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Abstract

Safe Reinforcement Learning (RL) focuses on the problem of training a
policy to maximize the reward while ensuring safety. It is an important step
towards applying RL to safety-critical real-world applications. However,
safe RL is challenging due to the trade-off between the two objectives of
maximizing the reward and satisfying the safety constraints, which could
lead to unstable training and over-conservative behaviors.

In this thesis, we propose two methods of solving the issues mentioned
above in safe RL:

(1) We propose Self-paced Safe Reinforcement Learning which combines
a self-paced curriculum on the safety objective with a base safe RL
algorithm PPO-Lagrangian. During training, the policy starts with easy
safety constraints and gradually increases the difficulty of the constraints
until the desired constraints are satisfied. We evaluate our algorithm on
the Safety Gym benchmark and demonstrate that the curriculum helps
the underlying Safe RL algorithm to avoid local optima and improves the
performance for both reward and safety objectives.

(2) We propose to learn a policy in a modified MDP in which the safety
constraints are embedded into the action space. In this “safety-embedded
MDP,” the output of the RL agent is transformed into a sequence of
actions using a trajectory optimizer that is guaranteed to be safe, under
assumption that the robot is currently in a safe and quasi-static configu-
ration. We evaluate our method in the Safety Gym benchmark and show
that we achieve significantly higher rewards and fewer safety violations
during training than previous work; further, we have no safety violations
during inference. We also evaluate our method on a real robot box-pushing
task and demonstrate that our method can be safely deployed in the real
world.
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Chapter 1

Introduction

1.1 Motivations and Challenges

Reinforcement learning (RL) has shown remarkable progress in sequential decision

making tasks in the past few years [2, 38, 51], demonstrating the potential of achieving

human-level dexterity in robotic tasks. To apply RL into robotics tasks in the real

world, in addition to successfully achieving the desired task, it is also critical to

ensure that the robot satisfies the safety constraints to avoid damage to the robot

and humans.

Although there has been a significant emphasis on achieving more dexterous

behaviors for robots using RL recently, ensuring safety guarantee still remains one

of the bottlenecks for applying RL into real world, regardless of the achievements

in making robots more intelligent and dexterous. However, how to ensure safety

during deployment for reinforcement learning policy is still an ongoing research

direction. While training RL policy to maximize the reward is a ch alleging task itself,

including constraints over RL optimization creates an additional layer of difficulty

for optimization. Specifically, the RL policy optimization needs to leverage between

reward maximization and constraints satisfaction, which could lead to unstable

training and local optima convergence.

Several attempts have been made to solve policy optimization under safety con-

straints. The problem is generally formulated as a Constrained Markov Decision

Process. Lagrangian methods [46, 57] has been a major category for solving CMDP,
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1. Introduction

but those methods usually struggle with training stability and can generally not

guarantee the desired safety requirements. Another line of work in safe RL will

incorporate a barrier function or shielding function [3, 57], which is designed to

correct the unsafe actions to guarantee safety. However, those methods usually

requires additional information such as dynamics model. There are also methods in

the domain of trajectory optimization and motion planning [24, 25], however, those

methods could struggle with planning horizons, and may need additional computation

to achieve safe performance on long-horizon tasks.

In this thesis, we propose two methods of improving safety in RL. We first design

”self-paced safe reinforcement learning”, which incorporates curriculum learning into

the RL training to mitigate the optimization challenge of training a safe RL agent.

Specifically, the algorithm starts from a much “softer” constraints to encourage

exploration for RL algorithm. The constraints are gradually tightened until the

desired constraints are achieved.

We also propose ”Safety-Embedded Markov Decision Process”, in which a tra-

jectory optimization module is embedded into a MDP to ensure safety, the higher

level RL algorithm outputs a subgoal and it only needs to maximize the reward.

Safety-Embedded MDP combines the benefits from both RL and control, enabling us

to improve safety and deal with complex interactions with the environment.

1.2 Thesis Organization

We organize the thesis as follows: In Chapter 2, we present ”Self-Paced Safe Re-

inforcement Learning”. The chapter is divided into the following sections: (1) In

the introduction section, we discuss the challenge of safe RL, the recent progress

in curriculum learning and how we could combine them together to improve the

performance of safe RL. (2) Related works in safe RL and curriculum learning. (3) We

discuss the preliminaries, including MDP, Constrained MDP and the PPO Lagrangian

method. (4) We present the framework of our method (5) The experiments in Safety

Gym environment. More experiments can be found in Chapter A

In Chapter 3, we present ”Safety-Embedded Markov Decision Process”. (1) In

the introduction section, we discuss the challenges in safe RL and the potential of

combining RL with trajectory optimization. (2) We discuss the related works. (3) We

2



1. Introduction

present the framework of our method and the details in trajectory optimizer design.

(4)We evaluate our method and baseline methods in Safety Gym environments and a

real-world robot setup. More experiments are shown in Chapter B.

3
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Chapter 2

Self-Paced Policy Optimization

with Safety Constraints

2.1 Introduction

Reinforcement Learning has demonstrated a lot of success in sequential decision

making tasks [38, 51]. In most cases, RL algorithms only have a single objective of

maximizing the reward during training. However, when safety is a concern in some

domains such as human-robot interaction [36, 41] or autonomous driving [26, 39, 53],

the safety objective is incorporated into the RL objective as a constraint. Thus, the

policy will be optimized to maximize the reward while satisfying the constraints.

However, the trade-off between the reward objective and the safety constraints

will create difficulties for training [46]. For example, the policy tends to get stuck at

an over-conservative local optima where the safety constraints are satisfied with low

rewards. For example, in autonomous driving tasks, the agent is likely not to move

at all to avoid any collision with the obstacles.

In this work, we aim to improve the suboptimal solutions in safe RL with cur-

riculum learning. Curriculum learning [10, 16] has demonstrated the abilities of

stabilizing the training, increasing sample efficiency and avoiding local optima. Previ-

ous work [22] has demonstrated that curriculum learning can effectively modify the

optimization landscape and converge to better final performance. These properties can

5



2. Self-Paced Policy Optimization with Safety Constraints

help the optimization difficulties in safe RL. In addition, to avoid manually designing

the curriculum, we consider automatic curriculum [2] or self-paced learning [32], where

the algorithm automatically adjusts the curriculum based on its current performance.

More specifically, we build on top of Lagrangian penalized versions of PPO and

propose to improve its performance by applying self-paced learning on the safety

constraints. The agent is trained with relaxed constraints first and chooses more

challenging constraints when the current constraints are easy to satisfy. For example,

the agent can first learn to drive fast and then learn to drive safely to avoid the

local optima of driving safely but slowly. This type of training procedure can help

exploration and converge to a better final performance in a lot of scenarios. We

emphasize that our objective in this work is to obtain a high performance safe policy

at deployment but not during training. For example, with sim2real transfer, we can

learn a policy aggressively in simulation and deploy a safe policy on the real robot.

In summary, we propose a self-paced policy optimization algorithm with safety

constraints which could improve exploration and lead to better final performances.

We demonstrate the effectiveness of our algorithm on a toy example on constraint

optimization and evaluate it on the Safety Gym benchmark [46].

2.2 Related Work

2.2.1 Safe RL

Safety is an important consideration in a lot of real-world applications. The goal of safe

RL is to train RL policies with safety constraints in addition to the reward objective.

Lagrangian method has been widely used in solving Safe RL problems [4, 13, 19].

The Lagrangian method defines a Lagrangian function which combines reward and

cost functions and automatically adjusts the weights between the two objectives.

