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Abstract

Coral reefs are important to the global ecosystem and the local commu-
nities and wildlife that rely on the habitat they create. However, coral
reefs are also in critical and rapid decline: reefs have degraded over recent
decades and what remains is at increasing risk of loss. Only a small
fraction of the world’s reefs have been studied quantitatively. Mapping
these reefs, in particular the benthic cover components of coral, algae,
and sand, would allow us to monitor changes and understand their health.
We seek methods to better model reefs at global scales. Throughout this
work, we train models on different levels of spatial-resolution satellite
data and evaluate performance between them. We also develop on a novel
method using a Deep Conditional Dirichlet Model to perform unmixing
of spectral signatures in different satellite data sources. Accounting for
mixing of classes yields improvements in accuracy of the predicted class
probabilities. Regions of high uncertainty are also determined based on
the model output prediction and can be used to determine informative
in situ sampling. An ergodic planner is implemented to generate a path
through these regions to acquire samples that best improve the coral
map. The result of this study is an efficient learning based pipeline that
augments existing satellite data and maps coral reefs globally in order to
improve our understanding of their condition.
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Chapter 1

Introduction

1.1 Problem Motivation

Coral reefs are a necessary ecosystem for the wildlife that rely on them while also

being an essential component to the cultural and economic lives of people living

near them [Moberg and Folke 1999; Reaka 1997]. Reefs worldwide are in critical and

rapid decline, with 33-55% of reefs degrading over recent decades and about 35% of

the remaining reefs at risk of loss over the next few decades [ISRS December 2015;

Wilkinson 2008]. This decline has been fueled by a combination of two primary factors.

The first is a higher sea surface temperature that stresses and causes coral bleaching

which reduces coral reproduction and immunity [Wilkinson 2008]. The second is

increasing ocean acidity through higher CO2 concentrations in the atmosphere that

acidifies and thus decreases carbonate ion concentration in the ocean [Hoegh-Guldberg

et al. 2017; Wilkinson 2008]. The lack of this ion reduces the capacity of coral to

generate calcium carbonate skeletons and continue growing. Despite these rising

issues, only 0.01-0.1% of the world’s reefs have been studied quantitatively [Hochberg

and Gierach 2021]. With current global warming trends affecting the health of the

coral reefs, it is important that we are able to map these coral regions in order to

monitor their health over time.
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1. Introduction

(a) Diver conducting a survey (b) Sample setup of the Manta board and
attachments

Figure 1.1: Manta tow technique for crown-of-thorns starfish and coral surveys [Miller
et al. 2018]. A diver is pulled along by a boat while recording observations on a
Manta board for surveying.

1.2 Problem Approach

Coral reef mapping has typically consisted of in situ, or on site, missions. Researchers

ventured into the field and took pictures or recorded surveys of the coral scene to

compile a set of small scale local observations of 10m2 regions at separated sites and

intervals (Figure 1.1) [Miller et al. 2018]. The composition of the greater coral scene

was then estimated by extrapolating these local scenes to a larger scale. However,

this approach is quite a timely and costly expenditure that misses the ecological scale

variability as it only studies local regions. It also limits the reef survey area to 100s

of km2, only accounting for approximately 0.1% of the total global coral reef coverage

(Figure 1.2) [Edmunds and Bruno 1996]. In addition, it is often difficult to replicate

in situ missions over time, thus limiting the ability to obtain data that is consistent

in scope and temporality [Hedley et al. 2016].

In contrast to these issues presented by in situ expeditions, the usage of remote

sensing allows for mapping of coral reefs that capture the variability and magnitude

of the reef regions when surveying the area. Satellite data is an especially cost

effective method of remote sensing for this purpose. Although the detail of the data

is diminished in comparison to in situ or even remote sensed airborne data, the data

2



1. Introduction

Figure 1.2: Global distribution of coral reefs. The latitudinal and longitudinal extents
of coral reefs are shown above and to the right respectively. Reef locations obtained
from the United Nations Environment Programme World Conservation Monitoring
Centre’s Ocean Data Viewer [UNEP-WCMC et al. 2021].

itself costs little to nothing to obtain and thus allows for resources to be diverted

towards processing the data instead [Hedley et al. 2016].

With the introduction of remote sensing for coral mapping, maps of greater scale

were able to be created of the coral reefs. In particular, in 2001, the Millennium Coral

Reef Mapping Project was launched to take advantage of newly available Landsat-7

data to characterize and map the most extensive compendium of coral scenes at the

time [Andréfouët et al. 2004]. A standardized scheme was then determined by which

the data would be classified for further dissemination towards research purposes

across the globe. However, as this classification was done primarily through visual

interpretation, it lacks the atmospheric and reflectance processing needed to produce

benthic classifications or bathymetric maps [Hedley et al. 2018]. This is significant

because the benthic cover of reef ecosystems has proven to be an effective metric for

monitoring coral reef health. By characterizing the spectral reflectance of reef benthic

communities using remote sensing, different benthic components can be classified and

mapped [Hochberg et al. 2003; Hochberg and Atkinson 2000].

We choose to map the three benthic cover classes of coral, algae, and sand (Figure

1.3). However, these three classes are also ambiguous with respect to one another in

spectral data. Bleached corals have similar spectral values as sand. Features from

their spectral signature are also similar to those covered by algae or live corals due to

3
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(a) Coral (b) Algae (c) Sand/Rock

Figure 1.3: Samples of the benthic cover components to be classified and unmixed
[Beeden et al. 2015]

the effect of mixed pixels [Goodman and Ustin 2007; Xu et al. 2021]. This is indicative

of the difficulty in being able to properly classify and unmix spectral coral reef scenes

with full accuracy. Due to this difficulty in processing their data alongside the fact

that the most effective and accurate spectral sensors have been limited to airborne

platforms, mapping coral reefs with remote sensing data still remains technically

difficult.

We approach this problem through the training of deep neural networks. This not

only further decreases the difficulty associated with mapping coral reefs with remote

sensing, it also increases the efficiency of the process as well. In machine learning,

neural networks are used to classify and cluster data. One way this is achieved is

through supervised learning, where input data is provided alongside ground truth

labels for training. Models learn to accurately predict the desired output by adjusting

their parameters to minimize the loss (difference) between their training predictions

and the correct labels. These models can be used to interpret satellite spectral

data which, once trained and tuned, will yield a lower cost alternative to traditional

processing methods and enable global coral classification.

Recent work employing machine learning approaches have been used with remote

sensing for coral reef mapping, resulting in more efficient methods of mapping reefs

from spectral data compared to earlier spectral processing algorithms [Dahal et al.

2021; Roelfsema et al. 2020; Li et al. 2020]. One of the most notable compendiums

created with these methods is the Allen Coral Atlas, where a Random Forest classifier

was used for classification (Figure 1.4) [Lyons et al. 2020]. Further work with neural

networks have been trained on the Atlas in order to enable efficient global classification

4



1. Introduction

Figure 1.4: Sample classifications by the Allen Coral Atlas on Heron Island [Edkins
2022 (Accessed April 6, 2023)]. Benthic cover classes in the image can be grouped as
Coral (Bommie, Coral/Algae), Algae (Benthic Microalgae, Coral/Algae), and Sand
(Land, Rock, Sand, Rubble).

and mapping of the coral benthic cover [Li et al. 2020]. However, these efforts have

focused on mapping the locations and extents of reefs, not the actual distribution of

living coral.

One machine learning study by Candela et al. did focus on mapping the individual

distributions of coral, algae, and sand. They utilized Landsat-8 and PRISM data

and yielded accurate reconstructions of the benthic scene that closely matched the

known ground truth [Candela et al. 2021; Garza 2021]. This study demonstrated

the effectiveness of training supervised learning models using labeled hyperspectral,

high-spatial-resolution (8 m) data from the Portable Remote Imaging SpectroMeter

(PRISM) applied to medium-resolution (30 m), multispectral Landsat-8 data, attaining

good predictions despite the difference between label and data sources [Candela et al.

2021]. Here, we follow a similar process to develop models applicable to high-resolution

(2 m), multispectral WorldView-3 data (Figure 1.5).

Our models take labeled PRISM data as input, align the labels with the WorldView

data, then train Support Vector Machines (SVM), Regression models, and Deep

Conditional Dirichlet Models (DCDM) through supervised learning. Regression

5



1. Introduction

(a) PRISM data with spatial
resolution 7.8 m

(b) Landsat-8 data with spa-
tial resolution 30 m

(c) WorldView-3 data with
spatial resolution 2 m

Figure 1.5: Samples of the Heron Island data products (WorldView-3 data © 2016
Maxar)

models are a type of neural network that regresses model weights in order to better

fit the data. The DCDM is a variation of the Regression model that fits a Dirichlet

distribution to the Regression model output. Dirichlet distributions model likelihoods

over mixtures of components, meaning that they are useful for learning to model

mixture distributions and thus unmix these distributions as well. With the higher

resolution data, there is an expectation that the models will better learn to identify

different classes, distinguish class mixtures, and result in increased spatial accuracy

in comparison to the prior lower resolution results.

