem 1.6.8 suggests that with a larger λ, the utility cost from privacy can be smoothly mitigated
by up to a factor of K, matching the empirical observation in Fig. 1.5.

1.7 Discussions

In previous sections, we empirically and theoretically studied the benefits of the best personalization
hyperparameter λ∗ for MR-MTL, but it remains open as to how such λ∗ may be obtained. In this
section, we take an honest look at the complications of deploying MR-MTL through the lens of
the privacy cost of finding λ∗. There are in general several approaches: (1) a non-adaptive search
(e.g. grid/random search [15]); (2) an adaptive search (e.g. grad student descent); or (3) an online
estimation during training (e.g. [143, 9, 118]). Here, we focus on approach (1) since it is generic
to all personalization methods and is a setting for which we have the best privacy accounting
tools [95, 117] to our knowledge. We defer technical details and further discussions to Appendix E.
Note that while we focus on MR-MTL, our reasoning in principle extends to all personalization
methods whose advantage depends on having the best hyperparameter(s).

Recall that for a typical tuning procedure, a baseline algorithmM is executed h times with different
hyperparameters and the best result is recorded. The work of [95, 117] shows that, with a constant

32



On Privacy and Personalization in Machine Learning

h, there exists M that satisfies (ε, δ = 0)-DP where the output of tuning is not (ε̃, 0)-DP for any
ε̃ < hε, with analogous negative results for Rényi DP (thus also for δ > 0). This implies that
naive tuning (as done in practice) can incur a prohibitive privacy overhead and obliterates the
utility advantage of MR-MTL (λ∗) over local training/FedAvg. Instead, by making h random, we
can make ε̃ constant w.r.t. h or at most ε̃ ≤ O(logE[h]) [95, 117]. However, using the simplified
setting of mean estimation (Section 1.6), we find that even with this improved randomized protocol,
there exist scenarios (Fig. 1.7) where the realistic cost of trying a moderate E[h] = 10 values of
λ may significantly diminish, or even outweigh, the utility advantage of λ∗ over local training and
FedAvg—that is, we might be better off by not privately tuning λ at all.

The above has several important implications. On the negative side, it suggests that the true
efficacy of MR-MTL can be smaller in practice. Moreover, it raises the broader open question of
whether the emerging privacy-heterogeneity cost tradeoff is best balanced by model personalization,
as many existing methods including MR-MTL inherently require at least one hyperparameter to
specify “how much to personalize” for general utility improvements over local training and FedAvg.
Alternatively, the hyperparameter(s) may be estimated during training (approach (3) in the first
paragraph), though such procedures may not be general and/or scalable and may need to be tailored
to the specific personalization method. On the positive side, it is unclear whether the choice of λ can
meaningfully leak privacy in practice. MR-MTL may also be viewed favorably as a strong baseline
since it only needs one hyperparameter to attain its benefits, while other existing methods that
require more tuning will incur even larger privacy costs from hyperparameter tuning.

1.8 Concluding Remarks

In this chapter, we studied the application of differential privacy in cross-silo FL. We examine silo-
specific example-level DP as a more appropriate privacy notion for cross-silo FL, and we point out
several meaningful ways in which it differs from client-level DP commonly studied under the cross-
device setting, particularly when analyzing tensions between privacy, utility, and heterogeneity. We
explore and establish baselines under this privacy setting and identify desirable properties for a
personalization method for balancing an emerging tradeoff between utility costs from privacy and
heterogeneity. We then analyze a simple, promising method (MR-MTL) and discuss key open ques-
tions for the area at large. Some future directions include (1) extending the privacy model to cases
where data subjects have multiple records across silos, (2) extending our theoretical characterization
to deep learning cases or performing a large-scale empirical study, and (3) developing auto-tuning
algorithms for personalization hyperparameters with minimal privacy overhead.
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Chapter 2

The US/UK Privacy-Enhancing
Technologies (PETs) Prize Challenge

In this chapther, we describe our recent entry to the US/UK PETs Prize Challenge,1 a competi-
tion held by the US/UK governments to facilitate the development of privacy-preserving federated
learning solutions that provide end-to-end privacy and security protections while harnessing the
potential of AI for overcoming significant global challenges. The challenge is split into two tracks:
Financial Crime Prevention and Pandemic Forecasting and Response.

Our team (“puffle”) at Carnegie Mellon University2 developed a solution for the Pandemic Forecast-
ing and Response track3, expanding on the ideas presented in Chapter 1. Our approach incorporated
additional components such as graph processing, privacy accounting, and addressing data imbal-
ance. Our solution was awarded 1st place on the US side of the competition, receiving a prize of
$100,000 USD, along with an additional $20,000 USD for open-sourcing our solution.4

See also coverage by the Summit for Democracy 2023,5 White House,6 UKGovernment,7DrivenData,8

NSF,9 NIST,10 and CMU News.11

1Challenge main page: https://petsprizechallenges.com/
2CMU team profile: https://drivendata.co/blog/federated-learning-pets-prize-winners-phases-2-3#p

uffle
3Technical brief of the pandemic forecasting problem: https://iuk.ktn-uk.org/wp-content/uploads/2022/08

/PETs-Prize-Challenges_-Public-Health-Technical-Brief-1.pdf
4Open-sourcerelease:https://github.com/kenziyuliu/pets-challenge
5https://www.youtube.com/watch?v=8nRs3VArnco&t=12544s
6https://www.whitehouse.gov/ostp/news-updates/2023/03/31/us-uk-annouce-winners-innovation-pets-d

emocratic-values/
7https://www.gov.uk/government/news/at-summit-for-democracy-the-united-kingdom-and-the-united-s

tates-announce-winners-of-challenge-to-drive-innovation-in-privacy-enhancing-technologies
8https://drivendata.co/blog/federated-learning-pets-prize-winners-phases-2-3
9https://beta.nsf.gov/news/us-uk-winners-prize-challenge-in-privacy-enhancing-tech

10https://www.nist.gov/itl/applied-cybersecurity/privacy-engineering/collaboration-space/challen
ges

11https://www.cs.cmu.edu/news/2023/pets-prize
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2.1 Introduction and Problem Setup

Federated learning (FL) considers learning from siloed data in a decentralized fashion, thereby
mitigating privacy risks. FL shows promise for many real-world scenarios, including the pandemic
forecasting application explored in the US/UK PETs Prize Challenge. The federated pandemic
forecasting problem considers the following:

Given a person’s attributes, locations, activities, infection history, and the contact net-
work, what is their likelihood of infection in the next t days? Given a person’s demo-
graphic attributes (e.g. age, household size), locations, activities, infection history, and
the contact network, what is the likelihood of infection in the next tpred = 7 days? Can
we make predictions while protecting the privacy of the individuals? Moreover, what if
the data are siloed across administrative regions?

Figure 2.1: Illustration of the pandemic forecasting
problem at the US/UK PETs challenge. Image sourced
from https://prepare-vo.org/synthetic-pandemi
c-outbreaks.

While simple to state, the problem above con-
tains many complex and interrelated elements
that merit careful examination. First, the
pandemic outbreak problem follows a discrete-
time SIR model12 (Susceptible → Infectious →
Recovered) and we begin with a subset of the
population infected. Subsequently,

• each person goes about their usual daily
activities, such as working or shopping,
and gets into contact with others either
directly or indirectly (e.g. at a mall)—this
forms a contact graph where individuals
are nodes and direct contacts are edges;

• each person may get infected with differ-
ent risk levels depending on a myriad of
factors—their age, the nature and dura-
tion of their contact(s), their node cen-
trality, their activities, etc.; and

• such infection can also be asymp-
tomatic—the individual can appear in
the S state while being secretly infectious.

The challenge dataset13 models a synthetic pan-
demic outbreak in Virginia and contains roughly
7.7 million nodes (persons) and 186 million edges (contacts) with health states over 63 days, with
the social contacts repeating every day. Thus, the actual contact graph is fairly large but also quite
sparse.

There are a few extra factors that make this problem challenging:

• Extreme data imbalance: there are less than 5% of people who are ever in the I or R state
and roughly 0.3% of people became infected in the final week.

12<https://people.wku.edu/lily.popova.zhuhadar/
13https://prepare-vo.org/synthetic-pandemic-outbreaks
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Figure 2.2: Illustration of the federated pandemic forecasting problem.

• The data are siloed: the actual contact graph will be cut along administrative boundaries,
e.g., by grouped FIPS codes/counties.14 Each silo only sees a local subgraph but people may
still travel and make contacts across multiple regions. There are up to 10 silos (clients) and
the population size can vary by more than an order of magnitude in the official evaluation (up
to 2.6M nodes for a single silo in the official evaluation).

• The temporal nature of the problem is subtle: we are given the first ttrain = 56 days of
each person’s health states (S/I/R) and asked to predict the risk of infection for any individual
any time in the subsequent tpred = 7 days. What is a training example in this case? How
should we perform temporal partitioning? How does this relate to privacy accounting?

• Graphs generally complicate DP: when applying DP to machine learning, we are used to
the settings where we can clearly define the privacy granularity and how it relates to an actual
individual (e.g. tabular data or medical images of patients). This is tricky when it comes to
graphs: people can make different number of contacts, each of different nature, and their
influence may propagate to their neighbors, neighbors’ neighbors, and so on. On a high-level
(and as specified by the scope of sensitive data of the competition15), what we care about is
known as node-level DP—the model output is “roughly” the same if we add/remove/replace
a node, along with its edges. See Section 2.4 for more details.

Having good pandemic forecasting model(s) is useful both for the individual to take precautionary
measures and for public health agencies to make informed decisions when allocating resources.
This problem is challenging not only because the spread of a disease can be a highly complex
process, but also because the relevant data often include sensitive information that cannot be
aggregated for centralized analytics. Even fitting a local model to each data silo can pose privacy
risks as the model may be susceptible to membership inference [131], attribute inference [52], data
poisoning [140], memorization [27], or may otherwise leak data in unexpected ways [117]. Indeed,
given only black-box access to a non-private local model for a small administrative region (e.g., a
rural town), a de-identified test person’s social contacts (and thus their identity and activities) may
be easily inferred if the model predicts a high risk of infection for that person. In general, releasing
models that are not properly trained with defense mechanisms can pose a serious threat to the

14https://en.wikipedia.org/wiki/FIPS_county_code
15https://www.drivendata.org/competitions/98/nist-federated-learning-1/page/525/#scope-of-sensiti

ve-data
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privacy of individuals.

Despite FL’s aim to mitigate privacy risks, data localization alone may not provide adequate pri-
vacy protection for participants (e.g. [149, 154, 19]), let alone the aforementioned issues inherent
to vanilla model training. There has thus been extensive efforts to augment FL’s privacy protec-
tion capabitilies with technologies such as homomorphic encrpytion [54, 158], secure multi-party
computation (particularly secure aggregation [20, 14]), and differential privacy [43, 1, 110].

Of particular interest to our solution is differential privacy (DP), which is widely viewed as the gold
standard of privacy protection because it has provable, quantifiable, and worst-case guarantees. DP
presents a particularly strong promise in the case of pandemic forecasting because it is also “future-
proof ”: with a proper privacy and trust model, it can help ML algorithms capture the underlying
trend of the disease spread while making them robust to a range of statistical attacks—both known
and unknown—that may leverage emerging information from the evolving contact network.

In our solution, we consider the application of silo-specific sample-level DP, which we studied in
detail in Chapter 1 (recall Fig. 1.1 and Section 1.3). This privacy formulation has several important
advantages and implications on the interplay between privacy, utility, and data heterogeneity, as
we will detail in the following sections. Our insights lead us to propose a practical framework
for training personalized, silo-specific models centered around this DP model that can maximize
accuracy while offering strong privacy guarantees.

2.2 Threat Model

We begin by discussing the objective and capabilities of an adversary and enumerate the sources
of vulnerabilities throughout the FL lifecycle, their potential exploits, and their mitigation under
our proposed privacy solution. We also examine important caveats and any novel privacy risks that
may emerge as part of our solution.

2.2.1 Adversary’s Capabilities and Objective

Capabilities. During deployment, we assume that all trained models will be released publicly,
including both the federated model on the server and the personalized models trained on each client
(admin region). The adversary has white-box access to the model parameters, and they can pass
arbitrary inputs to the models and observe their outputs. The adversary may also have unrestricted
computational power. In Section 2.2.2, we additionally consider the adversary’s capabilities specific
to each source of vulnerability during training, such as the ability to contaminate training data,
control clients, control the central server, or eavesdrop on the communication channels.

Objective. The adversary’s objective is to extract information of an arbitrary person from the
publicly released models. Specifically, this may include but is not limited to: (1) identifying whether
a particular person (Alice)’s data was used for training (i.e. membership inference), (2) inferring
Alice’s information (e.g. residence, social contacts) from the released models with partial knowledge
of Alice’s data (i.e. attribute inference), (3) reconstructing Alice’s data from the released models (i.e.
model inversion). We consider the strength of an attack to be correlated with its success probability,
ease of execution, and the accuracy and completeness of the extracted information.
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Figure 2.3: Various sources of vulnerabilities. During training, the adversary may have full or partial
control over (1) the participating client, (2) the communication channel, and (3) the central orchestrating
server. During model development/diagnosis or at deployment, the adversary may also have white-box
access to (4) the local personalized model and (5) the global model. They may also see all model iterates
and intermediate metrics.

2.2.2 Sources of Vulnerabilities, Corresponding Attacks, and Mitigations

Fig. 2.3 summarizes possible sources of vulnerabilities, where (1-3) depicts training-time vulner-
abilities and (4-5) depicts other non-interactive and inference-time vulnerabilities. Recall from
Section 2.1 that our core privacy tool is silo-specific example-level DP, and that this informally
refers to each silo k enforcing a example-level (εk, δk)-DP target locally during training (e.g. via
DP-SGD [1]), with model iterates “staying more or less the same” with or without any particular
local example. We now motivate this DP model and other design choices by discussing each of the
vulnerabilities in a horizontal FL setup suited to pandemic forecasting, how our solution mitigates
them, and assumptions on the adversary’s capabilities. We focus on privacy risks in the following
and defer discussions on other important properties (e.g. robustness) to Section 2.3.