Constrained Policy Optimization (CPO) [1] derives the trust region for the update in

safe RL setting and can guarantee monotonic policy improvement while satisfying

safety constraints. Other methods apply Lyapunov constraints to ensure a safe policy

update [11, 14, 15, 42, 50]. However, existing safe RL algorithms still struggle with

the trade-off between reward and safety constraints. In addition, methods such as

CPO also aim to ensure safety during the exploration process which could be over-

6



2. Self-Paced Policy Optimization with Safety Constraints

conservative. Our method is built on top of PPO-Lagrangian method and improves

the exploration with self-paced safety constraints.

2.2.2 Curriculum Learning

Curriculum learning [16] has been shown to be beneficial in both supervised learning

and RL [10, 58]. In addition, generating a curriculum automatically can lead to

better asymptotic performance compared to a fixed curriculum. For example, Kumar

et al. [32] propose the idea of self-paced learning. In their method, the easiness of

each task is defined by computing the loss of it. The training will focus more on tasks

that could be easily achieved for the current network. Florensa et al. [18] and Graves

et al. [20] also propose the idea of automatically generating the curriculum. Another

recent method, Automatic Domain Randomization [2] allows the agent to increase

the difficulties of the tasks automatically based on its current policy.

2.3 Background

2.3.1 Markov Decision Process

A Markov decision process (MDP) is described as a tuple (S,A, r, P, ρ, γ), where S

is the state set, A is the action set, r(s,a) : S × A −→ R is the reward function.

P : S × A × S −→ [0, 1] is the state transition probability function, ρ denotes the

initial state distribution, and γ is the discount factor. Specifically, each episode starts

with an initial state s0 ∼ ρ(s0), the state is input into a parameterized policy πθ

to get the action at ∼ πθ(·|st) The agent takes the action at and the next state is

sampled from the environment st+1 ∼ p(·|st, at). For a given state-action tuple, the

reward is given as rt = r(st, at). The training objective is to maximize the expected

discounted sum of reward:

max
θ

Jr(πθ) = Eτ∼πθ
[
∞∑
t=0

γtr(st, at)], (2.1)

where τ = (s0, a0, s1, a1, ...) is the trajectory sampled given the policy πθ, initial state

distribution s0 ∼ ρ(st), and the state transition function st+1 ∼ p(·|st, at).

7



2. Self-Paced Policy Optimization with Safety Constraints

2.3.2 Constrained Markov Decision Process

A constrained Markov decision process (CMDP) is an augmented version of MDP [5].

Specifically, a constraint function c(st,at) are added to MDP, where c(st,at) : S ×
A −→ R. Without loss of generality, we assume that constraint is defined as

c(x) ≤ 0(Any c(x) ≤ d could be rewritten as c′(x) = c(x) − d ≤ 0.). Similarly, we

could also define the expected discounted cost as:

Jc(πθ) = Eτ∼πθ
[
∞∑
t=0

γtc(st, at)]. (2.2)

Then the training objective is defined as:

max
πθ∈Πf

Jr(πθ). (2.3)

where Πf
.
= {πθ ∈ Π : Jc(πθ) ≤ 0} is the feasible set.

2.3.3 PPO-Lagrangian Method

Lagrangian method [4] is one of widely used methods for solving constrained opti-

mization problems. Specifically, in our problem, we define the Lagrangian function

L(θ,λ) as:

L(θ, λ) = −Jr(πθ) + λ · Jc(πθ) (2.4)

The training objective can be written as:

max
λ≥0

min
θ

L(θ, λ) (2.5)

PPO-Lagrangian combines the Lagrangian method with Proximal Policy Optimization

(PPO) [49]. PPO defines the training objective as:

Lθk
r (θ) = Eτ∼πθk

[min(
πθ(a|s)
πθk(a|s)

A
πθk
r (s, a),

clip(
πθ(a|s)
πθk(a|s)

, 1− ϵ, 1 + ϵ)A
πθk
r (s, a))],

(2.6)

8



2. Self-Paced Policy Optimization with Safety Constraints

Algorithm 1 Self-Paced PPO-Lagrangian Method

Input: number of training epochs Nt, number of policy training epochs Nπ.
for n = 1 to Nt do

Estimate the expected discounted sum of cost Jc(πθ)
di ←− argmaxdi∈D di ≤ Jc(πθ)
λ←− λ+ β ∗ (Jc(πθ)− di)
for t = 1 to Nπ do

θ ←− θ + α ∗ ∇θ(−Lθk
r (θ) + λ · Lθk

c (θ))
end for

end for

where A
πθk
r (s, a) is the advantage function. PPO-Lagrangian uses a similar formulation

for reward to define the training objectives Lθk
c (θ) for cost. Then the training objective

of PPO-Lagrangian is defined as:

max
λ≥0

min
θ
−Lθk

r (θ) + λ · Lθk
c (θ) (2.7)

2.4 Self-Paced Safe Reinforcement Learning

(SPSRL)

2.4.1 SPSRL Framework

As discussed in Sec 2.2, directly optimizing Eq. 2.3 is challenging because it suffers from

local optima and training instabilities. We propose self-paced policy optimization with

safety constraints, which enables the agent to choose the suitable training objectives

automatically and alleviate the problems mentioned above.

Ideally, when an agent is presented tasks with different difficulties, the agent

should gradually learn from the easy ones to the hard ones. In our case, we define

a task in safe RL with different difficulties by setting different safety threshold di:

D = {d1, d2, ..., dk}. We rank the thresholds with d1 as the lowest one and dk as the

highest one. During deployment, we may only care about one of the threshold defined

in D, which is usually the smallest one d1 = 0. The other thresholds are defined to

help the training procedure.

During training, we start from the highest threshold dk. As long as the safety

9



2. Self-Paced Policy Optimization with Safety Constraints

threshold is satisfied: Jc(πθ) < dk, we decrease the threshold to dk−1. We iterate such

procedure until the minimal threshold d0 is satisfied. Formally, we solve the following

equations iteratively:

min
θ
−Jr(πθ) s.t. Jc(πθ) ≤ di, (2.8)

where

di = argmax
di∈D

di ≤ Jc(πθ). (2.9)

2.4.2 Self-Paced PPO-Lagrangian method

In this work, we combine the proposed self-paced curriculum with PPO-Lagrangian.

However, a similar idea could potentially be applied to other constrained optimization

algorithms, and we leave that exploration to future work. To solve the max-min

optimization in PPO-Lagrangian, we have two iterations for parameter update: one

updates policy parameters θ with higher frequency and the other updates λ with

much lower frequency. Note that different threshold will only affect the maximization

over λ but will not affect the minimization over θ. This is because adding a constant

value will not affect the gradient update of θ. Thus, at each iteration, λ is updated

according to:

λt+1 = λt + β ∗ (Jc(πθ)− di), (2.10)

where di is defined as Eq. 2.9, and β is the update rate for λ. The algorithm is

summarized in Alg. 1.

2.5 Experiments

In this section, we first study a toy example to demonstrate the benefits of using

self-paced learning on constraints. Then we evaluate the combination of self-paced

constraints with PPO-Lagrangian on the Safety Gym Benchmark [46]. More results

can be found in Appendix A.1.
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Figure 2.1: Fig. 2.1a visualizes f(x) and c(x). Fig. 2.1b visualizes the trajectory of x
during optimization. Fig. 2.1c and Fig. 2.1d visualizes the trajectory of f(x) and c(x).
The Lagrangian method converges to a local optima which satisfies the constraint but
does not achieve the best possible performance. The self-paced Lagrangian method
would relax the constraint first and finally converge to a global optima which is both
feasible and optimal.
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Figure 2.2: PPO-Lagrangian (orange curve) and SP-PPO-Lagrangian (blue curve)
are evaluated in the Safety Gym environment. We choose the point agent and
different levels of goal, button, and push tasks. In most of the tasks, our method
can converge to a policy with better final returns while has a similar performance as
PPO-Lagrangian in terms of satisfying the safety constraints.
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2. Self-Paced Policy Optimization with Safety Constraints

2.5.1 Toy Example

We first apply self-paced learning with safety constraints on a toy example to give

an intuition why self-paced learning would help constrained optimization. In this

experiment, we formulate our problem as the following objective:

min
x

f(x), s.t. c(x) ≤ 0. (2.11)

Ideally, the proposed self-paced learning over the constraints is supposed to be effective

when the feasible set is composed of multiple disconnected subsets. In this case the

algorithm may be trapped into a certain constraint set and cannot find the global

optima. Thus, we define the optimization objective function f(x) = 1
50
(x− π)2 and

the constraint function c(x) = −5 cos (x). Mathematically, the global optima should

be x = π
2
or x = 3π

2
.