After the spectral data has been processed, it is important to consider how to best

improve the classification and unmixing confidences. One method to approach this

problem is to supplement the model predictions with in situ expeditions. However,

these expeditions still remain to be costly expenditures. By leveraging an approximate

knowledge of the map through the model predictions, we can determine a more efficient

trajectory for the in situ expedition to follow in order to make the best use of the

provided resources.

Information priors can be developed from the model output that quanitfy the

uncertainty, or conversely the amount of information gain, in the predicted map.

Informative path planners utilize these priors to provide a path for an agent to follow.

These types of planners prioritize traversing towards regions of high information

gain. An ergodic planner further ensures that the trajectory spends time in regions

proportional to the expected information gain [Edelson 2020]. The result is an efficient,

ergodic trajectory through the coral reef regions. This trajectory optimizes where in

6
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situ measurements can be taken to verify or otherwise update the regions where the

model is most uncertain.

1.3 Project Goals

There currently does not exist an efficient pipeline for providing data on the global

coral reef benthic cover, which is an important component to understanding coral

reef condition. We seek to apply previously developed deep learning methods to map

and classify these scenes [Candela et al. 2021; Garza 2021]. Though we train the

same model frameworks as in prior work, we utilize an updated set of labels alongside

higher resolution data with greater global coverage.

In particular, our goal is to evaluate the value of using higher resolution data for

training as well as the efficacy of applying novel architectures to unmix spectral data.

After classification, we explore how to leverage the uncertainty of the model outputs

to inform future in situ expeditions for verification and validation of the predictions.

Our overall problem statement is that global quantification, and thus understanding,

of coral reefs can be efficiently achieved by applying learning methods to mapping

coral and further improved with intelligent sampling.

The overall contribution of this thesis is a complete system to classify, unmix,

and map global benthic cover as well as determine efficient trajectories for in situ

expeditions to improve predictions. In particular, the application of the system to

the WorldView-3 image archive would yield global estimates of coral reef benthic

cover over the past decade. This would allow for significant advancement in our

understanding of the trajectory of global coral reef condition.
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Chapter 2

Spectral Data and Machine

Learning Background

We seek to classify coral reefs using remote sensed data due to the global scale

coverage that this data format provides. Remote sensed data can be obtained in

different forms depending on the specifications of the device gathering the data. While

these data types are distinct, prior methods have demonstrated the effectiveness of

using these spectral data formats to train machine learning models for classification

tasks as well as unmixing tasks. By processing this data using these models, we can

develop an efficient pipeline for classifying global scenes. As such, we choose to train

similar machine learning based models on our new data to evaluate performance.

2.1 Spectral Data and Processing

Reflectance is a measure of the electromagetic energy in the light reflected or scattered

from the surface. Spectral data consists of measured reflectance values at different

wavelengths from the same source. Distinctions in the reflection bands capture a

significant amount of information from which the chemistry and composition of the

material of which the light is reflected can be derived.

Remote sensed spectral data can be roughly categorized into two categories, hy-

perspectral and multispectral, and is obtained by measuring the different wavelengths

of light from the sun as they are reflected off of the surface of the Earth. Each unique

9



2. Spectral Data and Machine Learning Background

Figure 2.1: Visualization of Multispectral Data (left) vs Hyperspectral Data (right)
[Broderson 2020]. Note that band wavelengths are not only limited to the visible
spectrum as depicted.

wavelength constitutes a single band of data, where each band can be considered the

measurement of the reflectance at the corresponding wavelength over the measured

area. Similar to an RGB image, spectral data is thus composed of multiple layers of

bands covering a designated area. The spectral resolution refers to the number of

bands in the data. The spatial resolution refers to the size of the region measured by

each pixel.

The distinction between hyperspectral data and multispectral data lies in the

number of bands and the interval between band wavelengths taken. Hyperspectral

data has a higher spectral resolution and typically consists of over a hundred bands

measured at small intervals. Multispectral data has a lower spectral resolution

that consists of much fewer bands, typically less than 20, taken at much larger

intervals. Hyperspectral data benefits from being able to capture finer distinctions

within its measurements due to its high spectral resolution, but in exchange is more

complex than multispectral data due to potential redundancies between its bands

[GISGeography 2022 (Accessed March 20, 2023)]. However, both formats of spectral

data are suitable for the purpose of coral monitoring and mapping.

10



2. Spectral Data and Machine Learning Background

2.2 Machine Learning for Mapping

Regression models have been used in previous efforts to classify coral scenes [Dahal

et al. 2021; Garza 2021]. Given input and ground truth data alongside a provided

loss function to optimize, these models fit functions to the data that minimize the

loss. Statistical approaches, e.g. maximum likelihood classification, have been applied

extensively for scene-specific mapping. More recently, research has included defining

a neural network architecture and regressing model weights with respect to the loss

and ground truth over training iterations.

One type of loss function that is applied to train these Regression models is the

Kullback-Leibler Divergence (KLD), which is a metric used to quantify the difference

between two probability distributions P (x) and Q(x) [Kullback and Leibler 1951].

The loss is defined as follows:

DKL(P (x)||Q(x)) =
∑
x∈X

P (x)log
P (x)

Q(x)
(2.1)

For the purposes of training the Regression model, the KLD loss compares the direct

probability values between the output of the model and the labeled values, and the

model regresses its weights to minimize the function value.

The KLD also serves as a useful metric for evaluating the model performance post

training. A model with perfect performance would have a low KLD value, signifying

that the probabilistic difference between the ground truth and the model output is

minimized. A similar metric used for model evaluation is the Mean Absolute Error

(MAE). Given n pairs of ground truth values yi and model output values xi, the MAE

is defined as follows:

MAE =
1

n

n∑
i=0

|yi − xi| (2.2)

This value provides an alternative quantification of the model performance through a

direct absolute difference between the two values. Similar to the KLD, a lower MAE

values signifies better model performance with regards to matching the ground truth

labels. A final evaluation metric would be accuracy, which quantifies how well the

11



2. Spectral Data and Machine Learning Background

model performs standard hard classification. This is defined as follows:

Acc =
1

n

n∑
i=0

[max(yi) = max(xi)] (2.3)

where there are n pairs of ground truth values yi and model output values xi.

While accurate classifications are yielded through these approaches, it is also

important to note that, as pixels in spectral data encompass regions of varied sizes,

these methods do not account for the mixture of classes within the pixels. An addition

to the Regression model neural network was thus employed to unmix the benthic

cover components from spectral data pixels as a Deep Conditional Dirichlet Model

(DCDM) in prior work by Candela [Garza 2021]. This model makes use of a Dirichlet

distribution as a probability density function to model likelihoods over mixtures of

components together.

The domain of the Dirichlet distribution can be considered as the probabilities

associated to K categories c1, ..., cK . The support of the distribution is the mixing

ratios r, where r ∈ R ⊂ RK with ΣK
k=1rk = 1, rk ∈ (0, 1), ∀r ∈ R; where R is in the

form of an open standard (K-1) simplex. The Dirichlet distribution has a probability

density function given as follows:

p(r1, ..., rK |α1, ..., αK) =
Γ(ΣK

k=1αk)

ΠK
k=1Γ(αk)

ΠK
k=1r

αk−1
k (2.4)

where Γ is the gamma function. The Dirichlet distribution is defined by the concen-

tration parameters α1, ..., αK > 0, where larger αk values indicate that category ck is

more likely and vice versa [Garza 2021].

Given this Dirichlet distribution, the relationship between the mixing ratios r and

the input spectral data can be modeled using a probabilistic conditional distribution

pθ(r|y), where the weights of the neural network are given as θ and y ∈ Y ⊂ Rn

are the input spectra. The conditional component of the prior distribution can be

thought of as:

(r|y) ∼ Dir(αθ(y)) (2.5)

Rather than solely minimizing a KLD loss during training, the DCDM also

attempts to maximize a cumulative log-likelihood function of the training set D =

12
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{(yi, ri)}Ni=1 for input spectra y and output ground-truth mixing ratios r. The

log-likelihood function is defined as:

L = (θ|D) =
∑

(y,r∈D)

logpθ(r|y) (2.6)

=
∑

(y,r∈D)

log(
Γ(ΣK

k=1αk(y))

ΠK
k=1Γ(αk(y))

∏
k=1

Kr
αk(y)−1
k ) (2.7)

=
∑

(y,r∈D)

[logΓ(
K∑
k=1

αk(y))−
K∑
k=1

logΓ(αk(y)) +
K∑
k=1

(αk(y)− 1)logrk](2.8)

The first two terms in the log-likelihood summation serve as regularizers for α, while

the last term measures the difference between the predicted and true mixing ratios.

A weighted sum of the negative log-likelihood (NLL) loss can be used in conjunction

with the KLD loss to train the DCDM. This allows the DCDM to simultaneously

optimize the weights in the neural network for both the mixing ratios through the

NLL loss and the ground truth labels through the KLD loss.