(Source 1) Clients. Within a client, we make the minimal assumption that the data curator will
faithfully execute a private training protocol (e.g. DP-SGD) without nefariously leaking the data
directly to an adversary, but the curator may incorporate custom training objectives such as data
augmentation or adversarial training as long as it adheres to its (εk, δk)-DP budget. Across clients,
malicious actors may inspect the sequence of model iterates from the server and attempt to extract
sensitive information about other honest clients. However, all model iterates from honest clients
satisfy example-level DP w.r.t. their own data and are thus robust to arbitrary post-processing by
malicious clients. By the same token, honest clients’ DP guarantees hold against active attacks
such as data poisoning [139] (e.g. malicious clients train with (intentionally) erroneous S/I/R
labels or contact edges in the infection data), model poisoning [48] (e.g. malicious clients scale up
their updates to dominate the server aggregate), and backdoor attacks (e.g. [11, 135, 145, 152]).
Note that such active attacks may be hard to detect (and thus bad for utility), as the anomaly
may not manifest in model metrics (e.g. norm of the update); we discuss counter-measures in
Section 2.3.

(Source 2) Communication channels. We assume an adversary may gain full (e.g. man-in-the-
middle) or partial (e.g. eavesdropping) control of communication channels. In either case, the clients’
example-level DP guarantees continue to hold, as their model updates are differentially private query
releases of local examples (and thus resistant to post-processing). Importantly, disclosing model
iterates does not affect clients’ pre-allocated privacy budgets. Our DP guarantees also do not rely
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on security protocols (as opposed to, e.g., distributed (client-level) DP via SecAgg [79, 5]) and thus
do not require key distribution (e.g. required by SecAgg [20]) over insecure channels.

(Source 3) Central server. An adversary may also gain control over the central server, making
it semi-honest (attempting to extract sensitive information without deviating from the training
protocol) or fully malicious (actively sabotaging the training process). Similarly, since the server
only has access to client updates that already satisfy DP, even a fully malicious server (e.g. one
that tampers with model updates [19] or simulates fake clients [41, 81]) would not be able to
compromise the honest clients. In fact, if the malicious server holds no additional information apart
from the federated model, it is equivalent to an adversary with full control over all client-server
channels.

(Sources 1, 2, 3) Collusion. As a corollary of the above arguments, the example-level DP guar-
antee for an honest client k is not compromised even if all of the above parties are colluding.

(Sources 4, 5) Other non-interactive / inference-time attacks. An adversary may also
perform “non-interactive” or inference-time attacks outside of training, such as during deployment
with white-box access to the model(s), or during model development with access to model met-
rics. We argue that this form of attack—such as membership inference (e.g., extracting memorized
data [27]), attribute inference (e.g. [53]), model inversion (e.g. [151]), and linkage/reconstruction
(e.g. [39])—is again a form of post-processing on differentially private query releases of the training
examples (e.g. model parameters or metrics), implying that the per-silo DP guarantees will still
hold. In practice, there has been empirical evidence that (strong) DP effectively defends against
such attacks (e.g. [75, 50, 159]). It is worth noting that while an adversary may leverage, e.g., model
inversion to recover examples that “look like” actual training examples [159], they are in essence
statistical inference that does not violate the privacy of an actual training example [23].

Overall, our solution emphasizes data privacy and adopts differential privacy as the primary privacy
technology for worst-case protection. We expect that proper implementation of DP guarantees (see
next section) can significantly reduce the above-identified privacy risks. In addition to DP, we also
explore several heuristics to further strengthen privacy in practice, improve robustness, and mitigate
the loss of utility; we defer additional discussions to Section 2.3.

2.2.3 Caveats, Emerging Privacy Risks, and Mitigations

The key argument for threat mitigation presented above is that (1) DP is robust to arbitrary post-
processing, and that (2) such DP guarantees are budgeted and enforced locally on each client. These
properties imply that silo-specific example-level DP enjoys similar benefits to the local (client-
level) DP model, such as requiring minimal trust assumptions and robustness against insecure
communication channels. However, there are also some risks to consider with our approach:

• The definition of an “example” is intricate. As the scope of sensitive data spans both the
people and their contact edges, it can be intricate to define what an “example” means over a
network, and whether such “example-level” privacy always translates to tangible protection for a
person’s data. In Section 2.3, we explore possible definitions of an “example” and formalize our
DP model’s protection w.r.t. a person, a contact edge, and a local neighborhood.

• Silo-specific example-level DP provides guarantees over the disjoint client datasets,
rather their concatenation. That is, the global FL model (e.g. hosted by a public health agency
running the server) satisfies at most (maxk εk,maxk δk)-DP for any example in the combined
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dataset across clients [112, 156, 97], where client k budgets for (εk, δk)-DP for its local examples.
Compliance issues may arise as the “global” privacy guarantee is dictated by the clients.

• There may be multiple examples about the same person both within a silo and across
silos. By construction, silo-specific example-level DP aligns naturally with the setting where each
“example” corresponds to a person requiring privacy protection (e.g. voting records across voting
stations for a particular election). This may not always hold in practice, as multiple examples
within a silo or across silos may contain information about the same person, which may thus
enjoy less privacy than the reported DP guarantees. For pandemic forecasting, we may disregard
the latter case since contacts are cut across admin regions (silos) and an individual only appears
in one silo. In Section 2.4, we carefully apply graph-based privacy arguments to formalize privacy
w.r.t. a person (and their contacts) based on our “example” definition in Section 2.3.

• DP implementations can be error-prone. Past work has identified a range of vulnerabilities
when implementing DP mechanisms including errors from floating point representations [113, 72,
77, 61], precision attacks [62], timing attacks [77], and underestimation of the true sensitivity
of a query [29]. These attacks can be practical and vulnerabilities can easily surface with a
naive implementation. For the purposes of this challenge, we will stick to best practices for
implementing the Gaussian mechanism [44] (e.g. using only vetted public libraries), but we note
that despite ongoing efforts to mitigate them (e.g. with secure noise generation [69, 61], discrete
noise mechanisms [4, 25, 79, 5], or multiple-precision floating-point representations [51, 138]),
these vulnerabilities remain a tangible threat.

2.3 Methods

We now describe our technical approach to the PETs Prize Challenge. We first describe the frame-
work of our solution (Section 2.3.1), and we then describe how we may formulate the machine
learning task for the pandemic forecasting problem (Section 2.3.2).

2.3.1 Applying MR-MTL with Silo-Specific Example-Level Privacy

One simple and clean approach to the federated pandemic forecasting problem is to just operate
on the individual level and view it as (federated) binary classification: if we could build a
feature vector that summarizes what we need to know about an individual, then risk scores are
simply the sigmoid probabilities of near term infection. Of course, the problem lies in what that
feature vector (and the corresponding label) is—the following section provides further discussions.
Regardless, observe that MR-MTL with silo-specific example-level privacy (from Chapter 1) is an
attractive framework for this type of cross-silo learning problems:

• Model personalization is likely necessary as the silos are large and somewhat heterogeneous
by construction (geographic regions are unlikely all to be similar to each other).

• Implementation/Feasibility. MR-MTL is remarkably easy to implement: (1) every client
initializes a stateful, personalized model and the server initializes with the mean client model,
and (2) in every round, the server broadcasts the mean model; clients simply perform (private)
local training while `2-regularizing towards the mean; and the server updates the mean model
using the model updates. The simplicity is often crucial for real-world applications.
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• Expected Privacy-Utility Tradeoff. In Section 1.4, we performed empirical analyses on
several public datasets, and we observed that MR-MTL consistently outperforms many state-
of-the-art methods in terms of privacy-utility tradeoffs.

• Robustness benefits. In Section 2.2, we reviewed various potential attacks that may harm
the utility of an honest client, such as model poisoning [48]. Similar to [91], an intrinsic
robustness benefit to MR-MTL is that each client can “reduce its participation” in the federation
without affecting its DP guarantees by setting a smaller λ than usual (or even reducing to
local training with λ = 0) if there is evidence of malicious external actors. In turn, clients
can avoid catastrophic utility failures from strong attacks, since its utility is lower bounded
by local training (λ = 0), which may produce reasonably good results as silos often have large
local datasets (unlike cross-device settings).

• Efficiency and Scalability. MR-MTL’s simple construction implies minimal resource over-
head and high efficiency and scalability. Compared to FedAvg-like algorithms (e.g. [90, 146]),
it only additionally asks each silo to maintain its own model, thus linear overhead in memory
(which is insignificant due to the small number of clients). Privacy protection is also scalable
as it is enforced locally (thus no server workload), and each client only needs to pay a small
overhead to implement DP with no cost at inference time. The resource requirement for pri-
vacy is also independent of the number of samples on each silo (it is instead a function of the
learning algorithm).

• Adaptability, Usability, and Explainability. Our framework is highly adaptable to any
underlying gradient-based learning algorithms (e.g. to run DP-SGD [1]) and types of data that
support the soft proximal constraint, provided that a local “example” can be clearly defined.
Moreover, it can be easily implemented and deployed due to its simplicity, the low resource
overhead compared to FedAvg, and the ease of implementing DP using off-the-shelf vetted
software libraries such as [60, 137]. It also preserves the explainability of the underlying
ML algorithm and the applicability of many interpretability methods [116], as our privacy
mechanism does not obfuscate individual model weights, updates, and predictions.

• Extensibility. One may also deploy heuristics on top of MR-MTL to (qualitatively) improve
robustness and privacy-utility tradeoffs. For robustness, the (honest) server may inspect client
updates and apply clipping, zero out coordinates with extreme values, or leverage existing
robust aggregators (e.g. [17, 119]) to fend off malicious clients. For privacy, we may introduce
extra heuristic that can help with the DP-utility tradeoff, such as manually removing extreme
outliers (e.g. people in isolated locations) or merging categorical features (e.g. activity types).

2.3.2 Data and Task Formulation

Having established the overall framework for approaching the pandemic forecasting problem, we
now describe how the individual features and the contact network can be converted into a tabular
dataset for every silo k with access to a local subgraph with nk individuals.

Recall that our task is to predict if a person is likely to get infected within tpred = 7 days. We
formulate this via a set of examples {Xk ∈ Rnk×d, Yk ∈ {0, 1}nk}, where the features of each example
X

(i)
k ∈ Rd describe the local neighborhood around a person i (see Fig. 2.4), with binary label Y (i)

k

denoting if the person is infected in the next tpred days.

Each example’s features X(i)
k have two broad categories (depicted by Fig. 2.6):
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1. Individual features that correspond to an individual only. For any person i, this includes
demographic features like age, gender, and household size; activity features like whether this person
has ever been to work, school, church, shopping, etc.; and the individual’s infection history as
concatenated one-hot vectors (which depends on how we create labels; see below).

ℓ = 1
ℓ = 2

Figure 2.4: Illustration of iterative,
`-hop neighborhood feature aggre-
gation. In this case, green nodes are
sampled and the yellow node can’t
be sampled.

2. Neighbor/Contact features that encode the social
contacts, which include individual features of the people (nodes)
in contact, and features of the contacts themselves (edges) such
as location, duration, and activity type. For every person i,
we encode contacts within an `-hop neighborhood (i.e. individ-
uals whose shortest paths to i has ≤ ` edges), as illustrated in
Fig. 2.4. Specifically, we sample a set of `-hop neighbors and
concatenate the edges’ and neighbors’ features with person i’s
features (Fig. 2.6), due to the large and exponentially growing
neighborhood sizes and the need to equalize feature dimensions
across nodes. In general, we may want ` > 1 as higher-degree in-
formation can help (e.g. an individual’s immediate contacts can
be asymptotically infected), but it could also be more expensive
to compute.

Moreover, we use iterative sampling, meaning that we first
select a set of S1 1-hop neighbors, and then sample S2 2-hop
neighbors from the neighbors of those 1-hop neighbors, and so
on; this is such that the 1-hop edge features can be shared for the sampled 2-hop neighbors and we
can keep the feature dimension d low. We experiment with different values of ` and Sj≤` as it poses
a computation-utility tradeoff.

Importantly, we also do deterministic neighborhood sampling—the same person (node) al-
ways takes the same subset of neighbors—which makes the neighborhood sampling essentially a
graph pruning step. This drastically reduces computation as the graph/neighborhoods can now
be preprocessed and cached. There are also important implications for privacy, as we will discuss
in Section 2.4. Fig. 2.5 provides an illustration.

ℓ = 1

ℓ ≥ 2

ℓ = 1

ℓ ≥ 2

Figure 2.5: Illustration of deterministic neighborhood sampling, possibly implemented as graph pruning.

Putting everything together, Fig. 2.6 illustrates the final neighborhood feature vector that describes
a person and their contacts that can then be used as inputs to a binary classifier.

Labels. To generate the labels Y (i)
k , we deploy a random infection window strategy:

1. Pick a window size twindow (e.g., 21 days).
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Figure 2.6: Illustration of the feature structure of one training sample, which concatenates the individual
features and neighbor features (neighbors sampled from both 1-hop and 2-hop neighborhood). The
feature vector of each neighbor includes the neighbor’s individual features and the contact features.

2. Select a random t′ with twindow ≤ t′ ≤ 56− tpred.

3. Encode the S/I/R states as one-hot vectors in the past twindow days from t′ into a training
example; this includes both the sampled node (person) i, along with all of its sampled neigh-
bors. Importantly, since the past infection histories of person i’s neighbors can help inform
the infection status of person i, we need to encode those histories entirely (as concatenated
one-hot vectors, as opposed to using a binary indicator for person i).

4. The label for the training example is then whether person i transitions into infection in any
of the next tpred days from t′.