We first apply Lagrangian method to solve Eq. 2.11. Then we combine SPCPO

with Lagrangian method (denoted as SP Lagrangian method). The threshold set D

is defined as:

D = {di = 2N−i|i = 0, 1, 2, ...M}, (2.12)

where N defines the initial threshold, while M defines the number of threshold we

use in the set. Adam [29] is used in both algorithms for both λ and x optimization.

The results are shown in Fig. 2.1. The Lagrangian method is over-conservative,

and stuck in a point where it is safe but the doesn’t reach the lowest function value

of f(x). In constrast, the self-paced method finds the optima without the constraint

first, and then gradually adjusts the parameters to satisfy the constraint.

2.5.2 Safety Gym Experiment

We evaluate our algorithm on the safety RL benchmark Safety Gym [46]. The

constraints for safety gym environment is defined as a limited tolerance of interacting

with hazards and obstacles. Defining different cost threshold amounts to defining

different budget for unsafe actions. We compare PPO-Lagrangian and the proposed

self-paced PPO-Lagrangian method in this experiment. We use 5 seeds for training

for each task.

13



2. Self-Paced Policy Optimization with Safety Constraints

The experiment results are shown in Fig. 2.2. SP PPO-Lagrangian has better

performances in terms of the final return with similar final cost as PPO-Lagrangian.

At the beginning of training, the return for SP PPO-Lagrangian increases much faster

than PPO-Lagrangian and the cost reduces more slowly. This indicates that the policy

is doing exploration more aggressively with the self-paced learning. In Point Push2,

SP PPO-Lagrangian does not have a significant improvement over PPO-Lagrangian.

We hypothesize that it is more challenging than other environments to get high

returns even without considering the cost constraints.

2.6 Conclusion

In this work, we propose Self-Paced Safe Reinforcement Learning (SPSRL). We

predefine a set of safety threshold indicating different difficulties. The agent is allowed

to choose a suitable threshold for training based on its current performance. In

this way the agent learns to optimize for the reward aggressively first and gradually

finetunes to satisfy the safety constraints. We demonstrate the benefits of our

algorithm in a toy example and the Safety Gym environments.

In the future, we aim to evaluate our method in more diverse settings and combine

it with other safe RL algorithms besides PPO-Lagrangian. We are also interested in

extending this work by experimenting with other ways of incorporating curriculum

to study the role of curriculum in safe RL more systematically.
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Chapter 3

Reinforcement Learning in a

Safety-Embedded MDP with

Trajectory Optimization

3.1 Introduction

1 Despite the success of reinforcement learning (RL) in sequential decision-making

problems [2, 7, 30, 33, 38, 43], it is still challenging to deploy these algorithms in

real-world robotics systems. One of the major concerns is that it is hard to ensure

safety during deployment, especially for safe-critical applications such as autonomous

driving.

A common way of incorporating safety considerations in RL is to frame the task

as a Constrained Markov Decision Process (CMDP) in which the goal is to maximize

the reward while satisfying the safety constraints given by a cost function and a

maximum cost threshold [1, 5, 8, 46]. However, most methods that optimize over a

CMDP struggle with the trade-off between maximizing the reward and satisfying

the safety constraints, which leads to unstable training, poor performance, or unsafe

policies at convergence [46].

In this work, we propose a method to improve safe RL by combining RL with

1Videos of our work are shown on our website: https://sites.google.com/view/safemdp
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subgoal

reward

Traj 
opt action EnvRL 

agent

Safety-embedded MDP

cost

action

reward, cost 

RL 
agent Env

Original MDP

subgoal

Figure 3.1: Compared to previous methods, in which the RL agent optimizes the
reward and safety constraints simultaneously, our method operates in a modified MDP.
The modified MDP is embedded with a trajectory optimizer to ensure constraint
satisfaction. The RL agent outputs the subgoal for the safe trajectory optimizer and
hence the RL agent only needs to optimize explicitly for the reward, leading to much
better performance and fewer safety violations.

trajectory optimization for problems in which the safety constraints are defined

based on obstacle avoidance. In our method, an RL agent operates on a modified

Markov Decision Process (MDP), which is embedded with a trajectory optimization

algorithm to ensure safety. Specifically, the RL policy outputs a subgoal; then

a trajectory optimizer plans a safe trajectory to reach the subgoal. Because the

trajectory optimizer is constrained to only generate safe trajectories, this defines

a new high-level action space for the RL agent in which the safety constraints are

embedded into the transition dynamics of the MDP. Hence, the RL agent can optimize

an unconstrained objective, leading to much faster and more stable training, better

performance, and guarantees of safety. The framework of our method is shown in

Fig. 3.1

Our method is able to take advantage of the benefits of both RL and trajectory
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3. Reinforcement Learning in a Safety-Embedded MDP with Trajectory Optimization

optimization. The use of trajectory optimization can ensure safety, while the RL

algorithm can be used to find an optimal policy, conditioned on the output of the

trajectory optimizer. The trajectories returned by the trajectory optimizer are

guaranteed to be safe, assuming that the robot is initialized in a safe configuration

with 0 initial velocity (although in practice, there can be safety violations due to

errors in perception or control).

We demonstrate in our experiments that our method has 0 safety errors during

inference in both simulation and in the real world. We evaluate our method on a

box-pushing task in the Safety Gym [46] simulation benchmark and show that our

method is able to achieve zero safety violations with substantially higher rewards

compared to the baseline methods. We also transfer our method to the real world

and demonstrate a Franka Panda robotic arm pushing a box around obstacles to

reach a goal.

In summary, our contributions include:

• We propose a method to improve safe RL by embedding the safety constraints

into an MDP consisting of a trajectory optimizer that is used to plan a safe

trajectory.

• The safety of our system with reinforcement learning is guaranteed by the safety

of the trajectory optimizer, regardless of the output of the RL agent.

• We demonstrate that our method can achieve 0 safety violations in contact-

rich manipulation tasks in both simulation and in the real world.

3.2 Related Work

3.2.1 Safe Reinforcement Learning

Safe RL is usually framed as a Constrained Markov Decision Process problem of

maximizing the return while ensuring the cost is under a certain threshold [5].

One popular approach in safe RL is to convert the safety constraints into a part

of the reward objective by using a Lagrangian multiplier [8, 27, 37, 46, 48, 49].

However, these methods generally suffer from training instabilities and do not have

safety guarantees. Our method shows better training stability and ensures zero
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safety violations. Alternatively, other work ensures safety by constraining the policy

behavior or policy class during the update given a safe initial policy [1, 50, 56]. We

do not rely on the assumption of having a safe initial policy.

Another line of work in safe RL ensures safety by using shielding functions. The

action output of the policy is monitored and corrected by a shielding function to

ensure safety [3, 57]. Alshiekh et al. [3] assumes a given shielding function which

requires additional domain knowledge. Yu et al. [57] learns a shielding function to

remove this assumption. However, they were not able to achieve zero safety violations.

