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Abstract

Effective exploration and coverage under resource limitations is crucial
for many applications such as planetary exploration and search and
rescue. Optimizing the use of limited resources while effectively exploring
an area is vital in scenarios where sensing is expensive, exhaustive, or
has adverse effects. In this thesis we present a novel, sparse sensing
motion planning algorithm for autonomous mobile robots in coverage
problems with limited sensing resources. We approach this problem
using ergodic search processes, which produce trajectories that drive
robots to spend time in areas in proportion to the expected amount of
information in those regions. We recast the ergodic search problem as
a mixed-integer optimization problem in order to determine when and
where a sensor measurement should be taken while optimizing the agent’s
trajectory for coverage. We further employ a continuous relaxation of
the presented sparse ergodic optimization problem to reduce computation
time. We show that our approach performs comparably to dense sampling
methods in terms of coverage performance, by gathering information-rich
measurements while adhering to sensing resource constraints. We extend
our formulation to problems involving multiple agents, and experiments
demonstrate the capability of our approach to automatically distribute
sensing resources across a team. Additionally, experiments demonstrate
the applicability of our approach to both synthetic and real-world data.
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Chapter 1

Introduction

1.1 Motivation

Robotic systems frequently need to explore and search for information under resource

constraints. For example, data collection and computation may be limited by on-

board resources. Optimizing the use of sensing resources in particular is important in

applications where sensing is expensive, exhaustive, or can have adverse effects.

Figure 1.1: Motivational Applications: A rover analog conducting a science
mission field test in Cuprite, NV (left), a theorized use case of drones in agricultural
applications [1] (center), and a concept figure of in-orbit satellite inspection (right).

Some applications where sensing resources could be limited include scientific

planetary exploration, agricultural robotics, and satellite inspection (depicted in

Fig 1.1). In planetary exploration for science missions using a rover, the rover may

need to stop in order to take a high-quality sensing measurement, which could in turn
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1. Introduction

shorten the total operating time available during a mission [24]. In some agriculture

or forestry applications the total number of available sensing measurements could

be limited [16]. For example, if the goal is to take measurements to calculate the

carbon capture potential of a vegetated region by placing sensors, the number of

available sensors could be limited [26]. For in-orbit satellite inspection, we can gain

more information about regions of the satellite through interactive sensing modalities

(e.g. probing). However, each interaction with the satellite being inspected risks

damaging the satellite, or knocking the satellite out of orbit.

In all of these application areas, the overarching goal is still to cover the target

region, though the available sensing resources are limited. Therefore, there is a need

for approaches that can effectively cover a given region, while deciding when to use

limited resources.

1.2 Challenges

This work considers the scenario where a robot must search for information using

sensors that incur a non-trivial cost to activate. We want to develop an approach

that will drive robotic agents to intelligently and economically use limited resources,

specifically limited sensing resources.

Figure 1.2: Example of Motion Model Dependency: An information distribution
where moving between regions of high expected information (depicted in yellow)
requires driving through regions of low expected information (depicted in purple) for
a curved-constrained motion model.

In order to do this, we need to consider the dependency of resource use on both
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1. Introduction

the information that has already been acquired, and also the mobility capabilities of

the robot. For example, if there are multiple regions of high expected information

(or areas that we want to take measurements in) separated by a region of low

expected information (or an area that is not very important to take measurements

in), depending on the robot’s mobility constraints, it may still need to traverse that

regions of low information to move between regions of high information (example

shown in Fig 1.2).

1.3 Contributions

In
fo

rm
a�

o
n

Time Steps

Figure 1.3: Proposed Approach for Sparse Ergodic Optimization: Our ap-
proach automates how a robot explores an area and what informative measurements to
collect in a joint optimization problem. Illustrated above is an example sparse sensing
solution for covering a one-dimensional information distribution (gray distribution),
where peaks correspond to areas of high expected information, and the green colored
bar represents when the robot takes a measurement.

In this work, we hypothesize that explicitly planning for when and where to

use limited sensing resources will improve the coverage performance that is possible

with fewer sensing measurements. This is based on the hypothesis that there is a

required set of informative measurements needed to fully characterize a given coverage

problem, and this is different for different coverage problems. In order to account

for dependency of resource use on the mobility capabilities of the agents, we propose

jointly optimizing the robot’s trajectory and when and where the robot should take a

sensing measurement. That is, we will consider the robot’s trajectory and sensing
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1. Introduction

or sampling locations as a single optimization problem. We formulate this joint

optimization approach as an extension of ergodic trajectory optimization.

We pose the problem of acquiring a set of required sensor measurements as a

sparse ergodic optimization problem, where the decision to take a measurement

is optimized as a vector of decision variables, and show that placing an L1 norm

can promote sparsity in this vector. Using a continuous relaxation of the resulting

mixed-integer problem, we show that our formulation performs comparably to dense

sampling methods, collecting information-rich measurements while adhering to limited

sensing measurements. Further comparisons show comparable performance with the

continuous relaxation of the mixed-integer program while reducing computational

resources.