Fig. 2.7 provides an illustration. Since the contact graph repeats every day (recall Section 2.1),
this implies that for any person i there are up to 56 − tpred − twindow + 1 = 50 − twindow examples
with the same personal features but different disease states and labels, thereby possibly different
rows in the silo’s tabular dataset from multiple random infection windows. In practice, we can pick
one random window for every person, every epoch (so nk nodes imply nk examples), rather than
actually generating all the possible windows at once.

Also, since we are interested in modeling transitions into an infected status, we only need to sum-
marize the past infection window as a binary indicator of whether the person is in S state for all
days; this is because a transition is only possible if the person remains susceptible.

Figure 2.7: During training, we take a random window of infection states to use as features (the "observation"
window) and labels (1 iff the person transitions into infection during the "prediction" window) every time
we sample a person, and his/her neighboring nodes will use the same window for building the neighborhood
feature vector. During testing, we deterministically take the latest days of the infection history.

This method of training set construction also implicitly assumes that a person’s infection risk is
individual : whether Bob gets infected depends only on his own activities and contacts in the past
(say) 21-day window. This is definitely not perfect as it ignores population-level modeling (e.g.
dense areas increase likelihood of infection), but it makes the ML problem very simple.

Inference. At test time, we build the same neighborhood features, except that the infection window
is now deterministically the window right before the prediction period.

Connections to Graph Neural Networks (GNNs). Intriguingly, this way of training set
construction makes the per-silo personalized models a simplified variant of a graph neural network:
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there is a single step of non-parameterized neighborhood aggregation followed by feature transform
and prediction (cf. SGC models [150]).

Remark on Generalizability. Importantly, observe that our framework fundamentally applies to
all datasets or models where the concept of an “example”, as well as its relationship to a data subject
(e.g. person) requiring privacy protection, can be clearly defined. Such construction inherently
provides high generalizability to various types of data, including tabular data, images, text, graphs,
etc., and the various models that train on them. However, a caveat is that our solution only applies
directly to horizontal FL setups, where the feature space is shared across clients.

2.4 Proof of Privacy

Having defined an “example” in Section 2.3.2, we now provide formal statements on our privacy guar-
antees. We first define DP and silo-specific example-level DP in the context of our method.

Definition 2.4.1 (Differential Privacy [43, 44]). A model M : X n → Y, where X n is the set of
datasets with n data points and Y is the set of outputs, is (ε, δ)-DP if for any subset Y ⊆ Y and
any neighboring x, x′ differing in only one sample (by addition, removal, or replacement), we have

Pr[M(x) ∈ Y ] ≤ exp(ε) · Pr[M(x′) ∈ Y ] + δ.

Definition 2.4.2 (Silo-Specific Example-Level DP [98, 164, 82, 101, 96]). A personalized FL system
with K clients (silos) satisfy {(εk, δk)}k∈[K]-“silo-specific example-level DP” if the personalized model
for every silo k ∈ [K] satisfies (εk, δk)-DP w.r.t. the silo’s local training examples.

In Section 2.3.2, we defined each example in silo (admin region) to be a feature vector for the
(subsampled) local contact neighborhood of a person, thus example-level DP in this context is
“neighborhood-level DP ”. However, the scope of sensitive data16 and the adversary’s objective
(Section 2.2) implies that the personalized models should satisfy node-level (i.e. person-level)
DP on the siloed graphs:

Definition 2.4.3 (Node-Level Differential Privacy [18, 84, 124]). A model M : G → Y, where G
is the space of undirected contact graphs and Y is the set of outputs, is (ε, δ)-node-level DP if for
any subset Y ⊆ Y and any neighboring graphs G,G′ differing in one node (by addition, removal, or
replacement) and all of its incident edges, we have

Pr[M(G) ∈ Y ] ≤ exp(ε) · Pr[M(G′) ∈ Y ] + δ.

If a personalized model satisfies node-level DP, it intuitively means that an attacker cannot confi-
dently identify, for any individual, their personal information (e.g. activities and health states) and
their social contacts, which is precisely our privacy desideratum.

However, a key challenge is that when learning from neighborhood vectors (Fig. 2.6), it is difficult to
obtain gradients w.r.t. an individual node, and thus privacy arguments of subsampled DP-SGD do
not apply directly. To this end, the work of [37] proposed the following theorem for neighborhood
aggregation methods (e.g. GNNs):

16https://www.drivendata.org/competitions/98/nist-federated-learning-1/page/525/#scope-of-sensiti
ve-data
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Theorem 2.4.4 (Node-level Rényi DP [37]). For a (sub)graph with n nodes (hence n neighborhoods
and n examples) and maximum neighborhood size S, training for T steps with batch size b with noise
multiplier σ yields (α, γT )-node-level RDP, where

γ =
1

α− 1
lnEρ

[
exp

(
α(α− 1)

2ρ2

σ2

)]
, ρ ∼ Hypergeometric(n, S, b).

The idea is that the number of times ρ a certain node u appears in a batch of examples (neighbor-
hoods) can be seen as following a Hypergeometric distribution— if all possible n neighborhoods
are coins, and those S of them that contain u are heads, then ρ is the number of heads we’ll get
if we take b coins without replacement — and we can account for this when performing privacy
analysis (computing Rényi divergence). Note that since the accounting depends on the graph size,
it’s easier to think about replacement DP instead of addition/removal.

Theorem 2.4.4 would be an analogy of subsampling amplification [115] on graphs, but it still implies
that the DP guarantee depends (linearly) on the neighborhood size S (when batch size b� S) and
this may be loose. Fig. 2.8 can provide some grounding; note that ε degrades drastically with larger
maximum degree (neighborhood size if we take ` = 1 hop only).
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Figure 2.8: Privacy costs for training for 1 epoch with batch size b = 512 for a graph with number of nodes
n = 2, 609, 976 and ` = 1 (only aggregate 1-hop neighbors). δ = 1/n.

Remark 2.4.5. Theorem 2.4.4 implies that our solution—training personalized models with MR-
MTL and silo-specific example-level privacy on tabular data that encode local neighborhoods—provably
satisfies silo-specific node-level DP w.r.t. any individual and all of their social contacts.

Deterministic vs randomized neighborhood selection. Recall from Section 2.3.2 that as
part of constructing training examples, we may want to deterministically prune the graph instead
of randomly picking neighbors for a node every time we visit it during training. By inspecting
Theorem 2.4.4, we see that the former is important in ensuring that each node has (or ever sees) up
to S − 1 neighbors—or more precisely, is included as some other nodes’ neighborhoods up to S − 1
times—during training for the privacy accounting to hold.

Privacy of temporal partitioning. How does our temporal partitioning / label creation strategy
affect the accounting? Because the random infection windows and the corresponding labels are
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essentially different feature subsets of the same neighborhood features, the DP guarantees should not
degrade and may even be boosted by the temporal randomness. The latter could be an interesting
future direction.

Over-/under-sampling. One simple technique to improve utility is to perform data over-sampling
or under-sampling since infection status is highly imbalanced in the provided dataset (recall Sec-
tion 2.1). However, the former implies that we are introducing multiple views of the same data,
thereby violating the desired randomness of the data sampling (or even the independence assump-
tion of DP) and making node-level sensitivity analysis difficult; and the latter implies that the node
sampling rate may become much higher and worsen privacy-utility tradeoffs. See Section 2.6 for
more discussions.

2.5 Experiments and Results

We can now see the solution coming together: each silo builds a tabular dataset using neighborhood
vectors for features and infection windows for labels, and each silo trains a personalized binary clas-
sifier under MR-MTL with silo-specific example-level privacy (convertible to node-level DP).

In this section, we describe the experiments and results that inform and complete our submission to
the challenge. Unless otherwise stated, we experiment on two custom data-subsets extracted from
the provided dataset:

1. “Smoke” dataset, corresponding to client01 of the example partition17 provided by the
organizers with n = |V| = 2, 609, 976 nodes and |E| = 66, 073, 257 edges; and

2. “Small” dataset, a small partition with all households with longitude < −80.5 and latitude
≥ 38.5, corresponding to the southwest region of Virginia state, with 421,893 nodes and
8,808,360 edges.

Note that these smaller data splits are subgraph cuts from the originally provided 7.6 million-node
graph. They allow us to iterate experiments faster and we apply learnings to our final submissions.
As our solution leverages model personalization (Section 1.5) and silo-specific example-level DP ac-
counting (Definition 2.4.2), the “central” performance on these subgraphs would be highly indicative
of the federated performance.

Unless otherwise stated, we’ll focus on average precision (AP or AUPRC) as the metric; it
summarizes a binary classifier’s performance across all operating thresholds, and random guess
corresponds to the fraction of positive examples (≈ 0.002 in our dataset), instead of 0.5.

2.5.1 Overview of the Learning Algorithm

Recall from Section 2.3.2 that our learning algorithm involves, for each node:

1. sampling its neighborhood and a particular infection time window,

2. building a neighborhood feature vector and a corresponding label of infection status, and

3. training a model to predict that status (e.g. as a binary classifier).
17https://www.drivendata.org/competitions/103/nist-federated-learning-2-pandemic-forecasting-fed

erated/data/
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Design choice Values
Model architecture Logistic regression (linear classifier applied to neighborhood features)
Loss function Focal Loss (γ = 2, α = 0.75) [94]
Node features Age, gender, household size, activity participation, total activity duration
Edge features Location & activities info at contact, contact duration and start time
Graph node features Normalized node degree and undirected PageRank
MR-MTL & FL parameters Mean-regularization λ ∈ {0.0003, 0.001}, number of rounds T = 2
DP parameters `2 clip bound Ck ∈ {5, 10, 15}, noise multipliers ∈ {0.01, 0.1, 0.5, 1.0, 2.75}
Neighborhood ` = 1 (# hops), S1 = 20 (# sampled neighbors)
Other Hyperparams Infection history twindow = 21, batch size m = 512, local iters Ek = Nk/m

Table 2.1: Design choices for our instantiated learning algorithm

Loss Function (values ×10−2) AP Recall
Binary Cross Entropy 3.096 0.05
Focal Loss (α = 0.25) 3.036 0.0
Focal Loss (α = 0.50) 3.165 0.259
Focal Loss (α = 0.75) 3.222 1.940

Table 2.2: Loss functions on Smoke.

Features (values ×10−2) AP
Node features only 0.282
Node + Contact Activity 0.639
Node + Contact Activity + Location 0.999
Node + Contact Activity (start/duration only) + Location 1.239

Table 2.3: Feature selection experiments on Small.

In our final solution, the instantiation of our algorithm involves picking relevant node and edge
features, suitable model architecture, loss functions, and other hyperparameters (e.g. twindow). Ta-
ble 2.1 summarizes such choices; see our open-source repo18 for more implementation details. We
motivate and analyze these design choices in the next section.

Our solution can be viewed as a simplified variant of a graph neural network (GNN) with a
single step of (non-parameterized) neighborhood aggregation, followed by a single step of feature
transformation using a linear layer. These simplifications, theoretically justified by [150], have
made our solution a logistic regression over the neighborhood vectors, yielding natural benefits of
efficiency, scalability, generalizability, usability, and low variance, as we discuss below. Utility-wise,
our solution is within the top-2 on the leaderboards at the time of submission.

2.5.2 Component Design, Experiments, and Discussions

Model (×10−2) Small Smoke
Random Guess 0.160 0.266
3-layer MLP 0.198 0.329
Logistic Regression 0.282 2.049

Table 2.4: AP for model architec-
tures (using node features only).

Model architecture. Although the model design space is large
for generic tabular datasets, we are specifically interested in mod-
els amenable to gradient-based private optimization and param-
eter averaging (recall Section 2.3). While there is recent work
proposing to integrate gradient-boosted trees (which are excep-
tionally suited for the imbalanced tabular data in our case) into
the federated setting with example-level DP [104], we argue that
such solutions have yet to mature as the implementation can be
complex with many underlying assumptions. We thus compare a simple linear model (logistic re-
gression) and a 3-layer fully-connected neural net (MLP). In Table 2.4 we observe that logistic
regression substantially outperforms MLPs, likely due to the high variance of the data (either due
to the inherent data quality or our training data construction pipeline), and thus modeling benefits
from simpler models.

18https://github.com/kenziyuliu/pets-challenge
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Loss functions and data imbalance. Because the data are highly imbalanced—only < 0.3%
of the population is positive in the final week and only up to 5% is ever in either I or R state—
training naively will suffer from low recall and AP. While there are established over-/under-sampling
techniques to deal with such imbalance, they are at odds with our privacy amplification (Section 2.4)
and their benefits may be offset by the worsened privacy-utility tradeoffs.19

We instead leverage focal loss [94] from the computer vision literature specifically designed to em-
phasize hard examples (positive cases) and to down-weigh easier examples (negative cases). It is
directly compatible with subsampling-amplified DP-SGD and Table 2.2 shows that it improves both
the AP and recall considerably over the standard BCE loss.

However, loss weights can be slightly problematic when it comes to DP-SGD implementation be-
cause they can exacerbate the mismatch of gradient magnitudes between the positive and negative
examples. As we will see in the following subsection, Fig. 2.9 illustrates this problem by examining
the norms of the gradients in a typical batch. Data imbalance could be a fundamental issue for DP,
which inherently asks for uniform guarantees across examples.

Feature selection. For node features, we first included personal information such as age (stan-
dardized), gender (binary), household size (Box-Cox transformed), binary indicators for activity
participation, and the fraction of day spent at work/school/shopping. We also added graph-based
features including normalized node degrees and PageRank as high centrality correlates with a higher
likelihood of infection. For edge features, we included the start time and duration of contact, as well
as the one-hot encodings of the activities and the binary indicators of the location (e.g. whether
it supports work). Table 2.3 presents selected results. Overall, more features tend to give better
utility. Curiously, dropping the activity one-hot encodings but keeping the location encodings at
contact helped improve the validation AP.

# neighbors AP ×10−2 Peak RAM
S1 = 15 3.013 ≈ 18GiB
S1 = 20 3.158 ≈ 20GiB
S1 = 30 3.244 ≈ 25GiB
S1 = 50 3.279 OOM

Table 2.5: Effects of # sampled 1-hop
neighbors on Smoke.

