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Abstract

Despite the recent progress in computer vision and deep learning, robot
perception remains a tremendous challenge due to the variations of the
objects and the scenes in manipulation tasks. Ideally, a robot trying to
manipulate a new object should be able to reason about the object’s
geometric, physical, and topological properties. In this thesis, we aim
to investigate different strategies for enabling a robot to reason about
objects using 3D visual signals in a generalizable manner.

In the first project, we propose a vision-based system, FlowBot 3D,
that learns to predict the potential motions of the parts of a variety of
articulated objects to guide downstream motion planning of the system
to articulate the objects. To predict the object motions, we train a
neural network to output a dense vector field representing the point-wise
motion direction of the points in the point cloud under articulation. We
then deploy an analytical motion planner based on this vector field to
achieve a provably optimal policy. We train a single vision model entirely
in simulation across all categories of objects, and we demonstrate the
capability of our system to generalize to unseen object instances and novel
categories in both simulation and the real world using the trained model
for all categories, deploying our policy on a Sawyer robot.

In the second project, we focus on the task-specific pose relationship
between relevant parts of interacting objects. We conjecture that this
relationship is a generalizable notion of a manipulation task that can
transfer to new objects in the same category; examples include the rela-
tionship between the pose of a pan relative to an oven or the pose of a
mug relative to a mug rack. We call this task-specific pose relationship
“cross-pose”. We propose a vision-based system, TAX-Pose, that learns
to estimate the cross-pose between two objects for a given manipulation
task using learned cross-object correspondences. The estimated cross-pose
is then used to guide a downstream motion planner to manipulate the
objects into the desired pose relationship. We demonstrate our method’s
capability to generalize to unseen objects in the real world.

We also demonstrate that we are able to combine the two systems together
using weighted SVD for more complex manipulation tasks that involve
both articulated and free-floating objects. By finetuning pretrained Flow-
Bot 3D and TAX-Pose models, we show that we can generalize to a wider
variety of manipulation tasks and even planning.
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Chapter 1

Introduction

Robotic manipulation is an interesting problem to solve in order to make robots to

fully integrate into our society. Robotic manipulation can be roughly decomposed into

two components: perception and planning. Perception is vital in the manipulation

pipeline in that the signals obtained from the perception system are used downstream

to guide the planning module. However, manipulation tasks remain challenging due to

several reasons. Particularly, many end-to-end approaches are known to be confined

to the training tasks and are not capable of generalizing to new manipulation tasks

and new objects of interests. Moreover, state estimation (such as object pose and

parameters estimation) poses yet another challenge due to the methods’ brittleness.

In this thesis, we study the problem of generalizable 3D objects reasoning in robotic

perception systems.

Why do we need to tackle 3D visual perception in manipulation tasks? Our key

insight is that once “good” visual model is learned for a task, the output of the visual

model should be able to substantially facilitate the downstream planning of the task

after careful design. We need to take a more holistic view of perception and planning,

designing each module with an awareness of how it will be used within the context of

the robotic system.

How do we define generalizability? In this thesis, we focus on being able to

generalize to inter-class and intra-class variations across different objects. Specifically,

we would like to design perception systems that are able to reason about unseen

objects from the same class and from a different class in a consistent manner.

1



1. Introduction

Towards this end, in this thesis, we study the problem of learning 3D generalizable

visual perception for two categories of objects: articulated objects and free-floating

objects.

• In Chapter 2, we introduce FlowBot 3D, a novel method to perceive and

manipulate 3D articulated objects that generalizes to enable a robot to articulate

unseen classes of objects. FlowBot 3D learns to predict a dense vector field

representing the point-wise motion direction of the points in the point cloud

under articulation. An analytical motion planner based on this vector field to

achieve a policy that yields maximum articulation will then be deployed to

execute the action. Experiments suggest that FlowBot 3D is able to successfully

manipulate a wide varirety of real-world articulated objects.

• In Chapter 3, we introduce TAX-Pose (Task-Specific Cross-Pose Estimation) for

robotic manipulation. We propose a vision-based system that learns to estimate

the cross-pose between two objects for a given manipulation task using learned

cross-object correspondences. The estimated cross-pose is then used to guide a

downstream motion planner to manipulate the objects into the desired pose

relationship (placing a pan into the oven or the mug onto the mug rack). We

demonstrate our method’s capability to generalize to unseen objects, in some

cases after training on only 10 demonstrations in the real world. Results show

that our system achieves state-of-the-art performance in both simulated and

real-world experiments across a number of tasks.

• In Chapter 4, we propose one possible method to combine the two systems

using weighted SVD. The resulting combined model is able to reason about

both articulated and free-floating objects and thus will be able to accomplish

a wider variety of complex manipulation tasks that involve both categories of

objects.

2



Chapter 2

FlowBot3D: Learning 3D

Articulation Flow to Manipulate

Articulated Objects

2.1 Introduction

Understanding and being able to manipulate articulated objects such as doors and

drawers is a key skill for robots operating in human environments. While humans can

rapidly adapt to novel articulated objects, constructing robotic manipulation agents

that can generalize in the same way poses significant challenges, since the complex

structure of such objects requires three-dimensional reasoning of their parts and

functionality. Due to the large number of categories of such objects and intra-class

variations of the objects’ structure and kinematics, it is difficult to train efficient

perception and manipulation systems that can generalize to those variations.

To address these challenges, we propose to separate this problem into one of

“affordance learning” and “motion planning.” If a robot can predict the potential

movements of an objects’ parts (a.k.a. “affordances”), it would be relatively easy

for the agent to derive a downstream manipulation policy by following the predicted

motion direction. Thus, we tackle the problem of manipulating articulated objects

by learning to predict the motion of individual parts on articulated objects.

3



2. FlowBot3D: Learning 3D Articulation Flow to Manipulate Articulated Objects

Start Estimate 
Articulation Flow

Execution

Figure 2.1: FlowBot3D in action. The system first observes the initial configuration of the
object of interest, estimates the per-point articulation flow of the point cloud (3DAF), then
executes the action based on the selected flow vector. Here, the red vectors represent the
direction of flow of each point (object points appear in blue); the magnitude of the vector
corresponds to the relative magnitude of the motion that point experiences as the object
articulates.

Previous work has proposed to learn the articulation parameters (i.e. rotation

axis of revolute joints and translation axis of prismatic joints) in order to guide the

manipulation policy [7]. However, such methods often rely on knowing class-specific

articulation structures. Without such knowledge, the policies can neither operate nor

be applied to novel categories.

To learn a generalizable perception and manipulation pipeline, we need to be

robust to the variations of the articulated objects’ geometries and kinematic structures.

We seek to construct a vision system that can learn to predict how the parts move

under kinematic constraints without explicitly knowing the articulation parameters:

specifically, the location of the rotational or translational axes for revolute or prismatic

parts, respectively.

In this paper [15], we present FlowBot3D, a deep 3D vision-based robotic system

that predicts dense per-point motion of an articulated object in 3D space, and

leverages this prediction to produce actions that articulate the object. We define

such per-point motion as the 3D articulation flow (3DAF) vectors, since this

representation describes how each observed point on the articulated part would “flow”

in the 3D space under articulation motion. Such a dense vector field prediction can

4
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then be used to aid downstream manipulation tasks for both grasp point selection as

well as predicting the desired robot motion after grasping.

We train a single 3D perception module to perform this task across many object

categories, and show that the trained model generalizes to a wide variety of objects –

both in seen categories, and entirely unseen object categories.

The contributions of this paper include:

1. A novel per-point representation of the articulation structure of an object, 3D

Articulation Flow (3DAF).

2. A novel 3D vision neural network architecture (which we call ArtFlowNet) that

takes as input a static 3D point cloud and predicts the 3D Articulation Flow of

the input point cloud under articulation motion.

3. A novel robot manipulation system (FlowBot3D) for using the predicted 3D

Articulation Flow to manipulate articulated objects.

4. Simulated experiments to test the performance of our system in articulating a

wide range of PartNet-Mobility dataset objects.

5. Real-world experiments deployed on a Sawyer robot to test the generalizablity

and feasibility of our system in real-world scenarios.

2.2 Related Work

2.2.1 Articulated Object Manipulation

Manipulation of articulated objects and other objects with non-rigid properties

remains an open research area due to the objects’ complex geometries and kinematics.

Previous work proposed manipulating such objects by hand-designed analytical

methods, such as the immobilization of a chain of hinged objects by Cheong et al. [7].

Berenson et al. [3] proposed a planning framework for manipulation under kinematic

constraints. Katz et al. [26] proposed a method to learn such manipulation policies in

the real-world using a grounded relational representation learned through interaction.

With the development of larger-scale datasets of articulated objects such as the

PartNet dataset by Mo et al. [32] and Partnet-Mobility by Xiang et al. [53], several

works have proposed learning methods based on large-scale simulation and supervised

5
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visual learning. Mo et al. [33] proposed to learn articulation manipulation policies

through large-scale simulation and visual affordance learning. Xu et al. [55] proposed

a system that learns articulation affordances as well as an action scoring module,

which can be used to articulate objects. Mu et al. [34] provided a variety of baselines

for the manipulation tasks of 4 categories of articulated objects in simulation. Several

works have focused specifically on visual recognition and estimation of articulation

parameters, learning to predict the pose [22, 27, 49, 56, 57] and identify articulation

parameters [25, 59] to obtain action trajectories. Moreover, [5, 8, 35] tackle the

problem using statistical motion planning.

2.2.2 Optical Flow for Policy Learning

Optical flows [20] are used to estimate per-pixel correspondences between two images

for object tracking and motion prediction and estimation. Current state-of-the-art

methods for optical flow estimation leverage convolutional neural networks [14, 24, 47].

Amiranashvili et al. [1], Dong et al. [13] use optical flow as an input representation to

capture object motion for downstream manipulation tasks. Weng et al. [52] uses flow

to learn a policy for fabric manipulation. While the aforementioned optical flows are

useful for robotic tasks, we would like to generalize the idea of optical flow beyond

pixel space into full three-dimensional space. Instead, we introduce “3D Articulation

Flow”, which describes per-point correspondence between two point clouds of the

same object. Another work that is highly related to ours is Pillai et al. [41], which

learns to predict the articulated objects’ parts motion using a motion manifold learner.

First, while we both predict the parts’ motion to derive an implicit policy, we do

not rely on the intermediate articulation parameters in order to predict the motion

manifold. Second, we do not rely on any demonstration to learn from - our method

learns in a completely self-supervised fashion.

2.3 Method - From Theory to Practice

In this section, we examine the physical task of manipulating the articulation of an

articulated object. We first present the theoretical grounding behind the intuition of

our method, and we slowly relax assumptions and approximations to create a system

6
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that articulates objects in the real world based on point cloud observations.

2.3.1 An Idealized Policy Based On Dynamics and

Kinematics

The articulated objects we consider in this work are generally objects that 1) consist

of one or more rigid-bodies – or “links” – which are 2) connected to one another by

revolute or prismatic joints with exactly 1 degree of freedom each, and 3) have at least

one link rigidly attached to an immovable world frame so that the only motion the

object experiences is due to articulation. Each joint connects a parent link (often the

fixed-world link) and a child link, which can move freely subject to the articulation

constraints. While these conditions may seem restrictive, under normal “everyday”

forces many real-world articulated objects (ovens, boxes, drawers, etc.) meet these

conditions to a very good approximation.1

Figure 2.2: Illustrations of prismatic (Left) and revolute (Right) joints.

We now consider an idealized policy to actuate an articulated object. Suppose

we are able to attach a gripper to any point p ∈ P on the surface P ⊂ R3 of a

child link with mass m. At this point, the policy can apply a 3D force F, with

constant magnitude ||F|| = C to the object at that point. Our objective is to choose

a contact point and force direction (p∗,F∗) that maximizes the acceleration a of the

articulation’s child link. If we limit our analysis to two special classes of articulation,

1We therefore exclude objects with socket joints, free-body objects, and deformable objects from
our analysis.
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revolute joints and prismatic joints, we can very intuitively arrive at the following

optimal settings of (p∗,F∗):

Prismatic: A prismatic joint (such as a drawer) can be described as a single 3D

unit vector v which is parallel to its direction of motion. Since motion of the joint is

constrained to v, the object will provide a responding force Fn to any component of

F not parallel to v. The net force exerted on the joint by the robot is thus Fnet, the

component of F in the v direction:

Fnet = F− Fn

= F− (F− (F · v)v) = (F · v)v = ma (2.1)

As one might expect, the force vector F∗ which maximizes the acceleration a

occurs when ||F∗ · v|| = C, i.e. when F∗ is parallel to v. Because each point p ∈ P
moves in parallel, applying the force at any point p on the surface will yield the

maximum acceleration. Thus, the optimal policy to articulate a prismatic joint is to

select any point on the surface and apply a force parallel to v at every time step.

Revolute: A revolute joint (such as a door hinge) can be parameterized by a

pair (v,ω), where ω is a unit vector representing the direction of the axis of rotation

about which the child link moves, and v ∈ R3 is a point in 3D space that the axis of

rotation passes through. Each point p on the child link is constrained to move on the

2D circle perpendicular to the axis of rotation with radius r (where ||r|| is the length

of the shortest vector from p to the line given by f(t) = v + tω). Given any point p,

we can maximize the acceleration by a similar argument as before, except any force

in the direction of r or ω will be resisted:

Fnet = F− Fn = F−
(
F · r
||r||2

)
r− (F · ω)ω (2.2)

Thus, for any point p the net force (and thus acceleration) is maximized when

F∗ is tangent to the circle defined by r. Selecting the point p which produces the

maximal linear acceleration when F∗ is applied there is simply the point p on the

child link that maximizes ||r||, or the point on the object farthest from the axis of

rotation ω. Thus, the optimal policy to articulate a revolute joint is to pick the point

on the surface farthest from the axis of rotation ω and apply a force parallel to r×ω
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at every time step.

2.3.2 Articulation Parameters to 3D Articulation Flow

These parameterizations2 are an elegant representation of single articulations in

isolation. However, when an object contains more than one articulation, or contains

points that do not move at all (e.g. the base of a cabinet), in order to create a

minimal parametric representation of the object we must describe a kinematic tree

(a tree of rigid links, connected by joints described by a set of parameters) and

associate each point on the object with a link. This is a hierarchical representation,

which is difficult to construct from raw observation without prior knowledge of the

hierarchical structure or link membership. A hierarchy-free representation of the

kinematic properties of the object could assign each point on the object its own set of

parameters; however, this would require a full 6 parameters (v, ω) for each point on

the object, and the position v can occur anywhere in R3 depending on the object’s

coordinate frame. A more compact, bounded, hierarchy-free representation is the 3D

articulation flow (3DAF) that each point on the object would experience were its

part articulated in the positive direction with respect to its articulation parameters.

In other words, for each point on each link on the object, define a vector in the

direction of motion of that point caused by an infinitesimal displacement δθ of the

joint, and normalize it by the largest such displacement on the link. Thus, the 3D

articulation flow fp for point p ∈ Pi in link i is:

fp =

v, if i is a prismatic joint

ω×r
||ω×rmax|| if i is a revolute joint

(2.3)

where v, ω, and r are defined above; note that v is already a unit vector. We

denote the full set of flow vectors for an object as F = {fp}p∈P where P = ∪iPi.

While this representation is mathematically equivalent to both the hierarchical

and point-wise parameter-based representations, 3D articulation flow has several key

advantages over parameter-based representations:

2An astute reader may recognize that these parameterizations are special cases of twists from
Screw Theory. Without loss of accuracy, we choose to omit a rigorous screw-theoretic treatment of
articulated objects in favor of an explanation that requires only basic knowledge of physics.
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1. It is hierarchy-free, meaning that it can be easily approximated without an

explicit model (i.e. kinematic structure); this property will allow our learned

method to generalize to novel object categories.

2. Each element in the representation is a scaled orientation vector constrained to

lie inside the unit sphere in R3. This means that the representation is invariant

under translation and scaling in the coordinate frame of the underlying object.

Since this representation is defined for any arbitrary point in or on an object,

it could be applied to any discrete or continuous geometric representation of said

object. However, for the purposes of this work, we apply this representation to 3D

point clouds produced from depth images. Thus for a pointcloud P = {pk ∈ R3}k∈[n],
we associate each point pk in P with a flow vector fk ∈ R3, s.t.||fi|| ≤ 1.

This formulation of 3D articulation flow is similar in spirit to the intermediate

representation proposed by Zeng et al. [59] in their articulation estimation system,

FormNet. However, our representation differs in two key ways. First, our representa-

tion describes the instantaneous motion of a link, whereas the FormNet formulation

predicts the current absolute displacement of a part from a reference position (i.e. a

fully-closed door). Second, we demonstrate that our formulation can be used directly

by a manipulation policy, whereas the downstream task of FormNet’s representation

was predicting the articulation parameters of an object.

2.3.3 Predicting 3D Articulation Flow from Vision

We now turn to the question of estimating 3D Articulation Flow from a robot’s sensor

observations. We consider a single articulated object in isolation; let s0 ∈ S be the

starting configuration of the scene with a single articulated object where S is the

configuration space. We assume that the robot has a depth camera and records point

cloud observations Ot ∈ R3×N , where N is the total number of observable points from

the sensor. The task is for the robot to articulate a specified part through its entire

range of motion.

For each configuration st of the object, there exists a unique ground-truth flow

Ft, where the ground-truth flow of each point is given by Equation 2.3. Thus, we

would like to find a function fθ(Ot) that predicts the 3D articulation flow directly

from point cloud observations. We define the objective of minimizing the L2 error of
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the predicted flow:

LMSE =
∑
i

||Ft,i − fθ(Ot)i||2 (2.4)

where i indexes over the objects in the training dataset. While fθ can be any estimator,

we choose to use a neural network, which can be trained via a standard supervised

learning with this loss function.

Figure 2.3: FlowBot3D System Overview. Our system in deployment has two phases: the
Grasp-Selection phase and the Articulation-Execution Phase. The dark red dots represent
the predicted location of each point, and the light red lines represent the flow vectors
connecting from the current time step’s points to the predicted points. Note that the flow
vectors are downsampled for visual clarity. In Grasp-Selection Phase, the agent observes
the environment in the format of point cloud data. The point cloud data will then be
post-processed and fed into the ArtFlowNet, which predicts per-point 3D flow vectors. The
system then chooses the point that has the maximum flow vector magnitude and deploys
motion planning to make contact with the chosen point using suction. In Articulation-
Execution phase, after making suction contact with the chosen argmax point, the system
iteratively observes the pointcloud data and predicts the 3D flow vectors. In this phase,
the motion planning module would guide the robot to follow the maximum observable flow
vector’s direction and articulate the object of interest repeatedly.