We take a similar perspective as this line of work of modifying the action space

to ensure safety. A major difference is that we use trajectory optimization in the

modified MDP which provides additional structure to the problem and guarantees

safety.

3.2.2 Trajectory Optimization

In our method, the trajectory optimizer is used to solve a path-planning problem with

obstacle avoidance. Path planning with obstacle avoidance is a canonical problem in

motion planning [17, 31, 35]. We choose an optimization-based motion planner in

this paper, but it could potentially be replaced by other planning methods. These

methods by themselves are usually designed to avoid any collisions which exclude

object interactions such as pushing a box. Our method augments the base path

planning method to allow a wider range of tasks that may involve object interactions

beyond collision-free movement.

Beyond path planning, some of the trajectory optimization methods based on

Model Predictive Control (MPC) could be applied to contact-rich tasks such as

pushing a box [23, 24, 25]. Unlike our method, these approaches assume a physics

model of the environment.

3.2.3 Combine learning with Trajectory Optimization

Trajectory optimization has been combined with learning in various ways. For example,

previous work has proposed to use imitation learning to learn the hyperparameters

for a motion planner [6, 12, 34] . Several other works have proposed to combine RL

and motion planning similar to our work [28, 55]. In contrast, our method combines
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RL and trajectory optimization for safety-critical tasks by separating the CMDP

objectives into a hierarchical structure.

3.3 Background: Constrained Markov Decision

Process

A Constrained Markov Decision Process (CMDP) [5] is formulated as a tuple

(S,A, P, r, ρ, γ, c) where S is the state space, A is the action space, P : S ×A× S →
[0, 1] is the transition probability function, r is the reward function, ρ is the distribu-

tion of the initial state s0, γ is the discount factor, and c is the cost function that

defines the safety constraint. The training objective of a CMDP is defined as

max
θ

Jr(πθ) := Eτ∼πθ
[
∞∑
t=0

γtr(st, at)]

s.t. Jc(πθ) := Eτ∼πθ
[
∞∑
t=0

γtc(st, at)] ≤ C,

(3.1)

where C is a cost threshold, πθ is the policy with parameters θ, and τ := {s0, a0, s1, a1, ...}
denotes a trajectory where actions are sampled from the policy πθ and states are

sampled from the transition function.

3.4 Problem Statement and Assumptions

In this work, we focus on the specific problem in which the safety constraints are

defined by obstacles that we want to avoid. Specifically, all constraints are of the

form:

||st,x − xobs
j || > ϵ ∀t, j (3.2)

where st,x is the location of the robot at the tth time step, xobs
j is the location of the

jth obstacle, and ϵ is a safety margin that determines how far the robot needs to

stay away from the obstacles. We also assume access to a sensor that allows us to

obtain noisy measurements of the location of the obstacles xobs
j . Further, we focus on

a stricter version of the CMDP problem in which the cost threshold C = 0, which
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corresponds to a constraint of not colliding with the obstacles at all, rather than

having a limited safety budget for the robot to occasionally collide with the obstacles.

Finally, in our environments, some objects might be acceptable to interact with (such

as a box that we want the robot to push) and others will occur a collision cost c(st, at);

we assume that the robot knows the type of each object and whether there will be a

collision cost for interacting with that object. Despite these assumptions, solving such

a CMDP is still a challenging task because of the difficulty in balancing the objective

with the constraints, the difficulty of long-horizon reasoning, and the difficulty of

reasoning about contacts such as safely pushing a box to a goal.

3.5 Method: Safe Contact-rich Hierarchical

Reinforcement Learning with Trajectory

Optimization

Overview: We propose a method that combines reinforcement learning and trajectory

optimization in a hierarchical structure. Instead of training an RL policy in the

original action space, we propose to learn the policy in a modified action space

defined by the parameters of a trajectory optimizer. Using the parameters from the

policy output, the trajectory optimizer will plan a path for the agent while taking

into account the safety constraints. The optimized trajectory will then be sent to a

trajectory-following module that chooses robot actions to follow the path.

In summary, our method consists of three layers: A high-level RL agent that

outputs parameters for the trajectory optimizer, a mid-level trajectory optimizer that

outputs a safe trajectory, and a low-level trajectory-following module that executes

the trajectory. A summary of our method is shown in Fig. 3.2 and the pseudo-code

is shown in Alg. 2. We will explain below how this approach leads to a guarantee of

safe performance (under certain assumptions) while also enabling our agent to learn

contact-rich policies.
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Trajectory 
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Figure 3.2: An illustration of our method is shown above. In the Push task from the
Safety Gym Benchmark, the objective of the agent (red) is to push the box (yellow)
to a goal (green) while avoiding obstacles (purple). We propose a method to embed
safety constraints into the low-level trajectory optimizer to generate a safe trajectory
(the dark green dots in the figure) leading toward the subgoal. The high-level RL
policy outputs a subgoal (the red flag in the figure). The RL policy reasons about
rich contacts with the box and updates the subgoal output to achieve the task.
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Algorithm 2 Reinforcement Learning in a Safety-Embedded MDP with Trajectory
Optimization

Require: RL policy output interval k, goal-following agent πϕ.
Initialize the replay buffer D, high-level RL policy πθ.
for each episode do

for each environment step do
Select subgoal: a′

t ∼ πθ(st).
Input the subgoal a′t to the trajectory optimizer to obtain a safe trajectory:

X← TrajOpt(st, a
′
t).

Initialize cumulative reward rt ← 0.
Initialize the initial state st,i ← st.
for i = 1 to k do

Follow the traj: at,i ← TrajFollow(st,i,X, πϕ).
Execute at,i and observe reward rt,i and st,i.
Sum the reward rt ← rt + rt,i.

end for
Save the final state: st+1 ← st,k.
Store the transition (st, a

′
t, st+1, rt) into D.

Update the policy πθ on data from D.
end for

end for
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3.5.1 Safety-Embedded Markov Decision Process

In order to optimize the CMDP (Section 3.3), we propose to train an RL policy over

a Safety-Embedded Markov Decision Process (SEMDP). In the SEMDP, the state

space S, the initial state distribution ρ, and the discount factor γ remain the same as

in the original MDP. We define a modified action space A′ to be a set of parameters

that will be input into the trajectory optimizer. Specifically, we use a subgoal position

for the agent as the action space of the RL agent in our experiments, which is the

desired location of the “root node” of the agent. The root node is processed as the

center of the robot by default in the simulator. (please see Appendix B.2.1 for the

definition of the “root node”). The trajectory optimizer (described below) will then

find a safe trajectory to reach the subgoal.

Based on this new action space A′, we define a new transition function P ′ :

S × A′ × S → [0, 1] which depends on the trajectory optimizer and the trajectory

following module. Given the current state st and action a′
t ∈ A′, the trajectory

optimizer (details below) will plan a safe trajectory to reach the subgoal. The

trajectory-following module will then take k actions in the original MDP to follow

the trajectory. Thus, the state st+1 that is reached after taking action a′t depends on

the operation of the trajectory optimizer and the trajectory-following module. From

the perspective of the RL agent, this transition is recorded as the tuple (st, a
′
t, st+1).

Because the SEMDP is operating over k time steps in the original MDP, the reward

function r′(st, at) is modified to be the accumulated reward over k steps.

Importantly, the SEMDP does not need to be a CMDP, e.g. it does not include an

explicit cost constraint. This is because the cost is accounted for in the modified action

space, which uses a trajectory optimizer to find a safe trajectory to reach the subgoal.

If the trajectory optimizer finds a safe trajectory and if the trajectory-following agent

correctly follows the trajectory, then all states visited by the agent will be safe (i.e.

they will have 0 costs). Thus, in the SEMDP, the RL agent does not need to explicitly

optimize for the cost, because the cost is implicitly accounted for in the modified

action space. As we will see, this change makes the RL optimization significantly

easier. Because the SEMDP does not need an explicit cost constraint, we train the RL

agent in the SEMDP with a standard method for model-free reinforcement learning

(details in Section 3.5.4).