This formulation extends to multi-agent path planning problems. For multi-

agent teams, our approach automatically distributes sensing resources amongst the

team. Our experiments also demonstrate that our approach works on both synthetic

information maps, and on real-world data.
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Chapter 2

Background

2.1 Coverage Planning Methods

Current coverage planning methods generally fall into one of three main categories:

geometric, gradient-based, and trajectory optimization-based approaches. Geometric

methods, e.g., lawnmower patterns, can be good search strategies in order to uniformly

cover a domain in which there is near-uniform probability of finding a target [3, 12].

Since these approaches exhaustively cover the search domain, they are also the logical

choice in cases where there is no a priori information about the targets’ locations.

An information map, or information distribution, is defined to be a probability

distribution representing the likelihood of a target being found at each location in

the domain. When such a priori information is available (and, usually, non-uniform),

more advanced search processes can be created that leverage this information map in

order to improve coverage according to some metric, such as the amount of information

gained.

For example, in gradient-based, or “information surfing”, methods [8, 17, 28],

agents guide their movement in the direction of the derivative of the information map

around their positions to greedily maximize the short-term information gain. That

is, agents are always driven in the direction of the greatest information gain, which

naturally leads them to areas where the likelihood of finding a target is maximized.

Information surfing can be implemented in a fully decentralized manner, since it does

not require tight coordination between agents, and potential fields can be introduced
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2. Background

to help distribute agents to different areas of the domain. However, gradient-based

approaches generally do not rely on the uncertainty associated with the information

distribution, which can lead to areas left unexplored, as this uncertainty can help

differentiate areas of low-information that have not been explored from areas with

no information to be gained. Gradient-based approaches are also very sensitive to

noise in the information map, as the gradient cannot be estimated accurately in these

situations, and suffer from greedily over-exploiting local information maxima.

Optimization-based approaches look at search as an information gathering max-

imization problem, which is then solved by planning (usually joint) paths for the

agents. Several recent works in coverage methods [6, 7, 20, 23] rely on sampling-based

path planning, where a large number of paths are sampled and the best path is

chosen based on a cost metric. Optimization-based approaches can combine both

the predicted information distribution as well as its associated uncertainty into the

cost function that drives the optimization. However, these approaches generally do

not scale well for large multi-agent systems since they remain centralized. Even for

sampling-based approaches, the number of paths that need to be sampled to find

near-optimal search paths grows exponentially with the number of agents, although

growing the number of samples linearly with the team size seems to experimentally

provide good-quality search paths [6, 7].

2.2 Limited Sensing Planning Methods

Many real-world robotic applications are plagued by resource limitations. Sparse

sensing techniques are useful in these scenarios. Most prior work in applications

involving sparse sensing focus on using sparse sensor measurements (and therefore

sparse data) to accomplish tasks like localization and SLAM [19], depth reconstruc-

tion [18] and wall-following [29]. These works mostly explore methods to better

use limited data that has already been acquired, or that is actively being acquired.

However, in all of these approaches, the robot still has to acquire the measurements,

and post-optimizing for sparse data points does not help reduce costs for limited

onboard resources. While intelligently using limited data does help improve the

performance of resource-limited robotic systems, further improvements can be made

by deciding where to take these limited measurements.
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2. Background

Another perspective on sampling location planning is next best view planning

methods. These approaches typically focus on finding a set of good ”viewpoints”,

that is sensing or sampling locations for a problem, often to accomplish tasks like

exploration [9] and modeling [10]. Next best view techniques typically optimize for

taking informative measurements, and so, they accomplish the goal of intelligently

acquiring data or measurements. However, many of these methods do not usually

explicitly consider agent dynamics.

2.3 Ergodic Search

Most information-based search and coverage methods view the information gathering

problem through one of two lenses: exploration or exploitation. Through the ex-

ploratory lens, the information acquisition problem is framed as the wide space search

for diffused information, for applications like localization or coverage [4, 22]. On

the other hand, through the exploitative lens, the information gathering problem is

framed as the direct search for highly structured information peaks, such as in object

search [4, 5]. Ergodic search is able to balance both exploration and exploitation

goals by accounting for both diffused information densities and highly focused points

of information [7, 20, 21]. By doing this, ergodic control trajectories are able to

conduct both broad-stroke coverage for diffused information densities and localized

search for more focused high information points, thereby balancing exploration and

exploitation. Specifically, an ergodic path will drive a robot to spend more time in

regions of higher expected information in an a priori information map, and less time

in regions of low information.

Ergodic coverage [20] produces trajectories for agents such that they spend time

in areas of the domain proportional to the expected amount of information present

in that area. In order to control agents to accomplish this behavior, we pose an

optimization problem that minimizes the distance between the time-average statistics

of the agent Eq 2.1 and the underlying information map.

Ct(x, γt) =
1

t

t−1∑
τ=0

δ(x− γi(τ)), (2.1)

where γ is the agent’s trajectory, defined as γ : (0, t] → X , t is the discrete time

7



2. Background

horizon, and δ is the Dirac delta function, with X ⊂ IRd in the d-dimensional search

domain. The spatial time-average statistics of an agent’s trajectory quantifies the

fraction of time spent at a position x ∈ X .