2.3.4 A General Policy using 3D Articulation Flow

Our method first takes an observation O0 and estimates the 3D articulation

flow F̂0 = fθ(O0) for all points in the observation. Given the estimate of the 3D

articulation flow F̂0, we now describe a general, closed-loop policy which takes flow

as input and actuates an articulated object. The policy is executed in two phases:
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Algorithm 1 The FlowBot3D articulation manipulation policy

Require: θ ← parameters of a trained flow prediction network
(O0)← Initial observation
F̂0 ← fθ(O0, [M0]), Predict the initial flow
g0 = SelectContact(O0, F̂0), Select a contact pose.
in contact← False
while not in contact do

Drive an end effector towards g0
if DetectContact() then
in contact← True
Grasp(g0)

done← False
while not done do

(Ot)← Observation
F̂t ← fθ(Ot, [Mt]), Predict the current flow
vt ← SelectDirection()
Apply a force to the end-effector in the direction of v for small duration t
done← EpisodeComplete()

1) Grasp Selection: Based on the estimated 3D articulation flow F̂0, the policy

must decide the best place to grasp the object. In this work, we assume access to

a suction-type gripper that (in the ideal case) can grasp any point on the object

surface. We know that the ideal attachment point is the location on a part where

the flow has the highest magnitude in order to achieve the most efficient actuation

of the articulated part by maximizing its acceleration, as we showed by maximizing

Equations 2.1 and 2.2. We use motion planning to move the end effector to this point,

with the end-effector aligned to directly oppose the flow direction. We then grasp

the object at this position (using a suction gripper), shown in the left hand side of

Fig. 2.3. We assume a rigid contact between the gripper and this contact point going

forward.

2) Articulation Execution: At each time step t, we record a new observation

Ot and estimate the current flow F̂t. We then select the predicted flow direction vt

with the greatest magnitude from the visible points from the observation, as shown

in the right hand side of Fig. 2.3. To handle objects with multiple articulated parts,

we only consider flow vectors close to our point of contact (the contact point itself

is likely occluded by the gripper and is thus not visible). While continuing to grasp
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the object, we then move the gripper in the direction vt. This process repeats in a

closed loop fashion until the object has been fully-articulated, a max number of steps

has been exceeded, or the episode is otherwise terminated. See Algorithm 1 for a full

description of the generalized flow articulation algorithm.

2.3.5 FlowBot3D: A Robot Articulation System

With all the pieces of our generalized articulation policy in place, we now describe a

real-world robot system – FlowBot3D – which leverages this generalized articulation

policy. We define a tabletop workspace that includes a Sawyer BLACK 7-DoF robotic

arm mounted to the tabletop with a pneumatic suction gripper as its end-effector,

and an Azure Kinect RGB-D camera mounted at a fixed position and pointing at

the workspace. See Figure 2.4 for an image of the workspace. We obtain point cloud

observations of the scene from the Azure Kinect in the robot’s base frame, filtering

out non-object points, we use the method proposed in [60] to denoise the data (see

supplementary materials for details). For robot control, we use a sampling-based

planner, MoveIt! [9], which can move our robot to any non-colliding pose in the scene;

we thus use motion planning to move the gripper to a pre-grasp pose. For the grasp

and articulation, we directly control the end-effector velocity.

To select the point of contact for the suction gripper, we need to make some

modifications from the idealized system described earlier. Unfortunately, a real

suction gripper cannot make a proper seal on locations with high curvature (i.e.

edges of the object and uneven surface features such as handles). Since the flow

vector with the maximum magnitude is often at one of these extreme points, we

must choose an alternative grasp point. While contact selection for suction-based

grasping is a well-studied problem [2, 30, 31], we find that a simple heuristic performs

acceptably; we choose the point with the highest flow magnitude subject to the

following constraints:

1. The point itself is not within a certain distance of an edge, where edges are

computed using a standard edge-detection algorithm (see supplement for details).

2. The estimated Gaussian curvature of that point does not exceed a certain

threshold (see supplement for details).

3. The point is not within a distance of d of any points violating conditions 1 and
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2. In practice, we set d = 2cm (the radius of the suction tip).

Using this grasp selection method, we are able to execute our general articulation

manipulation policy on a real robot. See the supplementary materials for other

implementation details.

2.3.6 Training Details

We design a flow prediction network – which we refer to as ArtFlowNet – using the

dense prediction configuration of PointNet++ [42] as a backbone, and train it using

standard supervised learning with the Adam optimizer. We emphasize that we train

a single model to predict 3DAF across all categories, using a dataset of synthetically-

generated (observation, ground-truth flow) pairs based on the ground-truth kinematic

and geometric structure provided by the PartNet-Mobility dataset [53]. During each

step of training, we select an object in the dataset, randomize the state S of the

object, and compute a new supervised pair (OS, FS), which we use to compute the

loss and update the model parameters. During training, each object is seen in 100

different randomized configurations. Details of our dataset construction and model

architecture can be found in the supplementary materials.

2.4 Results

We conduct a wide range of simulated and real-world experiments to evaluate the

FlowBot3D system.

2.4.1 Simulation Results

To evaluate our method in simulation, we implement a suction gripper in the ManiSkill

environment [34], which serves as a simulation interface for interacting with the

PartNet-Mobility dataset [53]. The PartNet-Mobility dataset contains 46 categories

of articulated objects; following UMPNet [55], we consider a subset of PartNet-

Mobility containing 21 classes, split into 11 training categories (499 training objects,

128 testing objects) and 10 entirely unseen object categories (238 unseen objects).

Several objects in the original dataset contain invalid meshes, which we exclude from
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Novel Instances in Train Categories Test Categories

AVG. AVG.

Baselines

UMP-DI 0.29 0.32 0.33 0.16 0.18 0.37 0.14 0.19 0.28 0.72 0.00 0.55 0.36 0.32 0.62 0.15 0.00 0.41 0.61 0.17 0.34 0.38 0.58

Normal Direction 0.40 0.52 0.67 0.16 0.19 0.51 0.60 0.13 0.11 0.55 0.61 0.32 0.39 0.69 0.57 0.04 0.00 0.67 0.19 0.66 1.00 0.43 0.26

Screw Parameters 0.40 0.42 0.40 0.42 0.18 0.57 0.45 0.27 0.59 0.51 0.58 0.06 0.18 0.19 0.26 0.08 0.08 0.23 0.06 0.14 0.21 0.34 0.24

BC 0.74 0.59 0.91 0.63 0.75 0.57 1.00 1.00 0.98 0.62 0.96 0.10 0.87 0.81 0.63 1.00 0.93 0.99 0.74 0.95 0.96 0.83 0.88

DAgger E2E 0.64 0.39 0.85 0.61 0.73 0.50 1.00 0.96 0.90 0.54 0.48 0.10 0.83 0.73 0.62 1.00 0.80 0.95 0.73 0.83 0.98 0.81 0.85

DAgger Oracle 0.51 0.54 0.55 0.20 0.41 0.96 0.64 0.14 0.64 0.47 0.85 0.16 0.56 0.93 0.58 0.61 0.64 0.91 0.27 0.23 0.34 0.27 0.79

Baselines w/ Flow

BC + F 0.83 0.59 1.00 0.61 0.91 1.00 0.97 1.00 1.00 0.69 1.00 0.39 0.91 1.00 0.96 1.00 0.89 0.77 0.71 0.95 0.96 1.00 0.89

DAgger E2E + F 0.76 0.59 0.86 0.60 0.76 0.95 1.00 0.86 0.77 0.65 1.00 0.36 0.91 1.00 0.88 1.00 0.76 0.95 0.68 1.00 0.96 1.00 0.88

DAgger Oracle + F 0.50 0.59 0.53 0.25 0.51 0.58 0.86 0.17 0.65 0.56 0.48 0.38 0.60 0.77 0.71 0.62 0.73 0.91 0.28 0.43 0.47 0.31 0.73

Ours

FlowBot3D 0.12 0.32 0.23 0.11 0.09 0.02 0.00 0.09 0.32 0.04 0.13 0.00 0.15 0.00 0.21 0.00 0.00 0.33 0.22 0.09 0.07 0.19 0.35

FlowBot3D w/o Mask 0.17 0.32 0.37 0.10 0.11 0.15 0.00 0.11 0.33 0.05 0.07 0.29 0.19 0.16 0.24 0.05 0.00 0.24 0.24 0.17 0.27 0.19 0.37

FlowBot3D w/o Mask (+VPA) 0.16 0.33 0.09 0.07 0.07 0.16 0.00 0.14 0.49 0.27 0.11 0.00 0.16 0.11 0.17 0.23 0.00 0.53 0.10 0.05 0.00 0.23 0.20

Oracle w/ GT 3DAF 0.05 0.10 0.10 0.03 0.11 0.06 0.00 0.12 0.00 0.00 0.02 0.00 0.16 0.00 0.12 0.95 0.00 0.12 0.14 0.02 0.00 0.13 0.12

Table 2.1: Normalized Distance Metric Results (↓): Normalized distances to the target
articulation joint angle after a full rollout across different methods. The lower the better.

Azure Kinect

Object

Sawyer 
BLACK

Figure 2.4: Workspace setup for physical ex-
periments. The sensory signal comes from
an Azure Kinect depth camera, and the
agent is a Sawyer BLACK robot.
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Figure 2.5: Fourteen test objects for our
real-world experiments. Please refer to Sup-
plementary Material for the exact category
of each object.

evaluation. We modify ManiSkill simulation environment to accommodate these

object categories. We train our models (ArtFlowNet and baselines) exclusively on

the training instances of the training object categories, and evaluate by rolling out

the corresponding policies for every object in the ManiSkill environment. Each object

starts in the “closed” state (one end of its range of motion), and the goal is to actuate

the joint to its “open” state (the other end of its range of motion). For experiments
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Novel Instances in Train Categories Test Categories

AVG. AVG.

Baselines

UMP-DI 0.52 0.60 0.33 0.65 0.73 0.29 0.67 0.80 0.50 0.11 1.00 0.00 0.45 0.83 0.03 0.50 1.00 0.31 0.29 0.78 0.33 0.31 0.20

Normal Direction 0.31 0.40 0.00 0.51 0.71 0.00 0.00 0.80 0.50 0.00 0.00 0.50 0.31 0.00 0.00 0.50 1.00 0.00 0.55 0.00 0.00 0.10 0.64

Screw Parameters 0.50 0.50 0.53 0.51 0.80 0.21 0.55 0.60 0.17 0.37 0.43 0.80 0.67 0.17 0.63 0.67 0.92 0.69 0.92 0.83 0.75 0.50 0.72

BC 0.14 0.40 0.00 0.20 0.18 0.14 0.00 0.00 0.00 0.11 0.00 0.50 0.04 0.17 0.00 0.00 0.04 0.00 0.15 0.00 0.00 0.00 0.00

DAgger E2E 0.14 0.60 0.00 0.26 0.09 0.28 0.00 0.00 0.00 0.00 0.25 0.00 0.04 0.00 0.00 0.00 0.20 0.00 0.17 0.02 0.00 0.00 0.00

DAgger Oracle 0.29 0.40 0.33 0.80 0.27 0.00 0.00 0.80 0.00 0.11 0.00 0.50 0.20 0.00 0.00 0.00 0.36 0.00 0.29 0.49 0.33 0.31 0.20

Baselines w/ Flow

BC + F 0.11 0.40 0.00 0.26 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.03 0.00 0.00 0.00 0.08 0.00 0.15 0.05 0.00 0.00 0.00

DAgger E2E + F 0.14 0.40 0.00 0.00 0.09 0.00 0.00 0.00 0.50 0.00 0.00 0.50 0.04 0.00 0.00 0.00 0.20 0.00 0.15 0.05 0.00 0.00 0.00

DAgger Oracle + F 0.33 0.40 0.33 0.58 0.45 0.00 0.00 0.80 0.00 0.11 0.50 0.50 0.16 0.00 0.00 0.00 0.24 0.00 0.34 0.41 0.33 0.12 0.16

Ours

FlowBot3D 0.77 0.57 0.56 0.88 0.82 0.86 1.00 0.80 0.50 0.78 0.75 1.00 0.69 1.00 0.56 1.00 1.00 0.38 0.43 0.84 0.83 0.43 0.44

FlowBot3D w/o Mask 0.72 0.67 0.55 0.85 0.82 0.57 1.00 0.80 0.50 0.89 0.75 0.50 0.62 0.83 0.59 0.50 1.00 0.62 0.28 0.76 0.58 0.56 0.50

FlowBot3D w/o Mask + VPA 0.73 0.60 0.67 0.88 0.91 0.43 1.00 0.80 0.50 0.56 0.72 1.00 0.70 0.50 0.63 0.50 1.00 0.23 0.90 0.88 1.00 0.63 0.72

Oracle w/ GT 3DAF 0.92 0.80 1.00 0.97 0.82 0.71 1.00 0.80 1.00 1.00 1.00 1.00 0.82 1.00 0.85 0.00 1.00 0.85 0.86 0.98 1.00 0.81 0.88

Table 2.2: Success Rate Metric Results (↑): Fraction of success trials (normalized distance
less than 0.1) of different objects’ categories after a full rollout across different methods.
The higher the better.

in simulation, we include in the observation Ot a binary part mask indicating which

points belong to the child joint of interest. Results are shown in Tables A.2 and A.33.

Metrics. During our experiments, we calculate two metrics:

• Normalized distance: Following Xu et al. [55], we compute the normalized

distance travelled by a specific child link through its range of motion. The

metric is computed based on the final configuration after a policy rollout (jend)

and the initial configuration (jinit):

Egoal =
||jend − jgoal||
||jgoal − jinit||

• Success : We also define a binary success metric, which is computed by thresh-

olding the final resulting normalized distance at δ: Success = 1(Egoal ≤ δ). We

set δ = 0.1, meaning that we define a success as articulating a part for more

than 90%.

Baseline Comparisons: We compare our proposed method with several baseline

methods:

3Categories from left to right: stapler, trash can, storage furniture, window, toilet, laptop, kettle,
switch, fridge, folding chair, microwave, bucket, safe, phone, pot, box, table, dishwasher, oven,
washing machine, and door. Clipart pictures are borrowed from UMPNet paper with the authors’
permission.
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• UMP-DI: We implement a variant4 of UMPNet’s Direction Inference network

(DistNet) [55], where instead of bootstrapping an action scoring function from

interaction, we learn the scoring function by regressing the cosine distance

between a query vector and the ideal flow vector for a contact point. At test

time, we select the contact point based on ground-truth 3DAF, and after contact

has been achieved we use CEM to optimize the scoring function to predict the

action direction at every timestep.

• Normal Direction: We use off-the-shelf normal estimation to estimate the

surface normals of the point cloud using Open3D [61]. To break symmetry, we

align the normal direction vectors to the camera. At execution time, we first

choose the ground-truth maximum-flow point and then follow the direction of

the estimated normal vector of the surface.

• Screw Parameters: We predict the screw parameters for the selected joint of

the articulated object. We then generate 3DAF from these predicted parameters

and use the FlowBot3D policy on top of the generated flow.

• Behavioral Cloning (BC): The agent takes as input a point cloud and

outputs the action of the robot. The agent uses the PointNet-Transformer

architecture proposed in [34]. The agent is trained end-to-end via L2 regression

on trajectories provided by an oracle version of GT 3DAF.

• BC + F: Same as BC, but with ground-truth flow at input.

• DAgger E2E: We also conduct behavioral cloning experiments with DAgger

[44] on the same expert dataset as in the BC baseline. We train it end-to-end

(E2E), similar to the BC model above.

• DAgger E2E + F: Same as DAgger E2E, but with ground-truth flow as an

input.

• DAgger Oracle: A two-step policy, where we first use ground-truth flow to

select a contact point using the Generalized Articulation Policy heuristic, and

train DAgger on expert trajectories generated after the point of contact.

• DAgger Oracle + F: Same as DAgger Oracle, but with ground-truth flow at

4We could not yet compare directly to UMPNet, as their model and simulation environment
had not yet been released at the time between submission and publication.
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input.

• Oracle w/ GT 3DAF: An oracle version of FlowBot3D that uses ground

truth 3DAF vectors instead of the predicted ones for both phases. This serves

as an upper bound of FlowBot 3D’s performance.5

Each method above consists of a single model trained across all PartNet-Mobility

training categories. For a more straightforward comparison, we dedicate Table A.2

and A.3 to evaluations in the SAPIEN simulator and we defer the comparison between

UMPNet and FlowBot3D to the supplementary material.

Analysis: We can draw two conclusions from our simulated evaluation. First, our

formulation of FlowBot3D has a very high success rate across all categories, including

test categories, which are completely novel types of objects (but may contain similar

parts and articulation structures). This is evidence that the ArtFlowNet network is

learning salient geometric features to predict the location and character of articulated

points. Based on visual interpretation of actual predicted flows, ArtFlowNet is

particularly adept at recognizing doors, lids, drawers, and other large articulated

features. One might have thought that 3DAF is essentially estimating normal

directions, but this is not the case, as seen in the results of the Normal Direction

baseline. Normal Direction estimation suffers from occlusion issues and the normal is

not always the correct direction to actuate the object (for example, for the spherical-

shaped lid of a teapot). Additionally, our method’s accuracy increases when the object

is at least partially open, because there is less ambiguity about object structure than

when an object is fully “closed”. The UMP-DI baseline exhibits similar properties,

but the implicit optimization yields noisier direction predictions. Second, none of the

Behavior Cloning and DAgger policies, nor their flow-based variants, perform well.

The best BC baseline, DAgger Oracle + F, is only able to fully articulate objects

33% of the time.

UMPNet Pybullet Environment: The simulation environment used in the

original UMPNet evaluations [55] is a PyBullet-based environment with different

physical and collision parameters. However, the source code to run the UMPNet

environment was not available for us to run until after this paper was submitted for

review; we have since obtained a copy of this environment, and evaluate our method

5The description files of the phone meshes contain wrong rotation axis, thus the poor performance
of the oracle policy on that category.
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on their environment in the supplementary materials.

2.4.2 Real-World Experiments

Start (Pre-Contact) Make Contact Execution (Post-Contact) Done

Toilet

Mini Fridge

Drawer

Figure 2.6: Real world examples of FlowBot3D executing an articulation policy based on
predicting 3D Articulated Flow. Notice that even with occlusions, such as in the intermediate
mini-fridge observation, the network is able to predict reasonable 3D articulation flow vectors
for downstream policy.

To evaluate the performance of FlowBot3D when executed in a real robotic

environment, we design a set of of real-world experiments in which we attempt to

articulate a variety of different household objects using the Sawyer robot in our

workspace, as shown in Fig. 2.4. Our experiment protocol is thus: for each object

in the dataset, we conducted 5 trials of each method. For each trial, the object is

placed in the scene at a random position such that the articulations are visible and

the robot can reach every position in the range of motion of each articulation. The

policy is then executed for at most 10 steps, terminating earlier if success has been

achieved or if the policy predicts an action that cannot be executed safely (this case

is infrequent). We conducted one round of evaluation (70 trials in total) for each of

the following methods:
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• FlowBot3D: The version of our generalized articulation policy as presented

in Section 2.3. In experiments, we use an ArtFlowNet trained without a part

mask in the observation space. In addition, since the camera position in reality

is different from that in the ManiSkill environments, we apply a viewpoint

augmentation (VPA) at training time, where we render synthetic point clouds

from various camera angles in simulation.