23



3. Reinforcement Learning in a Safety-Embedded MDP with Trajectory Optimization

3.5.2 Trajectory Optimizer

The goal of the trajectory optimizer is to find a safe and feasible trajectory reaching

the subgoal a′
t. First, the trajectory must be kinematically feasible for the robot

to follow using the trajectory-following module. In this work we assume that a

sufficiently smooth trajectory can be followed by the robot; we leave for future work

to incorporate a robot-specific transition feasibility function. Second, the trajectory

must be safe in that it should not collide with any obstacles. In this work, we

discretize the trajectory into N waypoints, denoted as X := {x1,x2, ...,xN}, in which

xi defines the position of the “root node” of the agent. We also define the velocity at

each waypoint as V := {v1,v1, ...,vN}.

Mathematically, we define the following constrained optimization problem for the

trajectory optimizer:

min
X,V

fgoal(X, a′
t)

s.t. hinit(X, st,x) ≤ σinit

hsmooth(X,V) ≤ σsmooth∑
i,j

hcost(xi,x
obs
j ) ≤ 0,

(3.3)

in which st,x is the position of the root node of the agent at time step t and σinit and

σsmooth are constants that define the constraint limits. We define each component of

this optimization problem below:

1. The optimization objective encourages the final waypoint of the trajectory to

align with the subgoal location a′
t that was output by the RL policy:

fgoal(X, a′
t) := ||xN − a′

t||2 (3.4)

in which || · || denotes the L2 distance. Note that subgoal reaching is in

the objective of this optimization but is not enforced as a constraint. Thus,

occasionally the trajectory optimizer will fail to find a trajectory that reaches

the subgoal a′
t in order to satisfy the safety constraints.

2. The first constraint enforces that the initial waypoint needs to be located at

the current position of the root node of the robot, st,x. The corresponding cost
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function is defined as:

hinit(X, st,x) := ||x1 − st,x||2. (3.5)

3. The second constraint enforces that the trajectory must be smooth, in order

to ensure kinematic feasibility. We optimize for the location of the waypoints

and the corresponding velocity at these waypoints. Non-smooth locations and

changes in the velocities are penalized. Specifically, the smoothness cost is

defined as the following equation:

hsmooth(X,V) :=
N−1∑
i=1

∥∥∥∥∥ xi+1 − xi − vi∆t

vi+1 − vi

∥∥∥∥∥
2

K

(3.6)

in which || · ||K is the Mahalanobis distance with a metric given by K and ∆t

is the time interval between two adjacent waypoints; this smoothness cost is

derived from a constant velocity GP prior with an identity cost-weight; see

prior work [9, 40] for details.

4. The last set of constraints enforces that the trajectory needs to avoid collisions

with obstacles. The cost of the ith the waypoint with the jth obstacle is defined

as:

hcost(xi,x
obs
j ) :=

{
0 if di,j > ϵ′

(ϵ′ − di,j)
2 otherwise

, (3.7)

in which xobs
j denotes the location of the jth obstacle, di,j := ||xi−xobs

j || denotes
the distance between the ith waypoint and the jth obstacle, and ϵ′ denotes a

distance threshold. We choose ϵ′ such that ϵ′ ≥ ϵ, in which ϵ is the distance

threshold specified by the problem definition in Equation 3.2. We choose ϵ′ ≥ ϵ

to account for perception errors and errors in the trajectory-following agent.

We solve the constrained optimization problem in Equation 3.3 using the method

of dual descent:

max
λ≥0

min
X,V

fgoal(X, a′
t) + λT

 hinit(X, st,x)− σinit

hsmooth(X,V)− σsmooth∑
i,j hcost(xi,x

obs
j )

 . (3.8)
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The inner loop is optimized using a trajectory optimizer; in practice, we use the

Levenberg-Marquardt algorithm [54] implemented in Theseus [44]. The outer loop

is optimized using gradient descent on λ. Please see Appendix B.2.2 for more

implementation details about the trajectory optimizer.

We know that a feasible solution to the optimization problem exists as long as

the robot’s initial state st,x is feasible (e.g. greater than or equal to ϵ′ away from

any obstacle). In such a case, a stationary trajectory (all waypoints located at st,x)

would satisfy all of the constraints. We initialize the optimization for the trajectory

optimizer at the stationary trajectory (all waypoints located at st,x). In this way, we

guarantee that our optimization will always return a feasible trajectory because we

can always return the stationary trajectory if no other feasible trajectory is found.

Thus, we guarantee that the trajectory returned by the trajectory optimizer will be

safe, meaning that no waypoints will be within ϵ′ of any obstacle.

However, in practice, the executed trajectory might not be perfectly safe, due to

perception errors or errors with the trajectory-following module. Specifically, there

might be errors in practice due to a number of factors:

1. Localization errors in estimating the robot position st,x

2. Perception errors in estimating the locations of the obstacles xobs
j

3. Errors in following the planned trajectory

4. Discretization errors: since the planned trajectory is a discrete set of waypoints

X := {x1,x2, ...,xN}, it is possible that the agent will encounter an unsafe

state in between the trajectory waypoints that was not accounted for in the

trajectory optimization.

5. If the robot dynamics is not quasi-static, then after the first trajectory optimiza-

tion, the robot velocity will be non-zero, so a perfectly stationary trajectory

might not be feasible; hence it is possible that no safe trajectory exists from

the robot’s current state. This can be alleviated if the trajectory-following

module finds an action sequence to bring the final velocity to 0 at the end of

each execution.

To account for these inaccuracies, we set ϵ′ > ϵ; nonetheless, the strength of our

framework is that these are the only potential sources of unsafety; the waypoints

returned by the trajectory optimizer are guaranteed to not intersect with obstacles,
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as stated above, regardless of the output of the RL agent.

In practice, since the Lagrangian method adds computational overhead, we use a

fixed λ during training, which speeds up training time and also encourages exploration

(although this leads to some safety violations during training). At test time, we

update λ as mentioned previously, which ensures safety at test time.

3.5.3 Trajectory-Following Module

The trajectory optimizer outputs a set of waypoint locations; we ignore the velocities

output by the trajectory optimizer in the trajectory-following module, since their

purpose was only to define the smoothness cost hsmooth(X,V). Additionally, we

will demonstrate in the experiments below that controlling the robot to follow the

positions of waypoints is enough to solve the task. Next, we use a trajectory-following

module that operates in the original robot action space to track the waypoints. Given

the trajectory X := {x1,x2, ...,xN}, the trajectory-following module selects the next

waypoint xi and inputs the waypoint to the goal-following agent to generate low-level

robot actions at = πϕ(st,xi).

Our overall system is agnostic to the form of the goal-following agent; in our

experiments, we train the goal-following agent using reinforcement learning in an

obstacle-free environment with only the robot and a randomly sampled goal. The

agent is goal-conditioned πϕ(st,g) and is trained to reach a goal g that is randomly

sampled around the robot. Specifically, the goal xi is sampled uniformly from a range

of dmin to 2dmin away from the robot to match the input distribution during inference,

in which dmin is a distance threshold. The reward function used for training the

goal-following agent is defined as the change in distance between the robot and the

goal:

rgt := ||st−1,x − g|| − ||st,x − g||. (3.9)

More implementation details about the trajectory-following module are in Ap-

pendix B.2.2.
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3.5.4 Implementation details

RL policy: We use Soft Actor-Critic (SAC) [21] to train the high-level policy. The

actor network and the critic network are three-layer neural networks with a hidden

size of 256. The action space is defined as [−2, 2], which defines the farthest possible

subgoal output at the current time step relative to the robot. The learning rate for

training is set to be 3e−4. The agent interacts with the environment for 1e7 time

steps to ensure it has fully converged.