The expected information distribution, or information map, over the domain

to be explored and searched is determined by a target distribution which defines

the likelihood of generating informative measurements at any given location in the

search domain. Formally, the agent’s time-averaged trajectory statistics are optimized

against this expected information distribution over the whole domain, by minimizing

the distance between the Fourier spectral decomposition of each distribution. This is

obtained by minimizing the ergodic metric Φ(·), expressed as the weighted sum of

the difference between the spectral coefficients of these two distributions [20]:

Φ(γ(t)) =
m∑
k=0

αk |ck(γt)− ξk|2 , (2.2)

where ck and ξk are the Fourier coefficients of the time-average statistics of an agent’s

trajectory γ(t) and the desired spatial distribution respectively, and αk are the weights

of each coefficient difference. In practice, αk =
√

(1 + ∥k∥2)−(d+1) is usually defined

to place higher weights on lower frequency components, which correspond to larger

spatial-scale variations in the information distribution.

The goal of ergodic coverage is to generate optimal controls u∗(t) for an agent,

whose dynamics are described by a function f : Q× U → T Q, such that

u∗(t) = argminuΦ(γ(t)),

subject to q̇ = f(q(t),u(t)), ∥u(t)∥ ≤ umax

(2.3)

where q ∈ Q is the state and u ∈ U denotes the set of controls. Eq.2.3 is solved

directly for the optimal control input at each time-step, by trajectory optimization to

plan feed-forward trajectories over a specified time horizon [21], or by using sampling-

based motion planners [15], where it is straightforward to pose additional constraints

such as obstacle avoidance. Note that in this optimization, each point x(t) in the

robot’s trajectory is considered a sample point during the exploration of the search

domain, which can be detrimental in scenarios where the robot’s trajectory traverses

over large regions of low expected information. In the following section, we describe

our approach to selecting the sampling decision times as a part of the optimization.
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Chapter 3

Sparse Ergodic Optimization

3.1 Sparse Ergodic Optimization Problem

Formulation

In many search and coverage problems, a model of the region can be comprehended

and optimized using only a few data points, or informative sensor measurements.

However, in many trajectory optimization approaches the locations at which sensing

measurements are taken are temporally uniform. In ergodic optimization, this means

that each measurement along the trajectory is treated as being equally important,

and contributes equally to the ergodic metric (Eq 2.2). Due to both the dynamic con-

straints of the robots being used for coverage, as well as the non-uniform distribution

of information in the region being covered, this can lead to extraneous measurements

that do not contribute to modeling the information prior.

For example, in a scenario where there are few areas of high information, separated

by large areas of low expected information, uniform sensing measurements would

result in many measurements that provide low information gain (see Fig. 3.1). Here,

coverage performance, in terms of the ergodic metric, would be improved by mostly

taking sensor measurements near the areas of higher information.

Ergodic optimization can be reformulated in order to find this set of optimal

measurements for a given search scenario. We optimize for the set of optimal sensor

9



3. Sparse Ergodic Optimization

h

Figure 3.1: Sparse Ergodic Trajectory Example: Trajectories are generated with
a decision variable for when to take a sensor measurement. This approach results
in trajectories which provide maximal information gathering with minimal sensing
resources. Points in red indicate sampling locations, while points in white indicate
parts of the trajectory where no measurements are taken.

measurements by posing the following ergodic optimization,

u∗(t), λ∗(t) = argminu,λΦsparse(γ(t)),

subject to q̇ = f(q(t),u(t)), ∥u(t)∥ ≤ umax

(3.1)

where q ∈ Q is the state, u ∈ U denotes the set of controls, and λ(t) ∈ {0, 1}. λ(t)
represents the decision variable for choosing whether to take a sensor measurement

or not at a given location in the search domain. We promote sparsity in the sample

measurements by regularizing λ with an L1 optimization [25].

In order to jointly optimize the agent’s trajectory and sensing measurement

location, we augment the ergodic metric in Eq. 2.2 in the following manner

Φsparse(γ(t)) =
m∑
k=0

αk |ck(γ(t), λ(t))− ξk|2 +
∑

|λk|, (3.2)

where ck and ξk are the Fourier coefficients of the time-average statistics of the set of

10



3. Sparse Ergodic Optimization

agent’s trajectories γ(t) and the desired spatial distribution of agents respectively,

and αk are the weights of each coefficient difference.

The spatial time-average statistics of the agent’s trajectory (from Eq. 2.1) are

also modified to be,

C ′t(x, γ(t)) =
1∑
t λ(t)

t∑
τ=0

λ(t)δ(x− γ(τ)), (3.3)

where λ(t) ∈ {0, 1}.

