
Simulation-guided Design for

Vision-based Tactile Sensing on a Soft

Robot Gripper

Yichen Li

CMU-RI-TR-23-20

May 1, 2023

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Wenzhen Yuan, chair
Matthew O’Toole
Arpit Agarwal

Submitted in partial fulfillment of the requirements
for the degree of Master in Robotics.

Copyright © 2023 Yichen Li. All rights reserved.





To the stormy sea I learned to sail.



iv



Abstract

Soft pneumatic robot manipulators have garnered widespread interest
due to their compliance and flexibility, which enable soft, non-destructive
grasping and strong adaptability to complex working environments. Tac-
tile sensing is crucial for these manipulators to provide real-time contact
information for control and manipulation, but most tactile sensors are
either inflexible, low-resolution, expensive, or hard to manufacture.

Vision-based tactile sensing has been used in soft pneumatic robot
manipulators to achieve a high spatial resolution of contact information.
However, designing a high-quality vision-based tactile sensor for soft
pneumatic robot manipulators is challenging for two reasons. Achieving
steady high-fidelity sensing signals on a deformable robot is non-trivial,
and manufacturing time and expense make design iteration in the real
world unpractical.

In this thesis, we present a physics-based optical simulation pipeline
to guide the design of vision-based tactile sensing on a soft robot finger.
Our simulation pipeline enables faster iteration cycles and automatic
optimization of design parameters, eliminating the need to manufacture
the entire robot finger for each design iteration. The simulation utilizes
physics-based rendering (PBR) with highly accurate optical modeling
of the robot finger to ensure that performance improvements in tactile
sensing in the simulation are transferable to the real-world robot finger.
We introduce a fast numerical metric to test tactile sensing performance at
different robot states and contact locations to evaluate designs. During the
optimization, we perform a grid search on possible combinations of light
color choices for optical fibers based on defined metrics. Then, we apply the
covariance matrix adaptation evolution strategy (CMA-ES) as a numerical
optimization method to iteratively fine-tune the directions of the optical
fibers. We compare the tactile sensing performance of the optimized
design with the baseline design and demonstrate an improvement.

This thesis makes the following contributions: a) a ready-to-use sim-
ulation pipeline for any vision-based tactile sensor; b) providing a new
design paradigm that uses optical simulation as a testing and optimiza-
tion platform; c) a new metric for evaluating the sensing performance of
vision-based tactile sensors.
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Chapter 1

Introduction

Soft robots are an emerging class of robots made out of soft and compliant materials

[1]. The deformable nature of the soft robots enables them to have a higher degree

of freedom, better flexibility for certain tasks, and stronger adaption to the working

environment. Thus, it has been widely used in agriculture and human-robot interaction

where compliant and non-destructive interactions are required [2] [3].

Soft robots are different from rigid body robots in that they could easily warp

around objects and comply with the environment, making contact detection and

localization important for accurately determining their shape and position. Besides

that, the deformable surface of soft robots could directly provide detailed contact

surfaces’ local geometry features, which is almost impossible for rigid robots. Take a

soft robot gripper for example, we could use tactile information to decide whether

the gripper has already touched the object and where the contact happens [4], local

deformation to estimate the grasping force and detect slipping [5] [6], and local

geometry feature to classify the contact object or estimate the shape of the contact

object[7]. Therefore, incorporating tactile sensing is advantageous for soft robots.

1.1 Related Works and Motivation

Tactile sensing provides rich information about the robot, but enabling tactile sensing

on soft robot grippers is challenging. Soft and flexible tactile sensors are necessary

due to the challenges posed by surface deformation. The use of rigid components
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1. Introduction

in onboard tactile sensors can largely constrain the actuation of the robot, limiting

its ability to bend or extend freely. Thus, soft and flexible tactile sensors are widely

applied for soft robot tactile sensing. Many works proposed the use of flexible tactile

sensors for tactile sensing on soft robotic grippers [8] [9]. Truby et al. [8] proposed

embedded ionogel sensors into soft robotics fingers for tactile sensing [8]. These

sensors are made from conductive ionogel ink embedded into molded network inside

the robot’s surface. When the robot inflates or contacts objects, the local geometry

change will affect the resistance of the ionogel sensor, and this change can be used

to read out tactile information. Because the tactile sensing resolution is directly

proportional to the number of the ionogel sensor embedded, ionogel sensors are hard

to provide high-resolution tactile information limited by the difficulty of molding

complicated ionogel networks into the robot surface. Pannen et al. [9] also proposed

a flexible tactile sensor for soft robots that uses low-cost piezoresistive fabric for

tactile sensing. The sensor consisted of a piezoresistive fabric layer sandwiched by two

electrode layers and it covered the entire soft robot surface. Similar to ionogel sensor,

the piezoresistive sensor also relied on the resistance change of the piezoresistive

layer while contacting to gain tactile information. It achieves a relatively high spatial

resolution of 4.5mm at a relatively low cost in manufacturing, however, the fabric

layer and flexible PCB electrode layers were not flexible enough to comply with the

drastic deformation of the soft robot.

On the other hand, vision-based tactile sensors could provide extremely high

sensing resolution at a low cost and do not require installing any device on the sensing

surface of the robot. Yu et al. [10] demonstrated a soft robot finger with vision-based

tactile sensing. To ensure the best coverage and lighting conditions, the soft robot

finger is divided into several sections connected by rigid joints where each section is

fully covered by a camera and LED light source on the side. Sensing surface shape

could be inferred by the joint angles and deformation on the sensing surface could be

extracted from camera images. However, this approach has two major drawbacks: the

robot finger is constrained by joints and the single-color LED does not provide enough

information for inferring surface normal. Another work on vision-based tactile sensors

with improvement on both drawbacks was by Liu et al.[11]. They used reference

points on the surface to estimate the sensing surface shape so that the robot could

freely deform without any joint constraints, and acrylic paint on the side wall will
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1. Introduction

reflect different colors of lights on the sensing surface to better visualize the surface

deformation. However, one limitation of the design is that the only active light source

is placed at the base of the soft robot. When the robot deforms, the sensing area far

from the light source will receive much less illumination and downgrade the sensing

performance.

