
Parallelized Search on Graphs with
Expensive-to-Compute Edges

Shohin Mukherjee
CMU-RI-TR-23-10

April, 2023

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Dr. Maxim Likhachev, CMU RI (Chair)

Dr. Oliver Kroemer, CMU RI
Dr. Stephen Smith, CMU RI
Dr. Oren Salzman, Technion

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Robotics.

Copyright © 2023 Shohin Mukherjee. All rights reserved.

For my parents, Dr. Sraban Mukherjee and Dr. Urmi Mukherjee, who have been
my pillars of support. For my grandfather, Dr. Debabrata Banerjea, who has been
my idol, and through his immense dedication and devotion, inspired me to pursue a

career in science.

iv

Abstract

Search-based planning algorithms enable robots to come up with well-
reasoned long-horizon plans to achieve a given task objective. They for-
mulate the problem as a shortest path problem on a graph embedded
in the state space of the domain. Much research has been dedicated to
achieving greater planning speeds to enable robots to respond quickly
to changes in the environment. Additionally, as the task complexity in-
creases, it becomes important to incorporate more sophisticated models
like simulators in the planning loop. However, these complex models are
expensive to compute and prohibitively reduce planning speed. Because
of the plateau in CPU clock speed, single-threaded planning algorithms
have hit a performance plateau. On the other hand, the number of
CPU cores has grown significantly, a trend that is likely to continue.
This calls for the need for planning algorithms that exploit paralleliza-
tion. However, unlike sampling-based planning algorithms, parallelizing
search-based planning algorithms is not trivial if optimality or bounded
sub-optimality is to be maintained due to their sequential nature. A key
feature of robotics domains is that the major chunk of computational
effort during planning is spent on computing the outcome of an action
and the cost of the resulting edge instead of searching the graph. In this
thesis, we exploit this insight and develop several parallel search-based
planning algorithms that harness the multithreading capability of mod-
ern processors to parallelize edge computations. We show that these novel
algorithms drastically improve planning times across several domains.

Our first contribution is a parallelized lazy search algorithm, Massively
Parallelized Lazy Planning (MPLP). The existing lazy search algorithms
are designed to run as a single process and achieve faster planning by in-
telligently balancing computational effort between searching the graph
and evaluating edges. The key idea that MPLP exploits is that search-
ing the graph and evaluating edges can be performed asynchronously in
parallel. On the theoretical front, we show that MPLP provides rigorous
guarantees of completeness and bounded suboptimality.

As with all lazy search algorithms, MPLP assumes that successor states
can be generated without evaluating edges, which allows the algorithm to
defer edge evaluations and lazily proceed with the search. However, this
assumption does not always hold, for example, in the case of simulation-

v

in-the-loop planning, which uses a computationally expensive simulator
to generate successors. To that end, our second contribution is Edge-
Based Parallel A* for Slow Evaluations (ePA*SE) which interleaves plan-
ning with the parallel evaluation of edges while guaranteeing optimality.
We also present its bounded suboptimal variant that trades off optimality
for planning speed.

For its applicability in real-time robotics, ePA*SE must compute plans
under a time budget and therefore have anytime performance. Though
lower solution cost is desired, it is not the first priority in such settings.
Our third contribution is Anytime Edge-Based Parallel A* for Slow Eval-
uations (A-ePA*SE), which brings the anytime property to ePA*SE.

ePA*SE targets domains with expensive but similar edge computation
times. However, in several robotics domains, the action space is heteroge-
nous in the computational effort required to evaluate the outcome of an
action and its cost. Therefore, our fourth contribution is Generalized
Edge-Based Parallel A* for Slow Evaluations (GePA*SE), which gener-
alizes ePA*SE to domains where edge computations vary significantly.
We show that GePA*SE outperforms ePA*SE and other baselines in do-
mains with heterogenous actions by employing a parallelization strategy
that explicitly reasons about the computational effort required for their
evaluation.

Finally, we demonstrate the utility of parallelization in an algorithm that
integrates graph search techniques with trajectory optimization (INSAT).
Since trajectory optimization is computationally expensive, running INSAT
on a single thread limits its practical use. The proposed parallelized
version Parallelized Interleaving of Search and Trajectory Optimization
(PINSAT) achieves several multiple increases in planning speed and sig-
nificantly higher success rates.

vi

Acknowledgments

The nature of research is collaborative. Likewise, this Ph.D. was not
a solo endeavor, and there were several people that contributed to its
success. Besides the people mentioned here, I would like to express my
gratitude towards all my friends, colleagues and mentors that I met along
the way.

I would first like to thank my advisor Prof. Maxim Likhachev for his
many years of mentorship. Max, besides being an incredible scientist, is
an extremely nice person. He is also a great teacher, and I flourished un-
der his guidance. There are very few people I have met who can match his
work ethic. His innate scientific curiosity, paired with his calm temper-
ament, makes him the perfect advisor. A Ph.D. is always a challenging
pursuit, but Max made it a pleasant experience for me. I am incredibly
fortunate to have him as a mentor for life. I would also like to thank
my committee members Prof. Oliver Kroemer, Prof. Stephen Smith
and Prof. Oren Salzman for their guidance in shaping this thesis. I am
grateful to my M.S. advisor Prof. Cameron Riviere for guiding me early
in my research career at CMU. Prof. Yukinori Kobayashi at Hokkaido
University and Prof. Ravi Vaidyanathan at Imperial College London
gave me the opportunity to experience research in my early years as an
undergraduate student, and these experiences were pivotal in setting the
foundation for this Ph.D. I would like to thank the faculty at the Indian
Institute of Technology, Guwahati, in particular my bachelor’s thesis ad-
visor Prof. Santosha K. Dwivedy, for teaching me the foundations of
engineering.

The Search-Based Planning Lab is where I spend a large part of my
Ph.D. life. I had the privilege of working with most of the lab members
on various projects, and I learned a lot from all of them. In particular, I
would like to thank Andrew Dornbush, who helped me with the software
libraries that he wrote, which were extremely useful in my research. Dr.
Sandip Aine co-authored several of my papers and helped me set the
direction for my research. Dr. Chris Paxton, Dr. Arsalan Mousavian
and Prof. Dieter Fox were my mentors during my time at Nvidia AI
Robotics Research Lab, and because of them, it was a great learning
experience.

vii

Finally, I am grateful to my family for standing by me all these years. In
particular, my parents, Dr. Sraban Mukherjee and Dr. Urmi Mukherjee,
for their love, support and encouragement all my life. They instilled in
me the importance of higher education at an early age. I would especially
like to express my profound sense of gratitude towards my grandfather
Dr. Debabrata Banerjea, who devoted his life to science and was a source
of great inspiration for me. As I begin my scientific career, I will live by
the principles of dedication, devotion and discipline that he ingrained in
me.

viii

Funding

This thesis was supported by the ARL-sponsored A2I2 program, con-
tract W911NF-18-2-0218, and ONR grant N00014-18-1-2775.

ix

x

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Research Contributions . 4

1.2.1 MPLP: Massively Parallelized Lazy Planning 4
1.2.2 ePA*SE: Edge-based Parallel A* for Slow Evaluations 4
1.2.3 A-ePA*SE: Anytime Edge-based Parallel A* for Slow Evalu-

ations . 5
1.2.4 GePA*SE: Generalized Edge-based Parallel A* for Slow Eval-

uations . 5
1.3 Open Source Software Contribution 5
1.4 Excluded Research Contributions . 6

2 Background 7
2.1 Search-based Planning Problem Definition 7
2.2 Key Ingredients of Search . 8
2.3 BFS: Breadth First Search . 9
2.4 Dijkstra . 10
2.5 A* . 11
2.6 wA*: Weighted A* . 12
2.7 PA*SE: Parallel A* For Slow Expansions 13

3 Related Work 17
3.1 Serial Planning Methods in Robotics 17

3.1.1 Sampling-Based Methods . 17
3.1.2 Search-Based Methods . 18

3.2 Parallel Planning Algorithms . 18
3.2.1 Parallel Sampling-Based Algorithms 19
3.2.2 Parallel Search-Based Algorithms 19
3.2.3 Parallel GPU-Based Algorithms 20

3.3 Lazy Search . 21

xi

3.4 Anytime Search . 22

4 MPLP: Massively Parallelized Lazy Planning 25
4.1 Problem Definition . 26
4.2 Method . 27

4.2.1 Overview . 27
4.2.2 Details . 31
4.2.3 Demo . 33
4.2.4 Discussion . 34

4.3 Properties . 38
4.4 Evaluation . 40

4.4.1 3D navigation . 40
4.4.2 Assembly task . 45

4.5 Conclusion . 48

5 ePA*SE: Edge-Based Parallel A* for Slow Evaluations 49
5.1 Problem Definition . 50
5.2 Method . 51

5.2.1 eA* . 52
5.2.2 eA* to ePA*SE . 54
5.2.3 Details . 55
5.2.4 Thread management . 57
5.2.5 w-ePA*SE . 58

5.3 Properties . 59
5.4 Evaluation . 61

5.4.1 3D Navigation . 62
5.4.2 Assembly Task . 65

5.5 Conclusion . 67

6 A-ePA*SE: Anytime Edge-Based Parallel A* for Slow Evaluations 69
6.1 Problem Definition . 69
6.2 Method . 70
6.3 Properties . 73
6.4 Evaluation . 73
6.5 Conclusion . 77

7 GePA*SE: Generalized Edge-Based Parallel A* for Slow Evalua-
tions 79
7.1 Problem Definition . 80
7.2 Method . 81
7.3 Evaluation . 84

xii

7.3.1 2D Grid World . 84
7.3.2 Manipulation . 85

7.4 Conclusion . 87

8 Edge-Based Parallelization of INSAT 89
8.1 Method . 90
8.2 Evaluation . 94
8.3 Conclusion . 96

9 Conclusion and Future Work 97
9.1 Conclusion . 97

9.1.1 A Practitioner’s Guide to Parallel Search 98
9.2 Discussion and Future Work . 98

9.2.1 MPLP with Parallelized Successors Generation 98
9.2.2 Parallelization of Search on the GPU 100
9.2.3 Bounded Planning Time with Infinite Threads 100
9.2.4 Going Beyond Domains with Expensive Edges 100
9.2.5 Parallelization of Other Search Algorithms 101

Bibliography 103

When this dissertation is viewed as a PDF, the page header is a link to this Table of Contents.

xiii

xiv

List of Figures

1.1 Examples of planning in robotics . 2
1.2 Microprocessor trend data . 3

2.1 State independence check in PA*SE 14

3.1 Lazy search algorithms . 21

4.1 High-level overview of MPLP . 32
4.2 Demo of MPLP . 37
4.3 Navigation domain . 41
4.4 Mean speedup in Navigation achieved by MPLP and lazy search base-

lines . 42
4.5 Mean speedup in Navigation achieved by MPLP and parallel search

baselines . 44
4.6 Ablation for edge priority inflation 46
4.7 Assembly domain . 46

5.1 Example of eA* . 51
5.2 Mean speedup achieved by w-ePA*SE and the baselines over wA* and

the mean number of edges evaluated by w-PA*SE and w-ePA*SE . . 62
5.3 Assembly domain . 65

6.1 Grid world domain . 74
6.2 Evaluation plots for A-ePA*SE and the baselines 75

7.1 Manipulation domain . 86
7.2 Box plot for planning time for GePA*SE and the baselines 87

8.1 PINSAT example . 90
8.2 Kinodynamic manipulation domain 94
8.3 Box plot for planning time for INSAT and PINSAT 95

9.1 A practitioner’s guide to parallel search 99

xv

xvi

List of Tables

4.1 Mean speedup in Navigation achieved by MPLP and lazy search base-
lines . 42

4.2 Mean speedup in Navigation achieved by MPLP and parallel search
baselines . 45

4.3 Mean planning time and speedup over wA* of MPLP compared to
those of the lazy search baselines in the Assembly domain. 45

5.1 Mean planning times for w-ePA*SE and the baselines for the Naviga-
tion domain . 63

5.2 Number of edges evaluated by w-PA*SE and w-ePA*SE in the Navi-
gation domain . 64

5.3 Mean planning times and speedup over wA* for w-ePA*SE and the
baselines in the Assembly domain. 66

6.1 Planning time statistics of A-ePA*SE and the baselines 76

7.1 Evaluation metrics for GePA*SE and the baselines for the 2D Grid
World domain . 85

7.2 Evaluation metrics for GePA*SE and the baselines for the Manipula-
tion domain . 86

8.1 Statistics for planning time and success rate for PINSAT and the
baselines . 94

xvii

xviii

Chapter 1

Introduction

1.1 Motivation
Graph search algorithms such as A* and its variants [1, 2, 3] are widely used in
robotics for task and motion planning problems which can be formulated as the
shortest path problem on a graph embedded in the state-space of the domain. Fig 1.1
shows a few examples of such problems. Faster graph search algorithms can be useful
in various domains where the robot needs to quickly plan online to react to changes
in the environment. The example shown in Figure 1.1 top involves online motion
planning for a fleet of drones for persistent coverage of an area of interest. Fast motion
planning is critical for the drone to be sufficiently reactive by planning at a high
frequency, especially when flying at high speeds. They can also be useful to speed up
planning problems that use computationally expensive models like simulators in the
loop, which otherwise would take a prohibitively large amount of time. The example
shown in Figure 1.1 bottom involves solving a long horizon manipulation task and
motion planning problem of assembling a set of blocks. Each pick and place action
in the task internally involves solving a computationally expensive motion planning
problem. Additionally, the place action uses a simulator to assess the tower’s stability
after placing a block. Computing a feasible task and motion plan in this domain using
wA* takes about an hour.

For the aforementioned reasons, a lot of research has been focused on exploiting
specific characteristics of the domain to achieve faster planning. These include devel-

1

1. Introduction

Figure 1.1: Examples of planning in robotics. Top: Motion planning for UAVs to
navigate to assigned goals [4]. Bottom: Task and motion planning for a PR2 mobile
manipulator to arrange blocks into a desired structure [5].

oping better heuristics, incorporating multiple heuristics [3], planning over multiple
resolutions [7], etc. These approaches achieve improved performance by utilizing
computation more intelligently to solve the planning problem. However, none of
these improvements increase the rate of computation the algorithms can do, which
is primarily dictated by the CPU speed. Unfortunately, single thread speeds have
plateaued over the years [8]. However, the number of logical cores in a CPU has
continued to increase, as seen in Figure 1.2. Therefore, there is a case to be made

2

1. Introduction

Figure 1.2: Four decades of microprocessor trend data [6]. The increase in the number
of transistors is no longer resulting in an increase in single-thread speed. However,
the number of logical cores has been on a steady and consistent rise.

for developing algorithms that exploit the parallel processing capability of modern
processors.

The question that still needs to be answered is what part of the search should
be parallelized. To answer this question, realizing what part of the shortest path
problem requires the most computation is important. The computational cost of
solving the shortest path problem using graph search can be split between 1) the cost
of traversing through and searching the graph (discovering states, maintaining and
managing ordered data structures, rewiring vertices, etc.) and 2) evaluating the cost
of the edges. In planning for robotics, edge evaluation tends to be the bottleneck of
solving the shortest path problem. For example, in planning for robot manipulation,
edge evaluation typically corresponds to collision checks of a robot model against
the world model at discrete interpolated states along the edge. Collision-checking
an edge can be expensive depending on how these models are represented (meshes,
spheres, etc.) and how finely the states to be collision checked are interpolated. Edge
evaluations are prohibitively expensive when planners incorporate computationally
expensive models in the loop, such as simulators [9, 10]. This is also the case for
algorithms that incorporate trajectory optimization with the search [11, 12].

Therefore in this thesis, we develop algorithms that speed up search-based plan-

3

1. Introduction

ning by parallelizing edge evaluations and demonstrate how these algorithms can
benefit planning and decision-making in robotics.

1.2 Thesis Research Contributions

In this thesis, we develop several graph search algorithms that leverage parallelization
to speed up planning in domains with expensive-to-compute edges.

1.2.1 MPLP: Massively Parallelized Lazy Planning

Lazy search algorithms achieve faster planning by deferring the evaluation of discov-
ered edges during the search and instead using estimates of edge costs to search the
graph optimistically. This thesis presents the first parallelized lazy search algorithm
that optimistically searches the graph and evaluates edges asynchronously in parallel.
This eliminates the need to toggle between these two operations, as is the case with
serial lazy search algorithms. On the theoretical front, we show that MPLP provides
rigorous guarantees of optimality or bounded suboptimality if heuristics are inflated.
On the experimental front, we show that MPLP outperforms the state-of-the-art lazy
search and parallel search algorithms. MPLP is discussed in detail in Chapter 4 and
in our paper [5].

1.2.2 ePA*SE: Edge-based Parallel A* for Slow Evaluations

As with all lazy search algorithms, MPLP assumes that successor states can be gener-
ated without evaluating edges, which allows the algorithm to defer edge evaluations
and lazily proceed with the search. However, this assumption doesn’t hold for several
planning domains in robotics. For such domains, we present ePA*SE that interleaves
the search with the parallel evaluation of edges. ePA*SE changes the basic unit of
search from state expansions to edge expansions. This decouples the evaluation of
edges from the expansion of their common parent state, giving the search the flexi-
bility to figure out what edges need to be evaluated to solve the planning problem.
We show that ePA*SE provides rigorous optimality guarantees. In addition, ePA*SE
can be trivially extended to handle an inflation weight on the heuristic resulting in

4

1. Introduction

a bounded suboptimal algorithm w-ePA*SE (Weighted ePA*SE) that trades off op-
timality for faster planning. ePA*SE is discussed in detail in Chapter 5 and in our
paper [13].

1.2.3 A-ePA*SE: Anytime Edge-based Parallel A* for Slow
Evaluations

Though ePA*SE drastically achieves lower planning times than its serial counterparts,
it needs to come up with a solution under a strict time budget for its applicability
in real-time robotics. Though the optimal solution is preferable, that is not the
first priority in such settings. Therefore, we bring the anytime property to ePA*SE.
We show that the resulting algorithm, A-ePA*SE, achieves higher efficiency than
existing anytime algorithms. A-ePA*SE is discussed in detail in Chapter 6 and in
our paper [14].

1.2.4 GePA*SE: Generalized Edge-based Parallel A* for
Slow Evaluations

ePA*SE targets domains where the action space comprises actions with expensive
but similar evaluation times. However, in several robotics domains, the action space
is heterogenous in the computational effort required to evaluate the cost of an action
and its outcome. Motivated by this, in Chapter 7, we develop GePA*SE, which gen-
eralizes the key ideas of PA*SE and ePA*SE, i.e., parallelization of state expansions
and edge evaluations, respectively. This extends its applicability to domains that
have actions requiring varying computational effort to evaluate them. GePA*SE is
also discussed in detail in our paper [15].

1.3 Open Source Software Contribution
To enable wide use and further research, algorithms developed in this thesis and
the relevant baselines have been open-sourced. The repository contains the domain-
agnostic implementation of the algorithms developed in this thesis. Additionally, it
contains efficient implementations of several other common search algorithms used

5

1. Introduction

as baselines in this thesis. We believe this repository will be useful to communities
in and beyond Robotics interested in parallelized search-based planning algorithms.
Parallel Search Repository: https://github.com/shohinm/parallel_search

1.4 Excluded Research Contributions
A portion of the doctoral research has been excluded to keep the thesis succinct,
which is listed here.

• A planning framework for persistent, multi-UAV coverage with global decon-
fliction [4].

• Reactive Long Horizon Task Execution via Visual Skill and Precondition Mod-
els [16].

6

https://github.com/shohinm/parallel_search

Chapter 2

Background

Search-based planning algorithms formulate the planning problem as a least-cost
path problem on a graph embedded in the state space of the domain. They construct
the graph by recursively applying a set of actions from every state, starting with the
start state. The process of applying a set of actions to a state to generate its successor
states is called a state expansion and is the basic algorithmic step of almost all search
algorithms. However, different search algorithms differ in the order in which states
are expanded. In this chapter, we will first define the search-based planning problem
more formally and then discuss some common algorithms that can be used to solve
it. These algorithms are the basic building blocks of this thesis.

2.1 Search-based Planning Problem Definition

Let a finite graph G = (V , E) be defined as a set of vertices V and directed edges E .
Each vertex v ∈ V represents a state s in the state space of the domain S. An edge
e ∈ E connecting two vertices v1 and v2 in the graph represents an action a ∈ A that
takes the agent from corresponding states s1 to s2. In this thesis, we assume that
all actions are deterministic. Hence an edge e can be represented as a pair (s, a),
where s is the state at which action a is executed. For an edge e, we will refer to the
corresponding state and action as s and e.a respectively.

• s0 is the start state.

7

2. Background

• G is the goal region.
• c : E → [0,∞] is the cost associated with an edge.
• c : S × S → [0,∞] is the minimum cost between a pair of states.
• g(s) or g-value is the cost of the best path to s from s0 found by the algorithm

so far.
• h(s) is a consistent and therefore admissible heuristic [17]. It never overesti-

mates the cost to the goal.
• A path π is an ordered sequence of edges eNi=1 = (s, a)Ni=1, the cost of which is

denoted as c(π) =
∑N

i=1 c(ei).

Objective: Find a path π from s0 to a state in the goal region G with the optimal
cost c∗.

2.2 Key Ingredients of Search

All search algorithms described in this thesis share a common set of functions that
we introduce here. Though search algorithms can be formulated in pseudo-code
differently, in this thesis, we will stick to a consistent notation and style.

• {s′, c} ← GetSuccessor(s, a): Returns the successor state s′ and cost c when
an action a is applied to a state s. For some domains, it can be decomposed
into GenerateSuccessor and EvaluateEdge.

• s′ ← GenerateSuccessor(s, a): Returns the successor state s′ when an
action a is applied to a state s. This is also where a discretization is imposed
on the state space. Search algorithms maintain a hash map of states that have
been discovered in the search so far. If s′ is detected as a duplicate of a state
already present in the hash map based on the discretization being used, the
pre-existing state is returned instead. If there is no duplication detection, the
search will run on an infinite graph in the continuous state space.

• c← EvaluateEdge(s, s′): Compute the cost of the edge from s to s′.
• π ← Backtrack(s): Build a path from s0 to s by backtracking from the state

s using the parent pointer of every state until the start state s0.

8

2. Background

It is important to note that in practice, GetSuccessor cannot always be explic-
itly split into GenerateSuccessor and EvaluateEdge. In several domains, the
successor cannot be generated without evaluating the connecting edge. For example,
in the case of simulation-in-the-loop planning, actions involve forward simulation of
an expensive physics simulator to generate successors [18]. The generation of the
successor and the evaluation of the connecting edge are coupled together. In either
case, in robotics, GetSuccessor is typically the most computationally expensive
part of the search.