3.2 Sparse Ergodic Optimization Formulation for

Multiple Agents

Figure 3.2: Multi-Agent Sparse Ergodic Trajectory Example: Trajectories
for a multi-agent team are generated with a decision variable for when to take a
sensor measurement. This approach automatically updates trajectories which provide
maximal information gathering with minimal sensing resources. Darker points indicate
sampling locations, while lighter points indicate parts of the trajectories where no
measurements are taken.
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3. Sparse Ergodic Optimization

For a multi-agent team covering a given information prior, the limited number of

measurements required to fully cover the region can be distributed among the different

agents. The sparse ergodic optimization formulation described in Section 3.1 can be

extended to multi-agent settings. For a multi-agent coverage problem, our approach

naturally and automatically distributes limited sensor measurements across the team

of robotic agents. A sample result is shown in Fig 3.2.

For N agents, we define a set Λ of N decision variable vectors λi, i ∈ [0, N)

where λi(t) represents the decision variable for choosing whether to take a sensor

measurement or not for agent i, at the agent’s location in the search domain at

time t. We promote sparsity in sensor measurements by regularizing Λ with an L1

optimization.

For N agents, the modified joint spatial time-average statistics of the set of agent

trajectories {γi}Ni=1 are defined as

C ′t(x, γ(t)) =
1

Nt
∑N

i=1

∑
t λi(t)

t∑
0

λi(t)δ(x− γi(τ)), (3.4)

where λi(t) ∈ {0, 1} for all integers i ∈ [0, N).

The joint optimization of the set of N agent trajectories and sensing decision

variables is driven by the multi-agent formulation of the augmented ergodic metric,

defined as,

Φsparse(Γ(t)) =
m∑
k=0

αk |ck(Γ(t),Λ(t))− ξk|2 +
∑

|Λk|, (3.5)

where ck and ξk are the Fourier coefficients of the time-average statistics of the set of

agents’ trajectories Γ(t) and the desired spatial distribution of agents respectively,

and αk are the weights of each coefficient difference.

The optimal controls and set of optimal sensor measurements for each agent are

found using the ergodic optimization problem,

u∗(t), λ∗(t) = argminu,λ Φsparse(γ(t)),

subject to q̇ = f(q(t),u(t)), ∥u(t)∥ ≤ umax

(3.6)

where q ∈ Q is the state, u ∈ U denotes the set of controls, and Λ(t) ∈ {0, 1}.
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3. Sparse Ergodic Optimization

3.3 Mixed-Integer Program Relaxation

Thus far, λ(t) is defined to be an integer (i.e. λ(t) ∈ {0, 1}), resulting in Eq 3.6 being

a mixed integer programming problem. However, such mixed integer programming

problems are difficult to solve, due to a lack of gradient information from the integer

variables [27], and due to requiring direct search methods that do not scale with longer

time horizons. Additionally, mixed integer programming problems are expensive to

solve because the integer variables introduce a large number of additional constraints

on the optimization problem. As a result, the computation and memory requirements

for solving the optimization problem can increase exponentially with increase in the

number of integer variables.

(c)

(a)

λ
P

ro
je

c�
o

n
 o

f 
λ

Points along trajectory

Points along trajectory

(b)

(d)

Figure 3.3: Mixed-Integer Continuous Relaxation for Sparse Ergodic Opti-
mization: Illustrated is the process with which we jointly optimize for trajectories
and when to sample. The decision variable λ is relaxed to be continuous [0, 1] where
solutions are projected into the integer 0, 1 space. As input, our approach takes
information prior distributions which guide the planning and sensing. Output tra-
jectory solutions (shown on the right) show concentrated samples over areas of high
information with minimal use of sensor resources.

For these reasons, we employ a relaxation of the problem Eq 3.6 by defining λ(t)

to be a bounded continuous variable λ(t) ∈ [0, 1] and optimize over the new domain.

13



3. Sparse Ergodic Optimization

After optimization, we project λ from the continuous domain to the nearest integer

value, while adhering to the sensing budget. This allows us to continuously optimize

Eq 3.6, and then map the resultant continuous values of λ(t) to discrete values {0, 1}.
The procedure for optimizing the sparse ergodic problem Eq 3.6 is depicted in Fig 3.3.

For the multi-agent case, we employ a relaxation of the problem described by

Eq 3.6 by defining each λi(t) to be a bounded continuous variable λi(t) ∈ [0, 1] for all

integers i ∈ [0, N) and optimize over the new domain. After optimization, we project

the λi for each agent i for all integers i ∈ [0, N) from the continuous domain to the

nearest integer value, while adhering to the sensing budget. We take into account

all of the agent trajectories when mapping from the continuous domain to discrete

integers in order to distribute sensing measurements across all of the agents.

When we investigate the numerical values of the decision variables λ(t) calculated

in sparse ergodic optimization Eq. 3.6, we see that there are peaks formed that

correspond to peaks in information in the a priori information distribution (Fig 3.3).