Neighborhood Sampling. We are interested in the inter-
play between utility and efficiency when sampling neighbors
in the contact graph. If we select more neighbors S` or take
neighbors from higher hops `, we expect better utility but more
computation (e.g. for feature generation and memory usage).
In particular, the 1-hop neighborhood size S1 is easier to scale
while ` ≥ 2 grows computation exponentially. For efficiency,
we limit ` = 1 for our submission. Note that such sampling is
done deterministically for each node, equivalent to graph sparsification and capping maximum node
degree to S1. This improves both the efficiency (sampled neighbors can be cached) and privacy
(S1 remains the same over multiple epochs) at a small utility cost. Table 2.5 shows that while
S1 = 50 gives the best AP, it will fail with the full dataset. We use S1 = 20 to balance utility and
efficiency.

2.5.3 Privacy and Accuracy

We now study how the noise multiplier σ for privatizing gradients may affect the validation AP
and yield different node-level DP guarantees. Table 2.6 summarizes the privacy scenarios and their
tradeoffs with utility, with precise ε and AP results computed on the Smoke split. Importantly, since
we enforce silo-specific node-level DP (Section 2.4), the privacy scenarios with the corresponding σ

19Alternatively, we may target for class-specific DP guarantees such that over-/under-sampling can be implemented
and accounted for within each class. We leave this for future work. See also Section 2.5.3 for discussions.
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would apply to silos with N ranging from 200k to 7.6M nodes (full centralized dataset). For our
final submission, we aim to include both a “Weaker” (σ = 0.01) run and a “Moderate” (σ = 0.5) run
for a privacy-utility tradeoff.

While some readers may find the large ε values mildly disturbing at a first glance and may take
this out of context, it is essential to note that providing a framework to achieve DP is orthogonal
to the design decision for this specific challenge. Several crucial factors linking theory and practice
should also be taken into account:

Node-level DP Noise mult σ AP ×10−2

Random (ε = 0) - 0.266
Strong (ε < 10)

ε ≈ 9.9 4.50 0.578
Moderate (ε < 500)

ε ≈ 84 1.00 1.351
ε ≈ 245 0.50 2.253

Weak (ε ≥ 500) 0.10 2.570
Weaker 0.01 3.113
Non-Private 0.00 3.244

Table 2.6: Privacy scenarios with ε and AP reported on Smoke. δ = 1/N .

Weak DPmitigates a range of attacks in practice as DP is inherently pessimistic. Attacks
such as data poisoning [140], membership inference (MI) [73, 28] and backdoors [135, 73, 145] can
be meaningfully mitigated with weak DP. In fact, strong gradient clipping alone can cripple state-
of-the-art MI attacks [28] and backdoors [73], and yield empirically audited ε̃ < 1.

Linear models have a limited capacity for memorization. Unlike large models that rely on
some degree of memorization [26, 27], logistic regression simply puts a weight on different attributes
and it is generally impractical to infer attributes of inliers by examining such weights, particularly
when datasets are large. While the decision boundary may still be skewed by outliers, adding DP
would provide sufficient deniability that any single outlier is responsible for the skew.
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Figure 2.9: `2-norm of gradient vec-
tors in a typical batch of 512 exam-
ples. The spikes correspond to 3 pos-
itive examples.

Our node-level DP parameters (clip bound C and noise
level σ) and guarantees are calibrated w.r.t. the posi-
tive examples, which are the outliers. However, the inliers
or examples with lower losses may enjoy stronger guarantees
than the worst-case bound [155]. Fig. 2.9 illustrates the `2-
norms of a typical batch of gradient vectors. Observe that
most negative examples have a very small norm (< 1), while
positive examples have a large norm (partially due to the use
of focal loss). Now consider the “Moderate” privacy scenario
as an example: with C = 5 and σ = 1 (ε ≈ 84 on Smoke), the
noise standard deviation Cσ = 5 would be empirically equiva-
lent to using a noise multiplier of σneg = 5 if negative gradients
have norm ≤ 1. This corresponds to an empirical ε̃neg ≈ 7.87,
substantially improving on the worst case ε. More importantly,
if every node (person) is to receive the same level of protection
regardless of their infection status (matching the privacy desiderata for this task), then this de facto
protection covers > 99.5% of the population following the class imbalance.
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Figure 2.10: Run time metrics. Left: The fraction of processing times on clients of different size; the one-off
data preprocessing (including neigihborhood sampling) can be expensive, but further training can used the
preprocessed data. Right: Our method’s end-to-end running time scales linearly as the node size.

Node-level DP accounting is loose and an active research area. Our accounting method
builds on [37], which assumes the worst case when calculating node-level sensitivity (e.g. that a
node appears in all of its neighbors’ subgraphs). In the average case, one expects a lower degree
of subgraph overlap and thus the empirical protection would be stronger. We leave improving the
theory of node-level accounting to future work.

Privacy-utility tradeoffs can be easily adjusted based on need. A key benefit of offering
silo-specific node-level DP vs. cryptographic guarantees is that privacy is not binary—if we expect
stronger adversaries, σ can be tuned for stronger theoretical guarantees. A finite ε also means that
the model enters a regime where we can quantify further necessary privacy improvements.

2.5.4 Efficiency and Scalability

Efficiency. Logistic regression is inherently efficient—it is up to 3.7× faster to run than the 3-
layer MLP (e.g., 20mins versus 74mins in total for an end-to-end run on Smoke) and runs fast
on CPUs. We also provide an efficient implementation, including vectorizing feature construction,
caching features for each client across rounds and stages, and using JAX [21] to substantially speed
up per-example operations of private optimization. We visualize the data preprocessing time and
local training time on each client in Fig. 2.10 (top). Note that while data preprocessing takes a
non-trivial amount of time, it only needs to be done once. Communication costs are negligible due
to small model sizes.

Scalability. We empirically demonstrate the scalability of our submission in the centralized training
setting (without federation). We consider three samples of the entire dataset with different numbers
of nodes—Small (420k nodes), Smoke (2.6M), and full dataset (7.6M). End-to-end training
times are plotted in Figure 2.10 (bottom). We see that running time grows roughly linearly with
the number of nodes in the contact graph, which indicates the scalability of our algorithm and
implementation. Logistic regression inherently scales to higher dimensions, and if more RAM is
available, our feature generation and data loading can be also made embarrassingly parallel and
drastically speed up training.
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2.6 Discussions

The above concludes the main building blocks of our solution to the PETs challenge. While our
solution has received positive reception from the challenge, there are indeed many areas for future
work. For example:

• Limited hyperparameter tuning: Due to the time limit, we only tried a few configurations
(or simply set a reasonable default) for hyperparameters such as infection window size twindow,
number of hops for neighborhood aggregation `, regularization strength λ, and number of local
training iterations. We expect proper tuning could see utility improvements.

• Sub-optimal implementation of example-level DP for logistic regression: The con-
vexity of the ML task actually offers alternatives for implementing (amplified) DP-SGD (e.g.
weight-space perturbations [30], privacy amplification by iteration [49], DP-FTRL [80], novel
accounting [153]) that may allow better privacy-utility tradeoffs or even data over-/under-
sampling to deal with data imblance.

• High variance of the training pipeline: Our experiments on model architectures in-
deed suggest that the variance inherent in the training pipeline (partly due to our dataset
construction) can lead to models underperforming; this may also cause problems with relia-
bility/explainability.

• Lack of justification for random (or sliding) infection windows: Our key simplifying
heuristic is that a person’s likelihood of infection is inherently individual-level and depends
only on her own most recent activities (specifically up to the recent twindow days), but this may
not be the case in reality. We leave more sophisticated modeling techniques on the individual
level to future work.
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Chapter 3

Conclusion

In conclusion, this thesis has contributed to the growing body of research on the application of
differential privacy in federated learning, offering novel insights in handling privacy, utility, and
data heterogeneity in cross-silo settings.

In Chapter 1, we introduced the notion of silo-specific example-level DP as a more suitable privacy
model for cross-silo federated learning, and analyzed several meaningful ways in which it differs from
client-level DP commonly studied under the cross-device setting. We established mean-regularized
multi-task learning (MR-MTL) as a simple but strong baseline under the interplay between privacy
and cross-silo data heterogeneity, and our findings provide essential guidance for future work in
this area, such as extending the privacy model to handle cases where data subjects have records
spanning multiple data silos, extending theoretical characterizations, and developing auto-tuning
algorithms for model personalization with minimal privacy overhead.

In Chapter 2, we showcased the practical application of our research through the US/UK PETs
Prize Challenge, where our team’s solution incorporating MR-MTL and other components, such as
graph processing and privacy accounting, emerged as the winning entry in the Pandemic Forecasting
and Response track. The challenge helps demonstrate the real-world impact of our work, but at the
same time it also highlights the potential for further advancements in privacy-preserving federated
learning solutions.

Despite the many subtleties to fully build out a working system, the main ideas presented in this
thesis were exceptionally simple: data silos simply train personalized models with DP and proximity
constraints. On the other hand, our work identified several important future work in this context,
which we summarize below.

DP under data imbalance. DP is inherently a uniform guarantee, but data imbalance implies
that examples are not created equal—minority examples (e.g., disease infection, credit card fraud)
are more informative and tend to give off (much) larger gradients during model training. Should we
instead apply class-specific (group-wise) DP or refine heterogeneous DP [78, 6] or outlier DP [103]
notions to better cater for the discrepancy between data points?

Graphs and privacy. Another fundamental basis of DP is that we could delineate what is an isn’t
an individual. But as we have seen in Chapter 2, the information boundaries are often nebulous
when an individual is a node in graph (think social networks and gossip propagation), particularly
when the node is arbitrarily well connected. Instead of having rigid constraints (e.g., imposing a
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max node degree and accounting for it), are there alternative privacy definitions that offer varying
degrees of protection for varying node connectedness?

Scalable private and federated trees for tabular data. Decision trees/forests tend to work
extremely well for tabular data such as ours, even with data imbalance. However, despite recent
progress [104], we argue that they are not yet mature under private and federated settings due to
some underlying assumptions.

Novel training frameworks. While MR-MTL is a simple and strong baseline under our privacy
granularity, it has clear limitations in terms of modeling capacity. Are there other methods that can
also provide similar properties to balance the emerging privacy-heterogeneity cost tradeoff?

Honest privacy cost of hyperparameter search. When searching for better frameworks, the
dependence on hyperparameters is particularly interesting: Section 1.7 made a surprising but some-
what depressing observation that the honest privacy cost of just tuning (on average) 10 hyperpa-
rameter configurations (values of λ in this case) may already outweigh the utility advantage of the
best tune MR-MTL(λ∗). What does this mean if MR-MTL is already a strong baseline with just a
single hyperparameter?

We hope that our work provides a useful foundation and faciltates future work in addressing the
above issues and developing better privacy-preserving federated learning solutons.
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Appendix A

Additional Discussions

A.1 Limitations

We discuss below some limitations of our work in addition to Section Section 1.7.

When multiple records map to the same entity. In this paper we studied the application
of silo-specific example-level differential privacy in cross-silo federated learning. While this is an
important initial step towards a more suitable privacy model for cross-silo FL (in contrast to the
commonly studied client-level DP model), we assume that each entity that requires privacy protec-
tion has at most one record (training example) across silos (e.g. a single patient has one medical
record at a hospital).

There are two characteristic cases where this assumption does not hold for all items in a silo:

• Multiple records within a silo map to the same entity. One example would be a student re-
enrolling at the same school for multiple degree programs, thus creating multiple student records
at the same silo. In such cases, the silo curator may need to carefully apply group privacy or
other methods for ensuring entity-level privacy [87] to protect the entity rather than its records.

• Multiple records across silos map to the same entity. One example would be a person
having multiple credit cards at different banks. This case is more intricate as it is harder to
precisely account for the DP guarantee for this entity without knowing (1) the silos in which
this entity has appeared and (2) the specific privacy targets for each of those silos. In this case,
the silos may cooperate to run private set intersection (e.g. as considered in [102]) to privately
identify this scenario, but this would by itself come at a privacy cost.

These cases are interesting avenues for future research on private cross-silo learning.1

Extending the analysis to deep learning cases. In Section Section 1.6 we use federated mean
estimation as a simplified setting for analyzing the behavior of MR-MTL under silo-specific example-
level privacy. While the analysis provides adequate insights into the empirical phenomena in Fig. 1.5,
it is a simple model that does not consider the dynamic aspects of the learning settings, including
(1) the Gaussian random walk component of the model updates due to DP noise applied over many
training rounds, (2) the effect of communication frequency on the effect of noise reduction, (3) the

1The case of having individual records corresponding to multiple entities at once (e.g. one record for all family
members) is slightly less interesting since example-level privacy would protect all of the entities.
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concept of “client drifts” (as considered in [83]) as a result of heterogeneity and how it interfaces
with the DP noises, and (4) how overparameterization may affect all of the above.

Caveats of cross-silo learning with very large local datasets. In contrast to cross-device
federated learning, cross-silo federated learning is typically characterized by having a limited number
of clients, each with a large local dataset. The term “large” is relative because it describes the
sufficiency of the datasets for fitting good local models of a specific class; for example, 500 examples
are likely sufficient to fit linear regression of 10 parameters, but very likely insufficient to learn a
transformer [144]. In this sense, many FL problems in practice – such as large commercial banks
running regression on tabular data – will in fact have local training to be the optimal strategy,
as long as there are sufficient local data and the data from other silos are not of the same local
distribution. In these cases, one should expect MR-MTL to opt for λ∗ ≈ 0 as federated learning is
not needed at all, and thus its advantages under privacy will also be minimal.