2.3 BFS: Breadth First Search

Algorithm 1 BFS: Breadth First Search
1: s0 ← start state , G ← goal region, A ← action space
2: OPEN ← queue
3: procedure Plan
4: OPEN.Push(s0)
5: while OPEN ̸= ∅ do
6: s← OPEN.front()
7: if s ∈ G then
8: return Backtrack(s)
9: else
10: Expand(s)
11: end if
12: end while
13: return ∅
14: end procedure
15: procedure Expand(s)
16: insert s in V ISITED
17: for a ∈ A do
18: {s′, c} ← GetSuccessor(s,a)
19: if s /∈ V ISITED then
20: s′.parent = s
21: OPEN .Push(s′)
22: end if
23: end for
24: end procedure
25: procedure GetSuccessor(s,a)
26: s′ ← GenerateSuccessor(s,a)
27: c← EvaluateEdge(s, s′)
28: return {s′, c}
29: end procedure

BFS (Alg. 1) is the simplest shortest path algorithm. The order of state expan-
sions is imposed by a queue. When a state is expanded, its successors are generated,
which are then marked visited, and their parent is set (Line 20). Once a state has
been marked visited, it is never revisited. When a state in the goal region is popped

9

2. Background

from the queue, the path can be constructed by backtracking using the parent back
pointers (Line 8). BFS has no notion of cost and returns the least-cost path only
when all edges have the same cost. If the edges have a non-uniform cost, it returns
the shortest length path.

2.4 Dijkstra

Algorithm 2 Dijkstra’s Algorithm
1: s0 ← start state , G ← goal region, A ← action space
2: OPEN ← priority queue with priority g(s), minimum priority in the front
3: procedure Plan
4: OPEN.Push(s0)
5: while OPEN ̸= ∅ do
6: s← OPEN.min()
7: if s ∈ G then
8: return Backtrack(s)
9: else
10: Expand(s)
11: end if
12: end while
13: return ∅
14: end procedure
15: procedure Expand(s)
16: for a ∈ A do
17: {s′, c} ← GetSuccessor(s,a)
18: if g(s) + c < g(s′) then
19: g(s′) = g(s) + c
20: s′.parent = s
21: OPEN .Push(s′, g(s′) + c)
22: end if
23: end for
24: end procedure
25: procedure GetSuccessor(s,a)
26: s′ ← GenerateSuccessor(s,a)
27: c← EvaluateEdge(s, s′)
28: return {s′, c}
29: end procedure

Dijkstra (Alg. 1) is the simplest least-cost path algorithm. Dijkstra keeps track
of the best cost-to-come for every state from the start state as their g-value. The
order of state expansions is imposed by a priority queue ordered by their g-values.
When a state is expanded, its successors are generated, and their cost-to-come is
updated (Line 19). Dijkstra provably expands states optimally, i.e., when a state is
expanded, its g-value is the least cost to get to that state from the start. Therefore,
when a goal state is popped for expansion, the least-cost path can be constructed by
backtracking using the parent back pointers.

10

2. Background

2.5 A*

Algorithm 3 A*
1: s0 ← start state , G ← goal region, A ← action space
2: OPEN ← priority queue with priority g(s) + h(s), minimum priority in the front
3: procedure Plan
4: OPEN.Push(s0)
5: while OPEN ̸= ∅ do
6: s← OPEN.min()
7: if s ∈ G then
8: return Backtrack(s)
9: else
10: Expand(s)
11: end if
12: end while
13: return ∅
14: end procedure
15: procedure Expand(s)
16: for a ∈ A do
17: {s′, c} ← GetSuccessor(s,a)
18: if g(s) + c < g(s′) then
19: g(s′) = g(s) + c
20: s′.parent = s
21: OPEN .Push(s′, g(s′) + h(s′))
22: end if
23: end for
24: end procedure
25: procedure GetSuccessor(s,a)
26: s′ ← GenerateSuccessor(s,a)
27: c← EvaluateEdge(s, s′)
28: return {s′, c}
29: end procedure

A* (Alg. 3) [1] is a more informed algorithm that uses a heuristic function to
guide the search and find a solution quicker than Dijkstra. The goal of the heuristic
function is to use an easy-to-compute estimate of the cost to the goal to bias the
search into expanding states that are more likely to be on the least-cost path. This
bias is imposed by a priority queue (OPEN) that stores the discovered states ordered
by their f -value, i.e., f(s) = g(s) + h(s), minimum priority first (Line 21). As long
as the heuristic is admissible, i.e., it never overestimates the true minimum cost to
the goal for every state, A* expands states optimally.

h(s) ≤ c(s, sg) ∀sg ∈ G

11

2. Background

Algorithm 4 wA*: Weighted A*
1: s0 ← start state , G ← goal region, A ← action space
2: OPEN ← priority queue with priority g(s) + w · h(s), minimum priority in the front
3: procedure Plan
4: OPEN.Push(s0)
5: while OPEN ̸= ∅ do
6: s← OPEN.min()
7: if s ∈ G then
8: return Backtrack(s)
9: else
10: Expand(s)
11: insert s in CLOSED
12: end if
13: end while
14: return ∅
15: end procedure
16: procedure Expand(s)
17: for a ∈ A do
18: {s′, c} ← GetSuccessor(s,a)
19: if s′ /∈ CLOSED and g(s) + c < g(s′) then
20: g(s′) = g(s) + c
21: s′.parent = s
22: OPEN .Push(s′, g(s′) + w · h(s′))
23: end if
24: end for
25: end procedure
26: procedure GetSuccessor(s,a)
27: s′ ← GenerateSuccessor(s,a)
28: c← EvaluateEdge(s, s′)
29: return {s′, c}
30: end procedure

2.6 wA*: Weighted A*

wA* (Alg. 4) [2] is a more greedy variant of A* that uses an inflation factor (w > 1)
to inflate the heursitic in the priority of OPEN i.e. f(s) = g(s) + w · h(s). If the
heuristic is consistent, A* expands states bounded suboptimally i.e. g(s) ≤ w · g∗,
without re-expanding states [19]. Therefore, a state that has been expanded is added
to a CLOSED list (Line 11) and is never re-expanded. A heuristic is consistent if,
for every state s /∈ G and its successor s′,

h(s) ≤ c(s, s′) + h(s′)

and for every state s ∈ G,
h(s) = 0

A consistent heuristic is also admissible.

12

2. Background

2.7 PA*SE: Parallel A* For Slow Expansions

In order to speed up planning in domains where state expansions are slow, an opti-
mal parallelized planning algorithm PA*SE (Parallel A* for Slow Expansions) and
its (bounded) suboptimal version w-PA*SE (Weighted PA*SE) were developed [20].
This thesis builds on the idea of state independence from PA*SE, which we describe
in detail here.

Unlike other parallel search algorithms, in which the number of times a state
can be re-expanded increases with the degree of parallelization [21, 22, 23], PA*SE
expands states in a way that each state is expanded at most once. The key idea in
PA*SE is that a state s can be expanded before another state s′, if s is independent
of s′, i.e., expansion of s′, cannot lead to a shorter path to s. If the independence
relationship holds in both directions, i.e., s′ is also independent of s, then s and s′

can be expanded in parallel. A state s in the open list is independent of every other
state in the open list with a larger priority, which is why it can be expanded before
any of the states that are behind it in the open list. However, this cannot be said
for the states that have a smaller priority than s and hence are in front of it in the
open list. Therefore, a state that is not in front of the open list (and therefore does
not have the smallest priority) can only be expanded in parallel with the states that
have a smaller priority after undergoing the independence check. More specifically,
this means that the state s has to be independent of the states that are in front
of it in the open list as well as the states that are not in the open list but are in
the process of being expanded. PA*SE assumes there exists a pairwise heuristic
function h(s, s′) that provides an estimate of the cost between any pair of states. It
is forward-backward consistent i.e.

h(s, s′′) ≤ h(s, s′) + h(s′, s′′) ∀ s, s′, s′′

and
h(s, s′) ≤ c∗(s, s′) ∀ s, s′

Note that using h for both the unary heuristic h(s) and the pairwise heuristic
h(s, s′) is a slight abuse of notation since these are different functions.

In addition to OPEN and CLOSED, PA*SE uses another data structure BE

13

2. Background

Figure 2.1: This figure illustrates the state independence check in PA*SE.
Left: The states in green are the search frontier, i.e., they are in the open list. For
the sake of simplicity, assume that the state-to-goal heuristic value is 0 for all the
states. Since s1 has a smaller g-value than s2, it should be expanded first. In order
to expand s3 in parallel (i.e. before the expansion of s1 has been completed), it is
necessary and sufficient that there is no path through s1 that can lower the g-value
of s3.
Middle: In this case, since there exists an edge from s1 to s3, a path through s1 can
lower the g-value of s3. Hence, s3 cannot be expanded in parallel with s1.
Right: In this case, since the edge from s1 to s3 has a higher cost, a path through s1
cannot lower the g-value of s3. Hence, s3 can be expanded in parallel with s1. The
cost of a path from s1 and s3 can be estimated using the pairwise heuristic h(s1, s3).

(Being Expanded) to store the set of states currently being expanded by one of
the threads. It uses a pairwise independence check on states in the open list to find
states that are safe to expand in parallel. A state s is safe to expand if g(s) is already
optimal. In other words, there is no other state that is currently being expanded
(in BE), nor in OPEN that can reduce g(s). Formally, a state s is defined to be
independent of state s’ iff

g(s)− g(s′) ≤ h(s′, s) (2.1)

Fig.2.1 illustrates the state independence check. It can be proved that s is inde-
pendent of states in OPEN that have a larger priority than s [20]. However, the
independence check has to be performed against the states in OPEN with a smaller
priority than s, as well as the states that are in BE. Formally, a state s is safe to
expand if Equations 2.2 and 2.3 hold.

14

2. Background

g(s)− g(s′) ≤ h(s′, s)

∀s′ ∈ OPEN | f (e′) < f (e)
(2.2)

g(s)− g(s′) ≤ h(s′, s) ∀s′ ∈ BE (2.3)

15

2. Background

16

Chapter 3

Related Work

3.1 Serial Planning Methods in Robotics

There are several approaches that are used to solve the planning problem in robotics,
like sampling-based methods, search-based methods and optimization-based methods.
Within them, sampling-based and search-based methods construct a graph embedded
in the state space of the domain and then find a path from the start to the goal on
this graph. The primary difference lies in the way these two categories of approaches
explore the state space to construct the graph.

3.1.1 Sampling-Based Methods

Sampling-based algorithms use random state sampling as the means to construct the
graph. Probabilistic Roadmap (PRM) [24] and its variants [25, 26] first construct
the graph as a preprocessing step by random state sampling. Once the graph is
constructed, for a give start-goal query, the shortest path is computed by running a
graph search algorithm like Dijkstra or A* on it. PRM is a multi-query algorithm
since it does not re-explore the space for every new query, instead uses the same
roadmap across queries. RRT [27] and its variants [25, 28] construct a tree incre-
mentally rooted at the start node by random state sampling. RRT is a single-query
algorithm since the search tree has to be reconstructed for every new planning query.
Since these approaches use random sampling as the means to explore the space, they

17

3. Related Work

generate inconsistent solutions for the same problem across runs. However, their
inherent stochasticity is beneficial in planning for high-dimensional domains like ma-
nipulator planning.

3.1.2 Search-Based Methods

Search-based algorithms like A* and its variants [1, 2, 3] construct the graph by re-
cursively applying a set of actions from every state. Since these methods explore the
state space systematically, they generate consistent solutions for the same planning
query across runs. Search-based methods are typically used in planning problems
that are more complex than motion planning. For example, task and motion plan-
ning (TAMP) utilizes complex actions that use motion planners [29] or learned policy
models [16, 30] internally to compute trajectories required to execute the task-level ac-
tions. The high-level task plan is typically computed using a search-based technique
like wA* [18]. Search-based methods are also typically used in low-dimensional plan-
ning problems like 3D robot navigation because, in smaller state spaces, it is feasible
to get close to the optimal solution. Additionally, the consistency of solutions gener-
ated by search methods provides predictable and interpretable behaviors, which is im-
portant in navigation. Even in high-dimensional planning problems like manipulator
planning, search-based methods are used when consistent solutions are desired [31].
They are also used in kinodynamic planning [32] as the sampling-based planners are
kinematic planners, and their extension to kinodynamic planning requires additional
machinery like steering functions in the case of kinodynamic RRT [33]. Search-based
methods are also used with sampling-based methods like PRM to solve for the short-
est path on the constructed roadmap.

3.2 Parallel Planning Algorithms

Parallel planning algorithms seek to make planning faster by leveraging paralleliza-
tion. They can be categorized into the following three groups.

18

3. Related Work

3.2.1 Parallel Sampling-Based Algorithms

There are a number of approaches that parallelize sampling-based planning algo-
rithms. Probabilistic roadmap (PRM) based methods, in particular, can be trivially
parallelized, so much so that they have been described as “embarrassingly paral-
lel” [34]. In these approaches, several parallel processes cooperatively build the
roadmap in parallel [35]. Parallelized versions of RRT have also been developed
in which multiple cores expand the search tree by sampling and adding multiple new
states in parallel [36, 37, 38, 39]. However, in a lot of planning domains involving
planning with controllers [40], sampling of states is typically not possible. One such
class of planning domains is simulator-in-the-loop planning, which uses an expensive
physics simulator to generate successors [18]. Unless the state space is simple such
that the sampling distribution can be scripted, there is no principled way to sample
meaningful states that can be realized in simulation. Yet another example is plan-
ning over higher dimensional image space [41], where the sampling distribution over
states has to be explicitly modeled from data or experience.

3.2.2 Parallel Search-Based Algorithms

A trivial approach to achieve parallelization in Weighted A* is to generate successors
in parallel when expanding a state. Since the degree of parallelization is limited to
the branching factor of the domain, this approach leads to minimal improvement
in performance in domains with a low branching factor. Another approach that
Parallel A* [21] takes, is to expand states in parallel while allowing re-expansions
to account for the fact that states may get expanded before they have the minimal
cost from the start state. This leads to a high number of state expansions. There
are a number of other approaches that employ different parallelization strategies.
In Parallel Retracing A* (PRA*) [42], each processor gets its own open list and a
state hashing function is used to map every generated state to a processor. Since it
uses synchronous communication, in order to pass states between processors, these
lists must be locked. Parallel Structured Duplicate Detection (PSDD) [43] groups
states into blocks using a state abstraction function. Processors take entire blocks
and expand the constituent states while enduring that neighboring blocks are not
expanded in parallel to prevent locking. Parallel Best-NBlock-First (PBNF) [44]

19

3. Related Work

integrates ideas from PRA* and PSDD and is extended to handle weighted heuristics
and anytime behavior. Hash Distributed A* (HDA*) [45] also employs to state to
processor hashing idea from PRA* but uses an asynchronous message passing system
to move states between processors, thereby preventing the overhead of locking the
transmitting thread.

However, all of these algorithms could potentially expand an exponential num-
ber of states, especially when the heuristic is inflated. Heuristic inflation is typ-
ically needed in robotics, which is why the family of algorithms that allow state
re-expansions is not appropriate in robotics. In contrast, PA*SE [20] parallelly ex-
pands states at most once, in such a way that does not affect the bounds on the
solution quality. It has been shown to outperform PBNF in robot motion planning.
Though PA*SE parallelizes state expansions while preventing re-expansions, as ex-
plained earlier, it is not maximally efficient in domains where edge evaluations are
expensive since each PA*SE thread sequentially evaluates the outgoing edges of a
state being expanded.

3.2.3 Parallel GPU-Based Algorithms

GPUs have a single-instruction-multiple-data (SIMD) execution model, which means
that they can only run the same set of instructions on multiple data concurrently.
This severely limits the design of planning algorithms in several ways. Firstly, if
the goal is to parallelize state expansions, the code for expanding a state must be
identical, irrespective of what state is being expanded. Secondly, the set of states
must be expanded in a batch. Identifying a batch of states to expand is much more
difficult than asynchronously identifying what states can be expanded in parallel.
All these limitations also apply if the goal is to parallelize edge evaluations. This
is problematic in domains that have complex actions that correspond to forward-
simulating dissimilar controllers.

Nevertheless, there has been work on parallelizing A* search on a single GPU [22]
or multiple GPUs [23] by utilizing multiple parallel priority queues. Besides the fact
that none of these works handle complex action spaces, they have several other lim-
itations. For example, the maximum number of state expansions increases linearly
with the degree of parallelization, and these algorithms do not handle heuristic in-

20

3. Related Work

flation. In contrast to these approaches, in this thesis, we develop algorithms that
achieve massive parallelization of edge evaluations on the CPU, which has a multiple-
instruction-multiple-data (MIMD) execution model. This allows us the flexibility to
efficiently parallelize potentially dissimilar edges, and therefore generalize across all
types of planning domains.

3.3 Lazy Search

Figure 3.1: In wA*, when the state s1 is expanded, the outgoing edges shown in
red are immediately evaluated. In LwA*, when s1 is expanded, the incoming edge
from state0 is evaluated. In LRA* with a lookahead of 2, when s4 is expanded, the
edges on the best path from the start to s4 are evaluated. In LSP, when the goal is
expanded, the edges on the best path from the start to the goal are evaluated.

Lazy search algorithms achieve greater time efficiency than regular graph search
algorithms in domains where the planning time is dominated by edge evaluations.
They do so by deferring the evaluation of edges generated during the search and
proceeding with the search using cheap-to-compute estimates of the edge costs for
the unevaluated edges. Different lazy search algorithms differ in how they toggle be-
tween searching the graph and evaluating the edges and the order in which the edges
are evaluated. In A*, when a state is expanded, all outgoing edges are immediately
evaluated. In Lazy Weighted A* (LWA*) [46] when a state is expanded, the outgoing
edges are not immediately evaluated. Instead, the successors are added to the open
list with cheap-to-compute underestimates of the true edge costs. When these states
are expanded, only the incoming edges that connect their best predecessors are eval-
uated. In Lazy Shortest Path (LSP) [47], the search proceeds without evaluating any
edge until the goal is expanded. It then evaluates the edges that are on the shortest
path, updates the costs of these edges, and replans, until a path is found with no

21

3. Related Work

unevaluated edges. Lazy Receding Horizon A* (LRA*) [48] allows the search to pro-
ceed to an arbitrary lookahead before evaluating edges. In [49], a general framework
for lazy search algorithms called Generalized Lazy Search (GLS) was formulated. It
was shown that by employing different strategies to toggle between searching the
graph and evaluating edges, as well as choosing the order in which the edges are eval-
uated, various lazy search algorithms can be recovered. GLS also leverages priors on
edge validity to come up with more efficient policies that minimize planning time.
In [50], ideas from GLS and incremental methods like LPA* were integrated into a
lazy lifelong planning algorithm. There has also been work on anytime algorithms
that leverage edge existence priors to come up with a strategy to evaluate edges, such
that the suboptimality bound on the solution quality is minimized in expectation of
the algorithm interruption time while reducing planning time [51]. In [52], the edge
selection process for evaluation was formulated as an MDP, and prior experience was
used to learn a policy for this MDP.

3.4 Anytime Search
Anytime search algorithms are useful for planning problems where a solution is de-
sired under a limited time budget. They first strive to provide a feasible solution
quickly and then attempt to improve it until the time budget expires. A naive
approach to make wA* anytime is to sequentially run several iterations of it from
scratch while reducing the heuristic inflation. A more elegant anytime algorithm
Anytime Repairing A* (ARA*) [19] reuses the previous search tree to prevent re-
dundant work, by keeping track of states whose cost-to-come can be further reduced
in future iterations. An alternate approach is to not reuse the previous search tree
since it biases subsequent searches towards the previous solution, but reuse only the
expensive heuristic computation [53]. Anytime Multi-Heuristic A* (A-MHA*) [11]
brings the anytime property to Multi-heuristic A* [3]. Anytime Multi-Resolution
Multi-Heuristic A* (AMRA*) [54] is an anytime algorithm that searches over mul-
tiple resolutions of the state space. Anytime Multi-Resolution Multi-Heuristic A*
(AMRA*) [54] extends AMRA* to handle multiple heuristics. Batch Informed Trees
(BIT*) [55] integrates the strengths of search-based and sampling-based planning
approaches and has anytime performance. It constructs the graph using batches

22

3. Related Work

of state samples that incrementally increase the density of the graph. It then uses
incremental graph search techniques of LPA* [56] to search over the graph.

23

3. Related Work

24

Chapter 4

MPLP: Massively Parallelized
Lazy Planning

Lazy search algorithms [47, 48, 51, 57] defer the evaluation of discovered edges and
instead use estimates of edge costs to search the graph whenever the true edge costs
are unknown. Here, knowing the true edge cost implies running the computation to
evaluate the edge. Instead, the estimate is an easier-to-compute approximation of
the true edge cost. This makes them more time-efficient in domains where the cost
of edge evaluation outweighs the cost of the search. Various lazy search algorithms
mainly differ in how they toggle between searching the graph and evaluating the
edges. In all of the current lazy search algorithms, performance depends on two
critical design choices: 1) the strategy employed to toggle between searching the
graph and evaluating the edges, and 2) the order in which edges are evaluated [49].
This is because these algorithms are designed to run as a single process.

Our key insight is that instead of toggling between searching the graph and
evaluating the edges, these operations can happen asynchronously in parallel. This
allows us to harness the parallelization capabilities of modern processors. In this
chapter, we develop a new algorithm: Massively Parallel Lazy Planning (MPLP),
that leverages this insight. MPLP eliminates the need for an explicit strategy to
balance computational effort between the search and edge evaluations by parallelizing
these two operations. On the theoretical front, we show that MPLP provides rigorous
guarantees of optimality or bounded suboptimality if heuristics are inflated, as in

25

4. MPLP: Massively Parallelized Lazy Planning

wA*. MPLP can be used for any planning problem with expensive to evaluate edges
and run efficiently on any processor that supports multiprocessing. We show this by
evaluating and comparing MPLP against lazy search and parallel search baselines on
two planning problems: 1) 3D indoor navigation of a humanoid and 2) a task and
motion planning problem of stacking a set of blocks by a robot. The experimental
results show that by combining ideas from lazy search and parallel search, MPLP
achieves higher time efficiency than existing lazy search algorithms and parallel search
algorithms.

4.1 Problem Definition

Let a finite graph G = (V , E) be defined as a set of vertices V and edges E . Each
vertex v ∈ V represents a state s in the state space of the domain S. An edge
e ∈ E connecting two vertices v1 and v2 in the graph represents an action a ∈ A that
takes the agent from corresponding states s1 to s2. In this work, we assume that all
actions are deterministic. Hence an edge e can be represented as a pair (s, a), where
s is the state at which action a is executed. Each edge has an associated true cost
ct : E → [0,∞] which can be computed using a typically expensive edge evaluation
routine. A feasible edge is an edge with a finite true cost, i.e. ct(e) <∞. In addition,
there is an optimistic cost associated with each edge c : E → [0,∞] that is easy
to compute and underestimates the true cost i.e. c(e) ≤ ct(e). Let Eeval ⊂ E be
the subset of edges that have been evaluated and hence for which the true costs are
available.