When these continuous numerical values are mapped back to λ(t) ∈ {0, 1}, this results
in λ(t) = 1 being more likely in areas of higher information, and λ(t) = 0 being more

likely in areas of lower information. This shows that the sparse ergodic optimization

drives the likelihood of taking a sensor measurement in an area of higher expected

information to be higher, which follows intuition. Additionally, we also see some

peaks in regions of lower information, which typically correspond with areas between

relatively closely places areas of high information, or with regions of low information

where no sensor measurements have been taken for a considerable amount of time.

14



Chapter 4

Experiment Details

4.1 Data

We evaluate our sparse ergodic optimization formulation on two different kinds of

data: synthetic Gaussian information distributions (representing information priors

in general search and coverage tasks), and information maps from real data collected

during field tests with a planetary rover analog in Cuprite, NV. This section details

how the information maps are generated, and how coverage performance on each

information map is evaluated.

4.1.1 Synthetic Data

The information maps used for our synthetic data experiments are generated by

placing Gaussian peaks at different locations to represent the uncertainty of the

corresponding region, with higher values corresponding to higher uncertainty of

information. We generate both handcrafted and random Gaussian information maps.

We evaluate the coverage of these maps using the ergodic metric described in Section

2.3. A lower ergodic metric signals better coverage of the map. Some example maps

are shown in Fig 4.1.
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4. Experiment Details

Figure 4.1: Synthetic Data Information Maps: Example synthetic Gaussian
information maps.

4.1.2 Real-World Data

Figure 4.2: Real-World Data Information Maps: Example information maps of
the entropy map (left), shade map (middle), and slope map (right).

Entropy Map

This information prior in our planetary rover analog experiments is related to the

objective of reducing uncertainty in scientific information. We use the entropy map

formulation proposed by Candela et al., where “entropy” of each point in the map

is related to the variance of a Gaussian process which predicts measurements at

each point [11]. We use low-resolution Advanced Spaceborne Thermal Emission and

Reflection Radiometer (ASTER) satellite data as the prior and use high-resolution

Airborne Visible Near Infrared Spectrometer - New Generation (AVIRIS-NG) data
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4. Experiment Details

as a proxy for in-situ samples [2, 13, 14]. In order to focus the ergodic search on

areas of high entropy, we threshold the entropy maps (setting areas of high entropy

above 75% of the maximum value to 1, and areas of low entropy below 75% of the

maximum value to 0). We find experimentally that thresholding the entropy maps

results in better coverage of the region when using an ergodic method. An example of

the entropy map is shown in Fig 4.2. We evaluate the coverage of the entropy model

using the ergodic metric, where a lower ergodic value indicates better coverage.

Shade Map

Another objective in our planetary rover analog experiments is to explore shadowed

regions. Using a digital elevation model (DEM) of the field site, we use raycasting

based on the angle of the sun to generate a map of shaded regions. Shadows have

a high value while sunlit regions have a low value, which encourages the rover to

stay in shaded areas. An example of the shade map is shown in Fig 4.2. To evaluate

coverage performance on the shade maps, we again use the ergodic metric.

Slope Map

Another information map that can be modeled in our planetary rover analog experi-

ments is the slope map of the region. The slope of the terrain in our test site acts as

a proxy for risk, so building an accurate model of the slope in a region is important.

To generate the prior for the risk map, we use a Sobel image filter on a DEM of

the region. We opt to use slope as an estimate of risk for simplicity and because of

the limited information available for slip characterization [11]. An example of the

slope map is shown in Fig 4.2. To evaluate coverage performance, we use the ergodic

metric.

4.2 Agent Sensing and Motion Models

In our set of systematic experiments, the dynamics of the agent considered are defined

as the constrained discrete time dynamical system

x(t+ 1) = f(x, u) = x(t) + tanh(u) (4.1)
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4. Experiment Details

where x(t) ∈ R2 and u ∈ R2 is constrained by the tanh function bounded ∈ [0, 1].

The sensor footprint of the agent is modeled as a Gaussian distribution centered

at the agent’s position, whose variance prescribes a circular observation range ρ > 0.

The information maps are built using information distributions that are distributed

within the continuous search space X ∈ [0, L]2 ⊂ R2, which is defined as

p(x) =
3∑

i=1

ηiexp(||x− ci||2∑−1
i
) (4.2)

where p(x) : X → R+, and ηi, ci,
∑

i are the normalizing factor, the Gaussian center,

and the Gaussian variance respectively.

4.3 Baseline Methods

We compare our sparse ergodic optimization formulation to two different baseline

approaches. The first baseline method is standard ergodic optimization as expressed

in Eq. 2.2, where sensor measurements are uniformly distributed along the optimized

trajectory. An example trajectory generated from this baseline approach is shown

in Fig 4.3 The second baseline is a probabilistic heuristic with a two step process:

first we optimize an ergodic trajectory, then we sample measurement locations from

the distribution of information under the optimized trajectory. Specifically, sensor

measurements are taken at parts of the trajectory that pass over regions of high

expected information. This baseline method decouples trajectory or path optimization

and determining when and where to take sensor measurements. An example trajectory

generated from this baseline approach is shown in Fig 4.4

For the multi-agent experiments, we use the same two baseline methods. In this

case, the ergodic trajectories of allN agents are jointly optimized. For the first baseline

method, sensing measurements are uniformly distributed both between agents, and

then also along each agent’s optimized trajectory. For the second baseline method,

sensing measurement locations are sampled from the distribution of information under

all of the agents’ trajectories.
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4. Experiment Details

Figure 4.3: Uniform Sampling Baseline Approach: Example trajectory generated
by the uniform sampling approach, where an ergodic trajectory is found, and then
10 sampling locations are uniformly distributed along the trajectory. Points in red
indicate sampling locations, while points in white indicate parts of the trajectory
where no measurements are taken.