• DAgger Oracle: The DAgger model trained in simulation to produce closed-

loop motion directions, but with the contact selection predicted by the Flow-

Bot3D model.

As in our simulated experiments, we use a single model trained in simulation across

multiple object categories without any further finetuning.

# Objects 2 1 1 2 1 1 1 1 1 1 2

Table 2.3: Real-world objects used during our experiments.

Objects: We assemble a set of real-world objects that are representative of typical

articulations a human may encounter in the real world: doors, drawers, hinges, etc.

The objects were selected before experimentation began, and the only criteria for

inclusion were 1) that it fit in the workspace, 2) it had a surface that a suction gripper

could attach to and actuate, and 3) it wasn’t too dark or reflective, so as to be seen

by the Azure Kinect’s depth camera. Each object falls into one of either the training

or test classes we selected from the PartNet-Mobility. We also include several jars

with lids, which, while not strictly articulated as 1-DoF joints, can be articulated like

a prismatic joint. See Figure 2.5 and Table 2.3 for a summary of the dataset, and the

supplementary materials for specifics for each object.

Metrics: During our trials, we compute the following metrics for each policy:

• Overall Success: Was the object articulated more than 90% of its range of

motion (defined per-object)?

• Contact Success: Was the contact point chosen on an a joint that can move,

and was the suction tip able to successfully form a seal at that point?
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• Average Distance: Conditioned on a successful contact, what was the average

distance from the end of the object’s range of motion after the policy terminated?

• Motion Success: After successful contact, was the object articulated more than

90 % of its range of motion?

Details about how our trials are conducted and measurements computed can be

found in the supplementary materials.

Method Overall Succ. Contact Succ. Avg. Dist. Motion Succ.

FlowBot3D 45/70 (64.3%) 64/70 (91.4%)* 0.22 45/64 (70.3%)

DAgger Oracle 10/70 (14.3%) 68/70 (97.1%)* 0.73 10/68 (14.7%)

Table 2.4: Trials for FlowBot3D. *Note that both methods in the Contact Success column
use the same FlowBot3D contact prediction and execution policy.

Quantitative analysis: We present summary metrics in Table 2.4, and a per-

object summary in our supplementary materials. Across all metrics, FlowBot3D

performs substantially better than the DAgger baseline. In absolute terms, the policy

succeeds a high fraction of the time (64%); the policy selects a suitable contact point

on the object 91% of the time, and succeeded 70% of the time after contact was

established.

In contrast, the baseline policy succeeded in a very small number of cases, only

14% of the time. While contact rates were comparable to the trials conducted for

FlowBot3D (they use the same contact selection method), the motions predicted were

almost always unsuccessful.

Qualitative analysis of FlowBot3D: A major goal of our real-world trials

was to evaluate how well the Flowbet3D policy transfers from simulation to reality

without any retraining. We find that the overall policy performs surprisingly well, and

the ArtFlowNet module – trained exclusively on point clouds rendered in simulation –

generalizes impressively to real-world objects, producing high-fidelity flow predictions

on a range of real objects. This is because there isn’t much of a domain shift in the

point cloud observations, and the geometric features that signal an articulation are

fairly consistent.

Failure modes: We have found that the majority of trial failures were due to two

reasons in real world: flow prediction error and contact failure. For flow prediction
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errors, after making contact with the object, executing an incorrect 3D articulation

flow vector will drive the gripper away from the object, causing the gripper to lose

contact with the object. The bulk of flow prediction errors happen either because the

robot occludes too much of the scene (which might be rectified by multiple viewpoints,

temporal filtering, or a recurrent policy), or because the robot fails to detect the

presence of articulations (this occurs on the real oven, for instance). For contact

failures, the contact selection heuristic might not filter out all ungraspable points and

thus the robot might choose a contact point that is difficult or impossible to make a

complete seal on during suction. Overall, we theorize that many of the failures could

be mitigated by improving the compliance and control of the gripper, and including

a stronger contact quality prediction module.

2.4.3 Simulation Ablations

We conduct two ablations on the design decisions made for ArtFlowNet:

• Including a part mask We study the effect of providing a segmentation mask

of the articulated part of interest as input to ArtFlowNet; such a mask could

theoretically be obtained by a segmentation method or provided by a human to

specify the articulation task, as in the SAPIEN challenge [53]. We find while

the inclusion of a mask improves predictions in ambiguous cases (i.e. when

a door is closed and coplanar with its parent link), removing the mask only

decreases performance a small amount (see Tables A.2 and A.3).

• Applying viewpoint augmentations during training: We analyze how

randomizing the camera viewpoint during the synthetic dataset generation step

affects model performance. We find that augmenting the viewpoint has little

effect on the performance in a simulated environment (see Tables A.2 and A.3),

but improves performance in sim-to-real transfer.

2.5 Conclusion

In this work, we propose a novel visual representation for articulated objects, namely

3D Articulation Flow, as well as a policy – FlowBot3D – which leverages this

representation to successfully manipulate articulated objects. We demonstrate the
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effectiveness of our method in both simulated and real environments, and observe

strong sim-to-real transfer generalization.

While our method shows strong performance on a range of object classes, there is

substantial room for improvement. One class of improvements is in system-building

and engineering: with a more compliant robotic arm controller, as well as a more

sophisticated contact prediction system, we believe we would be able to eliminate a

wide class of failure modes. However, the remaining failure modes raise questions

we would like to explore in future work. For instance, we would like to explore how

our flow representation models might be used in an online adaptation setting, so

that incorrect predictions can be corrected. We also would like to explore how our

representation might be useful when learning from demonstrations, or in other more

complex manipulation settings.

Lastly, FlowBot 3D might be a good 3D visual representation for articulated

objects manipulation, is there a good dense, 3D visual representation that we could

leverage for free-floating objects manipulation? Free-floating objects manipulation

is simpler in that the objects are not constrained by parts, but representing their

motion in a full 6-DoF SE(3) space does pose new challenges. We explore one

potential representation we could use for free-floating objects in Chapter 3.
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Chapter 3

TAX-Pose: Task-Specific

Cross-Pose Estimation for Robot

Manipulation

Many manipulation tasks require a robot to move an object to a location relative

to another object. For example, a cooking robot may need to place a lasagna in an

oven, place a pot on a stove, place a plate in a microwave, place a mug onto a mug

rack, or place a cup onto a shelf. Understanding and placing objects in task-specific

locations is a key skill for robots operating in human environments. Further, this

skill should generalize to novel objects within the training categories, such as placing

new trays into the oven or new mugs onto a mug rack. A common approach in

robot learning is to train a policy “end-to-end,” mapping from pixel observations to

low-level robot actions. However, end-to-end trained policies cannot easily reason

about complex pose relationships such as the ones described above, and they have

difficulty generalizing to unseen object configurations.

In contrast, we propose a method that learns to reason about the 3D geometric

relationship between a pair of objects. For the type of tasks defined above, the robot

needs to reason about the relationship between key parts on one object with respect

to key parts on another object. For example, to place a mug on a mug rack, the

robot must reason about the relationship between the pose of the mug handle and

the pose of the mug rack; if the mug rack changes its pose, then the pose of the

25



3. TAX-Pose: Task-Specific Cross-Pose Estimation for Robot Manipulation

Cross-Object Attention 
Corrected Correspondences

and Importance Weights
Estimated Cross-Pose Robot ExecutionObservation

Figure 3.1: To solve a relative placement task, TAX-Pose uses cross-object attention to
estimate dense cross-object correspondences and importance weights for each object point.
This dense estimate is mapped to a single “cross-pose” which the robot uses to accomplish
the given task.

mug must change accordingly in order to still be placed on the rack (see Figure 3.3).

We name this task-specific notion of the pose relationship between a pair of objects

as “cross-pose” and we formally define it mathematically. Further, we propose a

vision system that can efficiently estimate the cross-pose from a small number of

demonstrations of a given task, generalizing to novel objects within the training

categories. To complete the manipulation task, we use the estimated cross-pose as the

target of a motion planning algorithm, which will move the objects into the desired

configuration (e.g. placing the mug onto the rack, placing the lasagna into the oven,

etc).

In this paper [37], we present TAX-Pose (TAsk-specific Cross-Pose), a deep 3D

vision-based method that learns to predict a task-specific pose relationship between

a pair of objects from a set of demonstrations. Our cross-pose estimation system is

provably translation equivariant and can generalize from a small number of real-world

demonstrations (in some cases as few as 10) to new objects in unseen poses.

The contributions of this paper include:

1. A precise definition of “cross-pose,” which defines a task-specific pose relation-

ship between two objects.

2. A novel method that estimates soft-correspondences between two objects, from

which the cross-pose between the objects can be estimated (see Figure 3.1); this

method is provably translation equivariant and can learn from a small number

of real-world demonstrations.

3. A robot system to manipulate objects into the desired cross-pose to achieve a

given manipulation task.
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Observations Robot Execution

Figure 3.2: We study relative placement tasks, in which one object needs to be placed in
a position relative to another object. Here are two of the tasks that we demonstrate our
method on: Top: PartNet-Mobility Placement Task requires one object (e.g. a block) to be
placed relative to another object (e.g. a drawer) by a semantic goal position (e.g. inside);
Bottom: Mug Hanging Task requires placing the mug’s handle on the mug rack.

We present simulated and real-world experiments to test the performance of our

system in achieving a variety of relative placement manipulation tasks.

We demonstrate our method on a semantic placement task, in which the robot

must place an object in, on, or around a novel object (Figure 3.2, top). We also

demonstrate our method on precise placement tasks, such as hanging a mug on a

rack (Figure 3.2, bottom) or placing a bottle or bowl on a shelf; in both cases our

method generalizes to new object configurations and new objects within the training

categories.

3.1 Problem Statement

3.1.1 Relative placement tasks:

In this paper, we are specifically interested in “relative placement tasks.” Given two

objects, A and B, a “relative placement task” is the task of placing object A at a

pose relative to object B. For example, consider the task of placing a lasagna in
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Also Goal 
Configuration

Goal 
Configuration

Figure 3.3: If we transform both the action object (mug) and the anchor object (rack) by
the same transform, then the relative pose between these objects is unchanged (the mug is
still “on” the rack) so the mug is still in the goal configuration.

an oven, placing a mug on a rack, or placing a robot gripper on the rim of a mug.

All of these tasks involve placing one object (which we call the “action” object A)

at a semantically meaningful location relative to another object (which we call the

“anchor” object B)1.

Specifically, suppose that T∗
A and T∗

B are SE(3) poses for objects A and B
respectively (in a shared world reference frame2) for which a desired task is considered

complete (lasagna is in the oven; mug is on the rack, etc). Then for a relative

placement task, if objects A and B are in poses T ·T∗
A and T ·T∗

B (respectively) for

any transform T, then the task will also be considered to be complete, as seen in

Figure 3.3.

In other words, if T∗
B represents the pose of the rack and T∗

A represents the pose

of the mug on the rack (at task completion); then if we transform the both the mug

and rack poses by T, then the mug will still be located on the rack. Formally, this

property can be defined with the following Boolean function,

RelPlace(TA,TB) = Success iff ∃T ∈ SE(3) s.t. TA = T ·T∗
A and TB = T ·T∗

B.

(3.1)

For many real semantic placement tasks, there are actually sets of valid solutions

which solve each task (i.e., there are many potential locations to place an object on a

1Note that the definition of action and anchor is symmetric; either object can be treated as the
action object and the other as the anchor.

2All SE(3) transformations in this work are defined in a fixed, arbitrary world frame.
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table to achieve a semantic “object-on-table” relationship). However, for this work,

we consider precise placement tasks under the simplifying assumption that, for a

given pose of object B, there is a single, unambiguous pose of object A needed to

achieve the task.

3.1.2 Definition of Cross-Pose:

Given the above definition of a relative placement task, our goal will be to determine

how to move object A so that it will be in the “goal pose,” which, as described above,

is defined relative to the pose of object B. To achieve this, one option is to estimate

the poses of objects A and B separately and then compute the transformation needed

to move object A into the goal pose. However, the pose estimate of each object will

have errors, and these errors will accumulate when the poses are combined into the

single relative pose needed to reach the goal configuration.

Instead of estimating the pose of each object independently, we aim to learn

a function f(PA,PB), which takes as input the point clouds PA and PB for both

objects A and B , where PA ∈ R3×NA and PB ∈ R3×NB are 3D point clouds of

sizes NA and NB, respectively. This function outputs an SE(3) rigid transformation,

f(PA,PB) = TAB, where we refer to TAB as the “cross-pose” between object A and

object B. For notational convenience, we occasional write f as a function of the poses

TA, TB of point clouds PA and PB respectively (with respect to a global reference

frame) such that f(TA, TB) := f(PA,PB). This notational change is to make the

transformation math more intuitive; in practice, this function only ever receives point

clouds as input.

We will define the cross-pose TAB (below) such that, if we transform object A
by TAB, then object A will be in the goal pose relative to object B for the relative

placement task. For example, suppose that T∗
A and T∗

B are poses for objects A and

B, respectively, for which a desired relative placement task is considered complete. In

this configuration, the cross-pose of these objects would be f(T∗
A,T

∗
B) = I where I is

the identity, as object A does not need to be moved to complete the task. Further,

based on the definition of a relative placement task given above, if both objects are

transformed by the same transform T, then the objects will still be in the desired
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Figure 3.4: TAX-Pose Training Overview: Given a specific task, our method takes as
input two point clouds and outputs the cross-pose between them needed to achieve the
task. TAX-Pose first learns point clouds features using two DGCNN [40] networks and two
Transformers [48]. Then the learned features are each input to a point residual network
to predict per-point soft correspondences and weights across the two objects. The desired
cross-pose can be inferred analytically from these correspondences using singular value
decomposition.

relative pose,

f(T ·T∗
A,T ·T∗

B) = f(T∗
A,T

∗
B) = I (3.2)

for any transform T ∈ SE(3). Now, let us assume that objects A and B are not in

the goal configuration and have pose TA = Tα ·T∗
A and TB = Tβ ·T∗

B, respectively,

for arbitrary transforms Tα and Tβ ∈ SE(3). We then define the “cross-pose” of

objects A and B as:

f(TA,TB) = f(Tα ·T∗
A,Tβ ·T∗

B) = TAB := Tβ ·T−1
α . (3.3)

Note that this definition is equivalent to Equation 3.2 for the special case of Tα = Tβ.

This definition of cross-pose allows us to move object A into the goal configuration,

relative to object B:

TAB ·TA = (Tβ ·T−1
α ) · (Tα ·T∗

A) = Tβ ·T∗
A, (3.4)

satisfying the relative placement condition defined in Equation 3.1 with T = Tβ.

Alternatively, we could have instead transformed object B by the inverse of the

cross-pose to achieve the task.
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3.2 Method

3.2.1 Overview

We frame the task of cross-pose estimation as a soft correspondence-prediction task

between a pair of point clouds, followed by an analytical least-squares optimization

to find the optimal cross-pose for the predicted correspondences. As described

in Appendix B.2, this correspondence-based approach allows our method to be

translation-equivariant: translating either object (A or B) will lead to a translated

cross-pose prediction. This allows our method to automatically adapt to novel

positions of both the anchor and action objects, unlike previous work which assumes

a static anchor [45]. Our method for task-specific cross-pose estimation, known as

TAX-Pose, consists of the following steps, as shown in Figure 3.4:

1. Soft Correspondence Prediction: For a pair of objects A,B, a neural

network learns to predict a per-point embedding to establish a (soft) correspon-

dence between A and B, which are called “virtual soft correspondences.” The

corresponding points are constrained to be within the convex hulls of B and A
respectively.

2. Adjustment via Correspondence Residuals: For most estimation tasks,

some points in object A may not be within the convex hull of object B; for

instance, when a mug is placed on a mug rack, most points on the mug will

be outside of the convex hull of the mug rack. To accommodate these cases,

we apply a pointwise residual vector to displace each of the predicted soft

correspondences. These “corrected virtual correspondences” allow points in A
to correspond to locations in free space near B.

3. Find the Optimal Transform: Because the cross-pose is defined as a rigid

transformation of object A, we use a differentiable weighted SVD to find the

transformation that minimizes the weighted least squares difference to the

corrected virtual correspondences.

Because each step above is differentiable, the whole model can be optimized

end-to-end, despite having an interpretable internal structure which we describe

below. Our method is heavily inspired by Deep Closest Point (DCP) [50]. The
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key difference between our pose alignment model and DCP is that we predict the

cross-pose between two different objects for a given task instead of registering two

point clouds of an identical object. Additionally, TAX-Pose can predict relationships

where these clouds may not have any points of contact or overlap.

We now describe our cross-pose estimation algorithm in detail. To recap the

problem statement, given objects A and B with point cloud observations PA ∈ R3×NA ,

PB ∈ R3×NB respectively, our objective is to estimate the task-specific cross-pose

TAB = f(PA,PB) ∈ SE(3). Note that the cross-pose between object A and B is

defined with respect to a given task (e.g. putting a lasagna in the oven, putting a

mug on the rack, etc).

3.2.2 Cross-Pose Estimation via Soft Correspondence

Prediction

Soft Correspondence Prediction

The first step of the method is to compute two sets of correspondences between A
and B, one which maps from points in A to B, and one which maps from points in B
to A. These need not be a bijection, and can be asymmetric. As we want each step

to be differentiable, we follow DCP’s conventions and estimate a soft correspondence.

This assigns a virtual soft corresponding point vA
i ∈ VA to every point pA

i ∈ PA by

computing a convex combination of points in PB, and vice versa. Formally:

vA
i = PBw

A→B
i s.t.

NB∑
j=1

wA→B
ij = 1 (3.5)

vB
i = PAw

B→A
i s.t.

NA∑
j=1

wB→A
ij = 1 (3.6)

with normalized weight vectors wA→B
i ∈WA→B and wB→A

i ∈WB→A. Importantly,

these virtual corresponding points are not constrained to the surfaces of A or B;

instead, they are constrained to the convex hulls of PB and PA, respectively.

To compute the weights wA→B
i , wB→A

i in Equations 3.2.2a and 3.2.2b, we first

encode each point cloud PA and PB into a latent space using a neural network

encoder, DGCNN [40]. This encoder head is comprised of two distinct encoders gA
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and gB, each of which receives point cloud PA and PB, respectively, zero-centers them,

and outputs a dense, point-wise embedding for each object (see Figure 3.4): ΨA =

gA(P̄A) ∈ RNA×d, ΨB = gB(P̄B) ∈ RNB×d where ψK
i ∈ ΨK is the d-dimensional

embedding of the i-th point in object K, and P̄K is the zero-centered point cloud

for object K. Because we want the cross-correspondence to incorporate information

about both point clouds, we then employ a cross-object attention module between

the two dense feature sets to obtain cross-object point embeddings, ΦA ∈ RNA×d and

ΦB ∈ RNB×d, defined as:

ΦA = ΨA + gTA(ΨA,ΨB), ΦB = ΨB + gTB(ΨB,ΨA) (3.7)

where gTA , gTB are Transformers [48].