A.2 Potential Negative Societal Impact

Our work studies the empirical behaviors that arise when applying an alternative model of differ-
ential privacy to cross-silo federated learning, and we provide a strong baseline method (MR-MTL)
that fares well in this setting. In this sense, our work sheds light on and facilitates the development
of a previously underexplored area of differentially private federated learning. However, because
MR-MTL requires selecting a good regularization stength λ, one potential negative impact is that
users may excessively tune λ on a private dataset and inadvertently leak privacy via the choice of
λ (perhaps qualitatively rather than quantitatively); for example, if a silo chose a large λ for better
performance, then in principle its data would look somewhat more similar to the “average” of the
silo datasets. Moreover, our privacy model requires that silos add their own independent noises for
their own DP targets, and this requirement may not be followed correctly (either deliberately or
inadvertently) to provide vacuous DP guarantees for people’s data.
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Appendix B

Additional Experimental Details

B.1 Datasets and Models

Table B.1 summarizes the datasets, tasks, and models considered in our experiments. In the fol-
lowing, we provide details on each.

Dataset Task # Clients Input Min nk Max nk Learner(Silos) Dim

Vehicle Classification 23 100 872 1933 SVM
School Regression 139 28 15 175 Linear
Google Glass (GLEAM) Classification 38 180 699 776 SVM
Heterogenous CIFAR-10 Classification 30 32× 32× 3 1515 1839 ConvNet
Rotated & Masked MNIST Classification 40 28× 28× 1 1500 1500 ConvNet
Subsampled ADNI Regression 9 32× 32× 1 45 2685 ConvNet

Table B.1: Summary of datasets, tasks, and models for our empirical studies. nk denotes the number of
training examples on client k.

Vehicle [42]. The Vehicle Sensor dataset is a binary classification dataset containing K = 23 data
silos. Each silo (sensor) has acoustic and seismic measurements for a road segment, with each data
point being a 100-dimensional feature vector describing the measurements when a vehicle passes
through the road segment. The goal is to predict between two predetermined types of vehicles.
We use a train/test split of 75%/25% following previous work [132], yielding 872 ≤ ntrain

k ≤ 1933
training examples on each client. We use simple linear SVMs for classification following [132, 91].
It is a suitable dataset for cross-silo FL because the number of silos K is small while each silo has
sufficient data to fit a good local model, as opposed to cross-device datasets such as FEMNIST [24]
where K is large but each silo has little data to learn a useful model. Moreover, we can use tight
privacy budgets due to reasonably large local datasets (in terms of sufficiency for fitting a good
local model) and SVMs (which are relatively noise-tolerant since decision boundaries only depend
on support vectors). The dataset is accessible from the original authors.1

School [58, 10, 166]. The School dataset originated from the now-defunct Inner London Education

1https://web.archive.org/web/20110515133717/http://www.ece.wisc.edu:80/~sensit/
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Authority.2 It is a regression dataset for predicting the exam scores of 15,362 students distributed
across 139 secondary schools. Each school has records for between 22 and 251 students, and each
student is described by a 28-dimensional feature vector capturing attributions such as the school
ranking, student birth year, and whether the school provided free meals. We perform 80%/20%
train/test split in Fig. 1.3 (with 15 ≤ ntrain

k ≤ 175 training examples in each silo), and additionally
consider 50%/50% and 20%/80% train/test split in Fig. G.7. We use simple linear regression models
following previous work (e.g. [10, 166, 59]) to predict student scores. Like the Vehicle dataset, the
School dataset is a natural cross-silo FL dataset with a limited number of clients K, each with
roughly sufficient data to fit a reasonable local model. The dataset is available from [166].

Google Glass Eating and Motion (GLEAM) [121]. We also benchmark on the GLEAM
dataset, a real-world head motion tracking dataset for binary classification. The motion data
is collected with Google Glass, and the task is to classify the activity of the wearer (eating or
not). There are in total K = 38 silos (wearers) and 27800 data points, with each silo containing
699 ≤ nk ≤ 776 data points. Each data point is a 180-dimensional feature vector capturing head
movement of the wearers. Linear models yield reasonable utility on GLEAM and thus we use linear
SVMs following previous work [132]. Like Vehicle and School, this is a suitable dataset for cross-silo
FL given a small K and relatively large local datasets.

Heterogeneous CIFAR-10 Dataset. We additionally evaluate on CIFAR-10 [85], with hetero-
geneous client data split following previous work [136, 130] (based on the code provided by [130]).
The dataset has K = 30 clients (silos) in total, and data heterogeneity is generated with each client
having a random number of samples from 5 randomly chosen classes out of the 10 classes. Each
client has 1515 ≤ nk ≤ 1839 training examples. We use a simple convolutional network with the
following layers: [Conv 3 × 3 with 32 channels, ReLU, MaxPool 2 × 2 with stride 2, Conv 3 × 3
with 64 channels, ReLU, MaxPool 2 × 2 stride 2, Linear]. No padding is used for convolutional
layers.

Rotated & Masked MNIST. We adapt the original MNIST dataset [86] to study the effect of
structured heterogeneity on MR-MTL. For the 60000/10000 train/test images, we first perform a
shuffle and then evenly separate them into K = 40 clients (silos), each with 1500/250 train/test
images with roughly uniform distribution on the labels. We then randomly separate the silos into
4 groups of 10, and apply rotations of {0◦, 90◦, 180◦, 270◦} to each group respectively; silos within
the same group have the same rotations applied to the images, thus forming 4 natural silo clusters.
To add intra-cluster heterogeneity, we then apply silo-specific random masks of 2×2 white patches;
that is, all images in the same silo has the same mask, and no two silos have the same mask with
very high probability. The random masks are akin to those considered in [66]. The white patches
of the random mask do not overlap, and the mask ratio is the probability of a patch being applied
(so the specified percentage of masked area is an expectation). Examples of generated images are
shown in Fig. B.1. These image transformations introduce two types of heterogeneity identified
by [81]: “covariate shift” (skew of feature distributions) and “concept drift” (same label, different
features). The model architecture is the same as the one used for heterogeneous CIFAR-10.

Subsampled Alzheimer’s Disease Neuroimaging Initiative (ADNI) Dataset [2]. We ad-
ditionally benchmark on the ADNI dataset, which is a real-world dataset containing brain PET
scans of Alzheimer’s disease patients, patients with mild cognitive impairment, and healthy people
taken from multiple institutions [120]. It is a regression dataset for predicting the SUVR value (a
scalar ranged roughly between 0.8 and 2) from the PET scan images of a brain. We simplified the

2https://en.wikipedia.org/wiki/Inner_London_Education_Authority
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Figure B.1: Example images of the Rotated & Masked MNIST dataset. Each column corresponds to
two images from the same (random) client from the specified cluster (thus they have the same client-specific
random mask). Labels for each column from left to right: (0, 0), (1, 7), (9, 1), (2, 7), (2, 1), (5, 0).

full dataset for faster training by subsampling the axial slices generated for each brain PET scan
(96 slices for scan), turning them into a gray scale image, downsampling them to size 32× 32, and
randomly splitting them into a 75%/25% train/test sets. There are in total K = 9 silos containing
a total of 11040 images; each silo corresponds to a different equipment that took the PET scans and
contains 45 ≤ ntrain

k ≤ 2685 training examples. See Fig. 4 of [126] and Fig. 4 of [120] for sample
images. The model architecture is a simple convolutional network with the following layers: [Conv
5 × 5 with 32 channels, ReLU, MaxPool 2 × 2 with stride 2, Conv 5 × 5 with 64 channels, ReLU,
MaxPool 2× 2 stride 2, Linear]. No padding is used for convolutional layers.

B.2 License/Usage Information for Datasets

Vehicle. The Vehicle dataset was made publicly available by the original authors as a research
dataset [42] and license information was unavailable. It has been subsequently used in many work
(e.g. [132]).

School. The original entity that collected the School dataset [58] is defunct and license information
was unavailable. The dataset has been made publicly available [166] and used extensively in previous
work (e.g. [166, 162]).

Google Glass (GLEAM). The GLEAM dataset was made publicly available by the original
authors and can be used for any non-commercial purposes. See this URL3 for license and usage
information.

Heterogeneous CIFAR-10. The original CIFAR-10 dataset is available under the MIT license.

Rotated & Masked MNIST. The original MNIST dataset is available under the CC BY-SA 3.0
license.

Subsampled ADNI. As per the Data Use Agreement of the ADNI dataset:4

3http://www.healthailab.org/data.html
4https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Data_Use_Agreement.pdf
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Data used in preparation of this manuscript were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators
within the ADNI contributed to the design and implementation of ADNI and/or pro-
vided data but did not participate in analysis or writing of this manuscript. A complete
listing of ADNI investigators can be found at this URL.5

The data sharing and publication policy of the ADNI dataset can be found at this URL.6 Access to
the dataset must be approved by ADNI.

B.3 Benchmark Methods and Implementation

We provide more details on our benchmark personalization methods below.

Local finetuning [147, 157, 32] is one of the simplest but most effective personalization methods:
once clients obtain a shared model via federated training (e.g. FedAvg), they can personalize it with
additional training steps over their local dataset. This simple strategy has been shown to work
very well empirically [147, 157, 32], with the work of [32] providing theoretical support that it can
asymptotically achieve comparable performance to other more sophisticated methods. Moreover, in
contrast to other local adaptation methods like distillation [157], local finetuning’s privacy footprint
under our privacy model can be easily controlled (by limiting the number of finetuning and total
training steps) without qualitatives change in its behavior. In our experiments, local finetuning is
implemented as FedAvg followed by local training, each taking 50% of the total number of training
rounds to ensure an identical privacy budget as other baseline methods.

Ditto [91] is the current state-of-the-art method for personalization with provable benefits of ro-
bustness and fairness. It is closely related to MR-MTL because it similarly trains personalized
models while `2-regularizing them towards a global model, but it differs from MR-MTL in that its
global model can be obtained by a standalone solver. In particular, when no privacy is added,
Ditto’s modularity allows it to perfectly interpolate between local and FedAvg training with its
regularization strength λ. In our experiments, we implement Ditto with the FedAvg solver and use
a minimal number of iterations over the local datasets to avoid excessive privacy overhead.

Mocha [132] is a multi-task learning framework tailored for federated settings. During training,
it simultaneously learns the personalized models as well as a client-relationship matrix which can
model both positive and negative client relationships (in contrast, clustering methods only focus on
positive relationships). One disadvantage of Mocha is that it applies to convex problems only. In
particular, the original paper uses a dual formulation for efficient training, but for fair comparison
and compatibility with privacy primitives (especially DP-SGD [133, 13, 1]), we implemented Mocha
in its primal form and trained it with SGD in our experiments. Similarly, we align Mocha to other
baselines in terms of the number of training steps to prevent privacy overhead.

IFCA [56] (and the conceptually similar HypCluster [106]) is a simple clustering framework
proposed as an extension to FedAvg. In every round of IFCA training, the server sends k models
(cluster centroids) to all clients; each client locally evaluates them over its local training data and
selects the one with the lowest loss. Each client then locally trains on the selected model and returns
updates only for this model, along with its index. Clients that selected the same model indices can

5https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
6https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_DSP_Policy.pdf
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be viewed as belonging to the same cluster. We use IFCA as the representative clustering method
due to its performance, simplicity, and practicality.

The privacy overhead of IFCA comes in the form of private cluster selection: when each client
evaluates the incoming models (cluster centroids) on the local datasets, this procedure must be
privatized as the selection itself may leak information about the dataset. Private selection can
be implemented via the exponential mechanism [111] with sharp accounting via a bounded range
analysis [127] (discussed in Section 1.2), but one must decide (e.g. as a privacy budget εselect for the
same δ) how to share the selection cost with DP-SGD under a fixed total privacy budget εtotal.

Mitigating strategies for private cluster selection. In our experiments, we observed that if
private selection is implemented naively, it can incur a prohibitive privacy overhead and destroys
the final utility (e.g. Fig. 1.4). There are two important reasons: (1) unlike DP-SGD, no privacy
amplification applies to private selection, and (2) the sensitivity of the training loss (which is used
to select cluster centroids) is unbounded in general and must be clipped to a reasonable value (e.g.
≤ 1). We propose two mitigation strategies:

1. Use accuracy instead of loss. For the cluster selection metric (i.e. the score function s(x, g)
where x is the local dataset and g is a particular cluster centroid), we use the error rate (1 −
accuracy) instead of the loss (which is used by the original authors [56, 106]). The rationale
is that accuracy is a low-sensitivity function, particularly in cross-silo settings: one can show
that, by enumerating the cases where the differing example between the neighboring datasets
x and x′ are correctly/incorrectly classified under addition/removal/replacement notions of DP,
the sensitivity ∆acc of s is bounded as

∆acc = max
g

max
x,x′

∣∣s(x, g)− s(x, g′)
∣∣ ≤ 1

n− 1
(B.1)

where n is the size of the local dataset. Since n can be large in cross-silo settings, the sensitivity
can be orders of magnitude smaller than that of the loss function. With small sensitivity, we
heuristically set the per-round selection privacy budget to a very small εselect = 0.03 · εtotal.
Despite this, however, the cost of private selection can still grow quickly over the entire training
process and considerably eat into DP-SGD’s privacy budget.

2. Truncate the number of cluster selection rounds. Our second strategy is to simply run
less rounds of cluster selection (e.g. to 10% of total number of training rounds, as in Fig. 1.3).
This follows from the empirical analysis of [56] as well as our own experimental observation that
clusters tend to converge quickly, though in some cases, clusters may not fully converge within
10% of training rounds.

Despite these strategies, however, the private selection cost can still lead to a steep utility hit. Note
also that the new hyperparameter εselect can be tuned; for a fixed total budget εtotal, a small εselect
means the budget for DP-SGD εtrain is not affected by much, but the selected clusters would be
very noisy and inaccurate; a large εselect leads to less noisy clusters (and thus smaller intra-cluster
heterogeneity), but DP-SGD will correspondingly use larger noise and hurt optimization.