The proposed tactile sensors for soft robots lack a systematic design and sensor

performance evaluation procedure. One of the possible reasons is that design iteration

usually takes a long time due to the manufacturing process. The molding and curing

process for the soft robot body, assembling parts, and calibrating the sensor often

takes days to complete. At the same time, there doesn’t exist an efficient sensor

design evaluation procedure for tactile sensors. Therefore, we would like to address

these problems in this thesis.

1.2 Thesis Overview and Contribution

In this thesis, we present a new simulation pipeline for rapidly iterating on vision-based

tactile sensing design on a soft robot gripper. It consists of:

• A background on vision-based tactile sensing and highlight the challenges in the

design of our soft robot gripper. In Chapter 2, we will introduce the working

principle of vision-based tactile sensing and develop an understanding of what

contributes a good tactile sensing from theory. Then, we explain the design

challenges in the context of the physical design of our soft robot finger and

state our design goal.

• An overview of the optical simulation tool. In Chapter 3, we will introduce an

optical simulation tool that uses physics-based rendering to generate realistic

simulation of arbitrary robot configuration. An overview of physics-based

rendering will be provided to illustrate its unique advantage in providing high-

fidelity simulation results that transfer to real-world prototypes. We will discuss

the specific rendering algorithm choice essential to our robot setup and how we

model the optical properties of each component of our robot.

• An overview of a two-stage automated design optimization process. In Chapter

4, we will formulate our design goal and introduce our optimization process for
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1. Introduction

vision-based tactile sensing design on soft robots. A simple but theory-grounded

metric for evaluating sensing performance is proposed and a two-stage design

optimization will explore both lighting color choice and lighting direction to

maximize the performance of our design in multiple robot configurations.

Our main contributions are:

• A new simulation-guided design workflow that largely reduces the turnaround

time by eliminating the manufacturing time.

• A new metric for evaluating the sensing performance of vision-based tactile

sensors, which is grounded in photometric theory and quick to evaluate.

• A robust automated design optimization process for iterating on sensor designs.
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Chapter 2

Design Problem Formulation

In this Chapter, we present the challenges of designing vision-based tactile sensors on

soft robot grippers and formulate the challenges into a design optimization problem.

We begin by providing background knowledge on vision-based tactile sensing and

describing the physical design of our soft robot gripper. Then, we offer insights into

how the robot gripper’s shape and deformation can affect the sensing quality and use

these insights to formulate a design optimization problem.

2.1 Theory of Vision-based Tactile Sensing

The idea of vision-based tactile sensing stems from photometric stereo, a technique for

estimating surface normal by using a series of images taken with different directions of

incident illumination [12]. Suppose that intensity of a pixel at (x, y) is I(x, y) and the

surface normal at the same pixel is (p, q), I(x, y) = R(p, q) by some function R that

captures the surface’s bidirectional reflectance distribution function (BRDF). The

goal is to learn the spatial mapping of surface normals, denoted as (p, q) = f(x, y).

Since the function R is non-linear, it requires three images by illumination of different

directions to solve the function f . Alternatively, one image can be taken with three

colored lights incident from different directions on the sensing surface. At its core, the

problem of photometric stereo is to find a normal estimation function f to estimate

surface normal

n = f(I)

5



2. Design Problem Formulation

, where I is a x × y × 3 RGB image and n is a x × y × 2 normal map, x, y is the

number of rows and columns of the image. For example, if the surface material obeys

the Lambertian model, which Ii = σ|wi · n| assuming unit incoming illumination

irradiance, we can directly solve for the f . Construct a 3 × 3 matrix N =

wr

wg

wb


where wi is incident direction for {red, green, blue} colored light. Then, σ = |N−1I|
and n = 1

σ
N−1I if N is invertible.

One problem in determining the normal estimation function f is its high correlation

with the BRDF of the object’s material. If the BRDF is highly non-linear or even non-

continuous, then f is extremely hard to estimate. To address this issue, vision-based

tactile sensors, take Gelsight for example, closely fit the surface of the object with a

deformable elastomer layer coated with Lambertian-like material inside facing the

camera and light sources. This effectively replaces the surface material property with

Lambertian-like material so that normal estimation results are independent of the type

of contacting objects. Additionally, vision-based tactile sensors fix the illumination

condition by blocking the environment light and providing fixed colored LEDs with

desired angles, making the normal estimation function is consistent regardless of the

working environment.

Once the BRDF of the surface has been fixed, then the only remaining factor

for determining the normal estimation function is the illumination condition, more

specifically incident lighting radiance and directions. Assume the surface is Lambertian

and only consider ωi · n > 0, we have

I =
∑
i

∫
Ω

σLi(ωi)ωi · ndωi

=
∑
i

∫
Ω

σLi(ωi)⊗ ωidωin

= R(n)n,

(2.1)

where light source i has radiance Li(ωi) at direction ωi. The reason that R(n)
depends on normal vector n is because the range of valid incident light directions Ω

is determined by n. Let ri be ith row of R(n). Here, we make an assumption that

RGB color vectors reside in a vector space [0, 255]3 and color channels are orthogonal
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2. Design Problem Formulation

to each other. Let’s define ensemble irradiance matrix as K = diag(

 ||r0||· · ·
||rm||

), and

ensemble direction matrix as N =


r0

||r0||

· · ·
rm

||rm||

 for a m row matrix R. The physical

meaning of ri is the sum of all vectors vj , where
vj

||vj || = ωj , ||vj|| is the ith RGB color

vector.

This formalism provides an interesting perspective on vision-based tactile sensor

design by analyzing both the ensemble irradiance matrix and the ensemble direction

matrix. In theory, we only need the rank of N ≥ 2 to be able to uniquely map

every RGB color vector to a normal vector because normal vectors only have two

degrees of freedom. Assuming we only consider incident light direction ωi · n > 0,

two lights of different colors from distinct directions will satisfy the requirement.

However, considering how limited the range of incident light direction will satisfy

the assumption, it is always preferable to have all locations on the sensing surface

reachable by all three colored lights.