The Dirichlet distribution can be considered a probability distribution that models

multinomial distributions. Rather than directly predicting the probability of each

class based on the model inputs, the distribution instead characterizes the probability

of different mixing ratios of the classes occurring. This probability is then used to

determine a mixing ratio and predict the composition of each pixel during testing. By

applying the Dirichlet distribution to model the likelihoods over the mixture classes,

the DCDM is thus effectively able to account for different mixtures in order to unmix

the components in its output prediction.

Both the Regression model and the DCDM have demonstrated prior success in

their application towards classifying and unmixing coral reef regions from hyper-

spectral data. As such, these two models are both well suited towards processing

multispectral data as well, even with the distinctions between the two data formats.

The primary considerations to be made when training the models on hyperspectral

versus multispectral data are adjusting their hyperparameters as well as modifying the

architecture to better represent the smaller amount of bands, which will be covered

in latter sections.

In addition, we have identified the metrics by which we will be evaluating the
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2. Spectral Data and Machine Learning Background

models, namely accuracy, KLD, and MAE. Accuracy will yield a fair metric for

understanding how accurate the models are at determining the hard classifications of

dataset. KLD and MAE will serve as an evaluation of how well the model is able

to match the ground truth compositions, or otherwise how well the model is able to

unmix the dataset.
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Chapter 3

Path Planning Background

One of the core problems in robotics is path planning, or determining a trajectory

for an agent to follow relative to an objective. These objectives can range from

finding a path to a target, covering a map in its entirety for surveillance, or even just

gathering information about the environment. Our application of planners uses the

latter objective as a post processing step on the model output. We seek to use the

uncertainty of the predictions to inform what trajectory through the map would most

efficiently improve our knowledge of the region’s benthic cover composition.

3.1 Informative Path Planners

Path planning is a core problem in robotics that seeks to determine a trajectory for

agents to follow relative to an objective. These objectives can range from finding the

shortest path between a starting and target point to determining the most efficient

method of covering the entire planning region. Informative Path Planning (IPP) is

used to determine where an agent should intelligently sample to gain information.

The objective function of IPP prioritizes a trajectory through the map that allows the

agent to gain the greatest amount of information. Prior research has demonstrated

the efficiency and effectiveness of IPP in generating sampling routes [Edelson 2020].

Agents sent into the field often have resource or time limitations that prevent

them from exploring the entire map. Given a probabilistic model, or prior, of the

quantity being studied, IPP determines trajectories that maximize information gain
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3. Path Planning Background

in the map within these constraints [Binney and Sukhatme 2012; Park 2008]. This

allows the agent to efficiently traverse to and observe areas that will yield the most

information while minimizing resource expenditure, balancing both exploration and

exploitation in the path.

Monte Carlo Tree Search methods are simple but effective methods of applying

IPP. These methods find optimal decisions by randomly sampling in the discretized

search domain and building a decision tree with a reward based on the results. The

final tree yields a set of sampling locations for the planner to take [Browne et al.

2012; Kodgule 2019]. Though these methods are optimal, they are computationally

intensive as they constantly need to maintain and build up the entire tree while

sampling new locations.

Regression methods are a more efficient method of IPP. One approach used

regression to learn the prediction update for Monte-Carlo methods based on past sim-

ulations. This allows for the evaluation of potential information gain from candidate

paths much earlier in the tree, thus expediting the IPP problem [Park 2008]. Another

approach used Gaussian Process regression with autonomous planetary rovers for

active spectroscopic mapping. Given previously sampled measurements, Gaussian

Process regression is used to learn the spatial distribution of spectra in a spectroscopic

map. This allows the rover to estimate unvisited locations and determine where to

traverse to next in order to gain the most information [Candela et al. 2020].

Another efficient application of IPP that takes into account prior information was

towards data collection over a region by autonomous underwater vehicles through

a branch and bound method. In this study, information about the area of interest

from previous data collection efforts is initially provided to the robots. This prior is

represented as a scalar field of the desired measured quantity. As they explore, the

robots periodically collect sensor measurements to update their known information

map in order to inform and adapt their path. The resulting trajectories yielded

near optimal paths for collecting information across the field, demonstrating the

effectiveness of utilizing known and gained information in the map to plan trajectories

[Binney et al. 2010; Binney and Sukhatme 2012].

Asymptotically optimal rapidly exploring random trees (RRT*), rapidly exploring

random graphs (RRG), and probabilistic road maps (PRM*) have been combined with

the above branch and bound optimization in order to generate informative trajectories
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as well [Hollinger and Sukhatme 2014; Binney and Sukhatme 2012]. This method

yields efficient information gathering in the space while retaining the asymptotic

optimality of the constituent planning algorithms. This simply means that as the

system runs, the planner will eventually sample enough or all of the environment to

determine the optimal path.

All of these methods yield trajectories that are able to effectively gather information

from the environment. Ergodic theory can then be applied to ensure that the sampling

and traversal of the environment is efficient under the constraints of the IPP problem.

3.2 Ergodic Path Planning

Ergodic theory studies the time-averaged behavior of dynamical systems. These

concepts can be used for IPP due to the inherent submodularity of the stochastic

information provided to the planner [Edelson 2020; Orrieri et al. 2019]. This simply

means that regions of high information density can be set as objectives for coverage.

An ergodic trajectory will traverse to and spend time in these regions proportional

to their expected information gain. Additionally, given enough time, an ergodic

trajectory will cover and measure all states in the space, resulting in all available

information about the space being gained [Edelson 2020; Mathew and Mezić 2011].

Some useful quantification of information for informative path planners to optimize

over are entropy and variance. These two metrics are different measures of uncertainty.

Entropy quantifies the disparity of the distribution from a uniform distribution

while variance measures the average distance of outcomes from the mean in the

distribution. Both have been successfully implemented in the objective function of

IPP for information gathering tasks in prior work [Gautam et al. 2017; Mathew and

Mezić 2011; Dressel and Kochenderfer 2018]. In the context of ergodic path planning,

this means that the trajectory will spend more time in regions of uncertainty when

developing the information map.

For a single trajectory to attain ergodic behavior, an optimization problem is

posed that minimizes the difference between the time-averaged statistics of the agent

and the information map. The agent’s time-averaged statistics are computed as
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follows:

Ct(x, γt) =
1

t

t−1∑
τ=0

δ(x− γi(τ)) (3.1)

γ is the trajectory of the agent and is defined as γ : (0, t] → X , t is the discrete

time horizon of the trajectory, δ is the Dirac delta function, and X ∈ Rd in the

d-dimensional search domain. The fraction of time spent at a position x ∈ X is

quantified by this property [Mathew and Mezić 2011; Rao et al. 2022].

The uncertainty based information map defines the likelihood of generating

informative measurements at any point within the map. Within ergodic search, the

planner minimizes the difference between the Fourier spectral decomposition of both

the agent’s time-averaged statistics and this expected information distribution. In

other words, the objective of the planner is to reduce the uncertainty in the map

to 0. This is determined through the minimization of an ergodic metric Φ, defined

as a weighted sum of the difference between the spectral coefficients of the two

distributions [Mathew and Mezić 2011].

Φ(γ(t)) =
m∑
k=1

αk(ck(γt)− ξk)
2 (3.2)

In this case, ck and ξk are the Fourier coefficients for the agent’s time-averaged

statistics and the desired spatial distribution respectively, and αk serves as the

weights for each coefficient difference. These weights are typically defined as:

αk =
√

(1 + ||k||2)−(d+1) (3.3)

This allows the weights to be inversely proportional to the frequency components, as

lower frequency components have a greater impact on the overall information gain

than higher frequency ones.

The optimization that ergodic coverage seeks to solve is the determination of

optimal controls u∗(t) for an agent, where the dynamics of the agent are described by

the function f : Q× U → T Q, such that:

u∗(t) = argminuΦ(γ(t)),

subject to q̇ = f(q(t), u(t)), ||u(t)|| < umax

(3.4)
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where q ∈ Q is the state and u ∈ U denotes the set of controls. Trajectory optimization

for planning feed-forward trajectories over a defined time horizon can be used to find

the optimal control input at every time step for this problem [Miller and Murphey

2013].

3.3 Sparse Ergodic Path Planning

The prior optimization acts under the assumption that the agent is sampling at every

single point in the trajectory. However, oftentimes the ergodic trajectory may pass

through regions of low information density which do not yield as much information

per sensor measurement. As such, measuring at every step is an inefficient use of

resources. Modifications to the prior ergodic functions were then developed for sparse

ergodic optimization, which seeks to optimize the points where sensor measurements

are taken over the ergodic trajectory while still yielding high information gain. This

demonstrated that there does exist an optimal set of sensing measurements for a

given coverage scenario following ergodicity [Rao et al. 2022].