Figure 4.4: Probabilistic Heuristic Baseline Approach: Example trajectory
generated by the probabilistic heuristic approach, where an ergodic trajectory is
found, and then 10 sampling locations are determined from the underlying information
distribution. Points in red indicate sampling locations, while points in white indicate
parts of the trajectory where no measurements are taken.

4.4 Experiment Setup Details

We investigate the performance of the sparse ergodic optimization described in

Section 3.1 in terms of coverage performance, using ergodicity as the metric.
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4. Experiment Details

The performance statistics for each method and sensing budget are averaged

across 25 randomized experiment setups each, where initial information map is varied

between experiments. For each method, 10 different sensing budgets were explored.

Agents starting positions, initial information maps, and sensing budgets are kept

identical among experiments with different controllers to ensure that our results are

comparable.

Further, we investigate the performance of multi-agent sparse ergodic optimization

described in Section 3.2 in terms of coverage performance, with ergodicity as the

metric. We compare our results to the two baselines described above, averaged across

different team sizes (ranging from 3 to 10 agents).
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Chapter 5

Results and Discussion

5.1 Single Agent Results

When looking at results of sparse ergodic optimization in terms of overall coverage

performance, measured by the ergodic metric, we observe that there is a minimal

number of sensor measurements to be taken to minimize ergodicity (see Fig 5.1). In our

experiments, this number of sensor measurements varies with changes in information

map being covered, sample rate, time horizon and initial sample weights. However, for

a set of fixed experiment hyperparameters, the minimal number of samples required

is consistent. For any fixed experiment setup, when we take fewer than this minimal

number of sensor measurements, the optimization lacks relevant information, and so,

we see a decrease in coverage performance. On the other hand, when we take more

sensor measurements than the minimal required number, the ergodic value increases,

due to extraneous measurements negatively impacting coverage. This is because as
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Figure 5.1: Single Agent Experimental Results on Synthetic Data: Single
agent experiment results show that sparse ergodic optimization has better coverage
performance in terms of the ergodic metric when compared to standard ergodic
optimization with uniformly distributed sparse measurements. The probabilistic
heuristic results in comparable performance.

Figure 5.2: Standard Ergodic and Sparse Ergodic Trajectory Comparison:
Standard ergodic optimization results in a different final trajectory (orange trajectory)
than jointly optimizing for both trajectory and sensor weight (blue and yellow
trajectory). This implies a cross-effect between agent position and if a sensing
measurement is taken, due to which joint optimization becomes more important as
the coverage problem scales.

We also experimentally demonstrate that it is better to selectively choose mea-

surements along the standard ergodic trajectory, since in all cases, the coverage
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5. Results and Discussion

performance of the probabilistic heuristic is much better than that of standard er-

godic optimization with uniformly distributed measurements. On the other hand,

using the probabilistic heuristic on a standard ergodic trajectory has very similar

coverage performance to sparse ergodic optimization for a single agent. We see that

optimizing for trajectory alone, and jointly optimizing for trajectory and measurement

placement creates different resultant trajectories (Fig 5.2), implying that trajectory

optimization and measurement choice impact each other. Jointly optimizing for

trajectory and sensing measurements leads to lower control cost, as you are directly

taking into account the cost of moving between chosen sensing measurements. For

a single agent in the simple coverage problems being considered, there aren’t large

differences in control cost, leading to very similar performance of the probabilistic

heuristic and sparse ergodic optimization.

Figure 5.3: Single Agent Trajectory on Entropy Map: Example sparse ergodic
trajectory over an entropy map. Red points indicate sensor measurement locations,
while white points indicate parts of the trajectory where no sensor measurements are
taken.
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5. Results and Discussion

Figure 5.4: Single Agent Experimental Results on Entropy Maps: Results
show that sparse ergodic optimization has better coverage performance in terms of
the ergodic metric when compared to standard ergodic optimization with uniformly
distributed sparse measurements. The probabilistic heuristic results in comparable
performance.

We observe similar trends in the ergodic values of trajectories from our single agent

experiments on the entropy maps (see Fig 5.4). Both sparse ergodic optimization and

the probabilistic heuristic baseline method outperform the uniform sampling method.

This supports our hypothesis that intelligently choosing sensing locations improves

the informativeness of the measurements taken. Further, we again observe that there

is a minimal number of sensor measurements to be taken to minimize ergodicity (see

Fig 5.4). Note that the number of required sensor measurements for the entropy

map is different than that for the synthetic maps, supporting the idea that there is a

different set of required measurements in order to fully characterize a given coverage

problem. An example of a sparse ergodic trajectory over an entropy map is shown in

Fig 5.3.