Finally, recall that our goal was to compute a set of normalized weight vectors

WA→B, WB→A. To compute the virtual corresponding point vA
i assigned to any

point pA
i ∈ PA, we can extract the desired normalized weight vector wA→B

i from

intermediate attention features of the cross-object attention module as:

wA→B
i = softmax

(
KBq

A
i√
d

)
, wB→A

i = softmax

(
KAq

B
i√
d

)
(3.8)

where qK
i ∈ QK, and QK,KK ∈ RNK×d are the query and key values (respectively)

for object K associated with cross-object attention Transformer module gTK (see

Appendix B.3 for details). These weights are then used to compute the virtual soft

correspondences VA, VB using Equation 3.2.2.

Adjustment via Correspondence Residuals

As previously stated, the virtual soft correspondences VA,VB given by Equa-

tions 3.2.2a and 3.2.2b are constrained to be within the convex hull of each object.

However, many relative placement tasks cannot be solved perfectly with this con-

straint. For instance, we might want a point on the handle of a teapot to correspond

to some point above a stovetop (which lies outside the convex hull of the points

on the stovetop). To allow for such off-object correspondences, we further learn a

residual vector, δAi ∈ ∆A for each point i that corrects each virtual corresponding

point vA
i . This allows us to displace each virtual corresponding point to any arbitrary

location that might be suitable for the task. To compute these residual vectors, we
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use a point-wise neural network gRA , gRB to map each point’s embedding into a 3D

residual vector:

δAi = gRA

(
ϕA

i

)
∈ R3, δBi = gRB

(
ϕB

i

)
∈ R3

Applying these residual offsets to the virtual points, we get a set of corrected virtual

correspondences, ṽA
i ∈ ṼA and ṽB

i ∈ ṼB, defined as

ṽA
i = vA

i + δAi , ṽB
i = vB

i + δBi (3.9)

These corrected virtual correspondences ṽA
i define the estimated goal location relative

to object B for each point pi ∈ PA of object A, and likewise for each point in object

B (see visualization in Appendix B.1.1).

Least-Squares Cross-Pose Optimization with Weighted SVD

Given the sets of dense correspondences,
(
PA, ṼA

)
and

(
PB, ṼB

)
, we would like

to compute a single rigid transformation for object A. To do so, we solve for the

transformation TAB (the cross-pose) that minimizes the weighted distance between

each point and its corrected virtual correspondence. Formally, this leads to the

following weighted least squares optimization:

J (TAB) =

NA∑
i=1

αA
i ||TAB pA

i − ṽA
i ||22 +

NB∑
i=1

αB
i ||T−1

AB pB
i − ṽB

i ||22 (3.10)

where the weights αA
i ∈ αA, αB

i ∈ αB signify the importance of each correspondence

and are predicted by a point-wise MLP as shown in Figure 3.4. These weights are

learned end-to-end as parameters of our network; they are visualized in Appendix

B.1.2, which shows that the network has learned to assign more weight to the parts

of the object that are most important for the task, such as the region around the mug

handle (on the mug) and the region around the peg (on the rack). Equation 3.10 is the

well-known weighted Procrustes problem, for which there exists an analytical solution.

To maintain the differentiablity of the system, we use a weighted differentiable SVD

operation [39] to compute the cross-pose TAB that minimizes this objective (see

Appendix B.4 for details). This allows us to train the system end-to-end as described

below.
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3.2.3 TAX-Pose Training Pipeline

To train our model, we use a segmented set of demonstration point clouds of a pair

of objects in the goal configuration. For each demonstration point cloud, we generate

multiple training examples by transforming each object’s point cloud, PA and PB by

random SE(3) transformations Tα and Tβ, respectively. The predicted cross-pose,

TAB, is then compared with the ground truth cross-pose, TGT
AB := TβT

−1
α , using an

average distance loss [19] with dense regularization.

To train the encoders gA(P̄A), gB(P̄B) as well as the residual networks gRA

(
ϕA

i

)
,

gRB

(
ϕB

i

)
, we use a set of losses defined below. We assume we have access to a set of

demonstrations of the task, in which the action and anchor objects are in the target

relative pose such that TAB = I.

Point Displacement Loss: Instead of directly supervising the rotation and

translation (as is done in DCP), we supervise the predicted transformation using

its effect on the points. For this loss, we take the point clouds of the objects in

the demonstration configuration, and transform each cloud by a random transform,

P̂A = TαPA, and P̂B = TβPB. This would give us a ground truth transform of

TGT
AB = TβT

−1
α ; the inverse of this transform would move object B to the correct

position relative to object A. Using this ground truth transform, we compute the

MSE loss between the correctly transformed points and the points transformed using

our prediction.

Ldisp =
∥∥TABPA −TGT

ABPA
∥∥2 +

∥∥T−1
ABPB −TGT−1

AB PB
∥∥2 (3.11)

Direct Correspondence Loss. While the Point Displacement Loss best describes

errors seen at inference time, it can lead to correspondences that are inaccurate

but whose errors average to the correct pose. To improve these errors we directly

supervise the learned correspondences ṼA and ṼB:

Lcorr =
∥∥∥ṼA −TGT

ABPA

∥∥∥2 +
∥∥∥ṼB −TGT−1

AB PB

∥∥∥2 . (3.12)

Correspondence Consistency Loss. Furthermore, a consistency loss can be used.

This loss penalizes correspondences that deviate from the final predicted transform.

A benefit of this loss is that it can help the network learn to respect the rigidity of
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the object, while it is still learning to accurately place the object. Note, that this

is similar to the Direct Correspondence Loss, but uses the predicted transform as

opposed to the ground truth one. As such, this loss requires no ground truth:

Lcons =
∥∥∥ṼA −TABPA

∥∥∥2 +
∥∥∥ṼB −T−1

ABPB

∥∥∥2 . (3.13)

Overall Training Procedure. We train with a combined loss Lnet = Ldisp +

λ1Lcorr + λ2Lcons, where λ1 and λ2 are hyperparameters. We use a similar network

architecture as DCP [50], which consists of DGCNN [51] and a Transformer [48].

In order to quickly adapt to new tasks, we optionally pre-train the DGCNN

embedding networks over a large set of individual objects using the InfoNCE loss

[36] with a geometric distance weighting and random transformations, to learn SE(3)

invariant embeddings, see Appendix E.2 for details.

3.2.4 Pretraining

We utilize pretraining for the embedding network for the mug hanging task, and

describe the details below.

We pretrain embedding network for each object category (mug, rack, gripper),

such that the embedding network is SE(3) invariant with respect to the point clouds

of that specific object category. Specifically, the mug-specific embedding network is

pretrained on 200 ShapeNet [6] mug instances, while the rack-specific and gripper-

specific embedding network is trained on the same rack and Franka gripper used at

test time, respectively. Note that before our pretraining, the network is randomly

initialized with the Kaiming initialization scheme [18]; we don’t adopt any third-party

pretrained models.

For the network to be trained to be SE(3) invariant, we pre-train with InfoNCE

loss [36] with a geometric distance weighting and random SE(3) transformations.

Specifically, given a point cloud of an object instance, PA, of a specific object category

A, and an embedding network gA, we define the point-wise embedding for PA as

ΦA = gA(PA), where ϕA
i ∈ ΦA is a d-dimensional vector for each point pAi ∈ PA.

Given a random SE(3) transformation, T, we define ΨA = gA(TPA), where ψA
i ∈ ΨA

is the d-dimensional vector for the ith point pAi ∈ PA.
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The weighted contrastive loss used for pretraining, Lwc, is defined as

Lwc : = −
∑
i

log

[
exp

(
ϕ⊤
i ψi

)∑
j exp

(
dij
(
ϕ⊤
i ψj

))] (3.14)

dij : =

 1
µ

tanh (λ∥pAi − pAj ∥2), if i ̸= j

1, otherwise
(3.15)

µ : = max (tanh (λ∥pAi − pAj ∥2)) (3.16)

For this pretraining, we use λ := 10.

3.3 Experiments

To evaluate TAX-Pose, we conduct a wide range of simulated and real-world experi-

ments on two classes of relative placement tasks: NDF [45] Tasks and PartNet-Mobility

Placement Tasks. All tasks involve placing an “action” object at a specific loca-

tion relative to an anchor object, in which the relative pose is specified by a set of

demonstrations. Our method then generalizes to perform this task on novel objects

in unseen configurations. We refer the reader to our project website for additional

results and videos.

3.3.1 NDF Tasks

We evaluate our method on all three NDF [45] tasks (mug hanging, bottle placement,

and bowl placement); see Appendix B.6.1 for results on bottle and bowl placement.

Results on mug hanging are described in more detail below.

Simulation Experiments

For our simulation experiments, we perform the task of hanging a mug on a

rack as two sequential cross-pose estimation steps: grasping the mug (estimating

the cross-pose between the gripper and the mug) and hanging the mug on the rack

(estimating the cross-pose between the mug and the rack). In Pybullet [10], we

simulate a Franka Panda above a table with 4 depth cameras placed on the corners

of the table. The model is trained on 10 simulated demonstrations of mug hanging.

37

https://sites.google.com/view/tax-pose/home


3. TAX-Pose: Task-Specific Cross-Pose Estimation for Robot Manipulation

We evaluate task execution success on unseen mug instances in randomly generated

initial configurations.

We measure task success rates of 1) Grasping, where success is achieved when

the object is grasped stably; 2) Placing, where success is achieved when the mug is

placed stably on the rack; 3) Overall, when the predicted transforms enable both

grasp and place success in sequence. We compare our method to Neural Descriptor

Field (NDF) [45] and Dense Object Nets (DON) [16].

Dense Object Nets (DON) [16]: Using manually labeled semantic keypoints on

the demonstration clouds, DON is used to compute sparse correspondences with

the test objects. These correspondences are converted to a pose using SVD. A full

description can be found in [45].

Neural Descriptor Field (NDF) [45]: Using the learned descriptor field for the

mug, the positions of a constellation of task specific quarry points are optimized to

best match the demonstration using gradient descent.

Simulation Results

We evaluate our method in simulation in 100 trials consisting of unseen mug

instances in random initial and goal configurations for both Upright and Arbitrary

poses. As shown in Table 1, our method significantly outperforms the baselines for

simulated mug hanging. We report additional results for simulated bottle and bowl

placement tasks in Table B.4 in Appendix B.6.1.

Ablation Analysis

Effects of Number of Demonstrations. To study how the number of demonstra-

tions observed affects our method’s performance, we train our model on {10, 5, 1}
demonstrations of upright pose mug hanging. Results are found in Table 2. Our

method outperforms the baselines for all number of demonstrations; TAX-Pose can

perform well even with as few as 5 demonstrations.

Cross-Pose Estimation Design Choices. We analyze the effects of design choices

made in our Cross-Pose estimation algorithm for the upright pose mug hanging task.

Specifically, we analyze the effects of 1) computing residual correspondence; 2) the use

of weighted SVD over non-weighted in computing cross-pose; 3) using a transformer

as the cross-object attention, as opposed to simpler model such as a 3-layer MLP.

Table 3 shows that each major component of our system is important for task success.

See more ablation experiments in Appendix B.6.1.
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Grasp Place Overall Grasp Place Overall
Upright Pose Arbitrary Pose

DON 0.91 0.50 0.45 0.35 0.45 0.17
NDF 0.96 0.92 0.88 0.78 0.75 0.58

TAX-Pose 0.99 0.97 0.96 0.75 0.84 0.63

Table 3.1: Mug on rack simulation success rate (↑)

Model # Demos Used
1 5 10

DON 0.32 0.36 0.45
NDF 0.46 0.70 0.88

TAX-Pose 0.77 0.90 0.96

Table 3.2: # Demos vs. Overall success rate (↑)

Ablation Grasp Place Overall
No Res. 0.97 0.96 0.93

Unw. SVD 0.92 0.94 0.88
No Attn. 0.90 0.82 0.76

TAX-Pose 0.99 0.97 0.96

Table 3.3: Mug hanging ablations success rate (↑)

Train Mugs Test Mugs ExecutionSimulated Demo Observation Execution

Figure 3.5: Real-world experiments summary. Left: In object placement task, we train
using simulated demonstrations and test on real-world objects. Right: Mug Hanging
real-world experiments. We train from just 10 demonstrations from 10 training mugs in the
real world and test on 10 unseen test mugs.
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Real-World Experiments

We explore the hanging component of the mug on a rack task in a real world

environment, which requires estimating the cross-pose between the mug and the rack.

We train TAX-Pose using real demonstrations of 10 different mugs hung on a rack (1

demonstration each, for a total of only 10 real-world demonstrations for training). A

motion primitive is used to grasp each mug, after which the robot plans a trajectory

to apply the predicted cross-pose to the grasped mug. We evaluate the model on the

10 training mugs in novel poses, as well as on 10 unseen mugs (see Figure 3.5). For

each of the 20 mugs, we conduct 5 trials, varying the mug’s and rack’s starting poses

in each trial. Success is recorded if a peg penetrates the mug handle at the end of

the trial. Our method achieves a success rate of 62% on training mugs in novel poses

and 54% on unseen mugs. A visualization of the results can be seen in Figure 3.5

(right) and on the project website. Note that our method is able to perform the

mug hanging task while varying the pose of the mug rack (see our project website),

whereas the baselines (NDF [45], DON [16]) cannot because they assume a fixed,

known rack position (see NDF [45] for baseline details).

3.3.2 PartNet-Mobility Placement Tasks

Task Description

We also define a PartNet-Mobility Placement task as placing a given action

object relative to an anchor object based on a semantic goal position. We select

a set of household furniture objects from the PartNet-Mobility dataset [53] as the

anchor objects, and a set of small rigid objects released with the Ravens simulation

environment [58] as the action objects. For each anchor object, we define a set of

semantic goal positions (i.e. ‘top’, ‘left’, ‘right’, ‘in’), where action objects should be

placed relative to each anchor. Each semantic goal position defines a unique task in

our cross-pose prediction framework. Given a synthetic point cloud observation of

both objects, the task is to predict a cross-pose that places the object at the specific

semantic goal. We evaluate both a goal-conditioned variant (TAX-Pose GC), which

is trained across all goals, and a task-specific variant (TAX-Pose) of our model,

which trains a separate model per goal type (see Appendix B.6.2 for details). In

both cases we train only 1 model across all action and anchor objects. All models
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are trained entirely on simulated data and transfer directly to real-world with no

finetuning. Further task details can be found in the Appendix B.7.2.

Baselines

We compare our method to a variety of end-to-end imitation-learning-based

methods trained from a motion planner expert in simulation.

• E2E Behavioral Cloning: Generate motion-planned trajectories using OMPL

that take the action object from start to goal. These serve as “expert” trajecto-

ries for Behavioral Cloning (BC), where we train a neural network to output a

policy that, at each time step, outputs an incremental 6-DOF transformation

that imitates the expert trajectory.

• E2E DAgger : Using the same BC dataset as above, we train a policy using

DAgger [44].

• Trajectory Flow : Using the same BC dataset with DAgger, we train a policy to

predict a dense per-point 3D flow vector at each time step instead of a single

incremental 6-DOF transformation. Given this dense per-point flow, we can

extract a rigid transformation using SVD yielding the next pose [15].

• Goal Flow : Instead of training a multi-step policy to reach the goal, train a

network to output a single dense prediction which assigns a per-point 3D flow

vector that points from each action object point directly to its corresponding

goal location. We extract a rigid transformation from these flow vectors using

SVD, yielding the goal pose [15].

Note that in the PartNet-Mobility Placement experiments, the pose of the anchor

object poses are randomly varied. As such, we omit a comparison to methods that

assume a static anchor, such as the Neural Descriptor Field (NDF) [45] and Dense

Object Nets (DON) [16] baselines used in the mug hanging task (Section 3.3.1), as

both methods assume that the anchor objects are in a fixed, known position.

Results

We report rotation (ER) and translation (Et) error between our predicted trans-

form and the ground truth as geodesic rotational distance [17, 23] and L2 distance,

respectively. In both our simulated experiments (Table 3.4 Top) and our real-world

experiments (Table 3.4 Bottom), we find that TAX-Pose outperforms the baseline

end-to-end imitation learning methods, with the goal-conditioned variant, TAX-Pose
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Average
ER Et

E2E BC 42.26 0.73
E2E DAgger 37.96 0.69
Traj. Flow 35.95 0.67
Goal Flow 26.64 0.17
TAX-Pose 6.64 0.16
TAX-Pose GC 4.94 0.16

Average SR
Goal Flow 0.31
TAX-Pose 0.92

Table 3.4: Top: Simulation Rotational (◦) and Translational (m) Errors (↓). Bottom:
Real-world goal placement success rate (↑).

GC, performing the best.

In real-world experiments, our method generalizes to novel distributions of starting

poses better than the Goal Flow baseline, placing action objects into the goal regions

with a 92% success rate. See Figure 3.5 (left) and the website for results; see Appendix

B.6.2 for more detailed tables and Appendix B.7.2 for baseline details.

3.4 Conclusions

In this chapter, we show that dense soft correspondence can be used to learn task

specific object relationships that generalize to novel object instances. Correspondence

residuals allow our method to estimate correspondences to virtual points, outside of

the object’s convex hull, drastically increasing the number of tasks this method can

complete. We further show that this “cross-pose” can be learned for a task, using a

small number of demonstrations. Finally, we show that our method far outperforms

the baselines on two challenging tasks in both real and simulated experiments. While

our method is able to predict relative pose relationships with high precision, it has

several limitations:

• Requires segmentation: Our method requires an accurate segmentation of

two objects in order to predict their relative goal pose.
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• Performance degrades under occlusion: Our method performs best when

complete point clouds are provided, captured via multiple cameras or by re-

peatedly reorienting the objects.

• Poorly defined for multimodal relationships: Because our method extracts

a single global estimate of relative pose from a fixed set of correspondences,

performance on objects with multiple valid goals is not well-defined. Our method

might be augmented with a consensus-based or sampling-based approach to

capture the multimodality of the solution space in these cases. We leave this

for future work.