Trajectory optimizer: The distance threshold ϵ′ is set to be 0.5m during

training for all of the robots. The number of waypoints is set to be 30. The maximum

time step for optimizing the trajectory is set to be 10 steps during training. If the

robot is currently within ϵ′ of some obstacle, we would manually set λ to be the

maximum value λmax to encourage the robot to escape the unsafe region as quickly

as possible.

Trajectory-following module: SAC is used to train the goal-following agent.

The actor network and the critic network are three-layer neural networks with a

hidden size of 256. dmin is set to be 0.2m. The agent interacts with the environment

for 1e6 time steps to ensure it has fully converged.

3.6 Experiments

In this section, we evaluate our method on Safety Gym simulation benchmarks [46].

We also transfer the policy to a real-world task of pushing a box around obstacles to

a goal.

3.6.1 Safety Gym Setup

Safety Gym [46] is a set of benchmark environments which can be used to evaluate

methods under a CMDP framework. In our experiments, we focus on the “Push”

tasks of Safety Gym, in which the robot has to push a box towards a goal and

avoid obstacles. The Push tasks require reasoning about rich contacts between the

robot and the environment, while also reasoning about safety; this environment is

challenging for previous methods. In previous work on Safety Gym, a cost threshold of
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25 was used [46]; in contrast, we use a stricter cost threshold of 0 in our experiments,

to not allow any safety violations.

The following types of objects exist in the environments for the Push tasks:

1. Goal indicates where the robot needs to reach. As long as the robot is within

a specific range of the goal, the task is considered successful.

2. Hazard denotes circular regions that the robot should not enter. It is a virtual

region and does not interact with the robot. The robot entering such a region

will incur the cost. It is defined as obstacles in our method.

3. Pillar is a fixed cylinder; contact with the pillar will not incur any cost. Though

contacting with pillar might now incur cost, the robot might get stuck. Thus,

it is also defined as an obstacle in our method.

4. Box is an object that the robot can (and must) interact with: the goal is for the

agent to push the box towards the goal. If the box enters the hazard regions, it

will not incur any cost.

The reward function for the “Push” task is defined as the change in the distance

between the robot and the box and between the box and the goal:

rpt := ||xb
t−1 − g|| − ||xb

t − g||+ ||st−1,x − xb
t−1|| − ||st,x − xb

t ||, (3.10)

in which xb
t denotes the location of the center of the box at the t th step, and g

denotes the location of the final goal that the box needs to reach. The cost function

is defined as:

cpt := 1(min
j
||st,x − xobs

j || < ϵ), (3.11)

in which 1 is the indicator function, and ϵ is a distance threshold. The cost function

will return 1 if the “root” of the robot is within ϵ of any obstacle. The observation

space of the Safety Gym environment consists of LiDAR observation and robot states.

The LiDAR observation returns an approximate position of the objects, due to the

limited LiDAR resolution. The robot states consist of robot velocity, acceleration,

and orientation.

There are several robot morphologies in the Safety Gym. We use the Point agent

and the Car agent. The Point agent is a robot with one actuator for turning and

another actuator for moving forward or backward. The Car agent is a robot with two
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independently driven wheels. In addition, we also created another agent called Mass,

which is an omnidirectional agent; the action space of the Mass agent is defined as a

delta movement of the agent position.

We compare our method to the state-of-the-art safe RL methods: CPO [1], PPO-

Lagrangian (PPO Lag), and TRPO-Lagrangian [46] (TRPO Lag). During training,

four seeds are used for each method. We also evaluate the performance of the policy

every 20 episodes. During the evaluation, we choose the mean action from the policy

instead of sampling from the policy distribution.

3.6.2 Safety Gym Results

The results are shown in Fig. 3.3. We apply the Savitzky-Golay filter [47] to smooth

the curve for better visualization. As shown, our method achieves a much higher

reward than the baselines with very little incurred cost. As noted previously, we use

a fixed λ during training to speed up computation and to encourage exploration,

which leads to some safety violations during training; at test time, we adjust λ to

optimize Equation 3.8, leading to safe trajectories.

After training is complete, we evaluate the policy at the final episode. For our

method, each agent has interacted with the environment for 1e7 time steps. For the

baselines, each agent has interacted with the environment for at least 4e7 time steps.

The baseline methods have more time steps to ensure convergence. Each policy is

evaluated for 50 episodes and the average results are shown in Table 3.1. The number

of safety errors from our method is reduced to zero because we adjust λ, unlike in

training when λ is held fixed.

In prior work on Safety Gym, a cost threshold of 25 was used [46]; in our

experiments, we use a stricter cost threshold of 0. This leads to significantly worse

performance for the Lagrangian methods, which are unable to achieve a reasonable

reward due to training instability.

3.6.3 Ablations and Additional Analysis

In this section, we perform additional ablation experiments to understand the reason

behind our method’s high performance.
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Figure 3.3: Training curves of our method compared to the baseline methods. The
curves have been smoothed for better visualization. Four different seeds are used for
each method. The shadow region denotes the standard error of different seeds. Our
method starts from 1e6 steps instead of 0 to denote the training of the goal-reaching
policy. Our method achieves a lower cost than the baselines. It still incurs some
cost during training because, during training time, we are using a fixed Lagrangian
parameter for computation reasons and to encourage exploration.
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Table 3.1: Evaluation results of the final policy, using an adaptive Lagrangian
parameter for our method. See text for details. Our method was trained for 1e7
environment interaction steps and each of the baseline methods were trained for 6e7
environment interaction steps.

Ours CPO PPO Lag TRPO Lag

MassPush1 reward 4.31 0.78 -2.26 -0.39
cost 0.00 31.48 2.6 0.05

PointPush1 reward 5.69 5.47 -5.61 0.68
cost 0.00 16.45 6.61 0.45

CarPush1 reward 4.57 4.4 -2.34 0.45
cost 0.00 30.35 3.17 1.46

PPO Lag + SAC SAC + PPO Lag Ours w/ gt

MassPush1 reward 14.62 10.00
cost 40.25 0.00

PointPush1 reward 0.16 -0.87 5.70
cost 1.41 24.16 0.00

CarPush1 reward 0.15 0.18 5.33
cost 5.58 6.75 0.00

How much of our improvement over the baselines is attributed to using

a trajectory-following module? To understand this, we evaluate our method in

the “MassPush1” environment which uses a Mass agent, in which the action space

is defined as a delta movement of the agent position. As such, we do not need to

use a trajectory-following module for this agent, either in our method or in any of

the baselines. As shown in the “MassPush1” experiments in Fig. 3.3 and Table 3.1,

our method still significantly outperforms the baselines. This demonstrates that the

benefits of our method are not from using a trajectory-following module itself. We

believe that the benefits come from training an RL agent in a Safety-Embedded MDP

defined by a safe trajectory optimizer.

As an additional experiment to understand the effects of a trajectory-following

module, we modify the baselines to incorporate a goal-reaching low-level agent.

Specifically, we train a goal-reaching agent with SAC to reach arbitrary subgoals

sampled in the environment, and then we use PPO Lagrangian to train a high-level

policy that outputs a (hopefully safe) subgoal. The results of this experiment can be

found in Table 3.1, referred to as “PPO Lag + SAC.” The results for the Mass agent

are left blank since the Mass agent does not require a low-level goal-reaching policy.
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As can be seen, “PPO Lag + SAC” performs poorly, incurring a low reward and

many safety violations. Though “PPO Lag + SAC” performs slightly better than

the PPO Lagrangian method, there is still a huge performance gap compared to our

method. This demonstrates that the benefits of our method do not come directly

from the trajectory-following module; incorporating such a module into the baselines

still leads to poor performance.