For single agent experiments on the shade and slope maps, the ergodic values

of the resulting trajectories show the same trends as above, with the sparse ergodic

optimization and the probabilistic heuristic baseline method performing better than

the uniform sampling method (see Fig 5.7 and Fig 5.8). Again we observe that

the minimum ergodicity is achieved at different numbers of sensor measurements,

supporting the hypothesis that there is a minimum required set of sensor measurements
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used to fully characterize a coverage problem. For information maps that have a

more uniform distribution of areas of interest, like the shade maps, this difference in

performance is smaller than the difference in coverage performance seen for information

maps with distributed peaks of high expected information. An example of a sparse

ergodic trajectory over an shade map is shown in Fig 5.5, and over a slope map in

Fig 5.6.

Figure 5.5: Single Agent Trajectory on Shade Map: Example sparse ergodic
trajectory over a shade map. Red points indicate sensor measurement locations, while
white points indicate parts of the trajectory where no sensor measurements are taken.

Figure 5.6: Single Agent Trajectory on Slope Map: Example sparse ergodic
trajectory over a slope map. Red points indicate sensor measurement locations, while
white points indicate parts of the trajectory where no sensor measurements are taken.
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5. Results and Discussion

Figure 5.7: Single Agent Experimental Results on Shade Maps: Results
show that sparse ergodic optimization has better coverage performance in terms of
the ergodic metric when compared to standard ergodic optimization with uniformly
distributed sparse measurements. The probabilistic heuristic results in comparable
performance.

Figure 5.8: Single Agent Experimental Results on Slope Maps: Results show
that sparse ergodic optimization has better coverage performance in terms of the
ergodic metric when compared to standard ergodic optimization with uniformly
distributed sparse measurements. The probabilistic heuristic results in comparable
performance.
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5. Results and Discussion

5.2 Multi-Agent Results

Figure 5.9: Coverage using Multi-Agent Sparse Ergodic Trajectory: The
sparse sensing trajectories being followed by each of the three agents in the multi-agent
team are overlaid on the reconstruction of the information prior using measurements
from all agents (a). The yellow points correspond to where a sensing measurement
is being taken. The reconstructions of the information prior using the sensing
measurements taken by each agent are plotted with the corresponding agent trajectory
for agents one (b), two (c), and three (d).

When optimizing limited sensing resources (specifically a sensing budget in terms of

a restricted number of sensing measurements) for a multi-agent team using the sparse

ergodic optimization approach, we see that the ’workload’ of covering different peaks

in a given a priori information map is distributed among the agents, and the sensing

measurements are distributed in order to support the requirements of each coverage

workload. An example of this is shown in Fig 5.9.

Similar to single agent sparse ergodic optimization results, we see that using

sparse ergodic optimization to distribute a limited sensing budget across a multi-agent

team results in improved coverage performance in terms of the ergodic metric with

fewer sensing measurements (i.e. for lower sensing budgets) (see Fig 5.10). We also

observe that there is a minimal number of sensor measurements that are required

in order to minimize ergodicity, and this minimal number varies with changes in

experiment hyperparameters like information map being covered, sample rate, time

horizon and initial sample weights. For a fixed set of experiment hyperparameters,

the ergodicity increases when the sensing budget is increased past this minimum

required number, since there are extraneous measurements being taken, while the

ergodicity increases with decrease in sensing budget below the minimum required
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Figure 5.10: Multi-Agent Experimental Results on Synthetic Data: Results
show that multi-agent sparse ergodic optimization has better coverage performance
in terms of the ergodic metric when compared to standard ergodic optimization with
uniformly distributed sparse measurements and with sparse measurements distributed
using a probabilistic heuristic.

number, since the optimization is missing information.

For multi-agent teams we see that the probabilistic heuristic has worse coverage

performance compared to sparse ergodic optimization (see Fig 5.10). As explained in

in Section 5.1, jointly optimizing for trajectory and sensing measurements leads to

lower control cost. As we scale up the optimization problem, control cost becomes

more substantial, as we need to optimize multiple trajectories. Further, the cross-

effect of the agents’ trajectories and if they take sensing measurements increased for

multiple agents, since coverage performance is now impacted by several trajectories

with potential areas of overlap. Thus, it becomes more necessary to jointly optimize for

trajectory and choosing sensing measurements in multi-agent sparse sensing coverage

problems.

We observe similar trends in results from the multi-agent experiments on real-world

data (see Fig 5.11, Fig 5.12, and Fig 5.13). In all of these comparisons, both sparse

ergodic optimization and the probabilistic heuristic baseline method outperform the

uniform sampling baseline method, supporting the idea that intelligently choosing

sensing locations improves the informativeness of the measurements taken. For

information maps that have a more uniform distribution of areas of interest, like the

shade maps, this difference in performance is smaller than the difference in coverage
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performance seen for information maps with distributed peaks of high expected

information.