Furthermore, we showed that GoalFlow, while being a promising representation of

articulated objects, is an inferior visual representation of free-floating objects. This

brings up a question worth discussing - is there a way to unify the two representations

that can generalize to both articulated and free-floating objects? In the next chapter,

we propose one possible solution.
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Chapter 4

Weighted Pose: Unified

Architecture for Articulated and

Free-Floating Objects Manipulation

4.1 Introduction

In Chapter 2 and 3, we introduced two architectures for learning generalizable 3D

visual representations for manipulating articulated objects and free-floating objects

respectively. While they comprise a wide range of objects manipulation tasks in

our daily lives, those two models alone cannot be applied to more complex tasks

such as “open an oven, and put a tray inside the oven,” which typically involve

sequentially manipulating both categories of objects. To this end, we propose a

method, WeightedPose, to unify the two architectures in order to accomplish more

complex manipulation tasks.

In FlowBot 3D, we assumed that the robot is actuating a standalone articulated

object. In TAX-Pose experiments, the anchor object remains still and cannot be

directly manipulated. Experimentally, this is because TAX-Pose is not trained to be

aware of the kinematic constraints of the objects by construction and 3DAF’s accuracy

degrades when the goal configuration is far away from the start. Intuitively, we should

keep the convention of using TAX-Pose for free-floating objects and FlowBot 3D for
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(Chap. 2)

(Chap. 3)

Figure 4.1: Unified Weighted Pose architecture. The model first takes as input a point
cloud, and then learns to predict a weight for the point cloud. This weight is used in the
downstream SVD module to combine the GoalFlow and TAX-Pose outputs.

articulated objects in WeightedPose.

For more complex manipulation tasks such as “open an oven, and put a tray

inside the oven,” the robot needs to reason about the relationship between key parts

on one object with respect to key parts on another object. Specifically, the robot

needs to reason about both the relationship between the oven door and the oven

body, as well as the relationship between the lasagna plate and the oven.

To this end, we propose a standalone model, Weighted Pose, that utilizes weighted

SVD to reason about both pose relationships between articulated parts and between

free-floating objects.

4.2 Method

To make FlowBot 3D compatible with both categories of objects, we first slightly

modify the FlowBot 3D training objective. Instead of defining an instantaneous

motion vector field as the training data directly, we have the network learn to output

a flow field to the open state directly. Since this version of FlowBot 3D learns to

output a dense representation to the open (goal) state directly, we call this model

Goal Flow.

Formally, given a point cloud {pi} ∀i ∈ {1, . . . , N} this Goal Flow model outputs

a dense flow field F ∈ RN×3, where each flow vector δi ∈ R3 in the F represents a
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goal flow vector such that point pi + δi is in the open goal state. Ideally, this model

should be deployed exclusively for articulated objects in that Goal Flow was shown

to achieve suboptimal performances in Chapter 3.

To combine the Goal Flow model with TAX-Pose, we also make the Goal Flow

network output an auxiliary weight w ∈ [0, 1], which assigns weight w to Goal Flow

and 1− w to TAX-Pose.

For the TAX-Pose component of the Weighted Pose unified architecture, we do

not make any significant modifications and ideally the TAX-Pose model should be

deployed for free-floating objects exclusively.

To recap the mathematical notations defined in Chapter 3, given objects A and B
with point cloud observations PA ∈ R3×NA , PB ∈ R3×NB respectively, our objective

is to estimate the task-specific cross-pose TAB = f(PA,PB) ∈ SE(3). Note that

the cross-pose between object A and B is defined with respect to a given task (e.g.

putting a lasagna in the oven, putting a mug on the rack, etc).

In TAX-Pose, we have:

J (TAB) =

NA∑
i=1

αA
i ||TAB pA

i − ṽA
i ||22 +

NB∑
i=1

αB
i ||T−1

AB pB
i − ṽB

i ||22,

where

A =
[
P∗⊤

A Ṽ∗⊤
B

]
, B =

[
Ṽ∗⊤

A P∗⊤
B

]⊤
, Γ = diag

([
αA αB

])
and ṽA

i define the estimated goal location relative to object B for each point pi ∈ PA

of object A, and likewise for each point in object B. The weights αA
i ∈ αA, αB

i ∈ αB

signify the importance of each correspondence and are predicted by a point-wise MLP.

See detailed definition in Chapter 3.

To learn which of the two models to use, we want to add another term in the

SVD step. Specifically, we want the network to learn which one of the two models,

TAX-Pose and Goal-Flow, is more important based on point cloud observations.

Thus, we want an SVD step that incorporates the TAX-Pose residual, weighted by
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(1− w) and Goal-Flow weighted by w. So the new SVD formulation becomes:

J (TAB) = (1− w)

[
NA∑
i=1

αA
i ||TAB pA

i − ṽA
i ||22 +

NB∑
i=1

αB
i ||T−1

AB pB
i − ṽB

i ||22

]

+ w

NA∑
i=1

||TAB pA
i − (pA

i + δAi )||22,

where δAi is the i−th point’s goal flow. To make this approach viable we optimize R

and t in TAB separately:

J =

NA∑
i

(
(1− w)αi∥RpA

i + t− ṽA
i ∥2 + w∥RpA

i + t− pA
i + δAi ∥2

)
+

NB∑
i

(1− w)αi∥R−1pB
i − t− ṽB

i ∥2
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To optimize this objective function, we first solve for the optimal translation t∗:

∂J

∂t
= 0

=

NA∑
i

(
2(1− w)αi

(
t+RpA

i − ṽA
i

)
+ 2w

(
t+RpA

i − pA
i − δAi

))
+ 2(1− w)

NB∑
i

αi

(
R−1pB

i − t− ṽB
i

)
=

NA∑
i

((2− 2w)αi + 2w) t+ ((2− 2w)αi + 2w)RpA
i − 2wδAi

− (2− 2w)αiṽ
A
i − 2wpA

i

+

NB∑
i

−(2− 2w)αit+ (2− 2w)αi(R
−1pB

i − ṽB
i )

=

[
NA∑
i

[(2− 2w)αi + 2w] +

NB∑
i

−(2− 2w)αi

]
t

+

NA∑
i

((2− 2w)αi + 2w)RpA
i − 2wδAi − (2− 2w)αiṽ

A
i − 2wpA

i

+

NB∑
i

(2− 2w)αi(R
−1pB

i − ṽB
i )

t∗ = −
( NA∑

i

((2− 2w)αi + 2w)RpA
i − 2wδAi − (2− 2w)αiṽ

A
i − 2wpA

i

+

NB∑
i

(2− 2w)αi(R
−1pB

i − ṽB
i )

)/[
NA∑
i

[(2− 2w)αi + 2w] +

NB∑
i

−(2− 2w)αi

]
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Further simplifying, we have:

t∗ =
(1− w)

∑NA
i αA

i (ṽA
i −RpA

i )

(1− w)
∑NA

i αA
i + w

∑NA
i 1 + (1− w)

∑NB
i αB

i

+
w
∑NA

i (pA
i + δAi )−RpA

i

(1− w)
∑NA

i αA
i + w

∑NA
i 1 + (1− w)

∑NB
i αB

i

+
(1− w)

∑NB
i αB

i (ṽB
i −R−1pB

i )

(1− w)
∑NA

i αA
i + w

∑NA
i 1 + (1− w)

∑NB
i αB

i

Note here that we colorcode the expression here. Intuitively, the resulting translation is

a weighted sum of three translation terms. The red color represents the action object’s

translation via TAX-Pose, the blue color represents the action object’s translation

via GoalFlow, and the purple color represents the anchor object’s translation via

TAX-Pose.

We then construct the matrices as follows:

A =
[
P⊤

A Ṽ⊤
B P⊤

A

]
, B =

[
Ṽ⊤

A P⊤
B P⊤

A + ∆A

]⊤

Γ =

(1− w) ·αA 0 0

0 (1− w) ·αB 0

0 0 w


where ∆A is the de-meaned goal flow field. Note that everything here is NOT

de-meaned.

We then solve for the SVD:

UΣV ⊤ = svd(AΓB⊤)

and then we solve for rotation matrix R. Plugging it back into the t∗ equations we

get t.
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4.3 Experiments

We use the same PartNet-Mobility dataset as in TAX-Pose to evaluate the system. For

semantic tasks, we only select the “In” task. We also evaluate the method on opening

articulated objects. Under this formulation, the action object is the articulated part

and the anchor object is the static body. We measure rotational error, translational

error, and per-point MSE in our experiments. We follow the same train-validation

split as in TAX-Pose’s PartNet-Mobility dataset.

GF Pretrained TP Pretrained WP OG Loss WP Post-SVD WP Post SVD + T

Metrics FF Art FF Art FF Art FF Art FF Art

Train

Rot err 31.61 5.16 2.61 55.78 11.69 3.15 13.14 3.28 14.04 5.52

Trans err 1.21 0.16 0.04 0.98 0.14 0.08 0.21 0.07 0.21 0.07

PP MSE 1.04 0.04 0.01 0.85 0.07 0.05 0.09 0.04 0.11 0.08

Val

Rot err 35.5 9.14 9.87 59.73 11.22 9.01 14.13 9.71 13.06 10.03

Trans err 1.3 0.19 0.18 0.99 0.26 0.15 0.22 0.18 0.23 0.18

PP MSE 1.07 0.1 0.15 0.82 0.16 0.11 0.17 0.12 0.18 0.11

Table 4.1: Weighted Pose Results: We compare Rotation Error (◦), Translational Error
(m), and Per-Point MSE for both training and validation objects. Bolded numbers mean
the model’s performance on the object that it “specializes in.”

We compare with the following baselines:

• Goal Flow Pretrained (GF Pretrained): Pretrain Goal Flow on articulated

objects only and test on both articulated and free-floating objects.

• TAX-Pose Pretrained (TP Pretrained): Pretrain TAX-Pose on free-floating

objects only and test on both articulated and free-floating objects.

• Weighted Pose Original Loss (WP OG Loss): Weighted Pose trained and test

on both free-floating and articulated objects using the original TAX-Pose loss.

• Weighted Pose Post-SVD Loss (WP Post-SVD): Weighted Pose trained and test

on both free-floating and articulated objects but using the post-SVD TAX-Pose

loss.

• Weighted Pose Post-SVD & Transformation Loss (WP Post-SVD): Weighted

Pose trained and test on both free-floating and articulated objects but using

both the post-SVD TAX-Pose loss and direct transformation loss. Where the

transformation loss is the MSE between the predicted SE(3) transformation

and the ground-truth SE(3) transformation.
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In Table A.3, Goal Flow Pretrained baseline fails on free-floating objects and

excels on articulated objects. Similarly for TAX-Pose pretrained, since it was trained

on free-floating objects, it does do well on articulated objects, as the high rotational

and translational errors indicate.

We next evaluate the variations of WeightedPose, which differ in the training

paradigms. Using Weighted Pose Original Loss, which is trained using the original

TAX-Pose loss, we are able to achieve better performance on both articulated and free-

floating objects. Interestingly, the results we achieve using Weighted Pose Original

Loss for articulated objects are better than the results from using Goal Flow pretrained

on articulated objects.

While ideally, the w learned in this method should effectively act as a classifier of

the input object (1 for articulated objects, 0 for free-floating objects). Intuitively,

given a perfect w, the performance of WeightedPose would be upper-bounded by Goal

Flow’s performance on articulated objects and by TAX-Pose on free-floating objects.

However, a weighted combination of the two results due to the imperfect learned

w weight could potentially correct the mistake made by each model by summing

the results with a weighted sum. This may explain why WeightedPose sometimes

performs better than its hypothesized upper bound on some objects.

Lastly, results suggest that the original loss used in TAX-Pose yields the best

overall performance. However, it is worth noting that by using post-SVD loss during

training, we are able to achieve lower translational error in test time. Interestingly,

by introducing a direct SE(3) supervision, the results degrade marginally.

4.4 Conclusions

In conclusion, we have presented a method to combine the two architectures using

weighted SVD. While this model is more of a proof-of-concept that attempts to unify

the two architectures, it is worth pointing out that using the two models for the two

categories of objects is able to help us generate goal poses for various free-floating

and articulated objects. Moreover, by finetuning pretrained models from a weighted

SVD combination, we are able to outperform the models on their respective training

datasets categories. In future work, we wish to generalize the mathematics of the

combined architecture beyond tasks that involve articulated and free-floating objects.
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We would also like to explore how such a unified architecture can aid motion planning

as a geometric suggestor.
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Chapter 5

Conclusions

In conclusion, we explored and presented two different approaches to training accurate,

dense, generalizable 3D visual representations for manipulation tasks.

In the first part, we propose a novel visual representation for articulated objects,

namely 3D Articulation Flow, as well as a policy – FlowBot3D – which leverages this

representation to successfully manipulate articulated objects. We demonstrate the

effectiveness of our method in both simulated and real environments, and observe

strong sim-to-real transfer generalization. We hope our method allows more systems

to perceive articulated objects in a more efficient way.

In the second part, we presented a new lens for solving pose estimation for

manipulation tasks, instead of seeking to obtain accurate and robust single object

absolute poses, we instead of directly train network to learn to predict the desired task-

specific cross-pose between a pair of objects by learning from a few task demonstrations.

We show that dense soft correspondence can be used to learn task-specific object

relationships that generalize to novel object instances. Correspondence residuals allow

our method to estimate correspondences to virtual points, outside of the object’s

convex hull, drastically increasing the number of tasks this method can complete. We

further show that this “cross-pose” can be learned for a task, using a small number

of demonstrations. Finally, we show that our method far outperforms the baselines

on two challenging tasks in both real and simulated experiments.

Lastly, we propose a proof-of-concept model that aims to integrate the two

approaches using weighted SVD, allowing for increased flexibility in terms of task
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applicability. This unified approach demonstrates the potential for further advances

in the field of manipulation tasks using 3D visual representations.
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Appendix A

Appendix for Flowbot 3D

A.1 Robot System Details

A.1.1 Hardware

In all of real-world experiments, we deploy our system on a Rethink Sawyer Robot

and the sensory data (point cloud) come from an Azure Kinect depth camera. The

robot’s end effector is an official Saywer Pneumatic Suction Gripper with a suction

cup with a diameter of 3 cm. The air supply of the suction gripper is provided by a

California Air Tools compressor.

A.1.2 Workspace

We set up our workspace in a 1.08 m by 1.00 m space put together using Vention

beams. We set up the Azure Kinect camera such that it points toward the center of

workspace and has minimal interference with the robot arm-reach trajectory. Collision

geometry are set up using MoveIt’s collision box construction tool. We add a number

of boxes representing the camera and Vention beams that can potentially be blocking

the robot during motion planning.
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A.1.3 Hand-Eye Calibration

For Hand-Eye Calibration, we are using the Easy-Hand-Eye ROS package that

calculates the transformation from the camera frame to world frame using an ArUco

marker fixed on the robot’s end effector. The process requires about 30 samples of

the robot pose and ArUco marker pose combinations.

A.1.4 Foreground Segmentation

In simulated experiments, we have access to segmentation masks that segment out

tabletop and robot from the collected point cloud. In real-world experiments, however,

we need to programatically segment out those points ourselves.

Tabletop. We segment out the tabletop plane by simply subtracting the points

with z values less than 0.015 m from the collected point cloud after calibration because

the table top is placed 1.5 cm below the robot base.

Robot. The robot points are masked out in real-time by rendering the robot 3D

model using its URDF file. This is done through a ROS package called Real Time

URDF Filter. This filter assumes a perfect calibration of the camera. When the

calibration is slightly off, some trailing points from the robot might remain in scene.

Thus, we also statistically remove the outliers from the resulting point cloud because

the remaining robot points are sparser than the object’s points.

A.1.5 Contact Point Heuristic

In simulation, the suction contact is modeled by a kinematic constraint between the

gripper point and the contact point. Therefore, in simulation, we have a perfect

contact that can almost always successfully grasp the desired part. In real-world

experiments, due to the complication of the physics of the suction gripper and the

geometry of the target part, we can not always guarantee a successful grasp. Therefore,

we add an extra heuristic upon the max-flow selection when selecting which point

to grasp. Specifically, we add an interior point selection procedure that calculates

the curvature of the points using PCA and we choose the point with curvature value

smaller than a threshold. If the max-flow point has a curvature value higher than the

threshold, we discard that point and choose the nearest low-curvature point at least
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2 cm away from the max-flow point.

A.1.6 Grasp Selection Details

In the Grasp Selection phase of real-world experiments, we predict and estimate the

part’s 3D articulated flow vectors using FlowNet. We then use the aforementioned

contact point heuristic to filter out points that have high curvature values. If the

max-flow point is within the remaining points, we keep it and use it as the selected

contact point. Otherwise, we choose the nearest low-curvature point at least 2 cm

away from the max-flow point. Once we have selected the point, we have also selected

the end effector’s goal translation. For goal orientation, we align the end effector with

the flow vector. The procedure is explained here: assume that the axis connecting

the suction gripper tip to the robot hand is called v1 and the chosen flow vector

is −v2, we aim to find a rotation that aligns v1 to v2 (because the robot approach

direction is opposite to the flow direction). The difference of the rotation expressed

in quaternion is calculated as follows:

ϕ12 = cos−1(v1 · v2)

ω = v1 × v2 = [ωx, ωy, ωz]

qx = ωx · sin(ω/2)

qy = ωy · sin(ω/2)

qz = ωz · sin(ω/2)

qw = cos(ω/2)

q = [qx, qy, qz, qw]

qdiff =
q

||q||
.

Therefore, when given the robot’s starting rotation quaternion qstart, the goal orien-

tation of the robot end-effector qgoal is given by:

qgoal = qdiff · qstart
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A.1.7 Robot Control Paradigm

In the Grasp Selection Phase of real-world experiments, the robot is controlled using

position control by inputting the end-effector pose and solving for the trajectory using

an RRTConnect-based [17] IK solver. One caveat about the Grasp Selection Phase

in real world is that the robot does not make contact with the select point directly.

Instead, the robot first aligns with the chosen flow vector and plans to a point 10 cm

in the chosen 3D articulated flow direction away from the max-flow point. Then the

robot switches the control mode to velocity control and approaches the proposed point

in the aligned (negative selected flow) direction slowly until the force sensor of the

robot reports reading greater than a threshold, meaning the robot makes contact with

the object. Then in the Articulation-Execution Phase, the velocity controller takes

as input the translational velocity represented by the current time step’s normalized

predicted articulation flow vector multiplied by a constant to decrease the speed and

the rotational velocity as the aforementioned qdiff converted to Euler angles multiplied

by another constant to decrease the angular speed.

A.2 Training Details

A.2.1 Network Architecture

ArtFlowNet is based on the PointNet++ [27] architecture. The architecture largely

remains similar to the original architecture except for the output head. Instead

of using a segmentation output head, we use a regression head. The ArtFlowNet

architecture is implemented using Pytorch-Geometric [10], a graph-learning framework

based on PyTorch. Since we are doing regression, we use standard L2 loss optimized

by an Adam optimizer [16].