However, having more than two distinct light directions of each color may result

in colinearity between the rows of N , causing a loss in rank. Additionally, the image

noise and oversimplified material property assumption can also add uncertainty to

the color measurement, making it crucial to design a system providing one-to-one

mapping as well as error tolerance. Large angles between row vectors of N can reduce

the normal estimation error brought by the uncertainty in color measurement. Thus,

a good design should ensure each normal vector ni has at least lights of two colors

from distinct ensemble directions ŵ1 · ni > 0, ŵ2 · ni > 0 where ŵi =
ri

||ri|| , and the

angle between ensemble directions should be close to orthogonal.

In fact, the matrix K also plays an important role in controlling the noise and error

of color measurement. Assume our normal estimation by ñ = f(Ĩ), where Ĩ = I + ϵ.

Matrix K controls the magnitude of mapping f where large entry K means it requires

a large change in color ∆I to have the same change in normal vector ∆n. Thus, large

entries in K are in favor of noise reduction. This implies that we should place the

same colored light source close together to enhance the irradiance in the dominant

direction and any light of the same color coming from the opposite direction will

7



2. Design Problem Formulation

reduce the robustness of our system.

Thus, we summarize our design requirement for vision-based sensors from theory:

• For any location on the sensing surface, a good design provides lights of as

many colors as possible

• The ensemble light direction of each color at all normal vectors should at least

be linearly independent of each other. Orthogonal ensemble light direction of

each color gives the best result.

• Good design should have the incident directions of light of the same color be as

close as possible to enhance the radiance along the ensemble direction.

2.2 Physical Design of our Soft Robot Gripper

In this section, we will introduce the physical design of the soft robot gripper built

in our lab by Uksang Yoo, shown in the schematic Fig 2.1. Our soft robot gripper

Figure 2.1: Physical design of our soft robot gripper. The main robot parts are shown
on the left side and the detailed layer decomposition of the sensing surface is shown
on the right side

utilizes pneumatic actuation, where internal air pressure controls the bending of the

robot to grasp objects. The robot has two main components: a flexible Thermoplastic

Polyurethane (TPU) 3D-printed body with multiple air chambers that can expand,

and a flexible, non-expandable silicone sensing surface. When actuated, the robot

8



2. Design Problem Formulation

only bends towards the sensing surface. To visualize local deformation on the sensing

surface, we mount a 160-degree field-of-view camera on the 3D-printed body, facing

the sensing surface. We use optical fibers to provide illumination for our sensor, as

they are small and flexible enough to not interfere with robot actuation. Specific

holes on the edges of the 3D-printed body secure the position and direction of the

optical fibers with respect to the sensing surface to prevent changes in light conditions

when the robot deforms.

The sensing surface is where local deformation happens and is perceived and it

has a novel structure to enhance the sensing quality, shown on the right of Fig 2.1.

The top layers consist of a semi-specular coating that reflects light to the camera

and a protective coating that blocks outside environment lighting and protects the

semi-specular coating. Beneath the top layers, a thin soft support silicone layer allows

for large surface deformation, enabling the semi-specular coating layer to closely

follow the local geometry of the contacting surface. The bulk of the sensing surface is

made up of hard silicone layers, which are hard enough to maintain the shape of the

robot while in contact, preventing the un-contacted sensing surface from being pushed

inwards by nearby contacts. On both sides of the hard support silicone layer, we

attached opaque diffusive silicone layers to distribute the light from the optical fibers

more evenly, as light from the optical fibers is highly centralized within a small range

of the outgoing direction and large intensity differences along the sensing surface can

negatively impact the consistency of tactile sensing.

2.3 Optimization Problem Statement

Designing a good tactile sensor on a soft robot gripper is a challenging task due to the

robot’s shape and deformable nature. Our soft robot gripper is designed to be long

so that it could easily bend and warp around the object, but the large length-width

ratio could create an ill illumination condition for vision-based tactile sensors. Take

the sensor drawn in Fig 2.2 for example, indentation that happened closer toward

the red light source receives much higher red color intensity at deformation than the

indentation further away from the red light source. With almost no red light from the

left, the same pair of the normal vectors of the same indentation n1 and n2 encoded

a much similar color (blue and blue) far from the light source than the pair (blue and

9



2. Design Problem Formulation

pink) closer to the red light source, leading to a worse tactile sensing performance as

it is harder to distinguish the two normal vectors. The illumination problem becomes

(a) (b)

Figure 2.2: Example of how the sensor’s shape could affect tactile sensing performance.
(a) is the side view of our example tactile sensor. The light source comes from three
directions toward the center of the sensing surface and a camera is placed at the
bottom of the sensor looking at the sensing surface. (b) shows two image patches of
the sensing surface contacted with the same ball indentor at two locations along the
red light direction.

worse when the robot gripper bends. Because our light propagation direction does

not bend with the robot gripper, the part of the sensing surface that could receive

red light from the side will quickly diminish and shift toward the right side of the

paradigm, and so is the sensing performance.

For the rest of this thesis, we will focus on addressing the design optimization

problem that achieving good tactile sensing performance uniformly across the sensing

area under all deformations of the robot finger.

10



Chapter 3

Optical Simulation Pipeline

In Chapter 2, we introduced vision-based tactile sensing and a potential approach

to integrating vision-based tactile sensing on a soft robot gripper. However, the

deformable nature and shape of the soft robot gripper pose questions on how to

design an effective sensor

3.1 Theory of Physics-based Rendering

Physics-based rendering (PBR) is an image generation technique that models the

entire process of light traveling through a scene and reaching the camera sensor

according to the laws of physics. Unlike other rendering techniques, PBR can produce

highly accurate images that closely match those captured in real-world conditions.

This level of accuracy is crucial for simulations where design changes made in the

virtual environment should result in corresponding changes in the real world. However,

modeling all of the interactions of light with a scene can be challenging and time-

consuming due to the complexity of the scene.