A path π is defined by an ordered sequence of edges (s, a)Ni=1, the true cost of
which is denoted as ct(π) =

∑N
i=1 c

t(ei). A feasible path is a path with no infeasible
edges, therefore ct(π) <∞. In addition, we define an optimistic cost for a path that
is not fully evaluated (i.e., not all the edges in the path have been evaluated) using
the true cost for the evaluated edges and the optimistic cost otherwise i.e.

c(π) =
N∑
i=1

ct(ei), if ei ∈ Eeval

c(ei), otherwise

MPLP seeks to find a path π from a given start state s0 to a goal region G

26

4. MPLP: Massively Parallelized Lazy Planning

comprising of only evaluated edges such that the true cost of the path satisfies the
relationship ct(π) ≤ ϵ · c∗, where c∗ is the optimal cost from s0 to G and ϵ ≥ 1

is suboptimality bound. There is a computational budget of Nt threads available
which can run in parallel.

4.2 Method

Typical search-based planning algorithms like A* proceed by expanding states till
an (optimal) path to the goal is computed. When a state is expanded, its succes-
sors are generated by applying the actions in the action space of the domain, which
are represented by edges in a graph. When a successor is generated, the edge be-
tween the expanded state and the successor is evaluated for computing the edge cost,
which is then used in the search. However, the search slows down dramatically in
domains where edge evaluation is expensive. In lazy search methods, edge evaluation
is deferred, and an optimistic (a fast-to-compute underestimate of the actual cost)
estimate of the cost is used instead. The key idea behind MPLP is to run the search
using optimistic costs while evaluating relevant edges using a pool of threads entirely
asynchronously in parallel. To make this process effective, the research questions are
what edges to evaluate, in what order, and how to incorporate these evaluations into
the search.

4.2.1 Overview

MPLP runs three key aspects of the search asynchronously in parallel: 1) the op-
timistic search (a search that uses the true cost for the evaluated edges and the
optimistic cost otherwise), 2) edge evaluations, and 3) an evaluation status and sub-
optimality check on the paths generated by the optimistic search. The suboptimality
check is explained in Section 4.3. MPLP allocates the given budget of Nt threads to
these aspects as illustrated in Figure 4.1.

The optimistic search runs on thread T0 as an iterative sequence of wA* searches
which proceed without evaluating any edge. Whenever a new edge is discovered,
it is added to a priority queue and scheduled for evaluation in order of its priority
(higher priority first), and the search proceeds with an optimistic underestimate of

27

4. MPLP: Massively Parallelized Lazy Planning

Algorithm 5 MPLP: Search (T0)
1: G← ∅, A ← action space , Nt ← number of threads , s0 ← start state , G ← goal region ▷

Shared variables
2: Eopen ← ∅, Eclosed ← ∅, Eeval ← ∅, Π← ∅, solution_found← False, terminate← False
3: procedure Mplp
4: path_exists← True
5: Spawn MonitorPaths on T1 and DelegateEdges on T2

6: while not solution_found and path_exists do
7: path_exists = ComputePath(s0,G)
8: end while
9: terminate = True
10: return solution_found
11: end procedure
12: procedure ComputePath(s0,G)
13: ∀s ∈ G, s.g ←∞, s.is_closed = False ▷ Reset discovered states
14: s0.g ← 0, OPEN ← ∅, OPEN .Push(s0, Key(s0))
15: while OPEN ̸= ∅ do
16: s← OPEN.Pop()
17: if s ∈ G then ▷ Goal reached
18: cbound = max(cbound, s.g)
19: ConstructPath(s)
20: return True
21: else
22: Expand(s)
23: s.is_closed = True
24: end if
25: end while
26: return False
27: end procedure

the true edge cost. For edges that have already been evaluated by the edge evaluation
threads, the search uses the true cost. Initially, all newly discovered edges have the
same priority of 1 for evaluation, in which case the edges in the priority queue follow
FIFO ordering. When the search finds a path to the goal, the evaluation priorities of
the unevaluated edges in the path are dynamically increased to 2. This is to ensure
that the edges that belong to a path to the goal are evaluated before the other edges
that are discovered during the search, which depending on the size of the graph
and the greediness of the search, can be numerous (see ablation in Section 4.4.1).
Though we use this naive priority update in this thesis, more intelligent strategies
can potentially be employed.

Another thread T2 acts as a delegator of edges awaiting evaluation and delegates
the edges in the queue to a pool of threads (Ti=3:Nt) dedicated to edge evaluation.

28

4. MPLP: Massively Parallelized Lazy Planning

Algorithm 6 MPLP: Expand and ConstructPath (T0)
1: procedure ConstructPath(s)
2: π ← ∅
3: while s ̸= s0 do
4: (sP ,aP)← s.GetParent()
5: LOCK
6: if (sP ,aP) ∈ Eopen then
7: Eopen.Update((sP ,aP), 2) ▷ Increase priority to 2
8: end if
9: UNLOCK
10: π.Append((sP ,aP))
11: s← sP

12: end while
13: if π ̸∈ Π then
14: Π.Append(π)
15: end if
16: end procedure
17: procedure Expand(s)
18: for a ∈ A do
19: if (s,a) ∈ Eopen ∪ Eeval ∪ Eclosed then
20: (s′, c)← G.GetSuccessor(s,a)
21: else
22: (s′, c)← GenerateSuccessor(s,a)
23: G.AddEdge((s,a), c)
24: LOCK
25: Eopen.Push((s,a), 1) ▷ Initial priority of 1
26: UNLOCK
27: end if
28: if not s′.is_closed and s.g + c < s′.g then
29: s′.g = s.g + c
30: s′.SetParent((s,a))
31: OPEN .Push(s′,Key(s′))
32: end if
33: end for
34: end procedure
35: procedure Key(s)
36: return s.g + w ·GetHeuristic(s)
37: end procedure

Whenever these threads finish evaluating an edge, they update the graph with the
true edge cost. Finally, another thread T1 monitors the state of every path that has
been found by the optimistic search, and when it finds a path that has been fully
evaluated and satisfies a suboptimality bound (Theorem 5, Section 4.3), it returns
it as the solution which terminates the algorithm. Running this asynchronously
allows T0 to proceed immediately to the next search iteration without waiting for

29

4. MPLP: Massively Parallelized Lazy Planning

Algorithm 7 MPLP: Edge Evaluation (T2,Ti=3:Nt)
1: procedure DelegateEdges
2: while not terminate do
3: for i = 3 : Nt do
4: if Ti is available and Eopen ̸= ∅ then
5: if thread i has not been spawned then
6: Spawn EdgeEvaluateThread(i)
7: end if
8: LOCK
9: (s,a)← Eopen.Pop()
10: UNLOCK
11: Eeval.Insert((s,a))
12: Delegate (s,a) to thread i
13: end if
14: end for
15: end while
16: end procedure
17: procedure EdgeEvaluateThread(i)
18: while not terminate do
19: if thread i has been assigned an edge (s,a) then
20: Evaluate ((s,a))
21: end if
22: end while
23: end procedure
24: procedure Evaluate((s,a))
25: ct ← EvaluateEdge((s,a))
26: Eeval.Remove((s,a))
27: Eclosed.Insert((s,a))
28: if G.Cost((s,a)) ̸= ct then
29: G.UpdateEdgeCost((s,a), ct)
30: end if
31: end procedure

the generated path to be evaluated and undergo the suboptimality check.

Because of the asynchronous operation of MPLP, the edge evaluation threads
Ti=3:Nt can update the graph in the middle of an ongoing search on T0. When any
single wA* search on T0 terminates, the resulting path is a solution on an implicit
snapshot of the graph in which the cost of each edge is its cost at the time the source
state of the edge was expanded during the search. This may be the true edge cost
or the optimistic underestimate depending on whether the edge was evaluated by an
edge evaluation thread.

30

4. MPLP: Massively Parallelized Lazy Planning

Algorithm 8 MPLP: Monitor Paths (T1)
1: procedure MonitorPaths
2: while not terminate do
3: for π ∈ Π do
4: path_evaluated← True, cπ ← 0
5: for (s,a) ∈ π do
6: if (s,a) ∈ Eclosed then
7: cπ = cπ +G.Cost((s,a))
8: else
9: path_evaluated = False
10: break
11: end if
12: end for
13: if path_evaluated then
14: if cπ ≤ cbound then
15: solution_found = True
16: return π
17: else
18: Π.Remove(π)
19: end if
20: end if
21: end for
22: end while
23: end procedure

4.2.2 Details

Besides an open list (OPEN) for the states, MPLP uses the following data structures
for the edges: A priority queue of edges that need to be evaluated (Eopen), a list of
edges that have been evaluated (Eclosed) and a list of edges that are under evaluation
(Eeval). Unlike in OPEN where states with smaller keys are placed in the front of the
queue, in Eopen, edges with higher priorities are placed in front. The optimistic search
runs an iterative sequence of weighted A* searches from scratch (ComputePath)
in a loop (Line 7, Alg. 5) as a single process on thread T0. For every state that is
expanded for the first time, its successors are generated (Line 22, Alg. 6), but the
corresponding edges are not evaluated. Instead, they are added to Eopen. The search
then proceeds with the optimistic edge cost c for the unevaluated edges, but for edges
that have already been evaluated, it uses the true cost ct. We use a constant priority
of 1 for all edges when they are first inserted into Eopen. When a state in the goal
region G is expanded (Line 17, Alg. 5), the path π obtained by backtracking from

31

4. MPLP: Massively Parallelized Lazy Planning

Search

T0

DelegateEdges

T2

Evaluate

T4T3 TNt-1

Eopen

MonitorPaths

T1
Eclosed

Eeval

Graph

π
Solution

Figure 4.1: The figure depicts a high-level overview of MPLP. The search runs on
thread T0. The discovered edges are added to a priority queue Eopen. On thread T2,
DelegateEdges delegates the evaluation of edges in Eopen to a thread from a pool
of threads (Ti=3:Nt) dedicated to edge evaluation. The edges under evaluation are
moved from Eopen to a list Eeval. When an edge has been evaluated by Evaluate,
it is added to a list Eclosed and the graph is updated to reflect the true edge cost.
MonitorPaths monitors the generated paths in thread T1 and waits for a fully
evaluated path (all edges in Eclosed) that satisfies a suboptimality check. Upon
finding such a path, it returns it as the solution, and the algorithm is terminated.

the goal state to s0 is added to a list of generated paths Π in ConstructPath.
The priorities of unevaluated edges in π are increased by a multiplicative factor of
2 in Eopen to prioritize the evaluation of the edges in the paths (Line 7, Alg. 6). In
addition, the maximum of the costs of the paths generated by ComputePath is
stored in a variable cbound (Line 18, Alg. 5). As explained in Section 4.3, cbound is
upper bounded by w · c∗, where w is the heuristic inflation factor and c∗ is the cost
of an optimal path in G.

In a separate thread T2, DelegateEdges (Alg. 7) delegates the evaluation of
edges in Eopen in order of their priorities to a pool of threads (Ti=3:Nt) dedicated
to edge evaluations (Line 12). When a thread is available, the edge is evaluated in
Line 25 to obtain the true cost ct. When an edge is being evaluated, it is moved from
Eopen to Eeval. Once it has been evaluated, it is moved to Eclosed. If the true cost is
different from the estimated cost, the graph is updated (Line 29). A generated edge,
therefore, belongs to one of the three containers, i.e., Eopen, Eeval or Eclosed, at any
point in time. Therefore, if a state is revisited, the state along with its incoming

32

4. MPLP: Massively Parallelized Lazy Planning

edge need not be regenerated (Line 20, Alg. 6).
Another asynchronous process MonitorPaths (Alg. 8) on thread T2 monitors

the state of every edge in the paths in Π. If a path is found that has been fully
evaluated and that has cost no greater than cbound, it is returned as the solution. This
check is necessary to guarantee bounded suboptimality as proved in Section 4.3. The
optimistic search terminates when either MonitorPaths finds a solution and sets
the variable solution_found (Line 15, Alg. 8) or when ComputePath terminates
without a path by exhausting the open list (path_exists is false). An implementation
detail to note is that Eopen is modified by multiple threads asynchronously. Therefore
to ensure thread safety by protecting against data race, Eopen must be accessed under
a synchronization lock.

4.2.3 Demo

We will run through a simple demo of MPLP on the graph shown in Figure 4.2a with
Nt = 6. The state and goal states are shown in green and blue, respectively. Let eji
refer to an edge from state si to sj. For the sake of simplicity, we will assume that
the edge evaluation either results in a valid edge with the same cost as the optimistic
estimate or results in an invalid edge with an infinite cost. The search proceeds as
follows.

1. Fig 4.2b: The first optimistic search on T0 returns the path [e10, e
4
1, e

g
4] shown

in dotted blue. The edges in the optimistic path, along with the other edges
discovered during the search (in this case e51), are added to Eopen. Since they all
have the same initial priority, they get placed in Eopen in the order they were
discovered. The optimistic path is added to Π, and MonitorPaths will keep
a watch on its evaluation status, allowing T0 to proceed to the next search.

2. Fig 4.2c: The priorities of edges in the optimistic path i.e. [e10, e
4
1, e

g
4] are

increased in Eopen.

3. Fig 4.2d: DelegateEdges delegates the edges in Eopen, in order of their pri-
orities to a pool of threads allocated to edge evaluations. In this case, three
threads are available for edge evaluations; therefore, only [e10, e

4
1, e

g
4] get dele-

gated for evaluation.

33

4. MPLP: Massively Parallelized Lazy Planning

4. Fig 4.2e: The graph is updated to account for the outcome of the edge eval-
uations, i.e., [e10, e

4
1] are valid edges whereas eg4 is invalid. MonitorPaths

removes the first optimistic path from Π since it has been invalidated. In
parallel, the optimistic search returns another path [e20, e

g
2] and the discovered

edges in the second search are added to Eopen, and the priorities of [e20, e
g
2] are

inflated. The path is added to Π.

5. Fig 4.2f: The edges [e20, e
g
2, e

5
1] in Eopen are delegated to edge evaluation threads.

6. Fig 4.2g: [e20, e
g
2] are valid edges, whereas e51 is invalid. At the same time,

MonitorPaths finds that the path [e20, e
g
2] has been evaluated.

7. Fig 4.2h: Assuming that the path [e20, e
g
2] satisfies the suboptimality check, it

is returned as the solution.

4.2.4 Discussion

MPLP has some key differences from other lazy search algorithms.
• The search and edge evaluations run completely asynchronously. Unlike in the

GLS framework, there is no explicit strategy employed to toggle between the
search and edge evaluations.

• All other lazy search algorithms like LwA*, LSP and LRA* only evaluate edges
that are either on the shortest path to the goal or likely to be so. This is to
ensure that computational effort is not wasted on evaluating edges that are
not likely to be on the shortest path. MPLP, on the other hand, evaluates
every edge that the search encounters while prioritizing edges that are on the
shortest paths in the partially evaluated graphs. This allows it to exploit
massive parallelization.

34

4. MPLP: Massively Parallelized Lazy Planning

s1

s3

s2s0
e0

2

e0
3

e0
1

s5

s4

e1
4

e1
5

e5
g

sg

e4
g

e2
g

e3
g

(a) Graph with the start state s0 shown in green and the goal state sg shown in blue.

s1

s3

s2s0
e0

2

e0
3

e0
1

s5

s4

e1
4

e1
5

e5
g

sg

e4
g

e2
g

e3
g

e0
1

e1
4

e1
5

e4
g

Eopen

T0

MonitorPaths

T1

e0
1

e1
4

e4
g

(b) The optimistic search returns the first path with edges [e10, e41, e
g
4] shown in dotted blue.

All discovered edges during the search i.e. [e10, e41, e
g
4, e

5
1] are added to Eopen.

s1

s3

s2s0
e0

2

e0
3

e0
1

s5

s4

e1
4

e1
5

e5
g

sg

e4
g

e2
g

e3
g

e0
1

e1
4

e1
5

e4
g

Eopen

T0

MonitorPaths

T1

e0
1

e1
4

e4
g

(c) The priorities of edges in the the optimistic path i.e. [e10, e41, e
g
4] are increased in Eopen.

35

4. MPLP: Massively Parallelized Lazy Planning

s1

s3

s2s0
e0

2

e0
3

s5

s4

e1
4

e1
5

e5
g

sg

e4
g

e2
g

e3
g

e0
1

e1
5

Eopen

DelegateEdges

T2

e0
1

T3 T4 T5

e1
4 e4

g

T0

MonitorPaths

T1

e0
1

e1
4

e4
g

(d) DelegateEdges delegates the edges in Eopen, in order of their priorities, to a pool of
threads allocated to edge evaluations.

s1

s3

s2s0
e0

2

e0
3

s5

s4

e1
4

e1
5

e5
g

sg

e4
g

e2
g

e3
g

e0
1

e1
5

Eopen

DelegateEdges

T2

e0
1

T3 T4 T5

e1
4 e4

g

e0
2

e2
g

T0

MonitorPaths

T1

e0
1

e1
4

e4
g

e0
2

e2
g

(e) The graph is updated to account for the outcome of the edge evaluations. Here [e10, e
4
1]

are valid edges are eg4 is invalid. In parallel, the optimistic search returns another path
[e20, e

g
2] and the discovered edges in the second search are added to Eopen, and the priorities

of [e20, e
g
2] are inflated.

36

4. MPLP: Massively Parallelized Lazy Planning

e1
5

Eopen

DelegateEdges

T2

T3 T4 T5

e2
ge0

2

s1

s3

s2s0
e0

2

e0
3

s5

s4

e1
4

e1
5

e5
g

sg

e4
g

e2
g

e3
g

e0
1

T0

MonitorPaths

T1

e0
2

e2
g

(f) [e20, e
g
2, e

5
1] are delegated to edge evaluation threads.

e1
5

Eopen

DelegateEdges

T2

T3 T4 T5

e2
ge0

2

s1

s3

s2s0
e0

2

e0
3

s5

s4

e1
4

e1
5

e5
g

sg

e4
g

e2
g

e3
g

e0
1

e5
g

MonitorPaths

T1

e0
2

e2
g

T0

e0
1

e1
5

e5
g

(g) [e20, e
g
2] are valid edges, whereas e51 is invalid.

Eopen

DelegateEdges

T2

T3 T4 T5

s1

s3

s2s0
e0

2

e0
3

s5

s4

e1
4

e1
5

e5
g

sg

e4
g

e2
g

e3
g

e0
1

e5
g

e0
3

e3
g

s2s0

sg

Solution

T0

MonitorPaths

T1

e0
2

e2
g

e0
1

e1
5

e5
g

(h) MonitorPath finds that the path [e20, e
g
2] is valid, and assuming it satisfies the subop-

timality check, it returns it as the solution.

Figure 4.2: Demo of MPLP.

37

4. MPLP: Massively Parallelized Lazy Planning

4.3 Properties
MPLP is guaranteed to be complete and bounded suboptimal, and we prove these
properties.

Lemma 1 If there exists a path π in Π that is fully evaluated and satisfies the
suboptimality bound (Line 14, Alg. 8), MonitorPaths will return a solution in
finite time.

Proof Since Alg. 5 runs wA*, the paths computed by it are cycle-free. For a finite
graph G, there are a finite number of cycle-free paths (possibly with a mix of eval-
uated and unevaluated edges) from s0 to G with a cost lower than a finite upper
bound (Lemma 3). Moreover, the uniqueness check in Line 13 of Alg. 6 ensures that
there are no duplicate paths in Π. Therefore Π is of finite size, and since Monitor-
Paths iterates over Π repeatedly, it is bound to discover a path π in Π that is fully
evaluated and satisfies the suboptimality bound in finite time if such a path exists
in Π.

Theorem 2 (Completeness) If there exists at least one feasible path π in G from
s0 to G, MPLP will return a solution in finite time.

Proof MPLP runs a sequence of weighted A* searches on a finite graph G, which
is a complete algorithm. The edges in G are being simultaneously evaluated by
EvaluateEdges. In the worst case, the optimistic search will have discovered all
edges in G and added them to Eopen (Line 25, Alg. 6). Therefore EvaluateEdges
will eventually evaluate all edges in G, in which case ComputePath will have
access to the true costs of all edges and will add a feasible path to Π if such a
path exists. Lemma 1 guarantees that the path will then be returned as the solution
by MonitorPaths in finite time.

Lemma 3 The cost c(πi) of a path πi computed by ComputePath in any iteration
i of MPLP (Line 7, Alg. 5) satisfies the relationship c(πi) ≤ w · c∗, where c∗ is the
cost of the optimal path in G.

Proof At any iteration i of MPLP, the search runs on an implicit snapshot of G in
which the true costs of some of the edges are known, and the remaining edges have
an estimated cost which is an underestimate of the true cost. Let this intermediate
graph be Gi. Let the cost of an optimal path in G be c∗, and the cost of the same

38

4. MPLP: Massively Parallelized Lazy Planning

path in Gi be ci. Since the cost of the unevaluated edges in Gi are an underestimate
of the corresponding edges in G, this implies that ci ≤ c∗. Let the cost of an optimal
path in Gi be c∗i . Therefore,

=⇒ c∗i ≤ ci ≤ c∗

Since ComputePath runs weighted A* on Gi, the cost of any path πi computed by
it in any iteration i satisfies c(πi) ≤ w · c∗i . Therefore,

=⇒ c(πi) ≤ w · c∗i ≤ w · ci ≤ w · c∗

Theorem 4 (Soundness) The path returned by MPLP is fully evaluated and fea-
sible.

Proof MonitorPaths only returns a fully evaluated path that has a true cost no
greater than cbound (Line 14, Alg. 8). For it to return an infeasible path, cbound has
to be ∞. However, since cbound is initialized to −∞ and gets updated when Com-
putePath finds a path (Line 18, Alg. 5), for it to have a value of∞, ComputePath
has to find a path with ∞ cost. This is not possible because Lemma 3 states that
any path returned by ComputePath has a finite upper bound if the graph has a
feasible solution.

Theorem 5 (Bounded suboptimality) The path π returned as the solution by
MPLP satisfies ct(π) ≤ w · c∗ where c∗ is the cost of the optimal path in G.

Proof As per Lemma 3, a path πi returned by ComputePath in any iteration i of
MPLP will never have a cost greater than w · c∗.

=⇒ max
i

c(πi) = cbound ≤ w · c∗

If a fully evaluated path π is found in MonitorPaths such that ct(π) ≤ cbound

then ct(π) ≤ w · c∗.

39

4. MPLP: Massively Parallelized Lazy Planning

4.4 Evaluation

We evaluate MPLP in two planning domains where edge evaluation is expensive. To
emphasize the computational budget, we append the number of threads (Nt) being
used by MPLP as a suffix, i.e., MPLP-Nt. The proposed algorithm, along with the
baselines, was implemented in C++.