A.2.2 Ground Truth 3DAF Generation

We implement efficient ground truth 3D Articulation Flow generation. At each

timestep, the system reads the current state of the object of interest in simulation as

an URDF file and parses it to obtain a kinematic chain. Then the system uses the

kinematic chain to analytically calculate each point’s location after a small, given
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amount of displacement. In simulation, since we have access to part-specific masks,

the calculated points’ location will be masked out such that only the part of interest

will be articulated. Then we take difference between the calculated new points and

the current time step’s points to obtain the ground truth 3D Articulation Flow.

A.2.3 Simulator Modifications

We heavily modify the ManiSkill [23] environment, which is a high-level wrapper of

the SAPIEN [32] simulator. Specifically, we add in a variety of PartNet-Mobility

objects to the environment for more diverse training dataset. We obtain a list of

training and testing objects from the authors of UMPNet [33]. We have filtered out

some phone objects and door objects due to the collision of meshes in the SAPIEN

simulator upon loading, but the dataset remains largely identical to the one used in

UMPNet. Furthermore, we implement efficient online ground truth 3D articulation

flow calculation in the ManiSkill environment for generating training data online. We

also implement camera viewpoint sampling by randomizing the azimuth and elevation

for the VPA model training. Instead of using a full robot arm, we only use a floating

gripper with 8 DoF (x, y, z for translation, r, p, y for rotation, and speed parameter

for each of the two fingers on the gripper) controlled by a velocity controller. The

two gripper fingers’ speed parameters are not learned in Behavioral Cloning as the

two fingers remain closed. To simulate suction, we create a strong force between

the gripper fingers and the target object since kinematic constraints are not directly

supported in the SAPIEN simulator.

A.2.4 Hyperparameters

We use a batch size of 64 and a learning rate of 1e-4. We use the standard set of

hyperparameters from the original PointNet++ paper.

A.3 Simulation Experiments Illustration

Here we briefly illustrate FlowBot3D system in simulation. In simulation, the suction

is implemented using a strong force between the robot gripper and the target part.
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Start (Pre-Contact) Make Contact Execution (Post-Contact) Done

Laptop

Storage Furniture

Dishwasher

Figure A.1: Simulated rollout examples

A.4 Real-World Dataset

As shown in Section IV-B, we use 14 different objects in real world experiments. The

objects labeled 1-14 in Fig. 5 are described here in Table A.1.

In Fig. A.2, we show the 14 objects individually for more clarity.

A.5 Results in the UMPNet Environment

We perform a direct evaluation of FlowBot3D in the UMPNet simulation environment,

which was only made public after this manuscript was accepted for publication. There

are several major differences between our main simulation environment and the

UMPNet evaluation environment:

• The UMPNet environment uses the PyBullet physics simulator, whereas we use

the SAPIEN environemnt (backed by PhysX).

• The UMPNet environment disables collisions between the gripper geometry and

the rest of the object (except for the part where contact is made). We leave
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Label ID Category Type
1 chest 1 Box Revolute
2 teapot 1 Kettle Prismatic
3 toilet 1 Toilet Revolute
4 fridge 1 Refrigerator Revolute
5 oven 1 Oven Revolute
6 drawer 1 Storage Prismatic
7 safe 1 Safe Revolute
8 microwave 1 Microwave Revolute
9 minifridge 1 Refrigerator Revolute
10 jar 1 Kitchen Pot Prismatic
11 jar 2 Kitchen Pot Prismatic
12 trash 1 Trash Can Revolute
13 laptop 1 Laptop Revolute
14 box 1 Box Revolute

Table A.1: Labels and their corresponding objects and the objects’ articulation types shown
in Fig. 5 of the paper. Note that jar 1 and jar 2 are not technically kitchen pots but
they do have lids similar to kitchen pots in functionality and have identical ariculation
parameters.

full contact enabled.

• The UMPNet environment has a hard contact constraint between the object

and the gripper, whereas our contact is softer, acting more like a spring.

Novel Instances in Train Categories Test Categories

AVG. AVG.

Baselines

UMPNet 0.18 0.18 0.17 0.32 0.32 0.05 0.06 0.12 0.24 0.23 0.18 0.08 0.15 0.23 0.14 0.04 0.00 0.25 0.27 0.09 0.21 0.13 0.19

Ours

FlowBot3D in UMPNet 0.17 0.42 0.22 0.16 0.17 0.03 0.00 0.20 0.51 0.07 0.00 0.08 0.21 0.17 0.29 0.00 0.06 0.21 0.10 0.06 0.16 0.29 0.73

Table A.2: Normalized Distance Metric Results: Normalized distances evaluated in the
official UMPNet environment to the target articulation joint angle after a full rollout across
different methods. The lower the better.

We use the UMPNet evaluation script without modification, with the exception

that the chosen action is selected based on FlowBot3D instead. In Tables A.2 and

A.3, we present the results for the following methods:

• UMPNet: We run a pre-trained UMPNet model with the official UMPNet
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Novel Instances in Train Categories Test Categories

AVG. AVG.

Baselines

UMPNet 0.73 0.73 0.71 0.60 0.49 0.89 0.90 0.79 0.60 0.64 0.78 0.86 0.75 0.55 0.80 0.89 1.00 0.66 0.64 0.77 0.64 0.75 0.76

Ours

FlowBot3D in UMPNet 0.81 0.53 0.74 0.81 0.82 0.96 0.99 0.79 0.44 0.90 1.00 0.89 0.70 0.69 0.63 1.00 0.94 0.67 0.89 0.75 0.66 0.69 0.14

Table A.3: Success Rate Metric Results: Fraction of success trials (normalized distance
less than 0.1) of different objects’ categories after a full rollout across different methods
evaluated in the official UMPNet environment. The higher the better.

code following the exact same evaluation procedure listed in [33]. The numbers

here are consistent with those in the UMPNet paper.

• FlowBot3D in UMPNet Environment: FlowBot3D trained and evaluated

with the camera parameters and objects’ placement randomization from UMP-

Net’s PyBullet environment. Note that in test time, UMPNet takes as input a

goal of the articulated object in its fully closed or fully open state, so we use the

ground-truth goal to decide if we need to invert the output 3DAF directions (i.e.

if the ground-truth goal is a fully closed state, we invert the output direction).

Overall, the two methods perform similarly on the task. However, while the

ArtFlowNet was retrained on point clouds generated in PyBullet, the performance

was not significantly tuned on the different task distribution in the UMPNet dataset.

A.6 Full Trials Results

In Table A.4 and A.5, we show the full trials results, which contains the metrics

averaged over all 5 trials for each object.
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(a) box 1 (b) chest 1 (c) drawer 1

(d) fridge 1 (e) jar 1 (f) jar 2

(g) laptop 1 (h) microwave 1 (i) minifridge 1

(j) oven 1 (k) safe 1 (l) teapot 1

(m) toilet 1 (n) trashcan 1

Figure A.2: Objects in the dataset for real world experiments
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Object ID Object Category Success/Total Success % Contact Success/Total Distance Motion-Only Success/Total
chest 1 Box 3/5 60% 4/5 0.22 3/4
teapot 1 Kettle 5/5 100% 5/5 0.00 5/5
toilet 1 Toilet 4/5 80% 5/5 0.02 4/5
fridge 1 Refrigerator 3/5 60% 3/5 0.11 5/5
oven 1 Oven 0/5 0% 5/5 1.00 0/5

drawer 1 Storage 3/5 60% 3/5 0.40 3/3
safe 1 Safe 1/5 20% 2/5 0.73 1/2

microwave 1 Microwave 3/5 60% 5/5 0.11 3/5
minifridge 1 Refrigerator 2/5 40% 5/5 0.155 2/5

jar 1 Kitchen Pot 5/5 100% 5/5 0.00 5/5
jar 2 Kitchen Pot 5/5 100% 5/5 0.00 5/5

trash 1 Trash Can 5/5 100% 5/5 0.02 5/5
laptop 1 Laptop 4/5 100% 5/5 0.07 4/5
box 1 Box 2/5 40% 5/5 0.28 2/5

SUMMARY - 45/70 64.3% 64/70 0.22 45/64

Table A.4: Real-World Trials for FlowNet

Object ID Object Category Success/Total Success % Contact Success/Total Distance Motion-Only Success/Total
chest 1 Box 1/5 20% 5/5 0.80 1/5
teapot 1 Kettle 2/5 40% 5/5 0.60 2/5
toilet 1 Toilet 0/5 0% 5/5 0.78 0/5
fridge 1 Refrigerator 0/5 0% 5/5 1.00 0/5
oven 1 Oven 0/5 0% 5/5 1.00 0/5

drawer 1 Storage 1/5 20% 5/5 0.72 1/5
safe 1 Safe 1/5 20% 3/5 0.70 1/3

microwave 1 Microwave 0/5 0% 5/5 1.00 0/5
minifridge 1 Refrigerator 0/5 0% 5/5 1.00 0/5

jar 1 Kitchen Pot 3/5 60% 5/5 0.40 3/5
jar 2 Kitchen Pot 1/5 20% 5/5 0.80 1/5

trash 1 Trash Can 0/5 0% 5/5 1.00 0/5
laptop 1 Laptop 1/5 20% 5/5 0.81 1/5
box 1 Box 1/5 20% 5/5 0.80 1/5

SUMMARY - 10/70 14.3% 68/70 0.73 10/68

Table A.5: Real-World Trials for DAgger Oracle
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Appendix for TAX-Pose

B.1 Visual Explanations of TAX-Pose

B.1.1 Illustration of Corrected Virtual Correspondence

The virtual corresponding points, VA, VB given by Equation 3 in the main text, are

constrained to be within the convex hull of each object. However, correspondences

which are constrained to the convex hull are insufficient to express a large class

of desired tasks. For instance, we might want a point on the handle of a teapot

to correspond to some point above a stovetop, which lies outside the convex hull

of the points on the stovetop. To allow for such placements, for each point-wise

embedding ϕi, we further learn a residual vector, δAi ∈∆A that corrects each virtual

corresponding point, allowing us to displace each virtual corresponding point to any

arbitrary location that might be suitable for the task. Concretely, we use a point-wise

neural network gR which maps each embedding into a 3D residual vector:

δAi = gR
(
ϕA

i

)
∈ R3, δBi = gR

(
ϕB

i

)
∈ R3

Applying these to the virtual points, we get a set of corrected virtual correspondences,

ṽA
i ∈ ṼA and ṽB

i ∈ ṼB, defined as

ṽA
i = vA

i + δAi , ṽB
i = vB

i + δBi (B.1)
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These corrected virtual correspondences ṽA
i define the estimated goal location relative

to object B for each point pi ∈ PA in object A, and likewise for each point in object

B, as shown in Figure B.1.

Figure B.1: Computation of Corrected Virtual Correspondence. Given a pair of object
point clouds PA,PB, a per-point soft correspondence VA is first computed. Next, to allow
the predicted correspondence to lie beyond object’s convex hull, these soft correspondences
are adjusted with correspondence residuals, ∆A, which results in the corrected virtual
correspondence, ṼA. The coloring scheme and the point size on the rack represent the the
value of the the attention weights, where the more red and larger the point, the higher the
attention weights, the more gray and smaller the point the lower the attention weights.

B.1.2 Learned Importance Weights

A visualization of the learned importance weights, αA and αB for the mug and rack

are visualized by both color scheme and point size in Figure B.2
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Figure B.2: Learned Importance Weights for Weighted SVD on Mug and Rack. The
coloring scheme and the point size on both objects represent the the value of the the learned
importance weights, where the more yellow and larger the point, the higher the learned
importance weights, the more purple and smaller the point the lower the learned importance
weights.

B.2 Proof of TAX-Pose Translational

Equivariance

One benefit of our method is that it is translationally equivariant by construction.

This mean that if the object point clouds, PA and PB, are translated by random

translation tα and tβ, respectively, i.e. PA′ = PA + tα and PB′ = PB + tβ, then the

resulting corrected virtual correspondences, ṼB and ṼA, respectively, are transformed

accordingly, i.e. ṼB + tβ and ṼA + tα, respectively, as we will show below. This

results in an estimated cross-pose transformation that is also equivariant to translation

by construction. This is achieved because our learned features and correspondence

residuals are invariant to translation, and our virtual correspondence points are

equivariant to translation.

First, our point features are a function of centered point clouds. That is, given

point clouds PA and PB, the mean of each point cloud is computed as

p̄k =
1

Nk

Nk∑
i=1

Pk.
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This mean is then subtracted from the clouds,

P̄k = Pk − p̄k,

which centers the cloud at the origin. The features are then computed on the centered

point clouds:

Φk = gk(P̄k).

Since the point clouds are centered before features are computed, the features Φk

are invariant to an arbitrary translation Pk′ = Pk + tκ.

These translationally invariant features are then used, along with the original

point clouds, to compute “corrected virtual points” as a combination of virtual

correspondence points, vk′
i and the correspondence residuals, δk

′

i . As we will see below,

the “corrected virtual points” will be translationally equivariant by construction.

The virtual correspondence points, vk′
i , are computed using weights that are a

function of only the translationally invariant query and key values from the cross-

object attention transformer gTK , QK and KK, which are in turn functions of only

the translationally invariant features, Φk:

wA′→B′

i = softmax

(
KB′qA′

i√
d

)
= softmax

(
KBq

A
i√
d

)
= wA→B

i

thus the weights are also translationally invariant. These translationally invariant

weights are applied to the translated cloud

vA′

i = PB′wA→B
i = (PB + tβ)wA→B

i =
∑
j

pB
j ·wA→B

i,j + tβ
∑
j

wA→B
i,j = PBw

A→B
i + tβ,

since
∑NB

j=1w
A→B
ij = 1. Thus the virtual correspondence points vA′

i are equivalently

translated. The same logic follows for the virtual correspondence points vB′
i . This

gives us a set of translationally equivaraint virtual correspondence points vA′
i and

vB′
i .

The correspondence residuals, δk
′

i , are a direct function of only the translationally
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invariant features Φk,

δk
′

i = gRK(ϕk′

i ) = gRK(ϕk
i ) = δki ,

therefore they are also translationally invariant.

Since the virtual correspondence points are translationally equivariant, vA′
i = vA

i +

tβ and the correspondence residuals are translationally invariant, δk
′

i = δki , the final

corrected virtual correspondence points, ṽA′
i , are translationally equivariant, i.e. ṽA′

i =

vA
i + δki + tβ. This also holds for ṽB′

i , giving us the final translationally equivariant

correspondences between the translated object clouds as
(
PA + tα, ṼB + tβ

)
and(

PB + tβ, ṼA + tα

)
, where ṼB =

[
ṽA
1 . . . ṽ

A
NA

]⊤
.

As a result, the final computed transformation will be automatically adjusted

accordingly. Given that we use weighted SVD to compute the optimal transform,

TAB, with rotational component RAB and translational component tAB, the optimal

rotation remains unchanged if the point cloud is translated, RA′B′ = RAB, since

the rotation is computed as a function of the centered point clouds. The optimal

translation is defined as

tAB := ¯̃vA −RAB · p̄A,

where ¯̃vA and p̄A are the means of the corrected virtual correspondence points, ṼB,

and the object cloud PA, respectively, for object A. Therefore, the optimal translation

between the translated point cloud PA′ and corrected virtual correspondence points

ṼA′
is

tA′B′ = ¯̃vA′ −RAB · p̄A′

= ¯̃vA + tβ −RAB · (p̄A + tα)

= ¯̃vA + tβ −RAB · p̄A −RAB · tα
= tAB + tβ −RAB · tα

To simplify the analysis, if we assume that, for a given example, RAB = I, then

we get tA′B′ = tAB + tβ − tα, demonstrating that the computed transformation is

translation-equivariant by construction.
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B.3 Description of Cross-Object Attention

Weight Computation

To map our estimated features ΨA and ΨB obtained from object-specific embedding

networks (DGCNN), gA and gB respectively, to a set of normalized weight vectors

WA→B and WB→A, we use the cross attention mechanism of our cross-object attention

Transformer module [48]. Following Equations 5a and 5b from the paper, we can

extract the desired normalized weight vector wA→B
i for the virtual corresponding

point vA
i assigned to any point pA

i ∈ PA using the intermediate attention embeddings

of cross-object attention module as:

wA→B
i = softmax

(
KBq

A
i√
d

)
, wB→A

i = softmax

(
KAq

B
i√
d

)
(B.2)

where qK
i ∈ QK, and QK,KK ∈ RNK×d are the query and key (respectively) for

object K associated with cross-object attention Transformer module gTK , as shown in

Figure B.3. These weights are then used to compute the virtual corresponding points

VA, VB using Equations 5a and 5b in the main paper.

B.3.1 Ablation

To explore the importance of this weight computation design choice described in

Equation B.2, we conducted an ablation experiment on this design choice against an

alternative, arguably simpler method for cross-object attention weight computation

that was used in prior work [50]. Since the point embeddings ϕA
i and ϕB

i have the

same dimension d, we can select the inner product of the space as a similarity metric

between two embeddings.

To compute the virtual corresponding point vA
i assigned to any point pA

i ∈ PA,

we can extract the desired normalized weight vector wA→B
i with the softmax function:

wA→B
i = softmax

(
Φ⊤

Bϕ
A
i

)
, wB→A

i = softmax
(
Φ⊤

Aϕ
B
i

)
(B.3)

This is the approach used in the prior work of Deep Closest Point (DCP) [50]. In the

experiments below, we refer to this approach as point embedding dot-product.
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Figure B.3: Cross-Object attention weight computation for virtual soft correspondence VA
from object A to B. QK,KK,ValK ∈ RNK×d are the query, key and value (respectively) for
object K associated with cross-object attention Transformer module gTK . The Transformer
block is modified from Figure 2(b) in DCP [50].
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We conducted an ablation experiment on the weight computation method used in

TAX-Pose (Equation B.2) against the simpler approach from DCP [50] (Equation B.3),

on the upright mug hanging task in simulation. The models are trained from 10

demonstrations and tested on 100 trials over the test mug set. As seen in Table B.1,

the TAX-Pose approach (Equation B.2) outperforms point embedding dot-product

(Equation B.3) in all three evaluation categories on grasp, place, and overall in terms

of test success rate.

Attention Weight Ablation Grasp Place Overall

Point Embedding Dot-Product (Eqn. B.3) 0.83 0.92 0.92

TAX-Pose (Ours) (Eqn. B.2) 0.99 0.97 0.96

Table B.1: Test success rate (↑) over 100 trials for mug hanging upright task, ablated on
attention weight computation methods.

B.4 Description of Weighted SVD

The objective function for computing the optimal rotation and translation given a

set of correspondences for object K, {pk
i → ṽk

i }
Nk
i and weights {αk

i }
Nk
i , is as follows:

J (TAB) =

NA∑
i=1

αA
i ||TAB pA

i − ṽA
i ||22 +

NB∑
i=1

αB
i ||T−1

AB pB
i − ṽB

i ||22

First we center (denoted with ∗) the point clouds and virtual points independently,

with respect to the learned weights, and stack them into frame-specific matrices

(along with weights) retaining their relative position and correspondence:

A =
[
P∗⊤

A Ṽ∗⊤
B

]
, B =

[
Ṽ∗⊤

A P∗⊤
B

]⊤
, Γ = diag

([
αA αB

])
Then the minimizing rotation RAB is given by:

UΣV⊤ = svd(AΓB⊤) (B.4a) RAB = UΣ∗V
⊤ (B.4b)

where Σ∗ = diag(
[
1, 1, ...det(UV⊤)

]
and svd is a differentiable SVD opera-

tion [39].