Physics-based rendering treats light interaction with objects as the following equation:

Lo(x, ωo) = Le(x, ωo) +

∫
Ω

f(x, ωo, ωi)Li(x, ωi)ωi · ndωi (3.1)

, where x is the position where light intersects with the object, ωo is the outgoing light

direction, ωi is the incoming light direction, Ω is the set of all possible incoming light
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3. Optical Simulation Pipeline

direction, n is the surface normal vector of the object, Le is the emitted light radiance

from the object, Li is the incoming light radiance, Lo is the outgoing light radiance,

fr is a bidirectional scattering distribution function (BSDF) models the proportion

of the incoming light radiance contributes to the outgoing radiance. In essence, the

equation tells us that outgoing radiance is the sum of emitted light radiance and some

portion of the incoming light radiance. Using the same equation, we could substitute

incoming light radiance with the outgoing light radiance at another location, shown

in the following equation:

L(p1 → p0) = Le(p1 → p0)

+

∫
A

Le(p2 → p1)f(p2 → p1 → p0)dA(p2)

+

∫
A

f(p2 → p1 → p0)

∫
A

Le(p3 → p2)f(p3 → p2 → p1)dA(p3)dA(p2),

(3.2)

where pi are the locations where light incidents with the scene. With the above

equation, we could design a recursive algorithm that computes the radiance of light

rays reaching the camera film as a recursive sum of the radiance of each preceding

light path. This type of algorithm is also known as the ray tracing algorithm that

has been used in most physics-based rendering systems. However, the current version

of the algorithm will trace each possible incoming light path at each recursive step

and the number of traced paths will increase exponentially because of the curse of

dimensionality. Therefore, we use Monte Carlo integration as the approximation sum

of all the incoming light radiance in practice. The result of Monte Carlo integration

converges quickly to the actual sum. With Monte Carlo integration, we can revise

our recursive algorithm as follows:

The final rendering quality will be dependent on the material’s optical property,

BSDF f , and light path sampling strategy because BSDF will determine the fraction

of light that will remain after interacting with the object surface and the sampling

strategy will determine the error of the Monte Carlo integration from the expectation

value. In section 3.3, we will discuss how we model the optical property of each part

of the soft robot gripper and the specific rendering algorithm we used to sample the

light path.
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3. Optical Simulation Pipeline

Algorithm 1 Ray Tracing Algorithm

1: procedure Ray Tracing
2: depth = d ▷ recursive depth
3: scene constructed from specs
4: for camera ray: ((x, y), ω) do
5: color = RecursiveColor(scene, ω, depth)
6: end for
7: end procedure
8: procedure RecursiveColor(scene, ω,depth)
9: P = scene.intersect(ω) ▷ Find where light intersects
10: if depth == 0 then return Le(P,-ω)
11: end if
12: ω′ sampled from BRDF at P
13: return L← Le(P,-ω) + BRDF * RecursiveColor(scene, ω′, depth-1) * dot(n,ω′)

/ PDF(ω′)
14: end procedure

3.2 Optical Rendering Algorithm

As stated in the previous section, we use Monte Carlo integration to solve the

exponential increase in traced light path in the rendering process. Effective sample

light path plays an important role in achieving high-quality images with less rendering

time. However, our scene is highly complicated with several different optical properties,

including diffusive surface reflection, dielectric surface refraction, and volumetric

scattering. As shown in figure 3.1, any lights that reflect from the contact surface

will follow a similar light path: lights emitted from optical fiber will first be refracted

by silicone layer and scattered inside the diffusive silicon layer; After being reflected

by the semi-specular contacting surface, lights will undergo another refraction before

reaching to the camera sensor. Light paths through multiple dielectric refraction

and medium scattering is very hard to solve and exceed the rendering capacity of

regular ray tracing algorithm because most light paths generated by randomness are

not valid by refraction laws. Thus, we use Primary Sample Space Metropolis Light

Transport (PSSMLT) [13] as our rendering algorithm. The algorithm perturbs the

existing successful light paths to find the new light paths which have a higher chance

to find a successful light path that connects the light sources with the camera.
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Figure 3.1: Typical light paths from optical fiber to camera.

(a) (b) (c)

Figure 3.2: Rendering results of different rendering algorithms. (a), (b), (c) are
rendering results by path tracer algorithm, bidirectional path tracer algorithm,
PSSMLT algorithm respectively with 16384 samples per pixel and rendering time for
each algorithm are: Path tracing: 3.683 min, BDPT: 5.717 min, PSSMLT: 2.26 min
with AMD EPYC 7742 64-Core Processor.
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figure 3.2 shows the performance of path tracer, bidirectional path tracer and

PSSMLT algorithm implemented in Mitsuba. Path tracer traces light path starting

from the camera and uses simple random sampling for path search so many paths

found are biased, resulting in a very noisy image. Bidirectional path tracer traces

light path starting both camera and light sources so it has a higher chance to find

a valid light path, leading to a cleaner but still noisy image than that by the path

tracer. PSSMLT performs the best among the three algorithms as it actively searches

for valid paths close to existing success light paths.

However, all images directly from MLP-type of algorithms are relative to some

unknown scale, so mitsuba’s PSSMLT implementation will use another Monte Carlo

estimator to determine the scale of the final result [14]. Because the scale determi-

nation process is also based on random sampling, we might have scale differences

with the same setting. Here, we present rendering results of the same object with

different numbers of samples for the scale determination process, which is controlled

by “luminanceSamples” in Mitsuba, in figure 3.3. With “luminanceSamples” equal

to 1e7, the standard deviation of average pixel intensity of the rendering results

converges to a negligible ≈ 0.2%.

3.3 Optical Modeling for Soft Robot Gripper

To ensure accurate simulation results, it is necessary to model the optical properties of

all components of the soft robot gripper that can interact with light. This includes the

optical fibers, diffusive elastomer layer, transparent silicone gel layer, murky diffusive

silicone layer, and camera. However, the soft robot body will not be modeled, as we

have painted its surface black, which absorbs all light from the inside and blocks all

light from the outside environment. In the following paragraphs, we will discuss each

part in detail.