4.4.1 3D navigation

The first domain is motion planning for 3D (x, y, θ) navigation of a PR2 robot in
an indoor environment similar to the one used in [51] and shown in Figure 4.3.
The robot can move along 18 simple motion primitives that independently change
the three state coordinates by incremental amounts. Evaluating each primitive in-
volves collision checking of the robot model (approximated as spheres) against the
world model (represented as a 3D voxel grid) at interpolated states on the primitive.
Though approximating the robot with spheres instead of meshes dramatically speeds
up collision checking, it is still the most expensive component of the search. The
computational cost of edge evaluation increases with the increasing granularity of
interpolated states at which collision checking is carried out. We use two types of
primitives: 1) primitives that change the (x, y) coordinates but do not change θ and
2) primitives that only change θ. We vary the computational cost of edge evalua-
tions by varying the distance (dcc) between two consecutive states along a primitive
at which collision checking is carried out (i.e., the discretization of the primitives for
collision checking) for the first type of primitives. For the second type of primitives,
collision checking is always carried out at 1◦ increments in θ, and this parameter
is not varied for the sake of simplicity. In general, a smaller dcc produces a better
approximation, while larger dcc can cause the robot to tunnel through obstacles. In
the optimistic approximation of the primitives, we collision check just the final state
along the primitive. In this domain, this approximation is incorrect about 24% of
the time. The search uses Euclidean distance as the admissible heuristic. The ex-
periments were run on an Amazon Web Services (AWS) c5a.24xlarge instance with
96 vCPUs, running Ubuntu 18.04. We evaluate 50 trials, in each of which the start
configuration of the robot and goal region are sampled randomly.

40

4. MPLP: Massively Parallelized Lazy Planning

Figure 4.3: (Navigation) Left: The PR2’s collision model is approximated with
spheres. Right: The task is to navigate in an indoor map from a given start (purple)
and goal (green) states using a set of motion primitives. States at the end of every
primitive in the generated plan are shown in black.

Comparison to lazy search baselines

We compare MPLP-90 (Nt = 90) with weighted A* and lazy search baselines LwA* [46]
and LSP [47] (which are instantiations of GLS [49]). Lazy search algorithms are de-
signed to increase efficiency in domains where edge evaluations are expensive. There-
fore we analyze the performance gain achieved by MPLP with increasing computa-
tional cost of edge evaluations by reducing dcc. Figure 4.4 shows the mean speedup
achieved by MPLP and the baselines over wA* for varying dcc on a set of start and
goal pairs with uninflated and inflated heuristics. Speedup over wA* is defined as
the ratio of the mean runtime of wA* over the mean runtime of a specific algorithm.
Table 4.1 shows the corresponding raw data. With increasing granularity of collision
checking (decreasing dcc), the speedup achieved by MPLP drastically outpaces that
of the baselines.

41

4. MPLP: Massively Parallelized Lazy Planning

0.20.40.60.81.0
0

5

10

15

20

25

30

0.20.40.60.81.0

0

20

40

60

S
p
e
e
d
u
p

Collision checking interval: dcc (cm)

εh = 1 εh = 50

wA*

LSP

LwA*

MPLP

Figure 4.4: (Navigation) Mean speedup achieved by MPLP, LSP and LwA* over
wA* with uninflated heuristic (left) and with a heuristic inflation factor of 50 (right).
dcc decreases along the x-axis, which increases edge evaluation time.

Collision checking interval: dcc (cm)
1 0.5 0.25 0.2 0.1

w = 1

wA* 3.55 6.82 13.40 16.59 32.96
LwA* 0.36 0.54 0.91 1.09 2.01
LSP 0.30 0.34 0.44 0.49 0.73

MPLP-90 0.23 0.24 0.29 0.32 0.44

w = 50

wA* 0.76 1.48 2.83 3.53 6.98
LwA* 0.28 0.50 0.93 1.15 2.24
LSP 0.53 0.61 0.77 0.85 1.26

MPLP-90 0.13 0.13 0.15 0.16 0.23

Table 4.1: (Navigation) Mean planning times (s) for MPLP, wA* and lazy search
baselines for varying dcc, with and without heuristic inflation.

Comparison to parallel search baselines

We also compare MPLP with parallel search baselines. The first baseline is a variant
of weighted A* in which, during a state expansion, the successors of the state are
generated, and the corresponding edges are evaluated in parallel. For lack of a better
term, we call this baseline Parallel Weighted A* (PwA*). Note that this is very dif-

42

4. MPLP: Massively Parallelized Lazy Planning

ferent from the Parallel A* (PA*) algorithm [21]. The second baseline is PA*SE [20].
These two baselines leverage parallelization differently. In PwA*, parallelization is
at the level of generation of successors, whereas in PA*SE, parallelization is at the
level of state expansions. Figure 4.5 shows the mean speedup achieved by MPLP
and the baselines over wA* for various thread budgets, with uninflated and inflated
heuristics and with two different values of dcc. The corresponding raw data is shown
in Table 4.2. For a single thread, PwA* and PA*SE have the same runtime as that
of wA*. As described in Section 4.2, MPLP needs a minimum of 4 threads. Since
PwA* parallelizes successor generation during an expansion, increasing the number
of threads beyond a certain point does not lead to any performance improvement.
The maximum speedup achieved by PA*SE is dependent on the number of states that
can be safely expanded in parallel. The performance degrades with a higher number
of threads, consistent with what was observed in [20]. Consistent with what was
observed in comparison with lazy search baselines, the speedup obtained by MPLP
is greater for a smaller dcc (larger edge evaluation computational cost). In addition,
MPLP’s performance gain saturates at a higher Nt for a smaller dcc. This shows that
MPLP leverages multithreading more effectively with increasing computational cost
of edge evaluations and is, therefore, more efficient than the baselines.

MPLP is effective in domains where the computational cost of evaluating edges
relatively outweighs that of exploring the graph optimistically. This implies smaller
graphs with expensive to evaluate edges. As is the case with all lazy search algorithms,
in domains with larger graphs and inexpensive edges, MPLP is not effective. This can
be observed in the top two plots in Figure 4.5. With dcc = 1cm, PA*SE outperforms
MPLP. However, with more expensive edges, as is the case in the bottom two plots,
MPLP comprehensively outperforms PA*SE.

Ablation of priority inflation of edges in optimistic paths

As discussed earlier, to prioritize the evaluation of edges that are in the paths com-
puted by the optimistic search over the other discovered edges, their priorities in
Eopen are dynamically increased (Line 7, Alg. 6). We ablate this to highlight the ben-
efit of doing so and paying the small cost of rebalancing the priority queue. Figure 4.6
shows the mean planning times of MPLP with and without the priority inflation, for

43

4. MPLP: Massively Parallelized Lazy Planning

Number of threads: Nt

0 20 40 60 80

2

4

6

8

10

d
c
c
 =

 0
.5

 c
m

0 20 40 60 80

2.5

5.0

7.5

10.0

12.5

15.0

PA*SE

MPLP

PWA*

WA* (3.5 s)

0 20 40 60 80

1

2

3

4

5

6

7

PA*SE

MPLP

PWA*

WA* (0.75 s)

d
c
c
 =

 1
 c

m

0 20 40 60 80
0

5

10

15

20

25

MPLP

PWA*

PA*SE

WA* (6.74 s)

MPLP

PWA*

PA*SE

WA* (1.43 s)

S
p
e
e
d
u
p

εh = 1 εh = 50

Figure 4.5: (Navigation) Mean speedup achieved by MPLP, PwA* and PA*SE over
wA* with uninflated heuristic (left) and with heuristic inflation of 50 (right). For a
single thread, PwA* and PA*SE have the same runtime as that of wA*. With an
increasing number of threads, the performance of MPLP and the baselines improves
over wA*. However, achieves a significantly higher speedup as compared to the
baselines when dcc = 0.5cm.

varying threads, with and without heuristic inflation. For smaller Nt, priority in-
flation significantly reduces planning time. With increasing Nt, the performance
gain diminishes since there is enough computational resource available to evaluate
all edges in Eopen in parallel without having to preferentially evaluate edges in the
optimistic paths. At the same time, with heuristic inflation, the performance gain
of priority inflation is also lower. This is because the search is greedy and discovers
fewer edges that need to be evaluated.

44

4. MPLP: Massively Parallelized Lazy Planning

Number of threads (Nt)
1 4 5 10 15 20 30 40 50 70 90

dcc = 1cm | w = 1

wA* 3.5 - - - - - - - - - -
PwA* 3.54 1.43 1.29 0.95 0.96 0.95 0.95 0.95 0.96 0.95 0.96

wPA*SE 3.40 0.85 0.69 0.35 0.25 0.21 0.24 0.38 0.54 0.89 1.20
MPLP - 0.77 0.63 0.39 0.31 0.27 0.23 0.23 0.22 0.23 0.23

dcc = 1cm | w = 50

wA* 0.75 - - - - - - - - - -
PwA* 0.76 0.31 0.28 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22

wPA*SE 0.72 0.22 0.18 0.13 0.11 0.11 0.11 0.12 0.16 0.24 0.32
MPLP - 0.29 0.24 0.19 0.16 0.14 0.13 0.13 0.13 0.13 0.13

dcc = 0.5cm | w = 1

WA* 6.74 - - - - - - - - - -
PwA* 6.76 2.68 2.33 1.67 1.69 1.43 1.43 1.44 1.43 1.44 1.44
PA*SE 6.44 1.64 1.30 0.67 0.47 0.39 0.37 0.51 0.70 1.04 1.41
MPLP - 0.88 0.73 0.49 0.41 0.36 0.31 0.28 0.26 0.24 0.24

dcc = 0.5cm | w = 50

WA* 1.43 - - - - - - - - - -
PwA* 1.42 0.55 0.51 0.37 0.38 0.32 0.33 0.33 0.33 0.33 0.33
PA*SE 1.37 0.42 0.35 0.24 0.21 0.20 0.19 0.20 0.23 0.33 0.41
MPLP - 0.35 0.28 0.22 0.20 0.18 0.15 0.14 0.13 0.13 0.13

Table 4.2: (Navigation) Mean planning times (s) for MPLP, wA* and parallel
search baselines (PwA* and PA*SE) for varying Nt, with different values of dcc and
w.

4.4.2 Assembly task

wA* LwA* LSP MPLP-40
Time (s) 496 259 133 84
Speedup 1 1.9 3.7 5.9

Table 4.3: (Assembly) Mean planning time and speedup over wA* of MPLP com-
pared to those of the lazy search baselines.

45

4. MPLP: Massively Parallelized Lazy Planning

20 40 60 80
0.0

0.5

1.0

1.5

2.0

2.5

3.0

20 40 60 80
0.0

0.5

1.0

1.5

2.0

2.5

3.0

With priority inflation

Without priority inflation

Number of threads: Nt

T
im

e
 (

s
)

εh = 1 εh = 50

Figure 4.6: (Navigation) Mean planning time (s) of MPLP with and without edge
priority inflation for a varying number of threads.

Pick Place

Motion planner Motion planner Simulator

Figure 4.7: (Assembly) Top: The PR2 has to arrange a set of blocks on the table
(left) into a given configuration (right). Bottom: It is equipped with Pick and
Place controllers. The Pick controller uses the motion planner to reach a block.
The Place controller uses the motion planner to place a block and simulates the
outcome of releasing the block.

The second domain is a task and motion planning problem of assembling a set of
blocks on a table into a given structure by a PR2, as shown in Figure 4.7. We assume

46

4. MPLP: Massively Parallelized Lazy Planning

full state observability of the 6D poses of the blocks and the robot’s joint configura-
tion. The goal is defined by the 6D poses of each block in the desired structure. The
PR2 is equipped with Pick and Place controllers, which are used as macro-actions
in high-level planning. Both of these actions use a motion planner internally to com-
pute collision-free trajectories in the workspace. Additionally, Place has access to
a simulator (NVIDIA Isaac Gym [58]) to simulate the outcome of placing a block in
its desired pose. For example, if the planner tries to place a block in its final pose
but has not placed the block underneath yet, the placed block will not be supported,
and the structure will not be stable. This would lead to an invalid successor during
planning. We set a simulation timeout of ts = 0.2 s to evaluate the outcome of plac-
ing a block. Considering the variability in the simulation speed and the overhead of
communicating with the simulator, this results in a total wall time of less than 1 s

for the simulation. The motion planner has a timeout of tp = 60 s based on the wall
time; therefore, that is the maximum time the motion planning can take. Since the
workspace is cluttered, the bottleneck in this domain is the motion planning com-
ponent of these actions. In the optimistic approximation, these macro-actions are
replaced by their approximate versions, which substitute the motion planner with
an IK solver, while the motion planner is used when the corresponding edges are
evaluated. Successful Pick and Place actions have unit real and optimistic costs
and infinite otherwise. A Pick action on a block is successful if the motion planner
finds a feasible trajectory to reach the block within tp. A Place action on a block is
successful if the motion planner finds a feasible trajectory to place the block within
tp, and simulating the block placement results in the block coming to rest at the
desired pose within ts. The cost of every feasible plan is twice the number of blocks
since placing a block in its desired pose involves a single Pick and Place controller
pair, each of which has a unit cost.

The experiments were run on an AWS g4dn.16xlarge instance with 64 vCPUs,
running Ubuntu 18.04. The instance also has an NVIDIA T4 Tensor Core GPU to
run the simulator. MPLP is run with Nt = 40, and the addition of more threads
did not improve performance in this domain. The number of blocks not in their
final desired pose is used as the admissible heuristic, with an inflation factor of 5.
Table 4.3 shows planning times and speedup over wA* of MPLP-40 compared to the
lazy search baselines. The numbers are averaged across 20 trials, in each of which

47

4. MPLP: Massively Parallelized Lazy Planning

the blocks are arranged in random order on the table. MPLP-40 achieves a 5.9x
speedup over wA* and a 1.6x speedup over LSP.

4.5 Conclusion
In this work, we presented MPLP, a massively parallelized lazy search algorithm
that integrates ideas from lazy search and parallel search. We proved that MPLP
is sound, complete, and bounded suboptimal. Our experiments showed that MPLP
achieves higher efficiency than both lazy search and parallel search algorithms on
two very different planning domains.

MPLP assigns a uniform evaluation priority to edges when they are first discov-
ered and only increases the priorities of edges that belong to a path. However, if
there is a domain-dependent edge-existence prior available, that can be seamlessly
integrated into the algorithm by assigning the evaluation priority derived from it. In-
stead of a naive implementation of LSP, where each shortest path search is run from
scratch, an incremental approach of updating the graph and re-using the previous
search tree using LPA* mechanics can be more efficient [49, 50]. However, because
of the massive parallelization of edge evaluations in MPLP, a potentially large num-
ber of edges get updated in-between searches. Therefore running the search in each
iteration from scratch is more efficient than incremental methods. However, based
on the number of updated edges, an intelligent strategy can be employed to either
re-use the previous search tree or plan from scratch.

48

Chapter 5

ePA*SE: Edge-Based Parallel A*
for Slow Evaluations

MPLP achieves faster planning by running the search and evaluating edges asyn-
chronously in parallel. Just like all lazy search algorithms, it assumes that successor
states can be generated without evaluating edges, which allows the algorithm to de-
fer edge evaluations and lazily proceed with the search. However, this assumption
doesn’t hold for a number of planning domains in robotics. In particular, consider
planning problems that use a high-fidelity physics simulator to evaluate actions in-
volving object-object and object-robot interactions [18]. The generation of successor
states is typically not possible without an expensive simulator call. In such domains,
where edge evaluation cannot be deferred, MPLP is not applicable. Instead, what is
required is a parallel search algorithm that interleaves the search with the parallel
evaluation of edges.

In Chapter 2, we described PA*SE, which speeds up search by parallelizing ex-
pansions of independent states. Though PA*SE parallelizes state expansions, for
a given state, the successors are generated sequentially. This is not the most effi-
cient strategy, especially for domains with large branching factors. In addition, this
strategy is particularly inefficient in domains where there is a large variance in the
edge evaluation times. Consider a state with several outgoing edges that have to
be expanded, such that the first edge is expensive to evaluate, while the others are
relatively inexpensive. In this case, since a single thread is evaluating all of the edges

49

5. ePA*SE: Edge-Based Parallel A* for Slow Evaluations

in sequence, the evaluations of the cheap edges will be held up by the one expensive
edge. This often happens in planning for robotics. Consider full-body planning for
a humanoid. Evaluating a primitive that moves just the wrist joint of the robot
requires collision checking of just the wrist. However, evaluating the primitive that
moves the base of the robot requires fully-body collision checking of the entire robot.
One way to avoid this would be to evaluate the outgoing edges in parallel, which
PA*SE doesn’t do. However, this seemingly trivial modification does not solve an-
other cause of inefficiency in PA*SE i.e., the evaluation of the outgoing edges from
a given state is tightly coupled with the expansion of the state. This leads to more
edges being evaluated than is necessary, as we will show in our experiments.

Therefore in this chapter, we develop an optimal parallel search algorithm, ePA*SE
(Edge-based Parallel A* for Slow Evaluations), that eliminates these inefficiencies by
parallelizing edge evaluations instead of state expansions. ePA*SE exploits the in-
sight that the root cause of slow expansions is typically slow edge evaluations. Each
ePA*SE thread is responsible for evaluating a single edge instead of expanding a
state and evaluating all outgoing edges from it, all in a single thread, like in PA*SE.
This makes ePA*SE significantly more efficient than PA*SE and we show this by
evaluating it on two different planning domains: 1) 3D indoor navigation of a mobile
manipulator and 2) a task and motion planning problem of stacking a set of blocks
by a dual-arm robot.

5.1 Problem Definition

Let a finite graph G = (V , E) be defined as a set of vertices V and directed edges E .
Each vertex v ∈ V represents a state s in the state space of the domain S. An edge
e ∈ E connecting two vertices v1 and v2 in the graph represents an action a ∈ A that
takes the agent from corresponding states s1 to s2. In this work, we assume that
all actions are deterministic. Hence an edge e can be represented as a pair (s, a),
where s is the state at which action a is executed. For an edge e, we will refer to the
corresponding state and action as e.s and e.a respectively. In addition, we will use
the following notations:

• s0 is the start state and G is the goal region.

50

5. ePA*SE: Edge-Based Parallel A* for Slow Evaluations

• c : E → [0,∞] is the cost associated with an edge.
• g(s) or g-value is the cost of the best path to s from s0 found by the algorithm

so far.
• h(s) is a consistent and therefore admissible heuristic [17]. It never overesti-

mates the cost to the goal.

A path π is defined by an ordered sequence of edges eNi=1 = (s, a)Ni=1, the cost
of which is denoted as c(π) =

∑N
i=1 c(ei). The objective is to find a path π from s0

to a state in the goal region G with the optimal cost c∗. There is a computational
budget of Nt threads available, which can run in parallel. Similar to PA*SE, we
assume there exists a pairwise heuristic function h(s, s′) that provides an estimate of
the cost between any pair of states. It is forward-backward consistent i.e. h(s, s′′) ≤
h(s, s′) + h(s′, s′′) ∀ s, s′, s′′ and h(s, s′) ≤ c∗(s, s′) ∀ s, s′. Note that using h for
both the unary heuristic h(s) and the pairwise heuristic h(s, s′) is a slight abuse of
notation since these are different functions.

5.2 Method

s0

s1

s3

s2s0
e0

d

e0
1

e0
2

e0
3

e0
1 e0

2 e0
3

s1

s3

s2s0

e1
d

e0
2

e0
3

e0
1 s1

s3

s2s0

e1
d

e0
2

e0
3

e0
2 e0

3

e0
1

e0
2 e0

3e1
d

s1

s3

s2s0

e0
2

e0
3

e0
2 e0

3

e0
1

s5

s4
e1

4

e1
5

e1
4 e1

5

s1

s3

s2s0

e0
2

e0
3

e0
2 e0

3

e0
1

s5

s4

e1
4

e1
5

e1
5

e4
d

e4
d

1 2 3 4

s1

s3

s2s0

e0
2

e0
3

e0
1

s5

s4

e1
4

e1
5

e4
d

en
d

Goal region

Goal Reached

sn

Figure 5.1: Example of eA*: (1) The dummy edge ed0 originating from s0 is expanded
and the real edges [e10, e

2
0, e

3
0] are inserted into OPEN . (2) e10 is expanded, during

which it is evaluated, and the successor s1 is generated. A dummy edge ed1 from s1
is inserted into OPEN . (3) ed1 is expanded and the real edges [e41, e

5
1] are inserted

into OPEN . (4) e41 is expanded, during which it is evaluated, and the successor s4 is
generated, and a dummy edge ed4 is inserted into Eopen. This goes on until a dummy
edge edn is expanded whose source state belongs to the goal region, i.e., sn ∈ G.

ePA*SE leverages the key algorithmic contribution of PA*SE, i.e., parallel ex-
pansions of independent states, but instead uses it to parallelize edge evaluations.
In doing so, ePA*SE further improves the efficiency of PA*SE in domains with

51

5. ePA*SE: Edge-Based Parallel A* for Slow Evaluations

expensive-to-evaluate edges. ePA*SE obeys the same invariant as A* and PA*SE
that when a state is expanded, its g-value is optimal. Therefore, every state is ex-
panded at most once. However, unlike in PA*SE, where each thread is responsible
for expanding a single state at a time, each ePA*SE thread is responsible for eval-
uating a single edge at a time. In order to build up to ePA*SE, we first describe a
serial version of the proposed algorithm eA* (Edge-based A*). We then explain how
eA* can be parallelized to get to ePA*SE, using the key idea behind PA*SE.

5.2.1 eA*

The first key algorithmic difference in eA* compared to A* is that the open list
OPEN contains edges instead of states. We introduce the term expansion of an
edge and explicitly differentiate it from the expansion of a state. In A*, during the
expansion of a state, all its successors are generated and, unless they have already
been expanded, are either inserted into the open list or repositioned with the updated
priority. In eA*, expansion of an edge (s, a) involves evaluating the edge to generate
the successor state s′ and adding/updating (but not evaluating) the edges originating
from s′ into OPEN with the same priority of g(s′) + h(s′). This choice of priority
ensures that the edges originating from states that would have the same (state-)
expansion priority in A* have the same (edge-) expansion priority in eA*. A state
is defined as partially expanded if at least one (but not all) of its outgoing edges
has been expanded or is under expansion, while it is defined as expanded if all its
outgoing edges have been expanded. eA* uses the following data structures as the
key ingredients of the algorithm.

• OPEN : A priority queue of edges (not states) that the search has generated
but not expanded, where the edge with the smallest key/priority is placed
in the front of the queue. The priority of an edge e = (s, a) in OPEN is
f ((s, a)) = g(s) + h(s).