The new ergodic optimization for sparse sensing is expanded upon from Equation

3.4 as:

u∗(t), λ∗(t) = argminu,λΦ
′(γ(t)),

subject to q̇ = f(q(t), u(t)), ||u(t)|| < umax

(3.5)

where the new variable λ(t) ∈ {0, 1} serves as a decision variable. Sparsity is then

promoted in the sample measurements by regularizing λ with an L1 metric. This

yields the augmented ergodic metric from Equation 3.2:

Φ′(γ(t)) =
m∑
k=1

αk(ck(γt, λt)− ξk)
2 +

∑
|λk| (3.6)

The time-averaged statistics of the agent and the information map from Equation 3.1

is then updated as:

C ′t(x, γt) =
1∑
t λt

t∑
τ=0

λ(t)δ(x− γi(τ)) (3.7)
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where λ(t) ∈ {0, 1} [Rao et al. 2022].

As it is difficult to solve mixed integer programming problems due to a lack of

a gradient, λ(t) is generalized from discrete values of λ(t) ∈ {0, 1} to a bounded

continuous range of λ(t) ∈ [0, 1] during optimization. After λ is optimized over this

range, it is then projected back into the discrete values of {0, 1} [Rao et al. 2022].

In situ expeditions are a timely and costly expenditure, which was why we approach

the problem of coral mapping through machine learning with remote sensed data.

However, these approaches still have uncertainties associated with their prediction

as they are not completely accurate. The output of the models is able to not only

leverage the efficiency of remote sensing for mapping, but also inform routes for the

expeditions by serving as an information prior for IPP. In addition, with regards to the

resource costs of in situ expeditions, sparse ergodic planners are a fully appropriate

approach to this problem in order to ensure that the sensing costs are as efficient as

possible.
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Chapter 4

Approach

The raw data products used in this research were preprocessed with atmospheric

and surface reflectance correction. In addition, due to an imbalance of classes in

the dataset, the data is further balanced through clustering in order to prepare for

training the model. Two primary model architectures are trained on the dataset, the

Regression Model and the Deep Conditional Dirichlet Model (DCDM). Variances

are calculated from the model prediction outputs and weighted in order to obtain

information priors. These priors are then passed through the sparse ergodic planner

in order to optimize a simulated in situ trajectory through the map.

4.1 Data

The data used in this research were in the form of remote sensed hyperspectral

and multispectral data from different satellites and sensing platforms, particularly

PRISM, Landsat-8, and WorldView-3. All of the input data were preprocessed for

atmospheric correction and surface reflectance from the water. Corresponding labels

were obtained by taking the preprocessed PRISM data and passing them through

ENVI spectral image processing and analysis software, verifying the resulting output

through personal experience and measurements from NASA’s in situ Earth Venture

Suborbital-2 COral Reef Airborne Laboratory (CORAL) mission.
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Figure 4.1: Environmental effects on spectral data measurements [Thompson et al.
2017]. These effects from the atmosphere, at the water surface, and in the water
column are estimated, inverted, and corrected in order to obtain the seafloor benthic
reflectance.

4.1.1 Data Products

The CORAL mission was used to collect data and map portions of the Great Barrier

Reef, Main Hawaiian Islands, Mariana Islands, and Palau in 2016-2017 [Hochberg and

Gierach 2018]. Conventionally, remotely sensed mapping of coral reefs has relied either

on in-scene statistics (so-called ”supervised classification”) or on algorithmic correction

for atmosphere, sea surface, and water column radiative transfer effects to derive

seafloor reflectance. The derived bottom reflectances are used to discriminate between

benthic classes. The algorithmic approach is not scene-specific and theoretically can be

applied globally; hyperspectral data affords the best retrievals [Lee and Carder 2002].

The PRISM data of Heron Island used in this study were obtained on 17 September,

2016, from an airborne platform at 8.5 km altitude. PRISM provided water-leaving

reflectance from 380-1050 nm at approximately 3 nm spectral resolution and 8 m

spatial resolution. For this mission, using shallow-water reflectance, PRISM data
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were processed using Bayesian optimization to provide seafloor benthic reflectance

and benthic functional type (Figure 4.1) [Thompson et al. 2017; Maritorena et al.

1994]. This in in turn was used as input in logistic regression to predict probabilities

of coral, algae, and sand for each pixel. CORAL’s map products were validated using

diver-based, in-water observations to yield final PRISM data and labels.

The Landsat-8 data of Heron Island were acquired on 26 October 2016; the surface

reflectance products were then retrieved from both the USGS EarthExplorer (https:

//earthexplorer.usgs.gov/) and USGS Global Visualization Viewer (https://

glovis.usgs.gov/). The data itself is composed of 7 bands ranging from 440-2200

nm with unequal spectral resolution and 32 m spatial resolution. The WorldView-3

data were collected on 4 July, 2016 through the Maxar WorldView-3 satellite and was

provided through NASA/GSFC and the NextView license agreement. It consisted of

8 bands of 420-950 nm wavelengths with approximately 75 nm spectral resolution

and 2 m spatial resolution.

The purpose behind transferring the labels of the PRISM data to WorldView-3

rather than directly labeling WorldView-3 data is that direct labels require in-water

observations, which are extremely limited owing to logistical constraints. The CORAL

mission, however, obtained hyperspectral imagery for about 43,000 km2 of the Great

Barrier Reef and its surrounding area, affording a very large and sufficiently accurate

training set. Our work focuses on a demonstration at Heron Island, where in-water

validation data exist. It seeks to classify and unmix the benthic scene by using

high resolution spectral data priors from WorldView-3 as inputs to our network in

order to yield more accurate per pixel labels. This allows our network to make more

distinctive classifications on pixel regions while also being able to more accurately

perform unmixing through the DCDM on the benthic coverage.

4.1.2 Raw Data Processing

Since our data was captured in different resolutions and alignments, we use ENVI, an

image processing and analysis software, to coregister the scenes as well as scale them

to corresponding resolutions. In order to retain the most spatial information within

the scene, the Landsat-8 data and PRISM labels were both upscaled to the resolution

of the WorldView-3 data using bilinear interpolation as opposed to downscaling the
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4. Approach

(a) Base WorldView-3 Data (b) Sample Mask

Figure 4.2: Masks were applied to the datasets ensuring that only pixels above 5
m in depth would be considered during training. A sample of the mask applied is
shown above, where white indicates valid pixels and black indicates invalid pixels.
(WorldView-3 data © 2016 Maxar).

WorldView-3 data. Bilinear interpolation was chosen over nearest neighbors when

performing the scaling to retain continuity between neighboring pixels rather than

consider upscaled pixels as discrete patches. We also applied a mask to the data

during training such that only pixels shallower than 5 m in depth are used (Figure

4.2). This is to minimize inaccuracies arising from radiative transfer effects: shallow

data are more reliable. Additionally, as shorter wavelengths are more affected by

water refraction and wavelengths outside the visible spectrum are more absorbed by

water, we only trained on visible wavelength bands across all of the spectral data.

The processed data and labels are presented in Figure 4.3.

4.1.3 Balancing and Clustering

There is a high abundance of algae labels within the scene in comparison to the sand

pixels, and especially with regards to the coral pixels. The dataset we train on in

this project consists of 56.93% algae, 42.55% sand, and just 0.5296% coral. As a

result, this tends to bias any model output towards algae predictions as it is the most

frequent label observed in training. A high enough performance is able to be attained

just through solely classifying everything as algae or sand without considering any

coral classifications.

In order to combat this issue, after the data is aligned and masked, it is then

balanced through clustering. Clusters of the data are taken to obtain a subset that

24



4. Approach

(a) Landsat-8 Data (b) WorldView-3 Data

(c) Labeled PRISM Data. The benthic classes
are represented as Coral (Red), Algae
(Green), and Sand (Blue).

Figure 4.3: Samples of the final processed and masked data products. (WorldView-3
data © 2016 Maxar).

better represents the three distinct classes when training. This also allows the model

to more effectively generalize across all of the classes in testing. Two primary methods

of clustering the data were applied within this research.

The first method of balancing applied during training was through the k-means++

algorithm. This algorithm identifies a specified number of cluster centers within

the dataset and groups datapoints based on their proximity to those cluster centers

[Arthur and Vassilvitskii 2007]. In our case, k-means++ is applied on the labels in

order to isolate three clusters of datapoints. Our output dataset is then composed by

selecting an equivalent number of points from each cluster. While this method is able

to obtain a balance of pixels that are representative of the three clusters, the clusters

themselves may not necessarily be fully representative of each class. This is especially

the case when considering not only the abundance of algae in the dataset and the

likelihood of it being part of any cluster, but also the fact that the pixels themselves

are mixtures of classes. This in turn makes it difficult to completely separate the
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classes into three distinct clusters.

The second method applied was balancing the classes with a maximum balancing

before applying the k-means++ algorithm. The maximum class per pixel is chosen

to represent every pixel in the dataset, and the class with the smallest number of

pixels determines the number of randomly sampled pixels from the other classes.