Do we need a trajectory optimizer? In this ablation, we replace the safe tra-

jectory optimizer in our method with a low-level policy trained with PPO Lagrangian

to find a safe trajectory to reach a subgoal. Instead of using a trajectory optimizer,

we use PPO Lagrangian to train a low-level policy in the same environment as the

Push task to (hopefully safely) reach a randomly sampled goal (rather than being

trained to push the box to the goal). Then the high-level RL policy is trained with

SAC, the same as in our method, to output subgoals. For each subgoal output by the

RL policy, the low-level goal-reaching policy (now trained with PPO Lagrangian) will

try to (safely) reach the subgoal for k time steps. The intention of this experiment is

to be as similar to our method as possible but replacing the trajectory optimizer with

a low-level goal-reaching agent trained with safe RL. The results of this experiment

can be found in Table 3.1, referred to as “SAC + PPO Lag.” As can be seen, this

method also performs poorly, demonstrating that a safe trajectory optimizer is needed

to ensure safety; training a cost-aware low-level agent with PPO Lagrangian is not

sufficient to obtain safety.

How much is our performance affected by perceptual errors? As noted,

some of the errors in our system come from perceptual errors, in which the location

of the obstacles is perturbed by some noise in the Safety Gym. To measure the effect

of these errors, we perform an experiment in which we allow our trajectory optimizer

to have access to the ground-truth location of the obstacles, while the RL agent

still takes in the noisy LiDAR observations as input. The results can be found in

Table 3.1 and it is denoted as “Ours w/ gt”. As shown, the performances for all the

environments have increased. The MassPush1 task has the greatest improvement in

reward by switching to ground-truth locations. This is because perception errors are

the major source for errors for the Mass agent.
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Ours

TRPO Lag

Ours

TRPO Lag

t

Figure 3.4: We set up a real-robot environment similar to the Safety Gym Push task.
The fingertip of the Franka robot (pink) is used to push the box (black) towards the
goal (green). It needs to avoid hazards (red) and avoid getting stuck at the pillar
(blue). Each row shows five frames of a single episode. We compare our method with
TRPO Lagrangian, which has the best performance among the baselines based on
the simulation experiments.

3.6.4 Real-Robot Experiments

We use a real-robot version of the Push task for evaluation, using a Franka Panda

gripper. As shown in Fig. 3.4, the fingertip of the gripper moves in a plane to push

the box towards the goal (the large green circle). As in the simulation setup. the

robot also needs to avoid hazards (the small red circle) and try not to get stuck by

the pillar (blue). In order to match the observation distribution seen during training,

we convert the location of the objects into LiDAR readings in a similar format to the

Safety Gym Pseudo LiDAR.

In this experiment, we first train the policy in simulation. We modify the

simulation environment to match the setup in the real world, e.g., we change the size

of objects and the shape of the robot in the simulation. Then we directly transfer the

policy to the real robot without any finetuning. An episode is considered successful if

the robot is able to push the box into the green region within 60 time steps.

We compare our method with TRPO Lagrangian. We evaluate each method with
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Table 3.2: Results of the real robot experiment. Our method achieves a higher success
rate and reward than the baseline. Both methods have 0 costs in the real world.

Method Succ rate reward cost
Ours 8/10 1.33 0

TRPO Lag 0/10 0.22 0

10 different layouts; evaluating each layout with both our method and the baseline.

The results are shown in Table 3.2. Both methods are safe in the real world, but our

method has a much higher success rate and reward. The reasons for the failure of

our method include timing out or getting stuck around the obstacles. For the TRPO

Lagrangian baseline, the robot is able to move towards the box but is not successful

in pushing the box to the goal, which also matches its performance in simulation.
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Chapter 4

Conclusions

In this thesis, we propose two methods that could improve safety during the deploy-

ment of autonomous systems.

1. In Chapter 2, We propose a hierarchical framework, in which the RL agent

optimizes the training objective in a modified MDP which is embedded with

a trajectory optimization algorithm to ensure safety. We test our method on

Safety Gym benchmarks and a real-robot pushing task, demonstrating better

performance than the baselines in terms of both rewards and costs.

Our framework is not constrained to the trajectory optimization algorithm that

we use in our experiments and the output of the RL agent is not constrained to

be subgoals. Alternatively, the RL agent can output any parameters that define

the objective for the trajectory optimizer, and the trajectory optimizer can

take any form as long as it is compatible with the output of the RL policy. We

believe our work will contribute to the field of robotics by demonstrating the

importance of combining RL and trajectory optimization in safety-constrained

optimization tasks.

2. In Chapter 3, we propose a hierarchical framework, in which the RL agent

optimizes the training objective in a modified MDP which is embedded with

a trajectory optimization algorithm to ensure safety. We test our method on

Safety Gym benchmarks and a real-robot pushing task, demonstrating better

performance than the baselines in terms of both rewards and costs.
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4. Conclusions

Our framework is not constrained to the trajectory optimization algorithm that

we use in our experiments and the output of the RL agent is not constrained to

be subgoals. Alternatively, the RL agent can output any parameters that define

the objective for the trajectory optimizer, and the trajectory optimizer can

take any form as long as it is compatible with the output of the RL policy. We

believe our work will contribute to the field of robotics by demonstrating the

importance of combining RL and trajectory optimization in safety-constrained

optimization tasks.
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Appendix A

Self-paced Safe Reinforcement

Learning

A.1 Additional Experiment Results on Safety

Gym

Additional experiment results for safety gym is shown in Fig. A.1.

A.2 Safe Driving Experiment

Safety is one of the critical issues in the autonomous driving domain. We would like

to test our constrained optimization algorithm in autonomous driving. We design the

Safe Driving environment, which consists of a circle environment and a trajectory

environment.

A.2.1 Experiment Setup

For both environment, we assume a bicycle model as the kinematic model and

brush tire model as the dynamics model [45, 52]. We take drifting behaviors into

account, which would make the task more challenging. The visualization of the two

environments is shown in Fig. A.2:
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Figure A.1: PPO-Lagrangian (orange curve) and SP-PPO-Lagrangian (blue curve)
are evaluated in the Safety Gym environment. We choose the point agent and
different levels of goal, button, and push tasks. In most of the tasks, our method
can converge to a policy with better final returns while has a similar performance as
PPO-Lagrangian in terms of satisfying the safety constraints.

(a) Circle Environment (b) Trajectory Environment

Figure A.2: Visualization of the Circle environment and the Trajectory environment.
In the Circle environment, the vehicle is required to follow the circle. In the Trajectory
environment, the trajectory is randomly generated. The vehicle is required to follow
the trajectory. In both environments, we assume a fixed width of the trajectory.
Going off the trajectory is considered as dangerous behaviors. We specify different
desired velocities in both environments, which defines different levels of difficulties.
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For the Circle environment, the vehicle is required to drive along the circle. We

assume a fixed width of the trajectory and going off the trajectory is considered as

dangerous behaviors. The observation space is defined as the lateral distance to the

center of the trajectory, the orientation difference with respect to the tangent of the

trajectory, and their corresponding derivatives with respect to time.

For the Trajectory environment, the vehicle is required to drive along the randomly

generated trajectory. We assume a fixed width of the trajectory and going off the

trajectory is considered as dangerous behaviors. In addition to the observation space

in the circle environment, the partial trajectory around the vehicle is also added into

the observation space.

For both environments, the reward function is defined as follows:

r = d2 + ω1 ∗ (v − vd)
2 + ω2 ∗ I(|ϕ− ϕd| ≥

π

2
), (A.1)

where d is the distance to the center of the trajectory, v is the current velocity, vd is

the desired velocity, ϕ is the orientation of the vehicle, ϕd is the desired orientation

the vehicle should be at the current time step. w1 and w2 are corresponding weights.