• BE: The set of states that are partially expanded.
• CLOSED: The set of states that have been expanded.
Naively storing edges instead of states in OPEN introduces an inefficiency. In

A*, the g-value of a state s can change many times during the search until the state
is expanded, at which point it is added to CLOSED. Every time this happens,

52

5. ePA*SE: Edge-Based Parallel A* for Slow Evaluations

OPEN has to be rebalanced to reposition s. In eA*, every time g(s) changes, the
position of all outgoing edges from s needs to be updated in OPEN . This increases
the number of times OPEN has to be rebalanced, which is an expensive operation.
However, since the edges originating from s have the same priority, i.e., g(s) + h(s),
this can be avoided by replacing all the outgoing edges from s with a single dummy
edge ed = (s, ad), where ad stands for a dummy action. The dummy edge stands
as a placeholder for all the real edges originating from s. When g(s) changes, only
the dummy edge must be repositioned. Unlike when a real edge is expanded, when
the dummy edge (s, ad) is expanded, it is replaced by the outgoing real edges from
s in OPEN . When a state’s dummy edge is expanded or under expansion, it is also
considered partially expanded and added to BE. When all the outgoing real edges
of a state have been expanded, it is moved from BE to CLOSED. The g-value g(s)
of a state s in either BE or CLOSED can no longer change; hence, the real edges
originating from s will never have to be updated in OPEN .

eA* can be trivially extended to handle an inflation factor on the heuristic like
wA*, which leads to a more goal-directed search w-eA* (Weighted eA*). Figure 5.1
shows an example of w-eA* in action. Let eji refer to an edge from state si to sj,
and edi refers to a dummy edge from si. The states that are generated are shown in
solid circles. The hollow circles represent states that are not generated, and hence
the incoming edges to these states are not evaluated. During the first expansion,
the dummy edge ed0 originating from s0 is expanded, and the real edges [e10, e

2
0, e

3
0]

are inserted into OPEN . In the second expansion, the edge e10 is expanded, during
which it is evaluated, and the successor s1 is generated. A dummy edge (ed1) from s1

is inserted into OPEN . In the third expansion, ed1 is expanded and the real edges
[e41, e

5
1] are inserted into OPEN . In the fourth expansion, the edge e41 is expanded,

during which it is evaluated, the successor s4 is generated, and a dummy edge ed4 is
inserted into Eopen. This continues until a dummy edge edn is expanded whose source
state belongs to the goal region, i.e., sn ∈ G.

If the heuristic is informative, w-eA* evaluates fewer edges than wA*. In the
example shown in Figure 5.1, the edges [e20, e30, e51] do not get evaluated. Since wA*
evaluates all outgoing edges of an expanded state, these edges would be evaluated
in the case of wA* (with the same heuristic and inflation factor) when their source
states are expanded (s0 and s1). Additionally, similar to how wPA*SE parallelizes

53

5. ePA*SE: Edge-Based Parallel A* for Slow Evaluations

wA*, w-eA* can be parallelized to obtain a highly efficient algorithm w-ePA*SE.
Since w-ePA*SE is a trivial extension of ePA*SE, we instead describe how eA* can
be parallelized to obtain ePA*SE.

5.2.2 eA* to ePA*SE

eA* can be parallelized using the key idea behind PA*SE, i.e., parallel expansion of
independent states and applying it to edge expansions, resulting in ePA*SE. ePA*SE
has two key differences from PA*SE that make it more efficient:

1. Evaluation of edges is decoupled from the expansion of the source state, giving
the search the flexibility to figure out what edges need to be evaluated.

2. Evaluation of edges is parallelized.

In addition to OPEN and CLOSED, PA*SE uses another data structure BE

(Being Expanded) to store the set of states currently being expanded by one of the
threads. It uses a pairwise independence check on states in the open list to find states
safe to expand in parallel. A state s is safe to expand if g(s) is already optimal. In
other words, there is no other state that is currently being expanded (in BE), nor
in OPEN that can reduce g(s). Formally, a state s is defined to be independent of
state s’ iff

g(s)− g(s′) ≤ h(s′, s) (5.1)

Like in eA*, BE in ePA*SE stores the partially expanded states, as per the
definition of partial expansion in eA*. Since ePA*SE stores edges in OPEN instead
of states and each ePA*SE thread expands edges instead of states, the independence
check has to be modified. An edge e is safe to expand if Equations 5.2 and 5.3 hold.

g(e.s)− g(e′.s) ≤ h(e′.s, e.s)

∀e′ ∈ OPEN | f (e′) < f (e)
(5.2)

g(e.s)− g(s′) ≤ h(s′, e.s) ∀s′ ∈ BE (5.3)

54

5. ePA*SE: Edge-Based Parallel A* for Slow Evaluations

Equation 5.2 ensures that there is no edge in OPEN with a priority smaller than
that of e, that upon expansion, can lower the g-value of e.s and hence lower the
priority of e. In other words, the source state s of edge e is independent of the source
states of all edges in OPEN , which have a smaller priority than e. Equation 5.3
ensures that there is no partially expanded state that can lower the g-value of e.s.
In other words, the source state s of edge e is independent of all states in BE.

5.2.3 Details

The pseudocode for ePA*SE is presented in Alg. 9. The main planning loop in
Plan runs on a single thread (thread 0), and in each iteration, an edge is removed
for expansion from OPEN that has the smallest possible priority and is also safe
to expand, as per Equations 5.2 and 5.3 (Line 14, Alg. 9). If such an edge is not
found, the thread waits for either OPEN or BE to change (Line 17, Alg. 9). If a
safe-to-expand edge is found, such that the source state of the edge belongs to the
goal region, the solution path is returned by backtracking from the state to the start
state using back pointers (Line 24, Alg. 9). Otherwise, the edge is expanded and
assigned to an edge expansion thread (thread i = 1 : Nt) (Line 33, Alg. 9). The edge
expansion threads are spawned as and when needed to avoid the overhead of running
unused threads (Line 31, Alg. 9). The search terminates when either a solution is
found or when OPEN is empty, and all threads are idle (BE is empty), in which
case there is no solution.

If the edge to be expanded is a dummy edge, the source s of the edge is marked as
partially expanded by adding it to BE (Line 11, Alg. 10). The real edges originating
from s are added to OPEN with the same priority as that of the dummy edge i.e.
g(s) + h(s). If the expanded edge is not a dummy edge, it is evaluated (Line 18,
Alg. 10) to obtain the successor s′ and the edge cost c ((s, a)). This is the expensive
operation that ePA*SE seeks to parallelize, which is why it happens lock-free. If the
expanded edge reduces g(s′), the dummy edge originating from s′ is added/updated in
OPEN . A counter n_successors_generated keeps track of the number of outgoing
edges that have been expanded for every state. Once all the outgoing edges for a
state have been expanded, and hence the state has been expanded, it is removed
from BE and added to CLOSED (Lines 29 and 30, Alg. 10).

55

5. ePA*SE: Edge-Based Parallel A* for Slow Evaluations

Algorithm 9 w-ePA*SE: Planning Loop
1: A ← action space , Nt ← number of threads, G← ∅
2: s0 ← start state , G ← goal region, terminate← False
3: procedure Plan
4: ∀s ∈ G, s.g ←∞, n_successors_generated(s) = 0
5: s0.g ← 0
6: insert (s0,ad) in OPEN ▷ Dummy edge from s0
7: LOCK
8: while not terminate do
9: if OPEN = ∅ and BE = ∅ then
10: terminate = True
11: UNLOCK
12: return ∅
13: end if
14: remove an edge (s,a) from OPEN that has the

smallest f((s,a)) among all states in OPEN that
satisfy Equations 5.2 and 5.3

15: if such an edge does not exist then
16: UNLOCK
17: wait until OPEN or BE change
18: LOCK
19: continue
20: end if
21: if s ∈ G then
22: terminate = True
23: UNLOCK
24: return Backtrack(s)
25: else
26: UNLOCK
27: while (s,a) has not been assigned a thread do
28: for i = 1 : Nt do
29: if thread i is available then
30: if thread i has not been spawned then
31: Spawn EdgeExpandThread(i)
32: end if
33: Assign (s,a) to thread i
34: end if
35: end for
36: end while
37: LOCK
38: end if
39: end while
40: terminate = True
41: UNLOCK
42: end procedure

56

5. ePA*SE: Edge-Based Parallel A* for Slow Evaluations

Algorithm 10 w-ePA*SE: Edge Expansion
1: procedure EdgeExpandThread(i)
2: while not terminate do
3: if thread i has been assigned an edge (s,a) then
4: Expand ((s,a))
5: end if
6: end while
7: end procedure
8: procedure Expand((s,a))
9: LOCK
10: if a = ad then
11: insert s in BE
12: for a ∈ A do
13: f ((s,a)) = g(s) + h(s)
14: insert (s,a) in OPEN with f ((s,a))
15: end for
16: else
17: UNLOCK
18: s′, c ((s,a))← GenerateSuccessor ((s,a))
19: LOCK
20: if s′ /∈ CLOSED ∪BE and
21: g(s′) > g(s) + c ((s,a)) then
22: g(s′) = g(s) + c ((s,a))
23: s′.parent = s
24: f

(
(s′,ad)

)
= g(s′) + h(s′)

25: insert/update (s′,ad) in OPEN with f
(
(s′,ad)

)
26: end if
27: n_successors_generated(s)+ = 1
28: if n_successors_generated(s) = |A| then
29: remove s from BE
30: insert s in CLOSED
31: end if
32: end if
33: UNLOCK
34: end procedure

5.2.4 Thread management

In PA*SE, the state expansion threads are spawned at the start, and each of them
independently pulls out states from the open list to expand. When the number of
threads is higher than the number of independent states available for expansion at
any point, the operating system has an unnecessary overhead of spinning unused
threads. This causes the overall performance to decrease as the number of unused
threads increases (see Figure 6 in [20]). Our initial experiments showed that using

57

5. ePA*SE: Edge-Based Parallel A* for Slow Evaluations

a similar thread management strategy in ePA*SE leads to a similar degradation in
performance as the number of threads is increased beyond the optimal number of
threads, even though the peak performance of ePA*SE is substantially higher than
that of PA*SE. To prevent this degradation in performance, ePA*SE employs a
different thread management strategy. There is a single thread that pulls out edges
from the open list, and it spawns edge expansion threads as needed but capped at
Nt (Line 31). When Nt is higher than the number of independent edges available
for expansion at any point in time, only a subset of available threads get spawned,
preventing performance degradation, as we will show in our experiments.

5.2.5 w-ePA*SE

w-ePA*SE is a bounded suboptimal variant of ePA*SE that trades off optimality
for faster planning. Similar to wPA*SE, w-ePA*SE introduces two inflation factors,
the first of which, ϵ ≥ 1, relaxes the independence rule (Equations 5.2 and 5.3) as
follows.

g(e.s)− g(e′.s) ≤ ϵh(e′.s, e.s)

∀e′ ∈ OPEN | f (e′) < f (e)
(5.4)

g(e.s)− g(s′) ≤ ϵh(s′, e.s) ∀s′ ∈ BE (5.5)

The second factor w ≥ 1 is used to inflate the heuristic in the priority of edges in
OPEN , i.e., f ((s, a)) = g(s) + w · h(s) which makes the search more goal-directed.
As long as ϵ ≥ w, the solution cost is bounded by ϵ ·c∗ (Theorem 8). Note that w can
be greater than ϵ, but then Equation 5.4 has to consider source states of all edges
in OPEN and the solution cost will be bounded by w · c∗ (Theorem 6). Since this
leads to significantly more independence checks, the ϵ ≥ w relationship is typically
recommended in practice.

58

5. ePA*SE: Edge-Based Parallel A* for Slow Evaluations

5.3 Properties

w-ePA*SE has identical properties to that of w-PA*SE [20] and can be proved simi-
larly with minor modifications.

Theorem 6 (Bounded suboptimal expansions) When w-ePA*SE that performs
independence checks against all states in BE and source states of all edges in OPEN ,
chooses an edge e for expansion, then g(e.s) ≤ λg∗(s), where λ = max(ϵ, w).

Proof Assume, for the sake of contradiction, that g(e.s) > λg∗(e.s) directly before
edge e is expanded, and without loss of generality, that g(e′.s) ≤ λg∗(e′.s) for all edges
e′ selected for expansion before e (Assumption). Let s = e.s for ease of notation.
Consider any cost-minimal path π(s0, s) from s0 to s. Let sm be the closest state to
s0 on π(s0, s) such that either 1) there exists at least one edge in OPEN with source
state sm or 2) sm is in BE. sm is no farther away from s0 on π(s0, s) than s since e

is in OPEN . Therefore, let π(s0, sm) and π(sm, s) be the subpaths of π(s0, s) from
s0 to sm and from sm to s, respectively.

If sm = s0, then g(sm) ≤ λg∗(sm) since g(s0) = g∗(s0) = 0 (Contradiction 111).
Otherwise, let sp be the predecessor of sm on π(s0, s). sp has been expanded (i.e.
all edges outgoing edges of sp have been expanded) since every state closer to s0

on π(s0, s) than sm has been expanded (since every unexpanded state on π(s0, s)

different from s0 is either in BE or has an outgoing edge in OPEN , or has a state
closer to s0 on π(s0, s) that is either in BE or has an outgoing edge in OPEN).
Therefore, since all outgoing edges from sp have been expanded, g(sp) ≤ λg∗(sp)

because of Assumption. Then, because of the g update of sm when the edge from
sp to sm was expanded,

g(sm) ≤ g(sp) + c(sp, sm)

≤ λg∗(sp) + c(sp, sm) (5.6)

Since sp is the predecessor of sm on the cost-minimal path π(s0, s),

g∗(sm) = g∗(sp) + c(sp, sm)

=⇒ g∗(sp) = g∗(sm)− c(sp, sm) (5.7)

59

5. ePA*SE: Edge-Based Parallel A* for Slow Evaluations

Substituting g∗(sp) from Equation 5.7 into Equation 5.6,

=⇒ g(sm) ≤ λg∗(sm)− (λ− 1)c(sp, sm)

=⇒ g(sm) ≤ λg∗(sm)

=⇒ λc(π(s0, sm)) = λg∗(sm) ≥ g(sm) (5.8)

Since h(sm, s) satisfies forward-backward consistency and is therefore admissible,
h(sm, s) ≤ c(π(sm, s)). Since, λ = max(ϵ, w), ϵ ≤ λ,

λc(π(sm, s)) ≥ λh(sm, s) ≥ ϵh(sm, s) (5.9)

Adding 5.8 and 5.9,

λc(s0, s) = λc(s0, sm) + λc(sm, s)

≥ g(sm) + ϵh(sm, s) (5.10)

Assuming w-ePA*SE performs independence checks against states in BE and
source states of all edges in OPEN when choosing an edge e with source e.s to
expand, and sm is either in BE or there exists at least one edge with source sm in
OPEN ,

ϵh(e′.s, e.s) ≥ g(e.s)− g(e′.s)

∀e′ ∈ OPEN | e′.s = sm

=⇒ g(sm) + ϵh(sm, s) ≥ g(s) (5.11)

Therefore,

λg∗(s) =λc(π(s0, s))

≥g(sm) + ϵh(sm, s) (Using Eq. 5.10)
≥g(s) (Using Eq. 5.11)

(Contradiction 222)

60

5. ePA*SE: Edge-Based Parallel A* for Slow Evaluations

Contradiction 1 and Contradiction 2 invalidate the Assumption, which
proves Theorem 6.

Theorem 7 If w ≤ ϵ, and considering any two edges e and e’ in OPEN , the source
state of e is independent of the source state of e’ if f(e) ≤ f(e′).

Proof

f(e) ≤ f(e′)

=⇒ g(e.s) + wh(e.s) ≤ g(e′.s) + wh(e′.s)

=⇒ g(e.s) ≤ g(e′.s) + w(h(e′.s)− h(e.s))

≤ g(e′.s) + wh(e′.s, e.s)

(forward-backward consistency)
≤ g(e′.s) + ϵh(e′.s, e.s)

(since w ≤ ϵ)

Therefore, e.s is independent of e′.s by definition (Eq. 5.1).

Theorem 8 (Bounded suboptimality) If w ≤ ϵ, and w-ePA*SE chooses a dummy
edge ed = (s, ad) for expansion, such that the source state s belongs to the goal region
i.e. s ∈ G, then g(s) ≤ ϵg∗(s) = ϵ · c∗.

Proof This directly follows from theorem 6 and 7.

Theorem 9 (Completeness) If there exists at least one path π in G from s0 to G,
w-ePA*SE will find it.

Proof This proof makes use of Theorem 8 and is similar to the equivalent proof of
serial wA*.

5.4 Evaluation

We evaluate w-ePA*SE in two planning domains where edge evaluation is expensive.
All experiments were carried out on Amazon Web Services (AWS) instances. All
algorithms were implemented in C++.

61

5. ePA*SE: Edge-Based Parallel A* for Slow Evaluations

5.4.1 3D Navigation

The first domain is the PR2 navigation domain introduced in Section 4.4 of Chapter 4
and shown in Figure 4.3. We evaluate 50 trials in each of which the start configuration
of the robot and goal region are sampled randomly.

Figure 5.2: (Navigation) Top: Mean speedup achieved by PwA*, w-PA*SE and
w-ePA*SE over wA*. Bottom: Mean number of edges evaluated by w-PA*SE and
w-ePA*SE.

We compare w-ePA*SE with other CPU-based parallel search baselines. The first
baseline is a variant of weighted A* in which, during a state expansion, the successors
of the state are generated, and the corresponding edges are evaluated in parallel. For
lack of a better term, we call this baseline Parallel Weighted A* (PwA*). Note that
this is very different from the Parallel A* (PA*) algorithm [21], which has already

62

5. ePA*SE: Edge-Based Parallel A* for Slow Evaluations

Number of threads (Nt)
1 4 5 10 15 20 30 40 50 70 90

w = ϵ = 1

wA* 3.33 - - - - - - - - - -
PwA* 3.37 1.31 1.06 0.71 0.65 0.66 0.66 0.64 0.64 0.65 0.65

w-PA*SE 3.37 1.14 0.85 0.39 0.26 0.22 0.24 0.37 0.53 0.85 1.22
w-ePA*SE w/o thread mgt. 3.43 1.17 0.88 0.39 0.26 0.20 0.18 0.22 0.24 0.27 0.30

w-ePA*SE 3.34 1.17 0.87 0.40 0.27 0.21 0.18 0.18 0.18 0.18 0.18

w = ϵ = 50

wA* 0.71 - - - - - - - - - -
PwA* 0.72 0.29 0.24 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15

w-PA*SE 0.71 0.28 0.22 0.13 0.11 0.11 0.10 0.12 0.15 0.24 0.33
w-ePA*SE w/o thread mgt. 0.75 0.25 0.19 0.09 0.06 0.06 0.06 0.07 0.08 0.09 0.11

w-ePA*SE 0.72 0.25 0.19 0.09 0.07 0.06 0.06 0.06 0.06 0.06 0.06

Table 5.1: (Navigation) Mean planning times (s) for wA*, PwA*, w-PA*SE and
w-ePA*SE for varying Nt, with w = ϵ = 1 (top) and with w = ϵ = 50 (bottom).

been shown to underperform w-PA*SE [20]. The second baseline is w-PA*SE. These
two baselines leverage parallelization differently. PwA* parallelizes the generation
of successors, whereas w-PA*SE parallelizes state expansions. w-ePA*SE, on the
other hand, parallelizes edge evaluations. We also compare against a variation of
w-ePA*SE (w-ePA*SE w/o thread mgt.) that uses the thread management strategy
of w-PA*SE as opposed to the improved thread management strategy described in
the Method. Speedup over wA* is defined as the ratio of the mean runtime of wA*
over the mean runtime of a specific algorithm.

Figure 5.2 (top) shows the mean speedup achieved by w-PA*SE and the baselines
over wA* for varying Nt, for w = ϵ = 1 and w = ϵ = 50. The corresponding raw
planning times are shown in Table 5.1. The speedup achieved by PwA* saturates
at the branching factor of the domain. This is expected since PwA* parallelizes the
evaluation of the outgoing edges of a state being expanded. If Nt is greater than the
branching factor M , Nt −M threads remain unutilized. For low Nt, the speedup
achieved by w-ePA*SE matches that of w-PA*SE. However, for high Nt, the speedup
achieved by w-ePA*SE rapidly outpaces that of w-ePA*SE, especially for the inflated
heuristic case. This is because w-ePA*SE is much more efficient than w-PA*SE since
it parallelizes edge evaluations instead of state expansions. This increased efficiency
is more apparent with the availability of a larger computational budget in the form

63

5. ePA*SE: Edge-Based Parallel A* for Slow Evaluations

Number of threads (Nt)
1 4 5 10 15 20 30 40 50 70 90

w = ϵ = 1

PA*SE 5674 5646 5644 5681 5796 5986 6709 7523 7864 8063 8000
w-ePA*SE 5660 5654 5653 5650 5647 5644 5644 5649 5653 5662 5674

w = ϵ = 50

w-PA*SE 1309 1494 1560 2013 2556 3105 4098 5117 5886 7000 7427
w-ePA*SE 1311 1274 1273 1296 1311 1325 1366 1396 1450 1529 1665

Table 5.2: (Navigation) Number of edges evaluated by w-PA*SE and w-ePA*SE
for varying Nt, with w = ϵ = 1 (top) and with w = ϵ = 50 (bottom).

of a greater number of threads to allocate to evaluating edges. The speedup of
w-PA*SE reaches a peak and then rapidly deteriorates. This is also the case for
w-ePA*SE w/o (improved) thread mgt. (described in the Method), even though
the peak speedup of w-ePA*SE w/o thread mgt. is higher than that of w-PA*SE.
However, the speedup of w-ePA*SE with the improved thread management strategy
reaches a maximum and then saturates instead of degrading. This is due to the
difference in the multithreading strategy employed by w-ePA*SE as explained in the
Method.

Figure 5.2 (bottom) and Table 5.2 show that w-ePA*SE evaluates significantly
fewer edges as compared to w-PA*SE. With a greater number of threads, the differ-
ence is significant. This indicates that beyond parallelization of edge evaluations, the
w-eA* formulation that w-ePA*SE uses has another advantage that if the heuristic
is informative, w-ePA*SE evaluates fewer edges than w-PA*SE, which contributes
to the lower planning time of w-ePA*SE. The intuition behind this is that in wA*,
the evaluation of the outgoing edges from a given state is tightly coupled with the
expansion of the state because all the outgoing edges from a given state must be
evaluated at the same time when the state is expanded. In w-eA*, the evaluation of
these edges is decoupled from each other since the search expands edges instead of
states.

64

5. ePA*SE: Edge-Based Parallel A* for Slow Evaluations

Pick/SwitchArm

Motion planner Motion planner Simulator

Place

Figure 5.3: (Assembly) Top: The PR2 has to arrange a set of blocks on the table
(left) into a given configuration (right). Bottom: It is equipped with Pick, Place
and SwitchArm controllers. The Pick controller uses the motion planner to reach a
block. The Place controller uses the motion planner to place a block and simulates
the outcome of releasing the block. The SwitchArm controller uses the motion
planner to move the active arm to a home position.