The primary benefit of this approach is that all of the classes are guaranteed to be

represented equally during training with regards to their hard label classifications.

However, due to the upper bound on the maximum number of datapoints that may

be drawn from each class, the data subsets may not necessarily be able to represent

all of the nuances in the class mixtures. The k-means++ application attempts to

represent these nuances through clustering the pixels in the subset dataset.

Once the data is properly balanced and clustered, it is ready to be passed into

the different models. These models are adaptive to the number of bands in the input

data, and their exact architectures are covered in the following section.

4.2 Models

We evaluate several Fully Connected Network (FCN) architectures to train over the

course of our research as well as provide comparison to a linear Support Vector

Machine (SVM). The linear SVM initially maps inputs into a higher dimensional

feature space Z through a non linear mapping. Within this feature space Z, subsets of

support vectors representing the training inputs are used to determine the maximum

margin, or distance, between points in different classes. These support vectors are

used to construct the optimal hyperplane in the original input space that separates

the different input classes [Cortes and Vapnik 1995].

FCNs are neural networks where each of the nodes in a single layer receive inputs

from all of the nodes in the prior layer. These types of networks are also known as

multilayer perceptrons. The initial FCN models used for this research were developed

in work by Candela on scene unmixing [Garza 2021]. In our research, the two types

of models employed from that resource are the Regression model and the DCDM.

The Regression model architecture is set up through three dense hidden layers,

all with Scaled Exponential Linear Unit (SELU) activation, as well as a final dense

layer with a softmax activation. The width of the hidden layers for the base network
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Figure 4.4: The architecture of the FCNs takes a spectrum x as input, predicting a
set of probabilities as the output from the hidden layers θ prior to calculating the
KLD loss as part of the Regression model. The DCDM takes the output of the hidden
layers θ to predict the values of α, the concentration parameters of the Dirichlet
distribution. These values are used to infer the mixing ratios r and are then used to
calculate the NLL loss. The DCDM employs both KLD and NLL loss in order to
estimate the mixing of benthic components while fitting the labeled probabilities.

is determined by the number of bands in the input data and the desired number of

output classes. This architecture was chosen to unmix endmembers of the network

and serve as a neural network baseline comparison to the DCDM (Table 4.1, Figure

4.4).

The DCDM architecture is set up with the same initial framework as the Regression

model architecture. However, as we are attempting to obtain a set of mixture

probabilities, we add an intermediary layer α with a modified sigmoid function that

outputs between 0-100. This layer is used as an input into the Dirichlet distribution

to model the different distributions of mixtures. Afterwards, a softmax is applied to

the output of α in order to get a set of concentration parameters for the Dirichlet

model mixing estimation. This architecture was chosen to learn parameters for the

Dirichlet distribution to unmix benthic classes (Table 4.2, Figure 4.4).

We use two loss functions when training our models. The KLD is a metric used

to compare the direct probability values between the output of the model and the

labeled values. In the case of the Dirichlet model we are also trying to train the

model to account for unmixing, so we incorporate the NLL loss which is used to

optimize the unmixing parameters in the α layer of the DCDM.

The primary goal of the machine learning model is to be able to classify and unmix
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Layer Type Activation Number of Units

Input - - n

Hidden Layer 1 Linear SELU 0.75*n+0.25*m

Hidden Layer 2 Linear SELU 0.5*n+0.5*m

Hidden Layer 3 Linear SELU 0.25*n+0.75*m

Output Linear Softmax m

Table 4.1: Regression Model Architecture

Layer Type Activation Number of Units

Input - - n

Hidden Layer 1 Linear SELU 0.75*n+0.25*m

Hidden Layer 2 Linear SELU 0.5*n+0.5*m

Hidden Layer 3 Linear SELU 0.25*n+0.75*m

α Linear Sigmoid m

r - Softmax m

Table 4.2: Deep Conditional Dirichlet Model Architecture

the three benthic classes, consisting of coral, sand, and algae, based on distinctions in

the spectral data. However, as both coral and sand are quite similar in composition

and color to one another (especially as some forms of sand are derived from dead

coral) and we are provided with limited data for training, we do not expect to obtain

a particularly high classification accuracy from the model. We are instead able

to demonstrate improved performance for this problem in comparison to previous

approaches and methods.

4.3 Information Map Prior

In order to perform IPP across the coral region and determine an ergodic trajectory, it

is necessary for the model to be provided with an information prior. The uncertainty

of the neural networks typically originate from either uncertainty in the data (aleatoric

uncertainty) or uncertainty in the model (epistemic uncertainty) [Gawlikowski et al.

2022]. To quantify the uncertainty and generate a prior, different subsets of the

28



4. Approach

training dataset are used to train the same model. The variance of the model outputs

through this approach on the test dataset quantifies the uncertainty within the model.

In addition, a random prior where all of the probabilities are randomly initialized is

provided to the IPP for baseline comparison.

When planning a trajectory through the map for further in situ measurements, we

are primarily concerned with observing the distribution of coral in the field as opposed

to algae or sand. As such, we can also apply a bias towards the coral class when

developing the information prior. After calculating the variance of the coral, algae,

and sand classes from the different model outputs, we normalize these maps through

a max norm in order to ensure that their uncertainty is of the same magnitude.

Afterwards, a weighted sum of the normalized maps yields the final uncertainty prior

used as the information map for the planner. The average variance across the three

classes for the output is calculated as a comparative prior as well.

Due to the computational limits of the device that the experiments are run on,

we are only able to determine a sparse ergodic trajectory for the scene at a 16m2

per pixel resolution. Similar to the preprocessing of the spectral data, the model

output predictions were rescaled using bilinear interpolation to retain neighboring

pixel continuity. ENVI was used to process the outputs and yield the final priors to

input into the planner.

4.4 Planner Setup and Evaluation

The dynamics of the agent for the planner are defined as the constrained discrete

time dynamical system:

x(t+ 1) = f(x, u) = x(t) + tanh(u) (4.1)

where x(t) ∈ R2 and u ∈ R2 is bounded by the tanh function. This bound is applied

in order to constrain the results to the range [0, 1]. The discrete values of λ(t) ∈ {0, 1}
used in the sparse ergodic planner are instead modeled as a bounded continuous

variable λ(t) ∈ [0, 1], which improves computational efficiency without negatively

impacting performance [Rao et al. 2022].

The ergodic planner seeks to minimize the Fourier spectral decomposition of
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the two distributions. As such, the Fourier basis modes that satisfy the Neumann

boundary conditions must be calculated and applied across the distributions [Mathew

and Mezić 2011]. For a rectangular domain of U = [0, L1]× [0, L2], the Fourier basis

are found by the following:

Fk(x) =
1

hk

cos(
k1πx1

L1

) cos(
k2πx2

L2

) (4.2)

where

hk =

√∫ L1

0

∫ L2

0

cos2(
k1πx1

L1

) cos2(
k2πx2

L2

)dx1dx2 (4.3)

is a normalization factor that ensures that Fk has L2 norm equal to 1, k = [k1, k2]

are positions in the domain, and x is the base distribution input value.

As we are applying a sparse ergodic planner to determine a trajectory through

the region, equations 3.5, 3.6, and 3.7 are applied to determine the optimization

function formulation, the ergodic metric to optimize in the optimization loop, and the

time-averaged statistics of the agent respectively. The primary difference between a

standard and sparse ergodic planner is the inclusion and optimization of λ(t), which

determines when a sensor measurement should be taken.

An additional barrier cost function and L1 norm penalty are added to the opti-

mization problem in equation 3.5. The barrier cost function is defined as:

J (γ(t)) = 100 ∗ (max(0, γ(t)− 1)2 +max(0,−γ(t))2) (4.4)

where γ is the trajectory of the agent. The L1 norm penalty is defined as:

L1(t) =

∫
t

|λ(t)|dt (4.5)

where λ(t) is the bounded continuous range of values denoting whether a sensor

measurement is taken or not. These two additions to the optimization function seek

to stabilize the system. The barrier function ensures that the trajectory remains

within the bounds of the map. The L1 norm penalty bounds the values of the sensor

measurements while also promoting sparsity by encouraging smaller values.

Afterwards, the initial conditions for the planner are defined. These include
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defining the starting position of the agent, determining the number of steps allocated

for the agent to take, and initializing the set of controls u to 0 and λ values for the

sensor measurements to 1. Finally, the trajectory is optimized through the application

of the Adam optimizer with learning rate 1e-3, using the modified optimization

function from equation 3.5 with equations 4.4 and 4.5 [Kingma and Ba 2014].

After a trajectory has been determined and a final information map is obtained,

we can update the model output using the model labels as an approximation of the

results from an in situ expedition. We define this model prediction update as follows:

M ′ = M + (L −M) ∗ (1− D − 0.5

0.5
) (4.6)

where

D = sigmoid(|c(γ, λ)− ξ|) (4.7)

M is the model output prediction, L are the labels, and c and ξ are the Fourier

coefficients for the agent’s final time-averaged statistics and the desired spatial

distribution respectively. Equation 4.7 scales the difference between c and ξ to

the range [0, 1]. Note that this function assumes a linear relationship between the

information gain and the model update.