B.4 Training Settings

Optimizers. For simplicity of hyperparameter tuning and experimental controls, we use minibatch
DP-SGD for client local training without local or server momentum for all experiments (in fact,
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FedAvgM [70] and FedAdam [125] were not found to be helpful on Vehicle and School). While
there are more efficient solvers for the Vehicle and School datasets since we are dealing with convex
problems, we want compatibility with DP-SGD [133, 13, 1] as well as tight privacy accounting with
privacy amplification via subsampling (i.e. via minibatch training).

Hyperparameters. For all datasets and all methods, we set silos to train for 1 local epoch in every
round (except Ditto [91] which takes 2 local epochs). For Vehicle, GLEAM, School, Heterogeneous
CIFAR-10, Rotated & Masked MNIST, and subsampled ADNI respectively, the local batch size
across all silos are fixed with B = 64, 64, 32, 100, 100, 64, and the clipping norm for per-example
gradients are heuristically set to c = 6, 6, 1, 8, 1, 0.5. Vehicle uses T = 400 rounds for most exper-
iments (except Fig. 1.2 which trains for T = 200 rounds); School, Google Glass, Heterogeneous
CIFAR-10, and Rotated & Masked MNIST use T = 200; and ADNI uses T = 500.

For multi-task learning methods (MR-MTL, Ditto [91], Mocha [132]), we sweep the regularization
strength across a grid of λ ∈ [0.0001, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10] to find the best λ∗ wher-
ever applicable (e.g. Figs. 1.3, 1.5 and G.7). To compensate for the change in the gradient magnitude,
we also sweep different client learning rates across a grid of η ∈ [0.001, 0.003, 0.01, 0.03, 0.1, 0.3]; for
fair comparison, the same grid of η is swept for methods that do not involve λ (e.g. IFCA, local
finetuning).7 For Fig. 1.2 and Fig. G.1, the learning rate is fixed to η = 0.01. For all datasets, the
chosen privacy parameter δ satisfy δ < n−1.1

k where nk is the local training dataset size.

Evaluation Protocol. For all datasets, we evaluate methods by the average test metric (accuracy
or MSE) across the silos, weighted by their respective test sample counts. Weighted averaging
allows the final test metric to reflect a method’s performance over the individual test samples of
the combined dataset across silos, thus fairer and more aligned (compared to uniform averaging
of silo test metrics) with our privacy model where each test sample represents an entity requiring
protection.

B.5 Hardware

Experiments for Vehicle, School, and Google Glass (GLEAM) from Chapter 1 are run on commodity
CPUs and experiments for Heterogeneous CIFAR-10, Rotated & Masked MNIST and ADNI are run
on four NVIDIA RTX A6000 GPUs. Experiments for the PETs Prize Challenge from Chapter 2
are run on commodity CPUs.

B.6 Code

Our experiments are implemented in Python with NumPy [65], JAX [21] and Haiku [68]. For private
training, JAX is used to vectorize DP-SGD over per-example gradients [134]. Code for Chapter 1
is available at https://github.com/kenziyuliu/private-cross-silo-fl. Code for Chapter 2 is
available at https://github.com/kenziyuliu/pets-challenge.

7As discussed in Section Section 1.7, releasing the results from repeated experiments (possibly with different
hyperparameters) may technically compromise the privacy of the datasets [95, 117]. In our case, we are primarily
interested in understanding the behaviors and tradeoffs that emerge under silo-specific example-level DP, and thus
for experimental control and ease of comparison we do not account for the privacy costs from hyperparameter tuning
and repetitions. We also use only public datasets in our experiments.
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Appendix C

Additional Algorithmic Details

C.1 Mean-Regularized Multi-Task Learning (MR-MTL)

Algorithm 1 describes the canonical instantiation of MR-MTL [136]. Its key ingredient is the mean-
regularization (Line 6 of Algorithm 1) that forces the local personalized models wk to be close to
their mean w̄. Silo-specific example-level privacy is added by privatizing the local gradients as in
DP-SGD [133, 13, 1].

Privacy of MR-MTL. Since the iterates of w̄(t) are already differentially private (as they are the
average of the private iterates w(t)

k ), the additional regularization term λ
2‖w

(t)
k − w̄

(t−1)
k ‖22 (and hence

MR-MTL) does not incur privacy overhead compared to local and FedAvg training.

Weighted vs Unweighted Model Updates. It is customary to weigh the model updates from
each client (silo) by its training example counts, as in the original FedAvg implementation [108].
However, note that under silo-specific example-level privacy with addition/removal notions of DP,
the example counts on each silo may itself leak sensitive information (e.g. when a silo only has
one record). This is less of an issue with the replacement notion of DP, since neighboring datasets
would have the same example counts. In our experiments we use weighted model updates and thus
implicitly assume the replacement notion of DP. Nevertheless, the resulting privacy guarantees are
constant factors apart and empirically we did not observe significant changes in performance when
using unweighted aggregation.

C.2 IFCA Preconditioning / Warm-Starting

In Section Section 1.5, we considered an extension to MR-MTL where training is “warm-started” by
a small number of rounds of clustering (via IFCA [56, 106]), followed by MR-MTL training within
each formed cluster. Pseudocode for this procedure is shown in Algorithm 2.

Privacy of IFCA Preconditioning. Observe that as with MR-MTL, the gradient steps satisfy
silo-specific example-level DP regardless or whether the steps are made on the cluster models or
the personalized models. IFCA preconditioning introduces privacy overhead in the form of private
cluster selection (Line 6 of Algorithm 2; discussed in Section 1.2 and Appendix B.3), which splits
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Algorithm 1 Mean-Regularized Multi-Task Learning

1: Input: Initial client models {w(0)
k }k∈[K], and mean model w̄(0).

2: for training round t = 1, ..., T do
3: Server sends w̄(t−1) to every client.
4: for client k = 1, ...,K in parallel do
5: Set model iterate: w(t)

k ← w
(t−1)
k .

6: For every batch (x, y), client updates w(t)
k using SGD or DP-SGD with batch loss

`(w
(t)
k , x, y) and gradient

∇
w

(t)
k

[
`
(
w

(t)
k , x, y

)
+
λ

2

∥∥∥w(t)
k − w̄(t−1)

∥∥∥2

2

]
.

7: Return model update ∆
(t)
k = w

(t)
k − w

(t−1)
k .

8: Server updates w̄(t) = w̄(t−1) + 1
K

∑K
k=1 ∆

(t)
k (may weigh ∆

(t)
k by client example counts).

9: Output: Personalized models w(T )
k for all i ∈ [K].

the total privacy budget with DP-SGD. As a result the noise scale for DP-SGD would be increased
and can be numerically determined.
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Algorithm 2 IFCA-Preconditioned MR-MTL

1: Input: Initial client models {w(0)
k }k∈[K], number of clusters G, initial cluster models {w̄(0)

g }g∈[G],
total number of rounds T , and the number of initial clustering rounds Tcluster.

2: # IFCA preconditioning rounds
3: for IFCA training round t = 1, ..., Tcluster do
4: Server sends cluster models {w̄(t−1)

g }g∈[G] to every client.
5: for client k = 1, ...,K in parallel do
6: Use Exponential Mechanism (Section 1.2) to select best cluster w̄(t−1)

g∗(k) from
{w̄(t−1)

g } with loss/error rate function s and local dataset (Xk, Yk).
7: Set model iterate: w(t)

k ← w̄
(t−1)
g∗(k) .

8: For every batch (x, y), client updates w(t)
k using SGD or DP-SGD with batch loss

`(w
(t)
k , x, y) and gradient ∇

w
(t)
k

`
(
w

(t)
k , x, y

)
.

9: Return model update ∆
(t)
k = w

(t)
k − w̄

(t−1)
g∗(k) and selected cluster index g∗(k).

10: for each cluster g ∈ [G] do
11: Server applies (weighted) model updates to cluster g with the associated client indices:

w̄(t)
g = w̄(t−1)

g +
1

|Kg|
∑
k∈Kg

∆
(t)
k , where Kg ≡ {k ∈ [K] | g∗(k) = g}. (C.1)

12: # MR-MTL rounds with regularization towards frozen cluster centroids
13: for MR-MTL training round t = Tcluster + 1, ..., T do
14: Server sends cluster models {w̄(t−1)

g }g∈[G] to every client.
15: for client k = 1, ...,K in parallel do
16: Client retrieves the last selected cluster centroid w̄

(t−1)
g∗(k) .

17: Set model iterate: w(t)
k ← w

(t−1)
k (using the personalized model from last round).

18: For every batch (x, y), client updates w(t)
k using SGD or DP-SGD [133, 13, 1] with batch loss

`(w
(t)
k , x, y) and gradient

∇
w

(t)
k

[
`
(
w

(t)
k , x, y

)
+
λ

2

∥∥∥w(t)
k − w̄

(t−1)
g∗(k)

∥∥∥2

2

]
.

19: Return model update ∆
(t)
k = w

(t)
k − w̄

(t−1)
g∗(k) and the cluster index g∗.

20: for each cluster g ∈ [G] do
21: Server applies (weighted) model updates to cluster g with the associated client indices:

w̄(t)
g = w̄(t−1)

g +
1

|Kg|
∑
k∈Kg

∆
(t)
k , where Kg ≡ {k ∈ [K] | g∗(k) = g}. (C.2)

22: Output: Personalized models w(T )
k for all i ∈ [K].
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Appendix D

Additional Analysis Details

In this section we provide additional details for the analysis presented in Section Section 1.6. We
also extend the analysis to the case with varying n, σ, σDP for each silo in Appendix D.5.

D.1 Notations

Unless otherwise specified, we used the following notations throughout the analysis:

• K denotes the total number of silos (clients) with indices k ∈ [K];

• n denotes the number of examples on each silo;

• wk denotes the true center of silo k’s data distribution;

• Xk ≡ {xk,i}i∈[n] denotes the local dataset with n data points;

• ŵk denotes the best local estimator of wk;

• w̄ denotes the average of local estimators;

• ŵ\k , 1
K−1

∑
j 6=k,j∈[K] ŵj denotes the external average estimators from the perspective of k;

• σ2 denotes the sampling variance of the local data Xk;

• τ2 denotes the sampling variance of the local data centers wk (hence a measure of data hetero-
geneity across silos); and

• σ2
DP denotes the DP noise variance on each silo to satisfy silo-specific example-level privacy.

D.2 MR-MTL Formulation

The general formulation of the mean-regularized MTL objective may be expressed as

min
wk,k∈[K]

1

K

K∑
k=1

hk(wk) with hk(w) , Fk(w) +
λ

2
‖w − w̄‖22, (D.1)
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where Fk(·) is the local objective for client k, w̄ , 1
K

∑K
k=1wk is the average model, and λ ≥ 0

is the regularization strength. A larger λ enforces the models to be closer to each other, and
λ = 0 reduces the problem to local training. In particular, unlike Ditto [91], MR-MTL may not
recover FedAvg [108] under SGD as λ→∞, since λ essentially changes the ratio between the local
objective gradients and the regularization gradients. For the purposes of our analysis, we assume
Fk is strongly convex for all k ∈ [K].

D.3 Assumptions

Our characterization of MR-MTL on makes the following simplifying assumptions.

Assumption D.3.1. All clients (silos) have the same number of data points n, data sampling
variance σ2, and DP noise variance σ2

DP.

Assumption D.3.2. A sufficiently large clipping c can be selected such that ‖xk,i‖2 ≤ c with high
probability.

Note that Assumption D.3.1 primarily serves to make results cleaner and easily interpretable (see
Appendix D.5 for extensions). Assumption D.3.2 is mild since Gaussians have strong tail de-
cay.

D.4 Omitted Details and Proofs

Our analysis (particularly Lemma 1.6.2) makes use of the following lemma to determine the posterior
of an unknown parameter given several independent Gaussian observations.

Lemma D.4.1 (Lemma 11 of [105]). Let θ ∈ R be a constant (non-informative prior). Let {φk ,
θ+ zk}k∈[K] with zk ∼ N (0, σ2

k) be m independent noisy observations of θ with variances {σ2
k}k∈[K].

Then, conditioned on {φk}k∈[K], with σ2
θ , (

∑
k∈[K] 1/σ2

k)
−1, we have

θ = σ2
θ

∑
k∈[K]

φk
σ2
k

+ z, where z ∼ N (0, σ2
θ). (D.2)

This lemma allows us to express the local true centers wk conditioned on the local empirical estimates
ŵk, the external empirical estimates ŵ\k, and the local datasets {Xk}k∈[K].

Below we present omitted proofs for the main results presented in Section Section 1.6. We restate
the lemmas and theorems for convenience.

Lemma 1.6.1. The minimizer of the silo-specific objective hk(w) (see Eq. (1.7), Eq. (D.1)) is

ŵk(λ) = α · ŵk + (1− α) · ŵ\k, where α ,
K + λ

(1 + λ)K
∈ (1/K, 1]. (D.3)

Proof of Lemma 1.6.1. First note that w̄ is independent of λ. Since we assume Fk is convex, hk is
also convex, and the proof follows from taking the derivative of hk and setting it to 0:

∂hk(w)

∂w
=

1

n

n∑
i=1

(w − xk,i) + λ(w − w̄) = (w − ŵk) + λ(w − w̄), (D.4)

66



On Privacy and Personalization in Machine Learning

ŵk(λ) =
1

1 + λ
ŵk +

λ

1 + λ
w̄ =

K + λ

(1 + λ)K
· ŵk +

λ(K − 1)

(1 + λ)K
ŵ\k. (D.5)

Note here that in the non-private case, the local estimator is given by the empirical average:
ŵk = 1

n

∑n
i=1 xk,i. In the private case, under Assumption D.3.2, the local estimator is ŵk =

1
n (ξk +

∑n
i=1 xk,i) where ξk ∼ N (0, σ2

DP) is the one-shot privacy noise, and we can similarly arrive
at the same ŵk(λ) expression.