3.3.1 Optical Models

Optical fibers are waveguides that could transport electromagnetic waves through

them with little to no energy loss[15]. The electromagnetic wave profiles allowed to

transport through optical fibers are called guided modes and are determined by the
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Figure 3.3: Average pixel intensity of the same scene with different ”luminanceSam-
ples”.

diameter and material of the optical fibers [16]. The optical fibers used in our robot

have relatively large diameters (≈ 0.75mm in diameter) which allows a large number

of guided modes so that the full energy profile could be transported. Consequently,

the distribution of the outgoing radiance of the optical fibers entirely relies on the

distribution of radiance of the source LEDs, which is a normal distribution [17]. Due

to the small diameters of the optical fibers compared to the scale of our robot, we

approximate the end of the optical fiber as a point light source with a specific radiance

profile. The radiance profile is a normal distribution centered at direction ωd with a

variance of σv and radiance Lmax,

L(ω) = Lmax
e−(

ω−ωd
2σv

)2

σv · 2π

.

The diffusive silicone layer is made of translucent material, which could be

approximated with a homogeneous scattering material. Extensive studies have been
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conducted on modeling and measuring this kind of material [18] [19] [20]. In our

simulation, we find that the most basic scattering model could actually capture the

light scattering effect well enough. The scattering model we use has three parameters:

σs is the scattering coefficient for controlling the average amount of scattering event;

σa is the absorption coefficient for controlling the average amount of light absorption;

g is the parameter for the Henyey-Greenstein phase function describing the deviation

of light directions after each scattering event.

The light models of other materials are straightforward. We use the rough dielectric

model to model the transparent silicone layer because the rough dielectric model is

suitable for a homogeneous transparent material with a slightly uneven surface. The

elastomer layer is modeled by a surface diffusive model in the previous work by our

lab[21]. The wide-angle camera can be directly modeled as a perspective camera with

a certain field of view and resolution. We neglect the geometry distortion because

we will preprocess all the images with the de-warping method for fisheye cameras

provided by Opencv library during actual normal prediction.

3.3.2 Calibration

With optical models for each part of the soft robot gripper, we further validate our

simulation result with real-world in a fully assembled prototype. The goal of this step

is to confirm simulation results are well aligned with the real-world data when all

components of our soft robot are involved and robots are in different actuation stages.

We replace the soft robot body with a rigid 3D-printed structure in the real prototype

setup to ensure the shape of the sensing surface, where all light interactions happen,

matches the simulation. This can largely reduce the error coming from the shape

estimation of a deformable robot and allow us to focus on calibrating the optical

properties of each component. The setup in the real world and simulation is shown

in figure 3.4. In the first step, we aim to validate the simulation result with only one

optical fiber connected to the light sources. It is to validate the light intensity profile

after it comes out of optical fiber and goes through the diffusive silicone material.

The imaging result obtained when all optical fibers are connected to the light sources

will be a superposition of imaging results obtained with each optical fiber individually,

as per the superposition principle of light. Given the symmetric radiance profile of
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Figure 3.4: Validation setups in both simulation and the real world.

optical fiber and the homogeneous property of the diffusive silicone material and

elastomer layer, the image pattern will be symmetric. Thus, It is sufficient to use

pixel values along several reference lines symmetrically across the image from both the

simulation and real-world to completely describe the image pattern and compare the

results. Specifically, the horizontal lines measure the fade-off curve from the center of

the image to the edge, while the vertical lines measure the intensity attenuation along

the light direction. The results for two robot bending states are shown in figure 3.5.

In general, the curves of simulation and real-world results match. We have seen

some mismatches in the simulation result and real-world data. Although the image

pattern should be symmetric across the light direction, it does not exactly show in

real-world data. The possible reasons are that the distribution of the small reflective

coating particle on the elastomer layer is not uniform and the surface of the elastomer

layer has bumps that direct light into other directions.

Finally, we compare the image result with all optical fibers connected to light

sources in figure 3.6. The overall distribution of the colors in the simulation matches

with real-world data, but we also clearly observe that real-world data is not as smooth

as the simulation data. It is expected for the same reasons as above in addition to

the intensity variance of the light sources that are connected to each optical fiber.
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Figure 3.5: Validation results for the whole setup with one optical fiber are connected
when the robot is in the flat or rest state and the robot is bent 90 degrees. For each
image, we draw four reference lines covering the illuminated area (three horizontal
lines capture the intensity changes perpendicular to the light direction; one vertical
line captures the intensity changes along the light direction). The intensity along
each reference line is plotted on the right image with solid lines representing intensity
from real prototype images and dashed lines representing intensity from simulation
images

Figure 3.6: Qualitative comparison of images from real prototype and simulation.
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Chapter 4

Design Optimization

In the previous chapter, we proposed our simulation pipeline and validated it through

optical model calibration and rendering algorithm exploration. In this chapter, we will

formulate our design optimization for the vision-based tactile sensing on soft robot

grippers, propose a novel design evaluation metric for vision-based tactile sensing,

and a two-stage optimization process.

4.1 Design Space Description

We introduce the physical design of the robot in Chapter 2 and discuss optimization

to improve the tactile sensing performance of our robot gripper. Due to specific design

requirements and constraints, we keep the shape and material of each component the

same. The sensing surface’s range is determined by the field of view of the wide-angle

camera we used. Because of the limitation of the field of view, we could not cover

the entire silicone surface, we place the camera closer to the tip of our robot gripper

because contacts are more likely to happen at the tip of the robot gripper than at

the base. During the optimization, we will fix the camera’s pose since it’s already

optimal. Now, we have a rectangle region for tactile sensing with three sides suitable

for connecting optical fiber (Optical fibers are not able to be placed inside the silicone

gel layer but could be attached through the 3D printed structure as shown in the

figure 4.1 (a)). We evenly distribute optical fibers along each side and tilt each optical

fiber a slight angle θ towards the sensing surface to provide as uniform illumination
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as possible, shown in figure 4.1 (b). We will fix the number of optical fibers and their

positions and tilting angle θ to reduce the complexity of optimization. Still, we could

choose which of the three colored light sources (Green LEDs, Blue LEDs, Red LEDs)

every optical fiber connects to and light direction ϕ.