The same metrics of accuracy, KLD, and MAE used to initially evaluate the model

output are applied to the updated output as well. This allows us to observe the

impact each distinct prior had on improving the coral map. It also provides a basis

of comparison between the Regression model and DCDM outputs in terms of how

much an in situ expedition would be able to improve the respective outputs. While

regions that the agent does not pass over are also updated by the metric in Equation

4.6, the relative performance of the updated predictions are still maintained, allowing

for fair comparison of how these trajectories would fare in the field.

The entire pipeline in this research is established as taking input data, prepro-

cessing it, passing it through a model for training and evaluation, taking the model

output variances as priors for the planner, and using the information map difference

from the planned trajectory to update the model predictions. The modifications to

the optimization function for the sparse ergodic planner also serve to ensure that the

trajectory and sensor measurements are well bounded during training. We now cover

the specific parameter tuned experimentation and evaluation using this pipeline.

31



4. Approach

32



Chapter 5

Experiments

5.1 Mapping and Unmixing

Our models were trained with a batch size of 32, Adam optimizers, and learning rates

of 1e-3 for all loss functions [Kingma and Ba 2014]. For the DCDM, the KLD was

weighted by 0.95 and the NLL was weighted by 0.05 to obtain the total loss. We

trained on a dataset clustered with k-means++, as well as on a dataset first balanced

with maximum balancing then k-means++.

We evaluated our models using accuracy, KLD, and MAE. Accuracy is defined as

the number of correct maximum probability classifications per pixel over the total

number of pixels, KLD is a metric the measures the statistical distance between two

probability distributions, and MAE measures the average absolute difference between

actual and predicted values. Accuracy was chosen in order to represent general

performance in hard classification of the benthic cover. KLD and MAE quantify

how closely our predictions align with the actual probabilities, and thus how well the

model is able to unmix the benthic cover classes. In addition to the evaluation of

these values across all of the classes (Table 5.1, Table 5.3), model performance on

coral as the sole class of interest is also included (Table 5.2, Table 5.4).

Beginning with the k-means++ clustered dataset, all of the methods achieve

comparable accuracy, with SVM performing slightly better on the Landsat data while

the Regression model performs slightly better on the WorldView data as seen in Table

5.1. The reason behind the SVM’s performance is due to classifying all pixels as
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Data Model Accuracy KLD MAE

Landsat SVM 72.68% — —
Landsat Regression 72.07% 0.0393 0.1867
Landsat DCDM 72.22% 0.0419 0.1878

WorldView SVM 69.79% — —
WorldView Regression 70.38% 0.0487 0.2054
WorldView DCDM 69.91% 0.0512 0.2056

Table 5.1: Overall test set results using Landsat and WorldView data clustered with
k-means++ on SVM, Regression Model, and DCDM

Data Model Accuracy KLD MAE

Landsat SVM 0% — —
Landsat Regression 25.60% 0.0937 0.3078
Landsat DCDM 22.34% 0.1015 0.3163

WorldView SVM 0% — —
WorldView Regression 6.170% 0.1127 0.3535
WorldView DCDM 22.14% 0.1025 0.3215

Table 5.2: Coral test set results using Landsat and WorldView data clustered with
k-means++ on SVM, Regression Model, and DCDM

algae or sand without any coral classifications. The high abundance of the former two

classes in the dataset even after clustering allows the SVM to attain a high accuracy

without classifying coral, as seen in Table 5.2.

Between a Regression model and DCDM trained on the same dataset, the per-

formance across all metrics appear to be roughly similar with regards to all of the

classes as seen in Table 5.1. Landsat achieves an accuracy of approximately 72.15%,

a KLD of 0.406, and an MAE of 0.1872 while WorldView performs slightly worse

with an accuracy of about 70.15%, a KLD of 0.0500, and an MAE of 0.2055. A

slight increase in accuracy is observed with the Landsat data between the two models.

In all other metrics, the DCDM appears to perform slightly worse in comparison

to the Regression model. These results all seem to contradict our expectations for

improvement in performance with high spatial-resolution WorldView data alongside

the unmixing capabilities of the DCDM. However, this is considering all of the classes

together in the evaluation, where both algae and sand dominate the test set.
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Data Model Accuracy KLD MAE

Landsat SVM 63.17% — —
Landsat Regression 70.35% 0.0446 0.2011
Landsat DCDM 71.45% 0.0542 0.214

WorldView SVM 62.43% — —
WorldView Regression 69.96% 0.0544 0.2162
WorldView DCDM 69.13% 0.0632 0.2308

Table 5.3: Overall test set results using Landsat and WorldView data clustered with
maximum balancing and k-means++ on SVM, Regression Model, and DCDM

Data Model Accuracy KLD MAE

Landsat SVM 88.16% — —
Landsat Regression 75.77% 0.0605 0.2012
Landsat DCDM 0% 0.3383 0.6075

WorldView SVM 89.27% — —
WorldView Regression 73.21% 0.0584 0.2011
WorldView DCDM 76.55% 0.0664 0.2028

Table 5.4: Coral test set results using Landsat and WorldView data clustered with
maximum balancing and k-means++ on SVM, Regression Model, and DCDM

With regards to the coral test set results in Table 5.2, a couple of distinct

improvements can actually be observed with the WorldView data in comparison to

the Landsat data. Landsat decreases in performance across all evaluation metrics

between the Regression model and the DCDM, while WorldView is able to improve

its accuracy by almost 3 times while also decreasing its KLD and MAE, indicative

of successful unmixing. While the evaluation of the models on all of the classes

do not appear to meet our expectations, there is supportive evidence for improved

performance as a result of the higher spatial-resolution data and the DCDM. This

is demonstrated by the fact that they are able to successfully isolate and improve

classifications on the more minor coral class.

Moving on to the maximum balanced then k-means++ clustered dataset, the

coral class now has increased representation in the dataset than the direct k-means++

clustering. As a result, SVM now classifies coral quite well in Table 5.4, attaining the

highest accuracy across all methods. However, it is unable to separate pixels with
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similar compositions to multiple classes. SVM is thus unable to perform as well on

all the classes at once and achieves significantly lower accuracy on both datasets than

the Regression model and the DCDM, as seen in Table 5.3.

From Table 5.3, similar trends to Table 5.1 can be seen with the Landsat and

WorldView datasets between the Regression model and the DCDM performance.

Landsat experiences a slight increase in accuracy while WorldView slightly decreases

in performance across all metrics, once again in opposition to our expectations.

Considering results on just the coral pixels in Table 5.4, we observe that once again

WorldView achieves better accuracy with the DCDM but also experiences a decrease

in performance with KLD and MAE. A drastic decrease in performance with coral

classification is observed on the Landsat data, where it attains 0% accuracy. While

the exact cause is undetermined, we conclude that characteristics of the clustered

Landsat dataset alongside the softmax activation cause the Dirichlet component

to standardize the concentration parameter value of coral to 1. As algae and sand

typically attain higher concentration parameter values due to their prioritization, this

results in zero coral classifications.

Overall, the SVM as a standard machine learning approach does give fair accuracy,

but distinctly fails to model any mixing of classes. The Regression model achieved

better KLD and MAE than the DCDM in general as the DCDM tended to increase

these metrics on all classes when applied. However, the DCDM does give better

representation for coral as demonstrated by increases in accuracy when classifying

coral observed in both types of clustering cases. Finally, while Landsat appears

slightly more suited for overall classification accuracy, WorldView data tends to

outperform it when focusing on classifying coral. Note that these conclusions are

based on a dataset with minimal coral representation. While distinctions are observed

between models and datasets, performance across the board is quite similar. More

data is needed to establish statistical significance for these conclusions.

5.2 Planning for Uncertainty

For the planning component, we proceed with the Regression model and the DCDM

both trained with the hyperparameters defined as in Section 5.1 on WorldView data

with maximum balancing and k-means++ clustering as a standard. The training
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(a) The average prediction across all four models. (b) The base weighted prior.

(c) The equally weighted prior. (d) The coral weighted prior.

Figure 5.1: Average Prediction and Weighted Variance Priors. Four subsets of the
maximum balanced and k-means++ clustered dataset were used to train DCDMs.
The average model predictions and weighted variances were calculated from the
outputs.

dataset was equally divided into four parts, and four models were trained on each

of these data subsets. The average of the output predictions is then taken to be

the overall base model prediction. The variance of each of the classes across the

four predictions is calculated and normalized, before a weighted sum is calculated.

During testing, the weights of each class variance [ωC , ωA, ωS] were set for the coral,

algae, and sand variances respectively. Overall, we calculated a weighted prior biased

towards coral with [ωC , ωA, ωS] = [0.6, 0.2, 0.2], an equal prior where the variances

were averaged with [ωC , ωA, ωS] = [0.33, 0.33, 0.33], and a coral prior considering only

the coral variance with [ωC , ωA, ωS] = [1, 0, 0] (Figure 5.1).