Lemma 1.6.2. Let σ2
loc , σ2/n+ σ2

DP/n
2 denote the local variance on each silo as a result of data

sampling and DP noise. Then, given ŵk and ŵ\k, wk can be expressed as

wk = µk + ζk (D.6)

where ζk ∼ N (0, σ2
w), (D.7)

with σ2
w ,

(
1

σ2
loc

+
K − 1

Kτ2 + σ2
loc

)−1

(D.8)

and µk , σ2
w

(
1

σ2
loc

· ŵk +
K − 1

Kτ2 + σ2
loc

· ŵ\k
)
. (D.9)

Proof of Lemma 1.6.2. When given θ, we can express wk = θ + zk where zk ∼ N (0, τ2), and by
symmetry when given wk,

θ = wk + zk where zk ∼ N (0, τ2). (D.10)

Note also that when given the local dataset Xk, ŵk is a noisy observation of wk with Gaussian noise
from data sampling and added privacy:

ŵk = wk + ẑk where ẑk ∼ N (0, σ2
loc). (D.11)

Moreover, when given the local datasets {Xj}j∈[K],j 6=k, ŵ\k can be viewed as a noisy observation of
θ with Gaussian noise from the silo heterogeneity and the empirical mean of the local estimators:

ŵ\k = θ + ẑ\k where ẑ\k ∼ N
(

0,
τ2 + σ2

loc

K − 1

)
. (D.12)

Combining (D.12) with (D.10) we have, when given wk and the local datasets {Xj}j∈[K],j 6=k,

ŵ\k = wk + z\k where z\k ∼ N
(

0, τ2 +
τ2 + σ2

loc

K − 1

)
≡ N

(
0,
Kτ2 + σ2

loc

K − 1

)
. (D.13)

Invoking Lemma D.4.1 on Eq. (D.11) and Eq. (D.13) we have the desired µk and σ2
w.

A key observation for this derivation is that the local datasets {Xk}k∈[K] form the Markov blankets
of ŵk and ŵ\k (as they are sampled after wk are sampled, and the estimators ŵk and ŵ\k are
computed based on the datasets). Thus, given {Xk}k∈[K], ŵk and ŵ\k can be viewed as independent
observations of wk and Lemma D.4.1 applies.

Theorem 1.6.3 (Optimal MR-MTL estimate). Let λ∗ be the optimal λ that minimizes the gener-
alization error. Then,

λ∗ = argmin
λ

E
[
(wk − ŵk(λ))2 | ŵk, ŵ\k, {Xk}k∈[K]

]
=
σ2

loc

τ2
=

1

nτ2

(
σ2 +

σ2
DP

n

)
. (D.14)
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Proof of Theorem 1.6.3. The objective of finding λ∗ equates to finding an expression for λ such that
when wk is viewed as a noisy observation of ŵk(λ) (which is an interpolation of ŵk and ŵ\k from
Lemma 1.6.1), the coefficients for ŵk and ŵ\k in ŵk(λ) matches those of wk (Lemma 1.6.2). That
is, we want λ∗ such that

K + λ∗

(1 + λ∗)K
=

σ2
w

σ2
loc

=
1

σ2
loc

·
(

1

σ2
loc

+
K − 1

Kτ2 + σ2
loc

)−1

. (D.15)

Simpifying gives λ∗ = σ2
loc/τ

2. Note that ŵk(λ∗) is the (conditional) MMSE estimator of wk.

Note that Eq. (D.14) measures the generalization error because wk is the (unobserved) true center
of the local data distribution around which testing data points would be drawn.

Proposition 1.6.5 (Optimal error gap to local training). Denote the error of the local estimate
as

Eloc , E
[
(wk − ŵk)2 | Xk

]
, (D.16)

and let ∆loc , Eloc − E∗ be its error gap to the optimal estimate. Then,

∆loc =

(
1− 1

K

)
· σ4

loc

σ2
loc + τ2

. (D.17)

Proposition 1.6.6 (Optimal error gap to FedAvg). Denote the error of the global (FedAvg) estimate
as

Efed , E
[
(wk − w̄)2 | {Xk}k∈[K]

]
, (D.18)

and let ∆fed , Efed − E∗ be its error gap to the optimal estimate. Then,

∆fed =

(
1− 1

K

)
· τ4

σ2
loc + τ2

. (D.19)

Proofs of Propositions 1.6.5 and 1.6.6. From Corollary 1.6.4 we know that the error of the optimal
estimator ŵk(λ∗) of wk is E∗ = σ2

w =
σ2
loc(σ2

loc+Kτ2)

K(σ2
loc+τ2)

. For Eloc, we know from earlier that the local

estimator ŵk = ŵk(0) of wk has an MSE/variance of Eloc = σ2
loc. For Efed, we can view w̄ as a

noisy observation of wk with MSE/variance Efed =
σ2
loc+(K−1)τ2

K . The results of Propositions 1.6.5
and 1.6.6 thus follow from re-arranging terms of Eloc − E∗ and Efed − E∗ respectively.

Lemma 1.6.7 (Error of ŵk(λ)). Let Eλ , E
[
(wk − ŵk(λ))2 | ŵk, ŵ\k, {Xk}k∈[K]

]
be the error of

MR-MTL as a function of λ. Then,

Eλ =

(
1− 1

K

)
σ2

loc + λ2τ2

(λ+ 1)2
+
σ2

loc

K
. (D.20)

Proof of Lemma 1.6.7. The result follows from the variance of ŵk(λ) when viewed as a noisy obser-
vation of wk. Specifically, from Lemma 1.6.1 we know that ŵk(λ) is an interpolation (parameterized
by α , K+λ

(1+λ)K ) between ŵk and ŵ\k. We thus have (with some rearrangement),

Eλ = α2 · σ2
loc + (1− α)2 · Kτ

2 + σ2
loc

K − 1
=

(
1− 1

K

)
σ2

loc + λ2τ2

(λ+ 1)2
+
σ2

loc

K
. (D.21)
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The proof of Theorem 1.6.8 follows directly from Lemma 1.6.7 by subtracting the common terms
between private and non-private MR-MTL estimates.

D.5 The Case of Heterogeneous Privacy Requirements

In the main analysis, we assumed for simplicity that each silo has the same values of local dataset
size n, local data sampling variance σ2, and DP noise variance σ2

DP. In this section, we consider the
case where each silo k has custom values for the above, denoted as nk, σ2

k, and σ
2
k,DP, to arrive at

a silo-specific “local variance” σ̃2
k:

σ̃2
k ,

σ2
k

n
+
σ2
k,DP

n2
. (D.22)

With a slight abuse of notation, let us use C+N (µ, σ2) to denote drawing an iid sample of Gaussian
noise with mean µ and variance σ2 and add it to some value C. Then, following Lemma 1.6.2 and
the same set of conditions, we can express the local model ŵk and the non-local model ŵ\k as:

ŵk = wk +N (0, σ̃2
k), (D.23)

ŵ\k = θ +N
(

0,
τ2

K − 1
+

∑
j 6=k σ̃

2
j

(K − 1)2

)
(D.24)

= wk +N
(

0, τ2 +
τ2

K − 1
+

∑
j 6=k σ̃

2
j

(K − 1)2

)
(D.25)

= wk +N
(

0,
Kτ2

K − 1
+

∑
j 6=k σ̃

2
j

(K − 1)2

)
, (D.26)

and the true local center wk can be expressed in terms of ŵk and ŵ\k with silo-specific local
variances:

Lemma D.5.1. Given ŵk and ŵ\k, wk can be expressed as

wk = µ̄k +N (0, σ̄2
k) (D.27)

with

σ̄2
k ,

(
1

σ̃2
k

+
(K − 1)2

(K − 1)Kτ2 +
∑

j 6=k σ̃
2
j

)−1

, (D.28)

µ̄k ,
σ̄2
k

σ̃2
k

· ŵk +
(K − 1)2σ̄2

k

(K − 1)Kτ2 +
∑

j 6=k σ̃
2
j

· ŵ\k. (D.29)

Proof. The proof follows similarly from Lemma 1.6.2: we apply Lemma D.4.1 to the expressions of
ŵk and ŵ\k as noisy observations of wk.

From here we can derive the best λ∗k specific to each silo.
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Theorem D.5.2 (Optimal λ for silo k). The optimal choice of the MR-MTL regularization strength
for silo k is given by

λ∗k =
σ̃2
k

τ2 +
1

K

(∑
j 6=k σ̃

2
j

K − 1
− σ̃2

k

) (D.30)

Proof. The result follows from re-arranging and solving for λ∗k in the following equation, as in
Theorem 1.6.3:

K + λ∗k
(1 + λ∗k)K

=
σ̄2
k

σ̃2
k

(D.31)

where µk is defined in Lemma D.5.1.

Theorem D.5.2 suggests that if silos have varying local variance (as a result of varying local dataset
sizes, inherent data variances, and silo-specific example-level DP requirements), then it is optimal

to have each silo choose its own λ∗k. In particular, the term

∑
j 6=k σ̃

2
j

K − 1
− σ̃2

k suggests that the optimal
λ∗k depends on how much of an “outlier” is silo k compared to the rest of silos: if it has a smaller
local variance, then it benefits from a smaller λ∗k since other silos are noisy; if it has a larger local
variance, then λ∗k would be larger to encourage silo k to “conform”. Note that under this simple
analysis, one could have λ∗k < 0 (when σ̃2

k > Kτ2 + 1
K−1

∑
j 6=k σ̃

2
j ); this case stems from having a

gradually larger σ̃2
k and it suffices to choose λ∗ →∞ (i.e. fall back to FedAvg training).
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Appendix E

Additional Details for Private
Hyperparameter Tuning (Section 1.7)

In Section Section 1.7 we took an alternative view on the benefits of personalization by examining
the privacy cost of tuning the hyperparameter responsible for navigating the tradeoff between costs
from heterogeneity and privacy. In this section, we expand on the omitted details and provide more
discussions.

E.1 Additional Background on Privacy Costs of Hyperparameter
Tuning

We consider the typical hyperparameter tuning procedure (denoted as HPO) where a base algorithm
M , such as one run of a machine learning algorithm to produce a model, is executed h times with
different hyperparameters and the best result is recorded. The hyperparameters may be high-
dimensional; e.g. vector of learning rate and batch size. Typically, h is a constant (e.g. we sweep a
fixed grid of learning rates and batch sizes).

On a high level, the works of Liu and Talwar [95] and Papernot and Steinke [117] show that, with a
constant h, one can constructM where the privacy guarantee of the HPO output is (roughly) a factor
of h weaker than the original privacy guarantee. Specifically, [117] gives the following proposition
that applies to both pure DP and Rényi DP (and thus related to approximate DP).

Proposition E.1.1 (Proposition 17 of [117]). For any ε > 0 and any α > 1, there exist some
algorithm M that satisfy (ε, 0)-DP and the corresponding HPO algorithm A that runs M for h
times and returns only the best result, such that

1. A is not (ε̃, 0)-DP for any ε̃ < hε, and

2. A is not (α, ε̃(α))-Rényi DP for any ε̃(α) < ε̂(α) where

ε̂(α) = hε− h log(1 + exp(−ε))
α− 1

. (E.1)

Both the pure DP and RDP results suggest that running the typical HPO procedure with a fixed h
can be as bad as running M and h times and releasing all results.
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The authors of [95] and [117] provided a mitigating strategy where one simply makes h (the number
of tuning runs) a random variable. The authors of [117] provide an improved analysis and considered
two distributions for h in particular: the truncated negative binomial (TNB) distribution and the
Poisson distribution.

Here, we focus on TNB as it provides a spectrum of results for privacy-utility tradeoff, allowing us to
choose several points on this spectrum that offer small (but realistic) privacy overhead. We combine
it our analysis in Section Section 1.6 to motivate our discussions on the practical complications of
deploying personalization methods.

Specifically, the probability mass function of the TNB distribution is given by

f(h) =


(1−γ)h

γ−η−1

∏h−1
`=0

(
`+η
`+1

)
for η 6= 0,

(1−γ)h

h log(1/γ) for η = 0,
with expected value E[h] =

{
η(1−γ)
γ(1−γη) for η 6= 0,
1/γ−1

log(1/γ) for η = 0,

where η and γ are parameters of the TNB distribution. The privacy of the HPO output using h
sampled from the TNB distribution is given by the following theorem from [117].

Theorem E.1.2 (Theorem 2 of [117]). For any η > 1, any γ ∈ (0, 1), and any algorithm M that
satisfy both (α1, ε(α1))-RDP and (α2, ε(α2))-RDP with α1 > 1 and α2 ≥ 1, the HPO algorithm A
that runs M for h times and returns only the best result with h ∼ TNB(η, γ) satisfies (α1, ε̃)-RDP
with

ε̃ = ε(α1) + (1 + η)

(
1− 1

α2

)
ε(α2) +

(1 + η) log(1/γ)

α2
+

logE[h]

α1 − 1
. (E.2)

Theorem E.1.2 tells us that by drawing h from the TNB distribution, the privacy cost of the HPO
procedure is a constant factor of the original cost of M for pure DP (when α1, α2 →∞), or up to a
factor of logE[h] for approximate DP. This substantially improves the default HPO procedure.

E.2 Interpretation of Fig. 1.7

In Fig. 1.7, we considered 6 pairs of (η, γ) to arrive at the same E[h] = 10 (i.e. on average we want
to try 10 values of λ when tuning MR-MTL). Intuitively, for a fixed E[h], we can expect a smaller
η (and consequently a smaller γ) to give a tighter privacy guarantee from Theorem E.1.2 (i.e. the
privacy cost of hyperparameter tuning is smaller). At the same time, however, the TNB distribution
would be more concentrated around h = 1 with a smaller η, which means we may end up trying
only 1 hyperparameter even when E[h] is large. (η, γ) thus provides an implicit privacy-utility
tradeoff.

In Fig. 1.7 we chose a list of η values that favors strong privacy while being realistic, since picking
η → −1 (or just η < −0.5) would give a even smaller privacy overhead, but it will perform very
poorly utility-wise and was not considered by [117]. We then applied Theorem E.1.2 with these
(η, γ) values to the the expected error of MR-MTL as a function of λ under mean estimation, by
computing and applying the extra noise needed to account for the privacy cost of tuning. Here,
the closed form of the expected error of MR-MTL is derived in Lemma 1.6.7, but in Fig. 1.7 we ran
numerical simulations with 500 repetitions.