5.4.2 Assembly Task

The second domain is a task and motion planning problem of assembling a set of
blocks on a table into a given structure by a PR2, as shown in Figure 5.3. This do-
main is similar to the one introduced in Section 4.4 of Chapter 4, but in this work, we
enable the dual-arm functionality of the PR2. We assume full state observability of
the 6D poses of the blocks and the robot’s joint configuration. The goal is defined by
the 6D poses of each block in the desired structure. The PR2 is equipped with Pick
and Place controllers, which are used as macro-actions in high-level planning. In
addition, there is a SwitchArm controller which switches the active arm by moving
the current active arm to a home position. All of these actions use a motion plan-

65

5. ePA*SE: Edge-Based Parallel A* for Slow Evaluations

wA* PwA* w-PA*SE w-ePA*SE

Nt 1 25 10 10

Time (s) 3010 1066 419 301
Speedup 1 2.8 7.2 10

Table 5.3: (Assembly) Mean planning times and speedup over wA* for w-ePA*SE
and the baselines.

ner internally to compute collision-free trajectories in the workspace. Additionally,
Place has access to a simulator (NVIDIA Isaac Gym [58]) to simulate the outcome
of placing a block at its desired pose. For example, if the planner tries to place a
block at its final pose but has not placed the block underneath yet, the placed block
will not be supported, and the structure will not be stable. This would lead to an
invalid successor during planning. We set a simulation timeout of ts = 0.2 s to eval-
uate the outcome of placing a block. Considering the variability in the simulation
speed and the overhead of communicating with the simulator, this results in a total
wall time of less than 2 s for the simulation. The motion planner has a timeout
of tp = 60 s based on the wall time, and therefore that is the maximum time the
motion planning can take. Successful Pick, Place and SwitchArm actions have
unit costs and infinite otherwise. A Pick action on a block is successful if the motion
planner finds a feasible trajectory to reach the block within tp. A Place action on a
block is successful if the motion planner finds a feasible trajectory to place the block
within tp, and simulating the block placement results in the block coming to rest at
the desired pose within ts. A SwitchArm action is successful if the motion planner
finds a feasible trajectory to the home position for the active arm within tp. The
number of blocks that are not in their final desired pose is used as the admissible
heuristic, with w = ϵ = 5. Table 5.3 shows planning times and speedup over wA*
for w-ePA*SE and those of the baselines. We use 25 threads in the case of PwA*
because that is the maximum branching factor in this domain. The numbers are
averaged across 20 trials, in each of which the blocks are arranged in random order
on the table. Table 5.3 shows the mean planning times and speedup over wA* of
w-ePA*SE as compared to those of the lazy search baselines. w-ePA*SE achieves a
10x speedup over wA* and outperforms the baselines in this domain as well.

66

5. ePA*SE: Edge-Based Parallel A* for Slow Evaluations

5.5 Conclusion
We presented an optimal parallel search algorithm ePA*SE that improves on PA*SE
by parallelizing edge evaluations instead of state expansions. We also presented a
sub-optimal variant w-ePA*SE and proved that it maintains bounded suboptimality
guarantees. Our experiments showed that w-ePA*SE achieves an impressive reduc-
tion in planning time across two very different planning domains, which shows the
generalizability of our conclusions. Empirically, we have observed w-ePA*SE to be
a strict improvement over w-PA*SE for domains with expensive-to-compute edges.
Even though we also test with a relatively large budget of threads, the performance
improvement is significant even with a smaller budget of fewer than 10 threads, which
is the case with typical mobile computers.

67

5. ePA*SE: Edge-Based Parallel A* for Slow Evaluations

68

Chapter 6

A-ePA*SE: Anytime Edge-Based
Parallel A* for Slow Evaluations

Though ePA*SE is highly efficient, it needs to come up with a solution under a
strict time budget for it to be applicable in real-time robotics. Though the optimal
solution is preferable, that is often not the first priority. For such domains, anytime
algorithms have been developed that first prioritize a quick feasible solution by al-
lowing a high sub-optimality bound. This is typically done by incorporating a high
inflation factor on the heuristic. They then attempt to improve the solution by incre-
mentally decreasing the inflation factor and therefore tightening the sub-optimality
bound, until the time runs out. In this chapter, we bring the anytime property to
ePA*SE. We show that the resulting algorithm, A-ePA*SE, achieves higher efficiency
than existing anytime algorithms.

6.1 Problem Definition
Let a finite graph G = (V , E) be defined as a set of vertices V and directed edges E .
Each vertex v ∈ V represents a state s in the state space of the domain S. An edge
e ∈ E connecting two vertices v1 and v2 in the graph represents an action a ∈ A that
takes the agent from corresponding states s1 to s2. In this work, we assume that
all actions are deterministic. Hence an edge e can be represented as a pair (s, a),
where s is the state at which action a is executed. For an edge e, we will refer to

69

6. A-ePA*SE: Anytime Edge-Based Parallel A* for Slow Evaluations

the corresponding state and action as e.s and e.a respectively. s0 is the start state
and G is the goal region. c : E → [0,∞] is the cost associated with an edge. g(s)

or g-value is the cost of the best path to s from s0 found by the algorithm so far
and h(s) is a consistent heuristic [17]. Additionally, there exists a forward-backward
consistent [20] pairwise heuristic function h(s, s′) that provides an estimate of the
cost between any pair of states. A path π is defined by an ordered sequence of edges
eNi=1 = (s, a)Ni=1, the cost of which is denoted as c(π) =

∑N
i=1 c(ei). The objective

is to find a path π from s0 to a state in the goal region G within a time budget T .
There is a computational budget of Nt threads which can run in parallel.

6.2 Method

Algorithm 11 A-ePA*SE: Plan
1: A ← action space , Nt ← thread budget, T ← time budget
2: w0 ← initial heuristic weight, ∆w ← delta heuristic weight
3: G← graph, s0 ← start state , G ← goal region
4: terminate← False
5: procedure Plan
6: INCON← ∅
7: ∀s ∈ G, s.g ←∞
8: s0.g ← 0, w = w0

9: insert (s0,ad) in OPEN ▷ Dummy edge from s0
10: while w >= 1 and not Timeout (T) do
11: INCON = ∅, CLOSED = ∅
12: ImprovePath(w)
13: Publish current w bounded sub-optimal solution
14: w = w −∆w
15: OPEN = OPEN ∪ INCON
16: Re-balance OPEN with new w
17: end while
18: terminate = True
19: end procedure

Inspired by ARA* [19], we extend w-ePA*SE to a parallelized anytime repairing
algorithm A-ePA*SE by inheriting three algorithmic techniques:

1. Define locally inconsistent states as the states whose g-values change while
they are in CLOSED∪BE during the current ImprovePath execution ([19]).
A-ePA*SE keeps track of locally inconsistent states by maintaining an incon-
sistent list INCON (Line 30, Alg. 13).

70

6. A-ePA*SE: Anytime Edge-Based Parallel A* for Slow Evaluations

Algorithm 12 A-ePA*SE: ImprovePath
1: procedure ImprovePath
2: LOCK
3: while f(sg) > mins∈OPEN (f(s)) do
4: if OPEN = ∅ and BE = ∅ then
5: UNLOCK
6: return ∅
7: end if
8: remove an edge (s,a) from OPEN that has the

smallest f((s,a)) among all states in OPEN that
satisfy Equations 5.2 and 5.3

9: if such an edge does not exist then
10: UNLOCK
11: wait until OPEN or BE change
12: LOCK
13: continue
14: end if
15: if s ∈ G and f(sg) > f(s) then
16: sg = s
17: plan = Backtrack(s)
18: end if
19: UNLOCK
20: while (s,a) has not been assigned a thread do
21: for i = 1 : Nt do
22: if thread i is available then
23: if thread i has not been spawned then
24: Spawn EdgeExpandThread(i)
25: end if
26: Assign (s,a) to thread i
27: end if
28: end for
29: end while
30: LOCK
31: end while
32: UNLOCK
33: return plan
34: end procedure

2. After every ith ImprovePath call exits, A-ePA*SE initializes OPEN for the
next search iteration i+1 as OPENi+1 = OPENi∪INCON . (Line 15, Alg.11).

3. A-ePA*SE changes the termination condition of a search iteration (Line 3,
Alg.12) so that it only expands states that 1) have g-value that can be lowered
in the current ImprovePath iteration or 2) were locally inconsistent in the
previous ImprovePath iteration.

71

6. A-ePA*SE: Anytime Edge-Based Parallel A* for Slow Evaluations

Algorithm 13 A-ePA*SE: Edge Expansion
1: procedure EdgeExpandThread(i)
2: while not terminate do
3: if thread i has been assigned an edge (s,a) then
4: Expand ((s,a))
5: end if
6: end while
7: end procedure
8: procedure Expand((s,a))
9: LOCK
10: if a = ad then
11: insert s in BE
12: for a ∈ A do
13: f ((s,a)) = g(s) + h(s)
14: insert (s,a) in OPEN with f ((s,a))
15: end for
16: else
17: UNLOCK
18: if NotEvaluated ((s,a)) then
19: s′, c ((s,a))← GenerateSuccessor ((s,a))
20: else
21: s′, c ((s,a))← GetSuccessor ((s,a))
22: end if
23: LOCK
24: if g(s′) > g(s) + c ((s,a)) then
25: g(s′) = g(s) + c ((s,a))
26: f

(
(s′,ad)

)
= g(s′) + wh(s′)

27: if s′ /∈ CLOSED ∪BE then
28: update (s′,ad) in OPEN with f

(
(s′,ad)

)
29: else
30: update (s′,ad) in INCON with f

(
(s′,ad)

)
31: end if
32: end if
33: n_successors_generated(s)+ = 1
34: if n_successors_generated(s) = |A| then
35: remove s from BE
36: insert s in CLOSED
37: end if
38: end if
39: UNLOCK
40: end procedure

A-ePA*SE extends w-ePA*SE with an additional outer control loop (Alg. 11)
that sequentially reduces w. In the first iteration, ImprovePath is called with w0.
This is equivalent to running w-ePA*SE except for the algorithmic change described
in technique 1. When ImprovePath returns, the current w-suboptimal solution

72

6. A-ePA*SE: Anytime Edge-Based Parallel A* for Slow Evaluations

is published (Line 13, Alg. 11). Before every subsequent call to ImprovePath,
w is reduced by ∆w and OPEN is updated as described in technique 2. It is
possible that no or very few states in OPEN satisfy the termination check stated
in technique 3 and ImprovePath returns right away or after a few expansions.
This reusing of previous search effort is the fundamental source of efficiency gains
for A-ePA*SE as compared to running w-ePA*SE from scratch with a reduced w.
A-ePA*SE terminates when either 1) the time budget expires and the current best
solution is returned or 2) ImprovePath finds a provably optimal solution with
w = 1.

6.3 Properties
Theorem 10 (Anytime correctness) Each time the ImprovePath function ex-
its, the following holds: the cost of a greedy path from s0 to sg is no larger than
λg∗(sg), where λ = max(ϵ, w).

Theorem 11 (Anytime efficiency) Within each call to ImprovePath a state s

is expanded only if it was already locally inconsistent before the call to ImprovePath
or its g-value was lowered during the current execution of ImprovePath.

Proof sketch These properties were proved for each ImprovePath function call
in ARA* (Corollary 13 & Theorem 2 in [59]) with λ = w. The anytime correctness
properties are also proved for a single w-ePA*SE run (Theorem 8 in Chapter 5) with
λ = max(ϵ, w). Since we are inheriting the method to repair the graph and reuse
the search effort of ARA*, these properties similarly follow for each ImprovePath
function call in A-ePA*SE.

6.4 Evaluation
We evaluate A-ePA*SE on five scaled MovingAI 2D maps [60], with state space being
2D grid coordinates shown in Fig. 6.1. The agent has a square footprint with a side
length of 32 units. The action space comprises moving along eight directions by 25
cell units. To check action feasibility, we collision-check the footprint at interpolated
states with a 1-unit discretization. For each map, we sample 50 random start-goal

73

6. A-ePA*SE: Anytime Edge-Based Parallel A* for Slow Evaluations

Figure 6.1: (2D Grid World) Scaled MovingAI maps with the start state shown in
green, the goal state shown in red and the computed path shown in blue.

pairs and verify that there exists a solution by running wA* with a large timeout. All
algorithms use Euclidean distance as the heuristic. We run the experiments with two
cost maps: 1) Euclidean cost and 2) Euclidean cost multiplied with a random factor
map generated by sampling a uniform distribution between 1 and 100. In the random
cost map, there is a tendency for the solution to be improved more gradually with
the decrease in w. In the case of Euclidean cost, the solution tends to improve only
from one topology to another with w decrease, yielding less intermediate suboptimal
solutions. We compare A-ePA*SE with three baselines: 1) ARA* 2) ePA*SE and 3)
A-ePA*SE-naive which runs w-ePA*SE sequentially with decreasing w without reuse
of previous search effort. For the anytime algorithms, w0 is set to 50, and ∆w is set
to 0.5. All experiments were carried out on an AMD Threadripper Pro 5995WX
workstation with a thread budget of 120. In all cases, we keep a high time budget,
so none of the algorithms timeout.

Fig. 6.2 (top) shows the optimality ratio (optimal cost / actual cost) achieved by
an anytime algorithm at a specific time point. For every problem, we calculate the
optimality ratio at every time point when ImprovePath returns. We then discretize
time and assign each time point with the best optimality ratio achieved so far. This
is then averaged across all maps and problems separately for the two different cost
maps. To show the relative performance, Fig. 6.2 (bottom) divides the time it takes
the baselines to achieve a given optimality ratio by the time of A-ePA*SE to achieve
the same optimality ratio. Specifically, the plot represents how many times slower
an algorithm is than A-ePA*SE in computing a solution with a certain optimality
factor represented by the x-axis. We see that ARA* takes significantly longer to
reach the same optimality ratio as compared to A-ePA*SE. A-ePA*SE-naive does

74

6. A-ePA*SE: Anytime Edge-Based Parallel A* for Slow Evaluations

ARA*

A-ePA*SE-naive

A-ePA*SE

Random CostEuclidean Cost

Time (s)

O
p

ti
m

a
li
ty

 R
a
ti

o

0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

10

12

14

0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

10

12

Optimality Ratio

T
im

e
 R

a
ti

o

0.00 0.05 0.10 0.15 0.20

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.2: Top: The mean optimality ratio an algorithm achieves at a specific time
point. Bottom: Planning times of the baselines divided by that of A-ePA*SE to
achieve the same mean optimality ratio. In other words, for a specific algorithm, the
bottom plots show how much slower (y-axis) than A-ePA*SE that algorithm gets to
a solution that has a specific optimality factor (x-axis).

as good as A-ePA*SE for lower optimality ratios, but it takes significantly longer
to achieve optimality because it does not reuse previous search effort. A-ePA*SE
outperforms ARA* as predicted due to the efficiency gained from parallelization.

Table 6.1 top shows raw planning times for three stages. t̂init is the mean time
to generate the first solution, t̂opt is the mean time to first discover the optimal
solution in hindsight, and t̂term is the mean time to provably generate the optimal
solution by the final ImprovePath call with w = 1. Table 6.1 bottom presents
the average speedup of A-ePA*SE over the baselines (tbaseline/tA-ePA*SE). This

75

6. A-ePA*SE: Anytime Edge-Based Parallel A* for Slow Evaluations

is generated by computing the speedup for each run and then averaging them over
all runs and all maps. A-ePA*SE-naive and A-ePA*SE compute the initial solution
faster than ARA* due to parallelization and than ePA*SE due to the high inflation
on the heuristic. A-ePA*SE computes the provably optimal solution quicker than
A-ePA*SE-naive and in ARA*, but slower than ePA*SE. This is expected since
ePA*SE is not an anytime algorithm and runs a single optimal search. However,
A-ePA*SE can discover the optimal solution in hindsight faster than ePA*SE. This
means that even if the time budget runs out before the A-ePA*SE runs its final
iteration with w = 1 to provably generate the optimal plan and the robot executes
the best plan so far, it may still end up behaving optimally. This is an important
and useful empirical result for real-time robotics.

Summary of results

The experimental evaluation demonstrates the advantages of A-ePA*SE over the
baselines.

• Compared to ARA*, both Fig. 6.2 and Table. 6.1 indicate that A-ePA*SE
outperforms ARA* in planning time.

• As shown in Table 6.1, A-ePA*SE and A-ePA*SE-naive both find the initial

Euclidean Cost Random Cost

t̂init t̂opt t̂term t̂init t̂opt t̂term

ARA* 19 (0.923) 47 50 41 (0.902) 99 178
ePA*SE 11 (1.0) 11 11 38 (1.0) 38 38

A-ePA*SE-naive 6 (0.948) 159 200 10 (0.951) 396 767
A-ePA*SE 6 (0.949) 14 16 10 (0.954) 27 44

ŝinit ŝopt ŝterm ŝinit ŝopt ŝterm

ARA* 2.69 3.62 2.89 3.52 3.70 3.88
ePA*SE 1.75 1.00 0.70 4.17 1.82 0.86

A-ePA*SE-naive 0.98 9.19 11.94 1.01 13.12 16.44

Table 6.1: Top: Mean time (ms) to find the initial feasible solution (t̂init), discover
optimal solution (t̂opt) and prove optimal solution (t̂term). Numbers in parenthesis
in the t̂init columns are the initial optimality ratios. Bottom: Speedup of A-ePA*SE
over the baselines.

76

6. A-ePA*SE: Anytime Edge-Based Parallel A* for Slow Evaluations

solution at around 0.95 optimality. However, Fig. 6.2 shows that A-ePA*SE
improves the optimality ratio quicker than A-ePA*SE-naive in the 0.95-1.0
optimality region.

• Compared to ePA*SE, A-ePA*SE has anytime behavior where it quickly com-
putes a feasible solution and then improves it over time. Additionally, it com-
putes the optimal solution in hindsight (t̂opt) faster than ePA*SE, which is a
useful insight in the real-time robotics context.

6.5 Conclusion
In this chapter, we presented an anytime version of ePA*SE termed A-ePA*SE. Our
experiments demonstrated that A-ePA*SE achieves a significant speedup over ARA*
in both computing an initial solution and then improving it to compute the optimal
solution. Additionally, the anytime property of A-ePA*SE makes it potentially more
useful than ePA*SE in a range of real-time robotics domains.

In the current formulation of A-ePA*SE, both the initial heuristic inflation w0

and the decrement ∆w between successive ImprovePath calls are parameters to be
tuned. In the future, A-ePA*SE can be extended to a non-parametric formulation.

77

6. A-ePA*SE: Anytime Edge-Based Parallel A* for Slow Evaluations

78

Chapter 7

GePA*SE: Generalized
Edge-Based Parallel A* for Slow
Evaluations

In Chapter 5, we presented a parallelized planning algorithm ePA*SE that changes
the basic unit of search from state expansions to edge expansions. This decouples
the evaluation of edges from the expansion of their common parent state, giving
the search the flexibility to figure out what edges need to be evaluated to solve the
planning problem. In domains with expensive edges, ePA*SE achieves lower plan-
ning times and evaluates fewer edges than PA*SE. ePA*SE is efficient in domains
where the action space is homogenous in computational effort, i.e., all actions have
similar evaluation times. In some domains, the action space can comprise a com-
bination of cheap and expensive to evaluate actions. For the sake of concreteness,
consider planning on manipulation lattices. The action space can comprise static
primitives generated offline, each of which moves a single joint, and Adaptive Mo-
tion Primitives, which use an optimization-based IK solver to compute a valid goal
configuration (based on the workspace goal) and then linearly interpolate from the
expanded state to the goal [31]. The latter are generated online and are signifi-
cantly more expensive to compute than the static primitives. In such domains, it is
not efficient to delegate a new thread for every edge.

Motivated by these insights, we develop GePA*SE, which generalizes the key

79

7. GePA*SE: Generalized Edge-Based Parallel A* for Slow Evaluations

ideas in PA*SE and ePA*SE, i.e., state expansions and edge evaluations respectively.
We show that GePA*SE outperforms both PA*SE and ePA*SE in domains with het-
erogenous action spaces by employing a parallelization strategy that handles cheap
edges similar to PA*SE and expensive edges similar to ePA*SE. Additionally, it
uses a more efficient strategy to carry out edge independence checks for large graphs.
While GePA*SE is optimal, its bounded suboptimal variant w-GePA*SE inherits the
bounded suboptimality guarantees of w-PA*SE and w-ePA*SE and achieves faster
planning by employing an inflation factor on the heuristic. We evaluate w-GePA*SE
in a 2D grid-world and a 7-DoF manipulation domain and demonstrate that it
achieves lower planning times in both.

7.1 Problem Definition

Let a finite graph G = (V , E) be defined as a set of vertices V and directed edges E .
Each vertex v ∈ V represents a state s in the state space of the domain S. An edge
e ∈ E connecting two vertices v1 and v2 in the graph represents an action a ∈ A
that takes the agent from corresponding state s1 to s2. The action space is split into
subsets of cheap (Ac) and expensive actions (Ae) s.t. Ac∪Ae = A and corresponding
cheap (Ec) and expensive edges (Ee) s.t. Ec ∪ Ee = E . An edge e can be represented
as a pair (s, a), where s is the state at which action a is executed. For an edge e,
we will refer to the corresponding state and action as e.s and e.a respectively. s0

is the start state, and G is the goal region. c : E → [0,∞] is the cost associated
with an edge. g(s) or g-value is the cost of the best path to s from s0 found by the
algorithm so far. h(s) is a consistent and therefore admissible heuristic [17]. A path
π is an ordered sequence of edges eNi=1 = (s, a)Ni=1, the cost of which is denoted as
c(π) =

∑N
i=1 c(ei). The objective is to find a path π from s0 to a state in the goal

region G with the optimal cost c∗. There is a computational budget of Nt parallel
threads available. There exists a pairwise heuristic function h(s, s′) that provides an
estimate of the cost between any pair of states. It is forward-backward consistent [20]
i.e. h(s, s′′) ≤ h(s, s′) + h(s′, s′′) ∀ s, s′, s′′ and h(s, s′) ≤ c∗(s, s′) ∀ s, s′.

80

7. GePA*SE: Generalized Edge-Based Parallel A* for Slow Evaluations

7.2 Method

Similar to ePA*SE, GePA*SE searches over edges instead of states and exploits the
notion of edge independence to parallelize this search. There are two key differences.
First, GePA*SE handles cheap and expensive-to-evaluate edges differently. Second,
it uses a more efficient independence check. In this section, we expand on these
differences.

In A*, during a state expansion, all its successors are generated and are in-
serted/repositioned in the open list. In ePA*SE, the open list (OPEN) is a priority
queue of edges (not states) that the search has generated but not expanded, where
the edge with the smallest key/priority is placed in the front of the queue. The prior-
ity of an edge e = (s, a) in OPEN is f ((s, a)) = g(s) + h(s). Expansion of an edge
(s, a) involves evaluating the edge to generate the successor s′ and adding/updating
(but not evaluating) the edges originating from s′ into OPEN with the same pri-
ority of g(s′) + h(s′). Henceforth, whenever g(s′) changes, the positions of all of
the outgoing edges from s′ need to be updated in OPEN . To avoid this, ePA*SE
replaces all the outgoing edges from s′ by a single dummy edge (s′, ad), where ad

stands for a dummy action until the dummy edge is expanded. Every time g(s′)

changes, only the dummy edge has to be repositioned. Unlike what happens when a
real edge is expanded, when the dummy edge (s′, ad) is expanded, it is replaced by
the outgoing real edges from s′ in OPEN . The real edges are expanded when they
are popped from OPEN by an edge expansion thread. This means that every edge
gets delegated to a separate thread for expansion.