Figure 5.11: Multi-Agent Experimental Results on Entropy Maps: Results
show that sparse ergodic optimization has better coverage performance in terms of
the ergodic metric when compared to standard ergodic optimization with uniformly
distributed sparse measurements. The probabilistic heuristic results in comparable
performance.

Figure 5.12: Multi-Agent Experimental Results on Shade Maps: Results
show that sparse ergodic optimization has better coverage performance in terms of
the ergodic metric when compared to standard ergodic optimization with uniformly
distributed sparse measurements. The probabilistic heuristic results in comparable
performance.
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Figure 5.13: Multi-Agent Experimental Results on Slope Maps: Results
show that sparse ergodic optimization has better coverage performance in terms of
the ergodic metric when compared to standard ergodic optimization with uniformly
distributed sparse measurements. The probabilistic heuristic results in comparable
performance.

5.3 Mixed-Integer Program Relaxation

As described in Section 3.1, the sparse ergodic optimization problem Eq. 3.6 is a

mixed integer programming problem. Since mixed integer programming problems

are expensive to solve, we relax this formulation by defining λ(t) to be a bounded

continuous variable λ(t) ∈ [0, 1], and map the resultant values to discrete values in

{0, 1}. We use a solver to compare the results of the mixed integer programming

formulation to our relaxed problem to show that this relaxation greatly improves the

computational cost of the optimization, without negatively impacting performance.

We compare the performance statistics and computation cost of our approach

to that of solving the mixed integer programming formulation of the sparse ergodic

optimization problem. We see in Fig 5.14 that our relaxation of the sparse ergodic

optimization problems leads to much lower computational costs (i.e. lower run times),

while retaining comparable coverage performance in terms of the ergodic metric.

In the multi-agent case, directly solving the sparse ergodic optimization problem as

a a mixed integer programming problem becomes intractable as the number of agents

increases. As the optimization problem scales, computational costs inherently increase.
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Figure 5.14: Comparison of Mixed Integer Optimization Problem and
Relaxed Sparse Optimization Problem: Solving the mixed integer formulation
of the sparse sensing problem leads to slightly better coverage performance (a), in
terms of the ergodic metric, but has a much higher computational cost (b).

This increase in both required computation and memory can grow exponentially with

increase in the number of integer variables. Since the multi-agent case introduces

T new integer variables for each agent, where T is the length of the trajectory,

there is a large increase in the number of additional constraints on the optimization

problem for each additional agent. As a result, employing a continuous relaxation

as described above makes planning sparse ergodic trajectories for multi-agent teams

computationally feasible, while maintaining coverage performance.
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Chapter 6

Conclusions

In this thesis we investigate the idea that simultaneously reasoning about where a

robot should go and when and where it should take sensing or sampling measurements

improves the quality of measurements taken, and the coverage performance achieved

by the robot. To this end, we formulate a novel approach to sensing-resource limited

coverage by extending the ergodic optimization problem to jointly optimize for both

the sensing trajectory and the decision of where to take sensing measurements.

Specifically, the set of sensor measurements is posed as a sparse ergodic optimization

problem, where the choice to take a measurement is encoded in a vector of sample

weights.

We demonstrate the efficacy of sparse ergodic trajectories through experimental

evaluation for single and multi-agent coverage of both synthetically generated Gaussian

information maps, and information maps built from real-world data. We observe that

the joint optimization of trajectory and sensing measurement or sampling locations

improves coverage performance in these experimental settings, and infer that this

is a function of improvements in informativeness of the measurements taken, and

a reduction in overall control cost of the system caused by the joint optimization

formulation. Our set of experiments show that there exists a required set of sensing

measurements in order to fully characterize a given coverage scenario, in both single

and multi-agent cases. The number of required measurements is different for different

scenarios. Finally, we infer that there exists a cross-effect between an agent’s trajectory

and sensing decisions, which make it important to jointly optimize these in cases with
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6. Conclusions

limited sensing measurements. This effect is stronger for multi-agent scenarios, leading

to larger performance improvements for multi-agent sparse ergodic optimization.

We assume static information maps in this work, that is, we assume that the

information distribution over the region being covered stays the same throughout the

trajectory’s execution. However, in many cases information maps are dynamic and

can change over time or with new information from sensor measurements. Future

work will look at adapting sparse ergodic optimization for these dynamic settings.

This work also assumes the availability of accurate a priori information maps, which

is not the case for many real-world coverage applications. Future work will seek

to use sparse ergodic optimization in order to identify and account for inaccurate

information priors with minimum sensor measurements, and take into account sensor

noise. Finally, future work will extend sparse ergodic optimization to account for

multiple sensors which read in information from multiple information maps.
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Multi sensor fusion framework for indoor-outdoor localization of limited resource
mobile robots. Sensors, 13(10):14133–14160, 2013. ISSN 1424-8220. doi: 10.
3390/s131014133. URL https://www.mdpi.com/1424-8220/13/10/14133. 2.2
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