The optimal translation can be computed as:
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tA = ¯̃vB −RABp̄A tB = p̄B −RAB¯̃vA t =
NA

N
tA +

NB

N
tB (B.5a)

with N = NA +NB. In the special translation-only case, the optimal translation

and be computed by setting RAB to identity in above equations. The final transform

can be assembled:

TAB =

[
RAB t

0 1

]
(B.6)

B.5 Training Details

B.5.1 Supervision

To train the encoders gA(P̄A), gB(P̄B) as well as the residual networks gRA

(
ϕA

i

)
,

gRB

(
ϕB

i

)
, we use a set of losses defined below. We assume we have access to a set of

demonstrations of the task, in which the action and anchor objects are in the target

relative pose such that TAB = I.

Point Displacement Loss [28, 54]: Instead of directly supervising the rotation

and translation (as is done in DCP), we supervise the predicted transformation using

its effect on the points. For this loss, we take the point clouds of the objects in

the demonstration configuration, and transform each cloud by a random transform,

P̂A = TαPA, and P̂B = TβPB. This would give us a ground truth transform of

TGT
AB = TβT

−1
α ; the inverse of this transform would move object B to the correct

position relative to object A. Using this ground truth transform, we compute the

MSE loss between the correctly transformed points and the points transformed using

our prediction.

Ldisp =
∥∥TABPA −TGT

ABPA
∥∥2 +

∥∥T−1
ABPB −TGT−1

AB PB
∥∥2 (B.7)

Direct Correspondence Loss. While the Point Displacement Loss best describes

errors seen at inference time, it can lead to correspondences that are inaccurate

but whose errors average to the correct pose. To improve these errors we directly
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supervise the learned correspondences ṼA and ṼB:

Lcorr =
∥∥∥ṼA −TGT

ABPA

∥∥∥2 +
∥∥∥ṼB −TGT−1

AB PB

∥∥∥2 . (B.8)

Correspondence Consistency Loss. Furthermore, a consistency loss can be used.

This loss penalizes correspondences that deviate from the final predicted transform.

A benefit of this loss is that it can help the network learn to respect the rigidity of

the object, while it is still learning to accurately place the object. Note, that this

is similar to the Direct Correspondence Loss, but uses the predicted transform as

opposed to the ground truth one. As such, this loss requires no ground truth:

Lcons =
∥∥∥ṼA −TABPA

∥∥∥2 +
∥∥∥ṼB −T−1

ABPB

∥∥∥2 . (B.9)

Overall Training Procedure. We train with a combined loss Lnet = Ldisp +

λ1Lcorr + λ2Lcons, where λ1 and λ2 are hyperparameters. We use a similar network

architecture as DCP [50], which consists of DGCNN [51] and a Transformer [48].

In order to quickly adapt to new tasks, we optionally pre-train the DGCNN

embedding networks over a large set of individual objects using the InfoNCE loss

[36] with a geometric distance weighting and random transformations, to learn SE(3)

invariant embeddings, see Appendix E.2 for details.

B.5.2 Pretraining

We utilize pretraining for the embedding network for the mug hanging task, and

describe the details below.

We pretrain embedding network for each object category (mug, rack, gripper),

such that the embedding network is SE(3) invariant with respect to the point clouds

of that specific object category. Specifically, the mug-specific embedding network is

pretrained on 200 ShapeNet [6] mug instances, while the rack-specific and gripper-

specific embedding network is trained on the same rack and Franka gripper used at

test time, respectively. Note that before our pretraining, the network is randomly

initialized with the Kaiming initialization scheme [18]; we don’t adopt any third-party

pretrained models.

For the network to be trained to be SE(3) invariant, we pre-train with InfoNCE
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loss [36] with a geometric distance weighting and random SE(3) transformations.

Specifically, given a point cloud of an object instance, PA, of a specific object category

A, and an embedding network gA, we define the point-wise embedding for PA as

ΦA = gA(PA), where ϕA
i ∈ ΦA is a d-dimensional vector for each point pAi ∈ PA.

Given a random SE(3) transformation, T, we define ΨA = gA(TPA), where ψA
i ∈ ΨA

is the d-dimensional vector for the ith point pAi ∈ PA.

The weighted contrastive loss used for pretraining, Lwc, is defined as

Lwc : = −
∑
i

log

[
exp

(
ϕ⊤
i ψi

)∑
j exp

(
dij
(
ϕ⊤
i ψj

))] (B.10)

dij : =

 1
µ

tanh (λ∥pAi − pAj ∥2), if i ̸= j

1, otherwise
(B.11)

µ : = max (tanh (λ∥pAi − pAj ∥2)) (B.12)

For this pretraining, we use λ := 10.

B.5.3 Architectural Variants

Goal-Conditioned TAX-Pose: To enable a single TAX-Pose model to scale to

multiple related placement sub-tasks for a pair of action and anchor objects, we design

a goal-conditioned variant (TAX-Pose GC), which receives a one-hot encoding of

the desired semantic goal position (e.g. ‘top’, ‘left’, . . . ) for the task. This contextual

encoding is incorporated into each DGCNN module in the same way as proposed in

the original DGCNN paper. This encoding can be used to provide an embedding of

the specific placement relationship that is desired in a scene (e.g. selecting a “top”

vs. “left” placement position) and thus enable goal conditioned placement.

Vector Neurons: We briefly experimented with Vector Neurons [12] and found

that this led to worse performance on this task.
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B.6 Additional Results

B.6.1 NDF Placement Tasks

Further Ablations on Mug Hanging Task

In order to examine the effects of different design choices in the training pipeline,

we conduct ablation experiments with final task-success (grasp, place, overall ) as

evaluation metrics for Mug Hanging task with upright pose initialization for the

following components of our method, see Table B.2 for full ablation results along six

ablated dimensions as detailed below. We also performed an ablation experiment on

alternative cross-object attention weight computation, as explained in Appendix B.3

and results can be found in Table B.1. For consistency, all ablated models are trained

for 15K steps.

1. Loss. In the full pipeline reported, we use a weighted sum of the three types of

losses described in Section 4.2 of the paper. Specifically, the loss used Lnet is

given by

Lnet = Ldisp + λ1Lcons + λ2Lcorr (B.13)

where we chose λ1 = 0.1, λ2 = 1 after hyperparameter search.

We ablate usage of all three types of losses, by reporting the final task perfor-

mance in simulation for all experiments, specifically, we report task success on

the following Lnet variants.

(a) Remove the point displacement loss term, Ldisp, after which we are left

with

L′
net = (0.1)Lcons + Lcorr

(b) Remove the direct correspondence loss term, Lcorr, after which we are left

with

L′
net = Ldisp + (0.1)Lcons

(c) Remove the correspondence consistency loss term, Lcons, after which we

are left with

L′
net = Ldisp + Lcorr
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(d) From testing loss variants above, we found that the point displacement

loss is a vital contributing factor for task success, where removing this loss

term results in no overall task success, as shown in Table B.2. However,

in practice, we have found that adding the correspondence consistency loss

and direct correspondence loss generally help to lower the rotational error

of predicted placement pose compared to the ground truth of collected

demos. To further investigate the effects of the combination of these two

loss terms, we used a scaled weighted combination of Lcons and Lcorr, such

that the former weight of the displacement loss term is transferred to

consistency loss term, with the new λ1 = 1.1, and with λ2 = 1 stays

unchanged. Note that this is different from variant (a) above, as now the

consistency loss given a comparable weight with dense correspondence loss

term, which intuitively makes sense as the consistency loss is a function of

the predicted transform TAB to be used, while the dense correspondence

loss is instead a function of the ground truth transform, TGT
AB, which

provides a less direct supervision on the predicted transforms. Thus we

are left with

L′
net = (1.1)Lcons + Lcorr

2. Usage of Correspondence Residuals. After predicting a per-point soft

correspondence between objects A and B, we adjust the location of the predicted

corresponding points by further predicting a point-wise correspondence residual

vector to displace each of the predicted corresponding point. This allows the

predicted corresponding point to get mapped to free space outside of the convex

hulls of points in object A and B. This is a desirable adjustment for mug

hanging task, as the desirable cross-pose usually require points on the mug

handle to be placed somewhere near but not in contact with the mug rack, which

can be outside of the convex hull of rack points. We ablate correspondence

residuals by directly using the soft correspondence prediction to find the cross-

pose transform through weighted SVD, without any correspondence adjustment

via correspondence residual.

3. Weighted SVD vs Non-weighted SVD. We leverage weighted SVD as

described in Section 4.1 of the paper as we leverage predicted per-point weight
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to signify the importance of specific correspondence. We ablate the use of

weighted SVD, and we use an un-weighted SVD, where instead of using the

predicted weights, each correspondence is assign equal weights of 1
N

, where N

is the number of points in the point cloud P used.

4. Pretraining. In our full pipeline, we pretrain the point cloud embedding

network such that the embedding network is SE(3) invariant. Specifically, the

mug-specific embedding network is pretrained on 200 ShapeNet mug objects,

while the rack-specific and gripper specific embedding network is trained on

the same rack and Franka gripper used at test time, respectively. We conduct

ablation experiments where

(a) We omit the pretraining phase of embedding network

(b) We do not finetune the embedding network during downstream training

with task-specific demonstrations.

Note that in practice, we find that pretraining helps speed up the downstream

training by about a factor of 3, while models with or without pretraining both

reach a similar final performance in terms of task success after both models

converge.

5. Usage of Transformer as Cross-object Attention Module. In the full

pipeline, we use transformer as the cross-object attention module, and we ablate

this design choice by replacing the transformer architecture with a simple 3-layer

MLP with ReLU activation and hidden dimension of 256, and found that this

leads to worse place and grasp success.

6. Dimension of Embedding. In the full pipeline, the embedding is chosen to

be of dimension 512. We conduct experiment on much lower dimension of 16,

and found that with dimension =16, the place success is much lower, dropped

from 0.97 to 0.59.
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Ablation Experiment Grasp Place Overall

No Ldisp 0.01 0 0

No Lcorr 0.89 0.91 0.84

No Lcons 0.99 0.95 0.94

Scaled Combination: 1.1Lcons + Lcorr 0.10 0.01 0.01

No Adjustment via Correspondence Residuals 0.97 0.96 0.93

Unweighted SVD 0.92 0.94 0.88

No Finetuning for Embedding Network 0.98 0.93 0.91

No Pretraining for Embedding Network 0.99 0.72 0.71

3-Layer MLP In Place of Transformer 0.90 0.82 0.76

Embedding Network Feature Dim = 16 0.98 0.59 0.57

TAX-Pose (Ours) 0.99 0.97 0.96

Table B.2: Mug Hanging Ablations Results

Effects of Pretraining on Mug Hanging Task

We explore the effects of pretraining on the final task performance, as well as training

convergence speed. We have found that pretraining the point cloud embedding network

as described in B.5.2, is a helpful but not necessary component in our training pipeline.

Specifically, we find that while utilizing pretraining reduces training time, allowing

the model to reach similar task performance and train rotation/translation error with

much fewer training steps, this component is not necessary if training time is not of

concern. In fact, as see in Table B.3, we find that for mug hanging tasks, by training

the models from scratch without our pretraining, the models are able to reach similar

level of task performance of 0.99 grasp, 0.92 for place and 0.92 for overall success

rate. Furthermore, it is able to achieve similar level of train rotation error of 4.91◦

and translation error of 0.01m, compared to the models with pretraining. However,

without pre-trainig, the model needs to be trained for about 2 times longer (26K

steps compared to 15K steps) to reach the similar level of performance. Thus we

adopt our object-level pretraining in our overall pipeline to allow lower training time.

Another benefit of pretraining is that the pretraining for each object category
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is done in a task-agnostic way, so the network can be more quickly adapted to new

tasks after the pretraining is performed. For example, we use the same pre-trained

mug embeddings for both the gripper-mug cross-pose estimation for grasping as well

as the mug-rack cross-pose estimation for mug hanging.

Ablation Experiment Grasp Place Overall Train Rotation Error Train Translation Error

(◦) (m)

No Pre-Training for Embedding Network
0.99 0.92 0.92 4.91 0.01

(trained for 26K steps)

No Pre-training for Embedding Network
0.99 0.72 0.71 15.39 0.01

(trained for 15K steps)

TAX-Pose (Ours)
0.99 0.97 0.96 4.33 0.01

(trained for 15K steps)

Table B.3: Ablation Experiments on the Effects of Pre-Training. We report the task success
rate for upright mug hanging task over 100 trials each, as well as the grasping model’s
training rotational error (◦) and translation error (m).

Additional Simulation Experiments on Bowl and Bottle Placement Task

Object Algorithm Grasp Place Overall Grasp Place Overall

Upright Pose Arbitrary Pose

Mug

DON 0.91 0.50 0.45 0.35 0.45 0.17

NDF 0.96 0.92 0.88 0.78 0.75 0.58

TAX-Pose (Ours) 0.99 0.97 0.96 0.75 0.84 0.63

Bowl

DON 0.50 0.35 0.11 0.08 0.20 0

NDF 0.91 1 0.91 0.79 0.97 0.78

TAX-Pose (Ours) 0.99 0.92 0.92 0.74 0.85 0.85

Bottle

DON 0.79 0.24 0.24 0.05 0.02 0.01

NDF 0.87 1 0.87 0.78 0.99 0.77

TAX-Pose (Ours) 0.55 0.99 0.55 0.61 0.55 0.52

Table B.4: Unseen Object Instance Manipulation Task Success Rates (↑) in Simulation on
Mug, Bowl and Bottle for Upright and Arbitrary Initial Pose. Each result is the success
rate over 100 trials.

Additional results on Grasp, Place and Overall success rate in simulation for Bowl

and Bottle are shown in Table B.4. For bottle and bowl experiment, we follow the

same experimentation setup as in [45], where the successful grasp is considered if a

stable grasp of the object is obtained, and a successful place is considered when the

bottle or bowl is stably placed upright on the elevated flat slab over the table without
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falling on the table. Reported task success results in are for both Upright Pose and

Arbitrary Pose run over 100 trials each.

Unlike mugs, bowls and bottles exhibit rotational object symmetry, which we

have found cause the trained model to perform poorly in the Grasp task. To

mitigate this, we applied symmetry breaking techniques for the Bowl and Bottle

placement tasks by algorithmically creating symmetry labels, lKi ∈ [−1, 1] for object

K, as continuous real numbers between -1 and 1 inclusive for each point pK
i during

training and testing. The symmetry label for i-th point is concatenated with the

associated point-wise embedding, ψK
i , resulting in an augmented point-wise embedding,

ψ̂K
i :=

[
ψK
i lKi

]⊤
∈ Rd+1, which is then passed into the Cross-Correspondence

Estimators. The input layer of these estimators are modified to account for the

corresponding new input dimension.

The symmetry labels for each object are generated using a easily computed

bisecting plane. Given segmented point cloud demonstration of the gripper and the

bottle/bowl in goal configuration, we apply Principle Component Analysis (PCA) to

the individual object point cloud of the gripper and bottle/bowl.

The symmetry labels for the gripper are defined using the PCA vector with largest

principal component positioned at the gripper point cloud centroid, ŝgripper. This

vector defines the plane that bisects the gripper along its axis of actuation.

For each point pgripper
i in the gripper point cloud, compute the unit vector between

it and gripper centroid µgripper,

v̂gripper
i =

pgripper
i − µgripper

∥pgripper
i − µgripper∥

, (B.14)

and retrieve the symmetry labels as the dot-product between the unit vectors,

lgripperi =
〈
sgripper, v̂

gripper
i

〉
. (B.15)

To compute the symmetry labels for for the bottle/bowl point clouds at training

time, we retrieve the rotational symmetry axis, v̂rot of the bottle/bowl (pointing

upward towards the bottle/bowl opening) using PCA. This vector is the largest

principal component for the bottles and the smallest component for the bowls. We

define a bisecting plane using both this symmetry axis, as well as the normalized
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vector pointing from the centroid of bottle/bowl to the centroid of the gripper, v̂gripper.

For the bottle points, the normal of the bisecting plane is found using the normalize

cross product of these two vectors,

sbottle =
v̂rot × v̂gripper

∥v̂rot × v̂gripper∥
, (B.16)

which separates the bottle into left and right sides with respect to the gripper. For

the bowl points, we orthoganalize the gripper vector, v̂gripper to symmetry vector,

v̂rot,

sbowl =
v̂gripper − ⟨v̂gripper, v̂rot⟩v̂rot

∥v̂gripper − ⟨v̂gripper, v̂rot⟩v̂rot∥
. (B.17)

This results in a bisecting plane that seperates the bowl into a near and far half with

respect to the gripper. Similar the the gripper symmetry labels, the symmetry labels

for the bottle/bowl are computed using normalized vector between each bottle/bowl

point and the bottle/bowl centroid, v̂
{bottle,bowl}
i ,

l
{bottle,bowl}
i =

〈
s{bottle,bowl}, v̂

{bottle,bowl}
i

〉
. (B.18)

At inference, instead of using the gripper location to compute vgripper for the bottle

and bowl labels, we use a random vector perpendicular to vrot. This allows us to use

semantically meaningful symmetry labels at training time, and then arbitrarily break

the symmetry at test time.

See Figure B.4 for visualization of symmetry labels obtained from aforementioned

procedures, where the color spectrum of red represents symmetry label of 1, and

green represents -1.

Figure B.4: Symmetry breaking
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Failure Cases

Some failure cases for TAX-Pose occur when the predicted gripper misses the rim of

the mug by a xy-plane translation error, thus resulting in failure of grasp, as seen in

Figure B.5. A common failure mode for the mug placement subtask is characterized

by an erroneous transform prediction that results in the mug’s handle completely

missing the rack hanger, thus resulting in placement failure, as seen in Figure B.5.

Figure B.5: An illustration of unsuccessful TAX-Pose predictions for mug hanging. In both
subfigures, red points represent the anchor object, blue points represent action object’s
starting pose, and green points represent action object’s predicted pose.

B.6.2 PartNet-Mobility Tasks

Expanded Results Tables

In the main text, we presented aggregated results of the performance of each method

by averaging the quantitative metrics for each sub-task for each object (“In”, “On”,

“Left”, and “Right” in simulation and “In”, “On” and “Left” in real-world), and then

averaged across object classes to arrive at a single metric per method. Here, we

present the per-class breakdown of performance. See Table B.5 for simulated results,

and Table B.6 for real-world results.
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AVG.