(a) (b)

Figure 4.1: Schematic drawing of Lighting configuration. (a) is the actual robot
optical fiber connections and we visualize optical fibers directions in three views on
(b)

4.2 Design Evaluation

In Chapter 2, we review the theory of vision-based tactile sensing and its application

in our context. In short, vision-based tactile sensing could be viewed as a function f

from RGB color space to a normal vector, and we use various techniques, including

lookup tables and neural network models to closely approximate this function in

practice. Here, we define the evaluation metric functionM : f → R to measure the

sensing performance. To formulate metric functionM, we need to look back to the

design space and theory of light transportation. Given that our robot is in a steady

state with a constant shape and assuming that the material of the sensing surface is

Lambertian with albedo σ, for some position x on the sensing surface with a normal

vector n(θn, ϕn), we have the following radiance contribution from every light source
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Li with incident direction ωi(θi, ϕi) in the same spherical coordinate:

L = σ
∑
i

Liωi · n (4.1)

Here, we only consider situation where ωi · n > 0.Converting ωi and n back to

Cartesian coordinate, We can calculate ωi · n by

ωi·n =

sin (θi) sin (ϕi)

sin (θi) cos (ϕi)

cos (θi)

·
sin (θn) sin (ϕn)

sin (θn) cos (ϕn)

cos (θn)

 = sin (θi) sin (θn) cos (ϕi − ϕn)+cos (θi) cos (θn)

(4.2)

Substitute 4.2 into 4.1, we have

L = σ
∑
i

Li(sin (θi) sin (θn) cos (ϕi − ϕn) + cos (θi) cos (θn))

= σ sin (θn)
∑
i

Li sin (θi) cos (ϕi − ϕn) + σ cos (θn)
∑
i

Li cos (θi)
(4.3)

From our physical design, cos θi for each of the light sources are kept small because

we want the lighting direction to be as parallel to the sensing surface as possible

but also allow enough illumination to reach the sensing surface, so we could further

approximate the above equation by neglecting the last term.

L = σ sin (θn)
∑
i

Li sin (θi) cos (ϕi − ϕn) (4.4)

Equation 4.4 essentially tells us how the color forms from a surface normal vector

given the lighting condition and the normal evaluation function f is exactly the inverse

function of this that it predicts a normal vector from color given current lighting

condition. Therefore, a good function f is required to be one-to-one mapping so that

each color could be correctly mapped to exactly one normal vector and maximize

f(∆n)∀∆n to enhance robustness against noise. However, The nonlinearity of the

above function and parameter changes due to the robot’s bending state makes it

hard to find an analytical optimization of f based on equation 4.4 under all robot

conditions. Therefore, we use numerical sampling methods to estimate if function f
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likely is a one-to-one mapping.

A naive solution will be to sample enough normal vectors nj(θ, ϕ) and check if the

colors corresponding to the sampled normal vectors are different from each other. We

could treat color as an integer space [0, 255]3 and use Euclidean distance to describe

how different colors are. Also, we need to penalize large variances in color differences

because we want large color differences for all pairs of normal vectors. Thus, we arrive

at our initial metric function

M = d(ci, cj)− σ(d(ci, cj)),∀i, j ∈ {0, · · · , k}, i ̸= j (4.5)

, where ci, cj are the RGB color corresponding to sampled normal vector ni, nj, and

we uniformly sampled k normal vectors.

However, the above sampling method requires a lot of samples and computation

per test, which is not desired for a quick evaluation metric considering our design

space. To simplify the metric, we want to understand the effect of ϕn and θn on

the normal estimation function f . From equation 4.4, the radiance response can be

rewritten with L = af(θn)f(ϕn), f(θn) = sin (θn). Because normal vectors always

point from the sensing surface towards the camera, θn ∈ [0, π/2), making f(θn) a

monotonous function that only acts on the magnitude of L. On the other hand, f(ϕn)

contains all color phase transforms and nonlinearity of L. Here, we approximate the

intensity of color with its norm in the integer space [0, 255]3 and sample k normal

vectors with equally spaced ϕi =
i
k
2π, i = 0, · · · , k − 1 and a θi. We separate the

metric function into two parts that measure changes in radiance response by θn and

ϕn respectively. The metric function on θn evaluates the color intensity of each normal

vector, and the metric function on ϕn evaluates the normalized color changes between

nearby normal vectors. For both cases, metric values should also be evenly across

different normal vectors so we penalize the variance of the metric values. In summary,

we define our metric function as follows:

M =Mθn + λMϕn

= ||cni
|| − σ(||cni

||) + λ(d(ĉni
, ĉni+1

)− σ(d(ĉni
, ĉni+1

))),

∀i ∈ {0, · · · , k − 1}

(4.6)
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where ĉ = c
||c|| , ni = (θ, ϕi), ϕi =

i
k
2π, i = 0, · · · , k − 1, λ is a scale factor to weight

two metric functions equally.

In the simulation test, we extract color and normal vector pair by simulating robot

contacting with a 10-faced pyramid-shaped indentor. Each face of the pyramid-shaped

indentor provides a few pixels of colors corresponding to the same normal vector so

that we could average these pixels’ color to reduce any noise or error introduced by

the simulator. We assume that the size of the indentor is small enough that the slight

positional shift of the normal vector on each face of the indentor could be neglected.

We sample 15 locations uniformly across the sensing surface with 3mm apart and

3 robot bending angles: 0, 45◦, 90◦. Similar to how we define the metric function

for sensing performance at some location, we define the score function for the entire

lighting design as

S =M(p, b)− (σ(M(p) + σ(M(b)),∀p, b (4.7)

, where p represents the position and b represents the bending angle.

4.3 Design Space Exploration

Now that we have our soft robot gripper modeled in the simulation and a metric

that describes the sensing performance of our illumination design, we could finally

proceed to the optimization stage. As stated in the section 4.1, we have two classes

of parameters to optimize: color choice of the light source and direction of the light

source. In the experiment, we observe that changes in the light source direction

do not have as much effect on sensing performance as color choice because of our

strong diffusion layer. Also, discrete parameter optimization is hard to treat with

the same optimization technique as continuous parameters. Therefore, we split the

optimization stage into two sub-stages. We first select the colored LED light source

for each optical fiber and then fine-tune the optical fiber’s direction.
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4.3.1 Grid Search on Color Choices

In grid search, we iterate all possible combinations of color choices to find out the

best color choice. However, it means that we will generate simulation results for

320 combinations and evaluate every single design, which is not feasible given our

computational resources and time. Here, we use two tricks to reduce the work.