Fig. 1.7 (a) and (c) suggests that there are settings in which, after applying Theorem E.1.2, the
best λ∗ one could find would already give an error that is larger than simply running FedAvg and
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local training without any tuning, respectively (the green curves). Fig. 1.7 (b) suggests that in
less extreme cases, the private hyperparameter tuning cost would significantly diminish the utility
improvement of MR-MTL.

E.3 Implementing Hyperparameter Tuning under Silo-Specific example-
level DP

Under silo-specific example-level privacy, it can be intricate to implement the improved, randomized
hyperparameter tuning protocol described above in Appendix E.1. For silo k to satisfy its own
(εk, δk) example-level DP target, it must draw h independently to all other silos, and it must only
return the best result of hyperparameter tuning at the end of training (instead of returning the best
model iterate at every round).

Using MR-MTL as an example, the above has several implications:

1. Each silo should now maintain a list of personalized models, each corresponding to a choice of λ.

2. Depending on the specific distribution of h, silos may or may not end up trying the same set of
λ values.

3. During training rounds, silos must return model updates for – and consequently regularize their
personalized models towards – a “pivot” model using some public λ̄.

The analysis in Appendix D.5 suggests that having silo-specific choices of λ (#2 above) should not
have adverse effects, but the above adaptations in general may influence final utility or convergence
properties in iterative learning settings.

Other more sophisticated implementation (potentially tailored to the specific personalization method)
may also be possible. It would be an interesting future direction to study the best approaches for
implementing private hyperparameter tuning under silo-specific example-level privacy.
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Appendix F

Future Directions for Auto-tuning /
Online Estimation of λ

Apart from tuning λ for MR-MTL (or other hyperparameters for other personalization methods)
non-adaptively with grid search or random search, another approach is to leverage some form of
online estimation as in [143, 9, 118] (mentioned in Section Section 1.7). That is, λ is adjusted at every
training round or iteration such that it gradually converges to a good λ∗ (in expectation).

This line of approaches would be promising if their privacy overhead (if any) can be contained within
a small factor of the original privacy guarantee—smaller than that offered by the randomized tuning
procedure discussed above in Appendix E.1. However, since the hyperparameters of interest are
those that navigate the tradeoff between costs from heterogeneity and privacy (such as λ for MR-
MTL), there are several factors that make auto-tuning particularly challenging in our setting:

• A universal and practical measure of heterogeneity is generally unavailable. For MR-
MTL, our analysis in Section Section 1.6 suggests that the optimal λ∗ depends on a measure of
data heterogeneity across silos (τ2). However, in practice, the level of heterogeneity is abstract
and hard to quantify even with non-private oracle access to the silo datasets. Past work has
devised custom measures of heterogeneity such as the variance of client (silo) model or gradient
updates [83, 90], or the difference between the true global loss and the aggregate of the true local
losses, but these measures may not be consistent throughout training [83, 90] such that they
cannot provide a useful estimate of the heterogeneity which should be invariant during training.
These metrics may also simply not be obtainable in practice [92]. The work of [132] considers
the use of a client-relationship matrix, but such matrix may be too large (K2 elements) and too
noisy under privacy as we may need to directly or implicitly noise every coordinate of the matrix.
Directly estimating the dataset statistics may also be challenging, since silos may apply custom
dataset transformations (e.g. standardization or augmentation) that can drastically alter such
statistics without affecting the learning dynamics.

• The estimated heterogeneity may have high variance. In addition to the above, hetero-
geneity would generally be measured on the client distribution (as some form of “variance” across
clients, as in [83]), but there is generally a limited number of clients in cross-silo settings, mean-
ing that this estimated “variance” as a measure of heterogeneity may itself have high variance.
Moreoever, such measures must also be estimated privately, which means that it would have even
higher variance from the additional noise. This could be problematic since the best hyperparam-
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eter for personalization may depend on such heterogeneity measure (as is the case for MR-MTL in
simplified settings), and the precision of a potential auto-tuning precedure may suffer as a result.

• Auto-tuning procedures may need to be developed specifically for each method. For
example, local finetuning may use the number of federated training rounds as the hyperparameter
for determining “how much” to personalize, but such hyperparameter would likely be auto-tuned
in a drastically different way compared to auto-tuning for λ for MR-MTL. It is in general an
open question as to whether method-specific auto-tuning procedures will always outperform the
simple randomized procedure described in Appendix E.1, in terms of both precision and privacy
overhead.

75



Appendix G

Additional Experimental Results

G.1 Local Finetuning (Extension of Fig. 1.2)

In Fig. 1.2, we made the observation that local finetuning [147, 157, 32] as a personalization strategy
(warm-starting from a global model and continue training using local data) may not always improve
utility as expected. Extending on Fig. 1.2, we examine the behavior of local finetuning starting at
different stages of training (under a fixed total number of rounds) as well as under varying privacy
budgets in Fig. G.1. We observe that the phenomenon illustrated in Fig. 1.2 is indeed reflected
across different settings: as soon as local finetuning begins, the DP utility gap can quickly widen,
and the utility of finetuning under privacy can roughly reduce to the utility of local training.

Note, however, that these observations serve to give insights into an interesting behavior of local
finetuning under silo-specific example-level DP and do not preclude the possibility that local fine-
tuning can still outperform both local training and FedAvg. Indeed, local finetuning was observed
to outperform local training in, e.g., Fig. 1.3 (d) and Fig. G.7.

G.2 Utility of MR-MTL as a Function of λ (Extension of Fig. 1.5)

We also extend on Fig. 1.5 to consider varying privacy budgets, and the results are shown in Fig. G.2
(Vehicle), Fig. G.3 (School), and Fig. G.4 (Heterogeneous CIFAR-10). Note that on School, the
test metric is MSE thus lower is better. There are several notable observations:

• λ∗ decreases as ε grows (weaker privacy): With weaker privacy (larger ε), we have a smaller
optimal λ∗ (i.e. the location of the utility “bump” under DP gradually shifts to the left). This
behavior is characterized by Theorem 1.6.3, where under stronger privacy, silos benefit from more
federation as a means to reduce the effect of privacy noise.

• MR-MTL does not always outperform FedAvg (at high privacy regimes): One minor caveat
is that Proposition 1.6.6 says that the utility gap from MR-MTL to FedAvg is always nonnegative
under federated mean estimation; however, as discussed in Sections Section 1.5 and Section 1.6,
MR-MTL does not approach FedAvg with larger λ in general learning settings since the MR-
MTL objective may become too hard to solve via (DP-)SGD. Thus, despite its utility advantage
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Figure G.1: (Extension of Fig. 1.2) Behavior of local finetuning starting at different stages of training
(25%, 50%, 75%) and under varying privacy budgets (ε ∈ [0.5, 1, 2], δ = 10−7) for T = 200 rounds on the
Vehicle dataset.

over local training at λ∗, it may never reach the performance of FedAvg. See, e.g., subplots of
ε ∈ [0.1, 0.2] in Fig. G.2.

• Utility advantage of MR-MTL (λ∗) over local/FedAvg changes with ε: Observe that
with larger ε, the utility advantage of MR-MTL (λ∗) is larger compared to FedAvg and is smaller
compared to local training. This behavior is characterized by Propositions 1.6.5 and 1.6.6.

Note also that for Heterogeneous CIFAR-10 (Fig. G.4), Ditto [91] exhibits a slightly different inter-
polation behavior compared to MR-MTL (e.g. it has larger optimal λ∗ under privacy), though at λ∗

its utility underperforms that of MR-MTL under privacy.

G.3 Subsampled ADNI Dataset

We further evaluate the suite of personalization methods on the subsampled ADNI dataset, and the
results are shown in Fig. G.5. There are several notable observations:
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Figure G.2: (Extension of Fig. 1.5) Behavior of MR-MTL as a function of λ across varying privacy
budgets (ε ∈ [0.1, 0.2, ..., 0.9], δ = 10−7) for T = 400 rounds on the Vehicle dataset. Solid lines refer to the
non-private runs (same across all plots).

1. MR-MTL is essentially recovering local training due to the high degree of heterogeneity present
in this dataset, with λ∗ ≈ 0 for most ε values except around ε ≈ 3.5 (annotated with arrows in
Fig. G.5 (a, b)).

2. Unlike results on other datasets, the privacy regime of interest where MR-MTL outperforms both
local/FedAvg (around ε ≈ 4) is extremely narrow, compared to ε ≈ 0.5 for Vehicle (Fig. 1.3 (a)),
ε ≈ 6 for School (Fig. 1.3 (b)), and ε ≈ 1.5 for GLEAM (Fig. 1.3 (c)). The utility advantage of
MR-MTL is also insignificant.

3. The underlying heterogeneity structure of the dataset is rather pathological in that it is not
ameanable to both mean-regularization and clustering. First, observe from Fig. G.5 (a) that
MR-MTL still opts for a small λ∗ in high-privacy regimes even when FedAvg performs better; one
would expect MR-MTL to opt for a larger λ for lower DP noise (at a cost of higher heterogeneity).
Second, from Fig. G.5 (b, c), we observe that both clustering and cluster-preconditoning did not
lead to significant utility improvements, although the latter reduces the degree of heterogeneity
and allows MR-MTL to opt for a larger λ∗ in the privacy regime of interest.

In general, determining how to better model such heterogeneity (especially in high privacy regimes)
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Figure G.3: (Extension of Fig. 1.5) Behavior of MR-MTL as a function of λ across varying privacy
budgets (ε ∈ [1, 2, 3, 4, 6, 8], δ = 10−3) for T = 200 rounds on the School dataset. Cf. Fig. 1.3 (b) and
Fig. G.7, where the privacy regime of interest is around ε ≈ 6. Solid lines refer to the non-private runs (same
across all plots).

is an interesting direction of future work.

G.4 Additional Discussions

Behavior on larger privacy budgets (Fig. G.6). We extend the results on Vehicle (Fig. 1.3 (a,
b)) by considering larger privacy budgets, and the results are shown in Fig. G.6. We note that as
privacy requirement loosens, personalized learning (where each silo maintains its own model) tend
to perform better than the case where models are shared across clients (FedAvg and IFCA). This is
expected as clients in cross-silo datasets tend to have sufficient data for learning a good local model.
Moreover, this also means MR-MTL remains competitive as it can use a smaller λ.

Effect of dataset subsampling (Fig. G.7). Subsampling local datasets would in principle turn
the cross-silo learning setting closer to a cross-device learning setting, in which local training be-
comes less attractive as due to insufficient local data and may opt for federated training despite
data heterogeneity. In Fig. G.7, we examine this behavior on the School dataset by using different
train/test split ratios of 80%/20%, 50%/50%, and 20%/80%. We observe that with less local train-
ing data: (1) FedAvg performs better since silos benefit from federation despite data heterogeneity;
(2) the cross-over point between local training and FedAvg shifts to larger ε (or they may not be
a cross-over point); and (3) MR-MTL may no longer provide an optimal point on the personaliza-
tion spectrum, since small local datasets with silo-specific example-level DP necessitate a larger λ
(cf. Theorem 1.6.3) but MR-MTL may not recover FedAvg under (DP-)SGD. In these cases, client-
level DP protection (as is commonly used for cross-device FL) may be more appropriate.
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Figure G.4: (Extension of Fig. 1.5) Behavior of MR-MTL as a function of λ across varying privacy
budgets (δ = 10−4) for T = 200 rounds on Heterogeneous CIFAR-10. Solid lines refer to non-private
runs (same across all plots) and dashed/dotted lines refer to private runs (with silo-specific example-level
DP).

2 4 6 8 10

Privacy " with ± = 10°4

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

A
vg

S
ilo

T
es

t
M

S
E

MR-MTL (∏§)
Local
FedAvg

2 4 6 8 10

Privacy " with ± = 10°4

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

A
vg

S
ilo

T
es

t
M

S
E

Finetune
Local
Local (IFCA 5%)
FedAvg
IFCA (5%)

MR-MTL (∏§)
MR-MTL (IFCA 5%) (∏§)
Ditto (∏§)

2 4 6 8 10

Privacy " with ± = 10°4

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

A
vg

S
ilo

T
es

t
M

S
E

Local (IFCA 5%)

IFCA (5%)

MR-MTL (IFCA 5%) (∏§)

!* ≈ 0.03!* ≈ 0.003
(a) (c)(b)

Figure G.5: Test accuracy (mean ± std with 3 seeds) vs privacy budgets ε for various personalization
methods on the subsampled ADNI dataset with T = 500 rounds. The heterogeneity present in this
dataset is unique in that it is not ameanable to both mean-regularization (a) and clustering (b, c), though
clustering can mitigate the level of heterogeneity by allowing a larger λ∗ for MR-MTL. In such cases of high
heterogeneity, local performance tends to be superior for most privacy budgets, and we find that MR-MTL
recovers this behavior. Determining how to better model such heterogeneity (especially in high privacy
regimes) is an interesting direction of future work.
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Figure G.6: (Extension of Fig. 1.3 (b)) Results on the Vehicle dataset for low privacy regimes (1 ≤ ε ≤ 10).
As privacy becomes weaker, the need for federation diminishes and personalization methods (including local
training) perform better. MR-MTL can recover local training by using a small λ.
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Figure G.7: Test MSE vs total privacy budgets on the School dataset (80%/20%, 50%/50%, and
20%/80% train/test split of the local dataset by columns from left to right). The top row compares MR-MTL
to local training/FedAvg, which form the endpoints of the personalization spectrum with constant privacy
costs, and the bottom row compares against other personalization methods. Under data subsampling (as
little as 20% training data in the 3rd column), we obtain a setting closer to cross-device FL where FedAvg
outperforms personalization since clients benefit from others’ training data despite their heterogeneity.
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