The cost is defined as:

c = max(d− d0, 0) (A.2)

where d0 is the distance threshold, which usually means the width of the trajectory.

A.2.2 Experiment Results

The results of Circle environment is shown in Fig. A.3. We could tell that SP

PPO-Lagrangian has a slightly better return than PPO-Lagrangian. Additionally,

the training of SP PPO-Lagrangian is more stable than PPO-Lagrangian. However,

if the desired velocity is too high (e.g. v = 6m/s), SP PPO-Lagrangian may not

converge to a safe policy within limited training steps. This is probably because it

has converged to an aggressive policy, it would takes a long time to converge to a

safe one.

The results for the Trajectory environment is shown in Fig. A.4. The conclusion

here is similar to that in the Circle environment. We could see a greater gap between

two methods in terms of return. The larger the velocity is, the larger the gap is.
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Figure A.3: PPO-Lagrangian (orange curve) and SP PPO-Lagrangian (blue curve) are
evaluated in the Circle environment. We choose different desired velocities denoting
different levels of difficulties. The greater the desired velocity is, the larger the gap
between two methods in terms of return. But when desired velocity is too high (e.g.
5 m/s), SP PPO-Lagrangian cannot converge to a safe policy.
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The cost for SP PPO-Lagrangian cannot converge to zero if the desired velocity is

too high. This is probably because the policy has already learned to be aggressive, it

would take a longer time for it to be safe again because it may need to substantially

change the strategy.
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Figure A.4: PPO-Lagrangian (orange curve) and SP PPO-Lagrangian (blue curve)
are evaluated in the Trajectory environment. The vehicle is required to follow a
certain randomly generated trajectory. We choose different desired velocities denoting
different levels of difficulties. The greater the desired velocity is, the larger the gap
between the two methods in terms of return. But when desired velocity is too high
(e.g. 5 m/s), SP PPO-Lagrangian cannot converge to a safe policy.
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Appendix B

Safety-Embedded MDP

B.1 Additional Experiments

B.1.1 Adjusting the Trade-off between Reward and Cost

We can adjust the trade-off between the reward and the cost during test time in the

proposed method. Specifically, we can adjust the threshold ϵ′ defined in Equation 3.2.

The results are summarized in Fig. B.1. As a comparison, we also include three

baselines: CPO, PPO-Lagrangian, and TRPO-Lagrangian.

PointPush1 CarPush1

0.3

0.4
0.50.60.7

0.3

0.40.50.6

Figure B.1: Trade-off between the reward and the cost for different methods. The
blue dots represent our method with different ϵ′. The numbers above the blue dots
denote the value of ϵ′.

From Fig. B.1, smaller ϵ′ might lead to a less conservative agent with higher
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reward and higher cost. Nonetheless, our method has the higher reward and lower

cost compared to the baselines across different values of ϵ′.

B.1.2 Our method with fixed Lagrangian

Our method adapts the Lagrangian parameter λ over time according to Equation 3.8.

We also evaluate an ablation of our method which uses a fixed λ (“Ours w/o Lag”).

The results are shown in Table B.1. Without adapting the Lagrangian parameter,

the policy leads to a higher cost but also obtains a higher reward. With a fixed λ,

the agent may occasionally enter the unsafe regions to achieve a shorter path to the

goal. The results demonstrate the necessity of adjusting λ in the proposed method

to ensure safety.

Table B.1: Evaluation results of the final policy, comparing our method with an
adaptive Lagrangian parameter and our method with a fixed Lagrangian parameter

Ours Ours w/o Lag
MassPush1 reward 4.31 8.61

cost 0.00 0.23
PointPush1 reward 5.69 5.74

cost 0.00 0.14
CarPush1 reward 4.57 5.66

cost 0.00 0.02

B.1.3 Additional Safety Gym environments

We evaluate our method with an additional task, the “Goal” task in SafetyGym [46].

In the Goal task, the robot itself needs to go to a specific goal and avoid obstacles

instead of moving an object to the goal. The results are shown in Fig. B.2. Our

method still achieves the lowest cost and a relatively high reward during training.

B.1.4 Analyzing the Ablations

In the main text, we discussed an ablation called “SAC + PPO Lag” in which we

train a low-level policy to safely reach goals with PPO Lagrangian, and then we use
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Figure B.2: Training curves of our methods compared to the baseline methods in
the Goal environment. The curves have been smoothed for better visualization. Our
method starts from 1e6 steps instead of 0 to denote the training of the goal-reaching
policy. Our method achieves the lowest cost among all the baseline methods.

SAC to output subgoals (see Section 3.6.3 for further discussion). In this section, we

analyze why this method appears to perform so poorly in Table 3.1.

The training curves for the low-level safe goal-reaching policy trained with PPO

Lagrangian are shown in Fig. B.3. As can be seen, these policies do not learn to

be safe and the cost during training is always above 0. Hence, integrating such a

low-level policy with a high-level SAC agent leads to poor overall performance for

“SAC + PPO Lag” baseline. This experiment highlights the difficulties of training

even a safe short-horizon policy with PPO Lagrangian.

B.1.5 Training Curves of the ablations

The training curve of ablation methods are shown in Fig. B.5 which corresponds

to the results in Table 3.1. The ablations have much higher cost than our method

during training and significantly higher cost than our method during inference (in

which our method obtains 0 cost) as shown in Table 3.1.
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Figure B.3: Training curves of the goal-reaching policies used in “SAC + PPO Lag”.

(a) Point (b) Car

Figure B.4: Root node position of different robots shown by the location of the small
blue sphere.
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Figure B.5: Training curves of our method and 2 ablations (see Section 3.6.3 for
details on these methods).

B.2 Implementation Details

B.2.1 Definition of “root” node

In MuJoCo, a robot is defined in a tree structure. Specifically, a robot is usually

defined by mounting the adjacent link onto the previous link. The root node of the

robot is the root body of the tree structure. In our experiments, it is usually the body

of the robot. Thus the location of the root node can be interpreted as the center of

the robot. The position of the root node is shown in Fig. B.4. The small blue sphere

inside the robot denotes the position of the root node.

B.2.2 Additional details about the trajectory-following

module

In the trajectory-following module, the trajectory is represented as a set of waypoints.

However, the goal-following agent only takes in a single goal as input. Thus, we use

the following procedure to select a waypoint from the set for the goal-following agent:

1. The agent keeps track of the waypoint that is input into the goal-following
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agent (“tracking point”). The tracking point is initialized as the first waypoint

of the trajectory.

2. At each time step, the agent searches from the tracking point to the end of the

trajectory until it finds a waypoint that is at least dmin away from the current

robot root position. It sets the point as the tracking point for the current time

step. It is possible that the tracking point is the same as the previous time step.

B.2.3 Additional details about the trajectory optimizer

In our experiments, instead of using three distinctive Lagrangian values for the three

constraints mentioned in equation 3.3 respectively, we use a single Lagrangian value

λ for all 3 constraints, to simplify our implementation.

To solve the dual problem mentioned in Equation 3.8, instead of using gradient

descent to update λ, in practice, we follow a simpler procedure of increasing λ if the

obstacle constraints are violated until the optimizer returns a feasible solution.

B.2.4 Implementation details of training the goal-reaching

policy

For our method and the “PPO Lag + SAC” ablation, we use SAC to train the

goal-reaching policy. In our method, we sample the goal from a range of dmin to 2dmin.

Specifically, dmin is set to be 0.2m in our experiment to match the average distance

between waypoints in the trajectory. For the “PPO Lag + SAC” ablation, we sample

the goal randomly from a 2m× 2m area to match the distribution of subgoals output

from the high-level PPO Lagrangian agent.
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