In contrast to ePA*SE, in GePA*SE, when the dummy edge (s, ad) from s is
expanded, the cheap edges from s are expanded immediately (Line 17, Alg. 15),
i.e., the successors and costs are computed, and the dummy edges originating from
the successors are inserted into OPEN . However, the expensive edges from s are
not evaluated and are instead inserted into OPEN (Line 13, Alg. 15). This means
that the thread that expands the dummy edge also expands the cheap edges at the
same time. This eliminates the overhead of delegating a thread for each cheap edge,
improving the overall efficiency of the algorithm. The expensive edges are instead
expanded when they are popped from OPEN and are assigned to an edge evaluation
thread. If Ae = ∅, GePA*SE behaves the same as PA*SE, i.e., state expansions are

81

7. GePA*SE: Generalized Edge-Based Parallel A* for Slow Evaluations

Algorithm 14 w-GePA*SE: Planning Loop
1: terminate← False
2: procedure Plan
3: ∀s ∈ G, s.g ←∞, n_successors_generated(s) = 0
4: s0.g ← 0
5: insert (s0,ad) in OPEN ▷ Dummy edge from s0
6: LOCK
7: while not terminate do
8: if OPEN = ∅ and BE = ∅ then
9: terminate = True
10: UNLOCK
11: return ∅
12: end if
13: remove an edge (s,a) from OPEN that has the

smallest f((s,a)) among all states in OPEN that
satisfy Equations 5.2 and 5.4

14: if such an edge does not exist then
15: UNLOCK
16: wait until OPEN or BE change
17: LOCK
18: continue
19: end if
20: if s ∈ G then
21: terminate = True
22: UNLOCK
23: return Backtrack(s)
24: end if
25: UNLOCK
26: while (s,a) has not been assigned a thread do
27: for i = 1 : Nt do
28: if thread i is available then
29: if thread i has not been spawned then
30: Spawn EdgeExpandThread(i)
31: end if
32: Assign (s,a) to thread i
33: end if
34: end for
35: end while
36: LOCK
37: end while
38: terminate = True
39: UNLOCK
40: end procedure

parallelized and each thread evaluates all the outgoing edges from an expanded state
sequentially. If Ac = ∅, GePA*SE behaves the same as ePA*SE i.e. edge evaluations

82

7. GePA*SE: Generalized Edge-Based Parallel A* for Slow Evaluations

Algorithm 15 w-GePA*SE: Edge Expansion
1: procedure ExpandEdgeThread(i)
2: while not terminate do
3: if thread i has been assigned an edge (s,a) then
4: Expand ((s,a))
5: end if
6: end while
7: end procedure
8: procedure Expand((s,a))
9: if a = ad then
10: insert s in BE with priority f(s)
11: for a′ ∈ Ae do
12: f ((s′,a)) = g(s) + wh(s)
13: insert (s,a) in OPEN with f ((s′,a))
14: end for
15: UNLOCK
16: for a′ ∈ Ac do
17: ExpandEdge ((s′,a))
18: end for
19: LOCK
20: else
21: ExpandEdge ((s,a))
22: end if
23: end procedure
24: procedure ExpandEdge((s,a))
25: s′, c ((s,a))← GenerateSuccessor ((s,a))
26: LOCK
27: if s′ /∈ CLOSED ∪BE and
28: g(s′) > g(s) + c ((s,a)) then
29: g(s′) = g(s) + c ((s,a))
30: s′.parent = s
31: f

(
(s′,ad)

)
= g(s′) + wh(s′)

32: insert/update (s′,ad) in OPEN with f
(
(s′,ad)

)
33: end if
34: n_successors_generated(s)+ = 1
35: if n_successors_generated(s) = |A| then
36: remove s from BE and insert in CLOSED
37: end if
38: UNLOCK
39: end procedure

are parallelized, and each thread expands a single edge at a time.

g(e.s)− g(s′) ≤ ϵh(s′, e.s) ∀s′ ∈ BE | f (s′) < f (e) (7.1)

83

7. GePA*SE: Generalized Edge-Based Parallel A* for Slow Evaluations

In w-ePA*SE, the source states of the edges under expansion are stored in a set
BE. However, in large graphs, BE can contain a large number of states, and per-
forming the independence check against the entire set can get expensive. Therefore
in w-GePA*SE, BE is a priority queue of states with priority f(s) = g(s) + wh(s).
To ensure the independence of an edge from all edges currently being expanded, it
is sufficient to perform the independence check against only the states in BE that
have a lower priority than the priority of the edge in OPEN (Inequality 7.1). Inde-
pendence of an edge e in OPEN from a state s′ in BE s.t. f(e.s) ≤ f(s′) can be
shown as follows:

=⇒ g(e.s) + wh(e.s) ≤ g(s′) + wh(s′)

=⇒ g(e.s)− g(s′) ≤ w(h(s′)− h(e.s))

=⇒ g(e.s)− g(s′) ≤ wh(s′, e.s) ≤ ϵh(s′, e.s)

(forward-backward consistency and w ≤ ϵ)

Beyond this, the bounded sub-optimality proof of w-GePA*SE is the same as
that of w-ePA*SE [13] since the only other way in which w-GePA*SE differs from
w-ePA*SE is in its parallelization strategy.

7.3 Evaluation

7.3.1 2D Grid World

We evaluate GePA*SE on five scaled MovingAI 2D maps with state space being 2D
grid coordinates (Figure 6.1, Chapter 6). The agent has a square footprint with an
edge length of 32 units. The action space comprises moving along eight directions by
25 cell units. To check for the feasibility of the actions, we collision-check the footprint
at interpolated states with a 1-unit discretization. For 4 of the actions, we cache the
footprint offline and apply the required offset for given state coordinates, which form
the cheap actions set. For the remaining actions, we compute the footprint from
scratch for every coordinate. Since footprint calculation is expensive, these actions
form the expensive actions set. This difference in footprint computation simulates

84

7. GePA*SE: Generalized Edge-Based Parallel A* for Slow Evaluations

2D Grid World (rc = 30) wA* w-PA*SE w-ePA*SE w-GePA*SE
Threads (Nt) 1 5 10 50 5 10 50 5 10 50
Mean Time (s) 0.81 0.41 0.27 0.17 0.18 0.08 0.02 0.13 0.06 0.02

(↓ 28%) (↓ 25%) (↓ 0%)
Edge Evaluations 522 1024 1513 3797 485 500 582 531 560 738

Mean Cost 901 885 902 959 958 980 988 956 959 969

2D Grid World (rc = 300) w-ePA*SE w-GePA*SE
Threads (Nt) 5 10 50 5 10 50
Mean Time (s) 1.65 0.74 0.15 1.13 0.51 0.12

(↓ 32%) (↓ 31%) (↓ 20%)
Edge Evaluations 484 494 534 518 529 700

Mean Cost 958 978 987 955 955 966

Table 7.1: (2D Grid World) Evaluation metrics for GePA*SE and the baselines
with rc = 30 (top) and rc = 30 (bottom). The percentage reduction in planning time
in w-GePA*SE from the best baseline based on mean planning time (colored blue)
for the same thread budget is indicated with ↓.

the diversity in action computational effort.
On average, the ratio of computation time for the actions in Ae to those in Ac

is rc = 30. For each map, we sample 50 random start-goal pairs and verify that
there exists a solution by running wA*. We compare w-GePA*SE against wA*,
w-PA*SE and w-ePA*SE. All algorithms use Euclidean distance as the heuristic
with an inflation factor of 50. We see that for smaller thread budgets, w-GePA*SE
achieves >= 25% lower planning times than w-ePA*SE, which is the best baseline
(Table 7.1). However, with Nt = 50, w-GePA*SE achieves identical performance to
that of w-ePA*SE. This is because, in this domain, with a large number of available
threads, there is no benefit of being selective about which edges should be expanded
in parallel. Instead, parallelizing all edges like w-ePA*SE does is as good. However,
with an additional increase in the computational cost of Ae by calling the footprint
calculation in a loop 10 times (rc = 300), w-GePA*SE achieves a 20% reduction in
planning times from w-ePA*SE even for Nt = 50.

7.3.2 Manipulation

We also evaluate GePA*SE in a manipulation planning domain for a task of assem-
bling a set of blocks on a table into a given structure by a PR2 (Figure 7.1 bottom).

85

7. GePA*SE: Generalized Edge-Based Parallel A* for Slow Evaluations

Figure 7.1: (Manipulation) The PR2 has to arrange a set of blocks on the table
(left) into a given configuration (middle) with a motion planner (right) to compute
Place actions.

Manipulation wA* w-PA*SE w-ePA*SE w-GePA*SE
Threads 1 5 10 50 5 10 50 5 10 50

Success (%) 83 92 94 97 91 93 94 92 94 97
Mean Time (s) 0.36 0.25 0.19 0.16 0.25 0.18 0.12 0.19 0.12 0.09

(↓ 24%|24%) (↓ 37%|33%) (↓ 44%|25%)

Table 7.2: (Manipulation) Evaluation metrics for GePA*SE and the baselines. The
percentage reduction in mean planning time in w-GePA*SE from w-PA*SE and
w-ePA*SE for the same thread budget is indicated with ↓.

We collect a problem set of Place actions for 40 assembly tasks in each of which the
blocks are arranged in random order on the table. Place requires a motion planner
internally to compute collision-free trajectories for the 7-DoF right arm of the PR2
in a cluttered workspace to place the blocks at their desired pose. Ac comprises 22
static motion primitives that move one joint at a time by 4 or 7 degrees in either
direction. Ae comprises a single dynamically generated primitive that attempts to
connect the expanded state to a goal configuration (rc = 20). This primitive involves
solving an optimization-based IK problem to find a valid configuration space goal
and then collision checking of a linearly interpolated path from the expanded state to
the goal state. All primitives have a uniform cost. A backward BFS in the workspace
(x, y, z) is used to compute the heuristic with an inflation factor of w = ϵ = 100. For
the problem set generation, we use w-GePA*SE with six threads and a large timeout.
We then evaluate all the algorithms with different thread budgets on this problem
set with a timeout of 2 s. In the computation of the metrics (Table 7.2), we only
consider the set of problems that are successfully solved and lead to a path length

86

7. GePA*SE: Generalized Edge-Based Parallel A* for Slow Evaluations

Figure 7.2: Box plot for planning time for GePA*SE and the baselines for several
thread budgets, with the median indicated with an orange line, and the mean indi-
cated with a dashed green line.

longer than two states for all algorithms. This is needed to not skew the statistics
by the cases where the IK-based primitive connects the start state directly to the
goal without any meaningful planning effort. We see that w-GePA*SE consistently
achieves the lowest mean planning times while maintaining a high success rate across
all thread budgets.

7.4 Conclusion
In this chapter, we presented GePA*SE, a generalized formulation of two parallel
search algorithms i.e. PA*SE and ePA*SE for domains with action spaces comprising
a mix of cheap and expensive to evaluate actions. We showed that by employing
different parallelization strategies for edges based on the computation effort required
to evaluate them, GePA*SE achieves higher efficiency on several planning domains.

87

7. GePA*SE: Generalized Edge-Based Parallel A* for Slow Evaluations

‘

88

Chapter 8

Edge-Based Parallelization of
INSAT

Trajectory optimization is a powerful tool for motion planning in high-dimensional
state spaces and under differential constraints. However, long time horizons and
planning around obstacles in non-convex spaces make them suffer from local minima,
increased time complexity, and lack of convergence guarantees. As a result, discrete
graph search planners and sampling-based planers are preferred when facing obstacle-
cluttered environments. A recently developed algorithm called INSAT [12, 32] effec-
tively combines graph search in the low-dimensional subspace and trajectory opti-
mization in the full-dimensional space for kinodynamic planning with global reason-
ing in large environments and planning with contact. Although INSAT could reason
about and solve complex planning problems, its planning times were large because
of the several expensive calls to an optimizer, limiting its practical use. This chapter
shows that systematic parallelization of INSAT using ePA*SE can achieve drastically
lower planning times and higher success rates. We refer to this algorithm as PINSAT:
Parallelized Interleaving of Search and Trajectory Optimization and demonstrate its
utility in a kinodynamic motion planning problem for a 6 DoF manipulator.

89

8. Edge-Based Parallelization of INSAT

1

4

2 3

5 6

Figure 8.1: (1) When the edge connecting s and s′ is expanded, PINSAT runs a
trajectory optimizer to compute a trajectory to s′ from its ancestors, starting with s.
(2) If the trajectory optimization from s fails, (3) it retries with the next ancestor s′′.
(4) If it succeeds in generating this trajectory (Φs′′s′), a new trajectory optimization
is attempted from the start state s0 to s. This optimization us initialized using the
trajectory from s0 to s′′ (Φs0s′′) and the previously generated trajectory from s′′ to
s′ (Φs′′s′). (4=5) If successful, the resulting trajectory Φs0s′ is stored in s′. (6) This
process is repeated for every edge expansion until the goal is reached and a trajectory
from the s0 to sg is generated.

8.1 Method

PINSAT interleaves trajectory optimization with the expansion of an edge in ePA*SE
as illustrated in Figure 8.1. When an edge (s, a) is expanded in the search to gener-
ate a successor s′, PINSAT attempts to compute a trajectory to s′ from its closest
ancestor. If the closest ancestor from which a trajectory is successfully generated
is s′′, PINSAT blends this trajectory Φs′′s′ with the trajectory from the start state
to s′′. This trajectory, Φs0s′′ , was generated when s′′ was generated at some earlier
point in the search. This blended trajectory, i.e., Φs0s′′ ∪Φs′′s′ , is then used to warm
state another trajectory optimization from s0 to s′. If successful, this trajectory Φs0s′

is stored in s′ (Line 25, Alg. 17). The cost of this trajectory Jtotal(Φs0s′) is used to
improve the g-value of s′ (Line 23, Alg. 17). When the goal is generated, a trajectory

90

8. Edge-Based Parallelization of INSAT

Φs0sg is similarly computed from the start. When the dummy edge from the goal
is popped from OPEN , the trajectory is returned as the solution to the planning
problem (Line 24, Alg. 16). Since every edge expansion in PINSAT also involves
several trajectory optimizations besides the generation of the successor, running it
on a single thread is prohibitively expensive. However, because of ePA*SE style par-
allelization of edge expansions, PINSAT is able to overcome this limitation, as we
will show in the next section. In w-ePA*SE, to maintain bounded sub-optimality, an
edge can only be expanded if it is independent of all edges ahead of it in OPEN and
the edges currently being expanded. However, since INSAT and, therefore, PINSAT
are not bounded sub-optimal algorithms, the expensive independence check can be
eliminated. Additionally, this increases the amount of parallelization that can be
achieved.

91

8. Edge-Based Parallelization of INSAT

Algorithm 16 PINSAT: Planning Loop
1: A ← action space , Nt ← number of threads, G← ∅
2: s0 ← start state , G ← goal region, terminate← False
3: procedure Plan
4: ∀s ∈ G, s.g ←∞, n_successors_generated(s) = 0
5: s0.g ← 0
6: insert (s0,ad) in OPEN ▷ Dummy edge from s0
7: LOCK
8: while not terminate do
9: if OPEN = ∅ and BE = ∅ then
10: terminate = True
11: UNLOCK
12: return ∅
13: end if
14: (s,a)← OPEN.min()
15: if such an edge does not exist then
16: UNLOCK
17: wait until OPEN or BE change
18: LOCK
19: continue
20: end if
21: if s ∈ G then
22: terminate = True
23: UNLOCK
24: return s.traj
25: else
26: UNLOCK
27: while (s,a) has not been assigned a thread do
28: for i = 1 : Nt do
29: if thread i is available then
30: if thread i has not been spawned then
31: Spawn EdgeExpandThread(i)
32: end if
33: Assign (s,a) to thread i
34: end if
35: end for
36: end while
37: LOCK
38: end if
39: end while
40: terminate = True
41: UNLOCK
42: end procedure

92

8. Edge-Based Parallelization of INSAT

Algorithm 17 PINSAT: Edge Expansion and Trajectory Optimization
1: procedure EdgeExpandThread(i)
2: while not terminate do
3: if thread i has been assigned an edge (s,a) then
4: Expand ((s,a))
5: end if
6: end while
7: end procedure
8: procedure Expand((s,a))
9: LOCK
10: if a = ad then
11: insert s in BE
12: for a ∈ A do
13: f ((s,a)) = g(s) + h(s)
14: insert (s,a) in OPEN with f ((s,a))
15: end for
16: else
17: UNLOCK
18: s′, c ((s,a))← GenerateSuccessor ((s,a))
19: LOCK
20: if s′ /∈ CLOSED ∪BE then
21: Φs0s′ = GenerateTrajectory(s, s′)
22: if Φs0s′ is not NULL and g(s′) > Jtotal(Φs0s′) then
23: g(s′) = Jtotal(Φs0s′)
24: s′.parent = s
25: s′.traj = Φs0s′

26: f
(
(s′,ad)

)
= g(s′) + h(s′)

27: insert/update (s′,ad) in OPEN with f
(
(s′,ad)

)
28: end if
29: end if
30: n_successors_generated(s)+ = 1
31: if n_successors_generated(s) = |A| then
32: remove s from BE
33: insert s in CLOSED
34: end if
35: end if
36: UNLOCK
37: end procedure
38: procedure GenerateTrajectory(s, s′)
39: for s′′ ∈ Ancestors(s) ∪ s do ▷ From s to s0
40: Φs′′s′ = Optimize(s′′, s′)
41: if Φs′′s′ is collision free then
42: Φs0s′ = WarmOptimize(Φs0s′′ ,Φs′′s′)
43: return Φs0s′

44: end if
45: return NULL
46: end for
47: end procedure

93

8. Edge-Based Parallelization of INSAT

8.2 Evaluation

Start Goal

Figure 8.2: Kinodynamic motion planning for an ABB arm. Figure (left to right)
shows waypoints along a plan.

INSAT PINSAT
Threads (Nt) 1 1 10 60 120
Success (%) 38 37 56 69 68

Mean | Median Planning Time (s) 4.21 | 2.28 3.58 | 1.83 0.86 | 0.43 0.53 | 0.28 0.60 | 0.47

Table 8.1: Statistics for planning time and success rate for INSAT and PINSAT with
a timeout of 20s for several thread budgets..

We evaluate PINSAT in a kinodynamic manipulation planning for an ABB robot
shown in Figure 8.2. The red horizontal and vertical bars are obstacles and divide
the region around the robot into eight quadrants, four below the horizontal bars and
four above. We randomly sample 500 hard start and goal configurations. We do so
by first ensuring that the end effector corresponding to one of those configurations is
above the horizontal bars and the other is underneath. We also ensure that the end
effector for the start and goal configurations are not sampled in the region enclosed
by the same two adjacent vertical bars. For the trajectory optimization, we use a
B-spline-based optimizer that respects the velocity, acceleration, and jerk constraints
for the robot. However, we inflate the velocity limit of the ABB by a factor of 10 for
every joint.

Table 8.1 and Figure 8.3 show success rate and planning time statistics for INSAT
and PINSAT for different thread budgets. The planning time statistics were only
computed over the problems that were successfully solved by both algorithms for a

94

8. Edge-Based Parallelization of INSAT

Figure 8.3: Box plot for planning time for INSAT and PINSAT for several thread
budgets, with the median indicated with an orange line and the mean indicated with
a dashed green line.

given thread budget. We also implemented a parallelized version of RRTConnect [28]
as a baseline. The kinematic plan generated by RRTConnect was then used to ini-
tialize a trajectory optimizer to compute the final kinodynamic plan. Though RRT-
Connect had a 100% success rate in computing a kinematic trajectory, the trajectory
optimizer had a success rate of 1%. Therefore, we did not include this baseline in
Table 8.1. PINSAT achieves a significantly higher success rate than INSAT for all
thread budgets greater than 1. Specifically, it achieves a 7x improvement in mean
planning time, a 9x improvement in median planning time, and a 1.8x improvement
in success rate for Nt = 60. Even with a single thread, PINSAT achieves lower plan-
ning times than INSAT. This is because of the decoupling of edge evaluations from
state expansions in ePA*SE which was explained in Chapter 5.

95

8. Edge-Based Parallelization of INSAT

8.3 Conclusion
In this Chapter, we presented PINSAT, which parallelizes the interleaving of search
and trajectory optimization using the ideas of ePA*SE developed in Chapter 5. In a
kinodynamic manipulation planning domain, PINSAT achieved significantly higher
success rates and a drastic reduction in planning time.

96

Chapter 9

Conclusion and Future Work

There is significant scope for further research in parallelized search algorithms. To
conclude this thesis, we will suggest some future research directions that we think
are worth exploring.

9.1 Conclusion
In this thesis, we developed a family of domain-agnostic search algorithms that utilize
parallelization to solve planning problems in robotics efficiently. They do so by
exploiting the characteristic feature of expensive to evaluate actions in robotics.

• In Chapter 4, we presented MPLP that searches the graph lazily and delegates
the evaluation of discovered edges to a pool of parallel threads.

• In Chapter 5, we presented ePA*SE that interleaves the search and parallel
evaluation of edges.

• In Chapter 6, we presented A-ePA*SE that brings the anytime property to
ePA*SE.

• In Chapter 7, we presented GePA*SE that extends ePA*SE to domains with
action spaces that are heterogenous in the computational effort required for
their evaluation. It does so by pooling together cheap-to-compute edges and
delegating their evaluation to the same thread while delegating the expensive
edges to independent threads.

97

9. Conclusion and Future Work

On the theoretical front, we proved that all the algorithms provide rigorous guar-
antees of completeness and bounded suboptimality. On the practical front, we eval-
uated them on several different types of task and motion planning domains and
demonstrated that incorporating parallelization can drastically reduce planning times
in robotics. In particular, in Chapter 8, we demonstrated the benefit of paralleliza-
tion in INSAT, which is an algorithm that interleaves search with computationally
expensive trajectory optimization. The resulting algorithm, PINSAT, achieves sig-
nificantly higher success rates and an order of magnitude improvement in planning
time statistics over INSAT.

9.1.1 A Practitioner’s Guide to Parallel Search

To condense the ideas developed in this thesis into an easy-to-interpret format, Fig-
ure 9.1 provides a guide for practitioners to pick the right algorithm for their planning
domain. Given a planning domain, the first question to ask is if edge evaluations are
expensive. If they are not, the algorithms developed in this thesis are less applicable,
and PA*SE would likely be the ideal choice. If they are, the second question to ask
is if there is a way to generate successors lazily and if a good optimistic estimate of
the edge costs is available. If the answer is yes, MPLP is the ideal choice. If lazy
successor generation is not possible or if a good optimistic estimate of the edge cost
is not available, the third question to ask is if anytime performance is required. If yes,
A-ePA*SE is the appropriate algorithm. If anytime performance is not required, the
fourth question to ask does the domain comprises a mix of cheap and expensive edges.
If yes, GePA*SE is the appropriate choice, and if not, ePA*SE is the algorithm to
go with.