ER Et ER Et ER Et ER Et ER Et ER Et ER Et ER Et ER Et

Baselines
E2E BC 42.26 0.73 37.82 0.82 37.15 0.65 44.84 0.68 30.69 1.06 40.38 0.69 45.09 0.76 45.00 0.79 45.65 0.64

E2E DAgger 37.96 0.69 34.15 0.76 36.61 0.66 40.91 0.65 24.87 0.97 35.95 0.70 40.34 0.74 32.86 0.79 39.45 0.53

Ablations
Traj. Flow 35.95 0.67 31.24 0.82 39.21 0.72 34.35 0.66 28.48 0.75 37.14 0.59 29.49 0.70 39.60 0.76 39.69 0.48

Goal Flow 26.64 0.17 25.88 0.15 25.05 0.15 30.62 0.15 27.61 0.10 28.01 0.18 20.96 0.24 29.02 0.23 22.13 0.20

Ours TAX-Pose 6.64 0.16 6.85 0.16 2.05 0.10 3.87 0.12 4.04 0.08 12.71 0.31 6.87 0.37 5.89 0.13 14.93 0.18

TAX-Pose GC 4.94 0.16 6.18 0.16 1.75 0.10 2.94 0.10 3.02 0.06 10.15 0.27 6.93 0.35 3.76 0.11 4.76 0.11

Table B.5: Goal Inference Rotational and Translational Error Results (↓). Rotational errors
(ER) are in degrees (◦) and translational errors (Et) are in meters (m). The lower the better.

In On Left

Goal Flow 0.00 0.10 0.30 0.05 N/A 0.20 0.50 0.65 0.60

TAX-Pose 1.00 1.00 0.85 1.00 N/A 1.00 0.85 0.90 0.70

Table B.6: Combined per-task results for real-world goal placement success rate.

We further provide results per-sub-task in simulation. For each category of anchor

objects, sub-tasks may or may not all be well-defined. For example, the doors of

safes might occlude the action object completely in a demonstration for “Left” and

“Right” tasks due to the handedness of the door; and a table’s height might be too

tall for the camera to see the action object placed during the “Top” task. To avoid

these ill-defined cases, we omit object-category / sub-task pairings which cannot be

consistently defined from training and evaluation. We show visualizations of each

defined task for each object category in Figure B.6. Results for each sub-task can be

found in Tables B.71, B.8, B.9, and B.10 respectively.

1Categories from left to right: microwave, dishwasher, oven, fridge, table, washing machine, safe,
drawer.
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Figure B.6: A visualization of all categories of anchor objects and associated semantic tasks,
with action objects in ground-truth TAX-Poses used in simulation training.

AVG.

ER Et ER Et ER Et ER Et ER Et ER Et ER Et ER Et ER Et

Baselines
E2E BC 42.37 0.69 40.49 0.80 50.79 0.59 48.02 0.61 30.69 1.09 36.59 0.81 48.48 0.42 41.42 0.84 42.49 0.37

E2E DAgger 36.06 0.67 38.57 0.68 43.99 0.63 42.34 0.57 24.87 0.96 30.87 0.90 42.96 0.46 29.79 0.83 35.08 0.33

Ablations
Traj. Flow 34.48 0.65 35.39 0.85 43.42 0.63 35.51 0.60 28.26 0.80 27.67 0.68 25.91 0.44 43.59 0.82 36.05 0.36

Goal Flow 27.49 0.21 25.41 0.08 31.07 0.13 27.05 0.27 27.80 0.11 29.02 0.38 19.22 0.36 31.56 0.18 28.81 0.19

Ours TAX-Pose 11.74 0.23 5.81 0.11 1.82 0.08 5.92 0.11 3.67 0.07 19.54 0.41 7.96 0.63 5.96 0.12 43.27 0.33

Table B.7: Goal Inference Rotational and Translational Error Results (↓) for the “In’’ Goal.
Rotational errors (ER) are in degrees (◦) and translational errors (Et) are in meters (m).
The lower the better.

AVG.

ER Et ER Et ER Et ER Et ER Et ER Et ER Et

Baselines
E2E BC 42.69 0.74 41.94 0.74 36.70 0.52 38.23 0.73 41.69 1.10 48.57 0.75 48.98 0.63

E2E DAgger 37.68 0.70 39.24 0.69 31.63 0.54 41.06 0.68 37.72 1.03 35.94 0.75 40.47 0.51

Ablations
Traj. Flow 35.13 0.76 34.78 0.70 39.14 0.59 31.10 0.69 33.07 0.97 35.61 0.71 37.09 0.87

Goal Flow 22.10 0.20 27.82 0.26 20.43 0.09 34.66 0.10 22.71 0.12 26.48 0.27 0.48 0.32

Ours TAX-Pose 4.45 0.12 4.21 0.12 2.29 0.10 2.73 0.09 5.77 0.10 5.81 0.13 5.89 0.19

Table B.8: Goal Inference Rotational and Translational Error Results (↓) for the “On”
Goal. Rotational errors (ER) are in degrees (◦) and translational errors (Et) are in meters
(m). The lower the better.
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AVG.

ER Et ER Et ER Et ER Et ER Et ER Et ER Et

Baselines
E2E BC 44.87 0.74 30.95 0.89 36.86 0.72 56.86 0.52 34.35 1.03 31.69 0.77 46.86 0.78

E2E DAgger 41.32 0.68 31.40 0.84 38.49 0.73 47.64 0.51 36.47 0.99 27.72 0.73 39.83 0.51

Ablations
Traj. Flow 38.85 0.58 31.87 1.07 39.48 0.44 39.48 0.44 28.71 0.69 41.06 0.73 40.70 0.31

Goal Flow 29.64 0.10 28.51 0.10 26.33 0.08 32.96 0.07 27.42 0.10 22.04 0.09 27.42 0.15

Ours TAX-Pose 6.02 0.17 12.73 0.28 1.59 0.11 2.91 0.12 4.41 0.08 12.12 0.34 6.38 0.12

Table B.9: Goal Inference Rotational and Translational Error Results (↓) for the “Left”
Goal. Rotational errors (ER) are in degrees (◦) and translational errors (Et) are in meters
(m). The lower the better.

AVG.

ER Et ER Et ER Et ER Et ER Et ER Et

Baselines
E2E BC 39.11 0.76 37.89 0.86 24.26 0.77 36.27 0.88 52.86 0.48 44.26 0.78

E2E DAgger 36.80 0.73 27.40 0.84 32.31 0.74 32.61 0.82 49.27 0.46 42.40 0.78

Ablations
Traj. Flow 35.33 0.71 22.93 0.66 34.78 1.22 31.29 0.92 42.71 0.37 44.93 0.36

Goal Flow 27.34 0.16 21.79 0.15 22.37 0.28 27.79 0.15 32.96 0.07 31.79 0.15

Ours TAX-Pose 4.33 0.13 4.64 0.14 2.48 0.11 3.91 0.15 6.47 0.17 4.17 0.08

Table B.10: Goal Inference Rotational and Translational Error Results (↓) for the “Right”
Goal. Rotational errors (ER) are in degrees (◦) and translational errors (Et) are in meters
(m). The lower the better.

Goal-Conditioned Variant

We train our goal-conditioned variant TAX-Pose GC (Appendix B.5.3) to predict

the correct cross-pose across sub-tasks, incorporating a one-hot encoding of each

sub-task (i.e. ‘top’, ‘in’, ‘left’, ’right‘) so the model can infer the desired semantic goal

location. Importantly, as with the task-specific model (TAX-Pose), the TAX-Pose

GC model is trained across all PartNet-Mobility object categories. We report

the performance of the variants in Table B.5.
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Failure Cases

Some failure cases for TAX-Pose occur when the predicted cross-pose does not respect

the physical constraints in the scene. For example, as seen in Fig. B.7. TAX-Pose

would fail when the prediction violates the physical constraints of the objects, which

in this case the action object collides with the anchor object. In the real world, this

would yield the robot unable to plan a correct path.

Figure B.7: An illustration of unsuccessful real-world TAX-Pose predictions. In both
subfigures, red points represent the anchor object, blue points represent action object’s
starting pose, and green points represent action object’s predicted pose.

B.7 Task Details

B.7.1 NDF Task Details

In this section, we describe the Mug Hanging task of the NDF Tasks and experiments

in detail. The Mug Hanging task is consisted of two sub tasks: grasp and place. A

grasp success is achieved when the mug is grasped stably by the gripper, while a place

success is achieved when the mug is hung stably on the hanger of the rack. Overall

mug hanging success is achieved when the predicted transforms enable both grasp

and place success for the same trial. See Figure B.8 for a detailed breakdown of the

mug hanging task in stages.
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Figure B.8: Visualization of Mug Hanging Task (Upright Pose). Mug hanging task is
consisted of two stages, given a mug that is randomly initialized on the table, the model
first predicts a SE(3) transform from gripper end effector to the mug rim Tg→m, then
grasp it by the rim. Next, the model predicts another SE(3) transform from the mug to
the rack Tm→r such that the mug handle gets hanged on the the mug rack.

Baseline Description

In simulation, we compare our method to the results described in [45].

• Dense Object Nets (DON) [16]: Using manually labeled semantic keypoints

on the demonstration clouds, DON is used to compute sparse correspondences

with the test objects. These correspondences are converted to a pose using

SVD. A full description of usage of DON for the mug hanging task can be found

in [45].

• Neural Descriptor Field (NDF) [45]: Using the learned descriptor field

for the mug, the positions of a constellation of task specific query points are

optimized to best match the demonstration using gradient descent.

Training Data

To be directly comparable with the baselines we compared to, we use the exact same

sets of demonstration data used to train the network in NDF [45], where the data are

generated via teleportation in PyBullet, collected on 10 mug instances with random

pose initialization.

Training and Inference

Using the pretrained embedding network for mug and gripper, we train a grasping

model for the grasping task to predict a transformation Tg→m in gripper’s frame from

gripper to mug to complete the grasp stage of the task. Similarly, using the pretrained
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embedding network for rack and mug, we train a placement model for the placing

task to predict a transformation Tm→r in mug’s frame from mug to rack to complete

the place stage of the task. Both models are trained with the same combined loss

Lnet as described in the main paper. During inference, we simply use grasping model

to predict the Tg→m at test time, and placement model to predict Tm→r at test time.

Motion Planning

After the model predicts a transformation Tg→m and Tm→r, using the known gripper’s

world frame pose, we calculate the desired gripper end effector pose at grasping and

placement, and pass the end effector to IKFast to get the desired joint positions

of Franka at grasping and placement. Next we pass the desired joint positions at

gripper’s initial pose, and desired grasping joint positions to OpenRAVE motion

planning library to solve for trajectory from gripper’s initial pose to grasp pose, and

then grasp pose to placement pose for the gripper’s end effector.

Real-World Experiments

We pre-train the DGCNN embedding network with rotation-equivariant loss on

ShapeNet mugs’ simulated point clouds in simulation. Using the pre-trained embed-

ding, we then train the full TAX-Pose model with the 10 collected real-world point

clouds.

B.7.2 PartNet-Mobility Object Placement Task Details

In this section, we describe the PartNet-Mobility Object Placement experiments in

detail. We select a set of household furniture objects from the PartNet-Mobility

dataset as the anchor objects, and a set of small rigid objects released with the Ravens

simulation environment as the action objects. For each anchor object, we define a set

of semantic goal positions (i.e. ‘top’, ‘left’, ‘right’, ‘in’), where action objects should

be placed relative to each anchor. Each semantic goal position defines a unique task

in our cross-pose prediction framework.
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Dataset Preparation

Simulation Setup. We leverage the PartNet-Mobility dataset [53] to find common

household objects as the anchor object for TAX-Pose prediction. The selected subset

of the dataset contains 8 categories of objects. We split the objects into 54 seen and

14 unseen instances. During training, for a specific task of each of the seen objects, we

generate an action-anchor objects pair by randomly sampling transformations from

SE(3) as cross-poses. The action object is chosen from the Ravens simulator’s rigid

body objects dataset [59]. We define a subset of four tasks (“In”, “On”, “Left” and

“Right”) for each selected anchor object. Thus, there exists a ground-truth cross-pose

(defined by human manually) associated with each defined specific task. We then use

the ground-truth TAX-Poses to supervise each task’s TAX-Pose prediction model.

For each observation action-anchor objects pair, we sample 100 times using the

aforementioned procedure for the training and testing datasets.

Real-World Setup. In real-world, we select a set of anchor objects: Drawer,

Fridge, and Oven and a set of action objects: Block and Bowl. We test 3 (“In”,

“On”, and “Left”) TAX-Pose models in real-world without retraining or finetuning.

The point here is to show the method capability of generalizing to unseen real-world

objects.

Metrics

Simulation Metrics. In simulation, with access to the object’s ground-truth pose,

we are able to quantitatively calculate translational and rotation error of the TAX-

Pose prediction models. Thus, we report the following metrics on a held-out set of

anchor objects in simulation.

Translational Error

The L2 distance between the inferred cross-pose translation (tpredAB ) and the ground-

truth pose translation (tGT
AB).

Et = ||tpredAB − tGT
AB||2

Rotational Error

The geodesic SO(3) distance [17, 23] between the predicted cross-pose rotation
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(Rpred
AB ) and the ground-truth rotation (RGT

AB).

ER =
1

2
arccos

(
tr(Rpred⊤

AB RGT
AB)− 1

2

)

Real-World Metrics. In real-world, due to the difficulty of defining ground-

truth TAX-Pose, we instead manually, qualitatively define goal “regions” for each of

the anchor-action pairs. The goal-region should have the following properties:

• The predicted TAX-Pose of the action object should appear visually correct.

For example, if the specified task is “In”, then the action object should be

indeed contained within the anchor object after being transformed by predicted

TAX-Pose.

• The predicted TAX-Pose of the action object should not violate physical con-

straints of the workspace and of the relation between the action and anchor

objects. Specifically, the action object should not interfere with/collide with the

anchor object after being transformed by the predicted TAX-Pose. See Figure

B.7 for an illustration of TAX-Pose predictions that fail to meet this criterion.

Motion Planning

In both simulated and real-world experiments, we use off-the-shelf motion-planning

tools to find a path between the starting pose and goal pose of the action object.

Simulation. To actuate the action object from its starting pose T0 to its goal

pose transformed by the predicted TAX-Pose T̂ABT0, we plan a path free of collision.

Learning-based methods such as [11] deal with collision checking with point clouds by

training a collision classifier. A more data-efficient method is by leveraging computer

graphics techniques, transforming the point clouds into marching cubes [29], which

can then be used to efficiently reconstruct meshes. Once the triangular meshes are

reconstructed, we can deploy off-the-shelf collision checking methods such as FCL

[38] to detect collisions in the planned path. Thus, in our case, we use position

control to plan a trajectory of the action object A to move it from its starting pose

to the predicted goal pose. We use OMPL [46] as the motion planning tool and the

constraint function passed into the motion planner is from the output of FCL after

converting the point clouds to meshes via marching cubes.
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Figure B.9: Real-world experiments illustration. Left: work-space setup for physical
experiments. Center: Octomap visualization of the perceived anchor object.

Real World. In real-world experiments, we need to resolve several practical

issues to make TAX-Pose prediction model viable. First, we do not have access to

a mask that labels action and anchor objects. Thus, we manually define a mask

by using a threshold value of y-coordinate to automatically detect discontinuity in

y-coordinates, representing the gap of spacing between action and anchor objects

upon placement. Next, grasping action objects is a non-trivial task. Since, we are

only using 2 action objects (a cube and a bowl), we manually define a grasping

primitive for each action object. This is done by hand-picking an offset from the

centroid of the action object before grasping, and an approach direction after the

robot reaches the pre-grasp pose to make contacts with the object of interest. The

offsets are chosen via kinesthetic teaching on the robot when the action object is

under identity rotation (canonical pose). Finally, we need to make an estimation

of the action’s starting pose for motion planning. This is done by first statistically

cleaning the point cloud [15] of the action object, and then calculating the centroid

of the action object point cloud as the starting position. For starting rotation, we

make sure the range of the rotation is not too large for the pre-defined grasping

primitive to handle. Another implementation choice here is to use ICP [4] calculate

a transformation between the current point cloud to a pre-scanned point cloud in

canonical (identity) pose. We use the estimated starting pose to guide the pre-defined

grasp primitive. Once a successful grasp is made, the robot end-effector is rigidly

attached to the action object, and we can then use the same predicted TAX-Pose

to calculate the end pose of the robot end effector, and thus feed the two poses into

MoveIt! to get a full trajectory in joint space. Note here that the collision function in
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motion planning is comprised of two parts: workspace and anchor object. That is, we

first reconstruct the workspace using boxes to avoid collision with the table top and

camera mount, and we then reconstruct the anchor object in RViz using Octomap [21]

using the cleaned anchor object point cloud. In this way, the robot is able to avoid

collision with the anchor object as well. See Figure B.9 for the workspace.

Baselines Description

In simulation, we compare our method to a variety of baseline methods.

• E2E Behavioral Cloning: Generate motion-planned trajectories using OMPL

that take the action object from start to goal. These serve as “expert” trajecto-

ries for Behavioral Cloning (BC). Our policy is represented as a PointNet++ [43]

network that, at each time step, takes as input the point cloud observation

of the action and anchor objects and outputs an incremental 6-DOF trans-

formation that imitates the expert trajectory. The 6-DoF transformation is

expressed using Euclidean xyz translation and rotation quaternion. The final

achieved pose of the action object at the terminal state is used for computing

the evaluation metrics.

• E2E DAgger: Using the same BC dataset and the same PointNet++ [43]

architecture as above, we train a policy that outputs the same transformation

representation as in BC using DAgger [44]. The final achieved pose of the action

object at the terminal state is used for computing the evaluation metrics.

• Trajectory Flow: Using the same BC dataset with DAgger, we train a dense

policy using PointNet++ [43] to predict a dense per-point 3D flow vector at

each time step instead of a single 6-DOF transformation. Given this dense

per-point flow, we add the per-point flow to each point of the current time-step’s

point cloud, and we are able to extract a rigid transformation between the

current point cloud and the point cloud transformed by adding per-point flow

vectors using SVD, yielding the next pose. The final achieved pose of the action

object at the terminal state is used for computing the evaluation metrics.

• Goal Flow: Instead of training a multi-step policy to reach the goal, we train

a PointNet++ [43] network to output a single dense flow prediction which

assigns a per-point 3D flow vector that points from each action object point
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from its starting pose directly to its corresponding goal location. Given this

dense per-point flow, we add the per-point flow to each point of the start point

cloud, and we are able to extract a rigid transformation between the start point

cloud and the point cloud transformed by adding per-point flow vectors using

SVD, yielding goal pose. We pass the start and goal pose into a motion planner

(OMPL) and execute the planned trajectory. The final achieved pose of the

action object at the terminal state is used for computing the evaluation metrics.
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