Leveraging the superposition of light, we render each simulation with only one LED

on. While testing on a specific color choice, we superpose the rendering result by

adding 20 images with the correct color layout. By doing so, we reduce the number

of rendering from 320 down to 3 × 20. Also, we notice that groups of neighboring

several optical fibers with the same colored light source tend to have a high metric

value than all neighboring optical fibers that have different colored light sources. It is

largely because different colored light from the same direction creates ambiguity and

violates the principle of photometric stereo. Therefore, we propose to group the two

nearby optical fibers with the same color light source as shown in fig 4.2.

(a) (b)

Figure 4.2: The two possible groupings for the grid search. To group two neighboring
optical fibers together, there are two possible groupings layout as shown in (a) and
(b) respectively

We could clearly find that optical fibers with the same colored light source tend

to form large groups (> 2). Although we have obtained the best configuration under

all groups of 2 cases (which automatically contains all even number grouping cases)

and we show that large grouping has a positive impact on the sensing performance,

we failed to prove that our illumination configuration success in cases contains any

large odd number (≥ 3) groupings. Therefore, we change the color of the two optical
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fibers’ light at the boundary of two neighboring groups to ensure we didn’t miss any

odd number grouping.

4.3.2 Continuous Optimization of Light Direction

For continuous optimization of light directions, we jointly optimize 20 parameters

x ∈ [0, π]. Because our simulation method is difficult to differentiate and non-

convex, we use a stochastic numerical optimization technique called covariance

matrix adaptation evolution strategy (CMA-ES) which is widely applied to solve

this type of problem [22]. It iteratively updates the mean and covariance matrix of

a multivariate normal distribution for searching the optimum by sampling random

points in parameter space based on the distribution and estimating the mean and

covariance matrix of the next-generation search distribution. For our continuous

optimization, we run and evaluate the simulations with parameters sampled by CMA-

ES for each generation until the changes in parameters are small enough. Although

CMA-ES is particularly good at optimizing ill-conditioned functions like ours, it still

takes a very long time to converge if we optimize all 20 optical fiber directions at the

same time. Therefore, we group optical fibers with the same colored light source on

the same side of the robot together and force them to share the same direction θ.

The optimization is able to converge within 20 generations and the result is shown in

Chapter 5.
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Chapter 5

Results and Discussion

In this Chapter, we present our optimization result and provide intuitive insight into

how our optimization improves the design.

5.1 Baseline Evaluation

We choose the lighting configuration in figure 5.1 as our baseline configuration. In

this configuration, optical fibers with the same colored light source are placed on the

same side of the robot and oriented normally to the surface, which is adopted in many

gelsight-based tactile sensors [11]. This configuration exhibits a strong performance

where all three colors of lights are presented from very distinct directions, shown on

the right side of the heat maps in figure 5.1. For all the normal vectors towards the

tip, it always receives at least two colored lights: either red and blue or red and green.

All incidental light of the same color points in the same direction and the direction of

lights of different colors are perpendicular to each other.

However, as the intensity of the tip light gradually diminishes towards the bottom

of the robot, the sensing performance also drops down. Furthermore, we also find

that when the robot bends at a larger angle, the tip light source diminishes more

quickly towards the bottom of the robot. This configuration, although giving a high

score at the tip location, exhibits significant variance in the spatial position and

bending state of the robot. This pattern could be found in 5.1 and 5.2. Considering

grasp contact could happen at any section of our robot gripper and usually happens
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when the robot is in the actuated state (bending angle > 0◦), the large variance in

this design reduces the overall performance of the robot. Hence, we are interested

in finding a lighting configuration that could balance the overall performance and

variance in spatial distribution and bending states.

5.2 Color Choice Search Result

Compared to the baseline configuration, the asymmetric light source color choice

provides both the tip and base section of the sensing surface with lights of three

different colors. For positions near the tip, the sensing surface receives blue light

from the tip and right side, red light from the left side, and green light from the

right side near the base; For positions near the base, the sensing surface receives

blue light from the left side, red light from the left side near the tip, and green light

from the right side. One of the main differences in lighting conditions close to the

base is that the third color light source (which is red in this case) comes from optical

fibers at the side of the robot, which is closer than the optical fibers from the tip

in the baseline condition. It overcomes the two shorting-comings of the baseline

configuration. Because the third light source is closer, the sensing surface close to

the base has a much stronger presence of the third colored light than the baseline

configuration. Additionally, the sensing performance is much more robust to the

changes in robot bending angles because the relative displacement of optical fibers to

the sensing location is also related to the distance between them. Comparing heat

maps in figure 5.1, the variance in both spatial and the robot bending state reduces

notably.

Although the lighting configuration from grid search provides the presence of all

three colored lights throughout the sensing surface, it fails to angle lights of different

colors in distinct directions and balance the distribution of the three lights for all

normal vectors. For instance, as shown in figure 5.2, positions close to the right side

and the base have blue and red-colored light from similar directions; positions at the

center of the sensing surface have blue lights from both the left side close to the base

and the right side close to the tip; and positions at the right side near the tip receive

a dominated blue light from both right side and the tip with little green light. All

these examples violate the design principles summarized in Chapter 2, thus scoring
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lower than other positions. Because most of the problem involves lighting directions,

we expect that changing the light direction could help address the problem.

5.3 Light Direction Optimization Result

After optimization, metric values of almost all testing positions under all robot

bending states increase marginally in figure 5.1. The main reason that changing

lighting directions does not have a large impact on the metric values is that the

silicone diffusive layer flattens out the radiance distribution of light from optical fibers.

Furthermore, our metric for measuring sensitivity to θn in equation 4.6 penalizes any

decrease in the light intensity received at the sensing surface while pointing optical

fibers at the sensing surface gives the highest light intensity. Thus, tilting optical

fibers too much away from the lighting configuration in section 5.2 decreases the

overall performance.