9.2 Discussion and Future Work

9.2.1 MPLP with Parallelized Successors Generation

In MPLP, the size of the optimistic graph and, consequently, the number of edges
that need evaluation depends on how optimistic the successor generation is. If the
successor generation is extremely optimistic, the graph size can increase dramatically,

98

9. Conclusion and Future Work

Figure 9.1: A practitioner’s guide to parallel search. The algorithms highlighted in
green have been developed in this thesis.

resulting in an overall worse planning time as compared to wA*. Therefore, there is a
case to be made in expending some computation in generating meaningful successors.
An example is the assembly domain used in this thesis. One of the controllers
(Place) uses a motion planner to compute a trajectory and then a simulator to
simulate the outcome of placing a block in its desired pose. The simulator is required
to compute the final positions of the blocks which are a part of the state. Since
the generation of the state depends on the simulator, it needs to be a part of the
optimistic controller. Considering the variability in the simulation speed and the
overhead of communicating with the simulator, this can take a wall time of 1 s.
Therefore, if the simulation can be parallelized, the optimistic search itself can be
sped up, leading to overall faster planning.

In such domains, where the optimistic search takes a non-trivial amount of time,
ePA*SE can be used to parallelize it. MPLP and ePA*SE use fundamentally different
parallelization strategies. MPLP searches the graph lazily while evaluating edges
in parallel but relies on the assumption that states can be generated lazily without
evaluating edges. On the other hand, ePA*SE evaluates edges in a way that preserves
optimality without the need for state (and edge) re-expansions but does not rely on
lazy state generation. Therefore, in domains where states can be generated lazily,
however, the lazy state generation takes a non-trivial amount of time, and these two
different parallelization strategies can be combined.

99

9. Conclusion and Future Work

9.2.2 Parallelization of Search on the GPU

In Chapter 3, we discussed the limitations of GPUs because of their SIMD execu-
tion model. Though GPUs are limited by their inability to parallelize heterogenous
instructions, they are very good at large-scale parallelization of similar instructions.
In several planning domains, this can be exploited by delegating the evaluation of
actions that share the same code to GPU threads and the evaluation of the remain-
ing actions to CPU cores. This idea can be particularly useful for domains that use
GPU-parallelized simulators like Isaac Gym [58] as models for action evaluations.

9.2.3 Bounded Planning Time with Infinite Threads

The performance of ePA*SE generally increases with an increasing number of threads
up until it saturates. The thread budget at the saturation point can be thought of as
the maximum number of threads the search can utilize at any point in the search. The
number of threads the search can utilize is limited by the independence check that is
required to guarantee optimality. If optimality is not desired, the independence check
can be eliminated and the number of edges available for expansion will be limited
by the rate at which they are discovered by the search and the thread budget. In
the presence of infinite threads, it is likely possible to express the planning time as a
function of the quickest-to-evaluate path from the start to the goal. Without a lazy
search that discovers edges quicker, this is the lower bound on the planning time,
and theoretical analysis of this bound is likely to provide interesting insights. It will
also be interesting to analyze how the bound changes with lazy successor generation.

9.2.4 Going Beyond Domains with Expensive Edges

The focus of this thesis has been on domains with expensive-to-compute edges. Be-
yond that, parallelization can also be a useful tool for domains where heuristic com-
putations are expensive. For example, in many task planning heuristics, the heuristic
value of a state is the solution to a relaxed version of the problem from the state [61].
Solving the relaxed version of the problem, though significantly cheaper than solv-
ing the original problem, takes a considerable amount of computation. The price,
however, is worth paying since these heuristics guide the search in a state space that

100

9. Conclusion and Future Work

grows exponentially with the number of literals. In such domains, parallelization of
heuristic computation can be extremely useful. Another type of domain that could
benefit from the parallelization of open list operations is where the graph size is large,
like in the case of domains with high branching factors. In such cases, the open list
can grow exceedingly large in size, and therefore, parallelization of operations like
insertion, removal, and rebalancing could be potentially useful.

9.2.5 Parallelization of Other Search Algorithms

The ideas of edge-based parallelization developed in this thesis can be employed in
a variety of search algorithms that exploit specific characteristics of the domain to
speed up planning. One such algorithm is Multi-Heursitic A* (MHA*) [3], which
integrates a consistent and admissible heuristic with any number of arbitrary inad-
missible heuristics to improve performance in domains where a single heuristic is
unable to capture all the complexities of the domain. Another example is Multi-
Resolution A* (MRA*) [7], which searches over multiple resolutions of the state
space to combine the benefits of reduced search effort in coarser resolutions and ma-
neuverability in finer resolutions. Yet another example is Anytime Multi-Resolution
Multi-Heuristic A* [54] that combines the ideas of MHA* and MRA*. These algo-
rithms are primarily used in robotics domains and, therefore, typically on graphs
with expensive edges. There are also more general search algorithms that could
potentially benefit from edge-based parallelization like Iterative Deepening A* [62],
Beam Search, Bidirectional Search [63] and Multi-objective Search [64, 65, 66, 67].

101

9. Conclusion and Future Work

102

Bibliography

[1] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems Science
and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968. 1.1, 2.5, 3.1.2

[2] I. Pohl, “Heuristic search viewed as path finding in a graph,” Artificial intelli-
gence, vol. 1, no. 3-4, pp. 193–204, 1970. 1.1, 2.6, 3.1.2

[3] S. Aine, S. Swaminathan, V. Narayanan, V. Hwang, and M. Likhachev, “Multi-
heuristic A*,” The International Journal of Robotics Research, vol. 35, no. 1-3,
pp. 224–243, 2016. 1.1, 1.1, 3.1.2, 3.4, 9.2.5

[4] T. Kusnur, S. Mukherjee, D. M. Saxena, T. Fukami, T. Koyama, O. Salzman,
and M. Likhachev, “A planning framework for persistent, multi-UAV coverage
with global deconfliction,” in Field and Service Robotics. Springer, 2021, pp.
459–474. 1.1, 1.4

[5] S. Mukherjee, S. Aine, and M. Likhachev, “MPLP: Massively parallelized lazy
planning,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 6067–6074,
2022. 1.1, 1.2.1

[6] K. Rupp. (2018) 42 years of microprocessor trend data. [Online]. Available: https:
//www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/ 1.2

[7] W. Du, F. Islam, and M. Likhachev, “Multi-resolution A*,” in Proceedings of
the International Symposium on Combinatorial Search, vol. 11, no. 1, 2020, pp.
29–37. 1.1, 9.2.5

[8] H. Sutter et al., “The free lunch is over: A fundamental turn toward concurrency
in software,” Dr. Dobb’s journal, vol. 30, no. 3, pp. 202–210, 2005. 1.1

[9] M. P. Das, D. M. Conover, S. Eum, H. Kwon, and M. Likhachev, “MA3: Model-
accuracy aware anytime planning with simulation verification for navigating
complex terrains,” in Proceedings of the International Symposium on Combina-
torial Search, vol. 15, no. 1, 2022, pp. 65–73. 1.1

[10] M. S. Saleem and M. Likhachev, “Planning with selective physics-based simu-
lation for manipulation among movable objects,” in 2020 IEEE International

103

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Bibliography

Conference on Robotics and Automation (ICRA). IEEE, 2020, pp. 6752–6758.
1.1

[11] R. Natarajan, M. Saleem, S. Aine, M. Likhachev, and H. Choset, “A-MHA*:
Anytime multi-heuristic A*,” in Proceedings of the International Symposium on
Combinatorial Search, vol. 10, no. 1, 2019, pp. 192–193. 1.1, 3.4

[12] R. Natarajan, H. Choset, and M. Likhachev, “Interleaving graph search and
trajectory optimization for aggressive quadrotor flight,” IEEE Robotics and Au-
tomation Letters, vol. 6, no. 3, pp. 5357–5364, 2021. 1.1, 8

[13] S. Mukherjee, S. Aine, and M. Likhachev, “ePA*SE: Edge-based parallel A* for
slow evaluations,” in International Symposium on Combinatorial Search, vol. 15,
no. 1. AAAI Press, 2022, pp. 136–144. 1.2.2, 7.2

[14] H. Yang, S. Mukherjee, and M. Likhachev, “A-ePA*SE: Anytime edge-based
parallel A* for slow evaluations,” in International Symposium on Combinatorial
Search. AAAI Press, 2023. 1.2.3

[15] S. Mukherjee and M. Likhachev, “GePA*SE: Generalized edge-based parallel
A* for slow evaluations,” in International Symposium on Combinatorial Search.
AAAI Press, 2023. 1.2.4

[16] S. Mukherjee, C. Paxton, A. Mousavian, A. Fishman, M. Likhachev, and D. Fox,
“Reactive long horizon task execution via visual skill and precondition models,”
in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2021, pp. 5717–5724. 1.4, 3.1.2

[17] S. J. Russell, Artificial intelligence a modern approach. Pearson Education,
Inc., 2010. 2.1, 5.1, 6.1, 7.1

[18] J. Liang, M. Sharma, A. LaGrassa, S. Vats, S. Saxena, and O. Kroemer, “Search-
based task planning with learned skill effect models for lifelong robotic manipu-
lation,” in 2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 6351–6357. 2.2, 3.1.2, 3.2.1, 5

[19] M. Likhachev, G. J. Gordon, and S. Thrun, “ARA*: Anytime A* with provable
bounds on sub-optimality,” Advances in neural information processing systems,
vol. 16, pp. 767–774, 2003. 2.6, 3.4, 6.2, 1

[20] M. Phillips, M. Likhachev, and S. Koenig, “PA* SE: Parallel A* for slow expan-
sions,” in Twenty-Fourth International Conference on Automated Planning and
Scheduling, 2014. 2.7, 2.7, 3.2.2, 4.4.1, 5.2.4, 5.3, 5.4.1, 6.1, 7.1

[21] K. Irani and Y.-f. Shih, “Parallel A* and AO* algorithms- an optimality crite-
rion and performance evaluation,” in 1986 International Conference on Parallel
Processing, University Park, PA, 1986, pp. 274–277. 2.7, 3.2.2, 4.4.1, 5.4.1

[22] Y. Zhou and J. Zeng, “Massively parallel A* search on a GPU,” in Proceedings

104

Bibliography

of the AAAI Conference on Artificial Intelligence, 2015. 2.7, 3.2.3
[23] X. He, Y. Yao, Z. Chen, J. Sun, and H. Chen, “Efficient parallel A* search on

multi-GPU system,” Future Generation Computer Systems, vol. 123, pp. 35–47,
2021. 2.7, 3.2.3

[24] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,” IEEE
transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.
3.1.1

[25] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion
planning,” The international journal of robotics research, vol. 30, no. 7, pp.
846–894, 2011. 3.1.1

[26] R. Bohlin and L. E. Kavraki, “Path planning using lazy PRM,” in Proceedings
2000 ICRA. Millennium conference. IEEE international conference on robotics
and automation. Symposia proceedings (Cat. No. 00CH37065), vol. 1. IEEE,
2000, pp. 521–528. 3.1.1

[27] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees: Progress
and prospects: Steven m. lavalle, iowa state university, a james j. kuffner, jr.,
university of tokyo, tokyo, japan,” Algorithmic and computational robotics, pp.
303–307, 2001. 3.1.1

[28] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach to single-
query path planning,” in Proceedings 2000 ICRA. Millennium Conference. IEEE
International Conference on Robotics and Automation. Symposia Proceedings
(Cat. No. 00CH37065), vol. 2. IEEE, 2000, pp. 995–1001. 3.1.1, 8.2

[29] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki, “An incre-
mental constraint-based framework for task and motion planning,” The Inter-
national Journal of Robotics Research, vol. 37, no. 10, pp. 1134–1151, 2018.
3.1.2

[30] C. Paxton, Y. Barnoy, K. Katyal, R. Arora, and G. D. Hager, “Visual robot task
planning,” in 2019 international conference on robotics and automation (ICRA).
IEEE, 2019, pp. 8832–8838. 3.1.2

[31] B. Cohen, S. Chitta, and M. Likhachev, “Single- and dual-arm motion planning
with heuristic search,” The International Journal of Robotics Research, vol. 33,
no. 2, pp. 305–320, 2014. 3.1.2, 7

[32] R. Natarajan, G. L. Johnston, N. Simaan, M. Likhachev, and H. Choset,
“Torque-limited manipulation planning through contact by interleaving graph
search and trajectory optimization,” arXiv preprint arXiv:2210.08627, 2022.
3.1.2, 8

105

Bibliography

[33] S. Karaman and E. Frazzoli, “Optimal kinodynamic motion planning using in-
cremental sampling-based methods,” in 49th IEEE conference on decision and
control (CDC). IEEE, 2010, pp. 7681–7687. 3.1.2

[34] N. M. Amato and L. K. Dale, “Probabilistic roadmap methods are embarrass-
ingly parallel,” in Proceedings 1999 IEEE International Conference on Robotics
and Automation, vol. 1, 1999, pp. 688–694. 3.2.1

[35] S. A. Jacobs, K. Manavi, J. Burgos, J. Denny, S. Thomas, and N. M. Amato, “A
scalable method for parallelizing sampling-based motion planning algorithms,”
in 2012 IEEE International Conference on Robotics and Automation, 2012, pp.
2529–2536. 3.2.1

[36] D. Devaurs, T. Siméon, and J. Cortés, “Parallelizing RRT on distributed-
memory architectures,” in 2011 IEEE International Conference on Robotics
and Automation, 2011, pp. 2261–2266. 3.2.1

[37] J. Ichnowski and R. Alterovitz, “Parallel sampling-based motion planning with
superlinear speedup.” in IROS, 2012, pp. 1206–1212. 3.2.1

[38] S. A. Jacobs, N. Stradford, C. Rodriguez, S. Thomas, and N. M. Amato, “A
scalable distributed RRT for motion planning,” in 2013 IEEE International
Conference on Robotics and Automation, 2013, pp. 5088–5095. 3.2.1

[39] C. Park, J. Pan, and D. Manocha, “Parallel motion planning using poisson-disk
sampling,” IEEE Transactions on Robotics, vol. 33, no. 2, pp. 359–371, 2016.
3.2.1

[40] J. Butzke, K. Sapkota, K. Prasad, B. MacAllister, and M. Likhachev, “State
lattice with controllers: Augmenting lattice-based path planning with controller-
based motion primitives,” in 2014 IEEE/RSJ International Conference on In-
telligent Robots and Systems, 2014, pp. 258–265. 3.2.1

[41] B. Eysenbach, R. R. Salakhutdinov, and S. Levine, “Search on the replay buffer:
Bridging planning and reinforcement learning,” Advances in Neural Information
Processing Systems, vol. 32, 2019. 3.2.1

[42] M. Evett, J. Hendler, A. Mahanti, and D. Nau, “PRA*: Massively parallel
heuristic search,” Journal of Parallel and Distributed Computing, vol. 25, no. 2,
pp. 133–143, 1995. 3.2.2

[43] R. Zhou and E. A. Hansen, “Parallel structured duplicate detection,” in AAAI,
2007, pp. 1217–1224. 3.2.2

[44] E. Burns, S. Lemons, W. Ruml, and R. Zhou, “Best-first heuristic search for
multicore machines,” Journal of Artificial Intelligence Research, vol. 39, pp.
689–743, 2010. 3.2.2

[45] A. Kishimoto, A. Fukunaga, and A. Botea, “Scalable, parallel best-first search

106

Bibliography

for optimal sequential planning,” in Proceedings of the International Conference
on Automated Planning and Scheduling, vol. 19, no. 1, 2009. 3.2.2

[46] B. J. Cohen, M. Phillips, and M. Likhachev, “Planning single-arm manipulations
with n-arm robots.” in Robotics: Science and Systems, 2014. 3.3, 4.4.1

[47] C. Dellin and S. Srinivasa, “A unifying formalism for shortest path problems
with expensive edge evaluations via lazy best-first search over paths with edge se-
lectors,” in Proceedings of the International Conference on Automated Planning
and Scheduling, vol. 26, no. 1, 2016. 3.3, 4, 4.4.1

[48] A. Mandalika, O. Salzman, and S. Srinivasa, “Lazy receding horizon A* for effi-
cient path planning in graphs with expensive-to-evaluate edges,” in Proceedings
of the International Conference on Automated Planning and Scheduling, vol. 28,
no. 1, 2018. 3.3, 4

[49] A. Mandalika, S. Choudhury, O. Salzman, and S. Srinivasa, “Generalized lazy
search for robot motion planning: Interleaving search and edge evaluation via
event-based toggles,” in Proceedings of the International Conference on Auto-
mated Planning and Scheduling, vol. 29, 2019, pp. 745–753. 3.3, 4, 4.4.1, 4.5

[50] J. Lim, S. Srinivasa, and P. Tsiotras, “Lazy lifelong planning for efficient re-
planning in graphs with expensive edge evaluation,” in 2022 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). IEEE, 2022,
pp. 8778–8783. 3.3, 4.5

[51] V. Narayanan and M. Likhachev, “Heuristic search on graphs with existence
priors for expensive-to-evaluate edges,” in Twenty-Seventh International Con-
ference on Automated Planning and Scheduling, 2017. 3.3, 4, 4.4.1

[52] M. Bhardwaj, S. Choudhury, B. Boots, and S. Srinivasa, “Leveraging experience
in lazy search,” Autonomous Robots, vol. 45, pp. 979–996, 2021. 3.3

[53] S. Richter, J. Thayer, and W. Ruml, “The joy of forgetting: Faster anytime
search via restarting,” in Proceedings of the International Conference on Auto-
mated Planning and Scheduling, vol. 20, 2010, pp. 137–144. 3.4

[54] D. M. Saxena, T. Kusnur, and M. Likhachev, “AMRA*: Anytime multi-
resolution multi-heuristic A*,” in 2022 International Conference on Robotics
and Automation (ICRA). IEEE, 2022, pp. 3371–3377. 3.4, 9.2.5

[55] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch informed trees (BIT):
Sampling-based optimal planning via the heuristically guided search of implicit
random geometric graphs,” in 2015 IEEE international conference on robotics
and automation (ICRA). IEEE, 2015, pp. 3067–3074. 3.4

[56] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning A*,” Artificial In-
telligence, vol. 155, no. 1-2, pp. 93–146, 2004. 3.4

107

Bibliography

[57] N. Haghtalab, S. Mackenzie, A. Procaccia, O. Salzman, and S. Srinivasa, “The
provable virtue of laziness in motion planning,” in Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling, vol. 28, no. 1, 2018.
4

[58] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin,
D. Hoeller, N. Rudin, A. Allshire, A. Handa et al., “Isaac gym: High perfor-
mance GPU based physics simulation for robot learning,” in Thirty-fifth Con-
ference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021. 4.4.2, 5.4.2, 9.2.2

[59] M. Likhachev, G. J. Gordon, and S. Thrun, “ARA*: formal analysis,” 2003. 6.3
[60] N. Sturtevant, “Benchmarks for grid-based pathfinding,” Transactions on

Computational Intelligence and AI in Games, vol. 4, no. 2, pp. 144 – 148, 2012.
[Online]. Available: http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf
6.4

[61] B. Bonet and H. Geffner, “Planning as heuristic search,” Artificial Intelligence,
vol. 129, no. 1-2, pp. 5–33, 2001. 9.2.4

[62] R. E. Korf, “Depth-first iterative-deepening: An optimal admissible tree search,”
Artificial intelligence, vol. 27, no. 1, pp. 97–109, 1985. 9.2.5

[63] R. Holte, A. Felner, G. Sharon, and N. Sturtevant, “Bidirectional search that is
guaranteed to meet in the middle,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 30, no. 1, 2016. 9.2.5

[64] B. S. Stewart and C. C. White III, “Multiobjective A*,” Journal of the ACM
(JACM), vol. 38, no. 4, pp. 775–814, 1991. 9.2.5

[65] L. Mandow, J. P. De la Cruz et al., “A new approach to multiobjective A*
search.” in IJCAI, vol. 8, 2005. 9.2.5

[66] C. H. Ulloa, W. Yeoh, J. A. Baier, H. Zhang, L. Suazo, and S. Koenig, “A sim-
ple and fast bi-objective search algorithm,” in Proceedings of the International
Conference on Automated Planning and Scheduling, vol. 30, 2020, pp. 143–151.
9.2.5

[67] Z. Ren, R. Zhan, S. Rathinam, M. Likhachev, and H. Choset, “Enhanced multi-
objective A* using balanced binary search trees,” in Proceedings of the Interna-
tional Symposium on Combinatorial Search, vol. 15, no. 1, 2022, pp. 162–170.
9.2.5

108

http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf

	1 Introduction
	1.1 Motivation
	1.2 Thesis Research Contributions
	1.2.1 MPLP: Massively Parallelized Lazy Planning
	1.2.2 ePA*SE: Edge-based Parallel A* for Slow Evaluations
	1.2.3 A-ePA*SE: Anytime Edge-based Parallel A* for Slow Evaluations
	1.2.4 GePA*SE: Generalized Edge-based Parallel A* for Slow Evaluations

	1.3 Open Source Software Contribution
	1.4 Excluded Research Contributions

	2 Background
	2.1 Search-based Planning Problem Definition
	2.2 Key Ingredients of Search
	2.3 BFS: Breadth First Search
	2.4 Dijkstra
	2.5 A*
	2.6 wA*: Weighted A*
	2.7 PA*SE: Parallel A* For Slow Expansions

	3 Related Work
	3.1 Serial Planning Methods in Robotics
	3.1.1 Sampling-Based Methods
	3.1.2 Search-Based Methods

	3.2 Parallel Planning Algorithms
	3.2.1 Parallel Sampling-Based Algorithms
	3.2.2 Parallel Search-Based Algorithms
	3.2.3 Parallel GPU-Based Algorithms

	3.3 Lazy Search
	3.4 Anytime Search

	4 MPLP: Massively Parallelized Lazy Planning
	4.1 Problem Definition
	4.2 Method
	4.2.1 Overview
	4.2.2 Details
	4.2.3 Demo
	4.2.4 Discussion

	4.3 Properties
	4.4 Evaluation
	4.4.1 3D navigation
	4.4.2 Assembly task

	4.5 Conclusion

	5 ePA*SE: Edge-Based Parallel A* for Slow Evaluations
	5.1 Problem Definition
	5.2 Method
	5.2.1 eA*
	5.2.2 eA* to ePA*SE
	5.2.3 Details
	5.2.4 Thread management
	5.2.5 w-ePA*SE

	5.3 Properties
	5.4 Evaluation
	5.4.1 3D Navigation
	5.4.2 Assembly Task

	5.5 Conclusion

	6 A-ePA*SE: Anytime Edge-Based Parallel A* for Slow Evaluations
	6.1 Problem Definition
	6.2 Method
	6.3 Properties
	6.4 Evaluation
	6.5 Conclusion

	7 GePA*SE: Generalized Edge-Based Parallel A* for Slow Evaluations
	7.1 Problem Definition
	7.2 Method
	7.3 Evaluation
	7.3.1 2D Grid World
	7.3.2 Manipulation

	7.4 Conclusion

	8 Edge-Based Parallelization of INSAT
	8.1 Method
	8.2 Evaluation
	8.3 Conclusion

	9 Conclusion and Future Work
	9.1 Conclusion
	9.1.1 A Practitioner's Guide to Parallel Search

	9.2 Discussion and Future Work
	9.2.1 MPLP with Parallelized Successors Generation
	9.2.2 Parallelization of Search on the GPU
	9.2.3 Bounded Planning Time with Infinite Threads
	9.2.4 Going Beyond Domains with Expensive Edges
	9.2.5 Parallelization of Other Search Algorithms

	Bibliography