The starting location for the trajectory that the ergodic planner optimizes was set

to the point of maximum variance in each prior. An Adam optimizer with learning

rate 1e-3 was applied for the planner to optimize the ergodic loss function [Kingma

and Ba 2014]. A total of 1000 iterations were allotted for the planner to adjust the
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(a) The weighted prior found by taking a weighted
sum of the class variances from the four model
outputs.

(b) The weighted prior after a Fourier basis is
applied for smoothing. Warmer colors have
higher weights.

(c) The output trajectory from the planner. (d) The final information map of the agent from
the trajectory.

Figure 5.2: Outputs for the planner on the weighted prior from the DCDM

trajectory, and the length of the trajectory was set to 100 steps. The set of controls u

were all initialized to 0 while the sensing values λ were all initialized to 1 for sensing

at every step.

A fourier basis function is applied across the input prior to yield the target

information map. This smooths out the probability distribution for the planner

to optimize across. In our application, L1 = L2 = 1 and a meshgrid is used to

evaluate across the entire scope of the map. In addition, we simplify the Fourier basis

calculations by setting the normalization factor hk to the first value of h0 calculated
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(a) The weighted prior trajectory. (b) The equal prior trajectory.

(c) The coral prior trajectory. (d) The random prior trajectory.

Figure 5.3: Final trajectories across all the different priors for the DCDM

using Equation 4.3, as this yielded smoother generalized contours in the information

map [Rao et al. 2022]. The final simplified Fourier basis equation in our application

is thus defined as:

Fk(x) =
1

h0

cos(πk1x1) cos(πk2x2) (5.1)

Over the course of the training, the planner tries to match the information map

of the trajectory to this target map by minimizing the ergodic loss, which is a

weighted difference between these two maps as defined by Equation 3.6. The agent’s

final trajectory yields the final information map used to update the average model

prediction, thus simulating an in situ expedition (Figure 5.2, Figure 5.3). A linear
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Model Acc KLD MAE

Regression 70.36% 0.1331 0.4556
DCDM 69.59% 0.1337 0.4557

Table 5.5: Average model prediction performance for the Regression model and the
DCDM on all classes. These were calculated using the average model prediction from
the four model runs against the ground truth labels for all classes.

Model Prior Accuracy KLD MAE

Regression Weighted 92.97% 0.0399 0.1847
Regression Equal 92.15% 0.0396 0.1837
Regression Coral 94.46% 0.0376 0.1725
Regression Random 96.31% 0.0256 0.1388
DCDM Weighted 92.62% 0.0385 0.1790
DCDM Equal 92.11% 0.0390 0.1809
DCDM Coral 94.15% 0.0353 0.1643
DCDM Random 95.85% 0.0257 0.1387

Table 5.6: Model prediction performance after planner updates on all classes

relationship is assumed between the amount of information gain and the update to

the model prediction.

Similarly to the evaluation of the machine learning models, accuracy, KLD, and

MAE are used to evaluate the final output maps. The performance of the average

predictions of the four models are obtained by comparing them against the ground

truth labels for all classes (Table 5.5) as well as for just the pixels of the ground

truth where coral is the maximum class (Table 5.7). The performance of the updated

predictions using the information maps of the planned trajectories are also included

for evaluation. They are separated into performance across all the classes (Table

5.6) and on just the pixels in the ground truth with coral as a maximum (Table

5.8). As Equation 4.6 even updates the average model predictions for points that

the trajectory does not come close to, we are interested in observing the relative

performance of the updated predictions as opposed to their magnitude.

Regarding the initial performance of the models on all classes, both models perform

roughly equivalently, though the Regression model slightly outperforms the DCDM

(Table 5.5). The model outputs experience an increase in performance across all
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Model Accuracy KLD MAE

Regression 71.49% 0.1397 0.4840
DCDM 71.70% 0.1380 0.4793

Table 5.7: Average model prediction performance for the Regression model and the
DCDM on coral class. These were calculated using the average model prediction
from the four model runs against the ground truth label pixels that had coral as the
maximum class.

Model Prior Accuracy KLD MAE

Regression Weighted 90.50% 0.0180 0.0984
Regression Equal 91.45% 0.0147 0.0859
Regression Coral 88.70% 0.0417 0.1897
Regression Random 87.54% 0.0395 0.1837
DCDM Weighted 93.03% 0.0144 0.0876
DCDM Equal 91.97% 0.0136 0.0836
DCDM Coral 88.70% 0.0426 0.1930
DCDM Random 89.23% 0.0389 0.1817

Table 5.8: Model prediction performance after planner updates on coral class

metrics when updates from the information map are applied, regardless of the prior

type. In the final outputs as seen in Table 5.6, though the Regression model still

retains higher accuracy than the DCDM between equivalent priors, the DCDM is

able to achieve lower KLD and MAE. This is indicative of results that more closely

match the distribution of ground truth benthic class mixtures and suggest that the

DCDM is able to more intelligently sample locations that improve its performance

than the Regression model.

The updated predictions on each model achieve similar performance across all

metrics on all classes regardless of the prior used (Table 5.6). Out of them, the

random prior and the coral prior achieve the best performance, while the weighted

and equal priors follow close behind and are roughly equivalent. These results can be

attributed to the coverage of the final trajectories as seen in Figure 5.3. As we are

updating the entire map based on the update function 4.6, prioritizing exploration

over exploitation yields better results on overall classes. Even though the coral prior

seeks to exploit high uncertainty regions of coral pixels, due to the dispersion of
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regions of high information in the prior, the ergodic planner instead yields a more

exploratory trajectory.

When considering the coral pixel classifications, the DCDM initially outperforms

the Regression model across all metrics in Table 5.7. All of the metrics are improved

through updates from the information map as seen in Table 5.8, where the DCDM

continues to outperform the Regression model overall. Notably, while their accuracy

is still similar, the weighted and equal priors now perform the best in comparison to

the coral and random priors. Even though all of the priors had similar values over the

metrics with all classes, the KLD and MAE of the weighted and equal priors is much

lower than those of the coral and random priors with respect to just the coral pixels.

This demonstrates how their trajectories and samples are able to better exploit coral

uncertainties.

Overall, the general increase in performance with information map updates suggest

that in situ expeditions would definitely improve benthic cover mapping. The DCDM

especially benefited from the update, generally achieving better performance than

the Regression model across all metrics after the update. The weighted and equal

priors demonstrated how exploitation of a class when sampling can improve the

prediction of that class. In contrast, having regions of high information too spread

out as in the case of the coral and random priors can cause the trajectory to prioritize

exploration, leading to better general prediction performance as opposed to individual

class performance.
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Conclusions

Coral reefs are still in rapid decline to this day, thus necessitating a global scale

method of monitoring their benthic cover in order to understand the trajectory of

their condition. Remote sensed smallsat data has been demonstrated to be a cost

effective method of obtaining global scale data. In addition, developments in deep

learning approaches for spectral reconstruction using this data for training have

proven successful as well [Candela et al. 2021; Garza 2021]. By employing these

approaches to train and map global scale spectral data, we are able to yield a system

that satisfies our need for mapping and monitoring benthic cover distributions over

time.

In this project, we are able to successfully train Regression models and Deep Con-

ditional Dirichlet Models to classify and unmix multispectral data with roughly 70%

accuracy. While this value may appear fairly low with regards to other classification

or regression tasks, all three classes in the benthic cover have similar spectral values

and signatures to one another. The ambiguity between the three classes gives reason

for this accuracy. We demonstrate that an increase in spectral training data resolution

improves the performance of the model in classifying lesser known classes such as

coral in this case. In addition, we also find that the DCDM is able to successfully

unmix coral pixels to improve their classification on the high spatial-resolution data,

though more tuning may be necessary for lower spatial-resolution applications.

One concern from the experimental results is that even though an improvement

in accuracy is consistently observed with the application of the DCDM towards

43



6. Conclusions

coral pixels, the KLD and MAE tend to decrease in performance. As these metrics

quantify unmixing, this contradicts the expected performance and the success found

in prior work. One explanation for this behavior is simply the limitations of the

data. Our data has a minimal amount of coral in comparison to algae and sand.

Though we attempt to mitigate this issue through clustering, the clustered datasets

may still not be fully representative of all classes and mixtures, thus leading to

a decrease in performance. Another explanation for the observed behavior is the

network architecture itself, as the architecture is adaptive to the number of bands in

the input data. The prior work trained on hyperspectral PRISM data which has 92

bands, while we train on multispectral WorldView-3 and Landsat-8 data which have

8 and 7 bands respectively. As such, our network is drastically smaller than what

was previously used. This in turn limits the variability with which our model can

represent mixtures and predict on the dataset, simply due to the reduction in size.