Although large angle changes are not in favor, tilting optical fibers with certain

small angles does improve the design as shown in the heat maps in figure 5.1. As

stated in the previous section, one of the problems in the previous design is that

incident light directions of different colors are very close to each other. Thus, the

optimization result increases the angle between the optical fibers of different colored

light sources at the same edge of the robot, for example, the blue and red light

directions at the left side and the green and blue light directions at the right side.

Another problem with the previous design is the dominant blue light over most normal

vectors with less coverage of red and green light in the corner of the right side close

to the tip. Now, the green light direction is pointed towards the tip so that more

green light is able to reach the corner.

5.4 Indentation Comparison

For this experiment, the robot contacts a bolt under the baseline lighting design

and optimized lighting design to demonstrate the improvement by our optimization

methods. The results are shown in figure 5.3. Because the largest improvement of

our optimized design to the baseline design is at the sensing area close to the base
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Figure 5.1: The heatmap of metric values at 15 sampling locations comparisons for the
baseline configurations and configurations after each stage of the optimization. The
first row is the scheme of the three lighting configurations: the baseline configuration,
the configuration after the color choice search, and the configuration after light
direction optimization. Each row shows the metric values at flat, 45◦, 90◦ robot
bending angles and each column corresponds to each light configuration.
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Figure 5.2: The image patches of indentation at 15 sampling locations comparisons for
the baseline configurations and configurations after each stage of the optimization. The
first row is the scheme of the three lighting configurations: the baseline configuration,
the configuration after the color choice search, and the configuration after light
direction optimization. Each row shows the image patches at flat, 45◦, 90◦ robot
bending angles and each column corresponds to each light configuration.
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of the robot, we indent the bolt close to the base of the robot, which is shown on

the right half of the images. In general, good lighting design could visualize sharp

changes in the color at the sharp edges, thus we could use that to qualitatively judge

the performance of the lighting system. For our baseline configuration in the first

column, the edges closer to the tip are more visible than the edges closer to the

base, and the edges are more visible when contacted by the robot in the flat bending

state edges than when contacted by the robot in the bending state. However, the

difference is much less noticeable in the optimized design in the second column. This

is aligned with our analysis of the metric value distribution in the previous section

that the baseline configuration has more variance of the performance in locations

and robot bending states. Comparing designs under the same robot bending state,

edges are generally sharper with optimization lighting configuration than the baseline

configuration.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: The simulation results of robot grasping a bolt with baseline lighting
design and optimized lighting design under different robot bending states. The first
column (a,c,e) lists the results from baseline lighting design and the second column
(b,d,f) lists the results from optimized lighting design. Each row represents one
bending state of the robot. From top row to bottom row are the results of bending
angle 0◦, 45◦, 90◦
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Chapter 6

Conclusions and Future Directions

In this thesis, we present a physics-based optical simulation pipeline to guide the

design of vision-based tactile sensing on a soft robot finger. Our simulation pipeline

enables efficient iteration cycles and automatic optimization of design parameters

compared to traditional trial-and-error methods, reducing the turnaround time by

eliminating the manufacturing time. By leveraging physics-based rendering, the

simulation tool provides highly accurate optical modeling of the robot finger and

is shown the performance improvements in tactile sensing in the simulation are

transferrable to the real-world robot finger. We also introduce a numerical metric

to test tactile sensing performance at different robot actuation statuses and contact

locations to evaluate designs. During the optimization, we perform a grid search on

possible combinations of light color choices for optical fibers and apply the covariance

matrix adaptation evolution strategy (CMA-ES) as a numerical optimization method

to iteratively fine-tune the directions of the optical fibers. We compare the tactile

sensing performance of the optimized design with the baseline design and demonstrate

an improvement.

6.1 Exploration of Other Parameters

In this work, we specifically make some assumptions and fix a few design parameters for

either simplification or physical design constraints. However, some design parameters

are not trivial and have interesting effects on the sensing performance. One assumption

37



6. Conclusions and Future Directions

we made is that the indentation depth is small enough to neglect its impact on

extracting the normal vector. However, the robot often grasps objects with sharp

structures that could indent deep into the sensing surface. While our lighting system

is designed to emit light almost parallel to the sensing surface, the large indentation

depth could cast a shadow around the indentation. For example, the large bolt head

shown in figure 5.3 casts shadows in both the left and right sensing surface. These

shadows could affect the normal estimation process and create undesired artifacts

around the indentor. This effect is not currently captured in our metric function but

it could affect the quality of the final 3D reconstruction result.

6.2 Robustness Evaluation of Vision-based Tactile

Design

In Chapter 2, we discussed how to improve tactile sensing robustness against noise

and error from image formation. However, we discover that there are numerous

additional errors and noise that arise during the manufacturing process, and these

could be significant. For instance, when connecting optical fibers to colored light

sources, which are colored LED diodes in our case, the I-V curves of these sources can

vary slightly, leading to differences in intensity. Also, the LED diodes do not exactly

follow the intensity profile described in the datasheet, leading to intensity differences.

In Chapter 3, we assume the end of the optical fibers are perfect smooth surfaces

that are perpendicular to the optical fiber’s direction so that the light radiance

distribution follows the normal distribution. However, achieving such a clean-cut

surface is challenging, and as a result, the outgoing radiance distribution of the optical

fiber may not be a normal distribution. We also found that it is extremely hard to

manufacture a uniform scattering material for the diffusive layer. Any unevenness in

the density will cause the diffusive layer to show different optical properties. All these

errors happened on the manufacturing side impact the final sensing performance of

vision-based tactile sensors.

One possible solution to address the impact of random manufacturing noises

is to incorporate them into the design evaluation process. This can be achieved

by introducing random offsets to the parameters in the optical simulation, such
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as light distribution, scattering parameters, and surface smoothness, during the

optimization process. By doing so, the final design will be more robust to errors from

these parameters. However, this approach is only suitable for iterative optimization

methods and may not be suitable for deterministic methods like grid search.

Alternatively, we can quantify the impact of small offsets on the overall sensing

performance. Similar to taking the partial derivative, we can identify the most sensitive

parameter to the sensing performance and mitigate its impact. By focusing on the

most sensitive parameter, we can potentially reduce the impact of manufacturing

noises on the overall sensing performance.
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