From the ergodic planner application, we demonstrate that intelligently sampling

locations for in situ expeditions is an effective way to improve predictions with efficient

resource usage. We find that having a prior slightly biased towards a class allows

the trajectory to exploit regions of high uncertainty for that class and attain higher

prediction performance on the class as a result. In contrast, care must be taken that

the weighted prior does not cause regions of high uncertainty to be too dispersed,

otherwise the planner will prioritize exploration without consideration of the biased

class. We determine that the DCDM benefited the most from being updated with

intelligent sampling, generally outperforming the Regression model across all metrics.

6.1 Project Contributions

The contributions of this thesis are summarized as follows:

• Trained a pipeline to successfully map coral reef benthic cover on global scale

data with nearly 70% accuracy

• Demonstrated an increase in spatial resolution yields positive impacts in classi-

fying spectral data

• Demonstrated that the Deep Conditional Dirichlet Model is able to successfully

unmix coral pixels on higher spatial resolution data

44



6. Conclusions

• Implemented a sparse ergodic planner to help inform future in situ expeditions

for mapping coral reefs based on the model output

• Demonstrated that weighted priors are generally able to improve performance

on the class of interest

6.2 Future Work

Currently, the progress and conclusions we are able to make in this thesis are limited

by our dataset. The labeled data we are provided and train on consists of 56.93%

algae, 42.55% sand, and just 0.5296% of the most significant class, coral. In addition,

we only work with the single scene of Heron Island in this thesis. Due to these

limitations and the inherent bias in the labels, we are only able to make conclusions

that suggest the performance of different datasets and models without statistical

significance guarantees. This is especially apparent with regards to the DCDM when

classifying coral. Improvements in performance were observed when trained with

higher resolution WorldView data, while decreases in performance were observed with

lower resolution Landsat data across the same set. As such, future work should look

to collect and label more data for which the machine learning approaches explored in

this thesis can be applied and evaluated in order to achieve statistically significant

conclusions.

The Regression model and the DCDM both optimize a standard KLD loss function

alongside an NLL loss function for the DCDM. Due to the imbalance of the training set,

one possible modification to the model training would be to develop a weighted loss

function to optimize. This would allow the model to penalize incorrect classifications

of significant classes more heavily in comparison to others in order to better classify

and unmix those classes after training.

The Regression model and the DCDM architectures are currently determined

by the number of bands in the input data. As we provide multispectral inputs to

the models, the architectures themselves are quite small, thus limiting the range

of functions the network is able to model. The size also makes it difficult to apply

approaches such as dropout layers, which can help improve the generalizability of

the model while preventing overfitting. Further work could seek to determine how

45



6. Conclusions

wider and/or deeper architectures are able to better model the ambiguities in the

spectral signature of the benthic classes. An optimal architecture size could then be

determined for the purposes of benthic classification. Care would need to be taken in

order to ensure that these larger networks do not overfit to the dataset.

Additionally, as the models trained in this thesis take in pixel inputs, spatial

information about the input data is lost. Convolutional Neural Networks (CNN) train

over regions of input pixels and thus are able to learn not only spectral information,

but take into account spatial relations as well. This is especially significant for the

purposes of coral reef mapping, as neighboring pixels are likely to contain continuous

mixture distributions. As significant portions of the current dataset are masked out

due to radiative transfer effects in deep water pixels, more continuously labeled pixel

regions should be obtained in order to train the model. Otherwise, the masked pixels

should be appropriately handled during data preprocessing and training.

Once learned models are obtained, whether from our work or from future devel-

opments, applying them to the entirety of the WorldView-3 archive of reef imagery

would result in global quantification of coral reefs. From these predicted maps, the

scenes with the highest model uncertainties that could benefit the most from in situ

sampling are determined. The sparse ergodic planner then yields trajectories for

in situ expeditions to follow and sample from. This would not only improve the

coral maps, but would also allow for practical verification of our simulated method of

informative path planning for model updating.

Finally, while the approaches discussed in this thesis were primarily developed and

trained for application towards coral reef monitoring and mapping, they are generally

applicable to any spectral dataset. Future work could seek to apply these models

and techniques to different habitat scenes for classification and unmixing of different

environments. Comparisons could then be made that explore the effectiveness of

these approaches to different habitat scenes or based on the desired output classes.
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Appendix

A.1 Hyperparameters

Several different hyperparameters were tuned over the course of training and testing

the Regression model and the DCDM. A description of each hyperparameter as well

as their possible values (if the hyperparameter values were discrete) is summarized in

Table A.1.

A.2 Ergodic Planning Trajectories

The visualization of the priors, Fourier bases, output trajectories, and final information

maps of the agents across all priors for the Regression model and the DCDM are

included below.

47



A. Appendix

Hyperparameter Description

Normalization The normalization applied to the input data such that all inputs
are of the same magnitude. [Max, L2]

Clustering Method The clustering method used on the input training data. This
sought to mitigate the effect of bias in the data by obtaining a
data subset that would be more representative of all of the input
classes. [Kmeans++, Maximum Balancing and Kmeans++]

Activation Function The activation function applied to the hidden layers of the neural
networks. These are important as they introduce non linearity
into the system, allowing the network to model more complex
representations and functions. [ReLU, SELU]

Learning Rate The rate at which the model weights are adjusted during train-
ing. A higher learning rate will adjust the model weights faster
but may overshoot local and global optima, while a lower learn-
ing rate will reach these optima but may take a long time to
adapt the model weights. This value is modified by the Adam
Optimizer over the course of the model training.

Lambda The scalar value applied to the concentration parameters α
of the Dirichlet distribution as part of the modified sigmoid
function in the DCDM. A greater lambda value increases the
overall magnitude of the α vector, meaning that the distribution
has smaller variance.

Loss Weights The weighting of the KLD and NLL loss functions in the DCDM.
The sum of the two loss weights equals 1, and the sum of the
weighted loss functions serves as the loss to minimize while
training the model.

Table A.1: Hyperparameter Descriptions and Values

48



A. Appendix

(a) The weighted prior found by taking a weighted
sum of the class variances from the four model
outputs.

(b) The weighted prior after a Fourier basis is
applied for smoothing. Warmer colors have
higher weights.

(c) The output trajectory from the planner. (d) The final information map of the agent from
the trajectory. Locations where sparse sensed
measurements were taken are indicated in
yellow.

Figure A.1: Outputs for the planner on the weighted prior from the Regression model
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(a) The equally weighted prior from the four
model outputs.

(b) The equally weighted prior after a Fourier
basis is applied for smoothing. Warmer colors
have higher weights.

(c) The output trajectory from the planner. (d) The final information map of the agent from
the trajectory. Locations where sparse sensed
measurements were taken are indicated in
yellow.

Figure A.2: Outputs for the planner on the equal prior from the Regression model

50



A. Appendix

(a) The coral variance prior from the four model
outputs.

(b) The coral variance prior after a Fourier basis
is applied for smoothing. Warmer colors have
higher weights.

(c) The output trajectory from the planner. (d) The final information map of the agent from
the trajectory. Locations where sparse sensed
measurements were taken are indicated in
yellow.

Figure A.3: Outputs for the planner on the coral prior from the Regression model
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(a) The random prior. (b) The random prior after a Fourier basis is ap-
plied for smoothing. Warmer colors have
higher weights.

(c) The output trajectory from the planner. (d) The final information map of the agent from
the trajectory. Locations where sparse sensed
measurements were taken are indicated in
yellow.

Figure A.4: Outputs for the planner on the random prior from the Regression model
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(a) The weighted prior found by taking a weighted
sum of the class variances from the four model
outputs.

(b) The weighted prior after a Fourier basis is
applied for smoothing. Warmer colors have
higher weights.

(c) The output trajectory from the planner. (d) The final information map of the agent from
the trajectory. Locations where sparse sensed
measurements were taken are indicated in
yellow.

Figure A.5: Outputs for the planner on the weighted prior from the DCDM
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(a) The equally weighted prior from the four
model outputs.

(b) The equally weighted prior after a Fourier
basis is applied for smoothing. Warmer colors
have higher weights.

(c) The output trajectory from the planner. (d) The final information map of the agent from
the trajectory. Locations where sparse sensed
measurements were taken are indicated in
yellow.

Figure A.6: Outputs for the planner on the equal prior from the DCDM
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(a) The coral variance prior from the four model
outputs.

(b) The coral variance prior after a Fourier basis
is applied for smoothing. Warmer colors have
higher weights.

(c) The output trajectory from the planner. (d) The final information map of the agent from
the trajectory. Locations where sparse sensed
measurements were taken are indicated in
yellow.

Figure A.7: Outputs for the planner on the coral prior from the DCDM
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A. Appendix

(a) The random prior. (b) The random prior after a Fourier basis is ap-
plied for smoothing. Warmer colors have
higher weights.

(c) The output trajectory from the planner. (d) The final information map of the agent from
the trajectory. Locations where sparse sensed
measurements were taken are indicated in
yellow.

Figure A.8: Outputs for the planner on the random prior from the DCDM
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